xref: /openbmc/linux/fs/buffer.c (revision 6e1db88d536adcbbfe562b2d4b7d6425784fff12)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
279 	invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282 
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288 	struct zone *zone;
289 	int nid;
290 
291 	wakeup_flusher_threads(1024);
292 	yield();
293 
294 	for_each_online_node(nid) {
295 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 						gfp_zone(GFP_NOFS), NULL,
297 						&zone);
298 		if (zone)
299 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 						GFP_NOFS, NULL);
301 	}
302 }
303 
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 	unsigned long flags;
311 	struct buffer_head *first;
312 	struct buffer_head *tmp;
313 	struct page *page;
314 	int page_uptodate = 1;
315 
316 	BUG_ON(!buffer_async_read(bh));
317 
318 	page = bh->b_page;
319 	if (uptodate) {
320 		set_buffer_uptodate(bh);
321 	} else {
322 		clear_buffer_uptodate(bh);
323 		if (!quiet_error(bh))
324 			buffer_io_error(bh);
325 		SetPageError(page);
326 	}
327 
328 	/*
329 	 * Be _very_ careful from here on. Bad things can happen if
330 	 * two buffer heads end IO at almost the same time and both
331 	 * decide that the page is now completely done.
332 	 */
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 	clear_buffer_async_read(bh);
337 	unlock_buffer(bh);
338 	tmp = bh;
339 	do {
340 		if (!buffer_uptodate(tmp))
341 			page_uptodate = 0;
342 		if (buffer_async_read(tmp)) {
343 			BUG_ON(!buffer_locked(tmp));
344 			goto still_busy;
345 		}
346 		tmp = tmp->b_this_page;
347 	} while (tmp != bh);
348 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 	local_irq_restore(flags);
350 
351 	/*
352 	 * If none of the buffers had errors and they are all
353 	 * uptodate then we can set the page uptodate.
354 	 */
355 	if (page_uptodate && !PageError(page))
356 		SetPageUptodate(page);
357 	unlock_page(page);
358 	return;
359 
360 still_busy:
361 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 	local_irq_restore(flags);
363 	return;
364 }
365 
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 	char b[BDEVNAME_SIZE];
373 	unsigned long flags;
374 	struct buffer_head *first;
375 	struct buffer_head *tmp;
376 	struct page *page;
377 
378 	BUG_ON(!buffer_async_write(bh));
379 
380 	page = bh->b_page;
381 	if (uptodate) {
382 		set_buffer_uptodate(bh);
383 	} else {
384 		if (!quiet_error(bh)) {
385 			buffer_io_error(bh);
386 			printk(KERN_WARNING "lost page write due to "
387 					"I/O error on %s\n",
388 			       bdevname(bh->b_bdev, b));
389 		}
390 		set_bit(AS_EIO, &page->mapping->flags);
391 		set_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 		SetPageError(page);
394 	}
395 
396 	first = page_buffers(page);
397 	local_irq_save(flags);
398 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 	local_irq_restore(flags);
412 	end_page_writeback(page);
413 	return;
414 
415 still_busy:
416 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 	local_irq_restore(flags);
418 	return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421 
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 	bh->b_end_io = end_buffer_async_read;
446 	set_buffer_async_read(bh);
447 }
448 
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 					  bh_end_io_t *handler)
451 {
452 	bh->b_end_io = handler;
453 	set_buffer_async_write(bh);
454 }
455 
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461 
462 
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511 
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 	list_del_init(&bh->b_assoc_buffers);
518 	WARN_ON(!bh->b_assoc_map);
519 	if (buffer_write_io_error(bh))
520 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 	bh->b_assoc_map = NULL;
522 }
523 
524 int inode_has_buffers(struct inode *inode)
525 {
526 	return !list_empty(&inode->i_data.private_list);
527 }
528 
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 	struct buffer_head *bh;
542 	struct list_head *p;
543 	int err = 0;
544 
545 	spin_lock(lock);
546 repeat:
547 	list_for_each_prev(p, list) {
548 		bh = BH_ENTRY(p);
549 		if (buffer_locked(bh)) {
550 			get_bh(bh);
551 			spin_unlock(lock);
552 			wait_on_buffer(bh);
553 			if (!buffer_uptodate(bh))
554 				err = -EIO;
555 			brelse(bh);
556 			spin_lock(lock);
557 			goto repeat;
558 		}
559 	}
560 	spin_unlock(lock);
561 	return err;
562 }
563 
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 	char b[BDEVNAME_SIZE];
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 		printk(KERN_WARNING "Emergency Thaw on %s\n",
569 		       bdevname(sb->s_bdev, b));
570 }
571 
572 static void do_thaw_all(struct work_struct *work)
573 {
574 	iterate_supers(do_thaw_one, NULL);
575 	kfree(work);
576 	printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578 
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586 	struct work_struct *work;
587 
588 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 	if (work) {
590 		INIT_WORK(work, do_thaw_all);
591 		schedule_work(work);
592 	}
593 }
594 
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 	struct address_space *buffer_mapping = mapping->assoc_mapping;
609 
610 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 		return 0;
612 
613 	return fsync_buffers_list(&buffer_mapping->private_lock,
614 					&mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617 
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625 			sector_t bblock, unsigned blocksize)
626 {
627 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 	if (bh) {
629 		if (buffer_dirty(bh))
630 			ll_rw_block(WRITE, 1, &bh);
631 		put_bh(bh);
632 	}
633 }
634 
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 	struct address_space *mapping = inode->i_mapping;
638 	struct address_space *buffer_mapping = bh->b_page->mapping;
639 
640 	mark_buffer_dirty(bh);
641 	if (!mapping->assoc_mapping) {
642 		mapping->assoc_mapping = buffer_mapping;
643 	} else {
644 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 	}
646 	if (!bh->b_assoc_map) {
647 		spin_lock(&buffer_mapping->private_lock);
648 		list_move_tail(&bh->b_assoc_buffers,
649 				&mapping->private_list);
650 		bh->b_assoc_map = mapping;
651 		spin_unlock(&buffer_mapping->private_lock);
652 	}
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655 
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664 		struct address_space *mapping, int warn)
665 {
666 	spin_lock_irq(&mapping->tree_lock);
667 	if (page->mapping) {	/* Race with truncate? */
668 		WARN_ON_ONCE(warn && !PageUptodate(page));
669 		account_page_dirtied(page, mapping);
670 		radix_tree_tag_set(&mapping->page_tree,
671 				page_index(page), PAGECACHE_TAG_DIRTY);
672 	}
673 	spin_unlock_irq(&mapping->tree_lock);
674 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676 
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 	int newly_dirty;
705 	struct address_space *mapping = page_mapping(page);
706 
707 	if (unlikely(!mapping))
708 		return !TestSetPageDirty(page);
709 
710 	spin_lock(&mapping->private_lock);
711 	if (page_has_buffers(page)) {
712 		struct buffer_head *head = page_buffers(page);
713 		struct buffer_head *bh = head;
714 
715 		do {
716 			set_buffer_dirty(bh);
717 			bh = bh->b_this_page;
718 		} while (bh != head);
719 	}
720 	newly_dirty = !TestSetPageDirty(page);
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (newly_dirty)
724 		__set_page_dirty(page, mapping, 1);
725 	return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728 
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  *
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 	struct buffer_head *bh;
751 	struct list_head tmp;
752 	struct address_space *mapping, *prev_mapping = NULL;
753 	int err = 0, err2;
754 
755 	INIT_LIST_HEAD(&tmp);
756 
757 	spin_lock(lock);
758 	while (!list_empty(list)) {
759 		bh = BH_ENTRY(list->next);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh) || buffer_locked(bh)) {
766 			list_add(&bh->b_assoc_buffers, &tmp);
767 			bh->b_assoc_map = mapping;
768 			if (buffer_dirty(bh)) {
769 				get_bh(bh);
770 				spin_unlock(lock);
771 				/*
772 				 * Ensure any pending I/O completes so that
773 				 * ll_rw_block() actually writes the current
774 				 * contents - it is a noop if I/O is still in
775 				 * flight on potentially older contents.
776 				 */
777 				ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
778 
779 				/*
780 				 * Kick off IO for the previous mapping. Note
781 				 * that we will not run the very last mapping,
782 				 * wait_on_buffer() will do that for us
783 				 * through sync_buffer().
784 				 */
785 				if (prev_mapping && prev_mapping != mapping)
786 					blk_run_address_space(prev_mapping);
787 				prev_mapping = mapping;
788 
789 				brelse(bh);
790 				spin_lock(lock);
791 			}
792 		}
793 	}
794 
795 	while (!list_empty(&tmp)) {
796 		bh = BH_ENTRY(tmp.prev);
797 		get_bh(bh);
798 		mapping = bh->b_assoc_map;
799 		__remove_assoc_queue(bh);
800 		/* Avoid race with mark_buffer_dirty_inode() which does
801 		 * a lockless check and we rely on seeing the dirty bit */
802 		smp_mb();
803 		if (buffer_dirty(bh)) {
804 			list_add(&bh->b_assoc_buffers,
805 				 &mapping->private_list);
806 			bh->b_assoc_map = mapping;
807 		}
808 		spin_unlock(lock);
809 		wait_on_buffer(bh);
810 		if (!buffer_uptodate(bh))
811 			err = -EIO;
812 		brelse(bh);
813 		spin_lock(lock);
814 	}
815 
816 	spin_unlock(lock);
817 	err2 = osync_buffers_list(lock, list);
818 	if (err)
819 		return err;
820 	else
821 		return err2;
822 }
823 
824 /*
825  * Invalidate any and all dirty buffers on a given inode.  We are
826  * probably unmounting the fs, but that doesn't mean we have already
827  * done a sync().  Just drop the buffers from the inode list.
828  *
829  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
830  * assumes that all the buffers are against the blockdev.  Not true
831  * for reiserfs.
832  */
833 void invalidate_inode_buffers(struct inode *inode)
834 {
835 	if (inode_has_buffers(inode)) {
836 		struct address_space *mapping = &inode->i_data;
837 		struct list_head *list = &mapping->private_list;
838 		struct address_space *buffer_mapping = mapping->assoc_mapping;
839 
840 		spin_lock(&buffer_mapping->private_lock);
841 		while (!list_empty(list))
842 			__remove_assoc_queue(BH_ENTRY(list->next));
843 		spin_unlock(&buffer_mapping->private_lock);
844 	}
845 }
846 EXPORT_SYMBOL(invalidate_inode_buffers);
847 
848 /*
849  * Remove any clean buffers from the inode's buffer list.  This is called
850  * when we're trying to free the inode itself.  Those buffers can pin it.
851  *
852  * Returns true if all buffers were removed.
853  */
854 int remove_inode_buffers(struct inode *inode)
855 {
856 	int ret = 1;
857 
858 	if (inode_has_buffers(inode)) {
859 		struct address_space *mapping = &inode->i_data;
860 		struct list_head *list = &mapping->private_list;
861 		struct address_space *buffer_mapping = mapping->assoc_mapping;
862 
863 		spin_lock(&buffer_mapping->private_lock);
864 		while (!list_empty(list)) {
865 			struct buffer_head *bh = BH_ENTRY(list->next);
866 			if (buffer_dirty(bh)) {
867 				ret = 0;
868 				break;
869 			}
870 			__remove_assoc_queue(bh);
871 		}
872 		spin_unlock(&buffer_mapping->private_lock);
873 	}
874 	return ret;
875 }
876 
877 /*
878  * Create the appropriate buffers when given a page for data area and
879  * the size of each buffer.. Use the bh->b_this_page linked list to
880  * follow the buffers created.  Return NULL if unable to create more
881  * buffers.
