1 /* 2 * linux/fs/buffer.c 3 * 4 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 5 */ 6 7 /* 8 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 9 * 10 * Removed a lot of unnecessary code and simplified things now that 11 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 12 * 13 * Speed up hash, lru, and free list operations. Use gfp() for allocating 14 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 15 * 16 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 17 * 18 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 19 */ 20 21 #include <linux/kernel.h> 22 #include <linux/syscalls.h> 23 #include <linux/fs.h> 24 #include <linux/mm.h> 25 #include <linux/percpu.h> 26 #include <linux/slab.h> 27 #include <linux/capability.h> 28 #include <linux/blkdev.h> 29 #include <linux/file.h> 30 #include <linux/quotaops.h> 31 #include <linux/highmem.h> 32 #include <linux/module.h> 33 #include <linux/writeback.h> 34 #include <linux/hash.h> 35 #include <linux/suspend.h> 36 #include <linux/buffer_head.h> 37 #include <linux/task_io_accounting_ops.h> 38 #include <linux/bio.h> 39 #include <linux/notifier.h> 40 #include <linux/cpu.h> 41 #include <linux/bitops.h> 42 #include <linux/mpage.h> 43 #include <linux/bit_spinlock.h> 44 45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 46 47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 48 49 inline void 50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private) 51 { 52 bh->b_end_io = handler; 53 bh->b_private = private; 54 } 55 EXPORT_SYMBOL(init_buffer); 56 57 static int sync_buffer(void *word) 58 { 59 struct block_device *bd; 60 struct buffer_head *bh 61 = container_of(word, struct buffer_head, b_state); 62 63 smp_mb(); 64 bd = bh->b_bdev; 65 if (bd) 66 blk_run_address_space(bd->bd_inode->i_mapping); 67 io_schedule(); 68 return 0; 69 } 70 71 void __lock_buffer(struct buffer_head *bh) 72 { 73 wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer, 74 TASK_UNINTERRUPTIBLE); 75 } 76 EXPORT_SYMBOL(__lock_buffer); 77 78 void unlock_buffer(struct buffer_head *bh) 79 { 80 clear_bit_unlock(BH_Lock, &bh->b_state); 81 smp_mb__after_clear_bit(); 82 wake_up_bit(&bh->b_state, BH_Lock); 83 } 84 EXPORT_SYMBOL(unlock_buffer); 85 86 /* 87 * Block until a buffer comes unlocked. This doesn't stop it 88 * from becoming locked again - you have to lock it yourself 89 * if you want to preserve its state. 90 */ 91 void __wait_on_buffer(struct buffer_head * bh) 92 { 93 wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE); 94 } 95 EXPORT_SYMBOL(__wait_on_buffer); 96 97 static void 98 __clear_page_buffers(struct page *page) 99 { 100 ClearPagePrivate(page); 101 set_page_private(page, 0); 102 page_cache_release(page); 103 } 104 105 106 static int quiet_error(struct buffer_head *bh) 107 { 108 if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit()) 109 return 0; 110 return 1; 111 } 112 113 114 static void buffer_io_error(struct buffer_head *bh) 115 { 116 char b[BDEVNAME_SIZE]; 117 printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n", 118 bdevname(bh->b_bdev, b), 119 (unsigned long long)bh->b_blocknr); 120 } 121 122 /* 123 * End-of-IO handler helper function which does not touch the bh after 124 * unlocking it. 125 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 126 * a race there is benign: unlock_buffer() only use the bh's address for 127 * hashing after unlocking the buffer, so it doesn't actually touch the bh 128 * itself. 129 */ 130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 131 { 132 if (uptodate) { 133 set_buffer_uptodate(bh); 134 } else { 135 /* This happens, due to failed READA attempts. */ 136 clear_buffer_uptodate(bh); 137 } 138 unlock_buffer(bh); 139 } 140 141 /* 142 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 143 * unlock the buffer. This is what ll_rw_block uses too. 144 */ 145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 146 { 147 __end_buffer_read_notouch(bh, uptodate); 148 put_bh(bh); 149 } 150 EXPORT_SYMBOL(end_buffer_read_sync); 151 152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 153 { 154 char b[BDEVNAME_SIZE]; 155 156 if (uptodate) { 157 set_buffer_uptodate(bh); 158 } else { 159 if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) { 160 buffer_io_error(bh); 161 printk(KERN_WARNING "lost page write due to " 162 "I/O error on %s\n", 163 bdevname(bh->b_bdev, b)); 164 } 165 set_buffer_write_io_error(bh); 166 clear_buffer_uptodate(bh); 167 } 168 unlock_buffer(bh); 169 put_bh(bh); 170 } 171 EXPORT_SYMBOL(end_buffer_write_sync); 172 173 /* 174 * Various filesystems appear to want __find_get_block to be non-blocking. 175 * But it's the page lock which protects the buffers. To get around this, 176 * we get exclusion from try_to_free_buffers with the blockdev mapping's 177 * private_lock. 178 * 179 * Hack idea: for the blockdev mapping, i_bufferlist_lock contention 180 * may be quite high. This code could TryLock the page, and if that 181 * succeeds, there is no need to take private_lock. (But if 182 * private_lock is contended then so is mapping->tree_lock). 183 */ 184 static struct buffer_head * 185 __find_get_block_slow(struct block_device *bdev, sector_t block) 186 { 187 struct inode *bd_inode = bdev->bd_inode; 188 struct address_space *bd_mapping = bd_inode->i_mapping; 189 struct buffer_head *ret = NULL; 190 pgoff_t index; 191 struct buffer_head *bh; 192 struct buffer_head *head; 193 struct page *page; 194 int all_mapped = 1; 195 196 index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits); 197 page = find_get_page(bd_mapping, index); 198 if (!page) 199 goto out; 200 201 spin_lock(&bd_mapping->private_lock); 202 if (!page_has_buffers(page)) 203 goto out_unlock; 204 head = page_buffers(page); 205 bh = head; 206 do { 207 if (!buffer_mapped(bh)) 208 all_mapped = 0; 209 else if (bh->b_blocknr == block) { 210 ret = bh; 211 get_bh(bh); 212 goto out_unlock; 213 } 214 bh = bh->b_this_page; 215 } while (bh != head); 216 217 /* we might be here because some of the buffers on this page are 218 * not mapped. This is due to various races between 219 * file io on the block device and getblk. It gets dealt with 220 * elsewhere, don't buffer_error if we had some unmapped buffers 221 */ 222 if (all_mapped) { 223 printk("__find_get_block_slow() failed. " 224 "block=%llu, b_blocknr=%llu\n", 225 (unsigned long long)block, 226 (unsigned long long)bh->b_blocknr); 227 printk("b_state=0x%08lx, b_size=%zu\n", 228 bh->b_state, bh->b_size); 229 printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits); 230 } 231 out_unlock: 232 spin_unlock(&bd_mapping->private_lock); 233 page_cache_release(page); 234 out: 235 return ret; 236 } 237 238 /* If invalidate_buffers() will trash dirty buffers, it means some kind 239 of fs corruption is going on. Trashing dirty data always imply losing 240 information that was supposed to be just stored on the physical layer 241 by the user. 242 243 Thus invalidate_buffers in general usage is not allwowed to trash 244 dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to 245 be preserved. These buffers are simply skipped. 246 247 We also skip buffers which are still in use. For example this can 248 happen if a userspace program is reading the block device. 249 250 NOTE: In the case where the user removed a removable-media-disk even if 251 there's still dirty data not synced on disk (due a bug in the device driver 252 or due an error of the user), by not destroying the dirty buffers we could 253 generate corruption also on the next media inserted, thus a parameter is 254 necessary to handle this case in the most safe way possible (trying 255 to not corrupt also the new disk inserted with the data belonging to 256 the old now corrupted disk). Also for the ramdisk the natural thing 257 to do in order to release the ramdisk memory is to destroy dirty buffers. 258 259 These are two special cases. Normal usage imply the device driver 260 to issue a sync on the device (without waiting I/O completion) and 261 then an invalidate_buffers call that doesn't trash dirty buffers. 262 263 For handling cache coherency with the blkdev pagecache the 'update' case 264 is been introduced. It is needed to re-read from disk any pinned 265 buffer. NOTE: re-reading from disk is destructive so we can do it only 266 when we assume nobody is changing the buffercache under our I/O and when 267 we think the disk contains more recent information than the buffercache. 268 The update == 1 pass marks the buffers we need to update, the update == 2 269 pass does the actual I/O. */ 270 void invalidate_bdev(struct block_device *bdev) 271 { 272 struct address_space *mapping = bdev->bd_inode->i_mapping; 273 274 if (mapping->nrpages == 0) 275 return; 276 277 invalidate_bh_lrus(); 278 lru_add_drain_all(); /* make sure all lru add caches are flushed */ 279 invalidate_mapping_pages(mapping, 0, -1); 280 } 281 EXPORT_SYMBOL(invalidate_bdev); 282 283 /* 284 * Kick the writeback threads then try to free up some ZONE_NORMAL memory. 285 */ 286 static void free_more_memory(void) 287 { 288 struct zone *zone; 289 int nid; 290 291 wakeup_flusher_threads(1024); 292 yield(); 293 294 for_each_online_node(nid) { 295 (void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS), 296 gfp_zone(GFP_NOFS), NULL, 297 &zone); 298 if (zone) 299 try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0, 300 GFP_NOFS, NULL); 301 } 302 } 303 304 /* 305 * I/O completion handler for block_read_full_page() - pages 306 * which come unlocked at the end of I/O. 307 */ 308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 309 { 310 unsigned long flags; 311 struct buffer_head *first; 312 struct buffer_head *tmp; 313 struct page *page; 314 int page_uptodate = 1; 315 316 BUG_ON(!buffer_async_read(bh)); 317 318 page = bh->b_page; 319 if (uptodate) { 320 set_buffer_uptodate(bh); 321 } else { 322 clear_buffer_uptodate(bh); 323 if (!quiet_error(bh)) 324 buffer_io_error(bh); 325 SetPageError(page); 326 } 327 328 /* 329 * Be _very_ careful from here on. Bad things can happen if 330 * two buffer heads end IO at almost the same time and both 331 * decide that the page is now completely done. 332 */ 333 first = page_buffers(page); 334 local_irq_save(flags); 335 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 336 clear_buffer_async_read(bh); 337 unlock_buffer(bh); 338 tmp = bh; 339 do { 340 if (!buffer_uptodate(tmp)) 341 page_uptodate = 0; 342 if (buffer_async_read(tmp)) { 343 BUG_ON(!buffer_locked(tmp)); 344 goto still_busy; 345 } 346 tmp = tmp->b_this_page; 347 } while (tmp != bh); 348 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 349 local_irq_restore(flags); 350 351 /* 352 * If none of the buffers had errors and they are all 353 * uptodate then we can set the page uptodate. 354 */ 355 if (page_uptodate && !PageError(page)) 356 SetPageUptodate(page); 357 unlock_page(page); 358 return; 359 360 still_busy: 361 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 362 local_irq_restore(flags); 363 return; 364 } 365 366 /* 367 * Completion handler for block_write_full_page() - pages which are unlocked 368 * during I/O, and which have PageWriteback cleared upon I/O completion. 369 */ 370 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 371 { 372 char b[BDEVNAME_SIZE]; 373 unsigned long flags; 374 struct buffer_head *first; 375 struct buffer_head *tmp; 376 struct page *page; 377 378 BUG_ON(!buffer_async_write(bh)); 379 380 page = bh->b_page; 381 if (uptodate) { 382 set_buffer_uptodate(bh); 383 } else { 384 if (!quiet_error(bh)) { 385 buffer_io_error(bh); 386 printk(KERN_WARNING "lost page write due to " 387 "I/O error on %s\n", 388 bdevname(bh->b_bdev, b)); 389 } 390 set_bit(AS_EIO, &page->mapping->flags); 391 set_buffer_write_io_error(bh); 392 clear_buffer_uptodate(bh); 393 SetPageError(page); 394 } 395 396 first = page_buffers(page); 397 local_irq_save(flags); 398 bit_spin_lock(BH_Uptodate_Lock, &first->b_state); 399 400 clear_buffer_async_write(bh); 401 unlock_buffer(bh); 402 tmp = bh->b_this_page; 403 while (tmp != bh) { 404 if (buffer_async_write(tmp)) { 405 BUG_ON(!buffer_locked(tmp)); 406 goto still_busy; 407 } 408 tmp = tmp->b_this_page; 409 } 410 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 411 local_irq_restore(flags); 412 end_page_writeback(page); 413 return; 414 415 still_busy: 416 bit_spin_unlock(BH_Uptodate_Lock, &first->b_state); 417 local_irq_restore(flags); 418 return; 419 } 420 EXPORT_SYMBOL(end_buffer_async_write); 421 422 /* 423 * If a page's buffers are under async readin (end_buffer_async_read 424 * completion) then there is a possibility that another thread of 425 * control could lock one of the buffers after it has completed 426 * but while some of the other buffers have not completed. This 427 * locked buffer would confuse end_buffer_async_read() into not unlocking 428 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 429 * that this buffer is not under async I/O. 430 * 431 * The page comes unlocked when it has no locked buffer_async buffers 432 * left. 433 * 434 * PageLocked prevents anyone starting new async I/O reads any of 435 * the buffers. 