xref: /openbmc/linux/fs/buffer.c (revision 4b2201dad26742c92decd920471b7185088624f5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct folio *folio;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
203 	if (IS_ERR(folio))
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	head = folio_buffers(folio);
208 	if (!head)
209 		goto out_unlock;
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	folio_put(folio);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct folio *folio;
250 	int folio_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	folio = bh->b_folio;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		folio_set_error(folio);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = folio_buffers(folio);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			folio_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If all of the buffers are uptodate then we can set the page
286 	 * uptodate.
287 	 */
288 	if (folio_uptodate)
289 		folio_mark_uptodate(folio);
290 	folio_unlock(folio);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct postprocess_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void verify_bh(struct work_struct *work)
304 {
305 	struct postprocess_bh_ctx *ctx =
306 		container_of(work, struct postprocess_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	bool valid;
309 
310 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311 	end_buffer_async_read(bh, valid);
312 	kfree(ctx);
313 }
314 
315 static bool need_fsverity(struct buffer_head *bh)
316 {
317 	struct folio *folio = bh->b_folio;
318 	struct inode *inode = folio->mapping->host;
319 
320 	return fsverity_active(inode) &&
321 		/* needed by ext4 */
322 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323 }
324 
325 static void decrypt_bh(struct work_struct *work)
326 {
327 	struct postprocess_bh_ctx *ctx =
328 		container_of(work, struct postprocess_bh_ctx, work);
329 	struct buffer_head *bh = ctx->bh;
330 	int err;
331 
332 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333 					       bh_offset(bh));
334 	if (err == 0 && need_fsverity(bh)) {
335 		/*
336 		 * We use different work queues for decryption and for verity
337 		 * because verity may require reading metadata pages that need
338 		 * decryption, and we shouldn't recurse to the same workqueue.
339 		 */
340 		INIT_WORK(&ctx->work, verify_bh);
341 		fsverity_enqueue_verify_work(&ctx->work);
342 		return;
343 	}
344 	end_buffer_async_read(bh, err == 0);
345 	kfree(ctx);
346 }
347 
348 /*
349  * I/O completion handler for block_read_full_folio() - pages
350  * which come unlocked at the end of I/O.
351  */
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353 {
354 	struct inode *inode = bh->b_folio->mapping->host;
355 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356 	bool verify = need_fsverity(bh);
357 
358 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359 	if (uptodate && (decrypt || verify)) {
360 		struct postprocess_bh_ctx *ctx =
361 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
362 
363 		if (ctx) {
364 			ctx->bh = bh;
365 			if (decrypt) {
366 				INIT_WORK(&ctx->work, decrypt_bh);
367 				fscrypt_enqueue_decrypt_work(&ctx->work);
368 			} else {
369 				INIT_WORK(&ctx->work, verify_bh);
370 				fsverity_enqueue_verify_work(&ctx->work);
371 			}
372 			return;
373 		}
374 		uptodate = 0;
375 	}
376 	end_buffer_async_read(bh, uptodate);
377 }
378 
379 /*
380  * Completion handler for block_write_full_page() - pages which are unlocked
381  * during I/O, and which have PageWriteback cleared upon I/O completion.
382  */
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384 {
385 	unsigned long flags;
386 	struct buffer_head *first;
387 	struct buffer_head *tmp;
388 	struct folio *folio;
389 
390 	BUG_ON(!buffer_async_write(bh));
391 
392 	folio = bh->b_folio;
393 	if (uptodate) {
394 		set_buffer_uptodate(bh);
395 	} else {
396 		buffer_io_error(bh, ", lost async page write");
397 		mark_buffer_write_io_error(bh);
398 		clear_buffer_uptodate(bh);
399 		folio_set_error(folio);
400 	}
401 
402 	first = folio_buffers(folio);
403 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
404 
405 	clear_buffer_async_write(bh);
406 	unlock_buffer(bh);
407 	tmp = bh->b_this_page;
408 	while (tmp != bh) {
409 		if (buffer_async_write(tmp)) {
410 			BUG_ON(!buffer_locked(tmp));
411 			goto still_busy;
412 		}
413 		tmp = tmp->b_this_page;
414 	}
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	folio_end_writeback(folio);
417 	return;
418 
419 still_busy:
420 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421 	return;
422 }
423 EXPORT_SYMBOL(end_buffer_async_write);
424 
425 /*
426  * If a page's buffers are under async readin (end_buffer_async_read
427  * completion) then there is a possibility that another thread of
428  * control could lock one of the buffers after it has completed
429  * but while some of the other buffers have not completed.  This
430  * locked buffer would confuse end_buffer_async_read() into not unlocking
431  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
432  * that this buffer is not under async I/O.
433  *
434  * The page comes unlocked when it has no locked buffer_async buffers
435  * left.
436  *
437  * PageLocked prevents anyone starting new async I/O reads any of
438  * the buffers.
439  *
440  * PageWriteback is used to prevent simultaneous writeout of the same
441  * page.
442  *
443  * PageLocked prevents anyone from starting writeback of a page which is
444  * under read I/O (PageWriteback is only ever set against a locked page).
445  */
446 static void mark_buffer_async_read(struct buffer_head *bh)
447 {
448 	bh->b_end_io = end_buffer_async_read_io;
449 	set_buffer_async_read(bh);
450 }
451 
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453 					  bh_end_io_t *handler)
454 {
455 	bh->b_end_io = handler;
456 	set_buffer_async_write(bh);
457 }
458 
459 void mark_buffer_async_write(struct buffer_head *bh)
460 {
461 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
462 }
463 EXPORT_SYMBOL(mark_buffer_async_write);
464 
465 
466 /*
467  * fs/buffer.c contains helper functions for buffer-backed address space's
468  * fsync functions.  A common requirement for buffer-based filesystems is
469  * that certain data from the backing blockdev needs to be written out for
470  * a successful fsync().  For example, ext2 indirect blocks need to be
471  * written back and waited upon before fsync() returns.
472  *
473  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475  * management of a list of dependent buffers at ->i_mapping->private_list.
476  *
477  * Locking is a little subtle: try_to_free_buffers() will remove buffers
478  * from their controlling inode's queue when they are being freed.  But
479  * try_to_free_buffers() will be operating against the *blockdev* mapping
480  * at the time, not against the S_ISREG file which depends on those buffers.
481  * So the locking for private_list is via the private_lock in the address_space
482  * which backs the buffers.  Which is different from the address_space
483  * against which the buffers are listed.  So for a particular address_space,
484  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
485  * mapping->private_list will always be protected by the backing blockdev's
486  * ->private_lock.
487  *
488  * Which introduces a requirement: all buffers on an address_space's
489  * ->private_list must be from the same address_space: the blockdev's.
490  *
491  * address_spaces which do not place buffers at ->private_list via these
492  * utility functions are free to use private_lock and private_list for
493  * whatever they want.  The only requirement is that list_empty(private_list)
494  * be true at clear_inode() time.
495  *
496  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
497  * filesystems should do that.  invalidate_inode_buffers() should just go
498  * BUG_ON(!list_empty).
499  *
500  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
501  * take an address_space, not an inode.  And it should be called
502  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503  * queued up.
504  *
505  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506  * list if it is already on a list.  Because if the buffer is on a list,
507  * it *must* already be on the right one.  If not, the filesystem is being
508  * silly.  This will save a ton of locking.  But first we have to ensure
509  * that buffers are taken *off* the old inode's list when they are freed
510  * (presumably in truncate).  That requires careful auditing of all
511  * filesystems (do it inside bforget()).  It could also be done by bringing
512  * b_inode back.
513  */
514 
515 /*
516  * The buffer's backing address_space's private_lock must be held
517  */
518 static void __remove_assoc_queue(struct buffer_head *bh)
519 {
520 	list_del_init(&bh->b_assoc_buffers);
521 	WARN_ON(!bh->b_assoc_map);
522 	bh->b_assoc_map = NULL;
523 }
524 
525 int inode_has_buffers(struct inode *inode)
526 {
527 	return !list_empty(&inode->i_data.private_list);
528 }
529 
530 /*
531  * osync is designed to support O_SYNC io.  It waits synchronously for
532  * all already-submitted IO to complete, but does not queue any new
533  * writes to the disk.
534  *
535  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536  * as you dirty the buffers, and then use osync_inode_buffers to wait for
537  * completion.  Any other dirty buffers which are not yet queued for
538  * write will not be flushed to disk by the osync.
539  */
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 {
542 	struct buffer_head *bh;
543 	struct list_head *p;
544 	int err = 0;
545 
546 	spin_lock(lock);
547 repeat:
548 	list_for_each_prev(p, list) {
549 		bh = BH_ENTRY(p);
550 		if (buffer_locked(bh)) {
551 			get_bh(bh);
552 			spin_unlock(lock);
553 			wait_on_buffer(bh);
554 			if (!buffer_uptodate(bh))
555 				err = -EIO;
556 			brelse(bh);
557 			spin_lock(lock);
558 			goto repeat;
559 		}
560 	}
561 	spin_unlock(lock);
562 	return err;
563 }
564 
565 void emergency_thaw_bdev(struct super_block *sb)
566 {
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev))
568 		printk(KERN_WARNING "Emergency Thaw on %pg\n", sb->s_bdev);
569 }
570 
571 /**
572  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
573  * @mapping: the mapping which wants those buffers written
574  *
575  * Starts I/O against the buffers at mapping->private_list, and waits upon
576  * that I/O.
577  *
578  * Basically, this is a convenience function for fsync().
579  * @mapping is a file or directory which needs those buffers to be written for
580  * a successful fsync().
581  */
582 int sync_mapping_buffers(struct address_space *mapping)
583 {
584 	struct address_space *buffer_mapping = mapping->private_data;
585 
586 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
587 		return 0;
588 
589 	return fsync_buffers_list(&buffer_mapping->private_lock,
590 					&mapping->private_list);
591 }
592 EXPORT_SYMBOL(sync_mapping_buffers);
593 
594 /**
595  * generic_buffers_fsync_noflush - generic buffer fsync implementation
596  * for simple filesystems with no inode lock
597  *
598  * @file:	file to synchronize
599  * @start:	start offset in bytes
600  * @end:	end offset in bytes (inclusive)
601  * @datasync:	only synchronize essential metadata if true
602  *
603  * This is a generic implementation of the fsync method for simple
604  * filesystems which track all non-inode metadata in the buffers list
605  * hanging off the address_space structure.
606  */
607 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
608 				  bool datasync)
609 {
610 	struct inode *inode = file->f_mapping->host;
611 	int err;
612 	int ret;
613 
614 	err = file_write_and_wait_range(file, start, end);
615 	if (err)
616 		return err;
617 
618 	ret = sync_mapping_buffers(inode->i_mapping);
619 	if (!(inode->i_state & I_DIRTY_ALL))
620 		goto out;
621 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
622 		goto out;
623 
624 	err = sync_inode_metadata(inode, 1);
625 	if (ret == 0)
626 		ret = err;
627 
628 out:
629 	/* check and advance again to catch errors after syncing out buffers */
630 	err = file_check_and_advance_wb_err(file);
631 	if (ret == 0)
632 		ret = err;
633 	return ret;
634 }
635 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
636 
637 /**
638  * generic_buffers_fsync - generic buffer fsync implementation
639  * for simple filesystems with no inode lock
640  *
641  * @file:	file to synchronize
642  * @start:	start offset in bytes
643  * @end:	end offset in bytes (inclusive)
644  * @datasync:	only synchronize essential metadata if true
645  *
646  * This is a generic implementation of the fsync method for simple
647  * filesystems which track all non-inode metadata in the buffers list
648  * hanging off the address_space structure. This also makes sure that
649  * a device cache flush operation is called at the end.