882  *
883  * The retry flag is used to differentiate async IO (paging, swapping)
884  * which may not fail from ordinary buffer allocations.
885  */
886 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
887 		int retry)
888 {
889 	struct buffer_head *bh, *head;
890 	long offset;
891 
892 try_again:
893 	head = NULL;
894 	offset = PAGE_SIZE;
895 	while ((offset -= size) >= 0) {
896 		bh = alloc_buffer_head(GFP_NOFS);
897 		if (!bh)
898 			goto no_grow;
899 
900 		bh->b_bdev = NULL;
901 		bh->b_this_page = head;
902 		bh->b_blocknr = -1;
903 		head = bh;
904 
905 		bh->b_state = 0;
906 		atomic_set(&bh->b_count, 0);
907 		bh->b_private = NULL;
908 		bh->b_size = size;
909 
910 		/* Link the buffer to its page */
911 		set_bh_page(bh, page, offset);
912 
913 		init_buffer(bh, NULL, NULL);
914 	}
915 	return head;
916 /*
917  * In case anything failed, we just free everything we got.
918  */
919 no_grow:
920 	if (head) {
921 		do {
922 			bh = head;
923 			head = head->b_this_page;
924 			free_buffer_head(bh);
925 		} while (head);
926 	}
927 
928 	/*
929 	 * Return failure for non-async IO requests.  Async IO requests
930 	 * are not allowed to fail, so we have to wait until buffer heads
931 	 * become available.  But we don't want tasks sleeping with
932 	 * partially complete buffers, so all were released above.
933 	 */
934 	if (!retry)
935 		return NULL;
936 
937 	/* We're _really_ low on memory. Now we just
938 	 * wait for old buffer heads to become free due to
939 	 * finishing IO.  Since this is an async request and
940 	 * the reserve list is empty, we're sure there are
941 	 * async buffer heads in use.
942 	 */
943 	free_more_memory();
944 	goto try_again;
945 }
946 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947 
948 static inline void
949 link_dev_buffers(struct page *page, struct buffer_head *head)
950 {
951 	struct buffer_head *bh, *tail;
952 
953 	bh = head;
954 	do {
955 		tail = bh;
956 		bh = bh->b_this_page;
957 	} while (bh);
958 	tail->b_this_page = head;
959 	attach_page_buffers(page, head);
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static void
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 
973 	do {
974 		if (!buffer_mapped(bh)) {
975 			init_buffer(bh, NULL, NULL);
976 			bh->b_bdev = bdev;
977 			bh->b_blocknr = block;
978 			if (uptodate)
979 				set_buffer_uptodate(bh);
980 			set_buffer_mapped(bh);
981 		}
982 		block++;
983 		bh = bh->b_this_page;
984 	} while (bh != head);
985 }
986 
987 /*
988  * Create the page-cache page that contains the requested block.
989  *
990  * This is user purely for blockdev mappings.
991  */
992 static struct page *
993 grow_dev_page(struct block_device *bdev, sector_t block,
994 		pgoff_t index, int size)
995 {
996 	struct inode *inode = bdev->bd_inode;
997 	struct page *page;
998 	struct buffer_head *bh;
999 
1000 	page = find_or_create_page(inode->i_mapping, index,
1001 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002 	if (!page)
1003 		return NULL;
1004 
1005 	BUG_ON(!PageLocked(page));
1006 
1007 	if (page_has_buffers(page)) {
1008 		bh = page_buffers(page);
1009 		if (bh->b_size == size) {
1010 			init_page_buffers(page, bdev, block, size);
1011 			return page;
1012 		}
1013 		if (!try_to_free_buffers(page))
1014 			goto failed;
1015 	}
1016 
1017 	/*
1018 	 * Allocate some buffers for this page
1019 	 */
1020 	bh = alloc_page_buffers(page, size, 0);
1021 	if (!bh)
1022 		goto failed;
1023 
1024 	/*
1025 	 * Link the page to the buffers and initialise them.  Take the
1026 	 * lock to be atomic wrt __find_get_block(), which does not
1027 	 * run under the page lock.
1028 	 */
1029 	spin_lock(&inode->i_mapping->private_lock);
1030 	link_dev_buffers(page, bh);
1031 	init_page_buffers(page, bdev, block, size);
1032 	spin_unlock(&inode->i_mapping->private_lock);
1033 	return page;
1034 
1035 failed:
1036 	BUG();
1037 	unlock_page(page);
1038 	page_cache_release(page);
1039 	return NULL;
1040 }
1041 
1042 /*
1043  * Create buffers for the specified block device block's page.  If
1044  * that page was dirty, the buffers are set dirty also.
1045  */
1046 static int
1047 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 {
1049 	struct page *page;
1050 	pgoff_t index;
1051 	int sizebits;
1052 
1053 	sizebits = -1;
1054 	do {
1055 		sizebits++;
1056 	} while ((size << sizebits) < PAGE_SIZE);
1057 
1058 	index = block >> sizebits;
1059 
1060 	/*
1061 	 * Check for a block which wants to lie outside our maximum possible
1062 	 * pagecache index.  (this comparison is done using sector_t types).
1063 	 */
1064 	if (unlikely(index != block >> sizebits)) {
1065 		char b[BDEVNAME_SIZE];
1066 
1067 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 			"device %s\n",
1069 			__func__, (unsigned long long)block,
1070 			bdevname(bdev, b));
1071 		return -EIO;
1072 	}
1073 	block = index << sizebits;
1074 	/* Create a page with the proper size buffers.. */
1075 	page = grow_dev_page(bdev, block, index, size);
1076 	if (!page)
1077 		return 0;
1078 	unlock_page(page);
1079 	page_cache_release(page);
1080 	return 1;
1081 }
1082 
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 {
1086 	/* Size must be multiple of hard sectorsize */
1087 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 			(size < 512 || size > PAGE_SIZE))) {
1089 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 					size);
1091 		printk(KERN_ERR "logical block size: %d\n",
1092 					bdev_logical_block_size(bdev));
1093 
1094 		dump_stack();
1095 		return NULL;
1096 	}
1097 
1098 	for (;;) {
1099 		struct buffer_head * bh;
1100 		int ret;
1101 
1102 		bh = __find_get_block(bdev, block, size);
1103 		if (bh)
1104 			return bh;
1105 
1106 		ret = grow_buffers(bdev, block, size);
1107 		if (ret < 0)
1108 			return NULL;
1109 		if (ret == 0)
1110 			free_more_memory();
1111 	}
1112 }
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and the global inode_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	/*
1154 	 * Very *carefully* optimize the it-is-already-dirty case.
1155 	 *
1156 	 * Don't let the final "is it dirty" escape to before we
1157 	 * perhaps modified the buffer.
1158 	 */
1159 	if (buffer_dirty(bh)) {
1160 		smp_mb();
1161 		if (buffer_dirty(bh))
1162 			return;
1163 	}
1164 
1165 	if (!test_set_buffer_dirty(bh)) {
1166 		struct page *page = bh->b_page;
1167 		if (!TestSetPageDirty(page)) {
1168 			struct address_space *mapping = page_mapping(page);
1169 			if (mapping)
1170 				__set_page_dirty(page, mapping, 0);
1171 		}
1172 	}
1173 }
1174 EXPORT_SYMBOL(mark_buffer_dirty);
1175 
1176 /*
1177  * Decrement a buffer_head's reference count.  If all buffers against a page
1178  * have zero reference count, are clean and unlocked, and if the page is clean
1179  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181  * a page but it ends up not being freed, and buffers may later be reattached).
1182  */
1183 void __brelse(struct buffer_head * buf)
1184 {
1185 	if (atomic_read(&buf->b_count)) {
1186 		put_bh(buf);
1187 		return;
1188 	}
1189 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 }
1191 EXPORT_SYMBOL(__brelse);
1192 
1193 /*
1194  * bforget() is like brelse(), except it discards any
1195  * potentially dirty data.
1196  */
1197 void __bforget(struct buffer_head *bh)
1198 {
1199 	clear_buffer_dirty(bh);
1200 	if (bh->b_assoc_map) {
1201 		struct address_space *buffer_mapping = bh->b_page->mapping;
1202 
1203 		spin_lock(&buffer_mapping->private_lock);
1204 		list_del_init(&bh->b_assoc_buffers);
1205 		bh->b_assoc_map = NULL;
1206 		spin_unlock(&buffer_mapping->private_lock);
1207 	}
1208 	__brelse(bh);
1209 }
1210 EXPORT_SYMBOL(__bforget);
1211 
1212 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 {
1214 	lock_buffer(bh);
1215 	if (buffer_uptodate(bh)) {
1216 		unlock_buffer(bh);
1217 		return bh;
1218 	} else {
1219 		get_bh(bh);
1220 		bh->b_end_io = end_buffer_read_sync;
1221 		submit_bh(READ, bh);
1222 		wait_on_buffer(bh);
1223 		if (buffer_uptodate(bh))
1224 			return bh;
1225 	}
1226 	brelse(bh);
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1232  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1233  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1234  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1235  * CPU's LRUs at the same time.
1236  *
1237  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238  * sb_find_get_block().
1239  *
1240  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1241  * a local interrupt disable for that.
1242  */
1243 
1244 #define BH_LRU_SIZE	8
1245 
1246 struct bh_lru {
1247 	struct buffer_head *bhs[BH_LRU_SIZE];
1248 };
1249 
1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251 
1252 #ifdef CONFIG_SMP
1253 #define bh_lru_lock()	local_irq_disable()
1254 #define bh_lru_unlock()	local_irq_enable()
1255 #else
1256 #define bh_lru_lock()	preempt_disable()
1257 #define bh_lru_unlock()	preempt_enable()
1258 #endif
1259 
1260 static inline void check_irqs_on(void)
1261 {
1262 #ifdef irqs_disabled
1263 	BUG_ON(irqs_disabled());
1264 #endif
1265 }
1266 
1267 /*
1268  * The LRU management algorithm is dopey-but-simple.  Sorry.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272 	struct buffer_head *evictee = NULL;
1273 	struct bh_lru *lru;
1274 
1275 	check_irqs_on();
1276 	bh_lru_lock();
1277 	lru = &__get_cpu_var(bh_lrus);
1278 	if (lru->bhs[0] != bh) {
1279 		struct buffer_head *bhs[BH_LRU_SIZE];
1280 		int in;
1281 		int out = 0;
1282 
1283 		get_bh(bh);
1284 		bhs[out++] = bh;
1285 		for (in = 0; in < BH_LRU_SIZE; in++) {
1286 			struct buffer_head *bh2 = lru->bhs[in];
1287 
1288 			if (bh2 == bh) {
1289 				__brelse(bh2);
1290 			} else {
1291 				if (out >= BH_LRU_SIZE) {
1292 					BUG_ON(evictee != NULL);
1293 					evictee = bh2;
1294 				} else {
1295 					bhs[out++] = bh2;
1296 				}
1297 			}
1298 		}
1299 		while (out < BH_LRU_SIZE)
1300 			bhs[out++] = NULL;
1301 		memcpy(lru->bhs, bhs, sizeof(bhs));
1302 	}
1303 	bh_lru_unlock();
1304 
1305 	if (evictee)
1306 		__brelse(evictee);
1307 }
1308 
1309 /*
1310  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1311  */
1312 static struct buffer_head *
1313 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1314 {
1315 	struct buffer_head *ret = NULL;
1316 	struct bh_lru *lru;
1317 	unsigned int i;
1318 
1319 	check_irqs_on();
1320 	bh_lru_lock();
1321 	lru = &__get_cpu_var(bh_lrus);
1322 	for (i = 0; i < BH_LRU_SIZE; i++) {
1323 		struct buffer_head *bh = lru->bhs[i];
1324 
1325 		if (bh && bh->b_bdev == bdev &&
1326 				bh->b_blocknr == block && bh->b_size == size) {
1327 			if (i) {
1328 				while (i) {
1329 					lru->bhs[i] = lru->bhs[i - 1];
1330 					i--;
1331 				}
1332 				lru->bhs[0] = bh;
1333 			}
1334 			get_bh(bh);
1335 			ret = bh;
1336 			break;
1337 		}
1338 	}
1339 	bh_lru_unlock();
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1345  * it in the LRU and mark it as accessed.  If it is not present then return
1346  * NULL
1347  */
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 {
1351 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352 
1353 	if (bh == NULL) {
1354 		bh = __find_get_block_slow(bdev, block);
1355 		if (bh)
1356 			bh_lru_install(bh);
1357 	}
1358 	if (bh)
1359 		touch_buffer(bh);
1360 	return bh;
1361 }
1362 EXPORT_SYMBOL(__find_get_block);
1363 
1364 /*
1365  * __getblk will locate (and, if necessary, create) the buffer_head
1366  * which corresponds to the passed block_device, block and size. The
1367  * returned buffer has its reference count incremented.