436 * 437 * PageWriteback is used to prevent simultaneous writeout of the same 438 * page. 439 * 440 * PageLocked prevents anyone from starting writeback of a page which is 441 * under read I/O (PageWriteback is only ever set against a locked page). 442 */ 443 static void mark_buffer_async_read(struct buffer_head *bh) 444 { 445 bh->b_end_io = end_buffer_async_read; 446 set_buffer_async_read(bh); 447 } 448 449 static void mark_buffer_async_write_endio(struct buffer_head *bh, 450 bh_end_io_t *handler) 451 { 452 bh->b_end_io = handler; 453 set_buffer_async_write(bh); 454 } 455 456 void mark_buffer_async_write(struct buffer_head *bh) 457 { 458 mark_buffer_async_write_endio(bh, end_buffer_async_write); 459 } 460 EXPORT_SYMBOL(mark_buffer_async_write); 461 462 463 /* 464 * fs/buffer.c contains helper functions for buffer-backed address space's 465 * fsync functions. A common requirement for buffer-based filesystems is 466 * that certain data from the backing blockdev needs to be written out for 467 * a successful fsync(). For example, ext2 indirect blocks need to be 468 * written back and waited upon before fsync() returns. 469 * 470 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 471 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 472 * management of a list of dependent buffers at ->i_mapping->private_list. 473 * 474 * Locking is a little subtle: try_to_free_buffers() will remove buffers 475 * from their controlling inode's queue when they are being freed. But 476 * try_to_free_buffers() will be operating against the *blockdev* mapping 477 * at the time, not against the S_ISREG file which depends on those buffers. 478 * So the locking for private_list is via the private_lock in the address_space 479 * which backs the buffers. Which is different from the address_space 480 * against which the buffers are listed. So for a particular address_space, 481 * mapping->private_lock does *not* protect mapping->private_list! In fact, 482 * mapping->private_list will always be protected by the backing blockdev's 483 * ->private_lock. 484 * 485 * Which introduces a requirement: all buffers on an address_space's 486 * ->private_list must be from the same address_space: the blockdev's. 487 * 488 * address_spaces which do not place buffers at ->private_list via these 489 * utility functions are free to use private_lock and private_list for 490 * whatever they want. The only requirement is that list_empty(private_list) 491 * be true at clear_inode() time. 492 * 493 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 494 * filesystems should do that. invalidate_inode_buffers() should just go 495 * BUG_ON(!list_empty). 496 * 497 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 498 * take an address_space, not an inode. And it should be called 499 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 500 * queued up. 501 * 502 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 503 * list if it is already on a list. Because if the buffer is on a list, 504 * it *must* already be on the right one. If not, the filesystem is being 505 * silly. This will save a ton of locking. But first we have to ensure 506 * that buffers are taken *off* the old inode's list when they are freed 507 * (presumably in truncate). That requires careful auditing of all 508 * filesystems (do it inside bforget()). It could also be done by bringing 509 * b_inode back. 510 */ 511 512 /* 513 * The buffer's backing address_space's private_lock must be held 514 */ 515 static void __remove_assoc_queue(struct buffer_head *bh) 516 { 517 list_del_init(&bh->b_assoc_buffers); 518 WARN_ON(!bh->b_assoc_map); 519 if (buffer_write_io_error(bh)) 520 set_bit(AS_EIO, &bh->b_assoc_map->flags); 521 bh->b_assoc_map = NULL; 522 } 523 524 int inode_has_buffers(struct inode *inode) 525 { 526 return !list_empty(&inode->i_data.private_list); 527 } 528 529 /* 530 * osync is designed to support O_SYNC io. It waits synchronously for 531 * all already-submitted IO to complete, but does not queue any new 532 * writes to the disk. 533 * 534 * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as 535 * you dirty the buffers, and then use osync_inode_buffers to wait for 536 * completion. Any other dirty buffers which are not yet queued for 537 * write will not be flushed to disk by the osync. 538 */ 539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 540 { 541 struct buffer_head *bh; 542 struct list_head *p; 543 int err = 0; 544 545 spin_lock(lock); 546 repeat: 547 list_for_each_prev(p, list) { 548 bh = BH_ENTRY(p); 549 if (buffer_locked(bh)) { 550 get_bh(bh); 551 spin_unlock(lock); 552 wait_on_buffer(bh); 553 if (!buffer_uptodate(bh)) 554 err = -EIO; 555 brelse(bh); 556 spin_lock(lock); 557 goto repeat; 558 } 559 } 560 spin_unlock(lock); 561 return err; 562 } 563 564 static void do_thaw_one(struct super_block *sb, void *unused) 565 { 566 char b[BDEVNAME_SIZE]; 567 while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb)) 568 printk(KERN_WARNING "Emergency Thaw on %s\n", 569 bdevname(sb->s_bdev, b)); 570 } 571 572 static void do_thaw_all(struct work_struct *work) 573 { 574 iterate_supers(do_thaw_one, NULL); 575 kfree(work); 576 printk(KERN_WARNING "Emergency Thaw complete\n"); 577 } 578 579 /** 580 * emergency_thaw_all -- forcibly thaw every frozen filesystem 581 * 582 * Used for emergency unfreeze of all filesystems via SysRq 583 */ 584 void emergency_thaw_all(void) 585 { 586 struct work_struct *work; 587 588 work = kmalloc(sizeof(*work), GFP_ATOMIC); 589 if (work) { 590 INIT_WORK(work, do_thaw_all); 591 schedule_work(work); 592 } 593 } 594 595 /** 596 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 597 * @mapping: the mapping which wants those buffers written 598 * 599 * Starts I/O against the buffers at mapping->private_list, and waits upon 600 * that I/O. 601 * 602 * Basically, this is a convenience function for fsync(). 603 * @mapping is a file or directory which needs those buffers to be written for 604 * a successful fsync(). 605 */ 606 int sync_mapping_buffers(struct address_space *mapping) 607 { 608 struct address_space *buffer_mapping = mapping->assoc_mapping; 609 610 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 611 return 0; 612 613 return fsync_buffers_list(&buffer_mapping->private_lock, 614 &mapping->private_list); 615 } 616 EXPORT_SYMBOL(sync_mapping_buffers); 617 618 /* 619 * Called when we've recently written block `bblock', and it is known that 620 * `bblock' was for a buffer_boundary() buffer. This means that the block at 621 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 622 * dirty, schedule it for IO. So that indirects merge nicely with their data. 623 */ 624 void write_boundary_block(struct block_device *bdev, 625 sector_t bblock, unsigned blocksize) 626 { 627 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 628 if (bh) { 629 if (buffer_dirty(bh)) 630 ll_rw_block(WRITE, 1, &bh); 631 put_bh(bh); 632 } 633 } 634 635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 636 { 637 struct address_space *mapping = inode->i_mapping; 638 struct address_space *buffer_mapping = bh->b_page->mapping; 639 640 mark_buffer_dirty(bh); 641 if (!mapping->assoc_mapping) { 642 mapping->assoc_mapping = buffer_mapping; 643 } else { 644 BUG_ON(mapping->assoc_mapping != buffer_mapping); 645 } 646 if (!bh->b_assoc_map) { 647 spin_lock(&buffer_mapping->private_lock); 648 list_move_tail(&bh->b_assoc_buffers, 649 &mapping->private_list); 650 bh->b_assoc_map = mapping; 651 spin_unlock(&buffer_mapping->private_lock); 652 } 653 } 654 EXPORT_SYMBOL(mark_buffer_dirty_inode); 655 656 /* 657 * Mark the page dirty, and set it dirty in the radix tree, and mark the inode 658 * dirty. 659 * 660 * If warn is true, then emit a warning if the page is not uptodate and has 661 * not been truncated. 662 */ 663 static void __set_page_dirty(struct page *page, 664 struct address_space *mapping, int warn) 665 { 666 spin_lock_irq(&mapping->tree_lock); 667 if (page->mapping) { /* Race with truncate? */ 668 WARN_ON_ONCE(warn && !PageUptodate(page)); 669 account_page_dirtied(page, mapping); 670 radix_tree_tag_set(&mapping->page_tree, 671 page_index(page), PAGECACHE_TAG_DIRTY); 672 } 673 spin_unlock_irq(&mapping->tree_lock); 674 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 675 } 676 677 /* 678 * Add a page to the dirty page list. 679 * 680 * It is a sad fact of life that this function is called from several places 681 * deeply under spinlocking. It may not sleep. 682 * 683 * If the page has buffers, the uptodate buffers are set dirty, to preserve 684 * dirty-state coherency between the page and the buffers. It the page does 685 * not have buffers then when they are later attached they will all be set 686 * dirty. 687 * 688 * The buffers are dirtied before the page is dirtied. There's a small race 689 * window in which a writepage caller may see the page cleanness but not the 690 * buffer dirtiness. That's fine. If this code were to set the page dirty 691 * before the buffers, a concurrent writepage caller could clear the page dirty 692 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 693 * page on the dirty page list. 694 * 695 * We use private_lock to lock against try_to_free_buffers while using the 696 * page's buffer list. Also use this to protect against clean buffers being 697 * added to the page after it was set dirty. 698 * 699 * FIXME: may need to call ->reservepage here as well. That's rather up to the 700 * address_space though. 701 */ 702 int __set_page_dirty_buffers(struct page *page) 703 { 704 int newly_dirty; 705 struct address_space *mapping = page_mapping(page); 706 707 if (unlikely(!mapping)) 708 return !TestSetPageDirty(page); 709 710 spin_lock(&mapping->private_lock); 711 if (page_has_buffers(page)) { 712 struct buffer_head *head = page_buffers(page); 713 struct buffer_head *bh = head; 714 715 do { 716 set_buffer_dirty(bh); 717 bh = bh->b_this_page; 718 } while (bh != head); 719 } 720 newly_dirty = !TestSetPageDirty(page); 721 spin_unlock(&mapping->private_lock); 722 723 if (newly_dirty) 724 __set_page_dirty(page, mapping, 1); 725 return newly_dirty; 726 } 727 EXPORT_SYMBOL(__set_page_dirty_buffers); 728 729 /* 730 * Write out and wait upon a list of buffers. 731 * 732 * We have conflicting pressures: we want to make sure that all 733 * initially dirty buffers get waited on, but that any subsequently 734 * dirtied buffers don't. After all, we don't want fsync to last 735 * forever if somebody is actively writing to the file. 736 * 737 * Do this in two main stages: first we copy dirty buffers to a 738 * temporary inode list, queueing the writes as we go. Then we clean 739 * up, waiting for those writes to complete. 740 * 741 * During this second stage, any subsequent updates to the file may end 742 * up refiling the buffer on the original inode's dirty list again, so 743 * there is a chance we will end up with a buffer queued for write but 744 * not yet completed on that list. So, as a final cleanup we go through 745 * the osync code to catch these locked, dirty buffers without requeuing 746 * any newly dirty buffers for write. 747 */ 748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 749 { 750 struct buffer_head *bh; 751 struct list_head tmp; 752 struct address_space *mapping, *prev_mapping = NULL; 753 int err = 0, err2; 754 755 INIT_LIST_HEAD(&tmp); 756 757 spin_lock(lock); 758 while (!list_empty(list)) { 759 bh = BH_ENTRY(list->next); 760 mapping = bh->b_assoc_map; 761 __remove_assoc_queue(bh); 762 /* Avoid race with mark_buffer_dirty_inode() which does 763 * a lockless check and we rely on seeing the dirty bit */ 764 smp_mb(); 765 if (buffer_dirty(bh) || buffer_locked(bh)) { 766 list_add(&bh->b_assoc_buffers, &tmp); 767 bh->b_assoc_map = mapping; 768 if (buffer_dirty(bh)) { 769 get_bh(bh); 770 spin_unlock(lock); 771 /* 772 * Ensure any pending I/O completes so that 773 * ll_rw_block() actually writes the current 774 * contents - it is a noop if I/O is still in 775 * flight on potentially older contents. 