xref: /openbmc/linux/fs/buffer.c (revision 4a8b719f95c0dcd15fb7a04b806ad8139fa7c850)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/fs/buffer.c
4  *
5  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
6  */
7 
8 /*
9  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
10  *
11  * Removed a lot of unnecessary code and simplified things now that
12  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
13  *
14  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
15  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
16  *
17  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
18  *
19  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
20  */
21 
22 #include <linux/kernel.h>
23 #include <linux/sched/signal.h>
24 #include <linux/syscalls.h>
25 #include <linux/fs.h>
26 #include <linux/iomap.h>
27 #include <linux/mm.h>
28 #include <linux/percpu.h>
29 #include <linux/slab.h>
30 #include <linux/capability.h>
31 #include <linux/blkdev.h>
32 #include <linux/file.h>
33 #include <linux/quotaops.h>
34 #include <linux/highmem.h>
35 #include <linux/export.h>
36 #include <linux/backing-dev.h>
37 #include <linux/writeback.h>
38 #include <linux/hash.h>
39 #include <linux/suspend.h>
40 #include <linux/buffer_head.h>
41 #include <linux/task_io_accounting_ops.h>
42 #include <linux/bio.h>
43 #include <linux/cpu.h>
44 #include <linux/bitops.h>
45 #include <linux/mpage.h>
46 #include <linux/bit_spinlock.h>
47 #include <linux/pagevec.h>
48 #include <linux/sched/mm.h>
49 #include <trace/events/block.h>
50 #include <linux/fscrypt.h>
51 #include <linux/fsverity.h>
52 
53 #include "internal.h"
54 
55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
57 			  struct writeback_control *wbc);
58 
59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
60 
61 inline void touch_buffer(struct buffer_head *bh)
62 {
63 	trace_block_touch_buffer(bh);
64 	folio_mark_accessed(bh->b_folio);
65 }
66 EXPORT_SYMBOL(touch_buffer);
67 
68 void __lock_buffer(struct buffer_head *bh)
69 {
70 	wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
71 }
72 EXPORT_SYMBOL(__lock_buffer);
73 
74 void unlock_buffer(struct buffer_head *bh)
75 {
76 	clear_bit_unlock(BH_Lock, &bh->b_state);
77 	smp_mb__after_atomic();
78 	wake_up_bit(&bh->b_state, BH_Lock);
79 }
80 EXPORT_SYMBOL(unlock_buffer);
81 
82 /*
83  * Returns if the folio has dirty or writeback buffers. If all the buffers
84  * are unlocked and clean then the folio_test_dirty information is stale. If
85  * any of the buffers are locked, it is assumed they are locked for IO.
86  */
87 void buffer_check_dirty_writeback(struct folio *folio,
88 				     bool *dirty, bool *writeback)
89 {
90 	struct buffer_head *head, *bh;
91 	*dirty = false;
92 	*writeback = false;
93 
94 	BUG_ON(!folio_test_locked(folio));
95 
96 	head = folio_buffers(folio);
97 	if (!head)
98 		return;
99 
100 	if (folio_test_writeback(folio))
101 		*writeback = true;
102 
103 	bh = head;
104 	do {
105 		if (buffer_locked(bh))
106 			*writeback = true;
107 
108 		if (buffer_dirty(bh))
109 			*dirty = true;
110 
111 		bh = bh->b_this_page;
112 	} while (bh != head);
113 }
114 
115 /*
116  * Block until a buffer comes unlocked.  This doesn't stop it
117  * from becoming locked again - you have to lock it yourself
118  * if you want to preserve its state.
119  */
120 void __wait_on_buffer(struct buffer_head * bh)
121 {
122 	wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE);
123 }
124 EXPORT_SYMBOL(__wait_on_buffer);
125 
126 static void buffer_io_error(struct buffer_head *bh, char *msg)
127 {
128 	if (!test_bit(BH_Quiet, &bh->b_state))
129 		printk_ratelimited(KERN_ERR
130 			"Buffer I/O error on dev %pg, logical block %llu%s\n",
131 			bh->b_bdev, (unsigned long long)bh->b_blocknr, msg);
132 }
133 
134 /*
135  * End-of-IO handler helper function which does not touch the bh after
136  * unlocking it.
137  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
138  * a race there is benign: unlock_buffer() only use the bh's address for
139  * hashing after unlocking the buffer, so it doesn't actually touch the bh
140  * itself.
141  */
142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
143 {
144 	if (uptodate) {
145 		set_buffer_uptodate(bh);
146 	} else {
147 		/* This happens, due to failed read-ahead attempts. */
148 		clear_buffer_uptodate(bh);
149 	}
150 	unlock_buffer(bh);
151 }
152 
153 /*
154  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
155  * unlock the buffer.
156  */
157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
158 {
159 	__end_buffer_read_notouch(bh, uptodate);
160 	put_bh(bh);
161 }
162 EXPORT_SYMBOL(end_buffer_read_sync);
163 
164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
165 {
166 	if (uptodate) {
167 		set_buffer_uptodate(bh);
168 	} else {
169 		buffer_io_error(bh, ", lost sync page write");
170 		mark_buffer_write_io_error(bh);
171 		clear_buffer_uptodate(bh);
172 	}
173 	unlock_buffer(bh);
174 	put_bh(bh);
175 }
176 EXPORT_SYMBOL(end_buffer_write_sync);
177 
178 /*
179  * Various filesystems appear to want __find_get_block to be non-blocking.
180  * But it's the page lock which protects the buffers.  To get around this,
181  * we get exclusion from try_to_free_buffers with the blockdev mapping's
182  * private_lock.
183  *
184  * Hack idea: for the blockdev mapping, private_lock contention
185  * may be quite high.  This code could TryLock the page, and if that
186  * succeeds, there is no need to take private_lock.
187  */
188 static struct buffer_head *
189 __find_get_block_slow(struct block_device *bdev, sector_t block)
190 {
191 	struct inode *bd_inode = bdev->bd_inode;
192 	struct address_space *bd_mapping = bd_inode->i_mapping;
193 	struct buffer_head *ret = NULL;
194 	pgoff_t index;
195 	struct buffer_head *bh;
196 	struct buffer_head *head;
197 	struct folio *folio;
198 	int all_mapped = 1;
199 	static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1);
200 
201 	index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
202 	folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0);
203 	if (IS_ERR(folio))
204 		goto out;
205 
206 	spin_lock(&bd_mapping->private_lock);
207 	head = folio_buffers(folio);
208 	if (!head)
209 		goto out_unlock;
210 	bh = head;
211 	do {
212 		if (!buffer_mapped(bh))
213 			all_mapped = 0;
214 		else if (bh->b_blocknr == block) {
215 			ret = bh;
216 			get_bh(bh);
217 			goto out_unlock;
218 		}
219 		bh = bh->b_this_page;
220 	} while (bh != head);
221 
222 	/* we might be here because some of the buffers on this page are
223 	 * not mapped.  This is due to various races between
224 	 * file io on the block device and getblk.  It gets dealt with
225 	 * elsewhere, don't buffer_error if we had some unmapped buffers
226 	 */
227 	ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE);
228 	if (all_mapped && __ratelimit(&last_warned)) {
229 		printk("__find_get_block_slow() failed. block=%llu, "
230 		       "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, "
231 		       "device %pg blocksize: %d\n",
232 		       (unsigned long long)block,
233 		       (unsigned long long)bh->b_blocknr,
234 		       bh->b_state, bh->b_size, bdev,
235 		       1 << bd_inode->i_blkbits);
236 	}
237 out_unlock:
238 	spin_unlock(&bd_mapping->private_lock);
239 	folio_put(folio);
240 out:
241 	return ret;
242 }
243 
244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
245 {
246 	unsigned long flags;
247 	struct buffer_head *first;
248 	struct buffer_head *tmp;
249 	struct folio *folio;
250 	int folio_uptodate = 1;
251 
252 	BUG_ON(!buffer_async_read(bh));
253 
254 	folio = bh->b_folio;
255 	if (uptodate) {
256 		set_buffer_uptodate(bh);
257 	} else {
258 		clear_buffer_uptodate(bh);
259 		buffer_io_error(bh, ", async page read");
260 		folio_set_error(folio);
261 	}
262 
263 	/*
264 	 * Be _very_ careful from here on. Bad things can happen if
265 	 * two buffer heads end IO at almost the same time and both
266 	 * decide that the page is now completely done.
267 	 */
268 	first = folio_buffers(folio);
269 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
270 	clear_buffer_async_read(bh);
271 	unlock_buffer(bh);
272 	tmp = bh;
273 	do {
274 		if (!buffer_uptodate(tmp))
275 			folio_uptodate = 0;
276 		if (buffer_async_read(tmp)) {
277 			BUG_ON(!buffer_locked(tmp));
278 			goto still_busy;
279 		}
280 		tmp = tmp->b_this_page;
281 	} while (tmp != bh);
282 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
283 
284 	/*
285 	 * If all of the buffers are uptodate then we can set the page
286 	 * uptodate.
287 	 */
288 	if (folio_uptodate)
289 		folio_mark_uptodate(folio);
290 	folio_unlock(folio);
291 	return;
292 
293 still_busy:
294 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
295 	return;
296 }
297 
298 struct postprocess_bh_ctx {
299 	struct work_struct work;
300 	struct buffer_head *bh;
301 };
302 
303 static void verify_bh(struct work_struct *work)
304 {
305 	struct postprocess_bh_ctx *ctx =
306 		container_of(work, struct postprocess_bh_ctx, work);
307 	struct buffer_head *bh = ctx->bh;
308 	bool valid;
309 
310 	valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh));
311 	end_buffer_async_read(bh, valid);
312 	kfree(ctx);
313 }
314 
315 static bool need_fsverity(struct buffer_head *bh)
316 {
317 	struct folio *folio = bh->b_folio;
318 	struct inode *inode = folio->mapping->host;
319 
320 	return fsverity_active(inode) &&
321 		/* needed by ext4 */
322 		folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE);
323 }
324 
325 static void decrypt_bh(struct work_struct *work)
326 {
327 	struct postprocess_bh_ctx *ctx =
328 		container_of(work, struct postprocess_bh_ctx, work);
329 	struct buffer_head *bh = ctx->bh;
330 	int err;
331 
332 	err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size,
333 					       bh_offset(bh));
334 	if (err == 0 && need_fsverity(bh)) {
335 		/*
336 		 * We use different work queues for decryption and for verity
337 		 * because verity may require reading metadata pages that need
338 		 * decryption, and we shouldn't recurse to the same workqueue.
339 		 */
340 		INIT_WORK(&ctx->work, verify_bh);
341 		fsverity_enqueue_verify_work(&ctx->work);
342 		return;
343 	}
344 	end_buffer_async_read(bh, err == 0);
345 	kfree(ctx);
346 }
347 
348 /*
349  * I/O completion handler for block_read_full_folio() - pages
350  * which come unlocked at the end of I/O.
351  */
352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate)
353 {
354 	struct inode *inode = bh->b_folio->mapping->host;
355 	bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode);
356 	bool verify = need_fsverity(bh);
357 
358 	/* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */
359 	if (uptodate && (decrypt || verify)) {
360 		struct postprocess_bh_ctx *ctx =
361 			kmalloc(sizeof(*ctx), GFP_ATOMIC);
362 
363 		if (ctx) {
364 			ctx->bh = bh;
365 			if (decrypt) {
366 				INIT_WORK(&ctx->work, decrypt_bh);
367 				fscrypt_enqueue_decrypt_work(&ctx->work);
368 			} else {
369 				INIT_WORK(&ctx->work, verify_bh);
370 				fsverity_enqueue_verify_work(&ctx->work);
371 			}
372 			return;
373 		}
374 		uptodate = 0;
375 	}
376 	end_buffer_async_read(bh, uptodate);
377 }
378 
379 /*
380  * Completion handler for block_write_full_page() - pages which are unlocked
381  * during I/O, and which have PageWriteback cleared upon I/O completion.