650  */
651 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
652 			  bool datasync)
653 {
654 	struct inode *inode = file->f_mapping->host;
655 	int ret;
656 
657 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
658 	if (!ret)
659 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
660 	return ret;
661 }
662 EXPORT_SYMBOL(generic_buffers_fsync);
663 
664 /*
665  * Called when we've recently written block `bblock', and it is known that
666  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
667  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
668  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
669  */
670 void write_boundary_block(struct block_device *bdev,
671 			sector_t bblock, unsigned blocksize)
672 {
673 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
674 	if (bh) {
675 		if (buffer_dirty(bh))
676 			write_dirty_buffer(bh, 0);
677 		put_bh(bh);
678 	}
679 }
680 
681 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
682 {
683 	struct address_space *mapping = inode->i_mapping;
684 	struct address_space *buffer_mapping = bh->b_folio->mapping;
685 
686 	mark_buffer_dirty(bh);
687 	if (!mapping->private_data) {
688 		mapping->private_data = buffer_mapping;
689 	} else {
690 		BUG_ON(mapping->private_data != buffer_mapping);
691 	}
692 	if (!bh->b_assoc_map) {
693 		spin_lock(&buffer_mapping->private_lock);
694 		list_move_tail(&bh->b_assoc_buffers,
695 				&mapping->private_list);
696 		bh->b_assoc_map = mapping;
697 		spin_unlock(&buffer_mapping->private_lock);
698 	}
699 }
700 EXPORT_SYMBOL(mark_buffer_dirty_inode);
701 
702 /*
703  * Add a page to the dirty page list.
704  *
705  * It is a sad fact of life that this function is called from several places
706  * deeply under spinlocking.  It may not sleep.
707  *
708  * If the page has buffers, the uptodate buffers are set dirty, to preserve
709  * dirty-state coherency between the page and the buffers.  It the page does
710  * not have buffers then when they are later attached they will all be set
711  * dirty.
712  *
713  * The buffers are dirtied before the page is dirtied.  There's a small race
714  * window in which a writepage caller may see the page cleanness but not the
715  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
716  * before the buffers, a concurrent writepage caller could clear the page dirty
717  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
718  * page on the dirty page list.
719  *
720  * We use private_lock to lock against try_to_free_buffers while using the
721  * page's buffer list.  Also use this to protect against clean buffers being
722  * added to the page after it was set dirty.
723  *
724  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
725  * address_space though.
726  */
727 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
728 {
729 	struct buffer_head *head;
730 	bool newly_dirty;
731 
732 	spin_lock(&mapping->private_lock);
733 	head = folio_buffers(folio);
734 	if (head) {
735 		struct buffer_head *bh = head;
736 
737 		do {
738 			set_buffer_dirty(bh);
739 			bh = bh->b_this_page;
740 		} while (bh != head);
741 	}
742 	/*
743 	 * Lock out page's memcg migration to keep PageDirty
744 	 * synchronized with per-memcg dirty page counters.
745 	 */
746 	folio_memcg_lock(folio);
747 	newly_dirty = !folio_test_set_dirty(folio);
748 	spin_unlock(&mapping->private_lock);
749 
750 	if (newly_dirty)
751 		__folio_mark_dirty(folio, mapping, 1);
752 
753 	folio_memcg_unlock(folio);
754 
755 	if (newly_dirty)
756 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
757 
758 	return newly_dirty;
759 }
760 EXPORT_SYMBOL(block_dirty_folio);
761 
762 /*
763  * Write out and wait upon a list of buffers.
764  *
765  * We have conflicting pressures: we want to make sure that all
766  * initially dirty buffers get waited on, but that any subsequently
767  * dirtied buffers don't.  After all, we don't want fsync to last
768  * forever if somebody is actively writing to the file.
769  *
770  * Do this in two main stages: first we copy dirty buffers to a
771  * temporary inode list, queueing the writes as we go.  Then we clean
772  * up, waiting for those writes to complete.
773  *
774  * During this second stage, any subsequent updates to the file may end
775  * up refiling the buffer on the original inode's dirty list again, so
776  * there is a chance we will end up with a buffer queued for write but
777  * not yet completed on that list.  So, as a final cleanup we go through
778  * the osync code to catch these locked, dirty buffers without requeuing
779  * any newly dirty buffers for write.
780  */
781 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
782 {
783 	struct buffer_head *bh;
784 	struct list_head tmp;
785 	struct address_space *mapping;
786 	int err = 0, err2;
787 	struct blk_plug plug;
788 
789 	INIT_LIST_HEAD(&tmp);
790 	blk_start_plug(&plug);
791 
792 	spin_lock(lock);
793 	while (!list_empty(list)) {
794 		bh = BH_ENTRY(list->next);
795 		mapping = bh->b_assoc_map;
796 		__remove_assoc_queue(bh);
797 		/* Avoid race with mark_buffer_dirty_inode() which does
798 		 * a lockless check and we rely on seeing the dirty bit */
799 		smp_mb();
800 		if (buffer_dirty(bh) || buffer_locked(bh)) {
801 			list_add(&bh->b_assoc_buffers, &tmp);
802 			bh->b_assoc_map = mapping;
803 			if (buffer_dirty(bh)) {
804 				get_bh(bh);
805 				spin_unlock(lock);
806 				/*
807 				 * Ensure any pending I/O completes so that
808 				 * write_dirty_buffer() actually writes the
809 				 * current contents - it is a noop if I/O is
810 				 * still in flight on potentially older
811 				 * contents.
812 				 */
813 				write_dirty_buffer(bh, REQ_SYNC);
814 
815 				/*
816 				 * Kick off IO for the previous mapping. Note
817 				 * that we will not run the very last mapping,
818 				 * wait_on_buffer() will do that for us
819 				 * through sync_buffer().
820 				 */
821 				brelse(bh);
822 				spin_lock(lock);
823 			}
824 		}
825 	}
826 
827 	spin_unlock(lock);
828 	blk_finish_plug(&plug);
829 	spin_lock(lock);
830 
831 	while (!list_empty(&tmp)) {
832 		bh = BH_ENTRY(tmp.prev);
833 		get_bh(bh);
834 		mapping = bh->b_assoc_map;
835 		__remove_assoc_queue(bh);
836 		/* Avoid race with mark_buffer_dirty_inode() which does
837 		 * a lockless check and we rely on seeing the dirty bit */
838 		smp_mb();
839 		if (buffer_dirty(bh)) {
840 			list_add(&bh->b_assoc_buffers,
841 				 &mapping->private_list);
842 			bh->b_assoc_map = mapping;
843 		}
844 		spin_unlock(lock);
845 		wait_on_buffer(bh);
846 		if (!buffer_uptodate(bh))
847 			err = -EIO;
848 		brelse(bh);
849 		spin_lock(lock);
850 	}
851 
852 	spin_unlock(lock);
853 	err2 = osync_buffers_list(lock, list);
854 	if (err)
855 		return err;
856 	else
857 		return err2;
858 }
859 
860 /*
861  * Invalidate any and all dirty buffers on a given inode.  We are
862  * probably unmounting the fs, but that doesn't mean we have already
863  * done a sync().  Just drop the buffers from the inode list.
864  *
865  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
866  * assumes that all the buffers are against the blockdev.  Not true
867  * for reiserfs.
868  */
869 void invalidate_inode_buffers(struct inode *inode)
870 {
871 	if (inode_has_buffers(inode)) {
872 		struct address_space *mapping = &inode->i_data;
873 		struct list_head *list = &mapping->private_list;
874 		struct address_space *buffer_mapping = mapping->private_data;
875 
876 		spin_lock(&buffer_mapping->private_lock);
877 		while (!list_empty(list))
878 			__remove_assoc_queue(BH_ENTRY(list->next));
879 		spin_unlock(&buffer_mapping->private_lock);
880 	}
881 }
882 EXPORT_SYMBOL(invalidate_inode_buffers);
883 
884 /*
885  * Remove any clean buffers from the inode's buffer list.  This is called
886  * when we're trying to free the inode itself.  Those buffers can pin it.
887  *
888  * Returns true if all buffers were removed.
889  */
890 int remove_inode_buffers(struct inode *inode)
891 {
892 	int ret = 1;
893 
894 	if (inode_has_buffers(inode)) {
895 		struct address_space *mapping = &inode->i_data;
896 		struct list_head *list = &mapping->private_list;
897 		struct address_space *buffer_mapping = mapping->private_data;
898 
899 		spin_lock(&buffer_mapping->private_lock);
900 		while (!list_empty(list)) {
901 			struct buffer_head *bh = BH_ENTRY(list->next);
902 			if (buffer_dirty(bh)) {
903 				ret = 0;
904 				break;
905 			}
906 			__remove_assoc_queue(bh);
907 		}
908 		spin_unlock(&buffer_mapping->private_lock);
909 	}
910 	return ret;
911 }
912 
913 /*
914  * Create the appropriate buffers when given a folio for data area and
915  * the size of each buffer.. Use the bh->b_this_page linked list to
916  * follow the buffers created.  Return NULL if unable to create more
917  * buffers.
918  *
919  * The retry flag is used to differentiate async IO (paging, swapping)
920  * which may not fail from ordinary buffer allocations.
921  */
922 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
923 					bool retry)
924 {
925 	struct buffer_head *bh, *head;
926 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
927 	long offset;
928 	struct mem_cgroup *memcg, *old_memcg;
929 
930 	if (retry)
931 		gfp |= __GFP_NOFAIL;
932 
933 	/* The folio lock pins the memcg */
934 	memcg = folio_memcg(folio);
935 	old_memcg = set_active_memcg(memcg);
936 
937 	head = NULL;
938 	offset = folio_size(folio);
939 	while ((offset -= size) >= 0) {
940 		bh = alloc_buffer_head(gfp);
941 		if (!bh)
942 			goto no_grow;
943 
944 		bh->b_this_page = head;
945 		bh->b_blocknr = -1;
946 		head = bh;
947 
948 		bh->b_size = size;
949 
950 		/* Link the buffer to its folio */
951 		folio_set_bh(bh, folio, offset);
952 	}
953 out:
954 	set_active_memcg(old_memcg);
955 	return head;
956 /*
957  * In case anything failed, we just free everything we got.
958  */
959 no_grow:
960 	if (head) {
961 		do {
962 			bh = head;
963 			head = head->b_this_page;
964 			free_buffer_head(bh);
965 		} while (head);
966 	}
967 
968 	goto out;
969 }
970 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
971 
972 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
973 				       bool retry)
974 {
975 	return folio_alloc_buffers(page_folio(page), size, retry);
976 }
977 EXPORT_SYMBOL_GPL(alloc_page_buffers);
978 
979 static inline void link_dev_buffers(struct folio *folio,
980 		struct buffer_head *head)
981 {
982 	struct buffer_head *bh, *tail;
983 
984 	bh = head;
985 	do {
986 		tail = bh;
987 		bh = bh->b_this_page;
988 	} while (bh);
989 	tail->b_this_page = head;
990 	folio_attach_private(folio, head);
991 }
992 
993 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
994 {
995 	sector_t retval = ~((sector_t)0);
996 	loff_t sz = bdev_nr_bytes(bdev);
997 
998 	if (sz) {
999 		unsigned int sizebits = blksize_bits(size);
1000 		retval = (sz >> sizebits);
1001 	}
1002 	return retval;
1003 }
1004 
1005 /*
1006  * Initialise the state of a blockdev folio's buffers.
1007  */
1008 static sector_t folio_init_buffers(struct folio *folio,
1009 		struct block_device *bdev, sector_t block, int size)
1010 {
1011 	struct buffer_head *head = folio_buffers(folio);
1012 	struct buffer_head *bh = head;
1013 	bool uptodate = folio_test_uptodate(folio);
1014 	sector_t end_block = blkdev_max_block(bdev, size);
1015 
1016 	do {
1017 		if (!buffer_mapped(bh)) {
1018 			bh->b_end_io = NULL;
1019 			bh->b_private = NULL;
1020 			bh->b_bdev = bdev;
1021 			bh->b_blocknr = block;
1022 			if (uptodate)
1023 				set_buffer_uptodate(bh);
1024 			if (block < end_block)
1025 				set_buffer_mapped(bh);
1026 		}
1027 		block++;
1028 		bh = bh->b_this_page;
1029 	} while (bh != head);
1030 
1031 	/*
1032 	 * Caller needs to validate requested block against end of device.