776 */ 777 ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh); 778 779 /* 780 * Kick off IO for the previous mapping. Note 781 * that we will not run the very last mapping, 782 * wait_on_buffer() will do that for us 783 * through sync_buffer(). 784 */ 785 if (prev_mapping && prev_mapping != mapping) 786 blk_run_address_space(prev_mapping); 787 prev_mapping = mapping; 788 789 brelse(bh); 790 spin_lock(lock); 791 } 792 } 793 } 794 795 while (!list_empty(&tmp)) { 796 bh = BH_ENTRY(tmp.prev); 797 get_bh(bh); 798 mapping = bh->b_assoc_map; 799 __remove_assoc_queue(bh); 800 /* Avoid race with mark_buffer_dirty_inode() which does 801 * a lockless check and we rely on seeing the dirty bit */ 802 smp_mb(); 803 if (buffer_dirty(bh)) { 804 list_add(&bh->b_assoc_buffers, 805 &mapping->private_list); 806 bh->b_assoc_map = mapping; 807 } 808 spin_unlock(lock); 809 wait_on_buffer(bh); 810 if (!buffer_uptodate(bh)) 811 err = -EIO; 812 brelse(bh); 813 spin_lock(lock); 814 } 815 816 spin_unlock(lock); 817 err2 = osync_buffers_list(lock, list); 818 if (err) 819 return err; 820 else 821 return err2; 822 } 823 824 /* 825 * Invalidate any and all dirty buffers on a given inode. We are 826 * probably unmounting the fs, but that doesn't mean we have already 827 * done a sync(). Just drop the buffers from the inode list. 828 * 829 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 830 * assumes that all the buffers are against the blockdev. Not true 831 * for reiserfs. 832 */ 833 void invalidate_inode_buffers(struct inode *inode) 834 { 835 if (inode_has_buffers(inode)) { 836 struct address_space *mapping = &inode->i_data; 837 struct list_head *list = &mapping->private_list; 838 struct address_space *buffer_mapping = mapping->assoc_mapping; 839 840 spin_lock(&buffer_mapping->private_lock); 841 while (!list_empty(list)) 842 __remove_assoc_queue(BH_ENTRY(list->next)); 843 spin_unlock(&buffer_mapping->private_lock); 844 } 845 } 846 EXPORT_SYMBOL(invalidate_inode_buffers); 847 848 /* 849 * Remove any clean buffers from the inode's buffer list. This is called 850 * when we're trying to free the inode itself. Those buffers can pin it. 851 * 852 * Returns true if all buffers were removed. 853 */ 854 int remove_inode_buffers(struct inode *inode) 855 { 856 int ret = 1; 857 858 if (inode_has_buffers(inode)) { 859 struct address_space *mapping = &inode->i_data; 860 struct list_head *list = &mapping->private_list; 861 struct address_space *buffer_mapping = mapping->assoc_mapping; 862 863 spin_lock(&buffer_mapping->private_lock); 864 while (!list_empty(list)) { 865 struct buffer_head *bh = BH_ENTRY(list->next); 866 if (buffer_dirty(bh)) { 867 ret = 0; 868 break; 869 } 870 __remove_assoc_queue(bh); 871 } 872 spin_unlock(&buffer_mapping->private_lock); 873 } 874 return ret; 875 } 876 877 /* 878 * Create the appropriate buffers when given a page for data area and 879 * the size of each buffer.. Use the bh->b_this_page linked list to 880 * follow the buffers created. Return NULL if unable to create more 881 * buffers. 882 * 883 * The retry flag is used to differentiate async IO (paging, swapping) 884 * which may not fail from ordinary buffer allocations. 885 */ 886 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 887 int retry) 888 { 889 struct buffer_head *bh, *head; 890 long offset; 891 892 try_again: 893 head = NULL; 894 offset = PAGE_SIZE; 895 while ((offset -= size) >= 0) { 896 bh = alloc_buffer_head(GFP_NOFS); 897 if (!bh) 898 goto no_grow; 899 900 bh->b_bdev = NULL; 901 bh->b_this_page = head; 902 bh->b_blocknr = -1; 903 head = bh; 904 905 bh->b_state = 0; 906 atomic_set(&bh->b_count, 0); 907 bh->b_private = NULL; 908 bh->b_size = size; 909 910 /* Link the buffer to its page */ 911 set_bh_page(bh, page, offset); 912 913 init_buffer(bh, NULL, NULL); 914 } 915 return head; 916 /* 917 * In case anything failed, we just free everything we got. 918 */ 919 no_grow: 920 if (head) { 921 do { 922 bh = head; 923 head = head->b_this_page; 924 free_buffer_head(bh); 925 } while (head); 926 } 927 928 /* 929 * Return failure for non-async IO requests. Async IO requests 930 * are not allowed to fail, so we have to wait until buffer heads 931 * become available. But we don't want tasks sleeping with 932 * partially complete buffers, so all were released above. 933 */ 934 if (!retry) 935 return NULL; 936 937 /* We're _really_ low on memory. Now we just 938 * wait for old buffer heads to become free due to 939 * finishing IO. Since this is an async request and 940 * the reserve list is empty, we're sure there are 941 * async buffer heads in use. 942 */ 943 free_more_memory(); 944 goto try_again; 945 } 946 EXPORT_SYMBOL_GPL(alloc_page_buffers); 947 948 static inline void 949 link_dev_buffers(struct page *page, struct buffer_head *head) 950 { 951 struct buffer_head *bh, *tail; 952 953 bh = head; 954 do { 955 tail = bh; 956 bh = bh->b_this_page; 957 } while (bh); 958 tail->b_this_page = head; 959 attach_page_buffers(page, head); 960 } 961 962 /* 963 * Initialise the state of a blockdev page's buffers. 964 */ 965 static void 966 init_page_buffers(struct page *page, struct block_device *bdev, 967 sector_t block, int size) 968 { 969 struct buffer_head *head = page_buffers(page); 970 struct buffer_head *bh = head; 971 int uptodate = PageUptodate(page); 972 973 do { 974 if (!buffer_mapped(bh)) { 975 init_buffer(bh, NULL, NULL); 976 bh->b_bdev = bdev; 977 bh->b_blocknr = block; 978 if (uptodate) 979 set_buffer_uptodate(bh); 980 set_buffer_mapped(bh); 981 } 982 block++; 983 bh = bh->b_this_page; 984 } while (bh != head); 985 } 986 987 /* 988 * Create the page-cache page that contains the requested block. 989 * 990 * This is user purely for blockdev mappings. 991 */ 992 static struct page * 993 grow_dev_page(struct block_device *bdev, sector_t block, 994 pgoff_t index, int size) 995 { 996 struct inode *inode = bdev->bd_inode; 997 struct page *page; 998 struct buffer_head *bh; 999 1000 page = find_or_create_page(inode->i_mapping, index, 1001 (mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE); 1002 if (!page) 1003 return NULL; 1004 1005 BUG_ON(!PageLocked(page)); 1006 1007 if (page_has_buffers(page)) { 1008 bh = page_buffers(page); 1009 if (bh->b_size == size) { 1010 init_page_buffers(page, bdev, block, size); 1011 return page; 1012 } 1013 if (!try_to_free_buffers(page)) 1014 goto failed; 1015 } 1016 1017 /* 1018 * Allocate some buffers for this page 1019 */ 1020 bh = alloc_page_buffers(page, size, 0); 1021 if (!bh) 1022 goto failed; 1023 1024 /* 1025 * Link the page to the buffers and initialise them. Take the 1026 * lock to be atomic wrt __find_get_block(), which does not 1027 * run under the page lock. 1028 */ 1029 spin_lock(&inode->i_mapping->private_lock); 1030 link_dev_buffers(page, bh); 1031 init_page_buffers(page, bdev, block, size); 1032 spin_unlock(&inode->i_mapping->private_lock); 1033 return page; 1034 1035 failed: 1036 BUG(); 1037 unlock_page(page); 1038 page_cache_release(page); 1039 return NULL; 1040 } 1041 1042 /* 1043 * Create buffers for the specified block device block's page. If 1044 * that page was dirty, the buffers are set dirty also. 1045 */ 1046 static int 1047 grow_buffers(struct block_device *bdev, sector_t block, int size) 1048 { 1049 struct page *page; 1050 pgoff_t index; 1051 int sizebits; 1052 1053 sizebits = -1; 1054 do { 1055 sizebits++; 1056 } while ((size << sizebits) < PAGE_SIZE); 1057 1058 index = block >> sizebits; 1059 1060 /* 1061 * Check for a block which wants to lie outside our maximum possible 1062 * pagecache index. (this comparison is done using sector_t types). 1063 */ 1064 if (unlikely(index != block >> sizebits)) { 1065 char b[BDEVNAME_SIZE]; 1066 1067 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1068 "device %s\n", 1069 __func__, (unsigned long long)block, 1070 bdevname(bdev, b)); 1071 return -EIO; 1072 } 1073 block = index << sizebits; 1074 /* Create a page with the proper size buffers.. */ 1075 page = grow_dev_page(bdev, block, index, size); 1076 if (!page) 1077 return 0; 1078 unlock_page(page); 1079 page_cache_release(page); 1080 return 1; 1081 } 1082 1083 static struct buffer_head * 1084 __getblk_slow(struct block_device *bdev, sector_t block, int size) 1085 { 1086 /* Size must be multiple of hard sectorsize */ 1087 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1088 (size < 512 || size > PAGE_SIZE))) { 1089 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1090 size); 1091 printk(KERN_ERR "logical block size: %d\n", 1092 bdev_logical_block_size(bdev)); 1093 1094 dump_stack(); 1095 return NULL; 1096 } 1097 1098 for (;;) { 1099 struct buffer_head * bh; 1100 int ret; 1101 1102 bh = __find_get_block(bdev, block, size); 1103 if (bh) 1104 return bh; 1105 1106 ret = grow_buffers(bdev, block, size); 1107 if (ret < 0) 1108 return NULL; 1109 if (ret == 0) 1110 free_more_memory(); 1111 } 1112 } 1113 1114 /* 1115 * The relationship between dirty buffers and dirty pages: 1116 * 1117 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1118 * the page is tagged dirty in its radix tree. 1119 * 1120 * At all times, the dirtiness of the buffers represents the dirtiness of 1121 * subsections of the page. If the page has buffers, the page dirty bit is 1122 * merely a hint about the true dirty state. 1123 * 1124 * When a page is set dirty in its entirety, all its buffers are marked dirty 1125 * (if the page has buffers). 1126 * 1127 * When a buffer is marked dirty, its page is dirtied, but the page's other 1128 * buffers are not. 1129 * 1130 * Also. When blockdev buffers are explicitly read with bread(), they 1131 * individually become uptodate. But their backing page remains not 1132 * uptodate - even if all of its buffers are uptodate. A subsequent 1133 * block_read_full_page() against that page will discover all the uptodate 1134 * buffers, will set the page uptodate and will perform no I/O. 1135 */ 1136 1137 /** 1138 * mark_buffer_dirty - mark a buffer_head as needing writeout 1139 * @bh: the buffer_head to mark dirty 1140 * 1141 * mark_buffer_dirty() will set the dirty bit against the buffer, then set its 1142 * backing page dirty, then tag the page as dirty in its address_space's radix 1143 * tree and then attach the address_space's inode to its superblock's dirty 1144 * inode list. 1145 * 1146 * mark_buffer_dirty() is atomic. It takes bh->b_page->mapping->private_lock, 1147 * mapping->tree_lock and the global inode_lock. 1148 */ 1149 void mark_buffer_dirty(struct buffer_head *bh) 1150 { 1151 WARN_ON_ONCE(!buffer_uptodate(bh)); 1152 1153 /* 1154 * Very *carefully* optimize the it-is-already-dirty case. 1155 * 1156 * Don't let the final "is it dirty" escape to before we 1157 * perhaps modified the buffer. 1158 */ 1159 if (buffer_dirty(bh)) { 1160 smp_mb(); 1161 if (buffer_dirty(bh)) 1162 return; 1163 } 1164 1165 if (!test_set_buffer_dirty(bh)) { 1166 struct page *page = bh->b_page; 1167 if (!TestSetPageDirty(page)) { 1168 struct address_space *mapping = page_mapping(page); 1169 if (mapping) 1170 __set_page_dirty(page, mapping, 0); 1171 } 1172 } 1173 } 1174 EXPORT_SYMBOL(mark_buffer_dirty); 1175 1176 /* 1177 * Decrement a buffer_head's reference count. If all buffers against a page 1178 * have zero reference count, are clean and unlocked, and if the page is clean 1179 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1180 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1181 * a page but it ends up not being freed, and buffers may later be reattached). 1182 */ 1183 void __brelse(struct buffer_head * buf) 1184 { 1185 if (atomic_read(&buf->b_count)) { 1186 put_bh(buf); 1187 return; 1188 } 1189 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1190 } 1191 EXPORT_SYMBOL(__brelse); 1192 1193 /* 1194 * bforget() is like brelse(), except it discards any 1195 * potentially dirty data. 1196 */ 1197 void __bforget(struct buffer_head *bh) 1198 { 1199 clear_buffer_dirty(bh); 1200 if (bh->b_assoc_map) { 1201 struct address_space *buffer_mapping = bh->b_page->mapping; 1202 1203 spin_lock(&buffer_mapping->private_lock); 1204 list_del_init(&bh->b_assoc_buffers); 1205 bh->b_assoc_map = NULL; 1206 spin_unlock(&buffer_mapping->private_lock); 1207 } 1208 __brelse(bh); 1209 } 1210 EXPORT_SYMBOL(__bforget); 1211 1212 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1213 { 1214 lock_buffer(bh); 1215 if (buffer_uptodate(bh)) { 1216 unlock_buffer(bh); 1217 return bh; 1218 } else { 1219 get_bh(bh); 1220 bh->b_end_io = end_buffer_read_sync; 1221 submit_bh(READ, bh); 1222 wait_on_buffer(bh); 1223 if (buffer_uptodate(bh)) 1224 return bh; 1225 } 1226 brelse(bh); 1227 return NULL; 1228 } 1229 1230 /* 1231 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1232 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1233 * refcount elevated by one when they're in an LRU. A buffer can only appear 1234 * once in a particular CPU's LRU. A single buffer can be present in multiple 1235 * CPU's LRUs at the same time. 1236 * 1237 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1238 * sb_find_get_block(). 