1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 #include <linux/sched/isolation.h> 53 54 #include "internal.h" 55 56 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 57 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 58 struct writeback_control *wbc); 59 60 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 61 62 inline void touch_buffer(struct buffer_head *bh) 63 { 64 trace_block_touch_buffer(bh); 65 folio_mark_accessed(bh->b_folio); 66 } 67 EXPORT_SYMBOL(touch_buffer); 68 69 void __lock_buffer(struct buffer_head *bh) 70 { 71 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 72 } 73 EXPORT_SYMBOL(__lock_buffer); 74 75 void unlock_buffer(struct buffer_head *bh) 76 { 77 clear_bit_unlock(BH_Lock, &bh->b_state); 78 smp_mb__after_atomic(); 79 wake_up_bit(&bh->b_state, BH_Lock); 80 } 81 EXPORT_SYMBOL(unlock_buffer); 82 83 /* 84 * Returns if the folio has dirty or writeback buffers. If all the buffers 85 * are unlocked and clean then the folio_test_dirty information is stale. If 86 * any of the buffers are locked, it is assumed they are locked for IO. 87 */ 88 void buffer_check_dirty_writeback(struct folio *folio, 89 bool *dirty, bool *writeback) 90 { 91 struct buffer_head *head, *bh; 92 *dirty = false; 93 *writeback = false; 94 95 BUG_ON(!folio_test_locked(folio)); 96 97 head = folio_buffers(folio); 98 if (!head) 99 return; 100 101 if (folio_test_writeback(folio)) 102 *writeback = true; 103 104 bh = head; 105 do { 106 if (buffer_locked(bh)) 107 *writeback = true; 108 109 if (buffer_dirty(bh)) 110 *dirty = true; 111 112 bh = bh->b_this_page; 113 } while (bh != head); 114 } 115 116 /* 117 * Block until a buffer comes unlocked. This doesn't stop it 118 * from becoming locked again - you have to lock it yourself 119 * if you want to preserve its state. 120 */ 121 void __wait_on_buffer(struct buffer_head * bh) 122 { 123 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 124 } 125 EXPORT_SYMBOL(__wait_on_buffer); 126 127 static void buffer_io_error(struct buffer_head *bh, char *msg) 128 { 129 if (!test_bit(BH_Quiet, &bh->b_state)) 130 printk_ratelimited(KERN_ERR 131 "Buffer I/O error on dev %pg, logical block %llu%s\n", 132 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 133 } 134 135 /* 136 * End-of-IO handler helper function which does not touch the bh after 137 * unlocking it. 138 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 139 * a race there is benign: unlock_buffer() only use the bh's address for 140 * hashing after unlocking the buffer, so it doesn't actually touch the bh 141 * itself. 142 */ 143 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 144 { 145 if (uptodate) { 146 set_buffer_uptodate(bh); 147 } else { 148 /* This happens, due to failed read-ahead attempts. */ 149 clear_buffer_uptodate(bh); 150 } 151 unlock_buffer(bh); 152 } 153 154 /* 155 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 156 * unlock the buffer. 157 */ 158 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 159 { 160 __end_buffer_read_notouch(bh, uptodate); 161 put_bh(bh); 162 } 163 EXPORT_SYMBOL(end_buffer_read_sync); 164 165 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 166 { 167 if (uptodate) { 168 set_buffer_uptodate(bh); 169 } else { 170 buffer_io_error(bh, ", lost sync page write"); 171 mark_buffer_write_io_error(bh); 172 clear_buffer_uptodate(bh); 173 } 174 unlock_buffer(bh); 175 put_bh(bh); 176 } 177 EXPORT_SYMBOL(end_buffer_write_sync); 178 179 /* 180 * Various filesystems appear to want __find_get_block to be non-blocking. 181 * But it's the page lock which protects the buffers. To get around this, 182 * we get exclusion from try_to_free_buffers with the blockdev mapping's 183 * private_lock. 184 * 185 * Hack idea: for the blockdev mapping, private_lock contention 186 * may be quite high. This code could TryLock the page, and if that 187 * succeeds, there is no need to take private_lock. 188 */ 189 static struct buffer_head * 190 __find_get_block_slow(struct block_device *bdev, sector_t block) 191 { 192 struct inode *bd_inode = bdev->bd_inode; 193 struct address_space *bd_mapping = bd_inode->i_mapping; 194 struct buffer_head *ret = NULL; 195 pgoff_t index; 196 struct buffer_head *bh; 197 struct buffer_head *head; 198 struct folio *folio; 199 int all_mapped = 1; 200 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 201 202 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 203 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 204 if (IS_ERR(folio)) 205 goto out; 206 207 spin_lock(&bd_mapping->private_lock); 208 head = folio_buffers(folio); 209 if (!head) 210 goto out_unlock; 211 bh = head; 212 do { 213 if (!buffer_mapped(bh)) 214 all_mapped = 0; 215 else if (bh->b_blocknr == block) { 216 ret = bh; 217 get_bh(bh); 218 goto out_unlock; 219 } 220 bh = bh->b_this_page; 221 } while (bh != head); 222 223 /* we might be here because some of the buffers on this page are 224 * not mapped. This is due to various races between 225 * file io on the block device and getblk. It gets dealt with 226 * elsewhere, don't buffer_error if we had some unmapped buffers 227 */ 228 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 229 if (all_mapped && __ratelimit(&last_warned)) { 230 printk("__find_get_block_slow() failed. block=%llu, " 231 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 232 "device %pg blocksize: %d\n", 233 (unsigned long long)block, 234 (unsigned long long)bh->b_blocknr, 235 bh->b_state, bh->b_size, bdev, 236 1 << bd_inode->i_blkbits); 237 } 238 out_unlock: 239 spin_unlock(&bd_mapping->private_lock); 240 folio_put(folio); 241 out: 242 return ret; 243 } 244 245 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 246 { 247 unsigned long flags; 248 struct buffer_head *first; 249 struct buffer_head *tmp; 250 struct folio *folio; 251 int folio_uptodate = 1; 252 253 BUG_ON(!buffer_async_read(bh)); 254 255 folio = bh->b_folio; 256 if (uptodate) { 257 set_buffer_uptodate(bh); 258 } else { 259 clear_buffer_uptodate(bh); 260 buffer_io_error(bh, ", async page read"); 261 folio_set_error(folio); 262 } 263 264 /* 265 * Be _very_ careful from here on. Bad things can happen if 266 * two buffer heads end IO at almost the same time and both 267 * decide that the page is now completely done. 268 */ 269 first = folio_buffers(folio); 270 spin_lock_irqsave(&first->b_uptodate_lock, flags); 271 clear_buffer_async_read(bh); 272 unlock_buffer(bh); 273 tmp = bh; 274 do { 275 if (!buffer_uptodate(tmp)) 276 folio_uptodate = 0; 277 if (buffer_async_read(tmp)) { 278 BUG_ON(!buffer_locked(tmp)); 279 goto still_busy; 280 } 281 tmp = tmp->b_this_page; 282 } while (tmp != bh); 283 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 284 285 /* 286 * If all of the buffers are uptodate then we can set the page 287 * uptodate. 288 */ 289 if (folio_uptodate) 290 folio_mark_uptodate(folio); 291 folio_unlock(folio); 292 return; 293 294 still_busy: 295 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 296 return; 297 } 298 299 struct postprocess_bh_ctx { 300 struct work_struct work; 301 struct buffer_head *bh; 302 }; 303 304 static void verify_bh(struct work_struct *work) 305 { 306 struct postprocess_bh_ctx *ctx = 307 container_of(work, struct postprocess_bh_ctx, work); 308 struct buffer_head *bh = ctx->bh; 309 bool valid; 310 311 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 312 end_buffer_async_read(bh, valid); 313 kfree(ctx); 314 } 315 316 static bool need_fsverity(struct buffer_head *bh) 317 { 318 struct folio *folio = bh->b_folio; 319 struct inode *inode = folio->mapping->host; 320 321 return fsverity_active(inode) && 322 /* needed by ext4 */ 323 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 324 } 325 326 static void decrypt_bh(struct work_struct *work) 327 { 328 struct postprocess_bh_ctx *ctx = 329 container_of(work, struct postprocess_bh_ctx, work); 330 struct buffer_head *bh = ctx->bh; 331 int err; 332 333 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 334 bh_offset(bh)); 335 if (err == 0 && need_fsverity(bh)) { 336 /* 337 * We use different work queues for decryption and for verity 338 * because verity may require reading metadata pages that need 339 * decryption, and we shouldn't recurse to the same workqueue. 340 */ 341 INIT_WORK(&ctx->work, verify_bh); 342 fsverity_enqueue_verify_work(&ctx->work); 343 return; 344 } 345 end_buffer_async_read(bh, err == 0); 346 kfree(ctx); 347 } 348 349 /* 350 * I/O completion handler for block_read_full_folio() - pages 351 * which come unlocked at the end of I/O. 352 */ 353 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 354 { 355 struct inode *inode = bh->b_folio->mapping->host; 356 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 357 bool verify = need_fsverity(bh); 358 359 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 360 if (uptodate && (decrypt || verify)) { 361 struct postprocess_bh_ctx *ctx = 362 kmalloc(sizeof(*ctx), GFP_ATOMIC); 363 364 if (ctx) { 365 ctx->bh = bh; 366 if (decrypt) { 367 INIT_WORK(&ctx->work, decrypt_bh); 368 fscrypt_enqueue_decrypt_work(&ctx->work); 369 } else { 370 INIT_WORK(&ctx->work, verify_bh); 371 fsverity_enqueue_verify_work(&ctx->work); 372 } 373 return; 374 } 375 uptodate = 0; 376 } 377 end_buffer_async_read(bh, uptodate); 378 } 379 380 /* 381 * Completion handler for block_write_full_page() - pages which are unlocked 382 * during I/O, and which have PageWriteback cleared upon I/O completion. 383 */ 384 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 385 { 386 unsigned long flags; 387 struct buffer_head *first; 388 struct buffer_head *tmp; 389 struct folio *folio; 390 391 BUG_ON(!buffer_async_write(bh)); 392 393 folio = bh->b_folio; 394 if (uptodate) { 395 set_buffer_uptodate(bh); 396 } else { 397 buffer_io_error(bh, ", lost async page write"); 398 mark_buffer_write_io_error(bh); 399 clear_buffer_uptodate(bh); 400 folio_set_error(folio); 401 } 402 403 first = folio_buffers(folio); 404 spin_lock_irqsave(&first->b_uptodate_lock, flags); 405 406 clear_buffer_async_write(bh); 407 unlock_buffer(bh); 408 tmp = bh->b_this_page; 409 while (tmp != bh) { 410 if (buffer_async_write(tmp)) { 411 BUG_ON(!buffer_locked(tmp)); 412 goto still_busy; 413 } 414 tmp = tmp->b_this_page; 415 } 416 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 417 folio_end_writeback(folio); 418 return; 419 420 still_busy: 421 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 422 return; 423 } 424 EXPORT_SYMBOL(end_buffer_async_write); 425 426 /* 427 * If a page's buffers are under async readin (end_buffer_async_read 428 * completion) then there is a possibility that another thread of 429 * control could lock one of the buffers after it has completed 430 * but while some of the other buffers have not completed. This 431 * locked buffer would confuse end_buffer_async_read() into not unlocking 432 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 433 * that this buffer is not under async I/O. 434 * 435 * The page comes unlocked when it has no locked buffer_async buffers 436 * left. 437 * 438 * PageLocked prevents anyone starting new async I/O reads any of 439 * the buffers. 440 * 441 * PageWriteback is used to prevent simultaneous writeout of the same 442 * page. 443 * 444 * PageLocked prevents anyone from starting writeback of a page which is 445 * under read I/O (PageWriteback is only ever set against a locked page). 