382  */
383 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
384 {
385 	unsigned long flags;
386 	struct buffer_head *first;
387 	struct buffer_head *tmp;
388 	struct folio *folio;
389 
390 	BUG_ON(!buffer_async_write(bh));
391 
392 	folio = bh->b_folio;
393 	if (uptodate) {
394 		set_buffer_uptodate(bh);
395 	} else {
396 		buffer_io_error(bh, ", lost async page write");
397 		mark_buffer_write_io_error(bh);
398 		clear_buffer_uptodate(bh);
399 		folio_set_error(folio);
400 	}
401 
402 	first = folio_buffers(folio);
403 	spin_lock_irqsave(&first->b_uptodate_lock, flags);
404 
405 	clear_buffer_async_write(bh);
406 	unlock_buffer(bh);
407 	tmp = bh->b_this_page;
408 	while (tmp != bh) {
409 		if (buffer_async_write(tmp)) {
410 			BUG_ON(!buffer_locked(tmp));
411 			goto still_busy;
412 		}
413 		tmp = tmp->b_this_page;
414 	}
415 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
416 	folio_end_writeback(folio);
417 	return;
418 
419 still_busy:
420 	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
421 	return;
422 }
423 EXPORT_SYMBOL(end_buffer_async_write);
424 
425 /*
426  * If a page's buffers are under async readin (end_buffer_async_read
427  * completion) then there is a possibility that another thread of
428  * control could lock one of the buffers after it has completed
429  * but while some of the other buffers have not completed.  This
430  * locked buffer would confuse end_buffer_async_read() into not unlocking
431  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
432  * that this buffer is not under async I/O.
433  *
434  * The page comes unlocked when it has no locked buffer_async buffers
435  * left.
436  *
437  * PageLocked prevents anyone starting new async I/O reads any of
438  * the buffers.
439  *
440  * PageWriteback is used to prevent simultaneous writeout of the same
441  * page.
442  *
443  * PageLocked prevents anyone from starting writeback of a page which is
444  * under read I/O (PageWriteback is only ever set against a locked page).
445  */
446 static void mark_buffer_async_read(struct buffer_head *bh)
447 {
448 	bh->b_end_io = end_buffer_async_read_io;
449 	set_buffer_async_read(bh);
450 }
451 
452 static void mark_buffer_async_write_endio(struct buffer_head *bh,
453 					  bh_end_io_t *handler)
454 {
455 	bh->b_end_io = handler;
456 	set_buffer_async_write(bh);
457 }
458 
459 void mark_buffer_async_write(struct buffer_head *bh)
460 {
461 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
462 }
463 EXPORT_SYMBOL(mark_buffer_async_write);
464 
465 
466 /*
467  * fs/buffer.c contains helper functions for buffer-backed address space's
468  * fsync functions.  A common requirement for buffer-based filesystems is
469  * that certain data from the backing blockdev needs to be written out for
470  * a successful fsync().  For example, ext2 indirect blocks need to be
471  * written back and waited upon before fsync() returns.
472  *
473  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
474  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
475  * management of a list of dependent buffers at ->i_mapping->private_list.
476  *
477  * Locking is a little subtle: try_to_free_buffers() will remove buffers
478  * from their controlling inode's queue when they are being freed.  But
479  * try_to_free_buffers() will be operating against the *blockdev* mapping
480  * at the time, not against the S_ISREG file which depends on those buffers.
481  * So the locking for private_list is via the private_lock in the address_space
482  * which backs the buffers.  Which is different from the address_space
483  * against which the buffers are listed.  So for a particular address_space,
484  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
485  * mapping->private_list will always be protected by the backing blockdev's
486  * ->private_lock.
487  *
488  * Which introduces a requirement: all buffers on an address_space's
489  * ->private_list must be from the same address_space: the blockdev's.
490  *
491  * address_spaces which do not place buffers at ->private_list via these
492  * utility functions are free to use private_lock and private_list for
493  * whatever they want.  The only requirement is that list_empty(private_list)
494  * be true at clear_inode() time.
495  *
496  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
497  * filesystems should do that.  invalidate_inode_buffers() should just go
498  * BUG_ON(!list_empty).
499  *
500  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
501  * take an address_space, not an inode.  And it should be called
502  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
503  * queued up.
504  *
505  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
506  * list if it is already on a list.  Because if the buffer is on a list,
507  * it *must* already be on the right one.  If not, the filesystem is being
508  * silly.  This will save a ton of locking.  But first we have to ensure
509  * that buffers are taken *off* the old inode's list when they are freed
510  * (presumably in truncate).  That requires careful auditing of all
511  * filesystems (do it inside bforget()).  It could also be done by bringing
512  * b_inode back.
513  */
514 
515 /*
516  * The buffer's backing address_space's private_lock must be held
517  */
518 static void __remove_assoc_queue(struct buffer_head *bh)
519 {
520 	list_del_init(&bh->b_assoc_buffers);
521 	WARN_ON(!bh->b_assoc_map);
522 	bh->b_assoc_map = NULL;
523 }
524 
525 int inode_has_buffers(struct inode *inode)
526 {
527 	return !list_empty(&inode->i_data.private_list);
528 }
529 
530 /*
531  * osync is designed to support O_SYNC io.  It waits synchronously for
532  * all already-submitted IO to complete, but does not queue any new
533  * writes to the disk.
534  *
535  * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer
536  * as you dirty the buffers, and then use osync_inode_buffers to wait for
537  * completion.  Any other dirty buffers which are not yet queued for
538  * write will not be flushed to disk by the osync.
539  */
540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
541 {
542 	struct buffer_head *bh;
543 	struct list_head *p;
544 	int err = 0;
545 
546 	spin_lock(lock);
547 repeat:
548 	list_for_each_prev(p, list) {
549 		bh = BH_ENTRY(p);
550 		if (buffer_locked(bh)) {
551 			get_bh(bh);
552 			spin_unlock(lock);
553 			wait_on_buffer(bh);
554 			if (!buffer_uptodate(bh))
555 				err = -EIO;
556 			brelse(bh);
557 			spin_lock(lock);
558 			goto repeat;
559 		}
560 	}
561 	spin_unlock(lock);
562 	return err;
563 }
564 
565 /**
566  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
567  * @mapping: the mapping which wants those buffers written
568  *
569  * Starts I/O against the buffers at mapping->private_list, and waits upon
570  * that I/O.
571  *
572  * Basically, this is a convenience function for fsync().
573  * @mapping is a file or directory which needs those buffers to be written for
574  * a successful fsync().
575  */
576 int sync_mapping_buffers(struct address_space *mapping)
577 {
578 	struct address_space *buffer_mapping = mapping->private_data;
579 
580 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
581 		return 0;
582 
583 	return fsync_buffers_list(&buffer_mapping->private_lock,
584 					&mapping->private_list);
585 }
586 EXPORT_SYMBOL(sync_mapping_buffers);
587 
588 /**
589  * generic_buffers_fsync_noflush - generic buffer fsync implementation
590  * for simple filesystems with no inode lock
591  *
592  * @file:	file to synchronize
593  * @start:	start offset in bytes
594  * @end:	end offset in bytes (inclusive)
595  * @datasync:	only synchronize essential metadata if true
596  *
597  * This is a generic implementation of the fsync method for simple
598  * filesystems which track all non-inode metadata in the buffers list
599  * hanging off the address_space structure.
600  */
601 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end,
602 				  bool datasync)
603 {
604 	struct inode *inode = file->f_mapping->host;
605 	int err;
606 	int ret;
607 
608 	err = file_write_and_wait_range(file, start, end);
609 	if (err)
610 		return err;
611 
612 	ret = sync_mapping_buffers(inode->i_mapping);
613 	if (!(inode->i_state & I_DIRTY_ALL))
614 		goto out;
615 	if (datasync && !(inode->i_state & I_DIRTY_DATASYNC))
616 		goto out;
617 
618 	err = sync_inode_metadata(inode, 1);
619 	if (ret == 0)
620 		ret = err;
621 
622 out:
623 	/* check and advance again to catch errors after syncing out buffers */
624 	err = file_check_and_advance_wb_err(file);
625 	if (ret == 0)
626 		ret = err;
627 	return ret;
628 }
629 EXPORT_SYMBOL(generic_buffers_fsync_noflush);
630 
631 /**
632  * generic_buffers_fsync - generic buffer fsync implementation
633  * for simple filesystems with no inode lock
634  *
635  * @file:	file to synchronize
636  * @start:	start offset in bytes
637  * @end:	end offset in bytes (inclusive)
638  * @datasync:	only synchronize essential metadata if true
639  *
640  * This is a generic implementation of the fsync method for simple
641  * filesystems which track all non-inode metadata in the buffers list
642  * hanging off the address_space structure. This also makes sure that
643  * a device cache flush operation is called at the end.
644  */
645 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end,
646 			  bool datasync)
647 {
648 	struct inode *inode = file->f_mapping->host;
649 	int ret;
650 
651 	ret = generic_buffers_fsync_noflush(file, start, end, datasync);
652 	if (!ret)
653 		ret = blkdev_issue_flush(inode->i_sb->s_bdev);
654 	return ret;
655 }
656 EXPORT_SYMBOL(generic_buffers_fsync);
657 
658 /*
659  * Called when we've recently written block `bblock', and it is known that
660  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
661  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
662  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
663  */
664 void write_boundary_block(struct block_device *bdev,
665 			sector_t bblock, unsigned blocksize)
666 {
667 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
668 	if (bh) {
669 		if (buffer_dirty(bh))
670 			write_dirty_buffer(bh, 0);
671 		put_bh(bh);
672 	}
673 }
674 
675 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
676 {
677 	struct address_space *mapping = inode->i_mapping;
678 	struct address_space *buffer_mapping = bh->b_folio->mapping;
679 
680 	mark_buffer_dirty(bh);
681 	if (!mapping->private_data) {
682 		mapping->private_data = buffer_mapping;
683 	} else {
684 		BUG_ON(mapping->private_data != buffer_mapping);
685 	}
686 	if (!bh->b_assoc_map) {
687 		spin_lock(&buffer_mapping->private_lock);
688 		list_move_tail(&bh->b_assoc_buffers,
689 				&mapping->private_list);
690 		bh->b_assoc_map = mapping;
691 		spin_unlock(&buffer_mapping->private_lock);
692 	}
693 }
694 EXPORT_SYMBOL(mark_buffer_dirty_inode);
695 
696 /*
697  * Add a page to the dirty page list.
698  *
699  * It is a sad fact of life that this function is called from several places
700  * deeply under spinlocking.  It may not sleep.
701  *
702  * If the page has buffers, the uptodate buffers are set dirty, to preserve
703  * dirty-state coherency between the page and the buffers.  It the page does
704  * not have buffers then when they are later attached they will all be set
705  * dirty.
706  *
707  * The buffers are dirtied before the page is dirtied.  There's a small race
708  * window in which a writepage caller may see the page cleanness but not the
709  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
710  * before the buffers, a concurrent writepage caller could clear the page dirty
711  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
712  * page on the dirty page list.
713  *
714  * We use private_lock to lock against try_to_free_buffers while using the
715  * page's buffer list.  Also use this to protect against clean buffers being
716  * added to the page after it was set dirty.
717  *
718  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
719  * address_space though.
720  */
721 bool block_dirty_folio(struct address_space *mapping, struct folio *folio)
722 {
723 	struct buffer_head *head;
724 	bool newly_dirty;
725 
726 	spin_lock(&mapping->private_lock);
727 	head = folio_buffers(folio);
728 	if (head) {
729 		struct buffer_head *bh = head;
730 
731 		do {
732 			set_buffer_dirty(bh);
733 			bh = bh->b_this_page;
734 		} while (bh != head);
735 	}
736 	/*
737 	 * Lock out page's memcg migration to keep PageDirty
738 	 * synchronized with per-memcg dirty page counters.
739 	 */
740 	folio_memcg_lock(folio);
741 	newly_dirty = !folio_test_set_dirty(folio);
742 	spin_unlock(&mapping->private_lock);
743 
744 	if (newly_dirty)
745 		__folio_mark_dirty(folio, mapping, 1);
746 
747 	folio_memcg_unlock(folio);
748 
749 	if (newly_dirty)
750 		__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
751 
752 	return newly_dirty;
753 }
754 EXPORT_SYMBOL(block_dirty_folio);
755 
756 /*
757  * Write out and wait upon a list of buffers.