1239 * 1240 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1241 * a local interrupt disable for that. 1242 */ 1243 1244 #define BH_LRU_SIZE 8 1245 1246 struct bh_lru { 1247 struct buffer_head *bhs[BH_LRU_SIZE]; 1248 }; 1249 1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1251 1252 #ifdef CONFIG_SMP 1253 #define bh_lru_lock() local_irq_disable() 1254 #define bh_lru_unlock() local_irq_enable() 1255 #else 1256 #define bh_lru_lock() preempt_disable() 1257 #define bh_lru_unlock() preempt_enable() 1258 #endif 1259 1260 static inline void check_irqs_on(void) 1261 { 1262 #ifdef irqs_disabled 1263 BUG_ON(irqs_disabled()); 1264 #endif 1265 } 1266 1267 /* 1268 * The LRU management algorithm is dopey-but-simple. Sorry. 1269 */ 1270 static void bh_lru_install(struct buffer_head *bh) 1271 { 1272 struct buffer_head *evictee = NULL; 1273 struct bh_lru *lru; 1274 1275 check_irqs_on(); 1276 bh_lru_lock(); 1277 lru = &__get_cpu_var(bh_lrus); 1278 if (lru->bhs[0] != bh) { 1279 struct buffer_head *bhs[BH_LRU_SIZE]; 1280 int in; 1281 int out = 0; 1282 1283 get_bh(bh); 1284 bhs[out++] = bh; 1285 for (in = 0; in < BH_LRU_SIZE; in++) { 1286 struct buffer_head *bh2 = lru->bhs[in]; 1287 1288 if (bh2 == bh) { 1289 __brelse(bh2); 1290 } else { 1291 if (out >= BH_LRU_SIZE) { 1292 BUG_ON(evictee != NULL); 1293 evictee = bh2; 1294 } else { 1295 bhs[out++] = bh2; 1296 } 1297 } 1298 } 1299 while (out < BH_LRU_SIZE) 1300 bhs[out++] = NULL; 1301 memcpy(lru->bhs, bhs, sizeof(bhs)); 1302 } 1303 bh_lru_unlock(); 1304 1305 if (evictee) 1306 __brelse(evictee); 1307 } 1308 1309 /* 1310 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1311 */ 1312 static struct buffer_head * 1313 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1314 { 1315 struct buffer_head *ret = NULL; 1316 struct bh_lru *lru; 1317 unsigned int i; 1318 1319 check_irqs_on(); 1320 bh_lru_lock(); 1321 lru = &__get_cpu_var(bh_lrus); 1322 for (i = 0; i < BH_LRU_SIZE; i++) { 1323 struct buffer_head *bh = lru->bhs[i]; 1324 1325 if (bh && bh->b_bdev == bdev && 1326 bh->b_blocknr == block && bh->b_size == size) { 1327 if (i) { 1328 while (i) { 1329 lru->bhs[i] = lru->bhs[i - 1]; 1330 i--; 1331 } 1332 lru->bhs[0] = bh; 1333 } 1334 get_bh(bh); 1335 ret = bh; 1336 break; 1337 } 1338 } 1339 bh_lru_unlock(); 1340 return ret; 1341 } 1342 1343 /* 1344 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1345 * it in the LRU and mark it as accessed. If it is not present then return 1346 * NULL 1347 */ 1348 struct buffer_head * 1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1350 { 1351 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1352 1353 if (bh == NULL) { 1354 bh = __find_get_block_slow(bdev, block); 1355 if (bh) 1356 bh_lru_install(bh); 1357 } 1358 if (bh) 1359 touch_buffer(bh); 1360 return bh; 1361 } 1362 EXPORT_SYMBOL(__find_get_block); 1363 1364 /* 1365 * __getblk will locate (and, if necessary, create) the buffer_head 1366 * which corresponds to the passed block_device, block and size. The 1367 * returned buffer has its reference count incremented. 1368 * 1369 * __getblk() cannot fail - it just keeps trying. If you pass it an 1370 * illegal block number, __getblk() will happily return a buffer_head 1371 * which represents the non-existent block. Very weird. 1372 * 1373 * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers() 1374 * attempt is failing. FIXME, perhaps? 1375 */ 1376 struct buffer_head * 1377 __getblk(struct block_device *bdev, sector_t block, unsigned size) 1378 { 1379 struct buffer_head *bh = __find_get_block(bdev, block, size); 1380 1381 might_sleep(); 1382 if (bh == NULL) 1383 bh = __getblk_slow(bdev, block, size); 1384 return bh; 1385 } 1386 EXPORT_SYMBOL(__getblk); 1387 1388 /* 1389 * Do async read-ahead on a buffer.. 1390 */ 1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1392 { 1393 struct buffer_head *bh = __getblk(bdev, block, size); 1394 if (likely(bh)) { 1395 ll_rw_block(READA, 1, &bh); 1396 brelse(bh); 1397 } 1398 } 1399 EXPORT_SYMBOL(__breadahead); 1400 1401 /** 1402 * __bread() - reads a specified block and returns the bh 1403 * @bdev: the block_device to read from 1404 * @block: number of block 1405 * @size: size (in bytes) to read 1406 * 1407 * Reads a specified block, and returns buffer head that contains it. 1408 * It returns NULL if the block was unreadable. 1409 */ 1410 struct buffer_head * 1411 __bread(struct block_device *bdev, sector_t block, unsigned size) 1412 { 1413 struct buffer_head *bh = __getblk(bdev, block, size); 1414 1415 if (likely(bh) && !buffer_uptodate(bh)) 1416 bh = __bread_slow(bh); 1417 return bh; 1418 } 1419 EXPORT_SYMBOL(__bread); 1420 1421 /* 1422 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1423 * This doesn't race because it runs in each cpu either in irq 1424 * or with preempt disabled. 1425 */ 1426 static void invalidate_bh_lru(void *arg) 1427 { 1428 struct bh_lru *b = &get_cpu_var(bh_lrus); 1429 int i; 1430 1431 for (i = 0; i < BH_LRU_SIZE; i++) { 1432 brelse(b->bhs[i]); 1433 b->bhs[i] = NULL; 1434 } 1435 put_cpu_var(bh_lrus); 1436 } 1437 1438 void invalidate_bh_lrus(void) 1439 { 1440 on_each_cpu(invalidate_bh_lru, NULL, 1); 1441 } 1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1443 1444 void set_bh_page(struct buffer_head *bh, 1445 struct page *page, unsigned long offset) 1446 { 1447 bh->b_page = page; 1448 BUG_ON(offset >= PAGE_SIZE); 1449 if (PageHighMem(page)) 1450 /* 1451 * This catches illegal uses and preserves the offset: 1452 */ 1453 bh->b_data = (char *)(0 + offset); 1454 else 1455 bh->b_data = page_address(page) + offset; 1456 } 1457 EXPORT_SYMBOL(set_bh_page); 1458 1459 /* 1460 * Called when truncating a buffer on a page completely. 1461 */ 1462 static void discard_buffer(struct buffer_head * bh) 1463 { 1464 lock_buffer(bh); 1465 clear_buffer_dirty(bh); 1466 bh->b_bdev = NULL; 1467 clear_buffer_mapped(bh); 1468 clear_buffer_req(bh); 1469 clear_buffer_new(bh); 1470 clear_buffer_delay(bh); 1471 clear_buffer_unwritten(bh); 1472 unlock_buffer(bh); 1473 } 1474 1475 /** 1476 * block_invalidatepage - invalidate part of all of a buffer-backed page 1477 * 1478 * @page: the page which is affected 1479 * @offset: the index of the truncation point 1480 * 1481 * block_invalidatepage() is called when all or part of the page has become 1482 * invalidatedby a truncate operation. 1483 * 1484 * block_invalidatepage() does not have to release all buffers, but it must 1485 * ensure that no dirty buffer is left outside @offset and that no I/O 1486 * is underway against any of the blocks which are outside the truncation 1487 * point. Because the caller is about to free (and possibly reuse) those 1488 * blocks on-disk. 1489 */ 1490 void block_invalidatepage(struct page *page, unsigned long offset) 1491 { 1492 struct buffer_head *head, *bh, *next; 1493 unsigned int curr_off = 0; 1494 1495 BUG_ON(!PageLocked(page)); 1496 if (!page_has_buffers(page)) 1497 goto out; 1498 1499 head = page_buffers(page); 1500 bh = head; 1501 do { 1502 unsigned int next_off = curr_off + bh->b_size; 1503 next = bh->b_this_page; 1504 1505 /* 1506 * is this block fully invalidated? 1507 */ 1508 if (offset <= curr_off) 1509 discard_buffer(bh); 1510 curr_off = next_off; 1511 bh = next; 1512 } while (bh != head); 1513 1514 /* 1515 * We release buffers only if the entire page is being invalidated. 1516 * The get_block cached value has been unconditionally invalidated, 1517 * so real IO is not possible anymore. 1518 */ 1519 if (offset == 0) 1520 try_to_release_page(page, 0); 1521 out: 1522 return; 1523 } 1524 EXPORT_SYMBOL(block_invalidatepage); 1525 1526 /* 1527 * We attach and possibly dirty the buffers atomically wrt 1528 * __set_page_dirty_buffers() via private_lock. try_to_free_buffers 1529 * is already excluded via the page lock. 1530 */ 1531 void create_empty_buffers(struct page *page, 1532 unsigned long blocksize, unsigned long b_state) 1533 { 1534 struct buffer_head *bh, *head, *tail; 1535 1536 head = alloc_page_buffers(page, blocksize, 1); 1537 bh = head; 1538 do { 1539 bh->b_state |= b_state; 1540 tail = bh; 1541 bh = bh->b_this_page; 1542 } while (bh); 1543 tail->b_this_page = head; 1544 1545 spin_lock(&page->mapping->private_lock); 1546 if (PageUptodate(page) || PageDirty(page)) { 1547 bh = head; 1548 do { 1549 if (PageDirty(page)) 1550 set_buffer_dirty(bh); 1551 if (PageUptodate(page)) 1552 set_buffer_uptodate(bh); 1553 bh = bh->b_this_page; 1554 } while (bh != head); 1555 } 1556 attach_page_buffers(page, head); 1557 spin_unlock(&page->mapping->private_lock); 1558 } 1559 EXPORT_SYMBOL(create_empty_buffers); 1560 1561 /* 1562 * We are taking a block for data and we don't want any output from any 1563 * buffer-cache aliases starting from return from that function and 1564 * until the moment when something will explicitly mark the buffer 1565 * dirty (hopefully that will not happen until we will free that block ;-) 1566 * We don't even need to mark it not-uptodate - nobody can expect 1567 * anything from a newly allocated buffer anyway. We used to used 1568 * unmap_buffer() for such invalidation, but that was wrong. We definitely 1569 * don't want to mark the alias unmapped, for example - it would confuse 1570 * anyone who might pick it with bread() afterwards... 1571 * 1572 * Also.. Note that bforget() doesn't lock the buffer. So there can 1573 * be writeout I/O going on against recently-freed buffers. We don't 1574 * wait on that I/O in bforget() - it's more efficient to wait on the I/O 1575 * only if we really need to. That happens here. 1576 */ 1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block) 1578 { 1579 struct buffer_head *old_bh; 1580 1581 might_sleep(); 1582 1583 old_bh = __find_get_block_slow(bdev, block); 1584 if (old_bh) { 1585 clear_buffer_dirty(old_bh); 1586 wait_on_buffer(old_bh); 1587 clear_buffer_req(old_bh); 1588 __brelse(old_bh); 1589 } 1590 } 1591 EXPORT_SYMBOL(unmap_underlying_metadata); 1592 1593 /* 1594 * NOTE! All mapped/uptodate combinations are valid: 1595 * 1596 * Mapped Uptodate Meaning 1597 * 1598 * No No "unknown" - must do get_block() 1599 * No Yes "hole" - zero-filled 1600 * Yes No "allocated" - allocated on disk, not read in 1601 * Yes Yes "valid" - allocated and up-to-date in memory. 1602 * 1603 * "Dirty" is valid only with the last case (mapped+uptodate). 1604 */ 1605 1606 /* 1607 * While block_write_full_page is writing back the dirty buffers under 1608 * the page lock, whoever dirtied the buffers may decide to clean them 1609 * again at any time. We handle that by only looking at the buffer 1610 * state inside lock_buffer(). 1611 * 1612 * If block_write_full_page() is called for regular writeback 1613 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1614 * locked buffer. This only can happen if someone has written the buffer 1615 * directly, with submit_bh(). At the address_space level PageWriteback 1616 * prevents this contention from occurring. 1617 * 1618 * If block_write_full_page() is called with wbc->sync_mode == 1619 * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this 1620 * causes the writes to be flagged as synchronous writes, but the 1621 * block device queue will NOT be unplugged, since usually many pages 1622 * will be pushed to the out before the higher-level caller actually 1623 * waits for the writes to be completed. The various wait functions, 1624 * such as wait_on_writeback_range() will ultimately call sync_page() 1625 * which will ultimately call blk_run_backing_dev(), which will end up 1626 * unplugging the device queue. 1627 */ 1628 static int __block_write_full_page(struct inode *inode, struct page *page, 1629 get_block_t *get_block, struct writeback_control *wbc, 1630 bh_end_io_t *handler) 1631 { 1632 int err; 1633 sector_t block; 1634 sector_t last_block; 1635 struct buffer_head *bh, *head; 1636 const unsigned blocksize = 1 << inode->i_blkbits; 1637 int nr_underway = 0; 1638 int write_op = (wbc->sync_mode == WB_SYNC_ALL ? 1639 WRITE_SYNC_PLUG : WRITE); 1640 1641 BUG_ON(!PageLocked(page)); 1642 1643 last_block = (i_size_read(inode) - 1) >> inode->i_blkbits; 1644 1645 if (!page_has_buffers(page)) { 1646 create_empty_buffers(page, blocksize, 1647 (1 << BH_Dirty)|(1 << BH_Uptodate)); 1648 } 1649 1650 /* 1651 * Be very careful. We have no exclusion from __set_page_dirty_buffers 1652 * here, and the (potentially unmapped) buffers may become dirty at 1653 * any time. If a buffer becomes dirty here after we've inspected it 1654 * then we just miss that fact, and the page stays dirty. 