446 */ 447 static void mark_buffer_async_read(struct buffer_head *bh) 448 { 449 bh->b_end_io = end_buffer_async_read_io; 450 set_buffer_async_read(bh); 451 } 452 453 static void mark_buffer_async_write_endio(struct buffer_head *bh, 454 bh_end_io_t *handler) 455 { 456 bh->b_end_io = handler; 457 set_buffer_async_write(bh); 458 } 459 460 void mark_buffer_async_write(struct buffer_head *bh) 461 { 462 mark_buffer_async_write_endio(bh, end_buffer_async_write); 463 } 464 EXPORT_SYMBOL(mark_buffer_async_write); 465 466 467 /* 468 * fs/buffer.c contains helper functions for buffer-backed address space's 469 * fsync functions. A common requirement for buffer-based filesystems is 470 * that certain data from the backing blockdev needs to be written out for 471 * a successful fsync(). For example, ext2 indirect blocks need to be 472 * written back and waited upon before fsync() returns. 473 * 474 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 475 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 476 * management of a list of dependent buffers at ->i_mapping->private_list. 477 * 478 * Locking is a little subtle: try_to_free_buffers() will remove buffers 479 * from their controlling inode's queue when they are being freed. But 480 * try_to_free_buffers() will be operating against the *blockdev* mapping 481 * at the time, not against the S_ISREG file which depends on those buffers. 482 * So the locking for private_list is via the private_lock in the address_space 483 * which backs the buffers. Which is different from the address_space 484 * against which the buffers are listed. So for a particular address_space, 485 * mapping->private_lock does *not* protect mapping->private_list! In fact, 486 * mapping->private_list will always be protected by the backing blockdev's 487 * ->private_lock. 488 * 489 * Which introduces a requirement: all buffers on an address_space's 490 * ->private_list must be from the same address_space: the blockdev's. 491 * 492 * address_spaces which do not place buffers at ->private_list via these 493 * utility functions are free to use private_lock and private_list for 494 * whatever they want. The only requirement is that list_empty(private_list) 495 * be true at clear_inode() time. 496 * 497 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 498 * filesystems should do that. invalidate_inode_buffers() should just go 499 * BUG_ON(!list_empty). 500 * 501 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 502 * take an address_space, not an inode. And it should be called 503 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 504 * queued up. 505 * 506 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 507 * list if it is already on a list. Because if the buffer is on a list, 508 * it *must* already be on the right one. If not, the filesystem is being 509 * silly. This will save a ton of locking. But first we have to ensure 510 * that buffers are taken *off* the old inode's list when they are freed 511 * (presumably in truncate). That requires careful auditing of all 512 * filesystems (do it inside bforget()). It could also be done by bringing 513 * b_inode back. 514 */ 515 516 /* 517 * The buffer's backing address_space's private_lock must be held 518 */ 519 static void __remove_assoc_queue(struct buffer_head *bh) 520 { 521 list_del_init(&bh->b_assoc_buffers); 522 WARN_ON(!bh->b_assoc_map); 523 bh->b_assoc_map = NULL; 524 } 525 526 int inode_has_buffers(struct inode *inode) 527 { 528 return !list_empty(&inode->i_data.private_list); 529 } 530 531 /* 532 * osync is designed to support O_SYNC io. It waits synchronously for 533 * all already-submitted IO to complete, but does not queue any new 534 * writes to the disk. 535 * 536 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 537 * as you dirty the buffers, and then use osync_inode_buffers to wait for 538 * completion. Any other dirty buffers which are not yet queued for 539 * write will not be flushed to disk by the osync. 540 */ 541 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 542 { 543 struct buffer_head *bh; 544 struct list_head *p; 545 int err = 0; 546 547 spin_lock(lock); 548 repeat: 549 list_for_each_prev(p, list) { 550 bh = BH_ENTRY(p); 551 if (buffer_locked(bh)) { 552 get_bh(bh); 553 spin_unlock(lock); 554 wait_on_buffer(bh); 555 if (!buffer_uptodate(bh)) 556 err = -EIO; 557 brelse(bh); 558 spin_lock(lock); 559 goto repeat; 560 } 561 } 562 spin_unlock(lock); 563 return err; 564 } 565 566 void emergency_thaw_bdev(struct super_block *sb) 567 { 568 while (sb->s_bdev && !thaw_bdev(sb->s_bdev)) 569 printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev); 570 } 571 572 /** 573 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 574 * @mapping: the mapping which wants those buffers written 575 * 576 * Starts I/O against the buffers at mapping->private_list, and waits upon 577 * that I/O. 578 * 579 * Basically, this is a convenience function for fsync(). 580 * @mapping is a file or directory which needs those buffers to be written for 581 * a successful fsync(). 582 */ 583 int sync_mapping_buffers(struct address_space *mapping) 584 { 585 struct address_space *buffer_mapping = mapping->private_data; 586 587 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 588 return 0; 589 590 return fsync_buffers_list(&buffer_mapping->private_lock, 591 &mapping->private_list); 592 } 593 EXPORT_SYMBOL(sync_mapping_buffers); 594 595 /** 596 * generic_buffers_fsync_noflush - generic buffer fsync implementation 597 * for simple filesystems with no inode lock 598 * 599 * @file: file to synchronize 600 * @start: start offset in bytes 601 * @end: end offset in bytes (inclusive) 602 * @datasync: only synchronize essential metadata if true 603 * 604 * This is a generic implementation of the fsync method for simple 605 * filesystems which track all non-inode metadata in the buffers list 606 * hanging off the address_space structure. 607 */ 608 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 609 bool datasync) 610 { 611 struct inode *inode = file->f_mapping->host; 612 int err; 613 int ret; 614 615 err = file_write_and_wait_range(file, start, end); 616 if (err) 617 return err; 618 619 ret = sync_mapping_buffers(inode->i_mapping); 620 if (!(inode->i_state & I_DIRTY_ALL)) 621 goto out; 622 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 623 goto out; 624 625 err = sync_inode_metadata(inode, 1); 626 if (ret == 0) 627 ret = err; 628 629 out: 630 /* check and advance again to catch errors after syncing out buffers */ 631 err = file_check_and_advance_wb_err(file); 632 if (ret == 0) 633 ret = err; 634 return ret; 635 } 636 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 637 638 /** 639 * generic_buffers_fsync - generic buffer fsync implementation 640 * for simple filesystems with no inode lock 641 * 642 * @file: file to synchronize 643 * @start: start offset in bytes 644 * @end: end offset in bytes (inclusive) 645 * @datasync: only synchronize essential metadata if true 646 * 647 * This is a generic implementation of the fsync method for simple 648 * filesystems which track all non-inode metadata in the buffers list 649 * hanging off the address_space structure. This also makes sure that 650 * a device cache flush operation is called at the end. 651 */ 652 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 653 bool datasync) 654 { 655 struct inode *inode = file->f_mapping->host; 656 int ret; 657 658 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 659 if (!ret) 660 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 661 return ret; 662 } 663 EXPORT_SYMBOL(generic_buffers_fsync); 664 665 /* 666 * Called when we've recently written block `bblock', and it is known that 667 * `bblock' was for a buffer_boundary() buffer. This means that the block at 668 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 669 * dirty, schedule it for IO. So that indirects merge nicely with their data. 670 */ 671 void write_boundary_block(struct block_device *bdev, 672 sector_t bblock, unsigned blocksize) 673 { 674 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 675 if (bh) { 676 if (buffer_dirty(bh)) 677 write_dirty_buffer(bh, 0); 678 put_bh(bh); 679 } 680 } 681 682 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 683 { 684 struct address_space *mapping = inode->i_mapping; 685 struct address_space *buffer_mapping = bh->b_folio->mapping; 686 687 mark_buffer_dirty(bh); 688 if (!mapping->private_data) { 689 mapping->private_data = buffer_mapping; 690 } else { 691 BUG_ON(mapping->private_data != buffer_mapping); 692 } 693 if (!bh->b_assoc_map) { 694 spin_lock(&buffer_mapping->private_lock); 695 list_move_tail(&bh->b_assoc_buffers, 696 &mapping->private_list); 697 bh->b_assoc_map = mapping; 698 spin_unlock(&buffer_mapping->private_lock); 699 } 700 } 701 EXPORT_SYMBOL(mark_buffer_dirty_inode); 702 703 /* 704 * Add a page to the dirty page list. 705 * 706 * It is a sad fact of life that this function is called from several places 707 * deeply under spinlocking. It may not sleep. 708 * 709 * If the page has buffers, the uptodate buffers are set dirty, to preserve 710 * dirty-state coherency between the page and the buffers. It the page does 711 * not have buffers then when they are later attached they will all be set 712 * dirty. 713 * 714 * The buffers are dirtied before the page is dirtied. There's a small race 715 * window in which a writepage caller may see the page cleanness but not the 716 * buffer dirtiness. That's fine. If this code were to set the page dirty 717 * before the buffers, a concurrent writepage caller could clear the page dirty 718 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 719 * page on the dirty page list. 720 * 721 * We use private_lock to lock against try_to_free_buffers while using the 722 * page's buffer list. Also use this to protect against clean buffers being 723 * added to the page after it was set dirty. 724 * 725 * FIXME: may need to call ->reservepage here as well. That's rather up to the 726 * address_space though. 727 */ 728 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 729 { 730 struct buffer_head *head; 731 bool newly_dirty; 732 733 spin_lock(&mapping->private_lock); 734 head = folio_buffers(folio); 735 if (head) { 736 struct buffer_head *bh = head; 737 738 do { 739 set_buffer_dirty(bh); 740 bh = bh->b_this_page; 741 } while (bh != head); 742 } 743 /* 744 * Lock out page's memcg migration to keep PageDirty 745 * synchronized with per-memcg dirty page counters. 746 */ 747 folio_memcg_lock(folio); 748 newly_dirty = !folio_test_set_dirty(folio); 749 spin_unlock(&mapping->private_lock); 750 751 if (newly_dirty) 752 __folio_mark_dirty(folio, mapping, 1); 753 754 folio_memcg_unlock(folio); 755 756 if (newly_dirty) 757 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 758 759 return newly_dirty; 760 } 761 EXPORT_SYMBOL(block_dirty_folio); 762 763 /* 764 * Write out and wait upon a list of buffers. 765 * 766 * We have conflicting pressures: we want to make sure that all 767 * initially dirty buffers get waited on, but that any subsequently 768 * dirtied buffers don't. After all, we don't want fsync to last 769 * forever if somebody is actively writing to the file. 770 * 771 * Do this in two main stages: first we copy dirty buffers to a 772 * temporary inode list, queueing the writes as we go. Then we clean 773 * up, waiting for those writes to complete. 774 * 775 * During this second stage, any subsequent updates to the file may end 776 * up refiling the buffer on the original inode's dirty list again, so 777 * there is a chance we will end up with a buffer queued for write but 778 * not yet completed on that list. So, as a final cleanup we go through 779 * the osync code to catch these locked, dirty buffers without requeuing 780 * any newly dirty buffers for write. 