758  *
759  * We have conflicting pressures: we want to make sure that all
760  * initially dirty buffers get waited on, but that any subsequently
761  * dirtied buffers don't.  After all, we don't want fsync to last
762  * forever if somebody is actively writing to the file.
763  *
764  * Do this in two main stages: first we copy dirty buffers to a
765  * temporary inode list, queueing the writes as we go.  Then we clean
766  * up, waiting for those writes to complete.
767  *
768  * During this second stage, any subsequent updates to the file may end
769  * up refiling the buffer on the original inode's dirty list again, so
770  * there is a chance we will end up with a buffer queued for write but
771  * not yet completed on that list.  So, as a final cleanup we go through
772  * the osync code to catch these locked, dirty buffers without requeuing
773  * any newly dirty buffers for write.
774  */
775 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
776 {
777 	struct buffer_head *bh;
778 	struct list_head tmp;
779 	struct address_space *mapping;
780 	int err = 0, err2;
781 	struct blk_plug plug;
782 
783 	INIT_LIST_HEAD(&tmp);
784 	blk_start_plug(&plug);
785 
786 	spin_lock(lock);
787 	while (!list_empty(list)) {
788 		bh = BH_ENTRY(list->next);
789 		mapping = bh->b_assoc_map;
790 		__remove_assoc_queue(bh);
791 		/* Avoid race with mark_buffer_dirty_inode() which does
792 		 * a lockless check and we rely on seeing the dirty bit */
793 		smp_mb();
794 		if (buffer_dirty(bh) || buffer_locked(bh)) {
795 			list_add(&bh->b_assoc_buffers, &tmp);
796 			bh->b_assoc_map = mapping;
797 			if (buffer_dirty(bh)) {
798 				get_bh(bh);
799 				spin_unlock(lock);
800 				/*
801 				 * Ensure any pending I/O completes so that
802 				 * write_dirty_buffer() actually writes the
803 				 * current contents - it is a noop if I/O is
804 				 * still in flight on potentially older
805 				 * contents.
806 				 */
807 				write_dirty_buffer(bh, REQ_SYNC);
808 
809 				/*
810 				 * Kick off IO for the previous mapping. Note
811 				 * that we will not run the very last mapping,
812 				 * wait_on_buffer() will do that for us
813 				 * through sync_buffer().
814 				 */
815 				brelse(bh);
816 				spin_lock(lock);
817 			}
818 		}
819 	}
820 
821 	spin_unlock(lock);
822 	blk_finish_plug(&plug);
823 	spin_lock(lock);
824 
825 	while (!list_empty(&tmp)) {
826 		bh = BH_ENTRY(tmp.prev);
827 		get_bh(bh);
828 		mapping = bh->b_assoc_map;
829 		__remove_assoc_queue(bh);
830 		/* Avoid race with mark_buffer_dirty_inode() which does
831 		 * a lockless check and we rely on seeing the dirty bit */
832 		smp_mb();
833 		if (buffer_dirty(bh)) {
834 			list_add(&bh->b_assoc_buffers,
835 				 &mapping->private_list);
836 			bh->b_assoc_map = mapping;
837 		}
838 		spin_unlock(lock);
839 		wait_on_buffer(bh);
840 		if (!buffer_uptodate(bh))
841 			err = -EIO;
842 		brelse(bh);
843 		spin_lock(lock);
844 	}
845 
846 	spin_unlock(lock);
847 	err2 = osync_buffers_list(lock, list);
848 	if (err)
849 		return err;
850 	else
851 		return err2;
852 }
853 
854 /*
855  * Invalidate any and all dirty buffers on a given inode.  We are
856  * probably unmounting the fs, but that doesn't mean we have already
857  * done a sync().  Just drop the buffers from the inode list.
858  *
859  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
860  * assumes that all the buffers are against the blockdev.  Not true
861  * for reiserfs.
862  */
863 void invalidate_inode_buffers(struct inode *inode)
864 {
865 	if (inode_has_buffers(inode)) {
866 		struct address_space *mapping = &inode->i_data;
867 		struct list_head *list = &mapping->private_list;
868 		struct address_space *buffer_mapping = mapping->private_data;
869 
870 		spin_lock(&buffer_mapping->private_lock);
871 		while (!list_empty(list))
872 			__remove_assoc_queue(BH_ENTRY(list->next));
873 		spin_unlock(&buffer_mapping->private_lock);
874 	}
875 }
876 EXPORT_SYMBOL(invalidate_inode_buffers);
877 
878 /*
879  * Remove any clean buffers from the inode's buffer list.  This is called
880  * when we're trying to free the inode itself.  Those buffers can pin it.
881  *
882  * Returns true if all buffers were removed.
883  */
884 int remove_inode_buffers(struct inode *inode)
885 {
886 	int ret = 1;
887 
888 	if (inode_has_buffers(inode)) {
889 		struct address_space *mapping = &inode->i_data;
890 		struct list_head *list = &mapping->private_list;
891 		struct address_space *buffer_mapping = mapping->private_data;
892 
893 		spin_lock(&buffer_mapping->private_lock);
894 		while (!list_empty(list)) {
895 			struct buffer_head *bh = BH_ENTRY(list->next);
896 			if (buffer_dirty(bh)) {
897 				ret = 0;
898 				break;
899 			}
900 			__remove_assoc_queue(bh);
901 		}
902 		spin_unlock(&buffer_mapping->private_lock);
903 	}
904 	return ret;
905 }
906 
907 /*
908  * Create the appropriate buffers when given a folio for data area and
909  * the size of each buffer.. Use the bh->b_this_page linked list to
910  * follow the buffers created.  Return NULL if unable to create more
911  * buffers.
912  *
913  * The retry flag is used to differentiate async IO (paging, swapping)
914  * which may not fail from ordinary buffer allocations.
915  */
916 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size,
917 					bool retry)
918 {
919 	struct buffer_head *bh, *head;
920 	gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT;
921 	long offset;
922 	struct mem_cgroup *memcg, *old_memcg;
923 
924 	if (retry)
925 		gfp |= __GFP_NOFAIL;
926 
927 	/* The folio lock pins the memcg */
928 	memcg = folio_memcg(folio);
929 	old_memcg = set_active_memcg(memcg);
930 
931 	head = NULL;
932 	offset = folio_size(folio);
933 	while ((offset -= size) >= 0) {
934 		bh = alloc_buffer_head(gfp);
935 		if (!bh)
936 			goto no_grow;
937 
938 		bh->b_this_page = head;
939 		bh->b_blocknr = -1;
940 		head = bh;
941 
942 		bh->b_size = size;
943 
944 		/* Link the buffer to its folio */
945 		folio_set_bh(bh, folio, offset);
946 	}
947 out:
948 	set_active_memcg(old_memcg);
949 	return head;
950 /*
951  * In case anything failed, we just free everything we got.
952  */
953 no_grow:
954 	if (head) {
955 		do {
956 			bh = head;
957 			head = head->b_this_page;
958 			free_buffer_head(bh);
959 		} while (head);
960 	}
961 
962 	goto out;
963 }
964 EXPORT_SYMBOL_GPL(folio_alloc_buffers);
965 
966 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
967 				       bool retry)
968 {
969 	return folio_alloc_buffers(page_folio(page), size, retry);
970 }
971 EXPORT_SYMBOL_GPL(alloc_page_buffers);
972 
973 static inline void link_dev_buffers(struct folio *folio,
974 		struct buffer_head *head)
975 {
976 	struct buffer_head *bh, *tail;
977 
978 	bh = head;
979 	do {
980 		tail = bh;
981 		bh = bh->b_this_page;
982 	} while (bh);
983 	tail->b_this_page = head;
984 	folio_attach_private(folio, head);
985 }
986 
987 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size)
988 {
989 	sector_t retval = ~((sector_t)0);
990 	loff_t sz = bdev_nr_bytes(bdev);
991 
992 	if (sz) {
993 		unsigned int sizebits = blksize_bits(size);
994 		retval = (sz >> sizebits);
995 	}
996 	return retval;
997 }
998 
999 /*
1000  * Initialise the state of a blockdev folio's buffers.
1001  */
1002 static sector_t folio_init_buffers(struct folio *folio,
1003 		struct block_device *bdev, sector_t block, int size)
1004 {
1005 	struct buffer_head *head = folio_buffers(folio);
1006 	struct buffer_head *bh = head;
1007 	bool uptodate = folio_test_uptodate(folio);
1008 	sector_t end_block = blkdev_max_block(bdev, size);
1009 
1010 	do {
1011 		if (!buffer_mapped(bh)) {
1012 			bh->b_end_io = NULL;
1013 			bh->b_private = NULL;
1014 			bh->b_bdev = bdev;
1015 			bh->b_blocknr = block;
1016 			if (uptodate)
1017 				set_buffer_uptodate(bh);
1018 			if (block < end_block)
1019 				set_buffer_mapped(bh);
1020 		}
1021 		block++;
1022 		bh = bh->b_this_page;
1023 	} while (bh != head);
1024 
1025 	/*
1026 	 * Caller needs to validate requested block against end of device.
1027 	 */
1028 	return end_block;
1029 }
1030 
1031 /*
1032  * Create the page-cache page that contains the requested block.
1033  *
1034  * This is used purely for blockdev mappings.
1035  */
1036 static int
1037 grow_dev_page(struct block_device *bdev, sector_t block,
1038 	      pgoff_t index, int size, int sizebits, gfp_t gfp)
1039 {
1040 	struct inode *inode = bdev->bd_inode;
1041 	struct folio *folio;
1042 	struct buffer_head *bh;
1043 	sector_t end_block;
1044 	int ret = 0;
1045 	gfp_t gfp_mask;
1046 
1047 	gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp;
1048 
1049 	/*
1050 	 * XXX: __getblk_slow() can not really deal with failure and
1051 	 * will endlessly loop on improvised global reclaim.  Prefer
1052 	 * looping in the allocator rather than here, at least that
1053 	 * code knows what it's doing.
1054 	 */
1055 	gfp_mask |= __GFP_NOFAIL;
1056 
1057 	folio = __filemap_get_folio(inode->i_mapping, index,
1058 			FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask);
1059 
1060 	bh = folio_buffers(folio);
1061 	if (bh) {
1062 		if (bh->b_size == size) {
1063 			end_block = folio_init_buffers(folio, bdev,
1064 					(sector_t)index << sizebits, size);
1065 			goto done;
1066 		}
1067 		if (!try_to_free_buffers(folio))
1068 			goto failed;
1069 	}
1070 
1071 	bh = folio_alloc_buffers(folio, size, true);
1072 
1073 	/*
1074 	 * Link the folio to the buffers and initialise them.  Take the
1075 	 * lock to be atomic wrt __find_get_block(), which does not
1076 	 * run under the folio lock.
1077 	 */
1078 	spin_lock(&inode->i_mapping->private_lock);
1079 	link_dev_buffers(folio, bh);
1080 	end_block = folio_init_buffers(folio, bdev,
1081 			(sector_t)index << sizebits, size);
1082 	spin_unlock(&inode->i_mapping->private_lock);
1083 done:
1084 	ret = (block < end_block) ? 1 : -ENXIO;
1085 failed:
1086 	folio_unlock(folio);
1087 	folio_put(folio);
1088 	return ret;
1089 }
1090 
1091 /*
1092  * Create buffers for the specified block device block's page.  If
1093  * that page was dirty, the buffers are set dirty also.
1094  */
1095 static int
1096 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp)
1097 {
1098 	pgoff_t index;
1099 	int sizebits;
1100 
1101 	sizebits = PAGE_SHIFT - __ffs(size);
1102 	index = block >> sizebits;
1103 
1104 	/*
1105 	 * Check for a block which wants to lie outside our maximum possible
1106 	 * pagecache index.  (this comparison is done using sector_t types).