1033 	 */
1034 	return end_block;
1035 }
1036 
1037 /*
1038  * Create the page-cache page that contains the requested block.
1039  *
1040  * This is used purely for blockdev mappings.
1041  */
1042 static int
1043 grow_dev_page(struct block_device *bdev, sector_t block,
1044 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
1045 {
1046 	struct inode *inode = bdev->bd_inode;
1047 	struct folio *folio;
1048 	struct buffer_head *bh;
1049 	sector_t end_block;
1050 	int ret = 0;
1051 	gfp_t gfp_mask;
1052 
1053 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1054 
1055 	/*
1056 	 * XXX: __getblk_slow() can not really deal with failure and
1057 	 * will endlessly loop on improvised global reclaim.  Prefer
1058 	 * looping in the allocator rather than here, at least that
1059 	 * code knows what it's doing.
1060 	 */
1061 	gfp_mask |= __GFP_NOFAIL;
1062 
1063 	folio = __filemap_get_folio(inode->i_mapping, index,
1064 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1065 
1066 	bh = folio_buffers(folio);
1067 	if (bh) {
1068 		if (bh->b_size == size) {
1069 			end_block = folio_init_buffers(folio, bdev,
1070 					(sector_t)index << sizebits, size);
1071 			goto done;
1072 		}
1073 		if (!try_to_free_buffers(folio))
1074 			goto failed;
1075 	}
1076 
1077 	bh = folio_alloc_buffers(folio, size, true);
1078 
1079 	/*
1080 	 * Link the folio to the buffers and initialise them.  Take the
1081 	 * lock to be atomic wrt __find_get_block(), which does not
1082 	 * run under the folio lock.
1083 	 */
1084 	spin_lock(&inode->i_mapping->private_lock);
1085 	link_dev_buffers(folio, bh);
1086 	end_block = folio_init_buffers(folio, bdev,
1087 			(sector_t)index << sizebits, size);
1088 	spin_unlock(&inode->i_mapping->private_lock);
1089 done:
1090 	ret = (block < end_block) ? 1 : -ENXIO;
1091 failed:
1092 	folio_unlock(folio);
1093 	folio_put(folio);
1094 	return ret;
1095 }
1096 
1097 /*
1098  * Create buffers for the specified block device block's page.  If
1099  * that page was dirty, the buffers are set dirty also.
1100  */
1101 static int
1102 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1103 {
1104 	pgoff_t index;
1105 	int sizebits;
1106 
1107 	sizebits = PAGE_SHIFT - __ffs(size);
1108 	index = block >> sizebits;
1109 
1110 	/*
1111 	 * Check for a block which wants to lie outside our maximum possible
1112 	 * pagecache index.  (this comparison is done using sector_t types).
1113 	 */
1114 	if (unlikely(index != block >> sizebits)) {
1115 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1116 			"device %pg\n",
1117 			__func__, (unsigned long long)block,
1118 			bdev);
1119 		return -EIO;
1120 	}
1121 
1122 	/* Create a page with the proper size buffers.. */
1123 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1124 }
1125 
1126 static struct buffer_head *
1127 __getblk_slow(struct block_device *bdev, sector_t block,
1128 	     unsigned size, gfp_t gfp)
1129 {
1130 	/* Size must be multiple of hard sectorsize */
1131 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1132 			(size < 512 || size > PAGE_SIZE))) {
1133 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1134 					size);
1135 		printk(KERN_ERR "logical block size: %d\n",
1136 					bdev_logical_block_size(bdev));
1137 
1138 		dump_stack();
1139 		return NULL;
1140 	}
1141 
1142 	for (;;) {
1143 		struct buffer_head *bh;
1144 		int ret;
1145 
1146 		bh = __find_get_block(bdev, block, size);
1147 		if (bh)
1148 			return bh;
1149 
1150 		ret = grow_buffers(bdev, block, size, gfp);
1151 		if (ret < 0)
1152 			return NULL;
1153 	}
1154 }
1155 
1156 /*
1157  * The relationship between dirty buffers and dirty pages:
1158  *
1159  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1160  * the page is tagged dirty in the page cache.
1161  *
1162  * At all times, the dirtiness of the buffers represents the dirtiness of
1163  * subsections of the page.  If the page has buffers, the page dirty bit is
1164  * merely a hint about the true dirty state.
1165  *
1166  * When a page is set dirty in its entirety, all its buffers are marked dirty
1167  * (if the page has buffers).
1168  *
1169  * When a buffer is marked dirty, its page is dirtied, but the page's other
1170  * buffers are not.
1171  *
1172  * Also.  When blockdev buffers are explicitly read with bread(), they
1173  * individually become uptodate.  But their backing page remains not
1174  * uptodate - even if all of its buffers are uptodate.  A subsequent
1175  * block_read_full_folio() against that folio will discover all the uptodate
1176  * buffers, will set the folio uptodate and will perform no I/O.
1177  */
1178 
1179 /**
1180  * mark_buffer_dirty - mark a buffer_head as needing writeout
1181  * @bh: the buffer_head to mark dirty
1182  *
1183  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1184  * its backing page dirty, then tag the page as dirty in the page cache
1185  * and then attach the address_space's inode to its superblock's dirty
1186  * inode list.
1187  *
1188  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1189  * i_pages lock and mapping->host->i_lock.
1190  */
1191 void mark_buffer_dirty(struct buffer_head *bh)
1192 {
1193 	WARN_ON_ONCE(!buffer_uptodate(bh));
1194 
1195 	trace_block_dirty_buffer(bh);
1196 
1197 	/*
1198 	 * Very *carefully* optimize the it-is-already-dirty case.
1199 	 *
1200 	 * Don't let the final "is it dirty" escape to before we
1201 	 * perhaps modified the buffer.
1202 	 */
1203 	if (buffer_dirty(bh)) {
1204 		smp_mb();
1205 		if (buffer_dirty(bh))
1206 			return;
1207 	}
1208 
1209 	if (!test_set_buffer_dirty(bh)) {
1210 		struct folio *folio = bh->b_folio;
1211 		struct address_space *mapping = NULL;
1212 
1213 		folio_memcg_lock(folio);
1214 		if (!folio_test_set_dirty(folio)) {
1215 			mapping = folio->mapping;
1216 			if (mapping)
1217 				__folio_mark_dirty(folio, mapping, 0);
1218 		}
1219 		folio_memcg_unlock(folio);
1220 		if (mapping)
1221 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1222 	}
1223 }
1224 EXPORT_SYMBOL(mark_buffer_dirty);
1225 
1226 void mark_buffer_write_io_error(struct buffer_head *bh)
1227 {
1228 	set_buffer_write_io_error(bh);
1229 	/* FIXME: do we need to set this in both places? */
1230 	if (bh->b_folio && bh->b_folio->mapping)
1231 		mapping_set_error(bh->b_folio->mapping, -EIO);
1232 	if (bh->b_assoc_map) {
1233 		mapping_set_error(bh->b_assoc_map, -EIO);
1234 		errseq_set(&bh->b_assoc_map->host->i_sb->s_wb_err, -EIO);
1235 	}
1236 }
1237 EXPORT_SYMBOL(mark_buffer_write_io_error);
1238 
1239 /*
1240  * Decrement a buffer_head's reference count.  If all buffers against a page
1241  * have zero reference count, are clean and unlocked, and if the page is clean
1242  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1243  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1244  * a page but it ends up not being freed, and buffers may later be reattached).
1245  */
1246 void __brelse(struct buffer_head * buf)
1247 {
1248 	if (atomic_read(&buf->b_count)) {
1249 		put_bh(buf);
1250 		return;
1251 	}
1252 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1253 }
1254 EXPORT_SYMBOL(__brelse);
1255 
1256 /*
1257  * bforget() is like brelse(), except it discards any
1258  * potentially dirty data.
1259  */
1260 void __bforget(struct buffer_head *bh)
1261 {
1262 	clear_buffer_dirty(bh);
1263 	if (bh->b_assoc_map) {
1264 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1265 
1266 		spin_lock(&buffer_mapping->private_lock);
1267 		list_del_init(&bh->b_assoc_buffers);
1268 		bh->b_assoc_map = NULL;
1269 		spin_unlock(&buffer_mapping->private_lock);
1270 	}
1271 	__brelse(bh);
1272 }
1273 EXPORT_SYMBOL(__bforget);
1274 
1275 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1276 {
1277 	lock_buffer(bh);
1278 	if (buffer_uptodate(bh)) {
1279 		unlock_buffer(bh);
1280 		return bh;
1281 	} else {
1282 		get_bh(bh);
1283 		bh->b_end_io = end_buffer_read_sync;
1284 		submit_bh(REQ_OP_READ, bh);
1285 		wait_on_buffer(bh);
1286 		if (buffer_uptodate(bh))
1287 			return bh;
1288 	}
1289 	brelse(bh);
1290 	return NULL;
1291 }
1292 
1293 /*
1294  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1295  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1296  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1297  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1298  * CPU's LRUs at the same time.
1299  *
1300  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1301  * sb_find_get_block().
1302  *
1303  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1304  * a local interrupt disable for that.
1305  */
1306 
1307 #define BH_LRU_SIZE	16
1308 
1309 struct bh_lru {
1310 	struct buffer_head *bhs[BH_LRU_SIZE];
1311 };
1312 
1313 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1314 
1315 #ifdef CONFIG_SMP
1316 #define bh_lru_lock()	local_irq_disable()
1317 #define bh_lru_unlock()	local_irq_enable()
1318 #else
1319 #define bh_lru_lock()	preempt_disable()
1320 #define bh_lru_unlock()	preempt_enable()
1321 #endif
1322 
1323 static inline void check_irqs_on(void)
1324 {
1325 #ifdef irqs_disabled
1326 	BUG_ON(irqs_disabled());
1327 #endif
1328 }
1329 
1330 /*
1331  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1332  * inserted at the front, and the buffer_head at the back if any is evicted.
1333  * Or, if already in the LRU it is moved to the front.
1334  */
1335 static void bh_lru_install(struct buffer_head *bh)
1336 {
1337 	struct buffer_head *evictee = bh;
1338 	struct bh_lru *b;
1339 	int i;
1340 
1341 	check_irqs_on();
1342 	bh_lru_lock();
1343 
1344 	/*
1345 	 * the refcount of buffer_head in bh_lru prevents dropping the
1346 	 * attached page(i.e., try_to_free_buffers) so it could cause
1347 	 * failing page migration.
1348 	 * Skip putting upcoming bh into bh_lru until migration is done.
1349 	 */
1350 	if (lru_cache_disabled()) {
1351 		bh_lru_unlock();
1352 		return;
1353 	}
1354 
1355 	b = this_cpu_ptr(&bh_lrus);
1356 	for (i = 0; i < BH_LRU_SIZE; i++) {
1357 		swap(evictee, b->bhs[i]);
1358 		if (evictee == bh) {
1359 			bh_lru_unlock();
1360 			return;
1361 		}
1362 	}
1363 
1364 	get_bh(bh);
1365 	bh_lru_unlock();
1366 	brelse(evictee);
1367 }
1368 
1369 /*
1370  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1371  */
1372 static struct buffer_head *
1373 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1374 {
1375 	struct buffer_head *ret = NULL;
1376 	unsigned int i;
1377 
1378 	check_irqs_on();
1379 	bh_lru_lock();
1380 	for (i = 0; i < BH_LRU_SIZE; i++) {
1381 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1382 
1383 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1384 		    bh->b_size == size) {
1385 			if (i) {
1386 				while (i) {
1387 					__this_cpu_write(bh_lrus.bhs[i],
1388 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1389 					i--;
1390 				}
1391 				__this_cpu_write(bh_lrus.bhs[0], bh);
1392 			}
1393 			get_bh(bh);
1394 			ret = bh;
1395 			break;
1396 		}
1397 	}
1398 	bh_lru_unlock();
1399 	return ret;
1400 }
1401 
1402 /*
1403  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1404  * it in the LRU and mark it as accessed.  If it is not present then return
1405  * NULL
1406  */
1407 struct buffer_head *
1408 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1409 {
1410 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1411 
1412 	if (bh == NULL) {
1413 		/* __find_get_block_slow will mark the page accessed */
1414 		bh = __find_get_block_slow(bdev, block);
1415 		if (bh)
1416 			bh_lru_install(bh);
1417 	} else
1418 		touch_buffer(bh);
1419 
1420 	return bh;
1421 }
1422 EXPORT_SYMBOL(__find_get_block);
1423 
1424 /*
1425  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1426  * which corresponds to the passed block_device, block and size. The
1427  * returned buffer has its reference count incremented.