1368  *
1369  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1370  * illegal block number, __getblk() will happily return a buffer_head
1371  * which represents the non-existent block.  Very weird.
1372  *
1373  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374  * attempt is failing.  FIXME, perhaps?
1375  */
1376 struct buffer_head *
1377 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 
1381 	might_sleep();
1382 	if (bh == NULL)
1383 		bh = __getblk_slow(bdev, block, size);
1384 	return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk);
1387 
1388 /*
1389  * Do async read-ahead on a buffer..
1390  */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 	struct buffer_head *bh = __getblk(bdev, block, size);
1394 	if (likely(bh)) {
1395 		ll_rw_block(READA, 1, &bh);
1396 		brelse(bh);
1397 	}
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400 
1401 /**
1402  *  __bread() - reads a specified block and returns the bh
1403  *  @bdev: the block_device to read from
1404  *  @block: number of block
1405  *  @size: size (in bytes) to read
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  It returns NULL if the block was unreadable.
1409  */
1410 struct buffer_head *
1411 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413 	struct buffer_head *bh = __getblk(bdev, block, size);
1414 
1415 	if (likely(bh) && !buffer_uptodate(bh))
1416 		bh = __bread_slow(bh);
1417 	return bh;
1418 }
1419 EXPORT_SYMBOL(__bread);
1420 
1421 /*
1422  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423  * This doesn't race because it runs in each cpu either in irq
1424  * or with preempt disabled.
1425  */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 	int i;
1430 
1431 	for (i = 0; i < BH_LRU_SIZE; i++) {
1432 		brelse(b->bhs[i]);
1433 		b->bhs[i] = NULL;
1434 	}
1435 	put_cpu_var(bh_lrus);
1436 }
1437 
1438 void invalidate_bh_lrus(void)
1439 {
1440 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443 
1444 void set_bh_page(struct buffer_head *bh,
1445 		struct page *page, unsigned long offset)
1446 {
1447 	bh->b_page = page;
1448 	BUG_ON(offset >= PAGE_SIZE);
1449 	if (PageHighMem(page))
1450 		/*
1451 		 * This catches illegal uses and preserves the offset:
1452 		 */
1453 		bh->b_data = (char *)(0 + offset);
1454 	else
1455 		bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458 
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 	lock_buffer(bh);
1465 	clear_buffer_dirty(bh);
1466 	bh->b_bdev = NULL;
1467 	clear_buffer_mapped(bh);
1468 	clear_buffer_req(bh);
1469 	clear_buffer_new(bh);
1470 	clear_buffer_delay(bh);
1471 	clear_buffer_unwritten(bh);
1472 	unlock_buffer(bh);
1473 }
1474 
1475 /**
1476  * block_invalidatepage - invalidate part of all of a buffer-backed page
1477  *
1478  * @page: the page which is affected
1479  * @offset: the index of the truncation point
1480  *
1481  * block_invalidatepage() is called when all or part of the page has become
1482  * invalidatedby a truncate operation.
1483  *
1484  * block_invalidatepage() does not have to release all buffers, but it must
1485  * ensure that no dirty buffer is left outside @offset and that no I/O
1486  * is underway against any of the blocks which are outside the truncation
1487  * point.  Because the caller is about to free (and possibly reuse) those
1488  * blocks on-disk.
1489  */
1490 void block_invalidatepage(struct page *page, unsigned long offset)
1491 {
1492 	struct buffer_head *head, *bh, *next;
1493 	unsigned int curr_off = 0;
1494 
1495 	BUG_ON(!PageLocked(page));
1496 	if (!page_has_buffers(page))
1497 		goto out;
1498 
1499 	head = page_buffers(page);
1500 	bh = head;
1501 	do {
1502 		unsigned int next_off = curr_off + bh->b_size;
1503 		next = bh->b_this_page;
1504 
1505 		/*
1506 		 * is this block fully invalidated?
1507 		 */
1508 		if (offset <= curr_off)
1509 			discard_buffer(bh);
1510 		curr_off = next_off;
1511 		bh = next;
1512 	} while (bh != head);
1513 
1514 	/*
1515 	 * We release buffers only if the entire page is being invalidated.
1516 	 * The get_block cached value has been unconditionally invalidated,
1517 	 * so real IO is not possible anymore.
1518 	 */
1519 	if (offset == 0)
1520 		try_to_release_page(page, 0);
1521 out:
1522 	return;
1523 }
1524 EXPORT_SYMBOL(block_invalidatepage);
1525 
1526 /*
1527  * We attach and possibly dirty the buffers atomically wrt
1528  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1529  * is already excluded via the page lock.
1530  */
1531 void create_empty_buffers(struct page *page,
1532 			unsigned long blocksize, unsigned long b_state)
1533 {
1534 	struct buffer_head *bh, *head, *tail;
1535 
1536 	head = alloc_page_buffers(page, blocksize, 1);
1537 	bh = head;
1538 	do {
1539 		bh->b_state |= b_state;
1540 		tail = bh;
1541 		bh = bh->b_this_page;
1542 	} while (bh);
1543 	tail->b_this_page = head;
1544 
1545 	spin_lock(&page->mapping->private_lock);
1546 	if (PageUptodate(page) || PageDirty(page)) {
1547 		bh = head;
1548 		do {
1549 			if (PageDirty(page))
1550 				set_buffer_dirty(bh);
1551 			if (PageUptodate(page))
1552 				set_buffer_uptodate(bh);
1553 			bh = bh->b_this_page;
1554 		} while (bh != head);
1555 	}
1556 	attach_page_buffers(page, head);
1557 	spin_unlock(&page->mapping->private_lock);
1558 }
1559 EXPORT_SYMBOL(create_empty_buffers);
1560 
1561 /*
1562  * We are taking a block for data and we don't want any output from any
1563  * buffer-cache aliases starting from return from that function and
1564  * until the moment when something will explicitly mark the buffer
1565  * dirty (hopefully that will not happen until we will free that block ;-)
1566  * We don't even need to mark it not-uptodate - nobody can expect
1567  * anything from a newly allocated buffer anyway. We used to used
1568  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569  * don't want to mark the alias unmapped, for example - it would confuse
1570  * anyone who might pick it with bread() afterwards...
1571  *
1572  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1573  * be writeout I/O going on against recently-freed buffers.  We don't
1574  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575  * only if we really need to.  That happens here.
1576  */
1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578 {
1579 	struct buffer_head *old_bh;
1580 
1581 	might_sleep();
1582 
1583 	old_bh = __find_get_block_slow(bdev, block);
1584 	if (old_bh) {
1585 		clear_buffer_dirty(old_bh);
1586 		wait_on_buffer(old_bh);
1587 		clear_buffer_req(old_bh);
1588 		__brelse(old_bh);
1589 	}
1590 }
1591 EXPORT_SYMBOL(unmap_underlying_metadata);
1592 
1593 /*
1594  * NOTE! All mapped/uptodate combinations are valid:
1595  *
1596  *	Mapped	Uptodate	Meaning
1597  *
1598  *	No	No		"unknown" - must do get_block()
1599  *	No	Yes		"hole" - zero-filled
1600  *	Yes	No		"allocated" - allocated on disk, not read in
1601  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1602  *
1603  * "Dirty" is valid only with the last case (mapped+uptodate).
1604  */
1605 
1606 /*
1607  * While block_write_full_page is writing back the dirty buffers under
1608  * the page lock, whoever dirtied the buffers may decide to clean them
1609  * again at any time.  We handle that by only looking at the buffer
1610  * state inside lock_buffer().
1611  *
1612  * If block_write_full_page() is called for regular writeback
1613  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614  * locked buffer.   This only can happen if someone has written the buffer
1615  * directly, with submit_bh().  At the address_space level PageWriteback
1616  * prevents this contention from occurring.
1617  *
1618  * If block_write_full_page() is called with wbc->sync_mode ==
1619  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1620  * causes the writes to be flagged as synchronous writes, but the
1621  * block device queue will NOT be unplugged, since usually many pages
1622  * will be pushed to the out before the higher-level caller actually
1623  * waits for the writes to be completed.  The various wait functions,
1624  * such as wait_on_writeback_range() will ultimately call sync_page()
1625  * which will ultimately call blk_run_backing_dev(), which will end up
1626  * unplugging the device queue.
1627  */
1628 static int __block_write_full_page(struct inode *inode, struct page *page,
1629 			get_block_t *get_block, struct writeback_control *wbc,
1630 			bh_end_io_t *handler)
1631 {
1632 	int err;
1633 	sector_t block;
1634 	sector_t last_block;
1635 	struct buffer_head *bh, *head;
1636 	const unsigned blocksize = 1 << inode->i_blkbits;
1637 	int nr_underway = 0;
1638 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1639 			WRITE_SYNC_PLUG : WRITE);
1640 
1641 	BUG_ON(!PageLocked(page));
1642 
1643 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644 
1645 	if (!page_has_buffers(page)) {
1646 		create_empty_buffers(page, blocksize,
1647 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1648 	}
1649 
1650 	/*
1651 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1652 	 * here, and the (potentially unmapped) buffers may become dirty at
1653 	 * any time.  If a buffer becomes dirty here after we've inspected it
1654 	 * then we just miss that fact, and the page stays dirty.
1655 	 *
1656 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 	 * handle that here by just cleaning them.
1658 	 */
1659 
1660 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1661 	head = page_buffers(page);
1662 	bh = head;
1663 
1664 	/*
1665 	 * Get all the dirty buffers mapped to disk addresses and
1666 	 * handle any aliases from the underlying blockdev's mapping.
1667 	 */
1668 	do {
1669 		if (block > last_block) {
1670 			/*
1671 			 * mapped buffers outside i_size will occur, because
1672 			 * this page can be outside i_size when there is a
1673 			 * truncate in progress.
