xref: /openbmc/linux/fs/buffer.c (revision afddba49d18f346e5cc2938b6ed7c512db18ca68)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 
56 static int sync_buffer(void *word)
57 {
58 	struct block_device *bd;
59 	struct buffer_head *bh
60 		= container_of(word, struct buffer_head, b_state);
61 
62 	smp_mb();
63 	bd = bh->b_bdev;
64 	if (bd)
65 		blk_run_address_space(bd->bd_inode->i_mapping);
66 	io_schedule();
67 	return 0;
68 }
69 
70 void fastcall __lock_buffer(struct buffer_head *bh)
71 {
72 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
73 							TASK_UNINTERRUPTIBLE);
74 }
75 EXPORT_SYMBOL(__lock_buffer);
76 
77 void fastcall unlock_buffer(struct buffer_head *bh)
78 {
79 	smp_mb__before_clear_bit();
80 	clear_buffer_locked(bh);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 
85 /*
86  * Block until a buffer comes unlocked.  This doesn't stop it
87  * from becoming locked again - you have to lock it yourself
88  * if you want to preserve its state.
89  */
90 void __wait_on_buffer(struct buffer_head * bh)
91 {
92 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
93 }
94 
95 static void
96 __clear_page_buffers(struct page *page)
97 {
98 	ClearPagePrivate(page);
99 	set_page_private(page, 0);
100 	page_cache_release(page);
101 }
102 
103 static void buffer_io_error(struct buffer_head *bh)
104 {
105 	char b[BDEVNAME_SIZE];
106 
107 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
108 			bdevname(bh->b_bdev, b),
109 			(unsigned long long)bh->b_blocknr);
110 }
111 
112 /*
113  * End-of-IO handler helper function which does not touch the bh after
114  * unlocking it.
115  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
116  * a race there is benign: unlock_buffer() only use the bh's address for
117  * hashing after unlocking the buffer, so it doesn't actually touch the bh
118  * itself.
119  */
120 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
121 {
122 	if (uptodate) {
123 		set_buffer_uptodate(bh);
124 	} else {
125 		/* This happens, due to failed READA attempts. */
126 		clear_buffer_uptodate(bh);
127 	}
128 	unlock_buffer(bh);
129 }
130 
131 /*
132  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
133  * unlock the buffer. This is what ll_rw_block uses too.
134  */
135 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
136 {
137 	__end_buffer_read_notouch(bh, uptodate);
138 	put_bh(bh);
139 }
140 
141 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
142 {
143 	char b[BDEVNAME_SIZE];
144 
145 	if (uptodate) {
146 		set_buffer_uptodate(bh);
147 	} else {
148 		if (!buffer_eopnotsupp(bh) && printk_ratelimit()) {
149 			buffer_io_error(bh);
150 			printk(KERN_WARNING "lost page write due to "
151 					"I/O error on %s\n",
152 				       bdevname(bh->b_bdev, b));
153 		}
154 		set_buffer_write_io_error(bh);
155 		clear_buffer_uptodate(bh);
156 	}
157 	unlock_buffer(bh);
158 	put_bh(bh);
159 }
160 
161 /*
162  * Write out and wait upon all the dirty data associated with a block
163  * device via its mapping.  Does not take the superblock lock.
164  */
165 int sync_blockdev(struct block_device *bdev)
166 {
167 	int ret = 0;
168 
169 	if (bdev)
170 		ret = filemap_write_and_wait(bdev->bd_inode->i_mapping);
171 	return ret;
172 }
173 EXPORT_SYMBOL(sync_blockdev);
174 
175 /*
176  * Write out and wait upon all dirty data associated with this
177  * device.   Filesystem data as well as the underlying block
178  * device.  Takes the superblock lock.
179  */
180 int fsync_bdev(struct block_device *bdev)
181 {
182 	struct super_block *sb = get_super(bdev);
183 	if (sb) {
184 		int res = fsync_super(sb);
185 		drop_super(sb);
186 		return res;
187 	}
188 	return sync_blockdev(bdev);
189 }
190 
191 /**
192  * freeze_bdev  --  lock a filesystem and force it into a consistent state
193  * @bdev:	blockdevice to lock
194  *
195  * This takes the block device bd_mount_sem to make sure no new mounts
196  * happen on bdev until thaw_bdev() is called.
197  * If a superblock is found on this device, we take the s_umount semaphore
198  * on it to make sure nobody unmounts until the snapshot creation is done.
199  */
200 struct super_block *freeze_bdev(struct block_device *bdev)
201 {
202 	struct super_block *sb;
203 
204 	down(&bdev->bd_mount_sem);
205 	sb = get_super(bdev);
206 	if (sb && !(sb->s_flags & MS_RDONLY)) {
207 		sb->s_frozen = SB_FREEZE_WRITE;
208 		smp_wmb();
209 
210 		__fsync_super(sb);
211 
212 		sb->s_frozen = SB_FREEZE_TRANS;
213 		smp_wmb();
214 
215 		sync_blockdev(sb->s_bdev);
216 
217 		if (sb->s_op->write_super_lockfs)
218 			sb->s_op->write_super_lockfs(sb);
219 	}
220 
221 	sync_blockdev(bdev);
222 	return sb;	/* thaw_bdev releases s->s_umount and bd_mount_sem */
223 }
224 EXPORT_SYMBOL(freeze_bdev);
225 
226 /**
227  * thaw_bdev  -- unlock filesystem
228  * @bdev:	blockdevice to unlock
229  * @sb:		associated superblock
230  *
231  * Unlocks the filesystem and marks it writeable again after freeze_bdev().
232  */
233 void thaw_bdev(struct block_device *bdev, struct super_block *sb)
234 {
235 	if (sb) {
236 		BUG_ON(sb->s_bdev != bdev);
237 
238 		if (sb->s_op->unlockfs)
239 			sb->s_op->unlockfs(sb);
240 		sb->s_frozen = SB_UNFROZEN;
241 		smp_wmb();
242 		wake_up(&sb->s_wait_unfrozen);
243 		drop_super(sb);
244 	}
245 
246 	up(&bdev->bd_mount_sem);
247 }
248 EXPORT_SYMBOL(thaw_bdev);
249 
250 /*
251  * Various filesystems appear to want __find_get_block to be non-blocking.
252  * But it's the page lock which protects the buffers.  To get around this,
253  * we get exclusion from try_to_free_buffers with the blockdev mapping's
254  * private_lock.
255  *
256  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
257  * may be quite high.  This code could TryLock the page, and if that
258  * succeeds, there is no need to take private_lock. (But if
259  * private_lock is contended then so is mapping->tree_lock).
260  */
261 static struct buffer_head *
262 __find_get_block_slow(struct block_device *bdev, sector_t block)
263 {
264 	struct inode *bd_inode = bdev->bd_inode;
265 	struct address_space *bd_mapping = bd_inode->i_mapping;
266 	struct buffer_head *ret = NULL;
267 	pgoff_t index;
268 	struct buffer_head *bh;
269 	struct buffer_head *head;
270 	struct page *page;
271 	int all_mapped = 1;
272 
273 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
274 	page = find_get_page(bd_mapping, index);
275 	if (!page)
276 		goto out;
277 
278 	spin_lock(&bd_mapping->private_lock);
279 	if (!page_has_buffers(page))
280 		goto out_unlock;
281 	head = page_buffers(page);
282 	bh = head;
283 	do {
284 		if (bh->b_blocknr == block) {
285 			ret = bh;
286 			get_bh(bh);
287 			goto out_unlock;
288 		}
289 		if (!buffer_mapped(bh))
290 			all_mapped = 0;
291 		bh = bh->b_this_page;
292 	} while (bh != head);
293 
294 	/* we might be here because some of the buffers on this page are
295 	 * not mapped.  This is due to various races between
296 	 * file io on the block device and getblk.  It gets dealt with
297 	 * elsewhere, don't buffer_error if we had some unmapped buffers
298 	 */
299 	if (all_mapped) {
300 		printk("__find_get_block_slow() failed. "
301 			"block=%llu, b_blocknr=%llu\n",
302 			(unsigned long long)block,
303 			(unsigned long long)bh->b_blocknr);
304 		printk("b_state=0x%08lx, b_size=%zu\n",
305 			bh->b_state, bh->b_size);
306 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
307 	}
308 out_unlock:
309 	spin_unlock(&bd_mapping->private_lock);
310 	page_cache_release(page);
311 out:
312 	return ret;
313 }
314 
315 /* If invalidate_buffers() will trash dirty buffers, it means some kind
316    of fs corruption is going on. Trashing dirty data always imply losing
317    information that was supposed to be just stored on the physical layer
318    by the user.
319 
320    Thus invalidate_buffers in general usage is not allwowed to trash
321    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
322    be preserved.  These buffers are simply skipped.
323 
324    We also skip buffers which are still in use.  For example this can
325    happen if a userspace program is reading the block device.
326 
327    NOTE: In the case where the user removed a removable-media-disk even if
328    there's still dirty data not synced on disk (due a bug in the device driver
329    or due an error of the user), by not destroying the dirty buffers we could
330    generate corruption also on the next media inserted, thus a parameter is
331    necessary to handle this case in the most safe way possible (trying
332    to not corrupt also the new disk inserted with the data belonging to
333    the old now corrupted disk). Also for the ramdisk the natural thing
334    to do in order to release the ramdisk memory is to destroy dirty buffers.
335 
336    These are two special cases. Normal usage imply the device driver
337    to issue a sync on the device (without waiting I/O completion) and
338    then an invalidate_buffers call that doesn't trash dirty buffers.
339 
340    For handling cache coherency with the blkdev pagecache the 'update' case
341    is been introduced. It is needed to re-read from disk any pinned
342    buffer. NOTE: re-reading from disk is destructive so we can do it only
343    when we assume nobody is changing the buffercache under our I/O and when
344    we think the disk contains more recent information than the buffercache.
345    The update == 1 pass marks the buffers we need to update, the update == 2
346    pass does the actual I/O. */
347 void invalidate_bdev(struct block_device *bdev)
348 {
349 	struct address_space *mapping = bdev->bd_inode->i_mapping;
350 
351 	if (mapping->nrpages == 0)
352 		return;
353 
354 	invalidate_bh_lrus();
355 	invalidate_mapping_pages(mapping, 0, -1);
356 }
357 
358 /*
359  * Kick pdflush then try to free up some ZONE_NORMAL memory.
360  */
361 static void free_more_memory(void)
362 {
363 	struct zone **zones;
364 	pg_data_t *pgdat;
365 
366 	wakeup_pdflush(1024);
367 	yield();
368 
369 	for_each_online_pgdat(pgdat) {
370 		zones = pgdat->node_zonelists[gfp_zone(GFP_NOFS)].zones;
371 		if (*zones)
372 			try_to_free_pages(zones, 0, GFP_NOFS);
373 	}
374 }
375 
376 /*
377  * I/O completion handler for block_read_full_page() - pages
378  * which come unlocked at the end of I/O.
379  */
380 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
381 {
382 	unsigned long flags;
383 	struct buffer_head *first;
384 	struct buffer_head *tmp;
385 	struct page *page;
386 	int page_uptodate = 1;
387 
388 	BUG_ON(!buffer_async_read(bh));
389 
390 	page = bh->b_page;
391 	if (uptodate) {
392 		set_buffer_uptodate(bh);
393 	} else {
394 		clear_buffer_uptodate(bh);
395 		if (printk_ratelimit())
396 			buffer_io_error(bh);
397 		SetPageError(page);
398 	}
399 
400 	/*
401 	 * Be _very_ careful from here on. Bad things can happen if
402 	 * two buffer heads end IO at almost the same time and both
403 	 * decide that the page is now completely done.
404 	 */
405 	first = page_buffers(page);
406 	local_irq_save(flags);
407 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
408 	clear_buffer_async_read(bh);
409 	unlock_buffer(bh);
410 	tmp = bh;
411 	do {
412 		if (!buffer_uptodate(tmp))
413 			page_uptodate = 0;
414 		if (buffer_async_read(tmp)) {
415 			BUG_ON(!buffer_locked(tmp));
416 			goto still_busy;
417 		}
418 		tmp = tmp->b_this_page;
419 	} while (tmp != bh);
420 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
421 	local_irq_restore(flags);
422 
423 	/*
424 	 * If none of the buffers had errors and they are all
425 	 * uptodate then we can set the page uptodate.
426 	 */
427 	if (page_uptodate && !PageError(page))
428 		SetPageUptodate(page);
429 	unlock_page(page);
430 	return;
431 
432 still_busy:
433 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
434 	local_irq_restore(flags);
435 	return;
436 }
437 
438 /*
439  * Completion handler for block_write_full_page() - pages which are unlocked
440  * during I/O, and which have PageWriteback cleared upon I/O completion.