1428  *
1429  * __getblk_gfp() will lock up the machine if grow_dev_page's
1430  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1431  */
1432 struct buffer_head *
1433 __getblk_gfp(struct block_device *bdev, sector_t block,
1434 	     unsigned size, gfp_t gfp)
1435 {
1436 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1437 
1438 	might_sleep();
1439 	if (bh == NULL)
1440 		bh = __getblk_slow(bdev, block, size, gfp);
1441 	return bh;
1442 }
1443 EXPORT_SYMBOL(__getblk_gfp);
1444 
1445 /*
1446  * Do async read-ahead on a buffer..
1447  */
1448 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1449 {
1450 	struct buffer_head *bh = __getblk(bdev, block, size);
1451 	if (likely(bh)) {
1452 		bh_readahead(bh, REQ_RAHEAD);
1453 		brelse(bh);
1454 	}
1455 }
1456 EXPORT_SYMBOL(__breadahead);
1457 
1458 /**
1459  *  __bread_gfp() - reads a specified block and returns the bh
1460  *  @bdev: the block_device to read from
1461  *  @block: number of block
1462  *  @size: size (in bytes) to read
1463  *  @gfp: page allocation flag
1464  *
1465  *  Reads a specified block, and returns buffer head that contains it.
1466  *  The page cache can be allocated from non-movable area
1467  *  not to prevent page migration if you set gfp to zero.
1468  *  It returns NULL if the block was unreadable.
1469  */
1470 struct buffer_head *
1471 __bread_gfp(struct block_device *bdev, sector_t block,
1472 		   unsigned size, gfp_t gfp)
1473 {
1474 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1475 
1476 	if (likely(bh) && !buffer_uptodate(bh))
1477 		bh = __bread_slow(bh);
1478 	return bh;
1479 }
1480 EXPORT_SYMBOL(__bread_gfp);
1481 
1482 static void __invalidate_bh_lrus(struct bh_lru *b)
1483 {
1484 	int i;
1485 
1486 	for (i = 0; i < BH_LRU_SIZE; i++) {
1487 		brelse(b->bhs[i]);
1488 		b->bhs[i] = NULL;
1489 	}
1490 }
1491 /*
1492  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1493  * This doesn't race because it runs in each cpu either in irq
1494  * or with preempt disabled.
1495  */
1496 static void invalidate_bh_lru(void *arg)
1497 {
1498 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1499 
1500 	__invalidate_bh_lrus(b);
1501 	put_cpu_var(bh_lrus);
1502 }
1503 
1504 bool has_bh_in_lru(int cpu, void *dummy)
1505 {
1506 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1507 	int i;
1508 
1509 	for (i = 0; i < BH_LRU_SIZE; i++) {
1510 		if (b->bhs[i])
1511 			return true;
1512 	}
1513 
1514 	return false;
1515 }
1516 
1517 void invalidate_bh_lrus(void)
1518 {
1519 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1520 }
1521 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1522 
1523 /*
1524  * It's called from workqueue context so we need a bh_lru_lock to close
1525  * the race with preemption/irq.
1526  */
1527 void invalidate_bh_lrus_cpu(void)
1528 {
1529 	struct bh_lru *b;
1530 
1531 	bh_lru_lock();
1532 	b = this_cpu_ptr(&bh_lrus);
1533 	__invalidate_bh_lrus(b);
1534 	bh_lru_unlock();
1535 }
1536 
1537 void set_bh_page(struct buffer_head *bh,
1538 		struct page *page, unsigned long offset)
1539 {
1540 	bh->b_page = page;
1541 	BUG_ON(offset >= PAGE_SIZE);
1542 	if (PageHighMem(page))
1543 		/*
1544 		 * This catches illegal uses and preserves the offset:
1545 		 */
1546 		bh->b_data = (char *)(0 + offset);
1547 	else
1548 		bh->b_data = page_address(page) + offset;
1549 }
1550 EXPORT_SYMBOL(set_bh_page);
1551 
1552 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1553 		  unsigned long offset)
1554 {
1555 	bh->b_folio = folio;
1556 	BUG_ON(offset >= folio_size(folio));
1557 	if (folio_test_highmem(folio))
1558 		/*
1559 		 * This catches illegal uses and preserves the offset:
1560 		 */
1561 		bh->b_data = (char *)(0 + offset);
1562 	else
1563 		bh->b_data = folio_address(folio) + offset;
1564 }
1565 EXPORT_SYMBOL(folio_set_bh);
1566 
1567 /*
1568  * Called when truncating a buffer on a page completely.
1569  */
1570 
1571 /* Bits that are cleared during an invalidate */
1572 #define BUFFER_FLAGS_DISCARD \
1573 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1574 	 1 << BH_Delay | 1 << BH_Unwritten)
1575 
1576 static void discard_buffer(struct buffer_head * bh)
1577 {
1578 	unsigned long b_state;
1579 
1580 	lock_buffer(bh);
1581 	clear_buffer_dirty(bh);
1582 	bh->b_bdev = NULL;
1583 	b_state = READ_ONCE(bh->b_state);
1584 	do {
1585 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1586 			      b_state & ~BUFFER_FLAGS_DISCARD));
1587 	unlock_buffer(bh);
1588 }
1589 
1590 /**
1591  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1592  * @folio: The folio which is affected.
1593  * @offset: start of the range to invalidate
1594  * @length: length of the range to invalidate
1595  *
1596  * block_invalidate_folio() is called when all or part of the folio has been
1597  * invalidated by a truncate operation.
1598  *
1599  * block_invalidate_folio() does not have to release all buffers, but it must
1600  * ensure that no dirty buffer is left outside @offset and that no I/O
1601  * is underway against any of the blocks which are outside the truncation
1602  * point.  Because the caller is about to free (and possibly reuse) those
1603  * blocks on-disk.
1604  */
1605 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1606 {
1607 	struct buffer_head *head, *bh, *next;
1608 	size_t curr_off = 0;
1609 	size_t stop = length + offset;
1610 
1611 	BUG_ON(!folio_test_locked(folio));
1612 
1613 	/*
1614 	 * Check for overflow
1615 	 */
1616 	BUG_ON(stop > folio_size(folio) || stop < length);
1617 
1618 	head = folio_buffers(folio);
1619 	if (!head)
1620 		return;
1621 
1622 	bh = head;
1623 	do {
1624 		size_t next_off = curr_off + bh->b_size;
1625 		next = bh->b_this_page;
1626 
1627 		/*
1628 		 * Are we still fully in range ?
1629 		 */
1630 		if (next_off > stop)
1631 			goto out;
1632 
1633 		/*
1634 		 * is this block fully invalidated?
1635 		 */
1636 		if (offset <= curr_off)
1637 			discard_buffer(bh);
1638 		curr_off = next_off;
1639 		bh = next;
1640 	} while (bh != head);
1641 
1642 	/*
1643 	 * We release buffers only if the entire folio is being invalidated.
1644 	 * The get_block cached value has been unconditionally invalidated,
1645 	 * so real IO is not possible anymore.
1646 	 */
1647 	if (length == folio_size(folio))
1648 		filemap_release_folio(folio, 0);
1649 out:
1650 	return;
1651 }
1652 EXPORT_SYMBOL(block_invalidate_folio);
1653 
1654 /*
1655  * We attach and possibly dirty the buffers atomically wrt
1656  * block_dirty_folio() via private_lock.  try_to_free_buffers
1657  * is already excluded via the folio lock.
1658  */
1659 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1660 				unsigned long b_state)
1661 {
1662 	struct buffer_head *bh, *head, *tail;
1663 
1664 	head = folio_alloc_buffers(folio, blocksize, true);
1665 	bh = head;
1666 	do {
1667 		bh->b_state |= b_state;
1668 		tail = bh;
1669 		bh = bh->b_this_page;
1670 	} while (bh);
1671 	tail->b_this_page = head;
1672 
1673 	spin_lock(&folio->mapping->private_lock);
1674 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1675 		bh = head;
1676 		do {
1677 			if (folio_test_dirty(folio))
1678 				set_buffer_dirty(bh);
1679 			if (folio_test_uptodate(folio))
1680 				set_buffer_uptodate(bh);
1681 			bh = bh->b_this_page;
1682 		} while (bh != head);
1683 	}
1684 	folio_attach_private(folio, head);
1685 	spin_unlock(&folio->mapping->private_lock);
1686 }
1687 EXPORT_SYMBOL(folio_create_empty_buffers);
1688 
1689 void create_empty_buffers(struct page *page,
1690 			unsigned long blocksize, unsigned long b_state)
1691 {
1692 	folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1693 }
1694 EXPORT_SYMBOL(create_empty_buffers);
1695 
1696 /**
1697  * clean_bdev_aliases: clean a range of buffers in block device
1698  * @bdev: Block device to clean buffers in
1699  * @block: Start of a range of blocks to clean
1700  * @len: Number of blocks to clean
1701  *
1702  * We are taking a range of blocks for data and we don't want writeback of any
1703  * buffer-cache aliases starting from return from this function and until the
1704  * moment when something will explicitly mark the buffer dirty (hopefully that
1705  * will not happen until we will free that block ;-) We don't even need to mark
1706  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1707  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1708  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1709  * would confuse anyone who might pick it with bread() afterwards...
1710  *
1711  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1712  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1713  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1714  * need to.  That happens here.
1715  */
1716 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1717 {
1718 	struct inode *bd_inode = bdev->bd_inode;
1719 	struct address_space *bd_mapping = bd_inode->i_mapping;
1720 	struct folio_batch fbatch;
1721 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1722 	pgoff_t end;
1723 	int i, count;
1724 	struct buffer_head *bh;
1725 	struct buffer_head *head;
1726 
1727 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1728 	folio_batch_init(&fbatch);
1729 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1730 		count = folio_batch_count(&fbatch);
1731 		for (i = 0; i < count; i++) {
1732 			struct folio *folio = fbatch.folios[i];
1733 
1734 			if (!folio_buffers(folio))
1735 				continue;
1736 			/*
1737 			 * We use folio lock instead of bd_mapping->private_lock
1738 			 * to pin buffers here since we can afford to sleep and
1739 			 * it scales better than a global spinlock lock.
1740 			 */
1741 			folio_lock(folio);
1742 			/* Recheck when the folio is locked which pins bhs */
1743 			head = folio_buffers(folio);
1744 			if (!head)
1745 				goto unlock_page;
1746 			bh = head;
1747 			do {
1748 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1749 					goto next;
1750 				if (bh->b_blocknr >= block + len)
1751 					break;
1752 				clear_buffer_dirty(bh);
1753 				wait_on_buffer(bh);
1754 				clear_buffer_req(bh);
1755 next:
1756 				bh = bh->b_this_page;
1757 			} while (bh != head);
1758 unlock_page:
1759 			folio_unlock(folio);
1760 		}
1761 		folio_batch_release(&fbatch);
1762 		cond_resched();
1763 		/* End of range already reached? */
1764 		if (index > end || !index)
1765 			break;
1766 	}
1767 }
1768 EXPORT_SYMBOL(clean_bdev_aliases);
1769 
1770 /*
1771  * Size is a power-of-two in the range 512..PAGE_SIZE,
1772  * and the case we care about most is PAGE_SIZE.