1107 	 */
1108 	if (unlikely(index != block >> sizebits)) {
1109 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1110 			"device %pg\n",
1111 			__func__, (unsigned long long)block,
1112 			bdev);
1113 		return -EIO;
1114 	}
1115 
1116 	/* Create a page with the proper size buffers.. */
1117 	return grow_dev_page(bdev, block, index, size, sizebits, gfp);
1118 }
1119 
1120 static struct buffer_head *
1121 __getblk_slow(struct block_device *bdev, sector_t block,
1122 	     unsigned size, gfp_t gfp)
1123 {
1124 	/* Size must be multiple of hard sectorsize */
1125 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1126 			(size < 512 || size > PAGE_SIZE))) {
1127 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1128 					size);
1129 		printk(KERN_ERR "logical block size: %d\n",
1130 					bdev_logical_block_size(bdev));
1131 
1132 		dump_stack();
1133 		return NULL;
1134 	}
1135 
1136 	for (;;) {
1137 		struct buffer_head *bh;
1138 		int ret;
1139 
1140 		bh = __find_get_block(bdev, block, size);
1141 		if (bh)
1142 			return bh;
1143 
1144 		ret = grow_buffers(bdev, block, size, gfp);
1145 		if (ret < 0)
1146 			return NULL;
1147 	}
1148 }
1149 
1150 /*
1151  * The relationship between dirty buffers and dirty pages:
1152  *
1153  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1154  * the page is tagged dirty in the page cache.
1155  *
1156  * At all times, the dirtiness of the buffers represents the dirtiness of
1157  * subsections of the page.  If the page has buffers, the page dirty bit is
1158  * merely a hint about the true dirty state.
1159  *
1160  * When a page is set dirty in its entirety, all its buffers are marked dirty
1161  * (if the page has buffers).
1162  *
1163  * When a buffer is marked dirty, its page is dirtied, but the page's other
1164  * buffers are not.
1165  *
1166  * Also.  When blockdev buffers are explicitly read with bread(), they
1167  * individually become uptodate.  But their backing page remains not
1168  * uptodate - even if all of its buffers are uptodate.  A subsequent
1169  * block_read_full_folio() against that folio will discover all the uptodate
1170  * buffers, will set the folio uptodate and will perform no I/O.
1171  */
1172 
1173 /**
1174  * mark_buffer_dirty - mark a buffer_head as needing writeout
1175  * @bh: the buffer_head to mark dirty
1176  *
1177  * mark_buffer_dirty() will set the dirty bit against the buffer, then set
1178  * its backing page dirty, then tag the page as dirty in the page cache
1179  * and then attach the address_space's inode to its superblock's dirty
1180  * inode list.
1181  *
1182  * mark_buffer_dirty() is atomic.  It takes bh->b_folio->mapping->private_lock,
1183  * i_pages lock and mapping->host->i_lock.
1184  */
1185 void mark_buffer_dirty(struct buffer_head *bh)
1186 {
1187 	WARN_ON_ONCE(!buffer_uptodate(bh));
1188 
1189 	trace_block_dirty_buffer(bh);
1190 
1191 	/*
1192 	 * Very *carefully* optimize the it-is-already-dirty case.
1193 	 *
1194 	 * Don't let the final "is it dirty" escape to before we
1195 	 * perhaps modified the buffer.
1196 	 */
1197 	if (buffer_dirty(bh)) {
1198 		smp_mb();
1199 		if (buffer_dirty(bh))
1200 			return;
1201 	}
1202 
1203 	if (!test_set_buffer_dirty(bh)) {
1204 		struct folio *folio = bh->b_folio;
1205 		struct address_space *mapping = NULL;
1206 
1207 		folio_memcg_lock(folio);
1208 		if (!folio_test_set_dirty(folio)) {
1209 			mapping = folio->mapping;
1210 			if (mapping)
1211 				__folio_mark_dirty(folio, mapping, 0);
1212 		}
1213 		folio_memcg_unlock(folio);
1214 		if (mapping)
1215 			__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1216 	}
1217 }
1218 EXPORT_SYMBOL(mark_buffer_dirty);
1219 
1220 void mark_buffer_write_io_error(struct buffer_head *bh)
1221 {
1222 	struct super_block *sb;
1223 
1224 	set_buffer_write_io_error(bh);
1225 	/* FIXME: do we need to set this in both places? */
1226 	if (bh->b_folio && bh->b_folio->mapping)
1227 		mapping_set_error(bh->b_folio->mapping, -EIO);
1228 	if (bh->b_assoc_map)
1229 		mapping_set_error(bh->b_assoc_map, -EIO);
1230 	rcu_read_lock();
1231 	sb = READ_ONCE(bh->b_bdev->bd_super);
1232 	if (sb)
1233 		errseq_set(&sb->s_wb_err, -EIO);
1234 	rcu_read_unlock();
1235 }
1236 EXPORT_SYMBOL(mark_buffer_write_io_error);
1237 
1238 /*
1239  * Decrement a buffer_head's reference count.  If all buffers against a page
1240  * have zero reference count, are clean and unlocked, and if the page is clean
1241  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1242  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1243  * a page but it ends up not being freed, and buffers may later be reattached).
1244  */
1245 void __brelse(struct buffer_head * buf)
1246 {
1247 	if (atomic_read(&buf->b_count)) {
1248 		put_bh(buf);
1249 		return;
1250 	}
1251 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1252 }
1253 EXPORT_SYMBOL(__brelse);
1254 
1255 /*
1256  * bforget() is like brelse(), except it discards any
1257  * potentially dirty data.
1258  */
1259 void __bforget(struct buffer_head *bh)
1260 {
1261 	clear_buffer_dirty(bh);
1262 	if (bh->b_assoc_map) {
1263 		struct address_space *buffer_mapping = bh->b_folio->mapping;
1264 
1265 		spin_lock(&buffer_mapping->private_lock);
1266 		list_del_init(&bh->b_assoc_buffers);
1267 		bh->b_assoc_map = NULL;
1268 		spin_unlock(&buffer_mapping->private_lock);
1269 	}
1270 	__brelse(bh);
1271 }
1272 EXPORT_SYMBOL(__bforget);
1273 
1274 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1275 {
1276 	lock_buffer(bh);
1277 	if (buffer_uptodate(bh)) {
1278 		unlock_buffer(bh);
1279 		return bh;
1280 	} else {
1281 		get_bh(bh);
1282 		bh->b_end_io = end_buffer_read_sync;
1283 		submit_bh(REQ_OP_READ, bh);
1284 		wait_on_buffer(bh);
1285 		if (buffer_uptodate(bh))
1286 			return bh;
1287 	}
1288 	brelse(bh);
1289 	return NULL;
1290 }
1291 
1292 /*
1293  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1294  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1295  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1296  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1297  * CPU's LRUs at the same time.
1298  *
1299  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1300  * sb_find_get_block().
1301  *
1302  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1303  * a local interrupt disable for that.
1304  */
1305 
1306 #define BH_LRU_SIZE	16
1307 
1308 struct bh_lru {
1309 	struct buffer_head *bhs[BH_LRU_SIZE];
1310 };
1311 
1312 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1313 
1314 #ifdef CONFIG_SMP
1315 #define bh_lru_lock()	local_irq_disable()
1316 #define bh_lru_unlock()	local_irq_enable()
1317 #else
1318 #define bh_lru_lock()	preempt_disable()
1319 #define bh_lru_unlock()	preempt_enable()
1320 #endif
1321 
1322 static inline void check_irqs_on(void)
1323 {
1324 #ifdef irqs_disabled
1325 	BUG_ON(irqs_disabled());
1326 #endif
1327 }
1328 
1329 /*
1330  * Install a buffer_head into this cpu's LRU.  If not already in the LRU, it is
1331  * inserted at the front, and the buffer_head at the back if any is evicted.
1332  * Or, if already in the LRU it is moved to the front.
1333  */
1334 static void bh_lru_install(struct buffer_head *bh)
1335 {
1336 	struct buffer_head *evictee = bh;
1337 	struct bh_lru *b;
1338 	int i;
1339 
1340 	check_irqs_on();
1341 	bh_lru_lock();
1342 
1343 	/*
1344 	 * the refcount of buffer_head in bh_lru prevents dropping the
1345 	 * attached page(i.e., try_to_free_buffers) so it could cause
1346 	 * failing page migration.
1347 	 * Skip putting upcoming bh into bh_lru until migration is done.
1348 	 */
1349 	if (lru_cache_disabled()) {
1350 		bh_lru_unlock();
1351 		return;
1352 	}
1353 
1354 	b = this_cpu_ptr(&bh_lrus);
1355 	for (i = 0; i < BH_LRU_SIZE; i++) {
1356 		swap(evictee, b->bhs[i]);
1357 		if (evictee == bh) {
1358 			bh_lru_unlock();
1359 			return;
1360 		}
1361 	}
1362 
1363 	get_bh(bh);
1364 	bh_lru_unlock();
1365 	brelse(evictee);
1366 }
1367 
1368 /*
1369  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1370  */
1371 static struct buffer_head *
1372 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1373 {
1374 	struct buffer_head *ret = NULL;
1375 	unsigned int i;
1376 
1377 	check_irqs_on();
1378 	bh_lru_lock();
1379 	for (i = 0; i < BH_LRU_SIZE; i++) {
1380 		struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]);
1381 
1382 		if (bh && bh->b_blocknr == block && bh->b_bdev == bdev &&
1383 		    bh->b_size == size) {
1384 			if (i) {
1385 				while (i) {
1386 					__this_cpu_write(bh_lrus.bhs[i],
1387 						__this_cpu_read(bh_lrus.bhs[i - 1]));
1388 					i--;
1389 				}
1390 				__this_cpu_write(bh_lrus.bhs[0], bh);
1391 			}
1392 			get_bh(bh);
1393 			ret = bh;
1394 			break;
1395 		}
1396 	}
1397 	bh_lru_unlock();
1398 	return ret;
1399 }
1400 
1401 /*
1402  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1403  * it in the LRU and mark it as accessed.  If it is not present then return
1404  * NULL
1405  */
1406 struct buffer_head *
1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1408 {
1409 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1410 
1411 	if (bh == NULL) {
1412 		/* __find_get_block_slow will mark the page accessed */
1413 		bh = __find_get_block_slow(bdev, block);
1414 		if (bh)
1415 			bh_lru_install(bh);
1416 	} else
1417 		touch_buffer(bh);
1418 
1419 	return bh;
1420 }
1421 EXPORT_SYMBOL(__find_get_block);
1422 
1423 /*
1424  * __getblk_gfp() will locate (and, if necessary, create) the buffer_head
1425  * which corresponds to the passed block_device, block and size. The
1426  * returned buffer has its reference count incremented.
1427  *
1428  * __getblk_gfp() will lock up the machine if grow_dev_page's
1429  * try_to_free_buffers() attempt is failing.  FIXME, perhaps?
1430  */
1431 struct buffer_head *
1432 __getblk_gfp(struct block_device *bdev, sector_t block,
1433 	     unsigned size, gfp_t gfp)
1434 {
1435 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1436 
1437 	might_sleep();
1438 	if (bh == NULL)
1439 		bh = __getblk_slow(bdev, block, size, gfp);
1440 	return bh;
1441 }
1442 EXPORT_SYMBOL(__getblk_gfp);
1443 
1444 /*
1445  * Do async read-ahead on a buffer..
1446  */
1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1448 {
1449 	struct buffer_head *bh = __getblk(bdev, block, size);
1450 	if (likely(bh)) {
1451 		bh_readahead(bh, REQ_RAHEAD);
1452 		brelse(bh);
1453 	}
1454 }
1455 EXPORT_SYMBOL(__breadahead);
1456 
1457 /**
1458  *  __bread_gfp() - reads a specified block and returns the bh
1459  *  @bdev: the block_device to read from
1460  *  @block: number of block
1461  *  @size: size (in bytes) to read
1462  *  @gfp: page allocation flag
1463  *
1464  *  Reads a specified block, and returns buffer head that contains it.
1465  *  The page cache can be allocated from non-movable area
1466  *  not to prevent page migration if you set gfp to zero.
1467  *  It returns NULL if the block was unreadable.