1655 * 1656 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers; 1657 * handle that here by just cleaning them. 1658 */ 1659 1660 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 1661 head = page_buffers(page); 1662 bh = head; 1663 1664 /* 1665 * Get all the dirty buffers mapped to disk addresses and 1666 * handle any aliases from the underlying blockdev's mapping. 1667 */ 1668 do { 1669 if (block > last_block) { 1670 /* 1671 * mapped buffers outside i_size will occur, because 1672 * this page can be outside i_size when there is a 1673 * truncate in progress. 1674 */ 1675 /* 1676 * The buffer was zeroed by block_write_full_page() 1677 */ 1678 clear_buffer_dirty(bh); 1679 set_buffer_uptodate(bh); 1680 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1681 buffer_dirty(bh)) { 1682 WARN_ON(bh->b_size != blocksize); 1683 err = get_block(inode, block, bh, 1); 1684 if (err) 1685 goto recover; 1686 clear_buffer_delay(bh); 1687 if (buffer_new(bh)) { 1688 /* blockdev mappings never come here */ 1689 clear_buffer_new(bh); 1690 unmap_underlying_metadata(bh->b_bdev, 1691 bh->b_blocknr); 1692 } 1693 } 1694 bh = bh->b_this_page; 1695 block++; 1696 } while (bh != head); 1697 1698 do { 1699 if (!buffer_mapped(bh)) 1700 continue; 1701 /* 1702 * If it's a fully non-blocking write attempt and we cannot 1703 * lock the buffer then redirty the page. Note that this can 1704 * potentially cause a busy-wait loop from writeback threads 1705 * and kswapd activity, but those code paths have their own 1706 * higher-level throttling. 1707 */ 1708 if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) { 1709 lock_buffer(bh); 1710 } else if (!trylock_buffer(bh)) { 1711 redirty_page_for_writepage(wbc, page); 1712 continue; 1713 } 1714 if (test_clear_buffer_dirty(bh)) { 1715 mark_buffer_async_write_endio(bh, handler); 1716 } else { 1717 unlock_buffer(bh); 1718 } 1719 } while ((bh = bh->b_this_page) != head); 1720 1721 /* 1722 * The page and its buffers are protected by PageWriteback(), so we can 1723 * drop the bh refcounts early. 1724 */ 1725 BUG_ON(PageWriteback(page)); 1726 set_page_writeback(page); 1727 1728 do { 1729 struct buffer_head *next = bh->b_this_page; 1730 if (buffer_async_write(bh)) { 1731 submit_bh(write_op, bh); 1732 nr_underway++; 1733 } 1734 bh = next; 1735 } while (bh != head); 1736 unlock_page(page); 1737 1738 err = 0; 1739 done: 1740 if (nr_underway == 0) { 1741 /* 1742 * The page was marked dirty, but the buffers were 1743 * clean. Someone wrote them back by hand with 1744 * ll_rw_block/submit_bh. A rare case. 1745 */ 1746 end_page_writeback(page); 1747 1748 /* 1749 * The page and buffer_heads can be released at any time from 1750 * here on. 1751 */ 1752 } 1753 return err; 1754 1755 recover: 1756 /* 1757 * ENOSPC, or some other error. We may already have added some 1758 * blocks to the file, so we need to write these out to avoid 1759 * exposing stale data. 1760 * The page is currently locked and not marked for writeback 1761 */ 1762 bh = head; 1763 /* Recovery: lock and submit the mapped buffers */ 1764 do { 1765 if (buffer_mapped(bh) && buffer_dirty(bh) && 1766 !buffer_delay(bh)) { 1767 lock_buffer(bh); 1768 mark_buffer_async_write_endio(bh, handler); 1769 } else { 1770 /* 1771 * The buffer may have been set dirty during 1772 * attachment to a dirty page. 1773 */ 1774 clear_buffer_dirty(bh); 1775 } 1776 } while ((bh = bh->b_this_page) != head); 1777 SetPageError(page); 1778 BUG_ON(PageWriteback(page)); 1779 mapping_set_error(page->mapping, err); 1780 set_page_writeback(page); 1781 do { 1782 struct buffer_head *next = bh->b_this_page; 1783 if (buffer_async_write(bh)) { 1784 clear_buffer_dirty(bh); 1785 submit_bh(write_op, bh); 1786 nr_underway++; 1787 } 1788 bh = next; 1789 } while (bh != head); 1790 unlock_page(page); 1791 goto done; 1792 } 1793 1794 /* 1795 * If a page has any new buffers, zero them out here, and mark them uptodate 1796 * and dirty so they'll be written out (in order to prevent uninitialised 1797 * block data from leaking). And clear the new bit. 1798 */ 1799 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to) 1800 { 1801 unsigned int block_start, block_end; 1802 struct buffer_head *head, *bh; 1803 1804 BUG_ON(!PageLocked(page)); 1805 if (!page_has_buffers(page)) 1806 return; 1807 1808 bh = head = page_buffers(page); 1809 block_start = 0; 1810 do { 1811 block_end = block_start + bh->b_size; 1812 1813 if (buffer_new(bh)) { 1814 if (block_end > from && block_start < to) { 1815 if (!PageUptodate(page)) { 1816 unsigned start, size; 1817 1818 start = max(from, block_start); 1819 size = min(to, block_end) - start; 1820 1821 zero_user(page, start, size); 1822 set_buffer_uptodate(bh); 1823 } 1824 1825 clear_buffer_new(bh); 1826 mark_buffer_dirty(bh); 1827 } 1828 } 1829 1830 block_start = block_end; 1831 bh = bh->b_this_page; 1832 } while (bh != head); 1833 } 1834 EXPORT_SYMBOL(page_zero_new_buffers); 1835 1836 int block_prepare_write(struct page *page, unsigned from, unsigned to, 1837 get_block_t *get_block) 1838 { 1839 struct inode *inode = page->mapping->host; 1840 unsigned block_start, block_end; 1841 sector_t block; 1842 int err = 0; 1843 unsigned blocksize, bbits; 1844 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 1845 1846 BUG_ON(!PageLocked(page)); 1847 BUG_ON(from > PAGE_CACHE_SIZE); 1848 BUG_ON(to > PAGE_CACHE_SIZE); 1849 BUG_ON(from > to); 1850 1851 blocksize = 1 << inode->i_blkbits; 1852 if (!page_has_buffers(page)) 1853 create_empty_buffers(page, blocksize, 0); 1854 head = page_buffers(page); 1855 1856 bbits = inode->i_blkbits; 1857 block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits); 1858 1859 for(bh = head, block_start = 0; bh != head || !block_start; 1860 block++, block_start=block_end, bh = bh->b_this_page) { 1861 block_end = block_start + blocksize; 1862 if (block_end <= from || block_start >= to) { 1863 if (PageUptodate(page)) { 1864 if (!buffer_uptodate(bh)) 1865 set_buffer_uptodate(bh); 1866 } 1867 continue; 1868 } 1869 if (buffer_new(bh)) 1870 clear_buffer_new(bh); 1871 if (!buffer_mapped(bh)) { 1872 WARN_ON(bh->b_size != blocksize); 1873 err = get_block(inode, block, bh, 1); 1874 if (err) 1875 break; 1876 if (buffer_new(bh)) { 1877 unmap_underlying_metadata(bh->b_bdev, 1878 bh->b_blocknr); 1879 if (PageUptodate(page)) { 1880 clear_buffer_new(bh); 1881 set_buffer_uptodate(bh); 1882 mark_buffer_dirty(bh); 1883 continue; 1884 } 1885 if (block_end > to || block_start < from) 1886 zero_user_segments(page, 1887 to, block_end, 1888 block_start, from); 1889 continue; 1890 } 1891 } 1892 if (PageUptodate(page)) { 1893 if (!buffer_uptodate(bh)) 1894 set_buffer_uptodate(bh); 1895 continue; 1896 } 1897 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 1898 !buffer_unwritten(bh) && 1899 (block_start < from || block_end > to)) { 1900 ll_rw_block(READ, 1, &bh); 1901 *wait_bh++=bh; 1902 } 1903 } 1904 /* 1905 * If we issued read requests - let them complete. 1906 */ 1907 while(wait_bh > wait) { 1908 wait_on_buffer(*--wait_bh); 1909 if (!buffer_uptodate(*wait_bh)) 1910 err = -EIO; 1911 } 1912 if (unlikely(err)) { 1913 page_zero_new_buffers(page, from, to); 1914 ClearPageUptodate(page); 1915 } 1916 return err; 1917 } 1918 EXPORT_SYMBOL(block_prepare_write); 1919 1920 static int __block_commit_write(struct inode *inode, struct page *page, 1921 unsigned from, unsigned to) 1922 { 1923 unsigned block_start, block_end; 1924 int partial = 0; 1925 unsigned blocksize; 1926 struct buffer_head *bh, *head; 1927 1928 blocksize = 1 << inode->i_blkbits; 1929 1930 for(bh = head = page_buffers(page), block_start = 0; 1931 bh != head || !block_start; 1932 block_start=block_end, bh = bh->b_this_page) { 1933 block_end = block_start + blocksize; 1934 if (block_end <= from || block_start >= to) { 1935 if (!buffer_uptodate(bh)) 1936 partial = 1; 1937 } else { 1938 set_buffer_uptodate(bh); 1939 mark_buffer_dirty(bh); 1940 } 1941 clear_buffer_new(bh); 1942 } 1943 1944 /* 1945 * If this is a partial write which happened to make all buffers 1946 * uptodate then we can optimize away a bogus readpage() for 1947 * the next read(). Here we 'discover' whether the page went 1948 * uptodate as a result of this (potentially partial) write. 1949 */ 1950 if (!partial) 1951 SetPageUptodate(page); 1952 return 0; 1953 } 1954 1955 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 1956 get_block_t *get_block) 1957 { 1958 unsigned start = pos & (PAGE_CACHE_SIZE - 1); 1959 1960 return block_prepare_write(page, start, start + len, get_block); 1961 } 1962 EXPORT_SYMBOL(__block_write_begin); 1963 1964 /* 1965 * Filesystems implementing the new truncate sequence should use the 1966 * _newtrunc postfix variant which won't incorrectly call vmtruncate. 1967 * The filesystem needs to handle block truncation upon failure. 1968 */ 1969 int block_write_begin_newtrunc(struct file *file, struct address_space *mapping, 1970 loff_t pos, unsigned len, unsigned flags, 1971 struct page **pagep, void **fsdata, 1972 get_block_t *get_block) 1973 { 1974 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 1975 struct page *page; 1976 int status; 1977 1978 page = grab_cache_page_write_begin(mapping, index, flags); 1979 if (!page) 1980 return -ENOMEM; 1981 1982 status = __block_write_begin(page, pos, len, get_block); 1983 if (unlikely(status)) { 1984 unlock_page(page); 1985 page_cache_release(page); 1986 page = NULL; 1987 } 1988 1989 *pagep = page; 1990 return status; 1991 } 1992 EXPORT_SYMBOL(block_write_begin_newtrunc); 1993 1994 /* 1995 * block_write_begin takes care of the basic task of block allocation and 1996 * bringing partial write blocks uptodate first. 1997 * 1998 * If *pagep is not NULL, then block_write_begin uses the locked page 1999 * at *pagep rather than allocating its own. In this case, the page will 2000 * not be unlocked or deallocated on failure. 2001 */ 2002 int block_write_begin(struct file *file, struct address_space *mapping, 2003 loff_t pos, unsigned len, unsigned flags, 2004 struct page **pagep, void **fsdata, 2005 get_block_t *get_block) 2006 { 2007 int ret; 2008 2009 ret = block_write_begin_newtrunc(file, mapping, pos, len, flags, 2010 pagep, fsdata, get_block); 2011 2012 /* 2013 * prepare_write() may have instantiated a few blocks 2014 * outside i_size. Trim these off again. Don't need 2015 * i_size_read because we hold i_mutex. 2016 * 2017 * Filesystems which pass down their own page also cannot 2018 * call into vmtruncate here because it would lead to lock 2019 * inversion problems (*pagep is locked). This is a further 2020 * example of where the old truncate sequence is inadequate. 2021 */ 2022 if (unlikely(ret) && *pagep == NULL) { 2023 loff_t isize = mapping->host->i_size; 2024 if (pos + len > isize) 2025 vmtruncate(mapping->host, isize); 2026 } 2027 2028 return ret; 2029 } 2030 EXPORT_SYMBOL(block_write_begin); 2031 2032 int block_write_end(struct file *file, struct address_space *mapping, 2033 loff_t pos, unsigned len, unsigned copied, 2034 struct page *page, void *fsdata) 2035 { 2036 struct inode *inode = mapping->host; 2037 unsigned start; 2038 2039 start = pos & (PAGE_CACHE_SIZE - 1); 2040 2041 if (unlikely(copied < len)) { 2042 /* 2043 * The buffers that were written will now be uptodate, so we 2044 * don't have to worry about a readpage reading them and 2045 * overwriting a partial write. However if we have encountered 2046 * a short write and only partially written into a buffer, it 2047 * will not be marked uptodate, so a readpage might come in and 2048 * destroy our partial write. 2049 * 2050 * Do the simplest thing, and just treat any short write to a 2051 * non uptodate page as a zero-length write, and force the 2052 * caller to redo the whole thing. 2053 */ 2054 if (!PageUptodate(page)) 2055 copied = 0; 2056 2057 page_zero_new_buffers(page, start+copied, start+len); 2058 } 2059 flush_dcache_page(page); 2060 2061 /* This could be a short (even 0-length) commit */ 2062 __block_commit_write(inode, page, start, start+copied); 2063 2064 return copied; 2065 } 2066 EXPORT_SYMBOL(block_write_end); 2067 2068 int generic_write_end(struct file *file, struct address_space *mapping, 2069 loff_t pos, unsigned len, unsigned copied, 2070 struct page *page, void *fsdata) 2071 { 2072 struct inode *inode = mapping->host; 2073 int i_size_changed = 0; 2074 2075 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2076 2077 /* 2078 * No need to use i_size_read() here, the i_size 2079 * cannot change under us because we hold i_mutex. 