781 */ 782 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 783 { 784 struct buffer_head *bh; 785 struct list_head tmp; 786 struct address_space *mapping; 787 int err = 0, err2; 788 struct blk_plug plug; 789 790 INIT_LIST_HEAD(&tmp); 791 blk_start_plug(&plug); 792 793 spin_lock(lock); 794 while (!list_empty(list)) { 795 bh = BH_ENTRY(list->next); 796 mapping = bh->b_assoc_map; 797 __remove_assoc_queue(bh); 798 /* Avoid race with mark_buffer_dirty_inode() which does 799 * a lockless check and we rely on seeing the dirty bit */ 800 smp_mb(); 801 if (buffer_dirty(bh) || buffer_locked(bh)) { 802 list_add(&bh->b_assoc_buffers, &tmp); 803 bh->b_assoc_map = mapping; 804 if (buffer_dirty(bh)) { 805 get_bh(bh); 806 spin_unlock(lock); 807 /* 808 * Ensure any pending I/O completes so that 809 * write_dirty_buffer() actually writes the 810 * current contents - it is a noop if I/O is 811 * still in flight on potentially older 812 * contents. 813 */ 814 write_dirty_buffer(bh, REQ_SYNC); 815 816 /* 817 * Kick off IO for the previous mapping. Note 818 * that we will not run the very last mapping, 819 * wait_on_buffer() will do that for us 820 * through sync_buffer(). 821 */ 822 brelse(bh); 823 spin_lock(lock); 824 } 825 } 826 } 827 828 spin_unlock(lock); 829 blk_finish_plug(&plug); 830 spin_lock(lock); 831 832 while (!list_empty(&tmp)) { 833 bh = BH_ENTRY(tmp.prev); 834 get_bh(bh); 835 mapping = bh->b_assoc_map; 836 __remove_assoc_queue(bh); 837 /* Avoid race with mark_buffer_dirty_inode() which does 838 * a lockless check and we rely on seeing the dirty bit */ 839 smp_mb(); 840 if (buffer_dirty(bh)) { 841 list_add(&bh->b_assoc_buffers, 842 &mapping->private_list); 843 bh->b_assoc_map = mapping; 844 } 845 spin_unlock(lock); 846 wait_on_buffer(bh); 847 if (!buffer_uptodate(bh)) 848 err = -EIO; 849 brelse(bh); 850 spin_lock(lock); 851 } 852 853 spin_unlock(lock); 854 err2 = osync_buffers_list(lock, list); 855 if (err) 856 return err; 857 else 858 return err2; 859 } 860 861 /* 862 * Invalidate any and all dirty buffers on a given inode. We are 863 * probably unmounting the fs, but that doesn't mean we have already 864 * done a sync(). Just drop the buffers from the inode list. 865 * 866 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 867 * assumes that all the buffers are against the blockdev. Not true 868 * for reiserfs. 869 */ 870 void invalidate_inode_buffers(struct inode *inode) 871 { 872 if (inode_has_buffers(inode)) { 873 struct address_space *mapping = &inode->i_data; 874 struct list_head *list = &mapping->private_list; 875 struct address_space *buffer_mapping = mapping->private_data; 876 877 spin_lock(&buffer_mapping->private_lock); 878 while (!list_empty(list)) 879 __remove_assoc_queue(BH_ENTRY(list->next)); 880 spin_unlock(&buffer_mapping->private_lock); 881 } 882 } 883 EXPORT_SYMBOL(invalidate_inode_buffers); 884 885 /* 886 * Remove any clean buffers from the inode's buffer list. This is called 887 * when we're trying to free the inode itself. Those buffers can pin it. 888 * 889 * Returns true if all buffers were removed. 890 */ 891 int remove_inode_buffers(struct inode *inode) 892 { 893 int ret = 1; 894 895 if (inode_has_buffers(inode)) { 896 struct address_space *mapping = &inode->i_data; 897 struct list_head *list = &mapping->private_list; 898 struct address_space *buffer_mapping = mapping->private_data; 899 900 spin_lock(&buffer_mapping->private_lock); 901 while (!list_empty(list)) { 902 struct buffer_head *bh = BH_ENTRY(list->next); 903 if (buffer_dirty(bh)) { 904 ret = 0; 905 break; 906 } 907 __remove_assoc_queue(bh); 908 } 909 spin_unlock(&buffer_mapping->private_lock); 910 } 911 return ret; 912 } 913 914 /* 915 * Create the appropriate buffers when given a folio for data area and 916 * the size of each buffer.. Use the bh->b_this_page linked list to 917 * follow the buffers created. Return NULL if unable to create more 918 * buffers. 919 * 920 * The retry flag is used to differentiate async IO (paging, swapping) 921 * which may not fail from ordinary buffer allocations. 922 */ 923 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 924 bool retry) 925 { 926 struct buffer_head *bh, *head; 927 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 928 long offset; 929 struct mem_cgroup *memcg, *old_memcg; 930 931 if (retry) 932 gfp |= __GFP_NOFAIL; 933 934 /* The folio lock pins the memcg */ 935 memcg = folio_memcg(folio); 936 old_memcg = set_active_memcg(memcg); 937 938 head = NULL; 939 offset = folio_size(folio); 940 while ((offset -= size) >= 0) { 941 bh = alloc_buffer_head(gfp); 942 if (!bh) 943 goto no_grow; 944 945 bh->b_this_page = head; 946 bh->b_blocknr = -1; 947 head = bh; 948 949 bh->b_size = size; 950 951 /* Link the buffer to its folio */ 952 folio_set_bh(bh, folio, offset); 953 } 954 out: 955 set_active_memcg(old_memcg); 956 return head; 957 /* 958 * In case anything failed, we just free everything we got. 959 */ 960 no_grow: 961 if (head) { 962 do { 963 bh = head; 964 head = head->b_this_page; 965 free_buffer_head(bh); 966 } while (head); 967 } 968 969 goto out; 970 } 971 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 972 973 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 974 bool retry) 975 { 976 return folio_alloc_buffers(page_folio(page), size, retry); 977 } 978 EXPORT_SYMBOL_GPL(alloc_page_buffers); 979 980 static inline void link_dev_buffers(struct folio *folio, 981 struct buffer_head *head) 982 { 983 struct buffer_head *bh, *tail; 984 985 bh = head; 986 do { 987 tail = bh; 988 bh = bh->b_this_page; 989 } while (bh); 990 tail->b_this_page = head; 991 folio_attach_private(folio, head); 992 } 993 994 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 995 { 996 sector_t retval = ~((sector_t)0); 997 loff_t sz = bdev_nr_bytes(bdev); 998 999 if (sz) { 1000 unsigned int sizebits = blksize_bits(size); 1001 retval = (sz >> sizebits); 1002 } 1003 return retval; 1004 } 1005 1006 /* 1007 * Initialise the state of a blockdev folio's buffers. 1008 */ 1009 static sector_t folio_init_buffers(struct folio *folio, 1010 struct block_device *bdev, sector_t block, int size) 1011 { 1012 struct buffer_head *head = folio_buffers(folio); 1013 struct buffer_head *bh = head; 1014 bool uptodate = folio_test_uptodate(folio); 1015 sector_t end_block = blkdev_max_block(bdev, size); 1016 1017 do { 1018 if (!buffer_mapped(bh)) { 1019 bh->b_end_io = NULL; 1020 bh->b_private = NULL; 1021 bh->b_bdev = bdev; 1022 bh->b_blocknr = block; 1023 if (uptodate) 1024 set_buffer_uptodate(bh); 1025 if (block < end_block) 1026 set_buffer_mapped(bh); 1027 } 1028 block++; 1029 bh = bh->b_this_page; 1030 } while (bh != head); 1031 1032 /* 1033 * Caller needs to validate requested block against end of device. 1034 */ 1035 return end_block; 1036 } 1037 1038 /* 1039 * Create the page-cache page that contains the requested block. 1040 * 1041 * This is used purely for blockdev mappings. 1042 */ 1043 static int 1044 grow_dev_page(struct block_device *bdev, sector_t block, 1045 pgoff_t index, int size, int sizebits, gfp_t gfp) 1046 { 1047 struct inode *inode = bdev->bd_inode; 1048 struct folio *folio; 1049 struct buffer_head *bh; 1050 sector_t end_block; 1051 int ret = 0; 1052 gfp_t gfp_mask; 1053 1054 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 1055 1056 /* 1057 * XXX: __getblk_slow() can not really deal with failure and 1058 * will endlessly loop on improvised global reclaim. Prefer 1059 * looping in the allocator rather than here, at least that 1060 * code knows what it's doing. 1061 */ 1062 gfp_mask |= __GFP_NOFAIL; 1063 1064 folio = __filemap_get_folio(inode->i_mapping, index, 1065 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask); 1066 1067 bh = folio_buffers(folio); 1068 if (bh) { 1069 if (bh->b_size == size) { 1070 end_block = folio_init_buffers(folio, bdev, 1071 (sector_t)index << sizebits, size); 1072 goto done; 1073 } 1074 if (!try_to_free_buffers(folio)) 1075 goto failed; 1076 } 1077 1078 bh = folio_alloc_buffers(folio, size, true); 1079 1080 /* 1081 * Link the folio to the buffers and initialise them. Take the 1082 * lock to be atomic wrt __find_get_block(), which does not 1083 * run under the folio lock. 1084 */ 1085 spin_lock(&inode->i_mapping->private_lock); 1086 link_dev_buffers(folio, bh); 1087 end_block = folio_init_buffers(folio, bdev, 1088 (sector_t)index << sizebits, size); 1089 spin_unlock(&inode->i_mapping->private_lock); 1090 done: 1091 ret = (block < end_block) ? 1 : -ENXIO; 1092 failed: 1093 folio_unlock(folio); 1094 folio_put(folio); 1095 return ret; 1096 } 1097 1098 /* 1099 * Create buffers for the specified block device block's page. If 1100 * that page was dirty, the buffers are set dirty also. 1101 */ 1102 static int 1103 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1104 { 1105 pgoff_t index; 1106 int sizebits; 1107 1108 sizebits = PAGE_SHIFT - __ffs(size); 1109 index = block >> sizebits; 1110 1111 /* 1112 * Check for a block which wants to lie outside our maximum possible 1113 * pagecache index. (this comparison is done using sector_t types). 1114 */ 1115 if (unlikely(index != block >> sizebits)) { 1116 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1117 "device %pg\n", 1118 __func__, (unsigned long long)block, 1119 bdev); 1120 return -EIO; 1121 } 1122 1123 /* Create a page with the proper size buffers.. */ 1124 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1125 } 1126 1127 static struct buffer_head * 1128 __getblk_slow(struct block_device *bdev, sector_t block, 1129 unsigned size, gfp_t gfp) 1130 { 1131 /* Size must be multiple of hard sectorsize */ 1132 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1133 (size < 512 || size > PAGE_SIZE))) { 1134 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1135 size); 1136 printk(KERN_ERR "logical block size: %d\n", 1137 bdev_logical_block_size(bdev)); 1138 1139 dump_stack(); 1140 return NULL; 1141 } 1142 1143 for (;;) { 1144 struct buffer_head *bh; 1145 int ret; 1146 1147 bh = __find_get_block(bdev, block, size); 1148 if (bh) 1149 return bh; 1150 1151 ret = grow_buffers(bdev, block, size, gfp); 1152 if (ret < 0) 1153 return NULL; 1154 } 1155 } 1156 1157 /* 1158 * The relationship between dirty buffers and dirty pages: 1159 * 1160 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1161 * the page is tagged dirty in the page cache. 1162 * 1163 * At all times, the dirtiness of the buffers represents the dirtiness of 1164 * subsections of the page. If the page has buffers, the page dirty bit is 1165 * merely a hint about the true dirty state. 1166 * 1167 * When a page is set dirty in its entirety, all its buffers are marked dirty 1168 * (if the page has buffers). 