1468  */
1469 struct buffer_head *
1470 __bread_gfp(struct block_device *bdev, sector_t block,
1471 		   unsigned size, gfp_t gfp)
1472 {
1473 	struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp);
1474 
1475 	if (likely(bh) && !buffer_uptodate(bh))
1476 		bh = __bread_slow(bh);
1477 	return bh;
1478 }
1479 EXPORT_SYMBOL(__bread_gfp);
1480 
1481 static void __invalidate_bh_lrus(struct bh_lru *b)
1482 {
1483 	int i;
1484 
1485 	for (i = 0; i < BH_LRU_SIZE; i++) {
1486 		brelse(b->bhs[i]);
1487 		b->bhs[i] = NULL;
1488 	}
1489 }
1490 /*
1491  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1492  * This doesn't race because it runs in each cpu either in irq
1493  * or with preempt disabled.
1494  */
1495 static void invalidate_bh_lru(void *arg)
1496 {
1497 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1498 
1499 	__invalidate_bh_lrus(b);
1500 	put_cpu_var(bh_lrus);
1501 }
1502 
1503 bool has_bh_in_lru(int cpu, void *dummy)
1504 {
1505 	struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu);
1506 	int i;
1507 
1508 	for (i = 0; i < BH_LRU_SIZE; i++) {
1509 		if (b->bhs[i])
1510 			return true;
1511 	}
1512 
1513 	return false;
1514 }
1515 
1516 void invalidate_bh_lrus(void)
1517 {
1518 	on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1);
1519 }
1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1521 
1522 /*
1523  * It's called from workqueue context so we need a bh_lru_lock to close
1524  * the race with preemption/irq.
1525  */
1526 void invalidate_bh_lrus_cpu(void)
1527 {
1528 	struct bh_lru *b;
1529 
1530 	bh_lru_lock();
1531 	b = this_cpu_ptr(&bh_lrus);
1532 	__invalidate_bh_lrus(b);
1533 	bh_lru_unlock();
1534 }
1535 
1536 void set_bh_page(struct buffer_head *bh,
1537 		struct page *page, unsigned long offset)
1538 {
1539 	bh->b_page = page;
1540 	BUG_ON(offset >= PAGE_SIZE);
1541 	if (PageHighMem(page))
1542 		/*
1543 		 * This catches illegal uses and preserves the offset:
1544 		 */
1545 		bh->b_data = (char *)(0 + offset);
1546 	else
1547 		bh->b_data = page_address(page) + offset;
1548 }
1549 EXPORT_SYMBOL(set_bh_page);
1550 
1551 void folio_set_bh(struct buffer_head *bh, struct folio *folio,
1552 		  unsigned long offset)
1553 {
1554 	bh->b_folio = folio;
1555 	BUG_ON(offset >= folio_size(folio));
1556 	if (folio_test_highmem(folio))
1557 		/*
1558 		 * This catches illegal uses and preserves the offset:
1559 		 */
1560 		bh->b_data = (char *)(0 + offset);
1561 	else
1562 		bh->b_data = folio_address(folio) + offset;
1563 }
1564 EXPORT_SYMBOL(folio_set_bh);
1565 
1566 /*
1567  * Called when truncating a buffer on a page completely.
1568  */
1569 
1570 /* Bits that are cleared during an invalidate */
1571 #define BUFFER_FLAGS_DISCARD \
1572 	(1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \
1573 	 1 << BH_Delay | 1 << BH_Unwritten)
1574 
1575 static void discard_buffer(struct buffer_head * bh)
1576 {
1577 	unsigned long b_state;
1578 
1579 	lock_buffer(bh);
1580 	clear_buffer_dirty(bh);
1581 	bh->b_bdev = NULL;
1582 	b_state = READ_ONCE(bh->b_state);
1583 	do {
1584 	} while (!try_cmpxchg(&bh->b_state, &b_state,
1585 			      b_state & ~BUFFER_FLAGS_DISCARD));
1586 	unlock_buffer(bh);
1587 }
1588 
1589 /**
1590  * block_invalidate_folio - Invalidate part or all of a buffer-backed folio.
1591  * @folio: The folio which is affected.
1592  * @offset: start of the range to invalidate
1593  * @length: length of the range to invalidate
1594  *
1595  * block_invalidate_folio() is called when all or part of the folio has been
1596  * invalidated by a truncate operation.
1597  *
1598  * block_invalidate_folio() does not have to release all buffers, but it must
1599  * ensure that no dirty buffer is left outside @offset and that no I/O
1600  * is underway against any of the blocks which are outside the truncation
1601  * point.  Because the caller is about to free (and possibly reuse) those
1602  * blocks on-disk.
1603  */
1604 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length)
1605 {
1606 	struct buffer_head *head, *bh, *next;
1607 	size_t curr_off = 0;
1608 	size_t stop = length + offset;
1609 
1610 	BUG_ON(!folio_test_locked(folio));
1611 
1612 	/*
1613 	 * Check for overflow
1614 	 */
1615 	BUG_ON(stop > folio_size(folio) || stop < length);
1616 
1617 	head = folio_buffers(folio);
1618 	if (!head)
1619 		return;
1620 
1621 	bh = head;
1622 	do {
1623 		size_t next_off = curr_off + bh->b_size;
1624 		next = bh->b_this_page;
1625 
1626 		/*
1627 		 * Are we still fully in range ?
1628 		 */
1629 		if (next_off > stop)
1630 			goto out;
1631 
1632 		/*
1633 		 * is this block fully invalidated?
1634 		 */
1635 		if (offset <= curr_off)
1636 			discard_buffer(bh);
1637 		curr_off = next_off;
1638 		bh = next;
1639 	} while (bh != head);
1640 
1641 	/*
1642 	 * We release buffers only if the entire folio is being invalidated.
1643 	 * The get_block cached value has been unconditionally invalidated,
1644 	 * so real IO is not possible anymore.
1645 	 */
1646 	if (length == folio_size(folio))
1647 		filemap_release_folio(folio, 0);
1648 out:
1649 	return;
1650 }
1651 EXPORT_SYMBOL(block_invalidate_folio);
1652 
1653 /*
1654  * We attach and possibly dirty the buffers atomically wrt
1655  * block_dirty_folio() via private_lock.  try_to_free_buffers
1656  * is already excluded via the folio lock.
1657  */
1658 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize,
1659 				unsigned long b_state)
1660 {
1661 	struct buffer_head *bh, *head, *tail;
1662 
1663 	head = folio_alloc_buffers(folio, blocksize, true);
1664 	bh = head;
1665 	do {
1666 		bh->b_state |= b_state;
1667 		tail = bh;
1668 		bh = bh->b_this_page;
1669 	} while (bh);
1670 	tail->b_this_page = head;
1671 
1672 	spin_lock(&folio->mapping->private_lock);
1673 	if (folio_test_uptodate(folio) || folio_test_dirty(folio)) {
1674 		bh = head;
1675 		do {
1676 			if (folio_test_dirty(folio))
1677 				set_buffer_dirty(bh);
1678 			if (folio_test_uptodate(folio))
1679 				set_buffer_uptodate(bh);
1680 			bh = bh->b_this_page;
1681 		} while (bh != head);
1682 	}
1683 	folio_attach_private(folio, head);
1684 	spin_unlock(&folio->mapping->private_lock);
1685 }
1686 EXPORT_SYMBOL(folio_create_empty_buffers);
1687 
1688 void create_empty_buffers(struct page *page,
1689 			unsigned long blocksize, unsigned long b_state)
1690 {
1691 	folio_create_empty_buffers(page_folio(page), blocksize, b_state);
1692 }
1693 EXPORT_SYMBOL(create_empty_buffers);
1694 
1695 /**
1696  * clean_bdev_aliases: clean a range of buffers in block device
1697  * @bdev: Block device to clean buffers in
1698  * @block: Start of a range of blocks to clean
1699  * @len: Number of blocks to clean
1700  *
1701  * We are taking a range of blocks for data and we don't want writeback of any
1702  * buffer-cache aliases starting from return from this function and until the
1703  * moment when something will explicitly mark the buffer dirty (hopefully that
1704  * will not happen until we will free that block ;-) We don't even need to mark
1705  * it not-uptodate - nobody can expect anything from a newly allocated buffer
1706  * anyway. We used to use unmap_buffer() for such invalidation, but that was
1707  * wrong. We definitely don't want to mark the alias unmapped, for example - it
1708  * would confuse anyone who might pick it with bread() afterwards...
1709  *
1710  * Also..  Note that bforget() doesn't lock the buffer.  So there can be
1711  * writeout I/O going on against recently-freed buffers.  We don't wait on that
1712  * I/O in bforget() - it's more efficient to wait on the I/O only if we really
1713  * need to.  That happens here.
1714  */
1715 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len)
1716 {
1717 	struct inode *bd_inode = bdev->bd_inode;
1718 	struct address_space *bd_mapping = bd_inode->i_mapping;
1719 	struct folio_batch fbatch;
1720 	pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits);
1721 	pgoff_t end;
1722 	int i, count;
1723 	struct buffer_head *bh;
1724 	struct buffer_head *head;
1725 
1726 	end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits);
1727 	folio_batch_init(&fbatch);
1728 	while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) {
1729 		count = folio_batch_count(&fbatch);
1730 		for (i = 0; i < count; i++) {
1731 			struct folio *folio = fbatch.folios[i];
1732 
1733 			if (!folio_buffers(folio))
1734 				continue;
1735 			/*
1736 			 * We use folio lock instead of bd_mapping->private_lock
1737 			 * to pin buffers here since we can afford to sleep and
1738 			 * it scales better than a global spinlock lock.
1739 			 */
1740 			folio_lock(folio);
1741 			/* Recheck when the folio is locked which pins bhs */
1742 			head = folio_buffers(folio);
1743 			if (!head)
1744 				goto unlock_page;
1745 			bh = head;
1746 			do {
1747 				if (!buffer_mapped(bh) || (bh->b_blocknr < block))
1748 					goto next;
1749 				if (bh->b_blocknr >= block + len)
1750 					break;
1751 				clear_buffer_dirty(bh);
1752 				wait_on_buffer(bh);
1753 				clear_buffer_req(bh);
1754 next:
1755 				bh = bh->b_this_page;
1756 			} while (bh != head);
1757 unlock_page:
1758 			folio_unlock(folio);
1759 		}
1760 		folio_batch_release(&fbatch);
1761 		cond_resched();
1762 		/* End of range already reached? */
1763 		if (index > end || !index)
1764 			break;
1765 	}
1766 }
1767 EXPORT_SYMBOL(clean_bdev_aliases);
1768 
1769 /*
1770  * Size is a power-of-two in the range 512..PAGE_SIZE,
1771  * and the case we care about most is PAGE_SIZE.
1772  *
1773  * So this *could* possibly be written with those
1774  * constraints in mind (relevant mostly if some
1775  * architecture has a slow bit-scan instruction)
1776  */
1777 static inline int block_size_bits(unsigned int blocksize)
1778 {
1779 	return ilog2(blocksize);
1780 }
1781 
1782 static struct buffer_head *folio_create_buffers(struct folio *folio,
1783 						struct inode *inode,
1784 						unsigned int b_state)
1785 {
1786 	BUG_ON(!folio_test_locked(folio));
1787 
1788 	if (!folio_buffers(folio))
1789 		folio_create_empty_buffers(folio,
1790 					   1 << READ_ONCE(inode->i_blkbits),
1791 					   b_state);
1792 	return folio_buffers(folio);
1793 }
1794 
1795 /*
1796  * NOTE! All mapped/uptodate combinations are valid:
1797  *
1798  *	Mapped	Uptodate	Meaning
1799  *
1800  *	No	No		"unknown" - must do get_block()
1801  *	No	Yes		"hole" - zero-filled
1802  *	Yes	No		"allocated" - allocated on disk, not read in
1803  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1804  *
1805  * "Dirty" is valid only with the last case (mapped+uptodate).
1806  */
1807 
1808 /*
1809  * While block_write_full_page is writing back the dirty buffers under
1810  * the page lock, whoever dirtied the buffers may decide to clean them
1811  * again at any time.  We handle that by only looking at the buffer
1812  * state inside lock_buffer().
1813  *
1814  * If block_write_full_page() is called for regular writeback
1815  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1816  * locked buffer.   This only can happen if someone has written the buffer
1817  * directly, with submit_bh().  At the address_space level PageWriteback
1818  * prevents this contention from occurring.