1773  *
1774  * So this *could* possibly be written with those
1775  * constraints in mind (relevant mostly if some
1776  * architecture has a slow bit-scan instruction)
1777  */
1778 static inline int block_size_bits(unsigned int blocksize)
1779 {
1780 	return ilog2(blocksize);
1781 }
1782 
1783 static struct buffer_head *folio_create_buffers(struct folio *folio,
1784 						struct inode *inode,
1785 						unsigned int b_state)
1786 {
1787 	BUG_ON(!folio_test_locked(folio));
1788 
1789 	if (!folio_buffers(folio))
1790 		folio_create_empty_buffers(folio,
1791 					   1 << READ_ONCE(inode->i_blkbits),
1792 					   b_state);
1793 	return folio_buffers(folio);
1794 }
1795 
1796 /*
1797  * NOTE! All mapped/uptodate combinations are valid:
1798  *
1799  *	Mapped	Uptodate	Meaning
1800  *
1801  *	No	No		"unknown" - must do get_block()
1802  *	No	Yes		"hole" - zero-filled
1803  *	Yes	No		"allocated" - allocated on disk, not read in
1804  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1805  *
1806  * "Dirty" is valid only with the last case (mapped+uptodate).
1807  */
1808 
1809 /*
1810  * While block_write_full_page is writing back the dirty buffers under
1811  * the page lock, whoever dirtied the buffers may decide to clean them
1812  * again at any time.  We handle that by only looking at the buffer
1813  * state inside lock_buffer().
1814  *
1815  * If block_write_full_page() is called for regular writeback
1816  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1817  * locked buffer.   This only can happen if someone has written the buffer
1818  * directly, with submit_bh().  At the address_space level PageWriteback
1819  * prevents this contention from occurring.
1820  *
1821  * If block_write_full_page() is called with wbc->sync_mode ==
1822  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1823  * causes the writes to be flagged as synchronous writes.
1824  */
1825 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1826 			get_block_t *get_block, struct writeback_control *wbc,
1827 			bh_end_io_t *handler)
1828 {
1829 	int err;
1830 	sector_t block;
1831 	sector_t last_block;
1832 	struct buffer_head *bh, *head;
1833 	unsigned int blocksize, bbits;
1834 	int nr_underway = 0;
1835 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1836 
1837 	head = folio_create_buffers(folio, inode,
1838 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1839 
1840 	/*
1841 	 * Be very careful.  We have no exclusion from block_dirty_folio
1842 	 * here, and the (potentially unmapped) buffers may become dirty at
1843 	 * any time.  If a buffer becomes dirty here after we've inspected it
1844 	 * then we just miss that fact, and the folio stays dirty.
1845 	 *
1846 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1847 	 * handle that here by just cleaning them.
1848 	 */
1849 
1850 	bh = head;
1851 	blocksize = bh->b_size;
1852 	bbits = block_size_bits(blocksize);
1853 
1854 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1855 	last_block = (i_size_read(inode) - 1) >> bbits;
1856 
1857 	/*
1858 	 * Get all the dirty buffers mapped to disk addresses and
1859 	 * handle any aliases from the underlying blockdev's mapping.
1860 	 */
1861 	do {
1862 		if (block > last_block) {
1863 			/*
1864 			 * mapped buffers outside i_size will occur, because
1865 			 * this folio can be outside i_size when there is a
1866 			 * truncate in progress.
1867 			 */
1868 			/*
1869 			 * The buffer was zeroed by block_write_full_page()
1870 			 */
1871 			clear_buffer_dirty(bh);
1872 			set_buffer_uptodate(bh);
1873 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1874 			   buffer_dirty(bh)) {
1875 			WARN_ON(bh->b_size != blocksize);
1876 			err = get_block(inode, block, bh, 1);
1877 			if (err)
1878 				goto recover;
1879 			clear_buffer_delay(bh);
1880 			if (buffer_new(bh)) {
1881 				/* blockdev mappings never come here */
1882 				clear_buffer_new(bh);
1883 				clean_bdev_bh_alias(bh);
1884 			}
1885 		}
1886 		bh = bh->b_this_page;
1887 		block++;
1888 	} while (bh != head);
1889 
1890 	do {
1891 		if (!buffer_mapped(bh))
1892 			continue;
1893 		/*
1894 		 * If it's a fully non-blocking write attempt and we cannot
1895 		 * lock the buffer then redirty the folio.  Note that this can
1896 		 * potentially cause a busy-wait loop from writeback threads
1897 		 * and kswapd activity, but those code paths have their own
1898 		 * higher-level throttling.
1899 		 */
1900 		if (wbc->sync_mode != WB_SYNC_NONE) {
1901 			lock_buffer(bh);
1902 		} else if (!trylock_buffer(bh)) {
1903 			folio_redirty_for_writepage(wbc, folio);
1904 			continue;
1905 		}
1906 		if (test_clear_buffer_dirty(bh)) {
1907 			mark_buffer_async_write_endio(bh, handler);
1908 		} else {
1909 			unlock_buffer(bh);
1910 		}
1911 	} while ((bh = bh->b_this_page) != head);
1912 
1913 	/*
1914 	 * The folio and its buffers are protected by the writeback flag,
1915 	 * so we can drop the bh refcounts early.
1916 	 */
1917 	BUG_ON(folio_test_writeback(folio));
1918 	folio_start_writeback(folio);
1919 
1920 	do {
1921 		struct buffer_head *next = bh->b_this_page;
1922 		if (buffer_async_write(bh)) {
1923 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1924 			nr_underway++;
1925 		}
1926 		bh = next;
1927 	} while (bh != head);
1928 	folio_unlock(folio);
1929 
1930 	err = 0;
1931 done:
1932 	if (nr_underway == 0) {
1933 		/*
1934 		 * The folio was marked dirty, but the buffers were
1935 		 * clean.  Someone wrote them back by hand with
1936 		 * write_dirty_buffer/submit_bh.  A rare case.
1937 		 */
1938 		folio_end_writeback(folio);
1939 
1940 		/*
1941 		 * The folio and buffer_heads can be released at any time from
1942 		 * here on.
1943 		 */
1944 	}
1945 	return err;
1946 
1947 recover:
1948 	/*
1949 	 * ENOSPC, or some other error.  We may already have added some
1950 	 * blocks to the file, so we need to write these out to avoid
1951 	 * exposing stale data.
1952 	 * The folio is currently locked and not marked for writeback
1953 	 */
1954 	bh = head;
1955 	/* Recovery: lock and submit the mapped buffers */
1956 	do {
1957 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1958 		    !buffer_delay(bh)) {
1959 			lock_buffer(bh);
1960 			mark_buffer_async_write_endio(bh, handler);
1961 		} else {
1962 			/*
1963 			 * The buffer may have been set dirty during
1964 			 * attachment to a dirty folio.
1965 			 */
1966 			clear_buffer_dirty(bh);
1967 		}
1968 	} while ((bh = bh->b_this_page) != head);
1969 	folio_set_error(folio);
1970 	BUG_ON(folio_test_writeback(folio));
1971 	mapping_set_error(folio->mapping, err);
1972 	folio_start_writeback(folio);
1973 	do {
1974 		struct buffer_head *next = bh->b_this_page;
1975 		if (buffer_async_write(bh)) {
1976 			clear_buffer_dirty(bh);
1977 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1978 			nr_underway++;
1979 		}
1980 		bh = next;
1981 	} while (bh != head);
1982 	folio_unlock(folio);
1983 	goto done;
1984 }
1985 EXPORT_SYMBOL(__block_write_full_folio);
1986 
1987 /*
1988  * If a folio has any new buffers, zero them out here, and mark them uptodate
1989  * and dirty so they'll be written out (in order to prevent uninitialised
1990  * block data from leaking). And clear the new bit.
1991  */
1992 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1993 {
1994 	size_t block_start, block_end;
1995 	struct buffer_head *head, *bh;
1996 
1997 	BUG_ON(!folio_test_locked(folio));
1998 	head = folio_buffers(folio);
1999 	if (!head)
2000 		return;
2001 
2002 	bh = head;
2003 	block_start = 0;
2004 	do {
2005 		block_end = block_start + bh->b_size;
2006 
2007 		if (buffer_new(bh)) {
2008 			if (block_end > from && block_start < to) {
2009 				if (!folio_test_uptodate(folio)) {
2010 					size_t start, xend;
2011 
2012 					start = max(from, block_start);
2013 					xend = min(to, block_end);
2014 
2015 					folio_zero_segment(folio, start, xend);
2016 					set_buffer_uptodate(bh);
2017 				}
2018 
2019 				clear_buffer_new(bh);
2020 				mark_buffer_dirty(bh);
2021 			}
2022 		}
2023 
2024 		block_start = block_end;
2025 		bh = bh->b_this_page;
2026 	} while (bh != head);
2027 }
2028 EXPORT_SYMBOL(folio_zero_new_buffers);
2029 
2030 static void
2031 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2032 		const struct iomap *iomap)
2033 {
2034 	loff_t offset = block << inode->i_blkbits;
2035 
2036 	bh->b_bdev = iomap->bdev;
2037 
2038 	/*
2039 	 * Block points to offset in file we need to map, iomap contains
2040 	 * the offset at which the map starts. If the map ends before the
2041 	 * current block, then do not map the buffer and let the caller
2042 	 * handle it.
2043 	 */
2044 	BUG_ON(offset >= iomap->offset + iomap->length);
2045 
2046 	switch (iomap->type) {
2047 	case IOMAP_HOLE:
2048 		/*
2049 		 * If the buffer is not up to date or beyond the current EOF,
2050 		 * we need to mark it as new to ensure sub-block zeroing is
2051 		 * executed if necessary.
2052 		 */
2053 		if (!buffer_uptodate(bh) ||
2054 		    (offset >= i_size_read(inode)))
2055 			set_buffer_new(bh);
2056 		break;
2057 	case IOMAP_DELALLOC:
2058 		if (!buffer_uptodate(bh) ||
2059 		    (offset >= i_size_read(inode)))
2060 			set_buffer_new(bh);
2061 		set_buffer_uptodate(bh);
2062 		set_buffer_mapped(bh);
2063 		set_buffer_delay(bh);
2064 		break;
2065 	case IOMAP_UNWRITTEN:
2066 		/*
2067 		 * For unwritten regions, we always need to ensure that regions
2068 		 * in the block we are not writing to are zeroed. Mark the
2069 		 * buffer as new to ensure this.