1169 * 1170 * When a buffer is marked dirty, its page is dirtied, but the page's other 1171 * buffers are not. 1172 * 1173 * Also. When blockdev buffers are explicitly read with bread(), they 1174 * individually become uptodate. But their backing page remains not 1175 * uptodate - even if all of its buffers are uptodate. A subsequent 1176 * block_read_full_folio() against that folio will discover all the uptodate 1177 * buffers, will set the folio uptodate and will perform no I/O. 1178 */ 1179 1180 /** 1181 * mark_buffer_dirty - mark a buffer_head as needing writeout 1182 * @bh: the buffer_head to mark dirty 1183 * 1184 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1185 * its backing page dirty, then tag the page as dirty in the page cache 1186 * and then attach the address_space's inode to its superblock's dirty 1187 * inode list. 1188 * 1189 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1190 * i_pages lock and mapping->host->i_lock. 1191 */ 1192 void mark_buffer_dirty(struct buffer_head *bh) 1193 { 1194 WARN_ON_ONCE(!buffer_uptodate(bh)); 1195 1196 trace_block_dirty_buffer(bh); 1197 1198 /* 1199 * Very *carefully* optimize the it-is-already-dirty case. 1200 * 1201 * Don't let the final "is it dirty" escape to before we 1202 * perhaps modified the buffer. 1203 */ 1204 if (buffer_dirty(bh)) { 1205 smp_mb(); 1206 if (buffer_dirty(bh)) 1207 return; 1208 } 1209 1210 if (!test_set_buffer_dirty(bh)) { 1211 struct folio *folio = bh->b_folio; 1212 struct address_space *mapping = NULL; 1213 1214 folio_memcg_lock(folio); 1215 if (!folio_test_set_dirty(folio)) { 1216 mapping = folio->mapping; 1217 if (mapping) 1218 __folio_mark_dirty(folio, mapping, 0); 1219 } 1220 folio_memcg_unlock(folio); 1221 if (mapping) 1222 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1223 } 1224 } 1225 EXPORT_SYMBOL(mark_buffer_dirty); 1226 1227 void mark_buffer_write_io_error(struct buffer_head *bh) 1228 { 1229 struct super_block *sb; 1230 1231 set_buffer_write_io_error(bh); 1232 /* FIXME: do we need to set this in both places? */ 1233 if (bh->b_folio && bh->b_folio->mapping) 1234 mapping_set_error(bh->b_folio->mapping, -EIO); 1235 if (bh->b_assoc_map) 1236 mapping_set_error(bh->b_assoc_map, -EIO); 1237 rcu_read_lock(); 1238 sb = READ_ONCE(bh->b_bdev->bd_super); 1239 if (sb) 1240 errseq_set(&sb->s_wb_err, -EIO); 1241 rcu_read_unlock(); 1242 } 1243 EXPORT_SYMBOL(mark_buffer_write_io_error); 1244 1245 /* 1246 * Decrement a buffer_head's reference count. If all buffers against a page 1247 * have zero reference count, are clean and unlocked, and if the page is clean 1248 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1249 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1250 * a page but it ends up not being freed, and buffers may later be reattached). 1251 */ 1252 void __brelse(struct buffer_head * buf) 1253 { 1254 if (atomic_read(&buf->b_count)) { 1255 put_bh(buf); 1256 return; 1257 } 1258 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1259 } 1260 EXPORT_SYMBOL(__brelse); 1261 1262 /* 1263 * bforget() is like brelse(), except it discards any 1264 * potentially dirty data. 1265 */ 1266 void __bforget(struct buffer_head *bh) 1267 { 1268 clear_buffer_dirty(bh); 1269 if (bh->b_assoc_map) { 1270 struct address_space *buffer_mapping = bh->b_folio->mapping; 1271 1272 spin_lock(&buffer_mapping->private_lock); 1273 list_del_init(&bh->b_assoc_buffers); 1274 bh->b_assoc_map = NULL; 1275 spin_unlock(&buffer_mapping->private_lock); 1276 } 1277 __brelse(bh); 1278 } 1279 EXPORT_SYMBOL(__bforget); 1280 1281 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1282 { 1283 lock_buffer(bh); 1284 if (buffer_uptodate(bh)) { 1285 unlock_buffer(bh); 1286 return bh; 1287 } else { 1288 get_bh(bh); 1289 bh->b_end_io = end_buffer_read_sync; 1290 submit_bh(REQ_OP_READ, bh); 1291 wait_on_buffer(bh); 1292 if (buffer_uptodate(bh)) 1293 return bh; 1294 } 1295 brelse(bh); 1296 return NULL; 1297 } 1298 1299 /* 1300 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1301 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1302 * refcount elevated by one when they're in an LRU. A buffer can only appear 1303 * once in a particular CPU's LRU. A single buffer can be present in multiple 1304 * CPU's LRUs at the same time. 1305 * 1306 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1307 * sb_find_get_block(). 1308 * 1309 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1310 * a local interrupt disable for that. 1311 */ 1312 1313 #define BH_LRU_SIZE 16 1314 1315 struct bh_lru { 1316 struct buffer_head *bhs[BH_LRU_SIZE]; 1317 }; 1318 1319 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1320 1321 #ifdef CONFIG_SMP 1322 #define bh_lru_lock() local_irq_disable() 1323 #define bh_lru_unlock() local_irq_enable() 1324 #else 1325 #define bh_lru_lock() preempt_disable() 1326 #define bh_lru_unlock() preempt_enable() 1327 #endif 1328 1329 static inline void check_irqs_on(void) 1330 { 1331 #ifdef irqs_disabled 1332 BUG_ON(irqs_disabled()); 1333 #endif 1334 } 1335 1336 /* 1337 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1338 * inserted at the front, and the buffer_head at the back if any is evicted. 1339 * Or, if already in the LRU it is moved to the front. 1340 */ 1341 static void bh_lru_install(struct buffer_head *bh) 1342 { 1343 struct buffer_head *evictee = bh; 1344 struct bh_lru *b; 1345 int i; 1346 1347 check_irqs_on(); 1348 bh_lru_lock(); 1349 1350 /* 1351 * the refcount of buffer_head in bh_lru prevents dropping the 1352 * attached page(i.e., try_to_free_buffers) so it could cause 1353 * failing page migration. 1354 * Skip putting upcoming bh into bh_lru until migration is done. 1355 */ 1356 if (lru_cache_disabled() || cpu_is_isolated(smp_processor_id())) { 1357 bh_lru_unlock(); 1358 return; 1359 } 1360 1361 b = this_cpu_ptr(&bh_lrus); 1362 for (i = 0; i < BH_LRU_SIZE; i++) { 1363 swap(evictee, b->bhs[i]); 1364 if (evictee == bh) { 1365 bh_lru_unlock(); 1366 return; 1367 } 1368 } 1369 1370 get_bh(bh); 1371 bh_lru_unlock(); 1372 brelse(evictee); 1373 } 1374 1375 /* 1376 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1377 */ 1378 static struct buffer_head * 1379 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1380 { 1381 struct buffer_head *ret = NULL; 1382 unsigned int i; 1383 1384 check_irqs_on(); 1385 bh_lru_lock(); 1386 if (cpu_is_isolated(smp_processor_id())) { 1387 bh_lru_unlock(); 1388 return NULL; 1389 } 1390 for (i = 0; i < BH_LRU_SIZE; i++) { 1391 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1392 1393 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1394 bh->b_size == size) { 1395 if (i) { 1396 while (i) { 1397 __this_cpu_write(bh_lrus.bhs[i], 1398 __this_cpu_read(bh_lrus.bhs[i - 1])); 1399 i--; 1400 } 1401 __this_cpu_write(bh_lrus.bhs[0], bh); 1402 } 1403 get_bh(bh); 1404 ret = bh; 1405 break; 1406 } 1407 } 1408 bh_lru_unlock(); 1409 return ret; 1410 } 1411 1412 /* 1413 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1414 * it in the LRU and mark it as accessed. If it is not present then return 1415 * NULL 1416 */ 1417 struct buffer_head * 1418 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1419 { 1420 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1421 1422 if (bh == NULL) { 1423 /* __find_get_block_slow will mark the page accessed */ 1424 bh = __find_get_block_slow(bdev, block); 1425 if (bh) 1426 bh_lru_install(bh); 1427 } else 1428 touch_buffer(bh); 1429 1430 return bh; 1431 } 1432 EXPORT_SYMBOL(__find_get_block); 1433 1434 /* 1435 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1436 * which corresponds to the passed block_device, block and size. The 1437 * returned buffer has its reference count incremented. 1438 * 1439 * __getblk_gfp() will lock up the machine if grow_dev_page's 1440 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1441 */ 1442 struct buffer_head * 1443 __getblk_gfp(struct block_device *bdev, sector_t block, 1444 unsigned size, gfp_t gfp) 1445 { 1446 struct buffer_head *bh = __find_get_block(bdev, block, size); 1447 1448 might_sleep(); 1449 if (bh == NULL) 1450 bh = __getblk_slow(bdev, block, size, gfp); 1451 return bh; 1452 } 1453 EXPORT_SYMBOL(__getblk_gfp); 1454 1455 /* 1456 * Do async read-ahead on a buffer.. 1457 */ 1458 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1459 { 1460 struct buffer_head *bh = __getblk(bdev, block, size); 1461 if (likely(bh)) { 1462 bh_readahead(bh, REQ_RAHEAD); 1463 brelse(bh); 1464 } 1465 } 1466 EXPORT_SYMBOL(__breadahead); 1467 1468 /** 1469 * __bread_gfp() - reads a specified block and returns the bh 1470 * @bdev: the block_device to read from 1471 * @block: number of block 1472 * @size: size (in bytes) to read 1473 * @gfp: page allocation flag 1474 * 1475 * Reads a specified block, and returns buffer head that contains it. 1476 * The page cache can be allocated from non-movable area 1477 * not to prevent page migration if you set gfp to zero. 1478 * It returns NULL if the block was unreadable. 1479 */ 1480 struct buffer_head * 1481 __bread_gfp(struct block_device *bdev, sector_t block, 1482 unsigned size, gfp_t gfp) 1483 { 1484 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1485 1486 if (likely(bh) && !buffer_uptodate(bh)) 1487 bh = __bread_slow(bh); 1488 return bh; 1489 } 1490 EXPORT_SYMBOL(__bread_gfp); 1491 1492 static void __invalidate_bh_lrus(struct bh_lru *b) 1493 { 1494 int i; 1495 1496 for (i = 0; i < BH_LRU_SIZE; i++) { 1497 brelse(b->bhs[i]); 1498 b->bhs[i] = NULL; 1499 } 1500 } 1501 /* 1502 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1503 * This doesn't race because it runs in each cpu either in irq 1504 * or with preempt disabled. 1505 */ 1506 static void invalidate_bh_lru(void *arg) 1507 { 1508 struct bh_lru *b = &get_cpu_var(bh_lrus); 1509 1510 __invalidate_bh_lrus(b); 1511 put_cpu_var(bh_lrus); 1512 } 1513 1514 bool has_bh_in_lru(int cpu, void *dummy) 1515 { 1516 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1517 int i; 1518 1519 for (i = 0; i < BH_LRU_SIZE; i++) { 1520 if (b->bhs[i]) 1521 return true; 1522 } 1523 1524 return false; 1525 } 1526 1527 void invalidate_bh_lrus(void) 1528 { 1529 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1530 } 1531 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1532 1533 /* 1534 * It's called from workqueue context so we need a bh_lru_lock to close 1535 * the race with preemption/irq. 1536 */ 1537 void invalidate_bh_lrus_cpu(void) 1538 { 1539 struct bh_lru *b; 1540 1541 bh_lru_lock(); 1542 b = this_cpu_ptr(&bh_lrus); 1543 __invalidate_bh_lrus(b); 1544 bh_lru_unlock(); 1545 } 1546 1547 void set_bh_page(struct buffer_head *bh, 1548 struct page *page, unsigned long offset) 1549 { 1550 bh->b_page = page; 1551 BUG_ON(offset >= PAGE_SIZE); 1552 if (PageHighMem(page)) 1553 /* 1554 * This catches illegal uses and preserves the offset: 1555 */ 1556 bh->b_data = (char *)(0 + offset); 1557 else 1558 bh->b_data = page_address(page) + offset; 1559 } 1560 EXPORT_SYMBOL(set_bh_page); 1561 1562 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1563 unsigned long offset) 1564 { 1565 bh->b_folio = folio; 1566 BUG_ON(offset >= folio_size(folio)); 1567 if (folio_test_highmem(folio)) 1568 /* 1569 * This catches illegal uses and preserves the offset: 1570 */ 1571 bh->b_data = (char *)(0 + offset); 1572 else 1573 bh->b_data = folio_address(folio) + offset; 1574 } 1575 EXPORT_SYMBOL(folio_set_bh); 1576 1577 /* 1578 * Called when truncating a buffer on a page completely. 1579 */ 1580 1581 /* Bits that are cleared during an invalidate */ 1582 #define BUFFER_FLAGS_DISCARD \ 1583 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1584 1 << BH_Delay | 1 << BH_Unwritten) 1585 1586 static void discard_buffer(struct buffer_head * bh) 1587 { 1588 unsigned long b_state; 1589 1590 lock_buffer(bh); 1591 clear_buffer_dirty(bh); 1592 bh->b_bdev = NULL; 1593 b_state = READ_ONCE(bh->b_state); 1594 do { 1595 } while (!try_cmpxchg(&bh->b_state, &b_state, 1596 b_state & ~BUFFER_FLAGS_DISCARD)); 1597 unlock_buffer(bh); 1598 } 1599 1600 /** 1601 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1602 * @folio: The folio which is affected. 