1674 			 */
1675 			/*
1676 			 * The buffer was zeroed by block_write_full_page()
1677 			 */
1678 			clear_buffer_dirty(bh);
1679 			set_buffer_uptodate(bh);
1680 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1681 			   buffer_dirty(bh)) {
1682 			WARN_ON(bh->b_size != blocksize);
1683 			err = get_block(inode, block, bh, 1);
1684 			if (err)
1685 				goto recover;
1686 			clear_buffer_delay(bh);
1687 			if (buffer_new(bh)) {
1688 				/* blockdev mappings never come here */
1689 				clear_buffer_new(bh);
1690 				unmap_underlying_metadata(bh->b_bdev,
1691 							bh->b_blocknr);
1692 			}
1693 		}
1694 		bh = bh->b_this_page;
1695 		block++;
1696 	} while (bh != head);
1697 
1698 	do {
1699 		if (!buffer_mapped(bh))
1700 			continue;
1701 		/*
1702 		 * If it's a fully non-blocking write attempt and we cannot
1703 		 * lock the buffer then redirty the page.  Note that this can
1704 		 * potentially cause a busy-wait loop from writeback threads
1705 		 * and kswapd activity, but those code paths have their own
1706 		 * higher-level throttling.
1707 		 */
1708 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1709 			lock_buffer(bh);
1710 		} else if (!trylock_buffer(bh)) {
1711 			redirty_page_for_writepage(wbc, page);
1712 			continue;
1713 		}
1714 		if (test_clear_buffer_dirty(bh)) {
1715 			mark_buffer_async_write_endio(bh, handler);
1716 		} else {
1717 			unlock_buffer(bh);
1718 		}
1719 	} while ((bh = bh->b_this_page) != head);
1720 
1721 	/*
1722 	 * The page and its buffers are protected by PageWriteback(), so we can
1723 	 * drop the bh refcounts early.
1724 	 */
1725 	BUG_ON(PageWriteback(page));
1726 	set_page_writeback(page);
1727 
1728 	do {
1729 		struct buffer_head *next = bh->b_this_page;
1730 		if (buffer_async_write(bh)) {
1731 			submit_bh(write_op, bh);
1732 			nr_underway++;
1733 		}
1734 		bh = next;
1735 	} while (bh != head);
1736 	unlock_page(page);
1737 
1738 	err = 0;
1739 done:
1740 	if (nr_underway == 0) {
1741 		/*
1742 		 * The page was marked dirty, but the buffers were
1743 		 * clean.  Someone wrote them back by hand with
1744 		 * ll_rw_block/submit_bh.  A rare case.
1745 		 */
1746 		end_page_writeback(page);
1747 
1748 		/*
1749 		 * The page and buffer_heads can be released at any time from
1750 		 * here on.
1751 		 */
1752 	}
1753 	return err;
1754 
1755 recover:
1756 	/*
1757 	 * ENOSPC, or some other error.  We may already have added some
1758 	 * blocks to the file, so we need to write these out to avoid
1759 	 * exposing stale data.
1760 	 * The page is currently locked and not marked for writeback
1761 	 */
1762 	bh = head;
1763 	/* Recovery: lock and submit the mapped buffers */
1764 	do {
1765 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1766 		    !buffer_delay(bh)) {
1767 			lock_buffer(bh);
1768 			mark_buffer_async_write_endio(bh, handler);
1769 		} else {
1770 			/*
1771 			 * The buffer may have been set dirty during
1772 			 * attachment to a dirty page.
1773 			 */
1774 			clear_buffer_dirty(bh);
1775 		}
1776 	} while ((bh = bh->b_this_page) != head);
1777 	SetPageError(page);
1778 	BUG_ON(PageWriteback(page));
1779 	mapping_set_error(page->mapping, err);
1780 	set_page_writeback(page);
1781 	do {
1782 		struct buffer_head *next = bh->b_this_page;
1783 		if (buffer_async_write(bh)) {
1784 			clear_buffer_dirty(bh);
1785 			submit_bh(write_op, bh);
1786 			nr_underway++;
1787 		}
1788 		bh = next;
1789 	} while (bh != head);
1790 	unlock_page(page);
1791 	goto done;
1792 }
1793 
1794 /*
1795  * If a page has any new buffers, zero them out here, and mark them uptodate
1796  * and dirty so they'll be written out (in order to prevent uninitialised
1797  * block data from leaking). And clear the new bit.
1798  */
1799 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800 {
1801 	unsigned int block_start, block_end;
1802 	struct buffer_head *head, *bh;
1803 
1804 	BUG_ON(!PageLocked(page));
1805 	if (!page_has_buffers(page))
1806 		return;
1807 
1808 	bh = head = page_buffers(page);
1809 	block_start = 0;
1810 	do {
1811 		block_end = block_start + bh->b_size;
1812 
1813 		if (buffer_new(bh)) {
1814 			if (block_end > from && block_start < to) {
1815 				if (!PageUptodate(page)) {
1816 					unsigned start, size;
1817 
1818 					start = max(from, block_start);
1819 					size = min(to, block_end) - start;
1820 
1821 					zero_user(page, start, size);
1822 					set_buffer_uptodate(bh);
1823 				}
1824 
1825 				clear_buffer_new(bh);
1826 				mark_buffer_dirty(bh);
1827 			}
1828 		}
1829 
1830 		block_start = block_end;
1831 		bh = bh->b_this_page;
1832 	} while (bh != head);
1833 }
1834 EXPORT_SYMBOL(page_zero_new_buffers);
1835 
1836 int block_prepare_write(struct page *page, unsigned from, unsigned to,
1837 		get_block_t *get_block)
1838 {
1839 	struct inode *inode = page->mapping->host;
1840 	unsigned block_start, block_end;
1841 	sector_t block;
1842 	int err = 0;
1843 	unsigned blocksize, bbits;
1844 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1845 
1846 	BUG_ON(!PageLocked(page));
1847 	BUG_ON(from > PAGE_CACHE_SIZE);
1848 	BUG_ON(to > PAGE_CACHE_SIZE);
1849 	BUG_ON(from > to);
1850 
1851 	blocksize = 1 << inode->i_blkbits;
1852 	if (!page_has_buffers(page))
1853 		create_empty_buffers(page, blocksize, 0);
1854 	head = page_buffers(page);
1855 
1856 	bbits = inode->i_blkbits;
1857 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1858 
1859 	for(bh = head, block_start = 0; bh != head || !block_start;
1860 	    block++, block_start=block_end, bh = bh->b_this_page) {
1861 		block_end = block_start + blocksize;
1862 		if (block_end <= from || block_start >= to) {
1863 			if (PageUptodate(page)) {
1864 				if (!buffer_uptodate(bh))
1865 					set_buffer_uptodate(bh);
1866 			}
1867 			continue;
1868 		}
1869 		if (buffer_new(bh))
1870 			clear_buffer_new(bh);
1871 		if (!buffer_mapped(bh)) {
1872 			WARN_ON(bh->b_size != blocksize);
1873 			err = get_block(inode, block, bh, 1);
1874 			if (err)
1875 				break;
1876 			if (buffer_new(bh)) {
1877 				unmap_underlying_metadata(bh->b_bdev,
1878 							bh->b_blocknr);
1879 				if (PageUptodate(page)) {
1880 					clear_buffer_new(bh);
1881 					set_buffer_uptodate(bh);
1882 					mark_buffer_dirty(bh);
1883 					continue;
1884 				}
1885 				if (block_end > to || block_start < from)
1886 					zero_user_segments(page,
1887 						to, block_end,
1888 						block_start, from);
1889 				continue;
1890 			}
1891 		}
1892 		if (PageUptodate(page)) {
1893 			if (!buffer_uptodate(bh))
1894 				set_buffer_uptodate(bh);
1895 			continue;
1896 		}
1897 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1898 		    !buffer_unwritten(bh) &&
1899 		     (block_start < from || block_end > to)) {
1900 			ll_rw_block(READ, 1, &bh);
1901 			*wait_bh++=bh;
1902 		}
1903 	}
1904 	/*
1905 	 * If we issued read requests - let them complete.
1906 	 */
1907 	while(wait_bh > wait) {
1908 		wait_on_buffer(*--wait_bh);
1909 		if (!buffer_uptodate(*wait_bh))
1910 			err = -EIO;
1911 	}
1912 	if (unlikely(err)) {
1913 		page_zero_new_buffers(page, from, to);
1914 		ClearPageUptodate(page);
1915 	}
1916 	return err;
1917 }
1918 EXPORT_SYMBOL(block_prepare_write);
1919 
1920 static int __block_commit_write(struct inode *inode, struct page *page,
1921 		unsigned from, unsigned to)
1922 {
1923 	unsigned block_start, block_end;
1924 	int partial = 0;
1925 	unsigned blocksize;
1926 	struct buffer_head *bh, *head;
1927 
1928 	blocksize = 1 << inode->i_blkbits;
1929 
1930 	for(bh = head = page_buffers(page), block_start = 0;
1931 	    bh != head || !block_start;
1932 	    block_start=block_end, bh = bh->b_this_page) {
1933 		block_end = block_start + blocksize;
1934 		if (block_end <= from || block_start >= to) {
1935 			if (!buffer_uptodate(bh))
1936 				partial = 1;
1937 		} else {
1938 			set_buffer_uptodate(bh);
1939 			mark_buffer_dirty(bh);
1940 		}
1941 		clear_buffer_new(bh);
1942 	}
1943 
1944 	/*
1945 	 * If this is a partial write which happened to make all buffers
1946 	 * uptodate then we can optimize away a bogus readpage() for
1947 	 * the next read(). Here we 'discover' whether the page went
1948 	 * uptodate as a result of this (potentially partial) write.
1949 	 */
1950 	if (!partial)
1951 		SetPageUptodate(page);
1952 	return 0;
1953 }
1954 
1955 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1956 		get_block_t *get_block)
1957 {
1958 	unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1959 
1960 	return block_prepare_write(page, start, start + len, get_block);
1961 }
1962 EXPORT_SYMBOL(__block_write_begin);
1963 
1964 /*
1965  * Filesystems implementing the new truncate sequence should use the
1966  * _newtrunc postfix variant which won't incorrectly call vmtruncate.
1967  * The filesystem needs to handle block truncation upon failure.
1968  */
1969 int block_write_begin_newtrunc(struct file *file, struct address_space *mapping,
1970 			loff_t pos, unsigned len, unsigned flags,
1971 			struct page **pagep, void **fsdata,
1972 			get_block_t *get_block)
1973 {
1974 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1975 	struct page *page;
1976 	int status;
1977 
1978 	page = grab_cache_page_write_begin(mapping, index, flags);
1979 	if (!page)
1980 		return -ENOMEM;
1981 
1982 	status = __block_write_begin(page, pos, len, get_block);
1983 	if (unlikely(status)) {
1984 		unlock_page(page);
1985 		page_cache_release(page);
1986 		page = NULL;
1987 	}
1988 
1989 	*pagep = page;
1990 	return status;
1991 }
1992 EXPORT_SYMBOL(block_write_begin_newtrunc);
1993 
1994 /*
1995  * block_write_begin takes care of the basic task of block allocation and
1996  * bringing partial write blocks uptodate first.
1997  *
1998  * If *pagep is not NULL, then block_write_begin uses the locked page
1999  * at *pagep rather than allocating its own. In this case, the page will
2000  * not be unlocked or deallocated on failure.
2001  */
2002 int block_write_begin(struct file *file, struct address_space *mapping,
2003 			loff_t pos, unsigned len, unsigned flags,
2004 			struct page **pagep, void **fsdata,
2005 			get_block_t *get_block)
2006 {
2007 	int ret;
2008 
2009 	ret = block_write_begin_newtrunc(file, mapping, pos, len, flags,
2010 					pagep, fsdata, get_block);
2011 
2012 	/*
2013 	 * prepare_write() may have instantiated a few blocks
2014 	 * outside i_size.  Trim these off again. Don't need
2015 	 * i_size_read because we hold i_mutex.