2070 		 */
2071 		set_buffer_new(bh);
2072 		set_buffer_unwritten(bh);
2073 		fallthrough;
2074 	case IOMAP_MAPPED:
2075 		if ((iomap->flags & IOMAP_F_NEW) ||
2076 		    offset >= i_size_read(inode))
2077 			set_buffer_new(bh);
2078 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2079 				inode->i_blkbits;
2080 		set_buffer_mapped(bh);
2081 		break;
2082 	}
2083 }
2084 
2085 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2086 		get_block_t *get_block, const struct iomap *iomap)
2087 {
2088 	unsigned from = pos & (PAGE_SIZE - 1);
2089 	unsigned to = from + len;
2090 	struct inode *inode = folio->mapping->host;
2091 	unsigned block_start, block_end;
2092 	sector_t block;
2093 	int err = 0;
2094 	unsigned blocksize, bbits;
2095 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2096 
2097 	BUG_ON(!folio_test_locked(folio));
2098 	BUG_ON(from > PAGE_SIZE);
2099 	BUG_ON(to > PAGE_SIZE);
2100 	BUG_ON(from > to);
2101 
2102 	head = folio_create_buffers(folio, inode, 0);
2103 	blocksize = head->b_size;
2104 	bbits = block_size_bits(blocksize);
2105 
2106 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2107 
2108 	for(bh = head, block_start = 0; bh != head || !block_start;
2109 	    block++, block_start=block_end, bh = bh->b_this_page) {
2110 		block_end = block_start + blocksize;
2111 		if (block_end <= from || block_start >= to) {
2112 			if (folio_test_uptodate(folio)) {
2113 				if (!buffer_uptodate(bh))
2114 					set_buffer_uptodate(bh);
2115 			}
2116 			continue;
2117 		}
2118 		if (buffer_new(bh))
2119 			clear_buffer_new(bh);
2120 		if (!buffer_mapped(bh)) {
2121 			WARN_ON(bh->b_size != blocksize);
2122 			if (get_block) {
2123 				err = get_block(inode, block, bh, 1);
2124 				if (err)
2125 					break;
2126 			} else {
2127 				iomap_to_bh(inode, block, bh, iomap);
2128 			}
2129 
2130 			if (buffer_new(bh)) {
2131 				clean_bdev_bh_alias(bh);
2132 				if (folio_test_uptodate(folio)) {
2133 					clear_buffer_new(bh);
2134 					set_buffer_uptodate(bh);
2135 					mark_buffer_dirty(bh);
2136 					continue;
2137 				}
2138 				if (block_end > to || block_start < from)
2139 					folio_zero_segments(folio,
2140 						to, block_end,
2141 						block_start, from);
2142 				continue;
2143 			}
2144 		}
2145 		if (folio_test_uptodate(folio)) {
2146 			if (!buffer_uptodate(bh))
2147 				set_buffer_uptodate(bh);
2148 			continue;
2149 		}
2150 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2151 		    !buffer_unwritten(bh) &&
2152 		     (block_start < from || block_end > to)) {
2153 			bh_read_nowait(bh, 0);
2154 			*wait_bh++=bh;
2155 		}
2156 	}
2157 	/*
2158 	 * If we issued read requests - let them complete.
2159 	 */
2160 	while(wait_bh > wait) {
2161 		wait_on_buffer(*--wait_bh);
2162 		if (!buffer_uptodate(*wait_bh))
2163 			err = -EIO;
2164 	}
2165 	if (unlikely(err))
2166 		folio_zero_new_buffers(folio, from, to);
2167 	return err;
2168 }
2169 
2170 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2171 		get_block_t *get_block)
2172 {
2173 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2174 				       NULL);
2175 }
2176 EXPORT_SYMBOL(__block_write_begin);
2177 
2178 static int __block_commit_write(struct inode *inode, struct folio *folio,
2179 		size_t from, size_t to)
2180 {
2181 	size_t block_start, block_end;
2182 	bool partial = false;
2183 	unsigned blocksize;
2184 	struct buffer_head *bh, *head;
2185 
2186 	bh = head = folio_buffers(folio);
2187 	blocksize = bh->b_size;
2188 
2189 	block_start = 0;
2190 	do {
2191 		block_end = block_start + blocksize;
2192 		if (block_end <= from || block_start >= to) {
2193 			if (!buffer_uptodate(bh))
2194 				partial = true;
2195 		} else {
2196 			set_buffer_uptodate(bh);
2197 			mark_buffer_dirty(bh);
2198 		}
2199 		if (buffer_new(bh))
2200 			clear_buffer_new(bh);
2201 
2202 		block_start = block_end;
2203 		bh = bh->b_this_page;
2204 	} while (bh != head);
2205 
2206 	/*
2207 	 * If this is a partial write which happened to make all buffers
2208 	 * uptodate then we can optimize away a bogus read_folio() for
2209 	 * the next read(). Here we 'discover' whether the folio went
2210 	 * uptodate as a result of this (potentially partial) write.
2211 	 */
2212 	if (!partial)
2213 		folio_mark_uptodate(folio);
2214 	return 0;
2215 }
2216 
2217 /*
2218  * block_write_begin takes care of the basic task of block allocation and
2219  * bringing partial write blocks uptodate first.
2220  *
2221  * The filesystem needs to handle block truncation upon failure.
2222  */
2223 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2224 		struct page **pagep, get_block_t *get_block)
2225 {
2226 	pgoff_t index = pos >> PAGE_SHIFT;
2227 	struct page *page;
2228 	int status;
2229 
2230 	page = grab_cache_page_write_begin(mapping, index);
2231 	if (!page)
2232 		return -ENOMEM;
2233 
2234 	status = __block_write_begin(page, pos, len, get_block);
2235 	if (unlikely(status)) {
2236 		unlock_page(page);
2237 		put_page(page);
2238 		page = NULL;
2239 	}
2240 
2241 	*pagep = page;
2242 	return status;
2243 }
2244 EXPORT_SYMBOL(block_write_begin);
2245 
2246 int block_write_end(struct file *file, struct address_space *mapping,
2247 			loff_t pos, unsigned len, unsigned copied,
2248 			struct page *page, void *fsdata)
2249 {
2250 	struct folio *folio = page_folio(page);
2251 	struct inode *inode = mapping->host;
2252 	size_t start = pos - folio_pos(folio);
2253 
2254 	if (unlikely(copied < len)) {
2255 		/*
2256 		 * The buffers that were written will now be uptodate, so
2257 		 * we don't have to worry about a read_folio reading them
2258 		 * and overwriting a partial write. However if we have
2259 		 * encountered a short write and only partially written
2260 		 * into a buffer, it will not be marked uptodate, so a
2261 		 * read_folio might come in and destroy our partial write.
2262 		 *
2263 		 * Do the simplest thing, and just treat any short write to a
2264 		 * non uptodate folio as a zero-length write, and force the
2265 		 * caller to redo the whole thing.
2266 		 */
2267 		if (!folio_test_uptodate(folio))
2268 			copied = 0;
2269 
2270 		folio_zero_new_buffers(folio, start+copied, start+len);
2271 	}
2272 	flush_dcache_folio(folio);
2273 
2274 	/* This could be a short (even 0-length) commit */
2275 	__block_commit_write(inode, folio, start, start + copied);
2276 
2277 	return copied;
2278 }
2279 EXPORT_SYMBOL(block_write_end);
2280 
2281 int generic_write_end(struct file *file, struct address_space *mapping,
2282 			loff_t pos, unsigned len, unsigned copied,
2283 			struct page *page, void *fsdata)
2284 {
2285 	struct inode *inode = mapping->host;
2286 	loff_t old_size = inode->i_size;
2287 	bool i_size_changed = false;
2288 
2289 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2290 
2291 	/*
2292 	 * No need to use i_size_read() here, the i_size cannot change under us
2293 	 * because we hold i_rwsem.
2294 	 *
2295 	 * But it's important to update i_size while still holding page lock:
2296 	 * page writeout could otherwise come in and zero beyond i_size.
2297 	 */
2298 	if (pos + copied > inode->i_size) {
2299 		i_size_write(inode, pos + copied);
2300 		i_size_changed = true;
2301 	}
2302 
2303 	unlock_page(page);
2304 	put_page(page);
2305 
2306 	if (old_size < pos)
2307 		pagecache_isize_extended(inode, old_size, pos);
2308 	/*
2309 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2310 	 * makes the holding time of page lock longer. Second, it forces lock
2311 	 * ordering of page lock and transaction start for journaling
2312 	 * filesystems.
2313 	 */
2314 	if (i_size_changed)
2315 		mark_inode_dirty(inode);
2316 	return copied;
2317 }
2318 EXPORT_SYMBOL(generic_write_end);
2319 
2320 /*
2321  * block_is_partially_uptodate checks whether buffers within a folio are
2322  * uptodate or not.
2323  *
2324  * Returns true if all buffers which correspond to the specified part
2325  * of the folio are uptodate.
2326  */
2327 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2328 {
2329 	unsigned block_start, block_end, blocksize;
2330 	unsigned to;
2331 	struct buffer_head *bh, *head;
2332 	bool ret = true;
2333 
2334 	head = folio_buffers(folio);
2335 	if (!head)
2336 		return false;
2337 	blocksize = head->b_size;
2338 	to = min_t(unsigned, folio_size(folio) - from, count);
2339 	to = from + to;
2340 	if (from < blocksize && to > folio_size(folio) - blocksize)
2341 		return false;
2342 
2343 	bh = head;
2344 	block_start = 0;
2345 	do {
2346 		block_end = block_start + blocksize;
2347 		if (block_end > from && block_start < to) {
2348 			if (!buffer_uptodate(bh)) {
2349 				ret = false;
2350 				break;
2351 			}
2352 			if (block_end >= to)
2353 				break;
2354 		}
2355 		block_start = block_end;
2356 		bh = bh->b_this_page;
2357 	} while (bh != head);
2358 
2359 	return ret;
2360 }
2361 EXPORT_SYMBOL(block_is_partially_uptodate);
2362 
2363 /*
2364  * Generic "read_folio" function for block devices that have the normal
2365  * get_block functionality. This is most of the block device filesystems.
2366  * Reads the folio asynchronously --- the unlock_buffer() and
2367  * set/clear_buffer_uptodate() functions propagate buffer state into the
2368  * folio once IO has completed.
2369  */
2370 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2371 {
2372 	struct inode *inode = folio->mapping->host;
2373 	sector_t iblock, lblock;
2374 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2375 	unsigned int blocksize, bbits;
2376 	int nr, i;
2377 	int fully_mapped = 1;
2378 	bool page_error = false;
2379 	loff_t limit = i_size_read(inode);
2380 
2381 	/* This is needed for ext4. */
2382 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2383 		limit = inode->i_sb->s_maxbytes;
2384 
2385 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2386 
2387 	head = folio_create_buffers(folio, inode, 0);
2388 	blocksize = head->b_size;
2389 	bbits = block_size_bits(blocksize);
2390 
2391 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2392 	lblock = (limit+blocksize-1) >> bbits;
2393 	bh = head;
2394 	nr = 0;
2395 	i = 0;
2396 
2397 	do {
2398 		if (buffer_uptodate(bh))
2399 			continue;
2400 
2401 		if (!buffer_mapped(bh)) {
2402 			int err = 0;
2403 
2404 			fully_mapped = 0;
2405 			if (iblock < lblock) {
2406 				WARN_ON(bh->b_size != blocksize);
2407 				err = get_block(inode, iblock, bh, 0);
2408 				if (err) {
2409 					folio_set_error(folio);
2410 					page_error = true;
2411 				}
2412 			}
2413 			if (!buffer_mapped(bh)) {
2414 				folio_zero_range(folio, i * blocksize,
2415 						blocksize);
2416 				if (!err)
2417 					set_buffer_uptodate(bh);
2418 				continue;
2419 			}
2420 			/*
2421 			 * get_block() might have updated the buffer
2422 			 * synchronously
2423 			 */
2424 			if (buffer_uptodate(bh))
2425 				continue;
2426 		}
2427 		arr[nr++] = bh;
2428 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2429 
2430 	if (fully_mapped)
2431 		folio_set_mappedtodisk(folio);
2432 
2433 	if (!nr) {
2434 		/*
2435 		 * All buffers are uptodate - we can set the folio uptodate
2436 		 * as well. But not if get_block() returned an error.
2437 		 */
2438 		if (!page_error)
2439 			folio_mark_uptodate(folio);
2440 		folio_unlock(folio);
2441 		return 0;
2442 	}
2443 
2444 	/* Stage two: lock the buffers */
2445 	for (i = 0; i < nr; i++) {
2446 		bh = arr[i];
2447 		lock_buffer(bh);
2448 		mark_buffer_async_read(bh);
2449 	}
2450 
2451 	/*
2452 	 * Stage 3: start the IO.  Check for uptodateness
2453 	 * inside the buffer lock in case another process reading
2454 	 * the underlying blockdev brought it uptodate (the sct fix).