441  */
442 static void end_buffer_async_write(struct buffer_head *bh, int uptodate)
443 {
444 	char b[BDEVNAME_SIZE];
445 	unsigned long flags;
446 	struct buffer_head *first;
447 	struct buffer_head *tmp;
448 	struct page *page;
449 
450 	BUG_ON(!buffer_async_write(bh));
451 
452 	page = bh->b_page;
453 	if (uptodate) {
454 		set_buffer_uptodate(bh);
455 	} else {
456 		if (printk_ratelimit()) {
457 			buffer_io_error(bh);
458 			printk(KERN_WARNING "lost page write due to "
459 					"I/O error on %s\n",
460 			       bdevname(bh->b_bdev, b));
461 		}
462 		set_bit(AS_EIO, &page->mapping->flags);
463 		set_buffer_write_io_error(bh);
464 		clear_buffer_uptodate(bh);
465 		SetPageError(page);
466 	}
467 
468 	first = page_buffers(page);
469 	local_irq_save(flags);
470 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
471 
472 	clear_buffer_async_write(bh);
473 	unlock_buffer(bh);
474 	tmp = bh->b_this_page;
475 	while (tmp != bh) {
476 		if (buffer_async_write(tmp)) {
477 			BUG_ON(!buffer_locked(tmp));
478 			goto still_busy;
479 		}
480 		tmp = tmp->b_this_page;
481 	}
482 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
483 	local_irq_restore(flags);
484 	end_page_writeback(page);
485 	return;
486 
487 still_busy:
488 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
489 	local_irq_restore(flags);
490 	return;
491 }
492 
493 /*
494  * If a page's buffers are under async readin (end_buffer_async_read
495  * completion) then there is a possibility that another thread of
496  * control could lock one of the buffers after it has completed
497  * but while some of the other buffers have not completed.  This
498  * locked buffer would confuse end_buffer_async_read() into not unlocking
499  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
500  * that this buffer is not under async I/O.
501  *
502  * The page comes unlocked when it has no locked buffer_async buffers
503  * left.
504  *
505  * PageLocked prevents anyone starting new async I/O reads any of
506  * the buffers.
507  *
508  * PageWriteback is used to prevent simultaneous writeout of the same
509  * page.
510  *
511  * PageLocked prevents anyone from starting writeback of a page which is
512  * under read I/O (PageWriteback is only ever set against a locked page).
513  */
514 static void mark_buffer_async_read(struct buffer_head *bh)
515 {
516 	bh->b_end_io = end_buffer_async_read;
517 	set_buffer_async_read(bh);
518 }
519 
520 void mark_buffer_async_write(struct buffer_head *bh)
521 {
522 	bh->b_end_io = end_buffer_async_write;
523 	set_buffer_async_write(bh);
524 }
525 EXPORT_SYMBOL(mark_buffer_async_write);
526 
527 
528 /*
529  * fs/buffer.c contains helper functions for buffer-backed address space's
530  * fsync functions.  A common requirement for buffer-based filesystems is
531  * that certain data from the backing blockdev needs to be written out for
532  * a successful fsync().  For example, ext2 indirect blocks need to be
533  * written back and waited upon before fsync() returns.
534  *
535  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
536  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
537  * management of a list of dependent buffers at ->i_mapping->private_list.
538  *
539  * Locking is a little subtle: try_to_free_buffers() will remove buffers
540  * from their controlling inode's queue when they are being freed.  But
541  * try_to_free_buffers() will be operating against the *blockdev* mapping
542  * at the time, not against the S_ISREG file which depends on those buffers.
543  * So the locking for private_list is via the private_lock in the address_space
544  * which backs the buffers.  Which is different from the address_space
545  * against which the buffers are listed.  So for a particular address_space,
546  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
547  * mapping->private_list will always be protected by the backing blockdev's
548  * ->private_lock.
549  *
550  * Which introduces a requirement: all buffers on an address_space's
551  * ->private_list must be from the same address_space: the blockdev's.
552  *
553  * address_spaces which do not place buffers at ->private_list via these
554  * utility functions are free to use private_lock and private_list for
555  * whatever they want.  The only requirement is that list_empty(private_list)
556  * be true at clear_inode() time.
557  *
558  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
559  * filesystems should do that.  invalidate_inode_buffers() should just go
560  * BUG_ON(!list_empty).
561  *
562  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
563  * take an address_space, not an inode.  And it should be called
564  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
565  * queued up.
566  *
567  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
568  * list if it is already on a list.  Because if the buffer is on a list,
569  * it *must* already be on the right one.  If not, the filesystem is being
570  * silly.  This will save a ton of locking.  But first we have to ensure
571  * that buffers are taken *off* the old inode's list when they are freed
572  * (presumably in truncate).  That requires careful auditing of all
573  * filesystems (do it inside bforget()).  It could also be done by bringing
574  * b_inode back.
575  */
576 
577 /*
578  * The buffer's backing address_space's private_lock must be held
579  */
580 static inline void __remove_assoc_queue(struct buffer_head *bh)
581 {
582 	list_del_init(&bh->b_assoc_buffers);
583 	WARN_ON(!bh->b_assoc_map);
584 	if (buffer_write_io_error(bh))
585 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
586 	bh->b_assoc_map = NULL;
587 }
588 
589 int inode_has_buffers(struct inode *inode)
590 {
591 	return !list_empty(&inode->i_data.private_list);
592 }
593 
594 /*
595  * osync is designed to support O_SYNC io.  It waits synchronously for
596  * all already-submitted IO to complete, but does not queue any new
597  * writes to the disk.
598  *
599  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
600  * you dirty the buffers, and then use osync_inode_buffers to wait for
601  * completion.  Any other dirty buffers which are not yet queued for
602  * write will not be flushed to disk by the osync.
603  */
604 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
605 {
606 	struct buffer_head *bh;
607 	struct list_head *p;
608 	int err = 0;
609 
610 	spin_lock(lock);
611 repeat:
612 	list_for_each_prev(p, list) {
613 		bh = BH_ENTRY(p);
614 		if (buffer_locked(bh)) {
615 			get_bh(bh);
616 			spin_unlock(lock);
617 			wait_on_buffer(bh);
618 			if (!buffer_uptodate(bh))
619 				err = -EIO;
620 			brelse(bh);
621 			spin_lock(lock);
622 			goto repeat;
623 		}
624 	}
625 	spin_unlock(lock);
626 	return err;
627 }
628 
629 /**
630  * sync_mapping_buffers - write out and wait upon a mapping's "associated"
631  *                        buffers
632  * @mapping: the mapping which wants those buffers written
633  *
634  * Starts I/O against the buffers at mapping->private_list, and waits upon
635  * that I/O.
636  *
637  * Basically, this is a convenience function for fsync().
638  * @mapping is a file or directory which needs those buffers to be written for
639  * a successful fsync().
640  */
641 int sync_mapping_buffers(struct address_space *mapping)
642 {
643 	struct address_space *buffer_mapping = mapping->assoc_mapping;
644 
645 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
646 		return 0;
647 
648 	return fsync_buffers_list(&buffer_mapping->private_lock,
649 					&mapping->private_list);
650 }
651 EXPORT_SYMBOL(sync_mapping_buffers);
652 
653 /*
654  * Called when we've recently written block `bblock', and it is known that
655  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
656  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
657  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
658  */
659 void write_boundary_block(struct block_device *bdev,
660 			sector_t bblock, unsigned blocksize)
661 {
662 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
663 	if (bh) {
664 		if (buffer_dirty(bh))
665 			ll_rw_block(WRITE, 1, &bh);
666 		put_bh(bh);
667 	}
668 }
669 
670 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
671 {
672 	struct address_space *mapping = inode->i_mapping;
673 	struct address_space *buffer_mapping = bh->b_page->mapping;
674 
675 	mark_buffer_dirty(bh);
676 	if (!mapping->assoc_mapping) {
677 		mapping->assoc_mapping = buffer_mapping;
678 	} else {
679 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
680 	}
681 	if (list_empty(&bh->b_assoc_buffers)) {
682 		spin_lock(&buffer_mapping->private_lock);
683 		list_move_tail(&bh->b_assoc_buffers,
684 				&mapping->private_list);
685 		bh->b_assoc_map = mapping;
686 		spin_unlock(&buffer_mapping->private_lock);
687 	}
688 }
689 EXPORT_SYMBOL(mark_buffer_dirty_inode);
690 
691 /*
692  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
693  * dirty.
694  *
695  * If warn is true, then emit a warning if the page is not uptodate and has
696  * not been truncated.
697  */
698 static int __set_page_dirty(struct page *page,
699 		struct address_space *mapping, int warn)
700 {
701 	if (unlikely(!mapping))
702 		return !TestSetPageDirty(page);
703 
704 	if (TestSetPageDirty(page))
705 		return 0;
706 
707 	write_lock_irq(&mapping->tree_lock);
708 	if (page->mapping) {	/* Race with truncate? */
709 		WARN_ON_ONCE(warn && !PageUptodate(page));
710 
711 		if (mapping_cap_account_dirty(mapping)) {
712 			__inc_zone_page_state(page, NR_FILE_DIRTY);
713 			task_io_account_write(PAGE_CACHE_SIZE);
714 		}
715 		radix_tree_tag_set(&mapping->page_tree,
716 				page_index(page), PAGECACHE_TAG_DIRTY);
717 	}
718 	write_unlock_irq(&mapping->tree_lock);
719 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
720 
721 	return 1;
722 }
723 
724 /*
725  * Add a page to the dirty page list.
726  *
727  * It is a sad fact of life that this function is called from several places
728  * deeply under spinlocking.  It may not sleep.
729  *
730  * If the page has buffers, the uptodate buffers are set dirty, to preserve
731  * dirty-state coherency between the page and the buffers.  It the page does
732  * not have buffers then when they are later attached they will all be set
733  * dirty.
734  *
735  * The buffers are dirtied before the page is dirtied.  There's a small race
736  * window in which a writepage caller may see the page cleanness but not the
737  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
738  * before the buffers, a concurrent writepage caller could clear the page dirty
739  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
740  * page on the dirty page list.
741  *
742  * We use private_lock to lock against try_to_free_buffers while using the
743  * page's buffer list.  Also use this to protect against clean buffers being
744  * added to the page after it was set dirty.
745  *
746  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
747  * address_space though.
748  */
749 int __set_page_dirty_buffers(struct page *page)
750 {
751 	struct address_space *mapping = page_mapping(page);
752 
753 	if (unlikely(!mapping))
754 		return !TestSetPageDirty(page);
755 
756 	spin_lock(&mapping->private_lock);
757 	if (page_has_buffers(page)) {
758 		struct buffer_head *head = page_buffers(page);
759 		struct buffer_head *bh = head;
760 
761 		do {
762 			set_buffer_dirty(bh);
763 			bh = bh->b_this_page;
764 		} while (bh != head);
765 	}
766 	spin_unlock(&mapping->private_lock);
767 
768 	return __set_page_dirty(page, mapping, 1);
769 }
770 EXPORT_SYMBOL(__set_page_dirty_buffers);
771 
772 /*
773  * Write out and wait upon a list of buffers.
774  *
775  * We have conflicting pressures: we want to make sure that all
776  * initially dirty buffers get waited on, but that any subsequently
777  * dirtied buffers don't.  After all, we don't want fsync to last
778  * forever if somebody is actively writing to the file.
779  *
780  * Do this in two main stages: first we copy dirty buffers to a
781  * temporary inode list, queueing the writes as we go.  Then we clean
782  * up, waiting for those writes to complete.
783  *
784  * During this second stage, any subsequent updates to the file may end
785  * up refiling the buffer on the original inode's dirty list again, so
786  * there is a chance we will end up with a buffer queued for write but
787  * not yet completed on that list.  So, as a final cleanup we go through
788  * the osync code to catch these locked, dirty buffers without requeuing
789  * any newly dirty buffers for write.
790  */
791 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
792 {
793 	struct buffer_head *bh;
794 	struct list_head tmp;
795 	int err = 0, err2;
796 
797 	INIT_LIST_HEAD(&tmp);
798 
799 	spin_lock(lock);
800 	while (!list_empty(list)) {
801 		bh = BH_ENTRY(list->next);
802 		__remove_assoc_queue(bh);
803 		if (buffer_dirty(bh) || buffer_locked(bh)) {
804 			list_add(&bh->b_assoc_buffers, &tmp);
805 			if (buffer_dirty(bh)) {
806 				get_bh(bh);
807 				spin_unlock(lock);
808 				/*
809 				 * Ensure any pending I/O completes so that
810 				 * ll_rw_block() actually writes the current
811 				 * contents - it is a noop if I/O is still in
812 				 * flight on potentially older contents.
813 				 */
814 				ll_rw_block(SWRITE, 1, &bh);
815 				brelse(bh);
816 				spin_lock(lock);
817 			}
818 		}
819 	}
820 
821 	while (!list_empty(&tmp)) {
822 		bh = BH_ENTRY(tmp.prev);
823 		list_del_init(&bh->b_assoc_buffers);
824 		get_bh(bh);
825 		spin_unlock(lock);
826 		wait_on_buffer(bh);
827 		if (!buffer_uptodate(bh))
828 			err = -EIO;
829 		brelse(bh);
830 		spin_lock(lock);
831 	}
832 
833 	spin_unlock(lock);
834 	err2 = osync_buffers_list(lock, list);
835 	if (err)
836 		return err;
837 	else
838 		return err2;
839 }
840 
841 /*
842  * Invalidate any and all dirty buffers on a given inode.  We are
843  * probably unmounting the fs, but that doesn't mean we have already
844  * done a sync().  Just drop the buffers from the inode list.
845  *
846  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
847  * assumes that all the buffers are against the blockdev.  Not true
848  * for reiserfs.
849  */
850 void invalidate_inode_buffers(struct inode *inode)
851 {
852 	if (inode_has_buffers(inode)) {
853 		struct address_space *mapping = &inode->i_data;
854 		struct list_head *list = &mapping->private_list;
855 		struct address_space *buffer_mapping = mapping->assoc_mapping;
856 
857 		spin_lock(&buffer_mapping->private_lock);
858 		while (!list_empty(list))
859 			__remove_assoc_queue(BH_ENTRY(list->next));
860 		spin_unlock(&buffer_mapping->private_lock);
861 	}
862 }
863 
864 /*
865  * Remove any clean buffers from the inode's buffer list.  This is called
866  * when we're trying to free the inode itself.  Those buffers can pin it.