2016 	 *
2017 	 * Filesystems which pass down their own page also cannot
2018 	 * call into vmtruncate here because it would lead to lock
2019 	 * inversion problems (*pagep is locked). This is a further
2020 	 * example of where the old truncate sequence is inadequate.
2021 	 */
2022 	if (unlikely(ret) && *pagep == NULL) {
2023 		loff_t isize = mapping->host->i_size;
2024 		if (pos + len > isize)
2025 			vmtruncate(mapping->host, isize);
2026 	}
2027 
2028 	return ret;
2029 }
2030 EXPORT_SYMBOL(block_write_begin);
2031 
2032 int block_write_end(struct file *file, struct address_space *mapping,
2033 			loff_t pos, unsigned len, unsigned copied,
2034 			struct page *page, void *fsdata)
2035 {
2036 	struct inode *inode = mapping->host;
2037 	unsigned start;
2038 
2039 	start = pos & (PAGE_CACHE_SIZE - 1);
2040 
2041 	if (unlikely(copied < len)) {
2042 		/*
2043 		 * The buffers that were written will now be uptodate, so we
2044 		 * don't have to worry about a readpage reading them and
2045 		 * overwriting a partial write. However if we have encountered
2046 		 * a short write and only partially written into a buffer, it
2047 		 * will not be marked uptodate, so a readpage might come in and
2048 		 * destroy our partial write.
2049 		 *
2050 		 * Do the simplest thing, and just treat any short write to a
2051 		 * non uptodate page as a zero-length write, and force the
2052 		 * caller to redo the whole thing.
2053 		 */
2054 		if (!PageUptodate(page))
2055 			copied = 0;
2056 
2057 		page_zero_new_buffers(page, start+copied, start+len);
2058 	}
2059 	flush_dcache_page(page);
2060 
2061 	/* This could be a short (even 0-length) commit */
2062 	__block_commit_write(inode, page, start, start+copied);
2063 
2064 	return copied;
2065 }
2066 EXPORT_SYMBOL(block_write_end);
2067 
2068 int generic_write_end(struct file *file, struct address_space *mapping,
2069 			loff_t pos, unsigned len, unsigned copied,
2070 			struct page *page, void *fsdata)
2071 {
2072 	struct inode *inode = mapping->host;
2073 	int i_size_changed = 0;
2074 
2075 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2076 
2077 	/*
2078 	 * No need to use i_size_read() here, the i_size
2079 	 * cannot change under us because we hold i_mutex.
2080 	 *
2081 	 * But it's important to update i_size while still holding page lock:
2082 	 * page writeout could otherwise come in and zero beyond i_size.
2083 	 */
2084 	if (pos+copied > inode->i_size) {
2085 		i_size_write(inode, pos+copied);
2086 		i_size_changed = 1;
2087 	}
2088 
2089 	unlock_page(page);
2090 	page_cache_release(page);
2091 
2092 	/*
2093 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2094 	 * makes the holding time of page lock longer. Second, it forces lock
2095 	 * ordering of page lock and transaction start for journaling
2096 	 * filesystems.
2097 	 */
2098 	if (i_size_changed)
2099 		mark_inode_dirty(inode);
2100 
2101 	return copied;
2102 }
2103 EXPORT_SYMBOL(generic_write_end);
2104 
2105 /*
2106  * block_is_partially_uptodate checks whether buffers within a page are
2107  * uptodate or not.
2108  *
2109  * Returns true if all buffers which correspond to a file portion
2110  * we want to read are uptodate.
2111  */
2112 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2113 					unsigned long from)
2114 {
2115 	struct inode *inode = page->mapping->host;
2116 	unsigned block_start, block_end, blocksize;
2117 	unsigned to;
2118 	struct buffer_head *bh, *head;
2119 	int ret = 1;
2120 
2121 	if (!page_has_buffers(page))
2122 		return 0;
2123 
2124 	blocksize = 1 << inode->i_blkbits;
2125 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2126 	to = from + to;
2127 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2128 		return 0;
2129 
2130 	head = page_buffers(page);
2131 	bh = head;
2132 	block_start = 0;
2133 	do {
2134 		block_end = block_start + blocksize;
2135 		if (block_end > from && block_start < to) {
2136 			if (!buffer_uptodate(bh)) {
2137 				ret = 0;
2138 				break;
2139 			}
2140 			if (block_end >= to)
2141 				break;
2142 		}
2143 		block_start = block_end;
2144 		bh = bh->b_this_page;
2145 	} while (bh != head);
2146 
2147 	return ret;
2148 }
2149 EXPORT_SYMBOL(block_is_partially_uptodate);
2150 
2151 /*
2152  * Generic "read page" function for block devices that have the normal
2153  * get_block functionality. This is most of the block device filesystems.
2154  * Reads the page asynchronously --- the unlock_buffer() and
2155  * set/clear_buffer_uptodate() functions propagate buffer state into the
2156  * page struct once IO has completed.
2157  */
2158 int block_read_full_page(struct page *page, get_block_t *get_block)
2159 {
2160 	struct inode *inode = page->mapping->host;
2161 	sector_t iblock, lblock;
2162 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2163 	unsigned int blocksize;
2164 	int nr, i;
2165 	int fully_mapped = 1;
2166 
2167 	BUG_ON(!PageLocked(page));
2168 	blocksize = 1 << inode->i_blkbits;
2169 	if (!page_has_buffers(page))
2170 		create_empty_buffers(page, blocksize, 0);
2171 	head = page_buffers(page);
2172 
2173 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2174 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2175 	bh = head;
2176 	nr = 0;
2177 	i = 0;
2178 
2179 	do {
2180 		if (buffer_uptodate(bh))
2181 			continue;
2182 
2183 		if (!buffer_mapped(bh)) {
2184 			int err = 0;
2185 
2186 			fully_mapped = 0;
2187 			if (iblock < lblock) {
2188 				WARN_ON(bh->b_size != blocksize);
2189 				err = get_block(inode, iblock, bh, 0);
2190 				if (err)
2191 					SetPageError(page);
2192 			}
2193 			if (!buffer_mapped(bh)) {
2194 				zero_user(page, i * blocksize, blocksize);
2195 				if (!err)
2196 					set_buffer_uptodate(bh);
2197 				continue;
2198 			}
2199 			/*
2200 			 * get_block() might have updated the buffer
2201 			 * synchronously
2202 			 */
2203 			if (buffer_uptodate(bh))
2204 				continue;
2205 		}
2206 		arr[nr++] = bh;
2207 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2208 
2209 	if (fully_mapped)
2210 		SetPageMappedToDisk(page);
2211 
2212 	if (!nr) {
2213 		/*
2214 		 * All buffers are uptodate - we can set the page uptodate
2215 		 * as well. But not if get_block() returned an error.
2216 		 */
2217 		if (!PageError(page))
2218 			SetPageUptodate(page);
2219 		unlock_page(page);
2220 		return 0;
2221 	}
2222 
2223 	/* Stage two: lock the buffers */
2224 	for (i = 0; i < nr; i++) {
2225 		bh = arr[i];
2226 		lock_buffer(bh);
2227 		mark_buffer_async_read(bh);
2228 	}
2229 
2230 	/*
2231 	 * Stage 3: start the IO.  Check for uptodateness
2232 	 * inside the buffer lock in case another process reading
2233 	 * the underlying blockdev brought it uptodate (the sct fix).
2234 	 */
2235 	for (i = 0; i < nr; i++) {
2236 		bh = arr[i];
2237 		if (buffer_uptodate(bh))
2238 			end_buffer_async_read(bh, 1);
2239 		else
2240 			submit_bh(READ, bh);
2241 	}
2242 	return 0;
2243 }
2244 EXPORT_SYMBOL(block_read_full_page);
2245 
2246 /* utility function for filesystems that need to do work on expanding
2247  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2248  * deal with the hole.
2249  */
2250 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2251 {
2252 	struct address_space *mapping = inode->i_mapping;
2253 	struct page *page;
2254 	void *fsdata;
2255 	int err;
2256 
2257 	err = inode_newsize_ok(inode, size);
2258 	if (err)
2259 		goto out;
2260 
2261 	err = pagecache_write_begin(NULL, mapping, size, 0,
2262 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2263 				&page, &fsdata);
2264 	if (err)
2265 		goto out;
2266 
2267 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2268 	BUG_ON(err > 0);
2269 
2270 out:
2271 	return err;
2272 }
2273 EXPORT_SYMBOL(generic_cont_expand_simple);
2274 
2275 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2276 			    loff_t pos, loff_t *bytes)
2277 {
2278 	struct inode *inode = mapping->host;
2279 	unsigned blocksize = 1 << inode->i_blkbits;
2280 	struct page *page;
2281 	void *fsdata;
2282 	pgoff_t index, curidx;
2283 	loff_t curpos;
2284 	unsigned zerofrom, offset, len;
2285 	int err = 0;
2286 
2287 	index = pos >> PAGE_CACHE_SHIFT;
2288 	offset = pos & ~PAGE_CACHE_MASK;
2289 
2290 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2291 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2292 		if (zerofrom & (blocksize-1)) {
2293 			*bytes |= (blocksize-1);
2294 			(*bytes)++;
2295 		}
2296 		len = PAGE_CACHE_SIZE - zerofrom;
2297 
2298 		err = pagecache_write_begin(file, mapping, curpos, len,
2299 						AOP_FLAG_UNINTERRUPTIBLE,
2300 						&page, &fsdata);
2301 		if (err)
2302 			goto out;
2303 		zero_user(page, zerofrom, len);
2304 		err = pagecache_write_end(file, mapping, curpos, len, len,
2305 						page, fsdata);
2306 		if (err < 0)
2307 			goto out;
2308 		BUG_ON(err != len);
2309 		err = 0;
2310 
2311 		balance_dirty_pages_ratelimited(mapping);
2312 	}
2313 
2314 	/* page covers the boundary, find the boundary offset */
2315 	if (index == curidx) {
2316 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2317 		/* if we will expand the thing last block will be filled */
2318 		if (offset <= zerofrom) {
2319 			goto out;
2320 		}
2321 		if (zerofrom & (blocksize-1)) {
2322 			*bytes |= (blocksize-1);
2323 			(*bytes)++;
2324 		}
2325 		len = offset - zerofrom;
2326 
2327 		err = pagecache_write_begin(file, mapping, curpos, len,
2328 						AOP_FLAG_UNINTERRUPTIBLE,
2329 						&page, &fsdata);
2330 		if (err)
2331 			goto out;
2332 		zero_user(page, zerofrom, len);
2333 		err = pagecache_write_end(file, mapping, curpos, len, len,
2334 						page, fsdata);
2335 		if (err < 0)
2336 			goto out;
2337 		BUG_ON(err != len);
2338 		err = 0;
2339 	}
2340 out:
2341 	return err;
2342 }
2343 
2344 /*
2345  * For moronic filesystems that do not allow holes in file.
2346  * We may have to extend the file.