2455 	 */
2456 	for (i = 0; i < nr; i++) {
2457 		bh = arr[i];
2458 		if (buffer_uptodate(bh))
2459 			end_buffer_async_read(bh, 1);
2460 		else
2461 			submit_bh(REQ_OP_READ, bh);
2462 	}
2463 	return 0;
2464 }
2465 EXPORT_SYMBOL(block_read_full_folio);
2466 
2467 /* utility function for filesystems that need to do work on expanding
2468  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2469  * deal with the hole.
2470  */
2471 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2472 {
2473 	struct address_space *mapping = inode->i_mapping;
2474 	const struct address_space_operations *aops = mapping->a_ops;
2475 	struct page *page;
2476 	void *fsdata = NULL;
2477 	int err;
2478 
2479 	err = inode_newsize_ok(inode, size);
2480 	if (err)
2481 		goto out;
2482 
2483 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2484 	if (err)
2485 		goto out;
2486 
2487 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2488 	BUG_ON(err > 0);
2489 
2490 out:
2491 	return err;
2492 }
2493 EXPORT_SYMBOL(generic_cont_expand_simple);
2494 
2495 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2496 			    loff_t pos, loff_t *bytes)
2497 {
2498 	struct inode *inode = mapping->host;
2499 	const struct address_space_operations *aops = mapping->a_ops;
2500 	unsigned int blocksize = i_blocksize(inode);
2501 	struct page *page;
2502 	void *fsdata = NULL;
2503 	pgoff_t index, curidx;
2504 	loff_t curpos;
2505 	unsigned zerofrom, offset, len;
2506 	int err = 0;
2507 
2508 	index = pos >> PAGE_SHIFT;
2509 	offset = pos & ~PAGE_MASK;
2510 
2511 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2512 		zerofrom = curpos & ~PAGE_MASK;
2513 		if (zerofrom & (blocksize-1)) {
2514 			*bytes |= (blocksize-1);
2515 			(*bytes)++;
2516 		}
2517 		len = PAGE_SIZE - zerofrom;
2518 
2519 		err = aops->write_begin(file, mapping, curpos, len,
2520 					    &page, &fsdata);
2521 		if (err)
2522 			goto out;
2523 		zero_user(page, zerofrom, len);
2524 		err = aops->write_end(file, mapping, curpos, len, len,
2525 						page, fsdata);
2526 		if (err < 0)
2527 			goto out;
2528 		BUG_ON(err != len);
2529 		err = 0;
2530 
2531 		balance_dirty_pages_ratelimited(mapping);
2532 
2533 		if (fatal_signal_pending(current)) {
2534 			err = -EINTR;
2535 			goto out;
2536 		}
2537 	}
2538 
2539 	/* page covers the boundary, find the boundary offset */
2540 	if (index == curidx) {
2541 		zerofrom = curpos & ~PAGE_MASK;
2542 		/* if we will expand the thing last block will be filled */
2543 		if (offset <= zerofrom) {
2544 			goto out;
2545 		}
2546 		if (zerofrom & (blocksize-1)) {
2547 			*bytes |= (blocksize-1);
2548 			(*bytes)++;
2549 		}
2550 		len = offset - zerofrom;
2551 
2552 		err = aops->write_begin(file, mapping, curpos, len,
2553 					    &page, &fsdata);
2554 		if (err)
2555 			goto out;
2556 		zero_user(page, zerofrom, len);
2557 		err = aops->write_end(file, mapping, curpos, len, len,
2558 						page, fsdata);
2559 		if (err < 0)
2560 			goto out;
2561 		BUG_ON(err != len);
2562 		err = 0;
2563 	}
2564 out:
2565 	return err;
2566 }
2567 
2568 /*
2569  * For moronic filesystems that do not allow holes in file.
2570  * We may have to extend the file.
2571  */
2572 int cont_write_begin(struct file *file, struct address_space *mapping,
2573 			loff_t pos, unsigned len,
2574 			struct page **pagep, void **fsdata,
2575 			get_block_t *get_block, loff_t *bytes)
2576 {
2577 	struct inode *inode = mapping->host;
2578 	unsigned int blocksize = i_blocksize(inode);
2579 	unsigned int zerofrom;
2580 	int err;
2581 
2582 	err = cont_expand_zero(file, mapping, pos, bytes);
2583 	if (err)
2584 		return err;
2585 
2586 	zerofrom = *bytes & ~PAGE_MASK;
2587 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2588 		*bytes |= (blocksize-1);
2589 		(*bytes)++;
2590 	}
2591 
2592 	return block_write_begin(mapping, pos, len, pagep, get_block);
2593 }
2594 EXPORT_SYMBOL(cont_write_begin);
2595 
2596 int block_commit_write(struct page *page, unsigned from, unsigned to)
2597 {
2598 	struct folio *folio = page_folio(page);
2599 	struct inode *inode = folio->mapping->host;
2600 	__block_commit_write(inode, folio, from, to);
2601 	return 0;
2602 }
2603 EXPORT_SYMBOL(block_commit_write);
2604 
2605 /*
2606  * block_page_mkwrite() is not allowed to change the file size as it gets
2607  * called from a page fault handler when a page is first dirtied. Hence we must
2608  * be careful to check for EOF conditions here. We set the page up correctly
2609  * for a written page which means we get ENOSPC checking when writing into
2610  * holes and correct delalloc and unwritten extent mapping on filesystems that
2611  * support these features.
2612  *
2613  * We are not allowed to take the i_mutex here so we have to play games to
2614  * protect against truncate races as the page could now be beyond EOF.  Because
2615  * truncate writes the inode size before removing pages, once we have the
2616  * page lock we can determine safely if the page is beyond EOF. If it is not
2617  * beyond EOF, then the page is guaranteed safe against truncation until we
2618  * unlock the page.
2619  *
2620  * Direct callers of this function should protect against filesystem freezing
2621  * using sb_start_pagefault() - sb_end_pagefault() functions.
2622  */
2623 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2624 			 get_block_t get_block)
2625 {
2626 	struct folio *folio = page_folio(vmf->page);
2627 	struct inode *inode = file_inode(vma->vm_file);
2628 	unsigned long end;
2629 	loff_t size;
2630 	int ret;
2631 
2632 	folio_lock(folio);
2633 	size = i_size_read(inode);
2634 	if ((folio->mapping != inode->i_mapping) ||
2635 	    (folio_pos(folio) >= size)) {
2636 		/* We overload EFAULT to mean page got truncated */
2637 		ret = -EFAULT;
2638 		goto out_unlock;
2639 	}
2640 
2641 	end = folio_size(folio);
2642 	/* folio is wholly or partially inside EOF */
2643 	if (folio_pos(folio) + end > size)
2644 		end = size - folio_pos(folio);
2645 
2646 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2647 	if (!ret)
2648 		ret = __block_commit_write(inode, folio, 0, end);
2649 
2650 	if (unlikely(ret < 0))
2651 		goto out_unlock;
2652 	folio_mark_dirty(folio);
2653 	folio_wait_stable(folio);
2654 	return 0;
2655 out_unlock:
2656 	folio_unlock(folio);
2657 	return ret;
2658 }
2659 EXPORT_SYMBOL(block_page_mkwrite);
2660 
2661 int block_truncate_page(struct address_space *mapping,
2662 			loff_t from, get_block_t *get_block)
2663 {
2664 	pgoff_t index = from >> PAGE_SHIFT;
2665 	unsigned blocksize;
2666 	sector_t iblock;
2667 	size_t offset, length, pos;
2668 	struct inode *inode = mapping->host;
2669 	struct folio *folio;
2670 	struct buffer_head *bh;
2671 	int err = 0;
2672 
2673 	blocksize = i_blocksize(inode);
2674 	length = from & (blocksize - 1);
2675 
2676 	/* Block boundary? Nothing to do */
2677 	if (!length)
2678 		return 0;
2679 
2680 	length = blocksize - length;
2681 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2682 
2683 	folio = filemap_grab_folio(mapping, index);
2684 	if (IS_ERR(folio))
2685 		return PTR_ERR(folio);
2686 
2687 	bh = folio_buffers(folio);
2688 	if (!bh) {
2689 		folio_create_empty_buffers(folio, blocksize, 0);
2690 		bh = folio_buffers(folio);
2691 	}
2692 
2693 	/* Find the buffer that contains "offset" */
2694 	offset = offset_in_folio(folio, from);
2695 	pos = blocksize;
2696 	while (offset >= pos) {
2697 		bh = bh->b_this_page;
2698 		iblock++;
2699 		pos += blocksize;
2700 	}
2701 
2702 	if (!buffer_mapped(bh)) {
2703 		WARN_ON(bh->b_size != blocksize);
2704 		err = get_block(inode, iblock, bh, 0);
2705 		if (err)
2706 			goto unlock;
2707 		/* unmapped? It's a hole - nothing to do */
2708 		if (!buffer_mapped(bh))
2709 			goto unlock;
2710 	}
2711 
2712 	/* Ok, it's mapped. Make sure it's up-to-date */
2713 	if (folio_test_uptodate(folio))
2714 		set_buffer_uptodate(bh);
2715 
2716 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2717 		err = bh_read(bh, 0);
2718 		/* Uhhuh. Read error. Complain and punt. */
2719 		if (err < 0)
2720 			goto unlock;
2721 	}
2722 
2723 	folio_zero_range(folio, offset, length);
2724 	mark_buffer_dirty(bh);
2725 
2726 unlock:
2727 	folio_unlock(folio);
2728 	folio_put(folio);
2729 
2730 	return err;
2731 }
2732 EXPORT_SYMBOL(block_truncate_page);
2733 
2734 /*
2735  * The generic ->writepage function for buffer-backed address_spaces
2736  */
2737 int block_write_full_page(struct page *page, get_block_t *get_block,
2738 			struct writeback_control *wbc)
2739 {
2740 	struct folio *folio = page_folio(page);
2741 	struct inode * const inode = folio->mapping->host;
2742 	loff_t i_size = i_size_read(inode);
2743 
2744 	/* Is the folio fully inside i_size? */
2745 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2746 		return __block_write_full_folio(inode, folio, get_block, wbc,
2747 					       end_buffer_async_write);
2748 
2749 	/* Is the folio fully outside i_size? (truncate in progress) */
2750 	if (folio_pos(folio) >= i_size) {
2751 		folio_unlock(folio);
2752 		return 0; /* don't care */
2753 	}
2754 
2755 	/*
2756 	 * The folio straddles i_size.  It must be zeroed out on each and every
2757 	 * writepage invocation because it may be mmapped.  "A file is mapped
2758 	 * in multiples of the page size.  For a file that is not a multiple of
2759 	 * the page size, the remaining memory is zeroed when mapped, and
2760 	 * writes to that region are not written out to the file."