2080 * 2081 * But it's important to update i_size while still holding page lock: 2082 * page writeout could otherwise come in and zero beyond i_size. 2083 */ 2084 if (pos+copied > inode->i_size) { 2085 i_size_write(inode, pos+copied); 2086 i_size_changed = 1; 2087 } 2088 2089 unlock_page(page); 2090 page_cache_release(page); 2091 2092 /* 2093 * Don't mark the inode dirty under page lock. First, it unnecessarily 2094 * makes the holding time of page lock longer. Second, it forces lock 2095 * ordering of page lock and transaction start for journaling 2096 * filesystems. 2097 */ 2098 if (i_size_changed) 2099 mark_inode_dirty(inode); 2100 2101 return copied; 2102 } 2103 EXPORT_SYMBOL(generic_write_end); 2104 2105 /* 2106 * block_is_partially_uptodate checks whether buffers within a page are 2107 * uptodate or not. 2108 * 2109 * Returns true if all buffers which correspond to a file portion 2110 * we want to read are uptodate. 2111 */ 2112 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc, 2113 unsigned long from) 2114 { 2115 struct inode *inode = page->mapping->host; 2116 unsigned block_start, block_end, blocksize; 2117 unsigned to; 2118 struct buffer_head *bh, *head; 2119 int ret = 1; 2120 2121 if (!page_has_buffers(page)) 2122 return 0; 2123 2124 blocksize = 1 << inode->i_blkbits; 2125 to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count); 2126 to = from + to; 2127 if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize) 2128 return 0; 2129 2130 head = page_buffers(page); 2131 bh = head; 2132 block_start = 0; 2133 do { 2134 block_end = block_start + blocksize; 2135 if (block_end > from && block_start < to) { 2136 if (!buffer_uptodate(bh)) { 2137 ret = 0; 2138 break; 2139 } 2140 if (block_end >= to) 2141 break; 2142 } 2143 block_start = block_end; 2144 bh = bh->b_this_page; 2145 } while (bh != head); 2146 2147 return ret; 2148 } 2149 EXPORT_SYMBOL(block_is_partially_uptodate); 2150 2151 /* 2152 * Generic "read page" function for block devices that have the normal 2153 * get_block functionality. This is most of the block device filesystems. 2154 * Reads the page asynchronously --- the unlock_buffer() and 2155 * set/clear_buffer_uptodate() functions propagate buffer state into the 2156 * page struct once IO has completed. 2157 */ 2158 int block_read_full_page(struct page *page, get_block_t *get_block) 2159 { 2160 struct inode *inode = page->mapping->host; 2161 sector_t iblock, lblock; 2162 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2163 unsigned int blocksize; 2164 int nr, i; 2165 int fully_mapped = 1; 2166 2167 BUG_ON(!PageLocked(page)); 2168 blocksize = 1 << inode->i_blkbits; 2169 if (!page_has_buffers(page)) 2170 create_empty_buffers(page, blocksize, 0); 2171 head = page_buffers(page); 2172 2173 iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2174 lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits; 2175 bh = head; 2176 nr = 0; 2177 i = 0; 2178 2179 do { 2180 if (buffer_uptodate(bh)) 2181 continue; 2182 2183 if (!buffer_mapped(bh)) { 2184 int err = 0; 2185 2186 fully_mapped = 0; 2187 if (iblock < lblock) { 2188 WARN_ON(bh->b_size != blocksize); 2189 err = get_block(inode, iblock, bh, 0); 2190 if (err) 2191 SetPageError(page); 2192 } 2193 if (!buffer_mapped(bh)) { 2194 zero_user(page, i * blocksize, blocksize); 2195 if (!err) 2196 set_buffer_uptodate(bh); 2197 continue; 2198 } 2199 /* 2200 * get_block() might have updated the buffer 2201 * synchronously 2202 */ 2203 if (buffer_uptodate(bh)) 2204 continue; 2205 } 2206 arr[nr++] = bh; 2207 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2208 2209 if (fully_mapped) 2210 SetPageMappedToDisk(page); 2211 2212 if (!nr) { 2213 /* 2214 * All buffers are uptodate - we can set the page uptodate 2215 * as well. But not if get_block() returned an error. 2216 */ 2217 if (!PageError(page)) 2218 SetPageUptodate(page); 2219 unlock_page(page); 2220 return 0; 2221 } 2222 2223 /* Stage two: lock the buffers */ 2224 for (i = 0; i < nr; i++) { 2225 bh = arr[i]; 2226 lock_buffer(bh); 2227 mark_buffer_async_read(bh); 2228 } 2229 2230 /* 2231 * Stage 3: start the IO. Check for uptodateness 2232 * inside the buffer lock in case another process reading 2233 * the underlying blockdev brought it uptodate (the sct fix). 2234 */ 2235 for (i = 0; i < nr; i++) { 2236 bh = arr[i]; 2237 if (buffer_uptodate(bh)) 2238 end_buffer_async_read(bh, 1); 2239 else 2240 submit_bh(READ, bh); 2241 } 2242 return 0; 2243 } 2244 EXPORT_SYMBOL(block_read_full_page); 2245 2246 /* utility function for filesystems that need to do work on expanding 2247 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2248 * deal with the hole. 2249 */ 2250 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2251 { 2252 struct address_space *mapping = inode->i_mapping; 2253 struct page *page; 2254 void *fsdata; 2255 int err; 2256 2257 err = inode_newsize_ok(inode, size); 2258 if (err) 2259 goto out; 2260 2261 err = pagecache_write_begin(NULL, mapping, size, 0, 2262 AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND, 2263 &page, &fsdata); 2264 if (err) 2265 goto out; 2266 2267 err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata); 2268 BUG_ON(err > 0); 2269 2270 out: 2271 return err; 2272 } 2273 EXPORT_SYMBOL(generic_cont_expand_simple); 2274 2275 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2276 loff_t pos, loff_t *bytes) 2277 { 2278 struct inode *inode = mapping->host; 2279 unsigned blocksize = 1 << inode->i_blkbits; 2280 struct page *page; 2281 void *fsdata; 2282 pgoff_t index, curidx; 2283 loff_t curpos; 2284 unsigned zerofrom, offset, len; 2285 int err = 0; 2286 2287 index = pos >> PAGE_CACHE_SHIFT; 2288 offset = pos & ~PAGE_CACHE_MASK; 2289 2290 while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) { 2291 zerofrom = curpos & ~PAGE_CACHE_MASK; 2292 if (zerofrom & (blocksize-1)) { 2293 *bytes |= (blocksize-1); 2294 (*bytes)++; 2295 } 2296 len = PAGE_CACHE_SIZE - zerofrom; 2297 2298 err = pagecache_write_begin(file, mapping, curpos, len, 2299 AOP_FLAG_UNINTERRUPTIBLE, 2300 &page, &fsdata); 2301 if (err) 2302 goto out; 2303 zero_user(page, zerofrom, len); 2304 err = pagecache_write_end(file, mapping, curpos, len, len, 2305 page, fsdata); 2306 if (err < 0) 2307 goto out; 2308 BUG_ON(err != len); 2309 err = 0; 2310 2311 balance_dirty_pages_ratelimited(mapping); 2312 } 2313 2314 /* page covers the boundary, find the boundary offset */ 2315 if (index == curidx) { 2316 zerofrom = curpos & ~PAGE_CACHE_MASK; 2317 /* if we will expand the thing last block will be filled */ 2318 if (offset <= zerofrom) { 2319 goto out; 2320 } 2321 if (zerofrom & (blocksize-1)) { 2322 *bytes |= (blocksize-1); 2323 (*bytes)++; 2324 } 2325 len = offset - zerofrom; 2326 2327 err = pagecache_write_begin(file, mapping, curpos, len, 2328 AOP_FLAG_UNINTERRUPTIBLE, 2329 &page, &fsdata); 2330 if (err) 2331 goto out; 2332 zero_user(page, zerofrom, len); 2333 err = pagecache_write_end(file, mapping, curpos, len, len, 2334 page, fsdata); 2335 if (err < 0) 2336 goto out; 2337 BUG_ON(err != len); 2338 err = 0; 2339 } 2340 out: 2341 return err; 2342 } 2343 2344 /* 2345 * For moronic filesystems that do not allow holes in file. 2346 * We may have to extend the file. 2347 */ 2348 int cont_write_begin(struct file *file, struct address_space *mapping, 2349 loff_t pos, unsigned len, unsigned flags, 2350 struct page **pagep, void **fsdata, 2351 get_block_t *get_block, loff_t *bytes) 2352 { 2353 struct inode *inode = mapping->host; 2354 unsigned blocksize = 1 << inode->i_blkbits; 2355 unsigned zerofrom; 2356 int err; 2357 2358 err = cont_expand_zero(file, mapping, pos, bytes); 2359 if (err) 2360 goto out; 2361 2362 zerofrom = *bytes & ~PAGE_CACHE_MASK; 2363 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2364 *bytes |= (blocksize-1); 2365 (*bytes)++; 2366 } 2367 2368 *pagep = NULL; 2369 err = block_write_begin_newtrunc(file, mapping, pos, len, 2370 flags, pagep, fsdata, get_block); 2371 out: 2372 return err; 2373 } 2374 EXPORT_SYMBOL(cont_write_begin); 2375 2376 int block_commit_write(struct page *page, unsigned from, unsigned to) 2377 { 2378 struct inode *inode = page->mapping->host; 2379 __block_commit_write(inode,page,from,to); 2380 return 0; 2381 } 2382 EXPORT_SYMBOL(block_commit_write); 2383 2384 /* 2385 * block_page_mkwrite() is not allowed to change the file size as it gets 2386 * called from a page fault handler when a page is first dirtied. Hence we must 2387 * be careful to check for EOF conditions here. We set the page up correctly 2388 * for a written page which means we get ENOSPC checking when writing into 2389 * holes and correct delalloc and unwritten extent mapping on filesystems that 2390 * support these features. 2391 * 2392 * We are not allowed to take the i_mutex here so we have to play games to 2393 * protect against truncate races as the page could now be beyond EOF. Because 2394 * truncate writes the inode size before removing pages, once we have the 2395 * page lock we can determine safely if the page is beyond EOF. If it is not 2396 * beyond EOF, then the page is guaranteed safe against truncation until we 2397 * unlock the page. 2398 */ 2399 int 2400 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2401 get_block_t get_block) 2402 { 2403 struct page *page = vmf->page; 2404 struct inode *inode = vma->vm_file->f_path.dentry->d_inode; 2405 unsigned long end; 2406 loff_t size; 2407 int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */ 2408 2409 lock_page(page); 2410 size = i_size_read(inode); 2411 if ((page->mapping != inode->i_mapping) || 2412 (page_offset(page) > size)) { 2413 /* page got truncated out from underneath us */ 2414 unlock_page(page); 2415 goto out; 2416 } 2417 2418 /* page is wholly or partially inside EOF */ 2419 if (((page->index + 1) << PAGE_CACHE_SHIFT) > size) 2420 end = size & ~PAGE_CACHE_MASK; 2421 else 2422 end = PAGE_CACHE_SIZE; 2423 2424 ret = block_prepare_write(page, 0, end, get_block); 2425 if (!ret) 2426 ret = block_commit_write(page, 0, end); 2427 2428 if (unlikely(ret)) { 2429 unlock_page(page); 2430 if (ret == -ENOMEM) 2431 ret = VM_FAULT_OOM; 2432 else /* -ENOSPC, -EIO, etc */ 2433 ret = VM_FAULT_SIGBUS; 2434 } else 2435 ret = VM_FAULT_LOCKED; 2436 2437 out: 2438 return ret; 2439 } 2440 EXPORT_SYMBOL(block_page_mkwrite); 2441 2442 /* 2443 * nobh_write_begin()'s prereads are special: the buffer_heads are freed 2444 * immediately, while under the page lock. So it needs a special end_io 2445 * handler which does not touch the bh after unlocking it. 2446 */ 2447 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate) 2448 { 2449 __end_buffer_read_notouch(bh, uptodate); 2450 } 2451 2452 /* 2453 * Attach the singly-linked list of buffers created by nobh_write_begin, to 2454 * the page (converting it to circular linked list and taking care of page 2455 * dirty races). 2456 */ 2457 static void attach_nobh_buffers(struct page *page, struct buffer_head *head) 2458 { 2459 struct buffer_head *bh; 2460 2461 BUG_ON(!PageLocked(page)); 2462 2463 spin_lock(&page->mapping->private_lock); 2464 bh = head; 2465 do { 2466 if (PageDirty(page)) 2467 set_buffer_dirty(bh); 2468 if (!bh->b_this_page) 2469 bh->b_this_page = head; 2470 bh = bh->b_this_page; 2471 } while (bh != head); 2472 attach_page_buffers(page, head); 2473 spin_unlock(&page->mapping->private_lock); 2474 } 2475 2476 /* 2477 * On entry, the page is fully not uptodate. 2478 * On exit the page is fully uptodate in the areas outside (from,to) 2479 * The filesystem needs to handle block truncation upon failure. 2480 */ 2481 int nobh_write_begin(struct address_space *mapping, 2482 loff_t pos, unsigned len, unsigned flags, 2483 struct page **pagep, void **fsdata, 2484 get_block_t *get_block) 2485 { 2486 struct inode *inode = mapping->host; 2487 const unsigned blkbits = inode->i_blkbits; 2488 const unsigned blocksize = 1 << blkbits; 2489 struct buffer_head *head, *bh; 2490 struct page *page; 2491 pgoff_t index; 2492 unsigned from, to; 2493 unsigned block_in_page; 2494 unsigned block_start, block_end; 2495 sector_t block_in_file; 2496 int nr_reads = 0; 2497 int ret = 0; 2498 int is_mapped_to_disk = 1; 2499 2500 index = pos >> PAGE_CACHE_SHIFT; 2501 from = pos & (PAGE_CACHE_SIZE - 1); 2502 to = from + len; 2503 2504 page = grab_cache_page_write_begin(mapping, index, flags); 2505 if (!page) 2506 return -ENOMEM; 2507 *pagep = page; 2508 *fsdata = NULL; 2509 2510 if (page_has_buffers(page)) { 2511 unlock_page(page); 2512 page_cache_release(page); 2513 *pagep = NULL; 2514 return block_write_begin_newtrunc(NULL, mapping, pos, len, 2515 flags, pagep, fsdata, get_block); 2516 } 2517 2518 if (PageMappedToDisk(page)) 2519 return 0; 2520 2521 /* 2522 * Allocate buffers so that we can keep track of state, and potentially 2523 * attach them to the page if an error occurs. In the common case of 2524 * no error, they will just be freed again without ever being attached 2525 * to the page (which is all OK, because we're under the page lock). 