2347  */
2348 int cont_write_begin(struct file *file, struct address_space *mapping,
2349 			loff_t pos, unsigned len, unsigned flags,
2350 			struct page **pagep, void **fsdata,
2351 			get_block_t *get_block, loff_t *bytes)
2352 {
2353 	struct inode *inode = mapping->host;
2354 	unsigned blocksize = 1 << inode->i_blkbits;
2355 	unsigned zerofrom;
2356 	int err;
2357 
2358 	err = cont_expand_zero(file, mapping, pos, bytes);
2359 	if (err)
2360 		goto out;
2361 
2362 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2363 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2364 		*bytes |= (blocksize-1);
2365 		(*bytes)++;
2366 	}
2367 
2368 	*pagep = NULL;
2369 	err = block_write_begin_newtrunc(file, mapping, pos, len,
2370 				flags, pagep, fsdata, get_block);
2371 out:
2372 	return err;
2373 }
2374 EXPORT_SYMBOL(cont_write_begin);
2375 
2376 int block_commit_write(struct page *page, unsigned from, unsigned to)
2377 {
2378 	struct inode *inode = page->mapping->host;
2379 	__block_commit_write(inode,page,from,to);
2380 	return 0;
2381 }
2382 EXPORT_SYMBOL(block_commit_write);
2383 
2384 /*
2385  * block_page_mkwrite() is not allowed to change the file size as it gets
2386  * called from a page fault handler when a page is first dirtied. Hence we must
2387  * be careful to check for EOF conditions here. We set the page up correctly
2388  * for a written page which means we get ENOSPC checking when writing into
2389  * holes and correct delalloc and unwritten extent mapping on filesystems that
2390  * support these features.
2391  *
2392  * We are not allowed to take the i_mutex here so we have to play games to
2393  * protect against truncate races as the page could now be beyond EOF.  Because
2394  * truncate writes the inode size before removing pages, once we have the
2395  * page lock we can determine safely if the page is beyond EOF. If it is not
2396  * beyond EOF, then the page is guaranteed safe against truncation until we
2397  * unlock the page.
2398  */
2399 int
2400 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2401 		   get_block_t get_block)
2402 {
2403 	struct page *page = vmf->page;
2404 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2405 	unsigned long end;
2406 	loff_t size;
2407 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2408 
2409 	lock_page(page);
2410 	size = i_size_read(inode);
2411 	if ((page->mapping != inode->i_mapping) ||
2412 	    (page_offset(page) > size)) {
2413 		/* page got truncated out from underneath us */
2414 		unlock_page(page);
2415 		goto out;
2416 	}
2417 
2418 	/* page is wholly or partially inside EOF */
2419 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2420 		end = size & ~PAGE_CACHE_MASK;
2421 	else
2422 		end = PAGE_CACHE_SIZE;
2423 
2424 	ret = block_prepare_write(page, 0, end, get_block);
2425 	if (!ret)
2426 		ret = block_commit_write(page, 0, end);
2427 
2428 	if (unlikely(ret)) {
2429 		unlock_page(page);
2430 		if (ret == -ENOMEM)
2431 			ret = VM_FAULT_OOM;
2432 		else /* -ENOSPC, -EIO, etc */
2433 			ret = VM_FAULT_SIGBUS;
2434 	} else
2435 		ret = VM_FAULT_LOCKED;
2436 
2437 out:
2438 	return ret;
2439 }
2440 EXPORT_SYMBOL(block_page_mkwrite);
2441 
2442 /*
2443  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2444  * immediately, while under the page lock.  So it needs a special end_io
2445  * handler which does not touch the bh after unlocking it.
2446  */
2447 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2448 {
2449 	__end_buffer_read_notouch(bh, uptodate);
2450 }
2451 
2452 /*
2453  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2454  * the page (converting it to circular linked list and taking care of page
2455  * dirty races).
2456  */
2457 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2458 {
2459 	struct buffer_head *bh;
2460 
2461 	BUG_ON(!PageLocked(page));
2462 
2463 	spin_lock(&page->mapping->private_lock);
2464 	bh = head;
2465 	do {
2466 		if (PageDirty(page))
2467 			set_buffer_dirty(bh);
2468 		if (!bh->b_this_page)
2469 			bh->b_this_page = head;
2470 		bh = bh->b_this_page;
2471 	} while (bh != head);
2472 	attach_page_buffers(page, head);
2473 	spin_unlock(&page->mapping->private_lock);
2474 }
2475 
2476 /*
2477  * On entry, the page is fully not uptodate.
2478  * On exit the page is fully uptodate in the areas outside (from,to)
2479  * The filesystem needs to handle block truncation upon failure.
2480  */
2481 int nobh_write_begin(struct address_space *mapping,
2482 			loff_t pos, unsigned len, unsigned flags,
2483 			struct page **pagep, void **fsdata,
2484 			get_block_t *get_block)
2485 {
2486 	struct inode *inode = mapping->host;
2487 	const unsigned blkbits = inode->i_blkbits;
2488 	const unsigned blocksize = 1 << blkbits;
2489 	struct buffer_head *head, *bh;
2490 	struct page *page;
2491 	pgoff_t index;
2492 	unsigned from, to;
2493 	unsigned block_in_page;
2494 	unsigned block_start, block_end;
2495 	sector_t block_in_file;
2496 	int nr_reads = 0;
2497 	int ret = 0;
2498 	int is_mapped_to_disk = 1;
2499 
2500 	index = pos >> PAGE_CACHE_SHIFT;
2501 	from = pos & (PAGE_CACHE_SIZE - 1);
2502 	to = from + len;
2503 
2504 	page = grab_cache_page_write_begin(mapping, index, flags);
2505 	if (!page)
2506 		return -ENOMEM;
2507 	*pagep = page;
2508 	*fsdata = NULL;
2509 
2510 	if (page_has_buffers(page)) {
2511 		unlock_page(page);
2512 		page_cache_release(page);
2513 		*pagep = NULL;
2514 		return block_write_begin_newtrunc(NULL, mapping, pos, len,
2515 					flags, pagep, fsdata, get_block);
2516 	}
2517 
2518 	if (PageMappedToDisk(page))
2519 		return 0;
2520 
2521 	/*
2522 	 * Allocate buffers so that we can keep track of state, and potentially
2523 	 * attach them to the page if an error occurs. In the common case of
2524 	 * no error, they will just be freed again without ever being attached
2525 	 * to the page (which is all OK, because we're under the page lock).
2526 	 *
2527 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2528 	 * than the circular one we're used to.
2529 	 */
2530 	head = alloc_page_buffers(page, blocksize, 0);
2531 	if (!head) {
2532 		ret = -ENOMEM;
2533 		goto out_release;
2534 	}
2535 
2536 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2537 
2538 	/*
2539 	 * We loop across all blocks in the page, whether or not they are
2540 	 * part of the affected region.  This is so we can discover if the
2541 	 * page is fully mapped-to-disk.
2542 	 */
2543 	for (block_start = 0, block_in_page = 0, bh = head;
2544 		  block_start < PAGE_CACHE_SIZE;
2545 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2546 		int create;
2547 
2548 		block_end = block_start + blocksize;
2549 		bh->b_state = 0;
2550 		create = 1;
2551 		if (block_start >= to)
2552 			create = 0;
2553 		ret = get_block(inode, block_in_file + block_in_page,
2554 					bh, create);
2555 		if (ret)
2556 			goto failed;
2557 		if (!buffer_mapped(bh))
2558 			is_mapped_to_disk = 0;
2559 		if (buffer_new(bh))
2560 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2561 		if (PageUptodate(page)) {
2562 			set_buffer_uptodate(bh);
2563 			continue;
2564 		}
2565 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2566 			zero_user_segments(page, block_start, from,
2567 							to, block_end);
2568 			continue;
2569 		}
2570 		if (buffer_uptodate(bh))
2571 			continue;	/* reiserfs does this */
2572 		if (block_start < from || block_end > to) {
2573 			lock_buffer(bh);
2574 			bh->b_end_io = end_buffer_read_nobh;
2575 			submit_bh(READ, bh);
2576 			nr_reads++;
2577 		}
2578 	}
2579 
2580 	if (nr_reads) {
2581 		/*
2582 		 * The page is locked, so these buffers are protected from
2583 		 * any VM or truncate activity.  Hence we don't need to care
2584 		 * for the buffer_head refcounts.
2585 		 */
2586 		for (bh = head; bh; bh = bh->b_this_page) {
2587 			wait_on_buffer(bh);
2588 			if (!buffer_uptodate(bh))
2589 				ret = -EIO;
2590 		}
2591 		if (ret)
2592 			goto failed;
2593 	}
2594 
2595 	if (is_mapped_to_disk)
2596 		SetPageMappedToDisk(page);
2597 
2598 	*fsdata = head; /* to be released by nobh_write_end */
2599 
2600 	return 0;
2601 
2602 failed:
2603 	BUG_ON(!ret);
2604 	/*
2605 	 * Error recovery is a bit difficult. We need to zero out blocks that
2606 	 * were newly allocated, and dirty them to ensure they get written out.
2607 	 * Buffers need to be attached to the page at this point, otherwise
2608 	 * the handling of potential IO errors during writeout would be hard
2609 	 * (could try doing synchronous writeout, but what if that fails too?)
2610 	 */
2611 	attach_nobh_buffers(page, head);
2612 	page_zero_new_buffers(page, from, to);
2613 
2614 out_release:
2615 	unlock_page(page);
2616 	page_cache_release(page);
2617 	*pagep = NULL;
2618 
2619 	return ret;
2620 }
2621 EXPORT_SYMBOL(nobh_write_begin);
2622 
2623 int nobh_write_end(struct file *file, struct address_space *mapping,
2624 			loff_t pos, unsigned len, unsigned copied,
2625 			struct page *page, void *fsdata)
2626 {
2627 	struct inode *inode = page->mapping->host;
2628 	struct buffer_head *head = fsdata;
2629 	struct buffer_head *bh;
2630 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2631 
2632 	if (unlikely(copied < len) && head)
2633 		attach_nobh_buffers(page, head);
2634 	if (page_has_buffers(page))
2635 		return generic_write_end(file, mapping, pos, len,
2636 					copied, page, fsdata);
2637 
2638 	SetPageUptodate(page);
2639 	set_page_dirty(page);
2640 	if (pos+copied > inode->i_size) {
2641 		i_size_write(inode, pos+copied);
2642 		mark_inode_dirty(inode);
2643 	}
2644 
2645 	unlock_page(page);
2646 	page_cache_release(page);
2647 
2648 	while (head) {
2649 		bh = head;
2650 		head = head->b_this_page;
2651 		free_buffer_head(bh);
2652 	}
2653 
2654 	return copied;
2655 }
2656 EXPORT_SYMBOL(nobh_write_end);
2657 
2658 /*
2659  * nobh_writepage() - based on block_full_write_page() except
2660  * that it tries to operate without attaching bufferheads to
2661  * the page.
2662  */
2663 int nobh_writepage(struct page *page, get_block_t *get_block,
2664 			struct writeback_control *wbc)
2665 {
2666 	struct inode * const inode = page->mapping->host;
2667 	loff_t i_size = i_size_read(inode);
2668 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2669 	unsigned offset;
2670 	int ret;
2671 
2672 	/* Is the page fully inside i_size? */
2673 	if (page->index < end_index)
2674 		goto out;
2675 
2676 	/* Is the page fully outside i_size? (truncate in progress) */
2677 	offset = i_size & (PAGE_CACHE_SIZE-1);
2678 	if (page->index >= end_index+1 || !offset) {
2679 		/*
2680 		 * The page may have dirty, unmapped buffers.  For example,
2681 		 * they may have been added in ext3_writepage().  Make them
2682 		 * freeable here, so the page does not leak.