1819  *
1820  * If block_write_full_page() is called with wbc->sync_mode ==
1821  * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this
1822  * causes the writes to be flagged as synchronous writes.
1823  */
1824 int __block_write_full_folio(struct inode *inode, struct folio *folio,
1825 			get_block_t *get_block, struct writeback_control *wbc,
1826 			bh_end_io_t *handler)
1827 {
1828 	int err;
1829 	sector_t block;
1830 	sector_t last_block;
1831 	struct buffer_head *bh, *head;
1832 	unsigned int blocksize, bbits;
1833 	int nr_underway = 0;
1834 	blk_opf_t write_flags = wbc_to_write_flags(wbc);
1835 
1836 	head = folio_create_buffers(folio, inode,
1837 				    (1 << BH_Dirty) | (1 << BH_Uptodate));
1838 
1839 	/*
1840 	 * Be very careful.  We have no exclusion from block_dirty_folio
1841 	 * here, and the (potentially unmapped) buffers may become dirty at
1842 	 * any time.  If a buffer becomes dirty here after we've inspected it
1843 	 * then we just miss that fact, and the folio stays dirty.
1844 	 *
1845 	 * Buffers outside i_size may be dirtied by block_dirty_folio;
1846 	 * handle that here by just cleaning them.
1847 	 */
1848 
1849 	bh = head;
1850 	blocksize = bh->b_size;
1851 	bbits = block_size_bits(blocksize);
1852 
1853 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
1854 	last_block = (i_size_read(inode) - 1) >> bbits;
1855 
1856 	/*
1857 	 * Get all the dirty buffers mapped to disk addresses and
1858 	 * handle any aliases from the underlying blockdev's mapping.
1859 	 */
1860 	do {
1861 		if (block > last_block) {
1862 			/*
1863 			 * mapped buffers outside i_size will occur, because
1864 			 * this folio can be outside i_size when there is a
1865 			 * truncate in progress.
1866 			 */
1867 			/*
1868 			 * The buffer was zeroed by block_write_full_page()
1869 			 */
1870 			clear_buffer_dirty(bh);
1871 			set_buffer_uptodate(bh);
1872 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1873 			   buffer_dirty(bh)) {
1874 			WARN_ON(bh->b_size != blocksize);
1875 			err = get_block(inode, block, bh, 1);
1876 			if (err)
1877 				goto recover;
1878 			clear_buffer_delay(bh);
1879 			if (buffer_new(bh)) {
1880 				/* blockdev mappings never come here */
1881 				clear_buffer_new(bh);
1882 				clean_bdev_bh_alias(bh);
1883 			}
1884 		}
1885 		bh = bh->b_this_page;
1886 		block++;
1887 	} while (bh != head);
1888 
1889 	do {
1890 		if (!buffer_mapped(bh))
1891 			continue;
1892 		/*
1893 		 * If it's a fully non-blocking write attempt and we cannot
1894 		 * lock the buffer then redirty the folio.  Note that this can
1895 		 * potentially cause a busy-wait loop from writeback threads
1896 		 * and kswapd activity, but those code paths have their own
1897 		 * higher-level throttling.
1898 		 */
1899 		if (wbc->sync_mode != WB_SYNC_NONE) {
1900 			lock_buffer(bh);
1901 		} else if (!trylock_buffer(bh)) {
1902 			folio_redirty_for_writepage(wbc, folio);
1903 			continue;
1904 		}
1905 		if (test_clear_buffer_dirty(bh)) {
1906 			mark_buffer_async_write_endio(bh, handler);
1907 		} else {
1908 			unlock_buffer(bh);
1909 		}
1910 	} while ((bh = bh->b_this_page) != head);
1911 
1912 	/*
1913 	 * The folio and its buffers are protected by the writeback flag,
1914 	 * so we can drop the bh refcounts early.
1915 	 */
1916 	BUG_ON(folio_test_writeback(folio));
1917 	folio_start_writeback(folio);
1918 
1919 	do {
1920 		struct buffer_head *next = bh->b_this_page;
1921 		if (buffer_async_write(bh)) {
1922 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1923 			nr_underway++;
1924 		}
1925 		bh = next;
1926 	} while (bh != head);
1927 	folio_unlock(folio);
1928 
1929 	err = 0;
1930 done:
1931 	if (nr_underway == 0) {
1932 		/*
1933 		 * The folio was marked dirty, but the buffers were
1934 		 * clean.  Someone wrote them back by hand with
1935 		 * write_dirty_buffer/submit_bh.  A rare case.
1936 		 */
1937 		folio_end_writeback(folio);
1938 
1939 		/*
1940 		 * The folio and buffer_heads can be released at any time from
1941 		 * here on.
1942 		 */
1943 	}
1944 	return err;
1945 
1946 recover:
1947 	/*
1948 	 * ENOSPC, or some other error.  We may already have added some
1949 	 * blocks to the file, so we need to write these out to avoid
1950 	 * exposing stale data.
1951 	 * The folio is currently locked and not marked for writeback
1952 	 */
1953 	bh = head;
1954 	/* Recovery: lock and submit the mapped buffers */
1955 	do {
1956 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1957 		    !buffer_delay(bh)) {
1958 			lock_buffer(bh);
1959 			mark_buffer_async_write_endio(bh, handler);
1960 		} else {
1961 			/*
1962 			 * The buffer may have been set dirty during
1963 			 * attachment to a dirty folio.
1964 			 */
1965 			clear_buffer_dirty(bh);
1966 		}
1967 	} while ((bh = bh->b_this_page) != head);
1968 	folio_set_error(folio);
1969 	BUG_ON(folio_test_writeback(folio));
1970 	mapping_set_error(folio->mapping, err);
1971 	folio_start_writeback(folio);
1972 	do {
1973 		struct buffer_head *next = bh->b_this_page;
1974 		if (buffer_async_write(bh)) {
1975 			clear_buffer_dirty(bh);
1976 			submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc);
1977 			nr_underway++;
1978 		}
1979 		bh = next;
1980 	} while (bh != head);
1981 	folio_unlock(folio);
1982 	goto done;
1983 }
1984 EXPORT_SYMBOL(__block_write_full_folio);
1985 
1986 /*
1987  * If a folio has any new buffers, zero them out here, and mark them uptodate
1988  * and dirty so they'll be written out (in order to prevent uninitialised
1989  * block data from leaking). And clear the new bit.
1990  */
1991 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to)
1992 {
1993 	size_t block_start, block_end;
1994 	struct buffer_head *head, *bh;
1995 
1996 	BUG_ON(!folio_test_locked(folio));
1997 	head = folio_buffers(folio);
1998 	if (!head)
1999 		return;
2000 
2001 	bh = head;
2002 	block_start = 0;
2003 	do {
2004 		block_end = block_start + bh->b_size;
2005 
2006 		if (buffer_new(bh)) {
2007 			if (block_end > from && block_start < to) {
2008 				if (!folio_test_uptodate(folio)) {
2009 					size_t start, xend;
2010 
2011 					start = max(from, block_start);
2012 					xend = min(to, block_end);
2013 
2014 					folio_zero_segment(folio, start, xend);
2015 					set_buffer_uptodate(bh);
2016 				}
2017 
2018 				clear_buffer_new(bh);
2019 				mark_buffer_dirty(bh);
2020 			}
2021 		}
2022 
2023 		block_start = block_end;
2024 		bh = bh->b_this_page;
2025 	} while (bh != head);
2026 }
2027 EXPORT_SYMBOL(folio_zero_new_buffers);
2028 
2029 static void
2030 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh,
2031 		const struct iomap *iomap)
2032 {
2033 	loff_t offset = block << inode->i_blkbits;
2034 
2035 	bh->b_bdev = iomap->bdev;
2036 
2037 	/*
2038 	 * Block points to offset in file we need to map, iomap contains
2039 	 * the offset at which the map starts. If the map ends before the
2040 	 * current block, then do not map the buffer and let the caller
2041 	 * handle it.
2042 	 */
2043 	BUG_ON(offset >= iomap->offset + iomap->length);
2044 
2045 	switch (iomap->type) {
2046 	case IOMAP_HOLE:
2047 		/*
2048 		 * If the buffer is not up to date or beyond the current EOF,
2049 		 * we need to mark it as new to ensure sub-block zeroing is
2050 		 * executed if necessary.
2051 		 */
2052 		if (!buffer_uptodate(bh) ||
2053 		    (offset >= i_size_read(inode)))
2054 			set_buffer_new(bh);
2055 		break;
2056 	case IOMAP_DELALLOC:
2057 		if (!buffer_uptodate(bh) ||
2058 		    (offset >= i_size_read(inode)))
2059 			set_buffer_new(bh);
2060 		set_buffer_uptodate(bh);
2061 		set_buffer_mapped(bh);
2062 		set_buffer_delay(bh);
2063 		break;
2064 	case IOMAP_UNWRITTEN:
2065 		/*
2066 		 * For unwritten regions, we always need to ensure that regions
2067 		 * in the block we are not writing to are zeroed. Mark the
2068 		 * buffer as new to ensure this.
2069 		 */
2070 		set_buffer_new(bh);
2071 		set_buffer_unwritten(bh);
2072 		fallthrough;
2073 	case IOMAP_MAPPED:
2074 		if ((iomap->flags & IOMAP_F_NEW) ||
2075 		    offset >= i_size_read(inode))
2076 			set_buffer_new(bh);
2077 		bh->b_blocknr = (iomap->addr + offset - iomap->offset) >>
2078 				inode->i_blkbits;
2079 		set_buffer_mapped(bh);
2080 		break;
2081 	}
2082 }
2083 
2084 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len,
2085 		get_block_t *get_block, const struct iomap *iomap)
2086 {
2087 	unsigned from = pos & (PAGE_SIZE - 1);
2088 	unsigned to = from + len;
2089 	struct inode *inode = folio->mapping->host;
2090 	unsigned block_start, block_end;
2091 	sector_t block;
2092 	int err = 0;
2093 	unsigned blocksize, bbits;
2094 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
2095 
2096 	BUG_ON(!folio_test_locked(folio));
2097 	BUG_ON(from > PAGE_SIZE);
2098 	BUG_ON(to > PAGE_SIZE);
2099 	BUG_ON(from > to);
2100 
2101 	head = folio_create_buffers(folio, inode, 0);
2102 	blocksize = head->b_size;
2103 	bbits = block_size_bits(blocksize);
2104 
2105 	block = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2106 
2107 	for(bh = head, block_start = 0; bh != head || !block_start;
2108 	    block++, block_start=block_end, bh = bh->b_this_page) {
2109 		block_end = block_start + blocksize;
2110 		if (block_end <= from || block_start >= to) {
2111 			if (folio_test_uptodate(folio)) {
2112 				if (!buffer_uptodate(bh))
2113 					set_buffer_uptodate(bh);
2114 			}
2115 			continue;
2116 		}
2117 		if (buffer_new(bh))
2118 			clear_buffer_new(bh);
2119 		if (!buffer_mapped(bh)) {
2120 			WARN_ON(bh->b_size != blocksize);
2121 			if (get_block) {
2122 				err = get_block(inode, block, bh, 1);
2123 				if (err)
2124 					break;
2125 			} else {
2126 				iomap_to_bh(inode, block, bh, iomap);
2127 			}
2128 
2129 			if (buffer_new(bh)) {
2130 				clean_bdev_bh_alias(bh);
2131 				if (folio_test_uptodate(folio)) {
2132 					clear_buffer_new(bh);
2133 					set_buffer_uptodate(bh);
2134 					mark_buffer_dirty(bh);
2135 					continue;
2136 				}
2137 				if (block_end > to || block_start < from)
2138 					folio_zero_segments(folio,
2139 						to, block_end,
2140 						block_start, from);
2141 				continue;
2142 			}
2143 		}
2144 		if (folio_test_uptodate(folio)) {
2145 			if (!buffer_uptodate(bh))
2146 				set_buffer_uptodate(bh);
2147 			continue;
2148 		}
2149 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
2150 		    !buffer_unwritten(bh) &&
2151 		     (block_start < from || block_end > to)) {
2152 			bh_read_nowait(bh, 0);
2153 			*wait_bh++=bh;
2154 		}
2155 	}
2156 	/*
2157 	 * If we issued read requests - let them complete.