2526 * 2527 * Be careful: the buffer linked list is a NULL terminated one, rather 2528 * than the circular one we're used to. 2529 */ 2530 head = alloc_page_buffers(page, blocksize, 0); 2531 if (!head) { 2532 ret = -ENOMEM; 2533 goto out_release; 2534 } 2535 2536 block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits); 2537 2538 /* 2539 * We loop across all blocks in the page, whether or not they are 2540 * part of the affected region. This is so we can discover if the 2541 * page is fully mapped-to-disk. 2542 */ 2543 for (block_start = 0, block_in_page = 0, bh = head; 2544 block_start < PAGE_CACHE_SIZE; 2545 block_in_page++, block_start += blocksize, bh = bh->b_this_page) { 2546 int create; 2547 2548 block_end = block_start + blocksize; 2549 bh->b_state = 0; 2550 create = 1; 2551 if (block_start >= to) 2552 create = 0; 2553 ret = get_block(inode, block_in_file + block_in_page, 2554 bh, create); 2555 if (ret) 2556 goto failed; 2557 if (!buffer_mapped(bh)) 2558 is_mapped_to_disk = 0; 2559 if (buffer_new(bh)) 2560 unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr); 2561 if (PageUptodate(page)) { 2562 set_buffer_uptodate(bh); 2563 continue; 2564 } 2565 if (buffer_new(bh) || !buffer_mapped(bh)) { 2566 zero_user_segments(page, block_start, from, 2567 to, block_end); 2568 continue; 2569 } 2570 if (buffer_uptodate(bh)) 2571 continue; /* reiserfs does this */ 2572 if (block_start < from || block_end > to) { 2573 lock_buffer(bh); 2574 bh->b_end_io = end_buffer_read_nobh; 2575 submit_bh(READ, bh); 2576 nr_reads++; 2577 } 2578 } 2579 2580 if (nr_reads) { 2581 /* 2582 * The page is locked, so these buffers are protected from 2583 * any VM or truncate activity. Hence we don't need to care 2584 * for the buffer_head refcounts. 2585 */ 2586 for (bh = head; bh; bh = bh->b_this_page) { 2587 wait_on_buffer(bh); 2588 if (!buffer_uptodate(bh)) 2589 ret = -EIO; 2590 } 2591 if (ret) 2592 goto failed; 2593 } 2594 2595 if (is_mapped_to_disk) 2596 SetPageMappedToDisk(page); 2597 2598 *fsdata = head; /* to be released by nobh_write_end */ 2599 2600 return 0; 2601 2602 failed: 2603 BUG_ON(!ret); 2604 /* 2605 * Error recovery is a bit difficult. We need to zero out blocks that 2606 * were newly allocated, and dirty them to ensure they get written out. 2607 * Buffers need to be attached to the page at this point, otherwise 2608 * the handling of potential IO errors during writeout would be hard 2609 * (could try doing synchronous writeout, but what if that fails too?) 2610 */ 2611 attach_nobh_buffers(page, head); 2612 page_zero_new_buffers(page, from, to); 2613 2614 out_release: 2615 unlock_page(page); 2616 page_cache_release(page); 2617 *pagep = NULL; 2618 2619 return ret; 2620 } 2621 EXPORT_SYMBOL(nobh_write_begin); 2622 2623 int nobh_write_end(struct file *file, struct address_space *mapping, 2624 loff_t pos, unsigned len, unsigned copied, 2625 struct page *page, void *fsdata) 2626 { 2627 struct inode *inode = page->mapping->host; 2628 struct buffer_head *head = fsdata; 2629 struct buffer_head *bh; 2630 BUG_ON(fsdata != NULL && page_has_buffers(page)); 2631 2632 if (unlikely(copied < len) && head) 2633 attach_nobh_buffers(page, head); 2634 if (page_has_buffers(page)) 2635 return generic_write_end(file, mapping, pos, len, 2636 copied, page, fsdata); 2637 2638 SetPageUptodate(page); 2639 set_page_dirty(page); 2640 if (pos+copied > inode->i_size) { 2641 i_size_write(inode, pos+copied); 2642 mark_inode_dirty(inode); 2643 } 2644 2645 unlock_page(page); 2646 page_cache_release(page); 2647 2648 while (head) { 2649 bh = head; 2650 head = head->b_this_page; 2651 free_buffer_head(bh); 2652 } 2653 2654 return copied; 2655 } 2656 EXPORT_SYMBOL(nobh_write_end); 2657 2658 /* 2659 * nobh_writepage() - based on block_full_write_page() except 2660 * that it tries to operate without attaching bufferheads to 2661 * the page. 2662 */ 2663 int nobh_writepage(struct page *page, get_block_t *get_block, 2664 struct writeback_control *wbc) 2665 { 2666 struct inode * const inode = page->mapping->host; 2667 loff_t i_size = i_size_read(inode); 2668 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2669 unsigned offset; 2670 int ret; 2671 2672 /* Is the page fully inside i_size? */ 2673 if (page->index < end_index) 2674 goto out; 2675 2676 /* Is the page fully outside i_size? (truncate in progress) */ 2677 offset = i_size & (PAGE_CACHE_SIZE-1); 2678 if (page->index >= end_index+1 || !offset) { 2679 /* 2680 * The page may have dirty, unmapped buffers. For example, 2681 * they may have been added in ext3_writepage(). Make them 2682 * freeable here, so the page does not leak. 2683 */ 2684 #if 0 2685 /* Not really sure about this - do we need this ? */ 2686 if (page->mapping->a_ops->invalidatepage) 2687 page->mapping->a_ops->invalidatepage(page, offset); 2688 #endif 2689 unlock_page(page); 2690 return 0; /* don't care */ 2691 } 2692 2693 /* 2694 * The page straddles i_size. It must be zeroed out on each and every 2695 * writepage invocation because it may be mmapped. "A file is mapped 2696 * in multiples of the page size. For a file that is not a multiple of 2697 * the page size, the remaining memory is zeroed when mapped, and 2698 * writes to that region are not written out to the file." 2699 */ 2700 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2701 out: 2702 ret = mpage_writepage(page, get_block, wbc); 2703 if (ret == -EAGAIN) 2704 ret = __block_write_full_page(inode, page, get_block, wbc, 2705 end_buffer_async_write); 2706 return ret; 2707 } 2708 EXPORT_SYMBOL(nobh_writepage); 2709 2710 int nobh_truncate_page(struct address_space *mapping, 2711 loff_t from, get_block_t *get_block) 2712 { 2713 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2714 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2715 unsigned blocksize; 2716 sector_t iblock; 2717 unsigned length, pos; 2718 struct inode *inode = mapping->host; 2719 struct page *page; 2720 struct buffer_head map_bh; 2721 int err; 2722 2723 blocksize = 1 << inode->i_blkbits; 2724 length = offset & (blocksize - 1); 2725 2726 /* Block boundary? Nothing to do */ 2727 if (!length) 2728 return 0; 2729 2730 length = blocksize - length; 2731 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2732 2733 page = grab_cache_page(mapping, index); 2734 err = -ENOMEM; 2735 if (!page) 2736 goto out; 2737 2738 if (page_has_buffers(page)) { 2739 has_buffers: 2740 unlock_page(page); 2741 page_cache_release(page); 2742 return block_truncate_page(mapping, from, get_block); 2743 } 2744 2745 /* Find the buffer that contains "offset" */ 2746 pos = blocksize; 2747 while (offset >= pos) { 2748 iblock++; 2749 pos += blocksize; 2750 } 2751 2752 map_bh.b_size = blocksize; 2753 map_bh.b_state = 0; 2754 err = get_block(inode, iblock, &map_bh, 0); 2755 if (err) 2756 goto unlock; 2757 /* unmapped? It's a hole - nothing to do */ 2758 if (!buffer_mapped(&map_bh)) 2759 goto unlock; 2760 2761 /* Ok, it's mapped. Make sure it's up-to-date */ 2762 if (!PageUptodate(page)) { 2763 err = mapping->a_ops->readpage(NULL, page); 2764 if (err) { 2765 page_cache_release(page); 2766 goto out; 2767 } 2768 lock_page(page); 2769 if (!PageUptodate(page)) { 2770 err = -EIO; 2771 goto unlock; 2772 } 2773 if (page_has_buffers(page)) 2774 goto has_buffers; 2775 } 2776 zero_user(page, offset, length); 2777 set_page_dirty(page); 2778 err = 0; 2779 2780 unlock: 2781 unlock_page(page); 2782 page_cache_release(page); 2783 out: 2784 return err; 2785 } 2786 EXPORT_SYMBOL(nobh_truncate_page); 2787 2788 int block_truncate_page(struct address_space *mapping, 2789 loff_t from, get_block_t *get_block) 2790 { 2791 pgoff_t index = from >> PAGE_CACHE_SHIFT; 2792 unsigned offset = from & (PAGE_CACHE_SIZE-1); 2793 unsigned blocksize; 2794 sector_t iblock; 2795 unsigned length, pos; 2796 struct inode *inode = mapping->host; 2797 struct page *page; 2798 struct buffer_head *bh; 2799 int err; 2800 2801 blocksize = 1 << inode->i_blkbits; 2802 length = offset & (blocksize - 1); 2803 2804 /* Block boundary? Nothing to do */ 2805 if (!length) 2806 return 0; 2807 2808 length = blocksize - length; 2809 iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits); 2810 2811 page = grab_cache_page(mapping, index); 2812 err = -ENOMEM; 2813 if (!page) 2814 goto out; 2815 2816 if (!page_has_buffers(page)) 2817 create_empty_buffers(page, blocksize, 0); 2818 2819 /* Find the buffer that contains "offset" */ 2820 bh = page_buffers(page); 2821 pos = blocksize; 2822 while (offset >= pos) { 2823 bh = bh->b_this_page; 2824 iblock++; 2825 pos += blocksize; 2826 } 2827 2828 err = 0; 2829 if (!buffer_mapped(bh)) { 2830 WARN_ON(bh->b_size != blocksize); 2831 err = get_block(inode, iblock, bh, 0); 2832 if (err) 2833 goto unlock; 2834 /* unmapped? It's a hole - nothing to do */ 2835 if (!buffer_mapped(bh)) 2836 goto unlock; 2837 } 2838 2839 /* Ok, it's mapped. Make sure it's up-to-date */ 2840 if (PageUptodate(page)) 2841 set_buffer_uptodate(bh); 2842 2843 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2844 err = -EIO; 2845 ll_rw_block(READ, 1, &bh); 2846 wait_on_buffer(bh); 2847 /* Uhhuh. Read error. Complain and punt. */ 2848 if (!buffer_uptodate(bh)) 2849 goto unlock; 2850 } 2851 2852 zero_user(page, offset, length); 2853 mark_buffer_dirty(bh); 2854 err = 0; 2855 2856 unlock: 2857 unlock_page(page); 2858 page_cache_release(page); 2859 out: 2860 return err; 2861 } 2862 EXPORT_SYMBOL(block_truncate_page); 2863 2864 /* 2865 * The generic ->writepage function for buffer-backed address_spaces 2866 * this form passes in the end_io handler used to finish the IO. 2867 */ 2868 int block_write_full_page_endio(struct page *page, get_block_t *get_block, 2869 struct writeback_control *wbc, bh_end_io_t *handler) 2870 { 2871 struct inode * const inode = page->mapping->host; 2872 loff_t i_size = i_size_read(inode); 2873 const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2874 unsigned offset; 2875 2876 /* Is the page fully inside i_size? */ 2877 if (page->index < end_index) 2878 return __block_write_full_page(inode, page, get_block, wbc, 2879 handler); 2880 2881 /* Is the page fully outside i_size? (truncate in progress) */ 2882 offset = i_size & (PAGE_CACHE_SIZE-1); 2883 if (page->index >= end_index+1 || !offset) { 2884 /* 2885 * The page may have dirty, unmapped buffers. For example, 2886 * they may have been added in ext3_writepage(). Make them 2887 * freeable here, so the page does not leak. 2888 */ 2889 do_invalidatepage(page, 0); 2890 unlock_page(page); 2891 return 0; /* don't care */ 2892 } 2893 2894 /* 2895 * The page straddles i_size. It must be zeroed out on each and every 2896 * writepage invocation because it may be mmapped. "A file is mapped 2897 * in multiples of the page size. For a file that is not a multiple of 2898 * the page size, the remaining memory is zeroed when mapped, and 2899 * writes to that region are not written out to the file." 2900 */ 2901 zero_user_segment(page, offset, PAGE_CACHE_SIZE); 2902 return __block_write_full_page(inode, page, get_block, wbc, handler); 2903 } 2904 EXPORT_SYMBOL(block_write_full_page_endio); 2905 2906 /* 2907 * The generic ->writepage function for buffer-backed address_spaces 2908 */ 2909 int block_write_full_page(struct page *page, get_block_t *get_block, 2910 struct writeback_control *wbc) 2911 { 2912 return block_write_full_page_endio(page, get_block, wbc, 2913 end_buffer_async_write); 2914 } 2915 EXPORT_SYMBOL(block_write_full_page); 2916 2917 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2918 get_block_t *get_block) 2919 { 2920 struct buffer_head tmp; 2921 struct inode *inode = mapping->host; 2922 tmp.b_state = 0; 2923 tmp.b_blocknr = 0; 2924 tmp.b_size = 1 << inode->i_blkbits; 2925 get_block(inode, block, &tmp, 0); 2926 return tmp.b_blocknr; 2927 } 2928 EXPORT_SYMBOL(generic_block_bmap); 2929 2930 static void end_bio_bh_io_sync(struct bio *bio, int err) 2931 { 2932 struct buffer_head *bh = bio->bi_private; 2933 2934 if (err == -EOPNOTSUPP) { 2935 set_bit(BIO_EOPNOTSUPP, &bio->bi_flags); 2936 set_bit(BH_Eopnotsupp, &bh->b_state); 2937 } 2938 2939 