2683 		 */
2684 #if 0
2685 		/* Not really sure about this  - do we need this ? */
2686 		if (page->mapping->a_ops->invalidatepage)
2687 			page->mapping->a_ops->invalidatepage(page, offset);
2688 #endif
2689 		unlock_page(page);
2690 		return 0; /* don't care */
2691 	}
2692 
2693 	/*
2694 	 * The page straddles i_size.  It must be zeroed out on each and every
2695 	 * writepage invocation because it may be mmapped.  "A file is mapped
2696 	 * in multiples of the page size.  For a file that is not a multiple of
2697 	 * the  page size, the remaining memory is zeroed when mapped, and
2698 	 * writes to that region are not written out to the file."
2699 	 */
2700 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2701 out:
2702 	ret = mpage_writepage(page, get_block, wbc);
2703 	if (ret == -EAGAIN)
2704 		ret = __block_write_full_page(inode, page, get_block, wbc,
2705 					      end_buffer_async_write);
2706 	return ret;
2707 }
2708 EXPORT_SYMBOL(nobh_writepage);
2709 
2710 int nobh_truncate_page(struct address_space *mapping,
2711 			loff_t from, get_block_t *get_block)
2712 {
2713 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2714 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2715 	unsigned blocksize;
2716 	sector_t iblock;
2717 	unsigned length, pos;
2718 	struct inode *inode = mapping->host;
2719 	struct page *page;
2720 	struct buffer_head map_bh;
2721 	int err;
2722 
2723 	blocksize = 1 << inode->i_blkbits;
2724 	length = offset & (blocksize - 1);
2725 
2726 	/* Block boundary? Nothing to do */
2727 	if (!length)
2728 		return 0;
2729 
2730 	length = blocksize - length;
2731 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2732 
2733 	page = grab_cache_page(mapping, index);
2734 	err = -ENOMEM;
2735 	if (!page)
2736 		goto out;
2737 
2738 	if (page_has_buffers(page)) {
2739 has_buffers:
2740 		unlock_page(page);
2741 		page_cache_release(page);
2742 		return block_truncate_page(mapping, from, get_block);
2743 	}
2744 
2745 	/* Find the buffer that contains "offset" */
2746 	pos = blocksize;
2747 	while (offset >= pos) {
2748 		iblock++;
2749 		pos += blocksize;
2750 	}
2751 
2752 	map_bh.b_size = blocksize;
2753 	map_bh.b_state = 0;
2754 	err = get_block(inode, iblock, &map_bh, 0);
2755 	if (err)
2756 		goto unlock;
2757 	/* unmapped? It's a hole - nothing to do */
2758 	if (!buffer_mapped(&map_bh))
2759 		goto unlock;
2760 
2761 	/* Ok, it's mapped. Make sure it's up-to-date */
2762 	if (!PageUptodate(page)) {
2763 		err = mapping->a_ops->readpage(NULL, page);
2764 		if (err) {
2765 			page_cache_release(page);
2766 			goto out;
2767 		}
2768 		lock_page(page);
2769 		if (!PageUptodate(page)) {
2770 			err = -EIO;
2771 			goto unlock;
2772 		}
2773 		if (page_has_buffers(page))
2774 			goto has_buffers;
2775 	}
2776 	zero_user(page, offset, length);
2777 	set_page_dirty(page);
2778 	err = 0;
2779 
2780 unlock:
2781 	unlock_page(page);
2782 	page_cache_release(page);
2783 out:
2784 	return err;
2785 }
2786 EXPORT_SYMBOL(nobh_truncate_page);
2787 
2788 int block_truncate_page(struct address_space *mapping,
2789 			loff_t from, get_block_t *get_block)
2790 {
2791 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2792 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2793 	unsigned blocksize;
2794 	sector_t iblock;
2795 	unsigned length, pos;
2796 	struct inode *inode = mapping->host;
2797 	struct page *page;
2798 	struct buffer_head *bh;
2799 	int err;
2800 
2801 	blocksize = 1 << inode->i_blkbits;
2802 	length = offset & (blocksize - 1);
2803 
2804 	/* Block boundary? Nothing to do */
2805 	if (!length)
2806 		return 0;
2807 
2808 	length = blocksize - length;
2809 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2810 
2811 	page = grab_cache_page(mapping, index);
2812 	err = -ENOMEM;
2813 	if (!page)
2814 		goto out;
2815 
2816 	if (!page_has_buffers(page))
2817 		create_empty_buffers(page, blocksize, 0);
2818 
2819 	/* Find the buffer that contains "offset" */
2820 	bh = page_buffers(page);
2821 	pos = blocksize;
2822 	while (offset >= pos) {
2823 		bh = bh->b_this_page;
2824 		iblock++;
2825 		pos += blocksize;
2826 	}
2827 
2828 	err = 0;
2829 	if (!buffer_mapped(bh)) {
2830 		WARN_ON(bh->b_size != blocksize);
2831 		err = get_block(inode, iblock, bh, 0);
2832 		if (err)
2833 			goto unlock;
2834 		/* unmapped? It's a hole - nothing to do */
2835 		if (!buffer_mapped(bh))
2836 			goto unlock;
2837 	}
2838 
2839 	/* Ok, it's mapped. Make sure it's up-to-date */
2840 	if (PageUptodate(page))
2841 		set_buffer_uptodate(bh);
2842 
2843 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2844 		err = -EIO;
2845 		ll_rw_block(READ, 1, &bh);
2846 		wait_on_buffer(bh);
2847 		/* Uhhuh. Read error. Complain and punt. */
2848 		if (!buffer_uptodate(bh))
2849 			goto unlock;
2850 	}
2851 
2852 	zero_user(page, offset, length);
2853 	mark_buffer_dirty(bh);
2854 	err = 0;
2855 
2856 unlock:
2857 	unlock_page(page);
2858 	page_cache_release(page);
2859 out:
2860 	return err;
2861 }
2862 EXPORT_SYMBOL(block_truncate_page);
2863 
2864 /*
2865  * The generic ->writepage function for buffer-backed address_spaces
2866  * this form passes in the end_io handler used to finish the IO.
2867  */
2868 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2869 			struct writeback_control *wbc, bh_end_io_t *handler)
2870 {
2871 	struct inode * const inode = page->mapping->host;
2872 	loff_t i_size = i_size_read(inode);
2873 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2874 	unsigned offset;
2875 
2876 	/* Is the page fully inside i_size? */
2877 	if (page->index < end_index)
2878 		return __block_write_full_page(inode, page, get_block, wbc,
2879 					       handler);
2880 
2881 	/* Is the page fully outside i_size? (truncate in progress) */
2882 	offset = i_size & (PAGE_CACHE_SIZE-1);
2883 	if (page->index >= end_index+1 || !offset) {
2884 		/*
2885 		 * The page may have dirty, unmapped buffers.  For example,
2886 		 * they may have been added in ext3_writepage().  Make them
2887 		 * freeable here, so the page does not leak.
2888 		 */
2889 		do_invalidatepage(page, 0);
2890 		unlock_page(page);
2891 		return 0; /* don't care */
2892 	}
2893 
2894 	/*
2895 	 * The page straddles i_size.  It must be zeroed out on each and every
2896 	 * writepage invocation because it may be mmapped.  "A file is mapped
2897 	 * in multiples of the page size.  For a file that is not a multiple of
2898 	 * the  page size, the remaining memory is zeroed when mapped, and
2899 	 * writes to that region are not written out to the file."
2900 	 */
2901 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2902 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2903 }
2904 EXPORT_SYMBOL(block_write_full_page_endio);
2905 
2906 /*
2907  * The generic ->writepage function for buffer-backed address_spaces
2908  */
2909 int block_write_full_page(struct page *page, get_block_t *get_block,
2910 			struct writeback_control *wbc)
2911 {
2912 	return block_write_full_page_endio(page, get_block, wbc,
2913 					   end_buffer_async_write);
2914 }
2915 EXPORT_SYMBOL(block_write_full_page);
2916 
2917 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2918 			    get_block_t *get_block)
2919 {
2920 	struct buffer_head tmp;
2921 	struct inode *inode = mapping->host;
2922 	tmp.b_state = 0;
2923 	tmp.b_blocknr = 0;
2924 	tmp.b_size = 1 << inode->i_blkbits;
2925 	get_block(inode, block, &tmp, 0);
2926 	return tmp.b_blocknr;
2927 }
2928 EXPORT_SYMBOL(generic_block_bmap);
2929 
2930 static void end_bio_bh_io_sync(struct bio *bio, int err)
2931 {
2932 	struct buffer_head *bh = bio->bi_private;
2933 
2934 	if (err == -EOPNOTSUPP) {
2935 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2936 		set_bit(BH_Eopnotsupp, &bh->b_state);
2937 	}
2938 
2939 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2940 		set_bit(BH_Quiet, &bh->b_state);
2941 
2942 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2943 	bio_put(bio);
2944 }
2945 
2946 int submit_bh(int rw, struct buffer_head * bh)
2947 {
2948 	struct bio *bio;
2949 	int ret = 0;
2950 
2951 	BUG_ON(!buffer_locked(bh));
2952 	BUG_ON(!buffer_mapped(bh));
2953 	BUG_ON(!bh->b_end_io);
2954 	BUG_ON(buffer_delay(bh));
2955 	BUG_ON(buffer_unwritten(bh));
2956 
2957 	/*
2958 	 * Mask in barrier bit for a write (could be either a WRITE or a
2959 	 * WRITE_SYNC
2960 	 */
2961 	if (buffer_ordered(bh) && (rw & WRITE))
2962 		rw |= WRITE_BARRIER;
2963 
2964 	/*
2965 	 * Only clear out a write error when rewriting
2966 	 */
2967 	if (test_set_buffer_req(bh) && (rw & WRITE))
2968 		clear_buffer_write_io_error(bh);
2969 
2970 	/*
2971 	 * from here on down, it's all bio -- do the initial mapping,
2972 	 * submit_bio -> generic_make_request may further map this bio around
2973 	 */
2974 	bio = bio_alloc(GFP_NOIO, 1);
2975 
2976 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2977 	bio->bi_bdev = bh->b_bdev;
2978 	bio->bi_io_vec[0].bv_page = bh->b_page;
2979 	bio->bi_io_vec[0].bv_len = bh->b_size;
2980 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2981 
2982 	bio->bi_vcnt = 1;
2983 	bio->bi_idx = 0;
2984 	bio->bi_size = bh->b_size;
2985 
2986 	bio->bi_end_io = end_bio_bh_io_sync;
2987 	bio->bi_private = bh;
2988 
2989 	bio_get(bio);
2990 	submit_bio(rw, bio);
2991 
2992 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2993 		ret = -EOPNOTSUPP;
2994 
2995 	bio_put(bio);
2996 	return ret;
2997 }
2998 EXPORT_SYMBOL(submit_bh);
2999 
3000 /**
3001  * ll_rw_block: low-level access to block devices (DEPRECATED)
3002  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
3003  * @nr: number of &struct buffer_heads in the array
3004  * @bhs: array of pointers to &struct buffer_head
3005  *
3006  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
3007  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
3008  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
3009  * are sent to disk. The fourth %READA option is described in the documentation
3010  * for generic_make_request() which ll_rw_block() calls.
3011  *
3012  * This function drops any buffer that it cannot get a lock on (with the
3013  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
3014  * clean when doing a write request, and any buffer that appears to be
3015  * up-to-date when doing read request.  Further it marks as clean buffers that
3016  * are processed for writing (the buffer cache won't assume that they are
3017  * actually clean until the buffer gets unlocked).