867  *
868  * Returns true if all buffers were removed.
869  */
870 int remove_inode_buffers(struct inode *inode)
871 {
872 	int ret = 1;
873 
874 	if (inode_has_buffers(inode)) {
875 		struct address_space *mapping = &inode->i_data;
876 		struct list_head *list = &mapping->private_list;
877 		struct address_space *buffer_mapping = mapping->assoc_mapping;
878 
879 		spin_lock(&buffer_mapping->private_lock);
880 		while (!list_empty(list)) {
881 			struct buffer_head *bh = BH_ENTRY(list->next);
882 			if (buffer_dirty(bh)) {
883 				ret = 0;
884 				break;
885 			}
886 			__remove_assoc_queue(bh);
887 		}
888 		spin_unlock(&buffer_mapping->private_lock);
889 	}
890 	return ret;
891 }
892 
893 /*
894  * Create the appropriate buffers when given a page for data area and
895  * the size of each buffer.. Use the bh->b_this_page linked list to
896  * follow the buffers created.  Return NULL if unable to create more
897  * buffers.
898  *
899  * The retry flag is used to differentiate async IO (paging, swapping)
900  * which may not fail from ordinary buffer allocations.
901  */
902 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
903 		int retry)
904 {
905 	struct buffer_head *bh, *head;
906 	long offset;
907 
908 try_again:
909 	head = NULL;
910 	offset = PAGE_SIZE;
911 	while ((offset -= size) >= 0) {
912 		bh = alloc_buffer_head(GFP_NOFS);
913 		if (!bh)
914 			goto no_grow;
915 
916 		bh->b_bdev = NULL;
917 		bh->b_this_page = head;
918 		bh->b_blocknr = -1;
919 		head = bh;
920 
921 		bh->b_state = 0;
922 		atomic_set(&bh->b_count, 0);
923 		bh->b_private = NULL;
924 		bh->b_size = size;
925 
926 		/* Link the buffer to its page */
927 		set_bh_page(bh, page, offset);
928 
929 		init_buffer(bh, NULL, NULL);
930 	}
931 	return head;
932 /*
933  * In case anything failed, we just free everything we got.
934  */
935 no_grow:
936 	if (head) {
937 		do {
938 			bh = head;
939 			head = head->b_this_page;
940 			free_buffer_head(bh);
941 		} while (head);
942 	}
943 
944 	/*
945 	 * Return failure for non-async IO requests.  Async IO requests
946 	 * are not allowed to fail, so we have to wait until buffer heads
947 	 * become available.  But we don't want tasks sleeping with
948 	 * partially complete buffers, so all were released above.
949 	 */
950 	if (!retry)
951 		return NULL;
952 
953 	/* We're _really_ low on memory. Now we just
954 	 * wait for old buffer heads to become free due to
955 	 * finishing IO.  Since this is an async request and
956 	 * the reserve list is empty, we're sure there are
957 	 * async buffer heads in use.
958 	 */
959 	free_more_memory();
960 	goto try_again;
961 }
962 EXPORT_SYMBOL_GPL(alloc_page_buffers);
963 
964 static inline void
965 link_dev_buffers(struct page *page, struct buffer_head *head)
966 {
967 	struct buffer_head *bh, *tail;
968 
969 	bh = head;
970 	do {
971 		tail = bh;
972 		bh = bh->b_this_page;
973 	} while (bh);
974 	tail->b_this_page = head;
975 	attach_page_buffers(page, head);
976 }
977 
978 /*
979  * Initialise the state of a blockdev page's buffers.
980  */
981 static void
982 init_page_buffers(struct page *page, struct block_device *bdev,
983 			sector_t block, int size)
984 {
985 	struct buffer_head *head = page_buffers(page);
986 	struct buffer_head *bh = head;
987 	int uptodate = PageUptodate(page);
988 
989 	do {
990 		if (!buffer_mapped(bh)) {
991 			init_buffer(bh, NULL, NULL);
992 			bh->b_bdev = bdev;
993 			bh->b_blocknr = block;
994 			if (uptodate)
995 				set_buffer_uptodate(bh);
996 			set_buffer_mapped(bh);
997 		}
998 		block++;
999 		bh = bh->b_this_page;
1000 	} while (bh != head);
1001 }
1002 
1003 /*
1004  * Create the page-cache page that contains the requested block.
1005  *
1006  * This is user purely for blockdev mappings.
1007  */
1008 static struct page *
1009 grow_dev_page(struct block_device *bdev, sector_t block,
1010 		pgoff_t index, int size)
1011 {
1012 	struct inode *inode = bdev->bd_inode;
1013 	struct page *page;
1014 	struct buffer_head *bh;
1015 
1016 	page = find_or_create_page(inode->i_mapping, index,
1017 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1018 	if (!page)
1019 		return NULL;
1020 
1021 	BUG_ON(!PageLocked(page));
1022 
1023 	if (page_has_buffers(page)) {
1024 		bh = page_buffers(page);
1025 		if (bh->b_size == size) {
1026 			init_page_buffers(page, bdev, block, size);
1027 			return page;
1028 		}
1029 		if (!try_to_free_buffers(page))
1030 			goto failed;
1031 	}
1032 
1033 	/*
1034 	 * Allocate some buffers for this page
1035 	 */
1036 	bh = alloc_page_buffers(page, size, 0);
1037 	if (!bh)
1038 		goto failed;
1039 
1040 	/*
1041 	 * Link the page to the buffers and initialise them.  Take the
1042 	 * lock to be atomic wrt __find_get_block(), which does not
1043 	 * run under the page lock.
1044 	 */
1045 	spin_lock(&inode->i_mapping->private_lock);
1046 	link_dev_buffers(page, bh);
1047 	init_page_buffers(page, bdev, block, size);
1048 	spin_unlock(&inode->i_mapping->private_lock);
1049 	return page;
1050 
1051 failed:
1052 	BUG();
1053 	unlock_page(page);
1054 	page_cache_release(page);
1055 	return NULL;
1056 }
1057 
1058 /*
1059  * Create buffers for the specified block device block's page.  If
1060  * that page was dirty, the buffers are set dirty also.
1061  */
1062 static int
1063 grow_buffers(struct block_device *bdev, sector_t block, int size)
1064 {
1065 	struct page *page;
1066 	pgoff_t index;
1067 	int sizebits;
1068 
1069 	sizebits = -1;
1070 	do {
1071 		sizebits++;
1072 	} while ((size << sizebits) < PAGE_SIZE);
1073 
1074 	index = block >> sizebits;
1075 
1076 	/*
1077 	 * Check for a block which wants to lie outside our maximum possible
1078 	 * pagecache index.  (this comparison is done using sector_t types).
1079 	 */
1080 	if (unlikely(index != block >> sizebits)) {
1081 		char b[BDEVNAME_SIZE];
1082 
1083 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1084 			"device %s\n",
1085 			__FUNCTION__, (unsigned long long)block,
1086 			bdevname(bdev, b));
1087 		return -EIO;
1088 	}
1089 	block = index << sizebits;
1090 	/* Create a page with the proper size buffers.. */
1091 	page = grow_dev_page(bdev, block, index, size);
1092 	if (!page)
1093 		return 0;
1094 	unlock_page(page);
1095 	page_cache_release(page);
1096 	return 1;
1097 }
1098 
1099 static struct buffer_head *
1100 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1101 {
1102 	/* Size must be multiple of hard sectorsize */
1103 	if (unlikely(size & (bdev_hardsect_size(bdev)-1) ||
1104 			(size < 512 || size > PAGE_SIZE))) {
1105 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1106 					size);
1107 		printk(KERN_ERR "hardsect size: %d\n",
1108 					bdev_hardsect_size(bdev));
1109 
1110 		dump_stack();
1111 		return NULL;
1112 	}
1113 
1114 	for (;;) {
1115 		struct buffer_head * bh;
1116 		int ret;
1117 
1118 		bh = __find_get_block(bdev, block, size);
1119 		if (bh)
1120 			return bh;
1121 
1122 		ret = grow_buffers(bdev, block, size);
1123 		if (ret < 0)
1124 			return NULL;
1125 		if (ret == 0)
1126 			free_more_memory();
1127 	}
1128 }
1129 
1130 /*
1131  * The relationship between dirty buffers and dirty pages:
1132  *
1133  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1134  * the page is tagged dirty in its radix tree.
1135  *
1136  * At all times, the dirtiness of the buffers represents the dirtiness of
1137  * subsections of the page.  If the page has buffers, the page dirty bit is
1138  * merely a hint about the true dirty state.
1139  *
1140  * When a page is set dirty in its entirety, all its buffers are marked dirty
1141  * (if the page has buffers).
1142  *
1143  * When a buffer is marked dirty, its page is dirtied, but the page's other
1144  * buffers are not.
1145  *
1146  * Also.  When blockdev buffers are explicitly read with bread(), they
1147  * individually become uptodate.  But their backing page remains not
1148  * uptodate - even if all of its buffers are uptodate.  A subsequent
1149  * block_read_full_page() against that page will discover all the uptodate
1150  * buffers, will set the page uptodate and will perform no I/O.
1151  */
1152 
1153 /**
1154  * mark_buffer_dirty - mark a buffer_head as needing writeout
1155  * @bh: the buffer_head to mark dirty
1156  *
1157  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1158  * backing page dirty, then tag the page as dirty in its address_space's radix
1159  * tree and then attach the address_space's inode to its superblock's dirty
1160  * inode list.
1161  *
1162  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1163  * mapping->tree_lock and the global inode_lock.
1164  */
1165 void fastcall mark_buffer_dirty(struct buffer_head *bh)
1166 {
1167 	WARN_ON_ONCE(!buffer_uptodate(bh));
1168 	if (!buffer_dirty(bh) && !test_set_buffer_dirty(bh))
1169 		__set_page_dirty(bh->b_page, page_mapping(bh->b_page), 0);
1170 }
1171 
1172 /*
1173  * Decrement a buffer_head's reference count.  If all buffers against a page
1174  * have zero reference count, are clean and unlocked, and if the page is clean
1175  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1176  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1177  * a page but it ends up not being freed, and buffers may later be reattached).
1178  */
1179 void __brelse(struct buffer_head * buf)
1180 {
1181 	if (atomic_read(&buf->b_count)) {
1182 		put_bh(buf);
1183 		return;
1184 	}
1185 	printk(KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1186 	WARN_ON(1);
1187 }
1188 
1189 /*
1190  * bforget() is like brelse(), except it discards any
1191  * potentially dirty data.
1192  */
1193 void __bforget(struct buffer_head *bh)
1194 {
1195 	clear_buffer_dirty(bh);
1196 	if (!list_empty(&bh->b_assoc_buffers)) {
1197 		struct address_space *buffer_mapping = bh->b_page->mapping;
1198 
1199 		spin_lock(&buffer_mapping->private_lock);
1200 		list_del_init(&bh->b_assoc_buffers);
1201 		bh->b_assoc_map = NULL;
1202 		spin_unlock(&buffer_mapping->private_lock);
1203 	}
1204 	__brelse(bh);
1205 }
1206 
1207 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1208 {
1209 	lock_buffer(bh);
1210 	if (buffer_uptodate(bh)) {
1211 		unlock_buffer(bh);
1212 		return bh;
1213 	} else {
1214 		get_bh(bh);
1215 		bh->b_end_io = end_buffer_read_sync;
1216 		submit_bh(READ, bh);
1217 		wait_on_buffer(bh);
1218 		if (buffer_uptodate(bh))
1219 			return bh;
1220 	}
1221 	brelse(bh);
1222 	return NULL;
1223 }
1224 
1225 /*
1226  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1227  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1228  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1229  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1230  * CPU's LRUs at the same time.
1231  *
1232  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1233  * sb_find_get_block().
1234  *
1235  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1236  * a local interrupt disable for that.
1237  */
1238 
1239 #define BH_LRU_SIZE	8
1240 
1241 struct bh_lru {
1242 	struct buffer_head *bhs[BH_LRU_SIZE];
1243 };
1244 
1245 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1246 
1247 #ifdef CONFIG_SMP
1248 #define bh_lru_lock()	local_irq_disable()
1249 #define bh_lru_unlock()	local_irq_enable()
1250 #else
1251 #define bh_lru_lock()	preempt_disable()
1252 #define bh_lru_unlock()	preempt_enable()
1253 #endif
1254 
1255 static inline void check_irqs_on(void)
1256 {
1257 #ifdef irqs_disabled
1258 	BUG_ON(irqs_disabled());
1259 #endif
1260 }
1261 
1262 /*
1263  * The LRU management algorithm is dopey-but-simple.  Sorry.