if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags))) 2940 set_bit(BH_Quiet, &bh->b_state); 2941 2942 bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags)); 2943 bio_put(bio); 2944 } 2945 2946 int submit_bh(int rw, struct buffer_head * bh) 2947 { 2948 struct bio *bio; 2949 int ret = 0; 2950 2951 BUG_ON(!buffer_locked(bh)); 2952 BUG_ON(!buffer_mapped(bh)); 2953 BUG_ON(!bh->b_end_io); 2954 BUG_ON(buffer_delay(bh)); 2955 BUG_ON(buffer_unwritten(bh)); 2956 2957 /* 2958 * Mask in barrier bit for a write (could be either a WRITE or a 2959 * WRITE_SYNC 2960 */ 2961 if (buffer_ordered(bh) && (rw & WRITE)) 2962 rw |= WRITE_BARRIER; 2963 2964 /* 2965 * Only clear out a write error when rewriting 2966 */ 2967 if (test_set_buffer_req(bh) && (rw & WRITE)) 2968 clear_buffer_write_io_error(bh); 2969 2970 /* 2971 * from here on down, it's all bio -- do the initial mapping, 2972 * submit_bio -> generic_make_request may further map this bio around 2973 */ 2974 bio = bio_alloc(GFP_NOIO, 1); 2975 2976 bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2977 bio->bi_bdev = bh->b_bdev; 2978 bio->bi_io_vec[0].bv_page = bh->b_page; 2979 bio->bi_io_vec[0].bv_len = bh->b_size; 2980 bio->bi_io_vec[0].bv_offset = bh_offset(bh); 2981 2982 bio->bi_vcnt = 1; 2983 bio->bi_idx = 0; 2984 bio->bi_size = bh->b_size; 2985 2986 bio->bi_end_io = end_bio_bh_io_sync; 2987 bio->bi_private = bh; 2988 2989 bio_get(bio); 2990 submit_bio(rw, bio); 2991 2992 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2993 ret = -EOPNOTSUPP; 2994 2995 bio_put(bio); 2996 return ret; 2997 } 2998 EXPORT_SYMBOL(submit_bh); 2999 3000 /** 3001 * ll_rw_block: low-level access to block devices (DEPRECATED) 3002 * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead) 3003 * @nr: number of &struct buffer_heads in the array 3004 * @bhs: array of pointers to &struct buffer_head 3005 * 3006 * ll_rw_block() takes an array of pointers to &struct buffer_heads, and 3007 * requests an I/O operation on them, either a %READ or a %WRITE. The third 3008 * %SWRITE is like %WRITE only we make sure that the *current* data in buffers 3009 * are sent to disk. The fourth %READA option is described in the documentation 3010 * for generic_make_request() which ll_rw_block() calls. 3011 * 3012 * This function drops any buffer that it cannot get a lock on (with the 3013 * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be 3014 * clean when doing a write request, and any buffer that appears to be 3015 * up-to-date when doing read request. Further it marks as clean buffers that 3016 * are processed for writing (the buffer cache won't assume that they are 3017 * actually clean until the buffer gets unlocked). 3018 * 3019 * ll_rw_block sets b_end_io to simple completion handler that marks 3020 * the buffer up-to-date (if approriate), unlocks the buffer and wakes 3021 * any waiters. 3022 * 3023 * All of the buffers must be for the same device, and must also be a 3024 * multiple of the current approved size for the device. 3025 */ 3026 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[]) 3027 { 3028 int i; 3029 3030 for (i = 0; i < nr; i++) { 3031 struct buffer_head *bh = bhs[i]; 3032 3033 if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG) 3034 lock_buffer(bh); 3035 else if (!trylock_buffer(bh)) 3036 continue; 3037 3038 if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC || 3039 rw == SWRITE_SYNC_PLUG) { 3040 if (test_clear_buffer_dirty(bh)) { 3041 bh->b_end_io = end_buffer_write_sync; 3042 get_bh(bh); 3043 if (rw == SWRITE_SYNC) 3044 submit_bh(WRITE_SYNC, bh); 3045 else 3046 submit_bh(WRITE, bh); 3047 continue; 3048 } 3049 } else { 3050 if (!buffer_uptodate(bh)) { 3051 bh->b_end_io = end_buffer_read_sync; 3052 get_bh(bh); 3053 submit_bh(rw, bh); 3054 continue; 3055 } 3056 } 3057 unlock_buffer(bh); 3058 } 3059 } 3060 EXPORT_SYMBOL(ll_rw_block); 3061 3062 /* 3063 * For a data-integrity writeout, we need to wait upon any in-progress I/O 3064 * and then start new I/O and then wait upon it. The caller must have a ref on 3065 * the buffer_head. 3066 */ 3067 int sync_dirty_buffer(struct buffer_head *bh) 3068 { 3069 int ret = 0; 3070 3071 WARN_ON(atomic_read(&bh->b_count) < 1); 3072 lock_buffer(bh); 3073 if (test_clear_buffer_dirty(bh)) { 3074 get_bh(bh); 3075 bh->b_end_io = end_buffer_write_sync; 3076 ret = submit_bh(WRITE_SYNC, bh); 3077 wait_on_buffer(bh); 3078 if (buffer_eopnotsupp(bh)) { 3079 clear_buffer_eopnotsupp(bh); 3080 ret = -EOPNOTSUPP; 3081 } 3082 if (!ret && !buffer_uptodate(bh)) 3083 ret = -EIO; 3084 } else { 3085 unlock_buffer(bh); 3086 } 3087 return ret; 3088 } 3089 EXPORT_SYMBOL(sync_dirty_buffer); 3090 3091 /* 3092 * try_to_free_buffers() checks if all the buffers on this particular page 3093 * are unused, and releases them if so. 3094 * 3095 * Exclusion against try_to_free_buffers may be obtained by either 3096 * locking the page or by holding its mapping's private_lock. 3097 * 3098 * If the page is dirty but all the buffers are clean then we need to 3099 * be sure to mark the page clean as well. This is because the page 3100 * may be against a block device, and a later reattachment of buffers 3101 * to a dirty page will set *all* buffers dirty. Which would corrupt 3102 * filesystem data on the same device. 3103 * 3104 * The same applies to regular filesystem pages: if all the buffers are 3105 * clean then we set the page clean and proceed. To do that, we require 3106 * total exclusion from __set_page_dirty_buffers(). That is obtained with 3107 * private_lock. 3108 * 3109 * try_to_free_buffers() is non-blocking. 3110 */ 3111 static inline int buffer_busy(struct buffer_head *bh) 3112 { 3113 return atomic_read(&bh->b_count) | 3114 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 3115 } 3116 3117 static int 3118 drop_buffers(struct page *page, struct buffer_head **buffers_to_free) 3119 { 3120 struct buffer_head *head = page_buffers(page); 3121 struct buffer_head *bh; 3122 3123 bh = head; 3124 do { 3125 if (buffer_write_io_error(bh) && page->mapping) 3126 set_bit(AS_EIO, &page->mapping->flags); 3127 if (buffer_busy(bh)) 3128 goto failed; 3129 bh = bh->b_this_page; 3130 } while (bh != head); 3131 3132 do { 3133 struct buffer_head *next = bh->b_this_page; 3134 3135 if (bh->b_assoc_map) 3136 __remove_assoc_queue(bh); 3137 bh = next; 3138 } while (bh != head); 3139 *buffers_to_free = head; 3140 __clear_page_buffers(page); 3141 return 1; 3142 failed: 3143 return 0; 3144 } 3145 3146 int try_to_free_buffers(struct page *page) 3147 { 3148 struct address_space * const mapping = page->mapping; 3149 struct buffer_head *buffers_to_free = NULL; 3150 int ret = 0; 3151 3152 BUG_ON(!PageLocked(page)); 3153 if (PageWriteback(page)) 3154 return 0; 3155 3156 if (mapping == NULL) { /* can this still happen? */ 3157 ret = drop_buffers(page, &buffers_to_free); 3158 goto out; 3159 } 3160 3161 spin_lock(&mapping->private_lock); 3162 ret = drop_buffers(page, &buffers_to_free); 3163 3164 /* 3165 * If the filesystem writes its buffers by hand (eg ext3) 3166 * then we can have clean buffers against a dirty page. We 3167 * clean the page here; otherwise the VM will never notice 3168 * that the filesystem did any IO at all. 3169 * 3170 * Also, during truncate, discard_buffer will have marked all 3171 * the page's buffers clean. We discover that here and clean 3172 * the page also. 3173 * 3174 * private_lock must be held over this entire operation in order 3175 * to synchronise against __set_page_dirty_buffers and prevent the 3176 * dirty bit from being lost. 3177 */ 3178 if (ret) 3179 cancel_dirty_page(page, PAGE_CACHE_SIZE); 3180 spin_unlock(&mapping->private_lock); 3181 out: 3182 if (buffers_to_free) { 3183 struct buffer_head *bh = buffers_to_free; 3184 3185 do { 3186 struct buffer_head *next = bh->b_this_page; 3187 free_buffer_head(bh); 3188 bh = next; 3189 } while (bh != buffers_to_free); 3190 } 3191 return ret; 3192 } 3193 EXPORT_SYMBOL(try_to_free_buffers); 3194 3195 void block_sync_page(struct page *page) 3196 { 3197 struct address_space *mapping; 3198 3199 smp_mb(); 3200 mapping = page_mapping(page); 3201 if (mapping) 3202 blk_run_backing_dev(mapping->backing_dev_info, page); 3203 } 3204 EXPORT_SYMBOL(block_sync_page); 3205 3206 /* 3207 * There are no bdflush tunables left. But distributions are 3208 * still running obsolete flush daemons, so we terminate them here. 3209 * 3210 * Use of bdflush() is deprecated and will be removed in a future kernel. 3211 * The `flush-X' kernel threads fully replace bdflush daemons and this call. 3212 */ 3213 SYSCALL_DEFINE2(bdflush, int, func, long, data) 3214 { 3215 static int msg_count; 3216 3217 if (!capable(CAP_SYS_ADMIN)) 3218 return -EPERM; 3219 3220 if (msg_count < 5) { 3221 msg_count++; 3222 printk(KERN_INFO 3223 "warning: process `%s' used the obsolete bdflush" 3224 " system call\n", current->comm); 3225 printk(KERN_INFO "Fix your initscripts?\n"); 3226 } 3227 3228 if (func == 1) 3229 do_exit(0); 3230 return 0; 3231 } 3232 3233 /* 3234 * Buffer-head allocation 3235 */ 3236 static struct kmem_cache *bh_cachep; 3237 3238 /* 3239 * Once the number of bh's in the machine exceeds this level, we start 3240 * stripping them in writeback. 3241 */ 3242 static int max_buffer_heads; 3243 3244 int buffer_heads_over_limit; 3245 3246 struct bh_accounting { 3247 int nr; /* Number of live bh's */ 3248 int ratelimit; /* Limit cacheline bouncing */ 3249 }; 3250 3251 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3252 3253 static void recalc_bh_state(void) 3254 { 3255 int i; 3256 int tot = 0; 3257 3258 if (__get_cpu_var(bh_accounting).ratelimit++ < 4096) 3259 return; 3260 __get_cpu_var(bh_accounting).ratelimit = 0; 3261 for_each_online_cpu(i) 3262 tot += per_cpu(bh_accounting, i).nr; 3263 buffer_heads_over_limit = (tot > max_buffer_heads); 3264 } 3265 3266 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3267 { 3268 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3269 if (ret) { 3270 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3271 get_cpu_var(bh_accounting).nr++; 3272 recalc_bh_state(); 3273 put_cpu_var(bh_accounting); 3274 } 3275 return ret; 3276 } 3277 EXPORT_SYMBOL(alloc_buffer_head); 3278 3279 void free_buffer_head(struct buffer_head *bh) 3280 { 3281 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3282 kmem_cache_free(bh_cachep, bh); 3283 get_cpu_var(bh_accounting).nr--; 3284 recalc_bh_state(); 3285 put_cpu_var(bh_accounting); 3286 } 3287 EXPORT_SYMBOL(free_buffer_head); 3288 3289 static void buffer_exit_cpu(int cpu) 3290 { 3291 int i; 3292 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3293 3294 for (i = 0; i < BH_LRU_SIZE; i++) { 3295 brelse(b->bhs[i]); 3296 b->bhs[i] = NULL; 3297 } 3298 get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr; 3299 per_cpu(bh_accounting, cpu).nr = 0; 3300 put_cpu_var(bh_accounting); 3301 } 3302 3303 static int buffer_cpu_notify(struct notifier_block *self, 3304 unsigned long action, void *hcpu) 3305 { 3306 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) 3307 buffer_exit_cpu((unsigned long)hcpu); 3308 return NOTIFY_OK; 3309 } 3310 3311 /** 3312 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3313 * @bh: struct buffer_head 3314 * 3315 * Return true if the buffer is up-to-date and false, 3316 * with the buffer locked, if not. 3317 */ 3318 int bh_uptodate_or_lock(struct buffer_head *bh) 3319 { 3320 if (!buffer_uptodate(bh)) { 3321 lock_buffer(bh); 3322 if (!buffer_uptodate(bh)) 3323 return 0; 3324 unlock_buffer(bh); 3325 } 3326 return 1; 3327 } 3328 EXPORT_SYMBOL(bh_uptodate_or_lock); 3329 3330 /** 3331 * bh_submit_read - Submit a locked buffer for reading 3332 * @bh: struct buffer_head 3333 * 3334 * Returns zero on success and -EIO on error. 3335 */ 3336 int bh_submit_read(struct buffer_head *bh) 3337 { 3338 BUG_ON(!buffer_locked(bh)); 3339 3340 if (buffer_uptodate(bh)) { 3341 unlock_buffer(bh); 3342 return 0; 3343 } 3344 3345 get_bh(bh); 3346 bh->b_end_io = end_buffer_read_sync; 3347 submit_bh(READ, bh); 3348 wait_on_buffer(bh); 3349 if (buffer_uptodate(bh)) 3350 return 0; 3351 return -EIO; 3352 } 3353 EXPORT_SYMBOL(bh_submit_read); 3354 3355 void __init buffer_init(void) 3356 { 3357 int nrpages; 3358 3359 bh_cachep = kmem_cache_create("buffer_head", 3360 sizeof(struct buffer_head), 0, 3361 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3362 SLAB_MEM_SPREAD), 3363 NULL); 3364 3365 /* 3366 * Limit the bh occupancy to 10% of ZONE_NORMAL 3367 */ 3368 nrpages = (nr_free_buffer_pages() * 10) / 100; 3369 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3370 hotcpu_notifier(buffer_cpu_notify, 0); 3371 } 3372