1603 * @offset: start of the range to invalidate 1604 * @length: length of the range to invalidate 1605 * 1606 * block_invalidate_folio() is called when all or part of the folio has been 1607 * invalidated by a truncate operation. 1608 * 1609 * block_invalidate_folio() does not have to release all buffers, but it must 1610 * ensure that no dirty buffer is left outside @offset and that no I/O 1611 * is underway against any of the blocks which are outside the truncation 1612 * point. Because the caller is about to free (and possibly reuse) those 1613 * blocks on-disk. 1614 */ 1615 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1616 { 1617 struct buffer_head *head, *bh, *next; 1618 size_t curr_off = 0; 1619 size_t stop = length + offset; 1620 1621 BUG_ON(!folio_test_locked(folio)); 1622 1623 /* 1624 * Check for overflow 1625 */ 1626 BUG_ON(stop > folio_size(folio) || stop < length); 1627 1628 head = folio_buffers(folio); 1629 if (!head) 1630 return; 1631 1632 bh = head; 1633 do { 1634 size_t next_off = curr_off + bh->b_size; 1635 next = bh->b_this_page; 1636 1637 /* 1638 * Are we still fully in range ? 1639 */ 1640 if (next_off > stop) 1641 goto out; 1642 1643 /* 1644 * is this block fully invalidated? 1645 */ 1646 if (offset <= curr_off) 1647 discard_buffer(bh); 1648 curr_off = next_off; 1649 bh = next; 1650 } while (bh != head); 1651 1652 /* 1653 * We release buffers only if the entire folio is being invalidated. 1654 * The get_block cached value has been unconditionally invalidated, 1655 * so real IO is not possible anymore. 1656 */ 1657 if (length == folio_size(folio)) 1658 filemap_release_folio(folio, 0); 1659 out: 1660 return; 1661 } 1662 EXPORT_SYMBOL(block_invalidate_folio); 1663 1664 /* 1665 * We attach and possibly dirty the buffers atomically wrt 1666 * block_dirty_folio() via private_lock. try_to_free_buffers 1667 * is already excluded via the folio lock. 1668 */ 1669 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1670 unsigned long b_state) 1671 { 1672 struct buffer_head *bh, *head, *tail; 1673 1674 head = folio_alloc_buffers(folio, blocksize, true); 1675 bh = head; 1676 do { 1677 bh->b_state |= b_state; 1678 tail = bh; 1679 bh = bh->b_this_page; 1680 } while (bh); 1681 tail->b_this_page = head; 1682 1683 spin_lock(&folio->mapping->private_lock); 1684 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1685 bh = head; 1686 do { 1687 if (folio_test_dirty(folio)) 1688 set_buffer_dirty(bh); 1689 if (folio_test_uptodate(folio)) 1690 set_buffer_uptodate(bh); 1691 bh = bh->b_this_page; 1692 } while (bh != head); 1693 } 1694 folio_attach_private(folio, head); 1695 spin_unlock(&folio->mapping->private_lock); 1696 } 1697 EXPORT_SYMBOL(folio_create_empty_buffers); 1698 1699 void create_empty_buffers(struct page *page, 1700 unsigned long blocksize, unsigned long b_state) 1701 { 1702 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1703 } 1704 EXPORT_SYMBOL(create_empty_buffers); 1705 1706 /** 1707 * clean_bdev_aliases: clean a range of buffers in block device 1708 * @bdev: Block device to clean buffers in 1709 * @block: Start of a range of blocks to clean 1710 * @len: Number of blocks to clean 1711 * 1712 * We are taking a range of blocks for data and we don't want writeback of any 1713 * buffer-cache aliases starting from return from this function and until the 1714 * moment when something will explicitly mark the buffer dirty (hopefully that 1715 * will not happen until we will free that block ;-) We don't even need to mark 1716 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1717 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1718 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1719 * would confuse anyone who might pick it with bread() afterwards... 1720 * 1721 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1722 * writeout I/O going on against recently-freed buffers. We don't wait on that 1723 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1724 * need to. That happens here. 1725 */ 1726 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1727 { 1728 struct inode *bd_inode = bdev->bd_inode; 1729 struct address_space *bd_mapping = bd_inode->i_mapping; 1730 struct folio_batch fbatch; 1731 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1732 pgoff_t end; 1733 int i, count; 1734 struct buffer_head *bh; 1735 struct buffer_head *head; 1736 1737 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1738 folio_batch_init(&fbatch); 1739 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1740 count = folio_batch_count(&fbatch); 1741 for (i = 0; i < count; i++) { 1742 struct folio *folio = fbatch.folios[i]; 1743 1744 if (!folio_buffers(folio)) 1745 continue; 1746 /* 1747 * We use folio lock instead of bd_mapping->private_lock 1748 * to pin buffers here since we can afford to sleep and 1749 * it scales better than a global spinlock lock. 1750 */ 1751 folio_lock(folio); 1752 /* Recheck when the folio is locked which pins bhs */ 1753 head = folio_buffers(folio); 1754 if (!head) 1755 goto unlock_page; 1756 bh = head; 1757 do { 1758 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1759 goto next; 1760 if (bh->b_blocknr >= block + len) 1761 break; 1762 clear_buffer_dirty(bh); 1763 wait_on_buffer(bh); 1764 clear_buffer_req(bh); 1765 next: 1766 bh = bh->b_this_page; 1767 } while (bh != head); 1768 unlock_page: 1769 folio_unlock(folio); 1770 } 1771 folio_batch_release(&fbatch); 1772 cond_resched(); 1773 /* End of range already reached? */ 1774 if (index > end || !index) 1775 break; 1776 } 1777 } 1778 EXPORT_SYMBOL(clean_bdev_aliases); 1779 1780 /* 1781 * Size is a power-of-two in the range 512..PAGE_SIZE, 1782 * and the case we care about most is PAGE_SIZE. 1783 * 1784 * So this *could* possibly be written with those 1785 * constraints in mind (relevant mostly if some 1786 * architecture has a slow bit-scan instruction) 1787 */ 1788 static inline int block_size_bits(unsigned int blocksize) 1789 { 1790 return ilog2(blocksize); 1791 } 1792 1793 static struct buffer_head *folio_create_buffers(struct folio *folio, 1794 struct inode *inode, 1795 unsigned int b_state) 1796 { 1797 BUG_ON(!folio_test_locked(folio)); 1798 1799 if (!folio_buffers(folio)) 1800 folio_create_empty_buffers(folio, 1801 1 << READ_ONCE(inode->i_blkbits), 1802 b_state); 1803 return folio_buffers(folio); 1804 } 1805 1806 /* 1807 * NOTE! All mapped/uptodate combinations are valid: 1808 * 1809 * Mapped Uptodate Meaning 1810 * 1811 * No No "unknown" - must do get_block() 1812 * No Yes "hole" - zero-filled 1813 * Yes No "allocated" - allocated on disk, not read in 1814 * Yes Yes "valid" - allocated and up-to-date in memory. 1815 * 1816 * "Dirty" is valid only with the last case (mapped+uptodate). 1817 */ 1818 1819 /* 1820 * While block_write_full_page is writing back the dirty buffers under 1821 * the page lock, whoever dirtied the buffers may decide to clean them 1822 * again at any time. We handle that by only looking at the buffer 1823 * state inside lock_buffer(). 1824 * 1825 * If block_write_full_page() is called for regular writeback 1826 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1827 * locked buffer. This only can happen if someone has written the buffer 1828 * directly, with submit_bh(). At the address_space level PageWriteback 1829 * prevents this contention from occurring. 1830 * 1831 * If block_write_full_page() is called with wbc->sync_mode == 1832 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1833 * causes the writes to be flagged as synchronous writes. 1834 */ 1835 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1836 get_block_t *get_block, struct writeback_control *wbc, 1837 bh_end_io_t *handler) 1838 { 1839 int err; 1840 sector_t block; 1841 sector_t last_block; 1842 struct buffer_head *bh, *head; 1843 unsigned int blocksize, bbits; 1844 int nr_underway = 0; 1845 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1846 1847 head = folio_create_buffers(folio, inode, 1848 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1849 1850 /* 1851 * Be very careful. We have no exclusion from block_dirty_folio 1852 * here, and the (potentially unmapped) buffers may become dirty at 1853 * any time. If a buffer becomes dirty here after we've inspected it 1854 * then we just miss that fact, and the folio stays dirty. 1855 * 1856 * Buffers outside i_size may be dirtied by block_dirty_folio; 1857 * handle that here by just cleaning them. 1858 */ 1859 1860 bh = head; 1861 blocksize = bh->b_size; 1862 bbits = block_size_bits(blocksize); 1863 1864 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1865 last_block = (i_size_read(inode) - 1) >> bbits; 1866 1867 /* 1868 * Get all the dirty buffers mapped to disk addresses and 1869 * handle any aliases from the underlying blockdev's mapping. 1870 */ 1871 do { 1872 if (block > last_block) { 1873 /* 1874 * mapped buffers outside i_size will occur, because 1875 * this folio can be outside i_size when there is a 1876 * truncate in progress. 1877 */ 1878 /* 1879 * The buffer was zeroed by block_write_full_page() 1880 */ 1881 clear_buffer_dirty(bh); 1882 set_buffer_uptodate(bh); 1883 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1884 buffer_dirty(bh)) { 1885 WARN_ON(bh->b_size != blocksize); 1886 err = get_block(inode, block, bh, 1); 1887 if (err) 1888 goto recover; 1889 clear_buffer_delay(bh); 1890 if (buffer_new(bh)) { 1891 /* blockdev mappings never come here */ 1892 clear_buffer_new(bh); 1893 clean_bdev_bh_alias(bh); 1894 } 1895 } 1896 bh = bh->b_this_page; 1897 block++; 1898 } while (bh != head); 1899 1900 do { 1901 if (!buffer_mapped(bh)) 1902 continue; 1903 /* 1904 * If it's a fully non-blocking write attempt and we cannot 1905 * lock the buffer then redirty the folio. Note that this can 1906 * potentially cause a busy-wait loop from writeback threads 1907 * and kswapd activity, but those code paths have their own 1908 * higher-level throttling. 1909 */ 1910 if (wbc->sync_mode != WB_SYNC_NONE) { 1911 lock_buffer(bh); 1912 } else if (!trylock_buffer(bh)) { 1913 folio_redirty_for_writepage(wbc, folio); 1914 continue; 1915 } 1916 if (test_clear_buffer_dirty(bh)) { 1917 mark_buffer_async_write_endio(bh, handler); 1918 } else { 1919 unlock_buffer(bh); 1920 } 1921 } while ((bh = bh->b_this_page) != head); 1922 1923 /* 1924 * The folio and its buffers are protected by the writeback flag, 1925 * so we can drop the bh refcounts early. 1926 */ 1927 BUG_ON(folio_test_writeback(folio)); 1928 folio_start_writeback(folio); 1929 1930 do { 1931 struct buffer_head *next = bh->b_this_page; 1932 if (buffer_async_write(bh)) { 1933 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1934 nr_underway++; 1935 } 1936 bh = next; 1937 } while (bh != head); 1938 folio_unlock(folio); 1939 1940 err = 0; 1941 done: 1942 if (nr_underway == 0) { 1943 /* 1944 * The folio was marked dirty, but the buffers were 1945 * clean. Someone wrote them back by hand with 1946 * write_dirty_buffer/submit_bh. A rare case. 1947 */ 1948 folio_end_writeback(folio); 1949 1950 /* 1951 * The folio and buffer_heads can be released at any time from 1952 * here on. 1953 */ 1954 } 1955 return err; 1956 1957 recover: 1958 /* 1959 * ENOSPC, or some other error. We may already have added some 1960 * blocks to the file, so we need to write these out to avoid 1961 * exposing stale data. 1962 * The folio is currently locked and not marked for writeback 1963 */ 1964 bh = head; 1965 /* Recovery: lock and submit the mapped buffers */ 1966 do { 1967 if (buffer_mapped(bh) && buffer_dirty(bh) && 1968 !buffer_delay(bh)) { 1969 lock_buffer(bh); 1970 mark_buffer_async_write_endio(bh, handler); 1971 } else { 1972 /* 1973 * The buffer may have been set dirty during 1974 * attachment to a dirty folio. 