1264  */
1265 static void bh_lru_install(struct buffer_head *bh)
1266 {
1267 	struct buffer_head *evictee = NULL;
1268 	struct bh_lru *lru;
1269 
1270 	check_irqs_on();
1271 	bh_lru_lock();
1272 	lru = &__get_cpu_var(bh_lrus);
1273 	if (lru->bhs[0] != bh) {
1274 		struct buffer_head *bhs[BH_LRU_SIZE];
1275 		int in;
1276 		int out = 0;
1277 
1278 		get_bh(bh);
1279 		bhs[out++] = bh;
1280 		for (in = 0; in < BH_LRU_SIZE; in++) {
1281 			struct buffer_head *bh2 = lru->bhs[in];
1282 
1283 			if (bh2 == bh) {
1284 				__brelse(bh2);
1285 			} else {
1286 				if (out >= BH_LRU_SIZE) {
1287 					BUG_ON(evictee != NULL);
1288 					evictee = bh2;
1289 				} else {
1290 					bhs[out++] = bh2;
1291 				}
1292 			}
1293 		}
1294 		while (out < BH_LRU_SIZE)
1295 			bhs[out++] = NULL;
1296 		memcpy(lru->bhs, bhs, sizeof(bhs));
1297 	}
1298 	bh_lru_unlock();
1299 
1300 	if (evictee)
1301 		__brelse(evictee);
1302 }
1303 
1304 /*
1305  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1306  */
1307 static struct buffer_head *
1308 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1309 {
1310 	struct buffer_head *ret = NULL;
1311 	struct bh_lru *lru;
1312 	unsigned int i;
1313 
1314 	check_irqs_on();
1315 	bh_lru_lock();
1316 	lru = &__get_cpu_var(bh_lrus);
1317 	for (i = 0; i < BH_LRU_SIZE; i++) {
1318 		struct buffer_head *bh = lru->bhs[i];
1319 
1320 		if (bh && bh->b_bdev == bdev &&
1321 				bh->b_blocknr == block && bh->b_size == size) {
1322 			if (i) {
1323 				while (i) {
1324 					lru->bhs[i] = lru->bhs[i - 1];
1325 					i--;
1326 				}
1327 				lru->bhs[0] = bh;
1328 			}
1329 			get_bh(bh);
1330 			ret = bh;
1331 			break;
1332 		}
1333 	}
1334 	bh_lru_unlock();
1335 	return ret;
1336 }
1337 
1338 /*
1339  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1340  * it in the LRU and mark it as accessed.  If it is not present then return
1341  * NULL
1342  */
1343 struct buffer_head *
1344 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1345 {
1346 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1347 
1348 	if (bh == NULL) {
1349 		bh = __find_get_block_slow(bdev, block);
1350 		if (bh)
1351 			bh_lru_install(bh);
1352 	}
1353 	if (bh)
1354 		touch_buffer(bh);
1355 	return bh;
1356 }
1357 EXPORT_SYMBOL(__find_get_block);
1358 
1359 /*
1360  * __getblk will locate (and, if necessary, create) the buffer_head
1361  * which corresponds to the passed block_device, block and size. The
1362  * returned buffer has its reference count incremented.
1363  *
1364  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1365  * illegal block number, __getblk() will happily return a buffer_head
1366  * which represents the non-existent block.  Very weird.
1367  *
1368  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1369  * attempt is failing.  FIXME, perhaps?
1370  */
1371 struct buffer_head *
1372 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1375 
1376 	might_sleep();
1377 	if (bh == NULL)
1378 		bh = __getblk_slow(bdev, block, size);
1379 	return bh;
1380 }
1381 EXPORT_SYMBOL(__getblk);
1382 
1383 /*
1384  * Do async read-ahead on a buffer..
1385  */
1386 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1387 {
1388 	struct buffer_head *bh = __getblk(bdev, block, size);
1389 	if (likely(bh)) {
1390 		ll_rw_block(READA, 1, &bh);
1391 		brelse(bh);
1392 	}
1393 }
1394 EXPORT_SYMBOL(__breadahead);
1395 
1396 /**
1397  *  __bread() - reads a specified block and returns the bh
1398  *  @bdev: the block_device to read from
1399  *  @block: number of block
1400  *  @size: size (in bytes) to read
1401  *
1402  *  Reads a specified block, and returns buffer head that contains it.
1403  *  It returns NULL if the block was unreadable.
1404  */
1405 struct buffer_head *
1406 __bread(struct block_device *bdev, sector_t block, unsigned size)
1407 {
1408 	struct buffer_head *bh = __getblk(bdev, block, size);
1409 
1410 	if (likely(bh) && !buffer_uptodate(bh))
1411 		bh = __bread_slow(bh);
1412 	return bh;
1413 }
1414 EXPORT_SYMBOL(__bread);
1415 
1416 /*
1417  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1418  * This doesn't race because it runs in each cpu either in irq
1419  * or with preempt disabled.
1420  */
1421 static void invalidate_bh_lru(void *arg)
1422 {
1423 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1424 	int i;
1425 
1426 	for (i = 0; i < BH_LRU_SIZE; i++) {
1427 		brelse(b->bhs[i]);
1428 		b->bhs[i] = NULL;
1429 	}
1430 	put_cpu_var(bh_lrus);
1431 }
1432 
1433 void invalidate_bh_lrus(void)
1434 {
1435 	on_each_cpu(invalidate_bh_lru, NULL, 1, 1);
1436 }
1437 
1438 void set_bh_page(struct buffer_head *bh,
1439 		struct page *page, unsigned long offset)
1440 {
1441 	bh->b_page = page;
1442 	BUG_ON(offset >= PAGE_SIZE);
1443 	if (PageHighMem(page))
1444 		/*
1445 		 * This catches illegal uses and preserves the offset:
1446 		 */
1447 		bh->b_data = (char *)(0 + offset);
1448 	else
1449 		bh->b_data = page_address(page) + offset;
1450 }
1451 EXPORT_SYMBOL(set_bh_page);
1452 
1453 /*
1454  * Called when truncating a buffer on a page completely.
1455  */
1456 static void discard_buffer(struct buffer_head * bh)
1457 {
1458 	lock_buffer(bh);
1459 	clear_buffer_dirty(bh);
1460 	bh->b_bdev = NULL;
1461 	clear_buffer_mapped(bh);
1462 	clear_buffer_req(bh);
1463 	clear_buffer_new(bh);
1464 	clear_buffer_delay(bh);
1465 	clear_buffer_unwritten(bh);
1466 	unlock_buffer(bh);
1467 }
1468 
1469 /**
1470  * block_invalidatepage - invalidate part of all of a buffer-backed page
1471  *
1472  * @page: the page which is affected
1473  * @offset: the index of the truncation point
1474  *
1475  * block_invalidatepage() is called when all or part of the page has become
1476  * invalidatedby a truncate operation.
1477  *
1478  * block_invalidatepage() does not have to release all buffers, but it must
1479  * ensure that no dirty buffer is left outside @offset and that no I/O
1480  * is underway against any of the blocks which are outside the truncation
1481  * point.  Because the caller is about to free (and possibly reuse) those
1482  * blocks on-disk.
1483  */
1484 void block_invalidatepage(struct page *page, unsigned long offset)
1485 {
1486 	struct buffer_head *head, *bh, *next;
1487 	unsigned int curr_off = 0;
1488 
1489 	BUG_ON(!PageLocked(page));
1490 	if (!page_has_buffers(page))
1491 		goto out;
1492 
1493 	head = page_buffers(page);
1494 	bh = head;
1495 	do {
1496 		unsigned int next_off = curr_off + bh->b_size;
1497 		next = bh->b_this_page;
1498 
1499 		/*
1500 		 * is this block fully invalidated?
1501 		 */
1502 		if (offset <= curr_off)
1503 			discard_buffer(bh);
1504 		curr_off = next_off;
1505 		bh = next;
1506 	} while (bh != head);
1507 
1508 	/*
1509 	 * We release buffers only if the entire page is being invalidated.
1510 	 * The get_block cached value has been unconditionally invalidated,
1511 	 * so real IO is not possible anymore.
1512 	 */
1513 	if (offset == 0)
1514 		try_to_release_page(page, 0);
1515 out:
1516 	return;
1517 }
1518 EXPORT_SYMBOL(block_invalidatepage);
1519 
1520 /*
1521  * We attach and possibly dirty the buffers atomically wrt
1522  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1523  * is already excluded via the page lock.
1524  */
1525 void create_empty_buffers(struct page *page,
1526 			unsigned long blocksize, unsigned long b_state)
1527 {
1528 	struct buffer_head *bh, *head, *tail;
1529 
1530 	head = alloc_page_buffers(page, blocksize, 1);
1531 	bh = head;
1532 	do {
1533 		bh->b_state |= b_state;
1534 		tail = bh;
1535 		bh = bh->b_this_page;
1536 	} while (bh);
1537 	tail->b_this_page = head;
1538 
1539 	spin_lock(&page->mapping->private_lock);
1540 	if (PageUptodate(page) || PageDirty(page)) {
1541 		bh = head;
1542 		do {
1543 			if (PageDirty(page))
1544 				set_buffer_dirty(bh);
1545 			if (PageUptodate(page))
1546 				set_buffer_uptodate(bh);
1547 			bh = bh->b_this_page;
1548 		} while (bh != head);
1549 	}
1550 	attach_page_buffers(page, head);
1551 	spin_unlock(&page->mapping->private_lock);
1552 }
1553 EXPORT_SYMBOL(create_empty_buffers);
1554 
1555 /*
1556  * We are taking a block for data and we don't want any output from any
1557  * buffer-cache aliases starting from return from that function and
1558  * until the moment when something will explicitly mark the buffer
1559  * dirty (hopefully that will not happen until we will free that block ;-)
1560  * We don't even need to mark it not-uptodate - nobody can expect
1561  * anything from a newly allocated buffer anyway. We used to used
1562  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1563  * don't want to mark the alias unmapped, for example - it would confuse
1564  * anyone who might pick it with bread() afterwards...
1565  *
1566  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1567  * be writeout I/O going on against recently-freed buffers.  We don't
1568  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1569  * only if we really need to.  That happens here.
1570  */
1571 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1572 {
1573 	struct buffer_head *old_bh;
1574 
1575 	might_sleep();
1576 
1577 	old_bh = __find_get_block_slow(bdev, block);
1578 	if (old_bh) {
1579 		clear_buffer_dirty(old_bh);
1580 		wait_on_buffer(old_bh);
1581 		clear_buffer_req(old_bh);
1582 		__brelse(old_bh);
1583 	}
1584 }
1585 EXPORT_SYMBOL(unmap_underlying_metadata);
1586 
1587 /*
1588  * NOTE! All mapped/uptodate combinations are valid:
1589  *
1590  *	Mapped	Uptodate	Meaning
1591  *
1592  *	No	No		"unknown" - must do get_block()
1593  *	No	Yes		"hole" - zero-filled
1594  *	Yes	No		"allocated" - allocated on disk, not read in
1595  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1596  *
1597  * "Dirty" is valid only with the last case (mapped+uptodate).
1598  */
1599 
1600 /*
1601  * While block_write_full_page is writing back the dirty buffers under
1602  * the page lock, whoever dirtied the buffers may decide to clean them
1603  * again at any time.  We handle that by only looking at the buffer
1604  * state inside lock_buffer().
1605  *
1606  * If block_write_full_page() is called for regular writeback
1607  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1608  * locked buffer.   This only can happen if someone has written the buffer
1609  * directly, with submit_bh().  At the address_space level PageWriteback
1610  * prevents this contention from occurring.
1611  */
1612 static int __block_write_full_page(struct inode *inode, struct page *page,
1613 			get_block_t *get_block, struct writeback_control *wbc)
1614 {
1615 	int err;
1616 	sector_t block;
1617 	sector_t last_block;
1618 	struct buffer_head *bh, *head;
1619 	const unsigned blocksize = 1 << inode->i_blkbits;
1620 	int nr_underway = 0;
1621 
1622 	BUG_ON(!PageLocked(page));
1623 
1624 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1625 
1626 	if (!page_has_buffers(page)) {
1627 		create_empty_buffers(page, blocksize,
1628 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1629 	}
1630 
1631 	/*
1632 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1633 	 * here, and the (potentially unmapped) buffers may become dirty at
1634 	 * any time.  If a buffer becomes dirty here after we've inspected it
1635 	 * then we just miss that fact, and the page stays dirty.
1636 	 *
1637 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1638 	 * handle that here by just cleaning them.
1639 	 */
1640 
1641 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1642 	head = page_buffers(page);
1643 	bh = head;
1644 
1645 	/*
1646 	 * Get all the dirty buffers mapped to disk addresses and
1647 	 * handle any aliases from the underlying blockdev's mapping.
1648 	 */
1649 	do {
1650 		if (block > last_block) {
1651 			/*
1652 			 * mapped buffers outside i_size will occur, because
1653 			 * this page can be outside i_size when there is a
1654 			 * truncate in progress.
1655 			 */
1656 			/*
1657 			 * The buffer was zeroed by block_write_full_page()
1658 			 */
1659 			clear_buffer_dirty(bh);
1660 			set_buffer_uptodate(bh);
1661 		} else if (!buffer_mapped(bh) && buffer_dirty(bh)) {
1662 			WARN_ON(bh->b_size != blocksize);
1663 			err = get_block(inode, block, bh, 1);
1664 			if (err)
1665 				goto recover;
1666 			if (buffer_new(bh)) {
1667 				/* blockdev mappings never come here */
1668 				clear_buffer_new(bh);
1669 				unmap_underlying_metadata(bh->b_bdev,
1670 							bh->b_blocknr);
1671 			}
1672 		}
1673 		bh = bh->b_this_page;
1674 		block++;
1675 	} while (bh != head);
1676 
1677 	do {
1678 		if (!buffer_mapped(bh))
1679 			continue;
1680 		/*
1681 		 * If it's a fully non-blocking write attempt and we cannot
1682 		 * lock the buffer then redirty the page.  Note that this can
1683 		 * potentially cause a busy-wait loop from pdflush and kswapd
1684 		 * activity, but those code paths have their own higher-level
1685 		 * throttling.