2158 	 */
2159 	while(wait_bh > wait) {
2160 		wait_on_buffer(*--wait_bh);
2161 		if (!buffer_uptodate(*wait_bh))
2162 			err = -EIO;
2163 	}
2164 	if (unlikely(err))
2165 		folio_zero_new_buffers(folio, from, to);
2166 	return err;
2167 }
2168 
2169 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
2170 		get_block_t *get_block)
2171 {
2172 	return __block_write_begin_int(page_folio(page), pos, len, get_block,
2173 				       NULL);
2174 }
2175 EXPORT_SYMBOL(__block_write_begin);
2176 
2177 static int __block_commit_write(struct inode *inode, struct folio *folio,
2178 		size_t from, size_t to)
2179 {
2180 	size_t block_start, block_end;
2181 	bool partial = false;
2182 	unsigned blocksize;
2183 	struct buffer_head *bh, *head;
2184 
2185 	bh = head = folio_buffers(folio);
2186 	blocksize = bh->b_size;
2187 
2188 	block_start = 0;
2189 	do {
2190 		block_end = block_start + blocksize;
2191 		if (block_end <= from || block_start >= to) {
2192 			if (!buffer_uptodate(bh))
2193 				partial = true;
2194 		} else {
2195 			set_buffer_uptodate(bh);
2196 			mark_buffer_dirty(bh);
2197 		}
2198 		if (buffer_new(bh))
2199 			clear_buffer_new(bh);
2200 
2201 		block_start = block_end;
2202 		bh = bh->b_this_page;
2203 	} while (bh != head);
2204 
2205 	/*
2206 	 * If this is a partial write which happened to make all buffers
2207 	 * uptodate then we can optimize away a bogus read_folio() for
2208 	 * the next read(). Here we 'discover' whether the folio went
2209 	 * uptodate as a result of this (potentially partial) write.
2210 	 */
2211 	if (!partial)
2212 		folio_mark_uptodate(folio);
2213 	return 0;
2214 }
2215 
2216 /*
2217  * block_write_begin takes care of the basic task of block allocation and
2218  * bringing partial write blocks uptodate first.
2219  *
2220  * The filesystem needs to handle block truncation upon failure.
2221  */
2222 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
2223 		struct page **pagep, get_block_t *get_block)
2224 {
2225 	pgoff_t index = pos >> PAGE_SHIFT;
2226 	struct page *page;
2227 	int status;
2228 
2229 	page = grab_cache_page_write_begin(mapping, index);
2230 	if (!page)
2231 		return -ENOMEM;
2232 
2233 	status = __block_write_begin(page, pos, len, get_block);
2234 	if (unlikely(status)) {
2235 		unlock_page(page);
2236 		put_page(page);
2237 		page = NULL;
2238 	}
2239 
2240 	*pagep = page;
2241 	return status;
2242 }
2243 EXPORT_SYMBOL(block_write_begin);
2244 
2245 int block_write_end(struct file *file, struct address_space *mapping,
2246 			loff_t pos, unsigned len, unsigned copied,
2247 			struct page *page, void *fsdata)
2248 {
2249 	struct folio *folio = page_folio(page);
2250 	struct inode *inode = mapping->host;
2251 	size_t start = pos - folio_pos(folio);
2252 
2253 	if (unlikely(copied < len)) {
2254 		/*
2255 		 * The buffers that were written will now be uptodate, so
2256 		 * we don't have to worry about a read_folio reading them
2257 		 * and overwriting a partial write. However if we have
2258 		 * encountered a short write and only partially written
2259 		 * into a buffer, it will not be marked uptodate, so a
2260 		 * read_folio might come in and destroy our partial write.
2261 		 *
2262 		 * Do the simplest thing, and just treat any short write to a
2263 		 * non uptodate folio as a zero-length write, and force the
2264 		 * caller to redo the whole thing.
2265 		 */
2266 		if (!folio_test_uptodate(folio))
2267 			copied = 0;
2268 
2269 		folio_zero_new_buffers(folio, start+copied, start+len);
2270 	}
2271 	flush_dcache_folio(folio);
2272 
2273 	/* This could be a short (even 0-length) commit */
2274 	__block_commit_write(inode, folio, start, start + copied);
2275 
2276 	return copied;
2277 }
2278 EXPORT_SYMBOL(block_write_end);
2279 
2280 int generic_write_end(struct file *file, struct address_space *mapping,
2281 			loff_t pos, unsigned len, unsigned copied,
2282 			struct page *page, void *fsdata)
2283 {
2284 	struct inode *inode = mapping->host;
2285 	loff_t old_size = inode->i_size;
2286 	bool i_size_changed = false;
2287 
2288 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2289 
2290 	/*
2291 	 * No need to use i_size_read() here, the i_size cannot change under us
2292 	 * because we hold i_rwsem.
2293 	 *
2294 	 * But it's important to update i_size while still holding page lock:
2295 	 * page writeout could otherwise come in and zero beyond i_size.
2296 	 */
2297 	if (pos + copied > inode->i_size) {
2298 		i_size_write(inode, pos + copied);
2299 		i_size_changed = true;
2300 	}
2301 
2302 	unlock_page(page);
2303 	put_page(page);
2304 
2305 	if (old_size < pos)
2306 		pagecache_isize_extended(inode, old_size, pos);
2307 	/*
2308 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2309 	 * makes the holding time of page lock longer. Second, it forces lock
2310 	 * ordering of page lock and transaction start for journaling
2311 	 * filesystems.
2312 	 */
2313 	if (i_size_changed)
2314 		mark_inode_dirty(inode);
2315 	return copied;
2316 }
2317 EXPORT_SYMBOL(generic_write_end);
2318 
2319 /*
2320  * block_is_partially_uptodate checks whether buffers within a folio are
2321  * uptodate or not.
2322  *
2323  * Returns true if all buffers which correspond to the specified part
2324  * of the folio are uptodate.
2325  */
2326 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count)
2327 {
2328 	unsigned block_start, block_end, blocksize;
2329 	unsigned to;
2330 	struct buffer_head *bh, *head;
2331 	bool ret = true;
2332 
2333 	head = folio_buffers(folio);
2334 	if (!head)
2335 		return false;
2336 	blocksize = head->b_size;
2337 	to = min_t(unsigned, folio_size(folio) - from, count);
2338 	to = from + to;
2339 	if (from < blocksize && to > folio_size(folio) - blocksize)
2340 		return false;
2341 
2342 	bh = head;
2343 	block_start = 0;
2344 	do {
2345 		block_end = block_start + blocksize;
2346 		if (block_end > from && block_start < to) {
2347 			if (!buffer_uptodate(bh)) {
2348 				ret = false;
2349 				break;
2350 			}
2351 			if (block_end >= to)
2352 				break;
2353 		}
2354 		block_start = block_end;
2355 		bh = bh->b_this_page;
2356 	} while (bh != head);
2357 
2358 	return ret;
2359 }
2360 EXPORT_SYMBOL(block_is_partially_uptodate);
2361 
2362 /*
2363  * Generic "read_folio" function for block devices that have the normal
2364  * get_block functionality. This is most of the block device filesystems.
2365  * Reads the folio asynchronously --- the unlock_buffer() and
2366  * set/clear_buffer_uptodate() functions propagate buffer state into the
2367  * folio once IO has completed.
2368  */
2369 int block_read_full_folio(struct folio *folio, get_block_t *get_block)
2370 {
2371 	struct inode *inode = folio->mapping->host;
2372 	sector_t iblock, lblock;
2373 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2374 	unsigned int blocksize, bbits;
2375 	int nr, i;
2376 	int fully_mapped = 1;
2377 	bool page_error = false;
2378 	loff_t limit = i_size_read(inode);
2379 
2380 	/* This is needed for ext4. */
2381 	if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode))
2382 		limit = inode->i_sb->s_maxbytes;
2383 
2384 	VM_BUG_ON_FOLIO(folio_test_large(folio), folio);
2385 
2386 	head = folio_create_buffers(folio, inode, 0);
2387 	blocksize = head->b_size;
2388 	bbits = block_size_bits(blocksize);
2389 
2390 	iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits);
2391 	lblock = (limit+blocksize-1) >> bbits;
2392 	bh = head;
2393 	nr = 0;
2394 	i = 0;
2395 
2396 	do {
2397 		if (buffer_uptodate(bh))
2398 			continue;
2399 
2400 		if (!buffer_mapped(bh)) {
2401 			int err = 0;
2402 
2403 			fully_mapped = 0;
2404 			if (iblock < lblock) {
2405 				WARN_ON(bh->b_size != blocksize);
2406 				err = get_block(inode, iblock, bh, 0);
2407 				if (err) {
2408 					folio_set_error(folio);
2409 					page_error = true;
2410 				}
2411 			}
2412 			if (!buffer_mapped(bh)) {
2413 				folio_zero_range(folio, i * blocksize,
2414 						blocksize);
2415 				if (!err)
2416 					set_buffer_uptodate(bh);
2417 				continue;
2418 			}
2419 			/*
2420 			 * get_block() might have updated the buffer
2421 			 * synchronously
2422 			 */
2423 			if (buffer_uptodate(bh))
2424 				continue;
2425 		}
2426 		arr[nr++] = bh;
2427 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2428 
2429 	if (fully_mapped)
2430 		folio_set_mappedtodisk(folio);
2431 
2432 	if (!nr) {
2433 		/*
2434 		 * All buffers are uptodate - we can set the folio uptodate
2435 		 * as well. But not if get_block() returned an error.
2436 		 */
2437 		if (!page_error)
2438 			folio_mark_uptodate(folio);
2439 		folio_unlock(folio);
2440 		return 0;
2441 	}
2442 
2443 	/* Stage two: lock the buffers */
2444 	for (i = 0; i < nr; i++) {
2445 		bh = arr[i];
2446 		lock_buffer(bh);
2447 		mark_buffer_async_read(bh);
2448 	}
2449 
2450 	/*
2451 	 * Stage 3: start the IO.  Check for uptodateness
2452 	 * inside the buffer lock in case another process reading
2453 	 * the underlying blockdev brought it uptodate (the sct fix).
2454 	 */
2455 	for (i = 0; i < nr; i++) {
2456 		bh = arr[i];
2457 		if (buffer_uptodate(bh))
2458 			end_buffer_async_read(bh, 1);
2459 		else
2460 			submit_bh(REQ_OP_READ, bh);
2461 	}
2462 	return 0;
2463 }
2464 EXPORT_SYMBOL(block_read_full_folio);
2465 
2466 /* utility function for filesystems that need to do work on expanding
2467  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2468  * deal with the hole.