2761 	 */
2762 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2763 			folio_size(folio));
2764 	return __block_write_full_folio(inode, folio, get_block, wbc,
2765 			end_buffer_async_write);
2766 }
2767 EXPORT_SYMBOL(block_write_full_page);
2768 
2769 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2770 			    get_block_t *get_block)
2771 {
2772 	struct inode *inode = mapping->host;
2773 	struct buffer_head tmp = {
2774 		.b_size = i_blocksize(inode),
2775 	};
2776 
2777 	get_block(inode, block, &tmp, 0);
2778 	return tmp.b_blocknr;
2779 }
2780 EXPORT_SYMBOL(generic_block_bmap);
2781 
2782 static void end_bio_bh_io_sync(struct bio *bio)
2783 {
2784 	struct buffer_head *bh = bio->bi_private;
2785 
2786 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2787 		set_bit(BH_Quiet, &bh->b_state);
2788 
2789 	bh->b_end_io(bh, !bio->bi_status);
2790 	bio_put(bio);
2791 }
2792 
2793 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2794 			  struct writeback_control *wbc)
2795 {
2796 	const enum req_op op = opf & REQ_OP_MASK;
2797 	struct bio *bio;
2798 
2799 	BUG_ON(!buffer_locked(bh));
2800 	BUG_ON(!buffer_mapped(bh));
2801 	BUG_ON(!bh->b_end_io);
2802 	BUG_ON(buffer_delay(bh));
2803 	BUG_ON(buffer_unwritten(bh));
2804 
2805 	/*
2806 	 * Only clear out a write error when rewriting
2807 	 */
2808 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2809 		clear_buffer_write_io_error(bh);
2810 
2811 	if (buffer_meta(bh))
2812 		opf |= REQ_META;
2813 	if (buffer_prio(bh))
2814 		opf |= REQ_PRIO;
2815 
2816 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2817 
2818 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2819 
2820 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2821 
2822 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2823 
2824 	bio->bi_end_io = end_bio_bh_io_sync;
2825 	bio->bi_private = bh;
2826 
2827 	/* Take care of bh's that straddle the end of the device */
2828 	guard_bio_eod(bio);
2829 
2830 	if (wbc) {
2831 		wbc_init_bio(wbc, bio);
2832 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2833 	}
2834 
2835 	submit_bio(bio);
2836 }
2837 
2838 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2839 {
2840 	submit_bh_wbc(opf, bh, NULL);
2841 }
2842 EXPORT_SYMBOL(submit_bh);
2843 
2844 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2845 {
2846 	lock_buffer(bh);
2847 	if (!test_clear_buffer_dirty(bh)) {
2848 		unlock_buffer(bh);
2849 		return;
2850 	}
2851 	bh->b_end_io = end_buffer_write_sync;
2852 	get_bh(bh);
2853 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2854 }
2855 EXPORT_SYMBOL(write_dirty_buffer);
2856 
2857 /*
2858  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2859  * and then start new I/O and then wait upon it.  The caller must have a ref on
2860  * the buffer_head.
2861  */
2862 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2863 {
2864 	WARN_ON(atomic_read(&bh->b_count) < 1);
2865 	lock_buffer(bh);
2866 	if (test_clear_buffer_dirty(bh)) {
2867 		/*
2868 		 * The bh should be mapped, but it might not be if the
2869 		 * device was hot-removed. Not much we can do but fail the I/O.
2870 		 */
2871 		if (!buffer_mapped(bh)) {
2872 			unlock_buffer(bh);
2873 			return -EIO;
2874 		}
2875 
2876 		get_bh(bh);
2877 		bh->b_end_io = end_buffer_write_sync;
2878 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2879 		wait_on_buffer(bh);
2880 		if (!buffer_uptodate(bh))
2881 			return -EIO;
2882 	} else {
2883 		unlock_buffer(bh);
2884 	}
2885 	return 0;
2886 }
2887 EXPORT_SYMBOL(__sync_dirty_buffer);
2888 
2889 int sync_dirty_buffer(struct buffer_head *bh)
2890 {
2891 	return __sync_dirty_buffer(bh, REQ_SYNC);
2892 }
2893 EXPORT_SYMBOL(sync_dirty_buffer);
2894 
2895 /*
2896  * try_to_free_buffers() checks if all the buffers on this particular folio
2897  * are unused, and releases them if so.
2898  *
2899  * Exclusion against try_to_free_buffers may be obtained by either
2900  * locking the folio or by holding its mapping's private_lock.
2901  *
2902  * If the folio is dirty but all the buffers are clean then we need to
2903  * be sure to mark the folio clean as well.  This is because the folio
2904  * may be against a block device, and a later reattachment of buffers
2905  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2906  * filesystem data on the same device.
2907  *
2908  * The same applies to regular filesystem folios: if all the buffers are
2909  * clean then we set the folio clean and proceed.  To do that, we require
2910  * total exclusion from block_dirty_folio().  That is obtained with
2911  * private_lock.
2912  *
2913  * try_to_free_buffers() is non-blocking.
2914  */
2915 static inline int buffer_busy(struct buffer_head *bh)
2916 {
2917 	return atomic_read(&bh->b_count) |
2918 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2919 }
2920 
2921 static bool
2922 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2923 {
2924 	struct buffer_head *head = folio_buffers(folio);
2925 	struct buffer_head *bh;
2926 
2927 	bh = head;
2928 	do {
2929 		if (buffer_busy(bh))
2930 			goto failed;
2931 		bh = bh->b_this_page;
2932 	} while (bh != head);
2933 
2934 	do {
2935 		struct buffer_head *next = bh->b_this_page;
2936 
2937 		if (bh->b_assoc_map)
2938 			__remove_assoc_queue(bh);
2939 		bh = next;
2940 	} while (bh != head);
2941 	*buffers_to_free = head;
2942 	folio_detach_private(folio);
2943 	return true;
2944 failed:
2945 	return false;
2946 }
2947 
2948 bool try_to_free_buffers(struct folio *folio)
2949 {
2950 	struct address_space * const mapping = folio->mapping;
2951 	struct buffer_head *buffers_to_free = NULL;
2952 	bool ret = 0;
2953 
2954 	BUG_ON(!folio_test_locked(folio));
2955 	if (folio_test_writeback(folio))
2956 		return false;
2957 
2958 	if (mapping == NULL) {		/* can this still happen? */
2959 		ret = drop_buffers(folio, &buffers_to_free);
2960 		goto out;
2961 	}
2962 
2963 	spin_lock(&mapping->private_lock);
2964 	ret = drop_buffers(folio, &buffers_to_free);
2965 
2966 	/*
2967 	 * If the filesystem writes its buffers by hand (eg ext3)
2968 	 * then we can have clean buffers against a dirty folio.  We
2969 	 * clean the folio here; otherwise the VM will never notice
2970 	 * that the filesystem did any IO at all.
2971 	 *
2972 	 * Also, during truncate, discard_buffer will have marked all
2973 	 * the folio's buffers clean.  We discover that here and clean
2974 	 * the folio also.
2975 	 *
2976 	 * private_lock must be held over this entire operation in order
2977 	 * to synchronise against block_dirty_folio and prevent the
2978 	 * dirty bit from being lost.
2979 	 */
2980 	if (ret)
2981 		folio_cancel_dirty(folio);
2982 	spin_unlock(&mapping->private_lock);
2983 out:
2984 	if (buffers_to_free) {
2985 		struct buffer_head *bh = buffers_to_free;
2986 
2987 		do {
2988 			struct buffer_head *next = bh->b_this_page;
2989 			free_buffer_head(bh);
2990 			bh = next;
2991 		} while (bh != buffers_to_free);
2992 	}
2993 	return ret;
2994 }
2995 EXPORT_SYMBOL(try_to_free_buffers);
2996 
2997 /*
2998  * Buffer-head allocation
2999  */
3000 static struct kmem_cache *bh_cachep __read_mostly;
3001 
3002 /*
3003  * Once the number of bh's in the machine exceeds this level, we start
3004  * stripping them in writeback.
3005  */
3006 static unsigned long max_buffer_heads;
3007 
3008 int buffer_heads_over_limit;
3009 
3010 struct bh_accounting {
3011 	int nr;			/* Number of live bh's */
3012 	int ratelimit;		/* Limit cacheline bouncing */
3013 };
3014 
3015 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3016 
3017 static void recalc_bh_state(void)
3018 {
3019 	int i;
3020 	int tot = 0;
3021 
3022 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3023 		return;
3024 	__this_cpu_write(bh_accounting.ratelimit, 0);
3025 	for_each_online_cpu(i)
3026 		tot += per_cpu(bh_accounting, i).nr;
3027 	buffer_heads_over_limit = (tot > max_buffer_heads);
3028 }
3029 
3030 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3031 {
3032 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3033 	if (ret) {
3034 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3035 		spin_lock_init(&ret->b_uptodate_lock);
3036 		preempt_disable();
3037 		__this_cpu_inc(bh_accounting.nr);
3038 		recalc_bh_state();
3039 		preempt_enable();
3040 	}
3041 	return ret;
3042 }
3043 EXPORT_SYMBOL(alloc_buffer_head);
3044 
3045 void free_buffer_head(struct buffer_head *bh)
3046 {
3047 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3048 	kmem_cache_free(bh_cachep, bh);
3049 	preempt_disable();
3050 	__this_cpu_dec(bh_accounting.nr);
3051 	recalc_bh_state();
3052 	preempt_enable();
3053 }
3054 EXPORT_SYMBOL(free_buffer_head);
3055 
3056 static int buffer_exit_cpu_dead(unsigned int cpu)
3057 {
3058 	int i;
3059 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3060 
3061 	for (i = 0; i < BH_LRU_SIZE; i++) {
3062 		brelse(b->bhs[i]);
3063 		b->bhs[i] = NULL;
3064 	}
3065 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3066 	per_cpu(bh_accounting, cpu).nr = 0;
3067 	return 0;
3068 }
3069 
3070 /**
3071  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3072  * @bh: struct buffer_head
3073  *
3074  * Return true if the buffer is up-to-date and false,
3075  * with the buffer locked, if not.
3076  */
3077 int bh_uptodate_or_lock(struct buffer_head *bh)
3078 {
3079 	if (!buffer_uptodate(bh)) {
3080 		lock_buffer(bh);
3081 		if (!buffer_uptodate(bh))
3082 			return 0;
3083 		unlock_buffer(bh);
3084 	}
3085 	return 1;
3086 }
3087 EXPORT_SYMBOL(bh_uptodate_or_lock);
3088 
3089 /**
3090  * __bh_read - Submit read for a locked buffer
3091  * @bh: struct buffer_head
3092  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3093  * @wait: wait until reading finish
3094  *
3095  * Returns zero on success or don't wait, and -EIO on error.
3096  */
3097 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3098 {
3099 	int ret = 0;
3100 
3101 	BUG_ON(!buffer_locked(bh));
3102 
3103 	get_bh(bh);
3104 	bh->b_end_io = end_buffer_read_sync;
3105 	submit_bh(REQ_OP_READ | op_flags, bh);
3106 	if (wait) {
3107 		wait_on_buffer(bh);
3108 		if (!buffer_uptodate(bh))
3109 			ret = -EIO;
3110 	}
3111 	return ret;
3112 }
3113 EXPORT_SYMBOL(__bh_read);
3114 
3115 /**
3116  * __bh_read_batch - Submit read for a batch of unlocked buffers
3117  * @nr: entry number of the buffer batch
3118  * @bhs: a batch of struct buffer_head
3119  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3120  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3121  *              buffer that cannot lock.
3122  *
3123  * Returns zero on success or don't wait, and -EIO on error.
3124  */
3125 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3126 		     blk_opf_t op_flags, bool force_lock)
3127 {
3128 	int i;
3129 
3130 	for (i = 0; i < nr; i++) {
3131 		struct buffer_head *bh = bhs[i];
3132 
3133 		if (buffer_uptodate(bh))
3134 			continue;
3135 
3136 		if (force_lock)
3137 			lock_buffer(bh);
3138 		else
3139 			if (!trylock_buffer(bh))
3140 				continue;
3141 
3142 		if (buffer_uptodate(bh)) {
3143 			unlock_buffer(bh);
3144 			continue;
3145 		}
3146 
3147 		bh->b_end_io = end_buffer_read_sync;
3148 		get_bh(bh);
3149 		submit_bh(REQ_OP_READ | op_flags, bh);
3150 	}
3151 }
3152 EXPORT_SYMBOL(__bh_read_batch);
3153 
3154 void __init buffer_init(void)
3155 {
3156 	unsigned long nrpages;
3157 	int ret;
3158 
3159 	bh_cachep = kmem_cache_create("buffer_head",
3160 			sizeof(struct buffer_head), 0,
3161 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3162 				SLAB_MEM_SPREAD),
3163 				NULL);
3164 
3165 	/*
3166 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3167 	 */
3168 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3169 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3170 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3171 					NULL, buffer_exit_cpu_dead);
3172 	WARN_ON(ret < 0);
3173 }
3174