1686 		 */
1687 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1688 			lock_buffer(bh);
1689 		} else if (test_set_buffer_locked(bh)) {
1690 			redirty_page_for_writepage(wbc, page);
1691 			continue;
1692 		}
1693 		if (test_clear_buffer_dirty(bh)) {
1694 			mark_buffer_async_write(bh);
1695 		} else {
1696 			unlock_buffer(bh);
1697 		}
1698 	} while ((bh = bh->b_this_page) != head);
1699 
1700 	/*
1701 	 * The page and its buffers are protected by PageWriteback(), so we can
1702 	 * drop the bh refcounts early.
1703 	 */
1704 	BUG_ON(PageWriteback(page));
1705 	set_page_writeback(page);
1706 
1707 	do {
1708 		struct buffer_head *next = bh->b_this_page;
1709 		if (buffer_async_write(bh)) {
1710 			submit_bh(WRITE, bh);
1711 			nr_underway++;
1712 		}
1713 		bh = next;
1714 	} while (bh != head);
1715 	unlock_page(page);
1716 
1717 	err = 0;
1718 done:
1719 	if (nr_underway == 0) {
1720 		/*
1721 		 * The page was marked dirty, but the buffers were
1722 		 * clean.  Someone wrote them back by hand with
1723 		 * ll_rw_block/submit_bh.  A rare case.
1724 		 */
1725 		end_page_writeback(page);
1726 
1727 		/*
1728 		 * The page and buffer_heads can be released at any time from
1729 		 * here on.
1730 		 */
1731 		wbc->pages_skipped++;	/* We didn't write this page */
1732 	}
1733 	return err;
1734 
1735 recover:
1736 	/*
1737 	 * ENOSPC, or some other error.  We may already have added some
1738 	 * blocks to the file, so we need to write these out to avoid
1739 	 * exposing stale data.
1740 	 * The page is currently locked and not marked for writeback
1741 	 */
1742 	bh = head;
1743 	/* Recovery: lock and submit the mapped buffers */
1744 	do {
1745 		if (buffer_mapped(bh) && buffer_dirty(bh)) {
1746 			lock_buffer(bh);
1747 			mark_buffer_async_write(bh);
1748 		} else {
1749 			/*
1750 			 * The buffer may have been set dirty during
1751 			 * attachment to a dirty page.
1752 			 */
1753 			clear_buffer_dirty(bh);
1754 		}
1755 	} while ((bh = bh->b_this_page) != head);
1756 	SetPageError(page);
1757 	BUG_ON(PageWriteback(page));
1758 	mapping_set_error(page->mapping, err);
1759 	set_page_writeback(page);
1760 	do {
1761 		struct buffer_head *next = bh->b_this_page;
1762 		if (buffer_async_write(bh)) {
1763 			clear_buffer_dirty(bh);
1764 			submit_bh(WRITE, bh);
1765 			nr_underway++;
1766 		}
1767 		bh = next;
1768 	} while (bh != head);
1769 	unlock_page(page);
1770 	goto done;
1771 }
1772 
1773 /*
1774  * If a page has any new buffers, zero them out here, and mark them uptodate
1775  * and dirty so they'll be written out (in order to prevent uninitialised
1776  * block data from leaking). And clear the new bit.
1777  */
1778 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1779 {
1780 	unsigned int block_start, block_end;
1781 	struct buffer_head *head, *bh;
1782 
1783 	BUG_ON(!PageLocked(page));
1784 	if (!page_has_buffers(page))
1785 		return;
1786 
1787 	bh = head = page_buffers(page);
1788 	block_start = 0;
1789 	do {
1790 		block_end = block_start + bh->b_size;
1791 
1792 		if (buffer_new(bh)) {
1793 			if (block_end > from && block_start < to) {
1794 				if (!PageUptodate(page)) {
1795 					unsigned start, size;
1796 
1797 					start = max(from, block_start);
1798 					size = min(to, block_end) - start;
1799 
1800 					zero_user_page(page, start, size, KM_USER0);
1801 					set_buffer_uptodate(bh);
1802 				}
1803 
1804 				clear_buffer_new(bh);
1805 				mark_buffer_dirty(bh);
1806 			}
1807 		}
1808 
1809 		block_start = block_end;
1810 		bh = bh->b_this_page;
1811 	} while (bh != head);
1812 }
1813 EXPORT_SYMBOL(page_zero_new_buffers);
1814 
1815 static int __block_prepare_write(struct inode *inode, struct page *page,
1816 		unsigned from, unsigned to, get_block_t *get_block)
1817 {
1818 	unsigned block_start, block_end;
1819 	sector_t block;
1820 	int err = 0;
1821 	unsigned blocksize, bbits;
1822 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1823 
1824 	BUG_ON(!PageLocked(page));
1825 	BUG_ON(from > PAGE_CACHE_SIZE);
1826 	BUG_ON(to > PAGE_CACHE_SIZE);
1827 	BUG_ON(from > to);
1828 
1829 	blocksize = 1 << inode->i_blkbits;
1830 	if (!page_has_buffers(page))
1831 		create_empty_buffers(page, blocksize, 0);
1832 	head = page_buffers(page);
1833 
1834 	bbits = inode->i_blkbits;
1835 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1836 
1837 	for(bh = head, block_start = 0; bh != head || !block_start;
1838 	    block++, block_start=block_end, bh = bh->b_this_page) {
1839 		block_end = block_start + blocksize;
1840 		if (block_end <= from || block_start >= to) {
1841 			if (PageUptodate(page)) {
1842 				if (!buffer_uptodate(bh))
1843 					set_buffer_uptodate(bh);
1844 			}
1845 			continue;
1846 		}
1847 		if (buffer_new(bh))
1848 			clear_buffer_new(bh);
1849 		if (!buffer_mapped(bh)) {
1850 			WARN_ON(bh->b_size != blocksize);
1851 			err = get_block(inode, block, bh, 1);
1852 			if (err)
1853 				break;
1854 			if (buffer_new(bh)) {
1855 				unmap_underlying_metadata(bh->b_bdev,
1856 							bh->b_blocknr);
1857 				if (PageUptodate(page)) {
1858 					clear_buffer_new(bh);
1859 					set_buffer_uptodate(bh);
1860 					mark_buffer_dirty(bh);
1861 					continue;
1862 				}
1863 				if (block_end > to || block_start < from) {
1864 					void *kaddr;
1865 
1866 					kaddr = kmap_atomic(page, KM_USER0);
1867 					if (block_end > to)
1868 						memset(kaddr+to, 0,
1869 							block_end-to);
1870 					if (block_start < from)
1871 						memset(kaddr+block_start,
1872 							0, from-block_start);
1873 					flush_dcache_page(page);
1874 					kunmap_atomic(kaddr, KM_USER0);
1875 				}
1876 				continue;
1877 			}
1878 		}
1879 		if (PageUptodate(page)) {
1880 			if (!buffer_uptodate(bh))
1881 				set_buffer_uptodate(bh);
1882 			continue;
1883 		}
1884 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1885 		    !buffer_unwritten(bh) &&
1886 		     (block_start < from || block_end > to)) {
1887 			ll_rw_block(READ, 1, &bh);
1888 			*wait_bh++=bh;
1889 		}
1890 	}
1891 	/*
1892 	 * If we issued read requests - let them complete.
1893 	 */
1894 	while(wait_bh > wait) {
1895 		wait_on_buffer(*--wait_bh);
1896 		if (!buffer_uptodate(*wait_bh))
1897 			err = -EIO;
1898 	}
1899 	if (unlikely(err))
1900 		page_zero_new_buffers(page, from, to);
1901 	return err;
1902 }
1903 
1904 static int __block_commit_write(struct inode *inode, struct page *page,
1905 		unsigned from, unsigned to)
1906 {
1907 	unsigned block_start, block_end;
1908 	int partial = 0;
1909 	unsigned blocksize;
1910 	struct buffer_head *bh, *head;
1911 
1912 	blocksize = 1 << inode->i_blkbits;
1913 
1914 	for(bh = head = page_buffers(page), block_start = 0;
1915 	    bh != head || !block_start;
1916 	    block_start=block_end, bh = bh->b_this_page) {
1917 		block_end = block_start + blocksize;
1918 		if (block_end <= from || block_start >= to) {
1919 			if (!buffer_uptodate(bh))
1920 				partial = 1;
1921 		} else {
1922 			set_buffer_uptodate(bh);
1923 			mark_buffer_dirty(bh);
1924 		}
1925 		clear_buffer_new(bh);
1926 	}
1927 
1928 	/*
1929 	 * If this is a partial write which happened to make all buffers
1930 	 * uptodate then we can optimize away a bogus readpage() for
1931 	 * the next read(). Here we 'discover' whether the page went
1932 	 * uptodate as a result of this (potentially partial) write.
1933 	 */
1934 	if (!partial)
1935 		SetPageUptodate(page);
1936 	return 0;
1937 }
1938 
1939 /*
1940  * block_write_begin takes care of the basic task of block allocation and
1941  * bringing partial write blocks uptodate first.
1942  *
1943  * If *pagep is not NULL, then block_write_begin uses the locked page
1944  * at *pagep rather than allocating its own. In this case, the page will
1945  * not be unlocked or deallocated on failure.
1946  */
1947 int block_write_begin(struct file *file, struct address_space *mapping,
1948 			loff_t pos, unsigned len, unsigned flags,
1949 			struct page **pagep, void **fsdata,
1950 			get_block_t *get_block)
1951 {
1952 	struct inode *inode = mapping->host;
1953 	int status = 0;
1954 	struct page *page;
1955 	pgoff_t index;
1956 	unsigned start, end;
1957 	int ownpage = 0;
1958 
1959 	index = pos >> PAGE_CACHE_SHIFT;
1960 	start = pos & (PAGE_CACHE_SIZE - 1);
1961 	end = start + len;
1962 
1963 	page = *pagep;
1964 	if (page == NULL) {
1965 		ownpage = 1;
1966 		page = __grab_cache_page(mapping, index);
1967 		if (!page) {
1968 			status = -ENOMEM;
1969 			goto out;
1970 		}
1971 		*pagep = page;
1972 	} else
1973 		BUG_ON(!PageLocked(page));
1974 
1975 	status = __block_prepare_write(inode, page, start, end, get_block);
1976 	if (unlikely(status)) {
1977 		ClearPageUptodate(page);
1978 
1979 		if (ownpage) {
1980 			unlock_page(page);
1981 			page_cache_release(page);
1982 			*pagep = NULL;
1983 
1984 			/*
1985 			 * prepare_write() may have instantiated a few blocks
1986 			 * outside i_size.  Trim these off again. Don't need
1987 			 * i_size_read because we hold i_mutex.
1988 			 */
1989 			if (pos + len > inode->i_size)
1990 				vmtruncate(inode, inode->i_size);
1991 		}
1992 		goto out;
1993 	}
1994 
1995 out:
1996 	return status;
1997 }
1998 EXPORT_SYMBOL(block_write_begin);
1999 
2000 int block_write_end(struct file *file, struct address_space *mapping,
2001 			loff_t pos, unsigned len, unsigned copied,
2002 			struct page *page, void *fsdata)
2003 {
2004 	struct inode *inode = mapping->host;
2005 	unsigned start;
2006 
2007 	start = pos & (PAGE_CACHE_SIZE - 1);
2008 
2009 	if (unlikely(copied < len)) {
2010 		/*
2011 		 * The buffers that were written will now be uptodate, so we
2012 		 * don't have to worry about a readpage reading them and
2013 		 * overwriting a partial write. However if we have encountered
2014 		 * a short write and only partially written into a buffer, it
2015 		 * will not be marked uptodate, so a readpage might come in and
2016 		 * destroy our partial write.
2017 		 *
2018 		 * Do the simplest thing, and just treat any short write to a
2019 		 * non uptodate page as a zero-length write, and force the
2020 		 * caller to redo the whole thing.
2021 		 */
2022 		if (!PageUptodate(page))
2023 			copied = 0;
2024 
2025 		page_zero_new_buffers(page, start+copied, start+len);
2026 	}
2027 	flush_dcache_page(page);
2028 
2029 	/* This could be a short (even 0-length) commit */
2030 	__block_commit_write(inode, page, start, start+copied);
2031 
2032 	return copied;
2033 }
2034 EXPORT_SYMBOL(block_write_end);
2035 
2036 int generic_write_end(struct file *file, struct address_space *mapping,
2037 			loff_t pos, unsigned len, unsigned copied,
2038 			struct page *page, void *fsdata)
2039 {
2040 	struct inode *inode = mapping->host;
2041 
2042 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2043 
2044 	/*
2045 	 * No need to use i_size_read() here, the i_size
2046 	 * cannot change under us because we hold i_mutex.
2047 	 *
2048 	 * But it's important to update i_size while still holding page lock:
2049 	 * page writeout could otherwise come in and zero beyond i_size.
2050 	 */
2051 	if (pos+copied > inode->i_size) {
2052 		i_size_write(inode, pos+copied);
2053 		mark_inode_dirty(inode);
2054 	}
2055 
2056 	unlock_page(page);
2057 	page_cache_release(page);
2058 
2059 	return copied;
2060 }
2061 EXPORT_SYMBOL(generic_write_end);
2062 
2063 /*
2064  * Generic "read page" function for block devices that have the normal
2065  * get_block functionality. This is most of the block device filesystems.
2066  * Reads the page asynchronously --- the unlock_buffer() and
2067  * set/clear_buffer_uptodate() functions propagate buffer state into the
2068  * page struct once IO has completed.