1975 */ 1976 clear_buffer_dirty(bh); 1977 } 1978 } while ((bh = bh->b_this_page) != head); 1979 folio_set_error(folio); 1980 BUG_ON(folio_test_writeback(folio)); 1981 mapping_set_error(folio->mapping, err); 1982 folio_start_writeback(folio); 1983 do { 1984 struct buffer_head *next = bh->b_this_page; 1985 if (buffer_async_write(bh)) { 1986 clear_buffer_dirty(bh); 1987 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1988 nr_underway++; 1989 } 1990 bh = next; 1991 } while (bh != head); 1992 folio_unlock(folio); 1993 goto done; 1994 } 1995 EXPORT_SYMBOL(__block_write_full_folio); 1996 1997 /* 1998 * If a folio has any new buffers, zero them out here, and mark them uptodate 1999 * and dirty so they'll be written out (in order to prevent uninitialised 2000 * block data from leaking). And clear the new bit. 2001 */ 2002 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 2003 { 2004 size_t block_start, block_end; 2005 struct buffer_head *head, *bh; 2006 2007 BUG_ON(!folio_test_locked(folio)); 2008 head = folio_buffers(folio); 2009 if (!head) 2010 return; 2011 2012 bh = head; 2013 block_start = 0; 2014 do { 2015 block_end = block_start + bh->b_size; 2016 2017 if (buffer_new(bh)) { 2018 if (block_end > from && block_start < to) { 2019 if (!folio_test_uptodate(folio)) { 2020 size_t start, xend; 2021 2022 start = max(from, block_start); 2023 xend = min(to, block_end); 2024 2025 folio_zero_segment(folio, start, xend); 2026 set_buffer_uptodate(bh); 2027 } 2028 2029 clear_buffer_new(bh); 2030 mark_buffer_dirty(bh); 2031 } 2032 } 2033 2034 block_start = block_end; 2035 bh = bh->b_this_page; 2036 } while (bh != head); 2037 } 2038 EXPORT_SYMBOL(folio_zero_new_buffers); 2039 2040 static void 2041 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2042 const struct iomap *iomap) 2043 { 2044 loff_t offset = block << inode->i_blkbits; 2045 2046 bh->b_bdev = iomap->bdev; 2047 2048 /* 2049 * Block points to offset in file we need to map, iomap contains 2050 * the offset at which the map starts. If the map ends before the 2051 * current block, then do not map the buffer and let the caller 2052 * handle it. 2053 */ 2054 BUG_ON(offset >= iomap->offset + iomap->length); 2055 2056 switch (iomap->type) { 2057 case IOMAP_HOLE: 2058 /* 2059 * If the buffer is not up to date or beyond the current EOF, 2060 * we need to mark it as new to ensure sub-block zeroing is 2061 * executed if necessary. 2062 */ 2063 if (!buffer_uptodate(bh) || 2064 (offset >= i_size_read(inode))) 2065 set_buffer_new(bh); 2066 break; 2067 case IOMAP_DELALLOC: 2068 if (!buffer_uptodate(bh) || 2069 (offset >= i_size_read(inode))) 2070 set_buffer_new(bh); 2071 set_buffer_uptodate(bh); 2072 set_buffer_mapped(bh); 2073 set_buffer_delay(bh); 2074 break; 2075 case IOMAP_UNWRITTEN: 2076 /* 2077 * For unwritten regions, we always need to ensure that regions 2078 * in the block we are not writing to are zeroed. Mark the 2079 * buffer as new to ensure this. 2080 */ 2081 set_buffer_new(bh); 2082 set_buffer_unwritten(bh); 2083 fallthrough; 2084 case IOMAP_MAPPED: 2085 if ((iomap->flags & IOMAP_F_NEW) || 2086 offset >= i_size_read(inode)) 2087 set_buffer_new(bh); 2088 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2089 inode->i_blkbits; 2090 set_buffer_mapped(bh); 2091 break; 2092 } 2093 } 2094 2095 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2096 get_block_t *get_block, const struct iomap *iomap) 2097 { 2098 unsigned from = pos & (PAGE_SIZE - 1); 2099 unsigned to = from + len; 2100 struct inode *inode = folio->mapping->host; 2101 unsigned block_start, block_end; 2102 sector_t block; 2103 int err = 0; 2104 unsigned blocksize, bbits; 2105 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2106 2107 BUG_ON(!folio_test_locked(folio)); 2108 BUG_ON(from > PAGE_SIZE); 2109 BUG_ON(to > PAGE_SIZE); 2110 BUG_ON(from > to); 2111 2112 head = folio_create_buffers(folio, inode, 0); 2113 blocksize = head->b_size; 2114 bbits = block_size_bits(blocksize); 2115 2116 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2117 2118 for(bh = head, block_start = 0; bh != head || !block_start; 2119 block++, block_start=block_end, bh = bh->b_this_page) { 2120 block_end = block_start + blocksize; 2121 if (block_end <= from || block_start >= to) { 2122 if (folio_test_uptodate(folio)) { 2123 if (!buffer_uptodate(bh)) 2124 set_buffer_uptodate(bh); 2125 } 2126 continue; 2127 } 2128 if (buffer_new(bh)) 2129 clear_buffer_new(bh); 2130 if (!buffer_mapped(bh)) { 2131 WARN_ON(bh->b_size != blocksize); 2132 if (get_block) { 2133 err = get_block(inode, block, bh, 1); 2134 if (err) 2135 break; 2136 } else { 2137 iomap_to_bh(inode, block, bh, iomap); 2138 } 2139 2140 if (buffer_new(bh)) { 2141 clean_bdev_bh_alias(bh); 2142 if (folio_test_uptodate(folio)) { 2143 clear_buffer_new(bh); 2144 set_buffer_uptodate(bh); 2145 mark_buffer_dirty(bh); 2146 continue; 2147 } 2148 if (block_end > to || block_start < from) 2149 folio_zero_segments(folio, 2150 to, block_end, 2151 block_start, from); 2152 continue; 2153 } 2154 } 2155 if (folio_test_uptodate(folio)) { 2156 if (!buffer_uptodate(bh)) 2157 set_buffer_uptodate(bh); 2158 continue; 2159 } 2160 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2161 !buffer_unwritten(bh) && 2162 (block_start < from || block_end > to)) { 2163 bh_read_nowait(bh, 0); 2164 *wait_bh++=bh; 2165 } 2166 } 2167 /* 2168 * If we issued read requests - let them complete. 2169 */ 2170 while(wait_bh > wait) { 2171 wait_on_buffer(*--wait_bh); 2172 if (!buffer_uptodate(*wait_bh)) 2173 err = -EIO; 2174 } 2175 if (unlikely(err)) 2176 folio_zero_new_buffers(folio, from, to); 2177 return err; 2178 } 2179 2180 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2181 get_block_t *get_block) 2182 { 2183 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2184 NULL); 2185 } 2186 EXPORT_SYMBOL(__block_write_begin); 2187 2188 static int __block_commit_write(struct inode *inode, struct folio *folio, 2189 size_t from, size_t to) 2190 { 2191 size_t block_start, block_end; 2192 bool partial = false; 2193 unsigned blocksize; 2194 struct buffer_head *bh, *head; 2195 2196 bh = head = folio_buffers(folio); 2197 blocksize = bh->b_size; 2198 2199 block_start = 0; 2200 do { 2201 block_end = block_start + blocksize; 2202 if (block_end <= from || block_start >= to) { 2203 if (!buffer_uptodate(bh)) 2204 partial = true; 2205 } else { 2206 set_buffer_uptodate(bh); 2207 mark_buffer_dirty(bh); 2208 } 2209 if (buffer_new(bh)) 2210 clear_buffer_new(bh); 2211 2212 block_start = block_end; 2213 bh = bh->b_this_page; 2214 } while (bh != head); 2215 2216 /* 2217 * If this is a partial write which happened to make all buffers 2218 * uptodate then we can optimize away a bogus read_folio() for 2219 * the next read(). Here we 'discover' whether the folio went 2220 * uptodate as a result of this (potentially partial) write. 2221 */ 2222 if (!partial) 2223 folio_mark_uptodate(folio); 2224 return 0; 2225 } 2226 2227 /* 2228 * block_write_begin takes care of the basic task of block allocation and 2229 * bringing partial write blocks uptodate first. 2230 * 2231 * The filesystem needs to handle block truncation upon failure. 2232 */ 2233 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2234 struct page **pagep, get_block_t *get_block) 2235 { 2236 pgoff_t index = pos >> PAGE_SHIFT; 2237 struct page *page; 2238 int status; 2239 2240 page = grab_cache_page_write_begin(mapping, index); 2241 if (!page) 2242 return -ENOMEM; 2243 2244 status = __block_write_begin(page, pos, len, get_block); 2245 if (unlikely(status)) { 2246 unlock_page(page); 2247 put_page(page); 2248 page = NULL; 2249 } 2250 2251 *pagep = page; 2252 return status; 2253 } 2254 EXPORT_SYMBOL(block_write_begin); 2255 2256 int block_write_end(struct file *file, struct address_space *mapping, 2257 loff_t pos, unsigned len, unsigned copied, 2258 struct page *page, void *fsdata) 2259 { 2260 struct folio *folio = page_folio(page); 2261 struct inode *inode = mapping->host; 2262 size_t start = pos - folio_pos(folio); 2263 2264 if (unlikely(copied < len)) { 2265 /* 2266 * The buffers that were written will now be uptodate, so 2267 * we don't have to worry about a read_folio reading them 2268 * and overwriting a partial write. However if we have 2269 * encountered a short write and only partially written 2270 * into a buffer, it will not be marked uptodate, so a 2271 * read_folio might come in and destroy our partial write. 2272 * 2273 * Do the simplest thing, and just treat any short write to a 2274 * non uptodate folio as a zero-length write, and force the 2275 * caller to redo the whole thing. 2276 */ 2277 if (!folio_test_uptodate(folio)) 2278 copied = 0; 2279 2280 folio_zero_new_buffers(folio, start+copied, start+len); 2281 } 2282 flush_dcache_folio(folio); 2283 2284 /* This could be a short (even 0-length) commit */ 2285 __block_commit_write(inode, folio, start, start + copied); 2286 2287 return copied; 2288 } 2289 EXPORT_SYMBOL(block_write_end); 2290 2291 int generic_write_end(struct file *file, struct address_space *mapping, 2292 loff_t pos, unsigned len, unsigned copied, 2293 struct page *page, void *fsdata) 2294 { 2295 struct inode *inode = mapping->host; 2296 loff_t old_size = inode->i_size; 2297 bool i_size_changed = false; 2298 2299 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2300 2301 /* 2302 * No need to use i_size_read() here, the i_size cannot change under us 2303 * because we hold i_rwsem. 2304 * 2305 * But it's important to update i_size while still holding page lock: 2306 * page writeout could otherwise come in and zero beyond i_size. 2307 */ 2308 if (pos + copied > inode->i_size) { 2309 i_size_write(inode, pos + copied); 2310 i_size_changed = true; 2311 } 2312 2313 unlock_page(page); 2314 put_page(page); 2315 2316 if (old_size < pos) 2317 pagecache_isize_extended(inode, old_size, pos); 2318 /* 2319 * Don't mark the inode dirty under page lock. First, it unnecessarily 2320 * makes the holding time of page lock longer. Second, it forces lock 2321 * ordering of page lock and transaction start for journaling 2322 * filesystems. 2323 */ 2324 if (i_size_changed) 2325 mark_inode_dirty(inode); 2326 return copied; 2327 } 2328 EXPORT_SYMBOL(generic_write_end); 2329 2330 /* 2331 * block_is_partially_uptodate checks whether buffers within a folio are 2332 * uptodate or not. 2333 * 2334 * Returns true if all buffers which correspond to the specified part 2335 * of the folio are uptodate. 2336 */ 2337 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2338 { 2339 unsigned block_start, block_end, blocksize; 2340 unsigned to; 2341 struct buffer_head *bh, *head; 2342 bool ret = true; 2343 2344 head = folio_buffers(folio); 2345 if (!head) 2346 return false; 2347 blocksize = head->b_size; 2348 to = min_t(unsigned, folio_size(folio) - from, count); 2349 to = from + to; 2350 if (from < blocksize && to > folio_size(folio) - blocksize) 2351 return false; 2352 2353 bh = head; 2354 block_start = 0; 2355 do { 2356 block_end = block_start + blocksize; 2357 if (block_end > from && block_start < to) { 2358 if (!buffer_uptodate(bh)) { 2359 ret = false; 2360 break; 2361 } 2362 if (block_end >= to) 2363 break; 2364 } 2365 block_start = block_end; 2366 bh = bh->b_this_page; 2367 } while (bh != head); 2368 2369 return ret; 2370 } 2371 EXPORT_SYMBOL(block_is_partially_uptodate); 2372 2373 /* 2374 * Generic "read_folio" function for block devices that have the normal 2375 * get_block functionality. This is most of the block device filesystems. 