3018  *
3019  * ll_rw_block sets b_end_io to simple completion handler that marks
3020  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
3021  * any waiters.
3022  *
3023  * All of the buffers must be for the same device, and must also be a
3024  * multiple of the current approved size for the device.
3025  */
3026 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
3027 {
3028 	int i;
3029 
3030 	for (i = 0; i < nr; i++) {
3031 		struct buffer_head *bh = bhs[i];
3032 
3033 		if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
3034 			lock_buffer(bh);
3035 		else if (!trylock_buffer(bh))
3036 			continue;
3037 
3038 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
3039 		    rw == SWRITE_SYNC_PLUG) {
3040 			if (test_clear_buffer_dirty(bh)) {
3041 				bh->b_end_io = end_buffer_write_sync;
3042 				get_bh(bh);
3043 				if (rw == SWRITE_SYNC)
3044 					submit_bh(WRITE_SYNC, bh);
3045 				else
3046 					submit_bh(WRITE, bh);
3047 				continue;
3048 			}
3049 		} else {
3050 			if (!buffer_uptodate(bh)) {
3051 				bh->b_end_io = end_buffer_read_sync;
3052 				get_bh(bh);
3053 				submit_bh(rw, bh);
3054 				continue;
3055 			}
3056 		}
3057 		unlock_buffer(bh);
3058 	}
3059 }
3060 EXPORT_SYMBOL(ll_rw_block);
3061 
3062 /*
3063  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3064  * and then start new I/O and then wait upon it.  The caller must have a ref on
3065  * the buffer_head.
3066  */
3067 int sync_dirty_buffer(struct buffer_head *bh)
3068 {
3069 	int ret = 0;
3070 
3071 	WARN_ON(atomic_read(&bh->b_count) < 1);
3072 	lock_buffer(bh);
3073 	if (test_clear_buffer_dirty(bh)) {
3074 		get_bh(bh);
3075 		bh->b_end_io = end_buffer_write_sync;
3076 		ret = submit_bh(WRITE_SYNC, bh);
3077 		wait_on_buffer(bh);
3078 		if (buffer_eopnotsupp(bh)) {
3079 			clear_buffer_eopnotsupp(bh);
3080 			ret = -EOPNOTSUPP;
3081 		}
3082 		if (!ret && !buffer_uptodate(bh))
3083 			ret = -EIO;
3084 	} else {
3085 		unlock_buffer(bh);
3086 	}
3087 	return ret;
3088 }
3089 EXPORT_SYMBOL(sync_dirty_buffer);
3090 
3091 /*
3092  * try_to_free_buffers() checks if all the buffers on this particular page
3093  * are unused, and releases them if so.
3094  *
3095  * Exclusion against try_to_free_buffers may be obtained by either
3096  * locking the page or by holding its mapping's private_lock.
3097  *
3098  * If the page is dirty but all the buffers are clean then we need to
3099  * be sure to mark the page clean as well.  This is because the page
3100  * may be against a block device, and a later reattachment of buffers
3101  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3102  * filesystem data on the same device.
3103  *
3104  * The same applies to regular filesystem pages: if all the buffers are
3105  * clean then we set the page clean and proceed.  To do that, we require
3106  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3107  * private_lock.
3108  *
3109  * try_to_free_buffers() is non-blocking.
3110  */
3111 static inline int buffer_busy(struct buffer_head *bh)
3112 {
3113 	return atomic_read(&bh->b_count) |
3114 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3115 }
3116 
3117 static int
3118 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3119 {
3120 	struct buffer_head *head = page_buffers(page);
3121 	struct buffer_head *bh;
3122 
3123 	bh = head;
3124 	do {
3125 		if (buffer_write_io_error(bh) && page->mapping)
3126 			set_bit(AS_EIO, &page->mapping->flags);
3127 		if (buffer_busy(bh))
3128 			goto failed;
3129 		bh = bh->b_this_page;
3130 	} while (bh != head);
3131 
3132 	do {
3133 		struct buffer_head *next = bh->b_this_page;
3134 
3135 		if (bh->b_assoc_map)
3136 			__remove_assoc_queue(bh);
3137 		bh = next;
3138 	} while (bh != head);
3139 	*buffers_to_free = head;
3140 	__clear_page_buffers(page);
3141 	return 1;
3142 failed:
3143 	return 0;
3144 }
3145 
3146 int try_to_free_buffers(struct page *page)
3147 {
3148 	struct address_space * const mapping = page->mapping;
3149 	struct buffer_head *buffers_to_free = NULL;
3150 	int ret = 0;
3151 
3152 	BUG_ON(!PageLocked(page));
3153 	if (PageWriteback(page))
3154 		return 0;
3155 
3156 	if (mapping == NULL) {		/* can this still happen? */
3157 		ret = drop_buffers(page, &buffers_to_free);
3158 		goto out;
3159 	}
3160 
3161 	spin_lock(&mapping->private_lock);
3162 	ret = drop_buffers(page, &buffers_to_free);
3163 
3164 	/*
3165 	 * If the filesystem writes its buffers by hand (eg ext3)
3166 	 * then we can have clean buffers against a dirty page.  We
3167 	 * clean the page here; otherwise the VM will never notice
3168 	 * that the filesystem did any IO at all.
3169 	 *
3170 	 * Also, during truncate, discard_buffer will have marked all
3171 	 * the page's buffers clean.  We discover that here and clean
3172 	 * the page also.
3173 	 *
3174 	 * private_lock must be held over this entire operation in order
3175 	 * to synchronise against __set_page_dirty_buffers and prevent the
3176 	 * dirty bit from being lost.
3177 	 */
3178 	if (ret)
3179 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3180 	spin_unlock(&mapping->private_lock);
3181 out:
3182 	if (buffers_to_free) {
3183 		struct buffer_head *bh = buffers_to_free;
3184 
3185 		do {
3186 			struct buffer_head *next = bh->b_this_page;
3187 			free_buffer_head(bh);
3188 			bh = next;
3189 		} while (bh != buffers_to_free);
3190 	}
3191 	return ret;
3192 }
3193 EXPORT_SYMBOL(try_to_free_buffers);
3194 
3195 void block_sync_page(struct page *page)
3196 {
3197 	struct address_space *mapping;
3198 
3199 	smp_mb();
3200 	mapping = page_mapping(page);
3201 	if (mapping)
3202 		blk_run_backing_dev(mapping->backing_dev_info, page);
3203 }
3204 EXPORT_SYMBOL(block_sync_page);
3205 
3206 /*
3207  * There are no bdflush tunables left.  But distributions are
3208  * still running obsolete flush daemons, so we terminate them here.
3209  *
3210  * Use of bdflush() is deprecated and will be removed in a future kernel.
3211  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3212  */
3213 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3214 {
3215 	static int msg_count;
3216 
3217 	if (!capable(CAP_SYS_ADMIN))
3218 		return -EPERM;
3219 
3220 	if (msg_count < 5) {
3221 		msg_count++;
3222 		printk(KERN_INFO
3223 			"warning: process `%s' used the obsolete bdflush"
3224 			" system call\n", current->comm);
3225 		printk(KERN_INFO "Fix your initscripts?\n");
3226 	}
3227 
3228 	if (func == 1)
3229 		do_exit(0);
3230 	return 0;
3231 }
3232 
3233 /*
3234  * Buffer-head allocation
3235  */
3236 static struct kmem_cache *bh_cachep;
3237 
3238 /*
3239  * Once the number of bh's in the machine exceeds this level, we start
3240  * stripping them in writeback.
3241  */
3242 static int max_buffer_heads;
3243 
3244 int buffer_heads_over_limit;
3245 
3246 struct bh_accounting {
3247 	int nr;			/* Number of live bh's */
3248 	int ratelimit;		/* Limit cacheline bouncing */
3249 };
3250 
3251 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3252 
3253 static void recalc_bh_state(void)
3254 {
3255 	int i;
3256 	int tot = 0;
3257 
3258 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3259 		return;
3260 	__get_cpu_var(bh_accounting).ratelimit = 0;
3261 	for_each_online_cpu(i)
3262 		tot += per_cpu(bh_accounting, i).nr;
3263 	buffer_heads_over_limit = (tot > max_buffer_heads);
3264 }
3265 
3266 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3267 {
3268 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3269 	if (ret) {
3270 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3271 		get_cpu_var(bh_accounting).nr++;
3272 		recalc_bh_state();
3273 		put_cpu_var(bh_accounting);
3274 	}
3275 	return ret;
3276 }
3277 EXPORT_SYMBOL(alloc_buffer_head);
3278 
3279 void free_buffer_head(struct buffer_head *bh)
3280 {
3281 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3282 	kmem_cache_free(bh_cachep, bh);
3283 	get_cpu_var(bh_accounting).nr--;
3284 	recalc_bh_state();
3285 	put_cpu_var(bh_accounting);
3286 }
3287 EXPORT_SYMBOL(free_buffer_head);
3288 
3289 static void buffer_exit_cpu(int cpu)
3290 {
3291 	int i;
3292 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3293 
3294 	for (i = 0; i < BH_LRU_SIZE; i++) {
3295 		brelse(b->bhs[i]);
3296 		b->bhs[i] = NULL;
3297 	}
3298 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3299 	per_cpu(bh_accounting, cpu).nr = 0;
3300 	put_cpu_var(bh_accounting);
3301 }
3302 
3303 static int buffer_cpu_notify(struct notifier_block *self,
3304 			      unsigned long action, void *hcpu)
3305 {
3306 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3307 		buffer_exit_cpu((unsigned long)hcpu);
3308 	return NOTIFY_OK;
3309 }
3310 
3311 /**
3312  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3313  * @bh: struct buffer_head
3314  *
3315  * Return true if the buffer is up-to-date and false,
3316  * with the buffer locked, if not.
3317  */
3318 int bh_uptodate_or_lock(struct buffer_head *bh)
3319 {
3320 	if (!buffer_uptodate(bh)) {
3321 		lock_buffer(bh);
3322 		if (!buffer_uptodate(bh))
3323 			return 0;
3324 		unlock_buffer(bh);
3325 	}
3326 	return 1;
3327 }
3328 EXPORT_SYMBOL(bh_uptodate_or_lock);
3329 
3330 /**
3331  * bh_submit_read - Submit a locked buffer for reading
3332  * @bh: struct buffer_head
3333  *
3334  * Returns zero on success and -EIO on error.
3335  */
3336 int bh_submit_read(struct buffer_head *bh)
3337 {
3338 	BUG_ON(!buffer_locked(bh));
3339 
3340 	if (buffer_uptodate(bh)) {
3341 		unlock_buffer(bh);
3342 		return 0;
3343 	}
3344 
3345 	get_bh(bh);
3346 	bh->b_end_io = end_buffer_read_sync;
3347 	submit_bh(READ, bh);
3348 	wait_on_buffer(bh);
3349 	if (buffer_uptodate(bh))
3350 		return 0;
3351 	return -EIO;
3352 }
3353 EXPORT_SYMBOL(bh_submit_read);
3354 
3355 void __init buffer_init(void)
3356 {
3357 	int nrpages;
3358 
3359 	bh_cachep = kmem_cache_create("buffer_head",
3360 			sizeof(struct buffer_head), 0,
3361 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3362 				SLAB_MEM_SPREAD),
3363 				NULL);
3364 
3365 	/*
3366 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3367 	 */
3368 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3369 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3370 	hotcpu_notifier(buffer_cpu_notify, 0);
3371 }
3372