2069  */
2070 int block_read_full_page(struct page *page, get_block_t *get_block)
2071 {
2072 	struct inode *inode = page->mapping->host;
2073 	sector_t iblock, lblock;
2074 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2075 	unsigned int blocksize;
2076 	int nr, i;
2077 	int fully_mapped = 1;
2078 
2079 	BUG_ON(!PageLocked(page));
2080 	blocksize = 1 << inode->i_blkbits;
2081 	if (!page_has_buffers(page))
2082 		create_empty_buffers(page, blocksize, 0);
2083 	head = page_buffers(page);
2084 
2085 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2086 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2087 	bh = head;
2088 	nr = 0;
2089 	i = 0;
2090 
2091 	do {
2092 		if (buffer_uptodate(bh))
2093 			continue;
2094 
2095 		if (!buffer_mapped(bh)) {
2096 			int err = 0;
2097 
2098 			fully_mapped = 0;
2099 			if (iblock < lblock) {
2100 				WARN_ON(bh->b_size != blocksize);
2101 				err = get_block(inode, iblock, bh, 0);
2102 				if (err)
2103 					SetPageError(page);
2104 			}
2105 			if (!buffer_mapped(bh)) {
2106 				zero_user_page(page, i * blocksize, blocksize,
2107 						KM_USER0);
2108 				if (!err)
2109 					set_buffer_uptodate(bh);
2110 				continue;
2111 			}
2112 			/*
2113 			 * get_block() might have updated the buffer
2114 			 * synchronously
2115 			 */
2116 			if (buffer_uptodate(bh))
2117 				continue;
2118 		}
2119 		arr[nr++] = bh;
2120 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2121 
2122 	if (fully_mapped)
2123 		SetPageMappedToDisk(page);
2124 
2125 	if (!nr) {
2126 		/*
2127 		 * All buffers are uptodate - we can set the page uptodate
2128 		 * as well. But not if get_block() returned an error.
2129 		 */
2130 		if (!PageError(page))
2131 			SetPageUptodate(page);
2132 		unlock_page(page);
2133 		return 0;
2134 	}
2135 
2136 	/* Stage two: lock the buffers */
2137 	for (i = 0; i < nr; i++) {
2138 		bh = arr[i];
2139 		lock_buffer(bh);
2140 		mark_buffer_async_read(bh);
2141 	}
2142 
2143 	/*
2144 	 * Stage 3: start the IO.  Check for uptodateness
2145 	 * inside the buffer lock in case another process reading
2146 	 * the underlying blockdev brought it uptodate (the sct fix).
2147 	 */
2148 	for (i = 0; i < nr; i++) {
2149 		bh = arr[i];
2150 		if (buffer_uptodate(bh))
2151 			end_buffer_async_read(bh, 1);
2152 		else
2153 			submit_bh(READ, bh);
2154 	}
2155 	return 0;
2156 }
2157 
2158 /* utility function for filesystems that need to do work on expanding
2159  * truncates.  Uses prepare/commit_write to allow the filesystem to
2160  * deal with the hole.
2161  */
2162 static int __generic_cont_expand(struct inode *inode, loff_t size,
2163 				 pgoff_t index, unsigned int offset)
2164 {
2165 	struct address_space *mapping = inode->i_mapping;
2166 	struct page *page;
2167 	unsigned long limit;
2168 	int err;
2169 
2170 	err = -EFBIG;
2171         limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2172 	if (limit != RLIM_INFINITY && size > (loff_t)limit) {
2173 		send_sig(SIGXFSZ, current, 0);
2174 		goto out;
2175 	}
2176 	if (size > inode->i_sb->s_maxbytes)
2177 		goto out;
2178 
2179 	err = -ENOMEM;
2180 	page = grab_cache_page(mapping, index);
2181 	if (!page)
2182 		goto out;
2183 	err = mapping->a_ops->prepare_write(NULL, page, offset, offset);
2184 	if (err) {
2185 		/*
2186 		 * ->prepare_write() may have instantiated a few blocks
2187 		 * outside i_size.  Trim these off again.
2188 		 */
2189 		unlock_page(page);
2190 		page_cache_release(page);
2191 		vmtruncate(inode, inode->i_size);
2192 		goto out;
2193 	}
2194 
2195 	err = mapping->a_ops->commit_write(NULL, page, offset, offset);
2196 
2197 	unlock_page(page);
2198 	page_cache_release(page);
2199 	if (err > 0)
2200 		err = 0;
2201 out:
2202 	return err;
2203 }
2204 
2205 int generic_cont_expand(struct inode *inode, loff_t size)
2206 {
2207 	pgoff_t index;
2208 	unsigned int offset;
2209 
2210 	offset = (size & (PAGE_CACHE_SIZE - 1)); /* Within page */
2211 
2212 	/* ugh.  in prepare/commit_write, if from==to==start of block, we
2213 	** skip the prepare.  make sure we never send an offset for the start
2214 	** of a block
2215 	*/
2216 	if ((offset & (inode->i_sb->s_blocksize - 1)) == 0) {
2217 		/* caller must handle this extra byte. */
2218 		offset++;
2219 	}
2220 	index = size >> PAGE_CACHE_SHIFT;
2221 
2222 	return __generic_cont_expand(inode, size, index, offset);
2223 }
2224 
2225 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2226 {
2227 	loff_t pos = size - 1;
2228 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
2229 	unsigned int offset = (pos & (PAGE_CACHE_SIZE - 1)) + 1;
2230 
2231 	/* prepare/commit_write can handle even if from==to==start of block. */
2232 	return __generic_cont_expand(inode, size, index, offset);
2233 }
2234 
2235 /*
2236  * For moronic filesystems that do not allow holes in file.
2237  * We may have to extend the file.
2238  */
2239 
2240 int cont_prepare_write(struct page *page, unsigned offset,
2241 		unsigned to, get_block_t *get_block, loff_t *bytes)
2242 {
2243 	struct address_space *mapping = page->mapping;
2244 	struct inode *inode = mapping->host;
2245 	struct page *new_page;
2246 	pgoff_t pgpos;
2247 	long status;
2248 	unsigned zerofrom;
2249 	unsigned blocksize = 1 << inode->i_blkbits;
2250 
2251 	while(page->index > (pgpos = *bytes>>PAGE_CACHE_SHIFT)) {
2252 		status = -ENOMEM;
2253 		new_page = grab_cache_page(mapping, pgpos);
2254 		if (!new_page)
2255 			goto out;
2256 		/* we might sleep */
2257 		if (*bytes>>PAGE_CACHE_SHIFT != pgpos) {
2258 			unlock_page(new_page);
2259 			page_cache_release(new_page);
2260 			continue;
2261 		}
2262 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2263 		if (zerofrom & (blocksize-1)) {
2264 			*bytes |= (blocksize-1);
2265 			(*bytes)++;
2266 		}
2267 		status = __block_prepare_write(inode, new_page, zerofrom,
2268 						PAGE_CACHE_SIZE, get_block);
2269 		if (status)
2270 			goto out_unmap;
2271 		zero_user_page(new_page, zerofrom, PAGE_CACHE_SIZE - zerofrom,
2272 				KM_USER0);
2273 		generic_commit_write(NULL, new_page, zerofrom, PAGE_CACHE_SIZE);
2274 		unlock_page(new_page);
2275 		page_cache_release(new_page);
2276 	}
2277 
2278 	if (page->index < pgpos) {
2279 		/* completely inside the area */
2280 		zerofrom = offset;
2281 	} else {
2282 		/* page covers the boundary, find the boundary offset */
2283 		zerofrom = *bytes & ~PAGE_CACHE_MASK;
2284 
2285 		/* if we will expand the thing last block will be filled */
2286 		if (to > zerofrom && (zerofrom & (blocksize-1))) {
2287 			*bytes |= (blocksize-1);
2288 			(*bytes)++;
2289 		}
2290 
2291 		/* starting below the boundary? Nothing to zero out */
2292 		if (offset <= zerofrom)
2293 			zerofrom = offset;
2294 	}
2295 	status = __block_prepare_write(inode, page, zerofrom, to, get_block);
2296 	if (status)
2297 		goto out1;
2298 	if (zerofrom < offset) {
2299 		zero_user_page(page, zerofrom, offset - zerofrom, KM_USER0);
2300 		__block_commit_write(inode, page, zerofrom, offset);
2301 	}
2302 	return 0;
2303 out1:
2304 	ClearPageUptodate(page);
2305 	return status;
2306 
2307 out_unmap:
2308 	ClearPageUptodate(new_page);
2309 	unlock_page(new_page);
2310 	page_cache_release(new_page);
2311 out:
2312 	return status;
2313 }
2314 
2315 int block_prepare_write(struct page *page, unsigned from, unsigned to,
2316 			get_block_t *get_block)
2317 {
2318 	struct inode *inode = page->mapping->host;
2319 	int err = __block_prepare_write(inode, page, from, to, get_block);
2320 	if (err)
2321 		ClearPageUptodate(page);
2322 	return err;
2323 }
2324 
2325 int block_commit_write(struct page *page, unsigned from, unsigned to)
2326 {
2327 	struct inode *inode = page->mapping->host;
2328 	__block_commit_write(inode,page,from,to);
2329 	return 0;
2330 }
2331 
2332 int generic_commit_write(struct file *file, struct page *page,
2333 		unsigned from, unsigned to)
2334 {
2335 	struct inode *inode = page->mapping->host;
2336 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2337 	__block_commit_write(inode,page,from,to);
2338 	/*
2339 	 * No need to use i_size_read() here, the i_size
2340 	 * cannot change under us because we hold i_mutex.
2341 	 */
2342 	if (pos > inode->i_size) {
2343 		i_size_write(inode, pos);
2344 		mark_inode_dirty(inode);
2345 	}
2346 	return 0;
2347 }
2348 
2349 /*
2350  * block_page_mkwrite() is not allowed to change the file size as it gets
2351  * called from a page fault handler when a page is first dirtied. Hence we must
2352  * be careful to check for EOF conditions here. We set the page up correctly
2353  * for a written page which means we get ENOSPC checking when writing into
2354  * holes and correct delalloc and unwritten extent mapping on filesystems that
2355  * support these features.
2356  *
2357  * We are not allowed to take the i_mutex here so we have to play games to
2358  * protect against truncate races as the page could now be beyond EOF.  Because
2359  * vmtruncate() writes the inode size before removing pages, once we have the
2360  * page lock we can determine safely if the page is beyond EOF. If it is not
2361  * beyond EOF, then the page is guaranteed safe against truncation until we
2362  * unlock the page.
2363  */
2364 int
2365 block_page_mkwrite(struct vm_area_struct *vma, struct page *page,
2366 		   get_block_t get_block)
2367 {
2368 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2369 	unsigned long end;
2370 	loff_t size;
2371 	int ret = -EINVAL;
2372 
2373 	lock_page(page);
2374 	size = i_size_read(inode);
2375 	if ((page->mapping != inode->i_mapping) ||
2376 	    (page_offset(page) > size)) {
2377 		/* page got truncated out from underneath us */
2378 		goto out_unlock;
2379 	}
2380 
2381 	/* page is wholly or partially inside EOF */
2382 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2383 		end = size & ~PAGE_CACHE_MASK;
2384 	else
2385 		end = PAGE_CACHE_SIZE;
2386 
2387 	ret = block_prepare_write(page, 0, end, get_block);
2388 	if (!ret)
2389 		ret = block_commit_write(page, 0, end);
2390 
2391 out_unlock:
2392 	unlock_page(page);
2393 	return ret;
2394 }
2395 
2396 /*
2397  * nobh_prepare_write()'s prereads are special: the buffer_heads are freed
2398  * immediately, while under the page lock.  So it needs a special end_io
2399  * handler which does not touch the bh after unlocking it.
2400  */
2401 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2402 {
2403 	__end_buffer_read_notouch(bh, uptodate);
2404 }
2405 
2406 /*
2407  * On entry, the page is fully not uptodate.
2408  * On exit the page is fully uptodate in the areas outside (from,to)
2409  */
2410 int nobh_prepare_write(struct page *page, unsigned from, unsigned to,
2411 			get_block_t *get_block)
2412 {
2413 	struct inode *inode = page->mapping->host;
2414 	const unsigned blkbits = inode->i_blkbits;
2415 	const unsigned blocksize = 1 << blkbits;
2416 	struct buffer_head *head, *bh;
2417 	unsigned block_in_page;
2418 	unsigned block_start, block_end;
2419 	sector_t block_in_file;
2420 	char *kaddr;
2421 	int nr_reads = 0;
2422 	int ret = 0;
2423 	int is_mapped_to_disk = 1;
2424 
2425 	if (page_has_buffers(page))
2426 		return block_prepare_write(page, from, to, get_block);
2427 
2428 	if (PageMappedToDisk(page))
2429 		return 0;
2430 
2431 	/*
2432 	 * Allocate buffers so that we can keep track of state, and potentially
2433 	 * attach them to the page if an error occurs. In the common case of
2434 	 * no error, they will just be freed again without ever being attached
2435 	 * to the page (which is all OK, because we're under the page lock).
2436 	 *
2437 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2438 	 * than the circular one we're used to.
2439 	 */
2440 	head = alloc_page_buffers(page, blocksize, 0);
2441 	if (!head)
2442 		return -ENOMEM;
2443 
2444 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2445 
2446 	/*
2447 	 * We loop across all blocks in the page, whether or not they are
2448 	 * part of the affected region.  This is so we can discover if the
2449 	 * page is fully mapped-to-disk.