2376 * Reads the folio asynchronously --- the unlock_buffer() and 2377 * set/clear_buffer_uptodate() functions propagate buffer state into the 2378 * folio once IO has completed. 2379 */ 2380 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2381 { 2382 struct inode *inode = folio->mapping->host; 2383 sector_t iblock, lblock; 2384 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2385 unsigned int blocksize, bbits; 2386 int nr, i; 2387 int fully_mapped = 1; 2388 bool page_error = false; 2389 loff_t limit = i_size_read(inode); 2390 2391 /* This is needed for ext4. */ 2392 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2393 limit = inode->i_sb->s_maxbytes; 2394 2395 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2396 2397 head = folio_create_buffers(folio, inode, 0); 2398 blocksize = head->b_size; 2399 bbits = block_size_bits(blocksize); 2400 2401 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2402 lblock = (limit+blocksize-1) >> bbits; 2403 bh = head; 2404 nr = 0; 2405 i = 0; 2406 2407 do { 2408 if (buffer_uptodate(bh)) 2409 continue; 2410 2411 if (!buffer_mapped(bh)) { 2412 int err = 0; 2413 2414 fully_mapped = 0; 2415 if (iblock < lblock) { 2416 WARN_ON(bh->b_size != blocksize); 2417 err = get_block(inode, iblock, bh, 0); 2418 if (err) { 2419 folio_set_error(folio); 2420 page_error = true; 2421 } 2422 } 2423 if (!buffer_mapped(bh)) { 2424 folio_zero_range(folio, i * blocksize, 2425 blocksize); 2426 if (!err) 2427 set_buffer_uptodate(bh); 2428 continue; 2429 } 2430 /* 2431 * get_block() might have updated the buffer 2432 * synchronously 2433 */ 2434 if (buffer_uptodate(bh)) 2435 continue; 2436 } 2437 arr[nr++] = bh; 2438 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2439 2440 if (fully_mapped) 2441 folio_set_mappedtodisk(folio); 2442 2443 if (!nr) { 2444 /* 2445 * All buffers are uptodate - we can set the folio uptodate 2446 * as well. But not if get_block() returned an error. 2447 */ 2448 if (!page_error) 2449 folio_mark_uptodate(folio); 2450 folio_unlock(folio); 2451 return 0; 2452 } 2453 2454 /* Stage two: lock the buffers */ 2455 for (i = 0; i < nr; i++) { 2456 bh = arr[i]; 2457 lock_buffer(bh); 2458 mark_buffer_async_read(bh); 2459 } 2460 2461 /* 2462 * Stage 3: start the IO. Check for uptodateness 2463 * inside the buffer lock in case another process reading 2464 * the underlying blockdev brought it uptodate (the sct fix). 2465 */ 2466 for (i = 0; i < nr; i++) { 2467 bh = arr[i]; 2468 if (buffer_uptodate(bh)) 2469 end_buffer_async_read(bh, 1); 2470 else 2471 submit_bh(REQ_OP_READ, bh); 2472 } 2473 return 0; 2474 } 2475 EXPORT_SYMBOL(block_read_full_folio); 2476 2477 /* utility function for filesystems that need to do work on expanding 2478 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2479 * deal with the hole. 2480 */ 2481 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2482 { 2483 struct address_space *mapping = inode->i_mapping; 2484 const struct address_space_operations *aops = mapping->a_ops; 2485 struct page *page; 2486 void *fsdata = NULL; 2487 int err; 2488 2489 err = inode_newsize_ok(inode, size); 2490 if (err) 2491 goto out; 2492 2493 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2494 if (err) 2495 goto out; 2496 2497 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2498 BUG_ON(err > 0); 2499 2500 out: 2501 return err; 2502 } 2503 EXPORT_SYMBOL(generic_cont_expand_simple); 2504 2505 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2506 loff_t pos, loff_t *bytes) 2507 { 2508 struct inode *inode = mapping->host; 2509 const struct address_space_operations *aops = mapping->a_ops; 2510 unsigned int blocksize = i_blocksize(inode); 2511 struct page *page; 2512 void *fsdata = NULL; 2513 pgoff_t index, curidx; 2514 loff_t curpos; 2515 unsigned zerofrom, offset, len; 2516 int err = 0; 2517 2518 index = pos >> PAGE_SHIFT; 2519 offset = pos & ~PAGE_MASK; 2520 2521 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2522 zerofrom = curpos & ~PAGE_MASK; 2523 if (zerofrom & (blocksize-1)) { 2524 *bytes |= (blocksize-1); 2525 (*bytes)++; 2526 } 2527 len = PAGE_SIZE - zerofrom; 2528 2529 err = aops->write_begin(file, mapping, curpos, len, 2530 &page, &fsdata); 2531 if (err) 2532 goto out; 2533 zero_user(page, zerofrom, len); 2534 err = aops->write_end(file, mapping, curpos, len, len, 2535 page, fsdata); 2536 if (err < 0) 2537 goto out; 2538 BUG_ON(err != len); 2539 err = 0; 2540 2541 balance_dirty_pages_ratelimited(mapping); 2542 2543 if (fatal_signal_pending(current)) { 2544 err = -EINTR; 2545 goto out; 2546 } 2547 } 2548 2549 /* page covers the boundary, find the boundary offset */ 2550 if (index == curidx) { 2551 zerofrom = curpos & ~PAGE_MASK; 2552 /* if we will expand the thing last block will be filled */ 2553 if (offset <= zerofrom) { 2554 goto out; 2555 } 2556 if (zerofrom & (blocksize-1)) { 2557 *bytes |= (blocksize-1); 2558 (*bytes)++; 2559 } 2560 len = offset - zerofrom; 2561 2562 err = aops->write_begin(file, mapping, curpos, len, 2563 &page, &fsdata); 2564 if (err) 2565 goto out; 2566 zero_user(page, zerofrom, len); 2567 err = aops->write_end(file, mapping, curpos, len, len, 2568 page, fsdata); 2569 if (err < 0) 2570 goto out; 2571 BUG_ON(err != len); 2572 err = 0; 2573 } 2574 out: 2575 return err; 2576 } 2577 2578 /* 2579 * For moronic filesystems that do not allow holes in file. 2580 * We may have to extend the file. 2581 */ 2582 int cont_write_begin(struct file *file, struct address_space *mapping, 2583 loff_t pos, unsigned len, 2584 struct page **pagep, void **fsdata, 2585 get_block_t *get_block, loff_t *bytes) 2586 { 2587 struct inode *inode = mapping->host; 2588 unsigned int blocksize = i_blocksize(inode); 2589 unsigned int zerofrom; 2590 int err; 2591 2592 err = cont_expand_zero(file, mapping, pos, bytes); 2593 if (err) 2594 return err; 2595 2596 zerofrom = *bytes & ~PAGE_MASK; 2597 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2598 *bytes |= (blocksize-1); 2599 (*bytes)++; 2600 } 2601 2602 return block_write_begin(mapping, pos, len, pagep, get_block); 2603 } 2604 EXPORT_SYMBOL(cont_write_begin); 2605 2606 int block_commit_write(struct page *page, unsigned from, unsigned to) 2607 { 2608 struct folio *folio = page_folio(page); 2609 struct inode *inode = folio->mapping->host; 2610 __block_commit_write(inode, folio, from, to); 2611 return 0; 2612 } 2613 EXPORT_SYMBOL(block_commit_write); 2614 2615 /* 2616 * block_page_mkwrite() is not allowed to change the file size as it gets 2617 * called from a page fault handler when a page is first dirtied. Hence we must 2618 * be careful to check for EOF conditions here. We set the page up correctly 2619 * for a written page which means we get ENOSPC checking when writing into 2620 * holes and correct delalloc and unwritten extent mapping on filesystems that 2621 * support these features. 2622 * 2623 * We are not allowed to take the i_mutex here so we have to play games to 2624 * protect against truncate races as the page could now be beyond EOF. Because 2625 * truncate writes the inode size before removing pages, once we have the 2626 * page lock we can determine safely if the page is beyond EOF. If it is not 2627 * beyond EOF, then the page is guaranteed safe against truncation until we 2628 * unlock the page. 2629 * 2630 * Direct callers of this function should protect against filesystem freezing 2631 * using sb_start_pagefault() - sb_end_pagefault() functions. 2632 */ 2633 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2634 get_block_t get_block) 2635 { 2636 struct folio *folio = page_folio(vmf->page); 2637 struct inode *inode = file_inode(vma->vm_file); 2638 unsigned long end; 2639 loff_t size; 2640 int ret; 2641 2642 folio_lock(folio); 2643 size = i_size_read(inode); 2644 if ((folio->mapping != inode->i_mapping) || 2645 (folio_pos(folio) >= size)) { 2646 /* We overload EFAULT to mean page got truncated */ 2647 ret = -EFAULT; 2648 goto out_unlock; 2649 } 2650 2651 end = folio_size(folio); 2652 /* folio is wholly or partially inside EOF */ 2653 if (folio_pos(folio) + end > size) 2654 end = size - folio_pos(folio); 2655 2656 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2657 if (!ret) 2658 ret = __block_commit_write(inode, folio, 0, end); 2659 2660 if (unlikely(ret < 0)) 2661 goto out_unlock; 2662 folio_mark_dirty(folio); 2663 folio_wait_stable(folio); 2664 return 0; 2665 out_unlock: 2666 folio_unlock(folio); 2667 return ret; 2668 } 2669 EXPORT_SYMBOL(block_page_mkwrite); 2670 2671 int block_truncate_page(struct address_space *mapping, 2672 loff_t from, get_block_t *get_block) 2673 { 2674 pgoff_t index = from >> PAGE_SHIFT; 2675 unsigned blocksize; 2676 sector_t iblock; 2677 size_t offset, length, pos; 2678 struct inode *inode = mapping->host; 2679 struct folio *folio; 2680 struct buffer_head *bh; 2681 int err = 0; 2682 2683 blocksize = i_blocksize(inode); 2684 length = from & (blocksize - 1); 2685 2686 /* Block boundary? Nothing to do */ 2687 if (!length) 2688 return 0; 2689 2690 length = blocksize - length; 2691 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2692 2693 folio = filemap_grab_folio(mapping, index); 2694 if (IS_ERR(folio)) 2695 return PTR_ERR(folio); 2696 2697 bh = folio_buffers(folio); 2698 if (!bh) { 2699 folio_create_empty_buffers(folio, blocksize, 0); 2700 bh = folio_buffers(folio); 2701 } 2702 2703 /* Find the buffer that contains "offset" */ 2704 offset = offset_in_folio(folio, from); 2705 pos = blocksize; 2706 while (offset >= pos) { 2707 bh = bh->b_this_page; 2708 iblock++; 2709 pos += blocksize; 2710 } 2711 2712 if (!buffer_mapped(bh)) { 2713 WARN_ON(bh->b_size != blocksize); 2714 err = get_block(inode, iblock, bh, 0); 2715 if (err) 2716 goto unlock; 2717 /* unmapped? It's a hole - nothing to do */ 2718 if (!buffer_mapped(bh)) 2719 goto unlock; 2720 } 2721 2722 /* Ok, it's mapped. Make sure it's up-to-date */ 2723 if (folio_test_uptodate(folio)) 2724 set_buffer_uptodate(bh); 2725 2726 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2727 err = bh_read(bh, 0); 2728 /* Uhhuh. Read error. Complain and punt. */ 2729 if (err < 0) 2730 goto unlock; 2731 } 2732 2733 folio_zero_range(folio, offset, length); 2734 mark_buffer_dirty(bh); 2735 2736 unlock: 2737 folio_unlock(folio); 2738 folio_put(folio); 2739 2740 return err; 2741 } 2742 EXPORT_SYMBOL(block_truncate_page); 2743 2744 /* 2745 * The generic ->writepage function for buffer-backed address_spaces 2746 */ 2747 int block_write_full_page(struct page *page, get_block_t *get_block, 2748 struct writeback_control *wbc) 2749 { 2750 struct folio *folio = page_folio(page); 2751 struct inode * const inode = folio->mapping->host; 2752 loff_t i_size = i_size_read(inode); 2753 2754 /* Is the folio fully inside i_size? */ 2755 if (folio_pos(folio) + folio_size(folio) <= i_size) 2756 return __block_write_full_folio(inode, folio, get_block, wbc, 2757 end_buffer_async_write); 2758 2759 /* Is the folio fully outside i_size? (truncate in progress) */ 2760 if (folio_pos(folio) >= i_size) { 2761 folio_unlock(folio); 2762 return 0; /* don't care */ 2763 } 2764 2765 /* 2766 * The folio straddles i_size. It must be zeroed out on each and every 2767 * writepage invocation because it may be mmapped. "A file is mapped 2768 * in multiples of the page size. For a file that is not a multiple of 2769 * the page size, the remaining memory is zeroed when mapped, and 2770 * writes to that region are not written out to the file." 2771 */ 2772 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2773 folio_size(folio)); 2774 return __block_write_full_folio(inode, folio, get_block, wbc, 2775 end_buffer_async_write); 2776 } 2777 EXPORT_SYMBOL(block_write_full_page); 2778 2779 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2780 get_block_t *get_block) 2781 { 2782 struct inode *inode = mapping->host; 2783 struct buffer_head tmp = { 2784 .b_size = i_blocksize(inode), 2785 }; 2786 2787 get_block(inode, block, &tmp, 0); 2788 return tmp.b_blocknr; 2789 } 2790 EXPORT_SYMBOL(generic_block_bmap); 2791 2792 static void end_bio_bh_io_sync(struct bio *bio) 2793 { 2794 struct buffer_head *bh = bio->bi_private; 2795 2796 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2797 set_bit(BH_Quiet, &bh->b_state); 2798 2799 bh->b_end_io(bh, !bio->bi_status); 2800 bio_put(bio); 2801 } 2802 2803 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2804 struct writeback_control *wbc) 2805 { 2806 const enum req_op op = opf & REQ_OP_MASK; 2807 struct bio *bio; 2808 2809 BUG_ON(!buffer_locked(bh)); 2810 BUG_ON(!buffer_mapped(bh)); 2811 BUG_ON(!bh->b_end_io); 2812 BUG_ON(buffer_delay(bh)); 2813 BUG_ON(buffer_unwritten(bh)); 2814 2815 /* 2816 * Only clear out a write error when rewriting 2817 */ 2818 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2819 clear_buffer_write_io_error(bh); 2820 2821 if (buffer_meta(bh)) 2822 opf |= REQ_META; 2823 if (buffer_prio(bh)) 2824 opf |= REQ_PRIO; 2825 2826 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2827 2828 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2829 2830 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2831 2832 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2833 2834 bio->bi_end_io = end_bio_bh_io_sync; 2835 bio->bi_private = bh; 2836 2837 /* Take care of bh's that straddle the end of the device */ 2838 guard_bio_eod(bio); 2839 2840 if (wbc) { 2841 wbc_init_bio(wbc, bio); 2842 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2843 } 2844 2845 submit_bio(bio); 2846 } 2847 2848 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2849 { 2850 submit_bh_wbc(opf, bh, NULL); 2851 } 2852 EXPORT_SYMBOL(submit_bh); 2853 2854 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2855 { 2856 lock_buffer(bh); 2857 if (!test_clear_buffer_dirty(bh)) { 2858 unlock_buffer(bh); 2859 return; 2860 } 2861 bh->b_end_io = end_buffer_write_sync; 2862 get_bh(bh); 2863 submit_bh(REQ_OP_WRITE | op_flags, bh); 2864 } 2865 EXPORT_SYMBOL(write_dirty_buffer); 2866 2867 /* 2868 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2869 * and then start new I/O and then wait upon it. The caller must have a ref on 2870 * the buffer_head. 2871 */ 2872 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2873 { 2874 WARN_ON(atomic_read(&bh->b_count) < 1); 2875 lock_buffer(bh); 2876 if (test_clear_buffer_dirty(bh)) { 2877 /* 2878 * The bh should be mapped, but it might not be if the 2879 * device was hot-removed. Not much we can do but fail the I/O. 2880 */ 2881 if (!buffer_mapped(bh)) { 2882 unlock_buffer(bh); 2883 return -EIO; 2884 } 2885 2886 get_bh(bh); 2887 bh->b_end_io = end_buffer_write_sync; 2888 submit_bh(REQ_OP_WRITE | op_flags, bh); 2889 wait_on_buffer(bh); 2890 if (!buffer_uptodate(bh)) 2891 return -EIO; 2892 } else { 2893 unlock_buffer(bh); 2894 } 2895 return 0; 2896 } 2897 EXPORT_SYMBOL(__sync_dirty_buffer); 2898 2899 int sync_dirty_buffer(struct buffer_head *bh) 2900 { 2901 return __sync_dirty_buffer(bh, REQ_SYNC); 2902 } 2903 EXPORT_SYMBOL(sync_dirty_buffer); 2904 2905 /* 2906 * try_to_free_buffers() checks if all the buffers on this particular folio 2907 * are unused, and releases them if so. 2908 * 2909 * Exclusion against try_to_free_buffers may be obtained by either 2910 * locking the folio or by holding its mapping's private_lock. 2911 * 2912 * If the folio is dirty but all the buffers are clean then we need to 2913 * be sure to mark the folio clean as well. This is because the folio 2914 * may be against a block device, and a later reattachment of buffers 2915 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2916 * filesystem data on the same device. 2917 * 2918 * The same applies to regular filesystem folios: if all the buffers are 2919 * clean then we set the folio clean and proceed. To do that, we require 2920 * total exclusion from block_dirty_folio(). That is obtained with 2921 * private_lock. 2922 * 2923 * try_to_free_buffers() is non-blocking. 2924 */ 2925 static inline int buffer_busy(struct buffer_head *bh) 2926 { 2927 return atomic_read(&bh->b_count) | 2928 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2929 } 2930 2931 static bool 2932 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2933 { 2934 struct buffer_head *head = folio_buffers(folio); 2935 struct buffer_head *bh; 2936 2937 bh = head; 2938 do { 2939 if (buffer_busy(bh)) 2940 goto failed; 2941 bh = bh->b_this_page; 2942 } while (bh != head); 2943 2944 do { 2945 struct buffer_head *next = bh->b_this_page; 2946 2947 if (bh->b_assoc_map) 2948 __remove_assoc_queue(bh); 2949 bh = next; 2950 } while (bh != head); 2951 *buffers_to_free = head; 2952 folio_detach_private(folio); 2953 return true; 2954 failed: 2955 return false; 2956 } 2957 2958 bool try_to_free_buffers(struct folio *folio) 2959 { 2960 struct address_space * const mapping = folio->mapping; 2961 struct buffer_head *buffers_to_free = NULL; 2962 bool ret = 0; 2963 2964 BUG_ON(!folio_test_locked(folio)); 2965 if (folio_test_writeback(folio)) 2966 return false; 2967 2968 if (mapping == NULL) { /* can this still happen? */ 2969 ret = drop_buffers(folio, &buffers_to_free); 2970 goto out; 2971 } 2972 2973 spin_lock(&mapping->private_lock); 2974 ret = drop_buffers(folio, &buffers_to_free); 2975 2976 /* 2977 * If the filesystem writes its buffers by hand (eg ext3) 2978 * then we can have clean buffers against a dirty folio. We 2979 * clean the folio here; otherwise the VM will never notice 2980 * that the filesystem did any IO at all. 2981 * 2982 * Also, during truncate, discard_buffer will have marked all 2983 * the folio's buffers clean. We discover that here and clean 2984 * the folio also. 2985 * 2986 * private_lock must be held over this entire operation in order 2987 * to synchronise against block_dirty_folio and prevent the 2988 * dirty bit from being lost. 2989 */ 2990 if (ret) 2991 folio_cancel_dirty(folio); 2992 spin_unlock(&mapping->private_lock); 2993 out: 2994 if (buffers_to_free) { 2995 struct buffer_head *bh = buffers_to_free; 2996 2997 do { 2998 struct buffer_head *next = bh->b_this_page; 2999 free_buffer_head(bh); 3000 bh = next; 3001 } while (bh != buffers_to_free); 3002 } 3003 return ret; 3004 } 3005 EXPORT_SYMBOL(try_to_free_buffers); 3006 3007 /* 3008 * Buffer-head allocation 3009 */ 3010 static struct kmem_cache *bh_cachep __read_mostly; 3011 3012 /* 3013 * Once the number of bh's in the machine exceeds this level, we start 3014 * stripping them in writeback. 3015 */ 3016 static unsigned long max_buffer_heads; 3017 3018 int buffer_heads_over_limit; 3019 3020 struct bh_accounting { 3021 int nr; /* Number of live bh's */ 3022 int ratelimit; /* Limit cacheline bouncing */ 3023 }; 3024 3025 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3026 3027 static void recalc_bh_state(void) 3028 { 3029 int i; 3030 int tot = 0; 3031 3032 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3033 return; 3034 __this_cpu_write(bh_accounting.ratelimit, 0); 3035 for_each_online_cpu(i) 3036 tot += per_cpu(bh_accounting, i).nr; 3037 buffer_heads_over_limit = (tot > max_buffer_heads); 3038 } 3039 3040 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3041 { 3042 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3043 if (ret) { 3044 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3045 spin_lock_init(&ret->b_uptodate_lock); 3046 preempt_disable(); 3047 __this_cpu_inc(bh_accounting.nr); 3048 recalc_bh_state(); 3049 preempt_enable(); 3050 } 3051 return ret; 3052 } 3053 EXPORT_SYMBOL(alloc_buffer_head); 3054 3055 void free_buffer_head(struct buffer_head *bh) 3056 { 3057 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3058 kmem_cache_free(bh_cachep, bh); 3059 preempt_disable(); 3060 __this_cpu_dec(bh_accounting.nr); 3061 recalc_bh_state(); 3062 preempt_enable(); 3063 } 3064 EXPORT_SYMBOL(free_buffer_head); 3065 3066 static int buffer_exit_cpu_dead(unsigned int cpu) 3067 { 3068 int i; 3069 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3070 3071 for (i = 0; i < BH_LRU_SIZE; i++) { 3072 brelse(b->bhs[i]); 3073 b->bhs[i] = NULL; 3074 } 3075 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3076 per_cpu(bh_accounting, cpu).nr = 0; 3077 return 0; 3078 } 3079 3080 /** 3081 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3082 * @bh: struct buffer_head 3083 * 3084 * Return true if the buffer is up-to-date and false, 3085 * with the buffer locked, if not. 3086 */ 3087 int bh_uptodate_or_lock(struct buffer_head *bh) 3088 { 3089 if (!buffer_uptodate(bh)) { 3090 lock_buffer(bh); 3091 if (!buffer_uptodate(bh)) 3092 return 0; 3093 unlock_buffer(bh); 3094 } 3095 return 1; 3096 } 3097 EXPORT_SYMBOL(bh_uptodate_or_lock); 3098 3099 /** 3100 * __bh_read - Submit read for a locked buffer 3101 * @bh: struct buffer_head 3102 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3103 * @wait: wait until reading finish 3104 * 3105 * Returns zero on success or don't wait, and -EIO on error. 3106 */ 3107 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3108 { 3109 int ret = 0; 3110 3111 BUG_ON(!buffer_locked(bh)); 3112 3113 get_bh(bh); 3114 bh->b_end_io = end_buffer_read_sync; 3115 submit_bh(REQ_OP_READ | op_flags, bh); 3116 if (wait) { 3117 wait_on_buffer(bh); 3118 if (!buffer_uptodate(bh)) 3119 ret = -EIO; 3120 } 3121 return ret; 3122 } 3123 EXPORT_SYMBOL(__bh_read); 3124 3125 /** 3126 * __bh_read_batch - Submit read for a batch of unlocked buffers 3127 * @nr: entry number of the buffer batch 3128 * @bhs: a batch of struct buffer_head 3129 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3130 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3131 * buffer that cannot lock. 3132 * 3133 * Returns zero on success or don't wait, and -EIO on error. 3134 */ 3135 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3136 blk_opf_t op_flags, bool force_lock) 3137 { 3138 int i; 3139 3140 for (i = 0; i < nr; i++) { 3141 struct buffer_head *bh = bhs[i]; 3142 3143 if (buffer_uptodate(bh)) 3144 continue; 3145 3146 if (force_lock) 3147 lock_buffer(bh); 3148 else 3149 if (!trylock_buffer(bh)) 3150 continue; 3151 3152 if (buffer_uptodate(bh)) { 3153 unlock_buffer(bh); 3154 continue; 3155 } 3156 3157 bh->b_end_io = end_buffer_read_sync; 3158 get_bh(bh); 3159 submit_bh(REQ_OP_READ | op_flags, bh); 3160 } 3161 } 3162 EXPORT_SYMBOL(__bh_read_batch); 3163 3164 void __init buffer_init(void) 3165 { 3166 unsigned long nrpages; 3167 int ret; 3168 3169 bh_cachep = kmem_cache_create("buffer_head", 3170 sizeof(struct buffer_head), 0, 3171 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3172 SLAB_MEM_SPREAD), 3173 NULL); 3174 3175 /* 3176 * Limit the bh occupancy to 10% of ZONE_NORMAL 3177 */ 3178 nrpages = (nr_free_buffer_pages() * 10) / 100; 3179 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3180 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3181 NULL, buffer_exit_cpu_dead); 3182 WARN_ON(ret < 0); 3183 } 3184