2450 	 */
2451 	for (block_start = 0, block_in_page = 0, bh = head;
2452 		  block_start < PAGE_CACHE_SIZE;
2453 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2454 		int create;
2455 
2456 		block_end = block_start + blocksize;
2457 		bh->b_state = 0;
2458 		create = 1;
2459 		if (block_start >= to)
2460 			create = 0;
2461 		ret = get_block(inode, block_in_file + block_in_page,
2462 					bh, create);
2463 		if (ret)
2464 			goto failed;
2465 		if (!buffer_mapped(bh))
2466 			is_mapped_to_disk = 0;
2467 		if (buffer_new(bh))
2468 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2469 		if (PageUptodate(page)) {
2470 			set_buffer_uptodate(bh);
2471 			continue;
2472 		}
2473 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2474 			kaddr = kmap_atomic(page, KM_USER0);
2475 			if (block_start < from)
2476 				memset(kaddr+block_start, 0, from-block_start);
2477 			if (block_end > to)
2478 				memset(kaddr + to, 0, block_end - to);
2479 			flush_dcache_page(page);
2480 			kunmap_atomic(kaddr, KM_USER0);
2481 			continue;
2482 		}
2483 		if (buffer_uptodate(bh))
2484 			continue;	/* reiserfs does this */
2485 		if (block_start < from || block_end > to) {
2486 			lock_buffer(bh);
2487 			bh->b_end_io = end_buffer_read_nobh;
2488 			submit_bh(READ, bh);
2489 			nr_reads++;
2490 		}
2491 	}
2492 
2493 	if (nr_reads) {
2494 		/*
2495 		 * The page is locked, so these buffers are protected from
2496 		 * any VM or truncate activity.  Hence we don't need to care
2497 		 * for the buffer_head refcounts.
2498 		 */
2499 		for (bh = head; bh; bh = bh->b_this_page) {
2500 			wait_on_buffer(bh);
2501 			if (!buffer_uptodate(bh))
2502 				ret = -EIO;
2503 		}
2504 		if (ret)
2505 			goto failed;
2506 	}
2507 
2508 	if (is_mapped_to_disk)
2509 		SetPageMappedToDisk(page);
2510 
2511 	do {
2512 		bh = head;
2513 		head = head->b_this_page;
2514 		free_buffer_head(bh);
2515 	} while (head);
2516 
2517 	return 0;
2518 
2519 failed:
2520 	/*
2521 	 * Error recovery is a bit difficult. We need to zero out blocks that
2522 	 * were newly allocated, and dirty them to ensure they get written out.
2523 	 * Buffers need to be attached to the page at this point, otherwise
2524 	 * the handling of potential IO errors during writeout would be hard
2525 	 * (could try doing synchronous writeout, but what if that fails too?)
2526 	 */
2527 	spin_lock(&page->mapping->private_lock);
2528 	bh = head;
2529 	block_start = 0;
2530 	do {
2531 		if (PageUptodate(page))
2532 			set_buffer_uptodate(bh);
2533 		if (PageDirty(page))
2534 			set_buffer_dirty(bh);
2535 
2536 		block_end = block_start+blocksize;
2537 		if (block_end <= from)
2538 			goto next;
2539 		if (block_start >= to)
2540 			goto next;
2541 
2542 		if (buffer_new(bh)) {
2543 			clear_buffer_new(bh);
2544 			if (!buffer_uptodate(bh)) {
2545 				zero_user_page(page, block_start, bh->b_size, KM_USER0);
2546 				set_buffer_uptodate(bh);
2547 			}
2548 			mark_buffer_dirty(bh);
2549 		}
2550 next:
2551 		block_start = block_end;
2552 		if (!bh->b_this_page)
2553 			bh->b_this_page = head;
2554 		bh = bh->b_this_page;
2555 	} while (bh != head);
2556 	attach_page_buffers(page, head);
2557 	spin_unlock(&page->mapping->private_lock);
2558 
2559 	return ret;
2560 }
2561 EXPORT_SYMBOL(nobh_prepare_write);
2562 
2563 /*
2564  * Make sure any changes to nobh_commit_write() are reflected in
2565  * nobh_truncate_page(), since it doesn't call commit_write().
2566  */
2567 int nobh_commit_write(struct file *file, struct page *page,
2568 		unsigned from, unsigned to)
2569 {
2570 	struct inode *inode = page->mapping->host;
2571 	loff_t pos = ((loff_t)page->index << PAGE_CACHE_SHIFT) + to;
2572 
2573 	if (page_has_buffers(page))
2574 		return generic_commit_write(file, page, from, to);
2575 
2576 	SetPageUptodate(page);
2577 	set_page_dirty(page);
2578 	if (pos > inode->i_size) {
2579 		i_size_write(inode, pos);
2580 		mark_inode_dirty(inode);
2581 	}
2582 	return 0;
2583 }
2584 EXPORT_SYMBOL(nobh_commit_write);
2585 
2586 /*
2587  * nobh_writepage() - based on block_full_write_page() except
2588  * that it tries to operate without attaching bufferheads to
2589  * the page.
2590  */
2591 int nobh_writepage(struct page *page, get_block_t *get_block,
2592 			struct writeback_control *wbc)
2593 {
2594 	struct inode * const inode = page->mapping->host;
2595 	loff_t i_size = i_size_read(inode);
2596 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2597 	unsigned offset;
2598 	int ret;
2599 
2600 	/* Is the page fully inside i_size? */
2601 	if (page->index < end_index)
2602 		goto out;
2603 
2604 	/* Is the page fully outside i_size? (truncate in progress) */
2605 	offset = i_size & (PAGE_CACHE_SIZE-1);
2606 	if (page->index >= end_index+1 || !offset) {
2607 		/*
2608 		 * The page may have dirty, unmapped buffers.  For example,
2609 		 * they may have been added in ext3_writepage().  Make them
2610 		 * freeable here, so the page does not leak.
2611 		 */
2612 #if 0
2613 		/* Not really sure about this  - do we need this ? */
2614 		if (page->mapping->a_ops->invalidatepage)
2615 			page->mapping->a_ops->invalidatepage(page, offset);
2616 #endif
2617 		unlock_page(page);
2618 		return 0; /* don't care */
2619 	}
2620 
2621 	/*
2622 	 * The page straddles i_size.  It must be zeroed out on each and every
2623 	 * writepage invocation because it may be mmapped.  "A file is mapped
2624 	 * in multiples of the page size.  For a file that is not a multiple of
2625 	 * the  page size, the remaining memory is zeroed when mapped, and
2626 	 * writes to that region are not written out to the file."
2627 	 */
2628 	zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2629 out:
2630 	ret = mpage_writepage(page, get_block, wbc);
2631 	if (ret == -EAGAIN)
2632 		ret = __block_write_full_page(inode, page, get_block, wbc);
2633 	return ret;
2634 }
2635 EXPORT_SYMBOL(nobh_writepage);
2636 
2637 /*
2638  * This function assumes that ->prepare_write() uses nobh_prepare_write().
2639  */
2640 int nobh_truncate_page(struct address_space *mapping, loff_t from)
2641 {
2642 	struct inode *inode = mapping->host;
2643 	unsigned blocksize = 1 << inode->i_blkbits;
2644 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2645 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2646 	unsigned to;
2647 	struct page *page;
2648 	const struct address_space_operations *a_ops = mapping->a_ops;
2649 	int ret = 0;
2650 
2651 	if ((offset & (blocksize - 1)) == 0)
2652 		goto out;
2653 
2654 	ret = -ENOMEM;
2655 	page = grab_cache_page(mapping, index);
2656 	if (!page)
2657 		goto out;
2658 
2659 	to = (offset + blocksize) & ~(blocksize - 1);
2660 	ret = a_ops->prepare_write(NULL, page, offset, to);
2661 	if (ret == 0) {
2662 		zero_user_page(page, offset, PAGE_CACHE_SIZE - offset,
2663 				KM_USER0);
2664 		/*
2665 		 * It would be more correct to call aops->commit_write()
2666 		 * here, but this is more efficient.
2667 		 */
2668 		SetPageUptodate(page);
2669 		set_page_dirty(page);
2670 	}
2671 	unlock_page(page);
2672 	page_cache_release(page);
2673 out:
2674 	return ret;
2675 }
2676 EXPORT_SYMBOL(nobh_truncate_page);
2677 
2678 int block_truncate_page(struct address_space *mapping,
2679 			loff_t from, get_block_t *get_block)
2680 {
2681 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2682 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2683 	unsigned blocksize;
2684 	sector_t iblock;
2685 	unsigned length, pos;
2686 	struct inode *inode = mapping->host;
2687 	struct page *page;
2688 	struct buffer_head *bh;
2689 	int err;
2690 
2691 	blocksize = 1 << inode->i_blkbits;
2692 	length = offset & (blocksize - 1);
2693 
2694 	/* Block boundary? Nothing to do */
2695 	if (!length)
2696 		return 0;
2697 
2698 	length = blocksize - length;
2699 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2700 
2701 	page = grab_cache_page(mapping, index);
2702 	err = -ENOMEM;
2703 	if (!page)
2704 		goto out;
2705 
2706 	if (!page_has_buffers(page))
2707 		create_empty_buffers(page, blocksize, 0);
2708 
2709 	/* Find the buffer that contains "offset" */
2710 	bh = page_buffers(page);
2711 	pos = blocksize;
2712 	while (offset >= pos) {
2713 		bh = bh->b_this_page;
2714 		iblock++;
2715 		pos += blocksize;
2716 	}
2717 
2718 	err = 0;
2719 	if (!buffer_mapped(bh)) {
2720 		WARN_ON(bh->b_size != blocksize);
2721 		err = get_block(inode, iblock, bh, 0);
2722 		if (err)
2723 			goto unlock;
2724 		/* unmapped? It's a hole - nothing to do */
2725 		if (!buffer_mapped(bh))
2726 			goto unlock;
2727 	}
2728 
2729 	/* Ok, it's mapped. Make sure it's up-to-date */
2730 	if (PageUptodate(page))
2731 		set_buffer_uptodate(bh);
2732 
2733 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2734 		err = -EIO;
2735 		ll_rw_block(READ, 1, &bh);
2736 		wait_on_buffer(bh);
2737 		/* Uhhuh. Read error. Complain and punt. */
2738 		if (!buffer_uptodate(bh))
2739 			goto unlock;
2740 	}
2741 
2742 	zero_user_page(page, offset, length, KM_USER0);
2743 	mark_buffer_dirty(bh);
2744 	err = 0;
2745 
2746 unlock:
2747 	unlock_page(page);
2748 	page_cache_release(page);
2749 out:
2750 	return err;
2751 }
2752 
2753 /*
2754  * The generic ->writepage function for buffer-backed address_spaces
2755  */
2756 int block_write_full_page(struct page *page, get_block_t *get_block,
2757 			struct writeback_control *wbc)
2758 {
2759 	struct inode * const inode = page->mapping->host;
2760 	loff_t i_size = i_size_read(inode);
2761 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2762 	unsigned offset;
2763 
2764 	/* Is the page fully inside i_size? */
2765 	if (page->index < end_index)
2766 		return __block_write_full_page(inode, page, get_block, wbc);
2767 
2768 	/* Is the page fully outside i_size? (truncate in progress) */
2769 	offset = i_size & (PAGE_CACHE_SIZE-1);
2770 	if (page->index >= end_index+1 || !offset) {
2771 		/*
2772 		 * The page may have dirty, unmapped buffers.  For example,
2773 		 * they may have been added in ext3_writepage().  Make them
2774 		 * freeable here, so the page does not leak.
2775 		 */
2776 		do_invalidatepage(page, 0);
2777 		unlock_page(page);
2778 		return 0; /* don't care */
2779 	}
2780 
2781 	/*
2782 	 * The page straddles i_size.  It must be zeroed out on each and every
2783 	 * writepage invokation because it may be mmapped.  "A file is mapped
2784 	 * in multiples of the page size.  For a file that is not a multiple of
2785 	 * the  page size, the remaining memory is zeroed when mapped, and
2786 	 * writes to that region are not written out to the file."
2787 	 */
2788 	zero_user_page(page, offset, PAGE_CACHE_SIZE - offset, KM_USER0);
2789 	return __block_write_full_page(inode, page, get_block, wbc);
2790 }
2791 
2792 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2793 			    get_block_t *get_block)
2794 {
2795 	struct buffer_head tmp;
2796 	struct inode *inode = mapping->host;
2797 	tmp.b_state = 0;
2798 	tmp.b_blocknr = 0;
2799 	tmp.b_size = 1 << inode->i_blkbits;
2800 	get_block(inode, block, &tmp, 0);
2801 	return tmp.b_blocknr;
2802 }
2803 
2804 static void end_bio_bh_io_sync(struct bio *bio, int err)
2805 {
2806 	struct buffer_head *bh = bio->bi_private;
2807 
2808 	if (err == -EOPNOTSUPP) {
2809 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2810 		set_bit(BH_Eopnotsupp, &bh->b_state);
2811 	}
2812 
2813 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2814 	bio_put(bio);
2815 }
2816 
2817 int submit_bh(int rw, struct buffer_head * bh)
2818 {
2819 	struct bio *bio;
2820 	int ret = 0;
2821 
2822 	BUG_ON(!buffer_locked(bh));
2823 	BUG_ON(!buffer_mapped(bh));
2824 	BUG_ON(!bh->b_end_io);
2825 
2826 	if (buffer_ordered(bh) && (rw == WRITE))
2827 		rw = WRITE_BARRIER;
2828 
2829 	/*
2830 	 * Only clear out a write error when rewriting, should this
2831 	 * include WRITE_SYNC as well?
2832 	 */
2833 	if (test_set_buffer_req(bh) && (rw == WRITE || rw == WRITE_BARRIER))
2834 		clear_buffer_write_io_error(bh);
2835 
2836 	/*
2837 	 * from here on down, it's all bio -- do the initial mapping,
2838 	 * submit_bio -> generic_make_request may further map this bio around
2839 	 */
2840 	bio = bio_alloc(GFP_NOIO, 1);
2841 
2842 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2843 	bio->bi_bdev = bh->b_bdev;
2844 	bio->bi_io_vec[0].bv_page = bh->b_page;
2845 	bio->bi_io_vec[0].bv_len = bh->b_size;
2846 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2847 
2848 	bio->bi_vcnt = 1;
2849 	bio->bi_idx = 0;
2850 	bio->bi_size = bh->b_size;
2851 
2852 	bio->bi_end_io = end_bio_bh_io_sync;
2853 	bio->bi_private = bh;
2854 
2855 	bio_get(bio);
2856 	submit_bio(rw, bio);
2857 
2858 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2859 		ret = -EOPNOTSUPP;
2860 
2861 	bio_put(bio);
2862 	return ret;
2863 }
2864 
2865 /**
2866  * ll_rw_block: low-level access to block devices (DEPRECATED)
2867  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2868  * @nr: number of &struct buffer_heads in the array
2869  * @bhs: array of pointers to &struct buffer_head
2870  *
2871  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2872  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2873  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2874  * are sent to disk. The fourth %READA option is described in the documentation
2875  * for generic_make_request() which ll_rw_block() calls.
2876  *
2877  * This function drops any buffer that it cannot get a lock on (with the
2878  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2879  * clean when doing a write request, and any buffer that appears to be
2880  * up-to-date when doing read request.  Further it marks as clean buffers that
2881  * are processed for writing (the buffer cache won't assume that they are
2882  * actually clean until the buffer gets unlocked).
2883  *
2884  * ll_rw_block sets b_end_io to simple completion handler that marks
2885  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2886  * any waiters.
2887  *
2888  * All of the buffers must be for the same device, and must also be a
2889  * multiple of the current approved size for the device.
2890  */
2891 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2892 {
2893 	int i;
2894 
2895 	for (i = 0; i < nr; i++) {
2896 		struct buffer_head *bh = bhs[i];
2897 
2898 		if (rw == SWRITE)
2899 			lock_buffer(bh);
2900 		else if (test_set_buffer_locked(bh))
2901 			continue;
2902 
2903 		if (rw == WRITE || rw == SWRITE) {
2904 			if (test_clear_buffer_dirty(bh)) {
2905 				bh->b_end_io = end_buffer_write_sync;
2906 				get_bh(bh);
2907 				submit_bh(WRITE, bh);
2908 				continue;
2909 			}
2910 		} else {
2911 			if (!buffer_uptodate(bh)) {
2912 				bh->b_end_io = end_buffer_read_sync;
2913 				get_bh(bh);
2914 				submit_bh(rw, bh);
2915 				continue;
2916 			}
2917 		}
2918 		unlock_buffer(bh);
2919 	}
2920 }
2921 
2922 /*
2923  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2924  * and then start new I/O and then wait upon it.  The caller must have a ref on
2925  * the buffer_head.
2926  */
2927 int sync_dirty_buffer(struct buffer_head *bh)
2928 {
2929 	int ret = 0;
2930 
2931 	WARN_ON(atomic_read(&bh->b_count) < 1);
2932 	lock_buffer(bh);
2933 	if (test_clear_buffer_dirty(bh)) {
2934 		get_bh(bh);
2935 		bh->b_end_io = end_buffer_write_sync;
2936 		ret = submit_bh(WRITE, bh);
2937 		wait_on_buffer(bh);
2938 		if (buffer_eopnotsupp(bh)) {
2939 			clear_buffer_eopnotsupp(bh);
2940 			ret = -EOPNOTSUPP;
2941 		}
2942 		if (!ret && !buffer_uptodate(bh))
2943 			ret = -EIO;
2944 	} else {
2945 		unlock_buffer(bh);
2946 	}
2947 	return ret;
2948 }
2949 
2950 /*
2951  * try_to_free_buffers() checks if all the buffers on this particular page
2952  * are unused, and releases them if so.
2953  *
2954  * Exclusion against try_to_free_buffers may be obtained by either
2955  * locking the page or by holding its mapping's private_lock.
2956  *
2957  * If the page is dirty but all the buffers are clean then we need to
2958  * be sure to mark the page clean as well.  This is because the page
2959  * may be against a block device, and a later reattachment of buffers
2960  * to a dirty page will set *all* buffers dirty.  Which would corrupt
2961  * filesystem data on the same device.
2962  *
2963  * The same applies to regular filesystem pages: if all the buffers are
2964  * clean then we set the page clean and proceed.  To do that, we require
2965  * total exclusion from __set_page_dirty_buffers().  That is obtained with
2966  * private_lock.
2967  *
2968  * try_to_free_buffers() is non-blocking.
2969  */
2970 static inline int buffer_busy(struct buffer_head *bh)
2971 {
2972 	return atomic_read(&bh->b_count) |
2973 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2974 }
2975 
2976 static int
2977 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
2978 {
2979 	struct buffer_head *head = page_buffers(page);
2980 	struct buffer_head *bh;
2981 
2982 	bh = head;
2983 	do {
2984 		if (buffer_write_io_error(bh) && page->mapping)
2985 			set_bit(AS_EIO, &page->mapping->flags);
2986 		if (buffer_busy(bh))
2987 			goto failed;
2988 		bh = bh->b_this_page;
2989 	} while (bh != head);
2990 
2991 	do {
2992 		struct buffer_head *next = bh->b_this_page;
2993 
2994 		if (!list_empty(&bh->b_assoc_buffers))
2995 			__remove_assoc_queue(bh);
2996 		bh = next;
2997 	} while (bh != head);
2998 	*buffers_to_free = head;
2999 	__clear_page_buffers(page);
3000 	return 1;
3001 failed:
3002 	return 0;
3003 }
3004 
3005 int try_to_free_buffers(struct page *page)
3006 {
3007 	struct address_space * const mapping = page->mapping;
3008 	struct buffer_head *buffers_to_free = NULL;
3009 	int ret = 0;
3010 
3011 	BUG_ON(!PageLocked(page));
3012 	if (PageWriteback(page))
3013 		return 0;
3014 
3015 	if (mapping == NULL) {		/* can this still happen? */
3016 		ret = drop_buffers(page, &buffers_to_free);
3017 		goto out;
3018 	}
3019 
3020 	spin_lock(&mapping->private_lock);
3021 	ret = drop_buffers(page, &buffers_to_free);
3022 
3023 	/*
3024 	 * If the filesystem writes its buffers by hand (eg ext3)
3025 	 * then we can have clean buffers against a dirty page.  We
3026 	 * clean the page here; otherwise the VM will never notice
3027 	 * that the filesystem did any IO at all.
3028 	 *
3029 	 * Also, during truncate, discard_buffer will have marked all
3030 	 * the page's buffers clean.  We discover that here and clean
3031 	 * the page also.
3032 	 *
3033 	 * private_lock must be held over this entire operation in order
3034 	 * to synchronise against __set_page_dirty_buffers and prevent the
3035 	 * dirty bit from being lost.
3036 	 */
3037 	if (ret)
3038 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3039 	spin_unlock(&mapping->private_lock);
3040 out:
3041 	if (buffers_to_free) {
3042 		struct buffer_head *bh = buffers_to_free;
3043 
3044 		do {
3045 			struct buffer_head *next = bh->b_this_page;
3046 			free_buffer_head(bh);
3047 			bh = next;
3048 		} while (bh != buffers_to_free);
3049 	}
3050 	return ret;
3051 }
3052 EXPORT_SYMBOL(try_to_free_buffers);
3053 
3054 void block_sync_page(struct page *page)
3055 {
3056 	struct address_space *mapping;
3057 
3058 	smp_mb();
3059 	mapping = page_mapping(page);
3060 	if (mapping)
3061 		blk_run_backing_dev(mapping->backing_dev_info, page);
3062 }
3063 
3064 /*
3065  * There are no bdflush tunables left.  But distributions are
3066  * still running obsolete flush daemons, so we terminate them here.
3067  *
3068  * Use of bdflush() is deprecated and will be removed in a future kernel.
3069  * The `pdflush' kernel threads fully replace bdflush daemons and this call.
3070  */
3071 asmlinkage long sys_bdflush(int func, long data)
3072 {
3073 	static int msg_count;
3074 
3075 	if (!capable(CAP_SYS_ADMIN))
3076 		return -EPERM;
3077 
3078 	if (msg_count < 5) {
3079 		msg_count++;
3080 		printk(KERN_INFO
3081 			"warning: process `%s' used the obsolete bdflush"
3082 			" system call\n", current->comm);
3083 		printk(KERN_INFO "Fix your initscripts?\n");
3084 	}
3085 
3086 	if (func == 1)
3087 		do_exit(0);
3088 	return 0;
3089 }
3090 
3091 /*
3092  * Buffer-head allocation
3093  */
3094 static struct kmem_cache *bh_cachep;
3095 
3096 /*
3097  * Once the number of bh's in the machine exceeds this level, we start
3098  * stripping them in writeback.
3099  */
3100 static int max_buffer_heads;
3101 
3102 int buffer_heads_over_limit;
3103 
3104 struct bh_accounting {
3105 	int nr;			/* Number of live bh's */
3106 	int ratelimit;		/* Limit cacheline bouncing */
3107 };
3108 
3109 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3110 
3111 static void recalc_bh_state(void)
3112 {
3113 	int i;
3114 	int tot = 0;
3115 
3116 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3117 		return;
3118 	__get_cpu_var(bh_accounting).ratelimit = 0;
3119 	for_each_online_cpu(i)
3120 		tot += per_cpu(bh_accounting, i).nr;
3121 	buffer_heads_over_limit = (tot > max_buffer_heads);
3122 }
3123 
3124 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3125 {
3126 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3127 	if (ret) {
3128 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3129 		get_cpu_var(bh_accounting).nr++;
3130 		recalc_bh_state();
3131 		put_cpu_var(bh_accounting);
3132 	}
3133 	return ret;
3134 }
3135 EXPORT_SYMBOL(alloc_buffer_head);
3136 
3137 void free_buffer_head(struct buffer_head *bh)
3138 {
3139 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3140 	kmem_cache_free(bh_cachep, bh);
3141 	get_cpu_var(bh_accounting).nr--;
3142 	recalc_bh_state();
3143 	put_cpu_var(bh_accounting);
3144 }
3145 EXPORT_SYMBOL(free_buffer_head);
3146 
3147 static void buffer_exit_cpu(int cpu)
3148 {
3149 	int i;
3150 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3151 
3152 	for (i = 0; i < BH_LRU_SIZE; i++) {
3153 		brelse(b->bhs[i]);
3154 		b->bhs[i] = NULL;
3155 	}
3156 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3157 	per_cpu(bh_accounting, cpu).nr = 0;
3158 	put_cpu_var(bh_accounting);
3159 }
3160 
3161 static int buffer_cpu_notify(struct notifier_block *self,
3162 			      unsigned long action, void *hcpu)
3163 {
3164 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3165 		buffer_exit_cpu((unsigned long)hcpu);
3166 	return NOTIFY_OK;
3167 }
3168 
3169 void __init buffer_init(void)
3170 {
3171 	int nrpages;
3172 
3173 	bh_cachep = KMEM_CACHE(buffer_head,
3174 			SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|SLAB_MEM_SPREAD);
3175 
3176 	/*
3177 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3178 	 */
3179 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3180 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3181 	hotcpu_notifier(buffer_cpu_notify, 0);
3182 }
3183 
3184 EXPORT_SYMBOL(__bforget);
3185 EXPORT_SYMBOL(__brelse);
3186 EXPORT_SYMBOL(__wait_on_buffer);
3187 EXPORT_SYMBOL(block_commit_write);
3188 EXPORT_SYMBOL(block_prepare_write);
3189 EXPORT_SYMBOL(block_page_mkwrite);
3190 EXPORT_SYMBOL(block_read_full_page);
3191 EXPORT_SYMBOL(block_sync_page);
3192 EXPORT_SYMBOL(block_truncate_page);
3193 EXPORT_SYMBOL(block_write_full_page);
3194 EXPORT_SYMBOL(cont_prepare_write);
3195 EXPORT_SYMBOL(end_buffer_read_sync);
3196 EXPORT_SYMBOL(end_buffer_write_sync);
3197 EXPORT_SYMBOL(file_fsync);
3198 EXPORT_SYMBOL(fsync_bdev);
3199 EXPORT_SYMBOL(generic_block_bmap);
3200 EXPORT_SYMBOL(generic_commit_write);
3201 EXPORT_SYMBOL(generic_cont_expand);
3202 EXPORT_SYMBOL(generic_cont_expand_simple);
3203 EXPORT_SYMBOL(init_buffer);
3204 EXPORT_SYMBOL(invalidate_bdev);
3205 EXPORT_SYMBOL(ll_rw_block);
3206 EXPORT_SYMBOL(mark_buffer_dirty);
3207 EXPORT_SYMBOL(submit_bh);
3208 EXPORT_SYMBOL(sync_dirty_buffer);
3209 EXPORT_SYMBOL(unlock_buffer);
3210