2469  */
2470 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2471 {
2472 	struct address_space *mapping = inode->i_mapping;
2473 	const struct address_space_operations *aops = mapping->a_ops;
2474 	struct page *page;
2475 	void *fsdata = NULL;
2476 	int err;
2477 
2478 	err = inode_newsize_ok(inode, size);
2479 	if (err)
2480 		goto out;
2481 
2482 	err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata);
2483 	if (err)
2484 		goto out;
2485 
2486 	err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata);
2487 	BUG_ON(err > 0);
2488 
2489 out:
2490 	return err;
2491 }
2492 EXPORT_SYMBOL(generic_cont_expand_simple);
2493 
2494 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2495 			    loff_t pos, loff_t *bytes)
2496 {
2497 	struct inode *inode = mapping->host;
2498 	const struct address_space_operations *aops = mapping->a_ops;
2499 	unsigned int blocksize = i_blocksize(inode);
2500 	struct page *page;
2501 	void *fsdata = NULL;
2502 	pgoff_t index, curidx;
2503 	loff_t curpos;
2504 	unsigned zerofrom, offset, len;
2505 	int err = 0;
2506 
2507 	index = pos >> PAGE_SHIFT;
2508 	offset = pos & ~PAGE_MASK;
2509 
2510 	while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) {
2511 		zerofrom = curpos & ~PAGE_MASK;
2512 		if (zerofrom & (blocksize-1)) {
2513 			*bytes |= (blocksize-1);
2514 			(*bytes)++;
2515 		}
2516 		len = PAGE_SIZE - zerofrom;
2517 
2518 		err = aops->write_begin(file, mapping, curpos, len,
2519 					    &page, &fsdata);
2520 		if (err)
2521 			goto out;
2522 		zero_user(page, zerofrom, len);
2523 		err = aops->write_end(file, mapping, curpos, len, len,
2524 						page, fsdata);
2525 		if (err < 0)
2526 			goto out;
2527 		BUG_ON(err != len);
2528 		err = 0;
2529 
2530 		balance_dirty_pages_ratelimited(mapping);
2531 
2532 		if (fatal_signal_pending(current)) {
2533 			err = -EINTR;
2534 			goto out;
2535 		}
2536 	}
2537 
2538 	/* page covers the boundary, find the boundary offset */
2539 	if (index == curidx) {
2540 		zerofrom = curpos & ~PAGE_MASK;
2541 		/* if we will expand the thing last block will be filled */
2542 		if (offset <= zerofrom) {
2543 			goto out;
2544 		}
2545 		if (zerofrom & (blocksize-1)) {
2546 			*bytes |= (blocksize-1);
2547 			(*bytes)++;
2548 		}
2549 		len = offset - zerofrom;
2550 
2551 		err = aops->write_begin(file, mapping, curpos, len,
2552 					    &page, &fsdata);
2553 		if (err)
2554 			goto out;
2555 		zero_user(page, zerofrom, len);
2556 		err = aops->write_end(file, mapping, curpos, len, len,
2557 						page, fsdata);
2558 		if (err < 0)
2559 			goto out;
2560 		BUG_ON(err != len);
2561 		err = 0;
2562 	}
2563 out:
2564 	return err;
2565 }
2566 
2567 /*
2568  * For moronic filesystems that do not allow holes in file.
2569  * We may have to extend the file.
2570  */
2571 int cont_write_begin(struct file *file, struct address_space *mapping,
2572 			loff_t pos, unsigned len,
2573 			struct page **pagep, void **fsdata,
2574 			get_block_t *get_block, loff_t *bytes)
2575 {
2576 	struct inode *inode = mapping->host;
2577 	unsigned int blocksize = i_blocksize(inode);
2578 	unsigned int zerofrom;
2579 	int err;
2580 
2581 	err = cont_expand_zero(file, mapping, pos, bytes);
2582 	if (err)
2583 		return err;
2584 
2585 	zerofrom = *bytes & ~PAGE_MASK;
2586 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2587 		*bytes |= (blocksize-1);
2588 		(*bytes)++;
2589 	}
2590 
2591 	return block_write_begin(mapping, pos, len, pagep, get_block);
2592 }
2593 EXPORT_SYMBOL(cont_write_begin);
2594 
2595 int block_commit_write(struct page *page, unsigned from, unsigned to)
2596 {
2597 	struct folio *folio = page_folio(page);
2598 	struct inode *inode = folio->mapping->host;
2599 	__block_commit_write(inode, folio, from, to);
2600 	return 0;
2601 }
2602 EXPORT_SYMBOL(block_commit_write);
2603 
2604 /*
2605  * block_page_mkwrite() is not allowed to change the file size as it gets
2606  * called from a page fault handler when a page is first dirtied. Hence we must
2607  * be careful to check for EOF conditions here. We set the page up correctly
2608  * for a written page which means we get ENOSPC checking when writing into
2609  * holes and correct delalloc and unwritten extent mapping on filesystems that
2610  * support these features.
2611  *
2612  * We are not allowed to take the i_mutex here so we have to play games to
2613  * protect against truncate races as the page could now be beyond EOF.  Because
2614  * truncate writes the inode size before removing pages, once we have the
2615  * page lock we can determine safely if the page is beyond EOF. If it is not
2616  * beyond EOF, then the page is guaranteed safe against truncation until we
2617  * unlock the page.
2618  *
2619  * Direct callers of this function should protect against filesystem freezing
2620  * using sb_start_pagefault() - sb_end_pagefault() functions.
2621  */
2622 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2623 			 get_block_t get_block)
2624 {
2625 	struct folio *folio = page_folio(vmf->page);
2626 	struct inode *inode = file_inode(vma->vm_file);
2627 	unsigned long end;
2628 	loff_t size;
2629 	int ret;
2630 
2631 	folio_lock(folio);
2632 	size = i_size_read(inode);
2633 	if ((folio->mapping != inode->i_mapping) ||
2634 	    (folio_pos(folio) >= size)) {
2635 		/* We overload EFAULT to mean page got truncated */
2636 		ret = -EFAULT;
2637 		goto out_unlock;
2638 	}
2639 
2640 	end = folio_size(folio);
2641 	/* folio is wholly or partially inside EOF */
2642 	if (folio_pos(folio) + end > size)
2643 		end = size - folio_pos(folio);
2644 
2645 	ret = __block_write_begin_int(folio, 0, end, get_block, NULL);
2646 	if (!ret)
2647 		ret = __block_commit_write(inode, folio, 0, end);
2648 
2649 	if (unlikely(ret < 0))
2650 		goto out_unlock;
2651 	folio_mark_dirty(folio);
2652 	folio_wait_stable(folio);
2653 	return 0;
2654 out_unlock:
2655 	folio_unlock(folio);
2656 	return ret;
2657 }
2658 EXPORT_SYMBOL(block_page_mkwrite);
2659 
2660 int block_truncate_page(struct address_space *mapping,
2661 			loff_t from, get_block_t *get_block)
2662 {
2663 	pgoff_t index = from >> PAGE_SHIFT;
2664 	unsigned blocksize;
2665 	sector_t iblock;
2666 	size_t offset, length, pos;
2667 	struct inode *inode = mapping->host;
2668 	struct folio *folio;
2669 	struct buffer_head *bh;
2670 	int err = 0;
2671 
2672 	blocksize = i_blocksize(inode);
2673 	length = from & (blocksize - 1);
2674 
2675 	/* Block boundary? Nothing to do */
2676 	if (!length)
2677 		return 0;
2678 
2679 	length = blocksize - length;
2680 	iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits);
2681 
2682 	folio = filemap_grab_folio(mapping, index);
2683 	if (IS_ERR(folio))
2684 		return PTR_ERR(folio);
2685 
2686 	bh = folio_buffers(folio);
2687 	if (!bh) {
2688 		folio_create_empty_buffers(folio, blocksize, 0);
2689 		bh = folio_buffers(folio);
2690 	}
2691 
2692 	/* Find the buffer that contains "offset" */
2693 	offset = offset_in_folio(folio, from);
2694 	pos = blocksize;
2695 	while (offset >= pos) {
2696 		bh = bh->b_this_page;
2697 		iblock++;
2698 		pos += blocksize;
2699 	}
2700 
2701 	if (!buffer_mapped(bh)) {
2702 		WARN_ON(bh->b_size != blocksize);
2703 		err = get_block(inode, iblock, bh, 0);
2704 		if (err)
2705 			goto unlock;
2706 		/* unmapped? It's a hole - nothing to do */
2707 		if (!buffer_mapped(bh))
2708 			goto unlock;
2709 	}
2710 
2711 	/* Ok, it's mapped. Make sure it's up-to-date */
2712 	if (folio_test_uptodate(folio))
2713 		set_buffer_uptodate(bh);
2714 
2715 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2716 		err = bh_read(bh, 0);
2717 		/* Uhhuh. Read error. Complain and punt. */
2718 		if (err < 0)
2719 			goto unlock;
2720 	}
2721 
2722 	folio_zero_range(folio, offset, length);
2723 	mark_buffer_dirty(bh);
2724 
2725 unlock:
2726 	folio_unlock(folio);
2727 	folio_put(folio);
2728 
2729 	return err;
2730 }
2731 EXPORT_SYMBOL(block_truncate_page);
2732 
2733 /*
2734  * The generic ->writepage function for buffer-backed address_spaces
2735  */
2736 int block_write_full_page(struct page *page, get_block_t *get_block,
2737 			struct writeback_control *wbc)
2738 {
2739 	struct folio *folio = page_folio(page);
2740 	struct inode * const inode = folio->mapping->host;
2741 	loff_t i_size = i_size_read(inode);
2742 
2743 	/* Is the folio fully inside i_size? */
2744 	if (folio_pos(folio) + folio_size(folio) <= i_size)
2745 		return __block_write_full_folio(inode, folio, get_block, wbc,
2746 					       end_buffer_async_write);
2747 
2748 	/* Is the folio fully outside i_size? (truncate in progress) */
2749 	if (folio_pos(folio) >= i_size) {
2750 		folio_unlock(folio);
2751 		return 0; /* don't care */
2752 	}
2753 
2754 	/*
2755 	 * The folio straddles i_size.  It must be zeroed out on each and every
2756 	 * writepage invocation because it may be mmapped.  "A file is mapped
2757 	 * in multiples of the page size.  For a file that is not a multiple of
2758 	 * the page size, the remaining memory is zeroed when mapped, and
2759 	 * writes to that region are not written out to the file."
2760 	 */
2761 	folio_zero_segment(folio, offset_in_folio(folio, i_size),
2762 			folio_size(folio));
2763 	return __block_write_full_folio(inode, folio, get_block, wbc,
2764 			end_buffer_async_write);
2765 }
2766 EXPORT_SYMBOL(block_write_full_page);
2767 
2768 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2769 			    get_block_t *get_block)
2770 {
2771 	struct inode *inode = mapping->host;
2772 	struct buffer_head tmp = {
2773 		.b_size = i_blocksize(inode),
2774 	};
2775 
2776 	get_block(inode, block, &tmp, 0);
2777 	return tmp.b_blocknr;
2778 }
2779 EXPORT_SYMBOL(generic_block_bmap);
2780 
2781 static void end_bio_bh_io_sync(struct bio *bio)
2782 {
2783 	struct buffer_head *bh = bio->bi_private;
2784 
2785 	if (unlikely(bio_flagged(bio, BIO_QUIET)))
2786 		set_bit(BH_Quiet, &bh->b_state);
2787 
2788 	bh->b_end_io(bh, !bio->bi_status);
2789 	bio_put(bio);
2790 }
2791 
2792 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh,
2793 			  struct writeback_control *wbc)
2794 {
2795 	const enum req_op op = opf & REQ_OP_MASK;
2796 	struct bio *bio;
2797 
2798 	BUG_ON(!buffer_locked(bh));
2799 	BUG_ON(!buffer_mapped(bh));
2800 	BUG_ON(!bh->b_end_io);
2801 	BUG_ON(buffer_delay(bh));
2802 	BUG_ON(buffer_unwritten(bh));
2803 
2804 	/*
2805 	 * Only clear out a write error when rewriting
2806 	 */
2807 	if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE))
2808 		clear_buffer_write_io_error(bh);
2809 
2810 	if (buffer_meta(bh))
2811 		opf |= REQ_META;
2812 	if (buffer_prio(bh))
2813 		opf |= REQ_PRIO;
2814 
2815 	bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO);
2816 
2817 	fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO);
2818 
2819 	bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2820 
2821 	__bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh));
2822 
2823 	bio->bi_end_io = end_bio_bh_io_sync;
2824 	bio->bi_private = bh;
2825 
2826 	/* Take care of bh's that straddle the end of the device */
2827 	guard_bio_eod(bio);
2828 
2829 	if (wbc) {
2830 		wbc_init_bio(wbc, bio);
2831 		wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size);
2832 	}
2833 
2834 	submit_bio(bio);
2835 }
2836 
2837 void submit_bh(blk_opf_t opf, struct buffer_head *bh)
2838 {
2839 	submit_bh_wbc(opf, bh, NULL);
2840 }
2841 EXPORT_SYMBOL(submit_bh);
2842 
2843 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2844 {
2845 	lock_buffer(bh);
2846 	if (!test_clear_buffer_dirty(bh)) {
2847 		unlock_buffer(bh);
2848 		return;
2849 	}
2850 	bh->b_end_io = end_buffer_write_sync;
2851 	get_bh(bh);
2852 	submit_bh(REQ_OP_WRITE | op_flags, bh);
2853 }
2854 EXPORT_SYMBOL(write_dirty_buffer);
2855 
2856 /*
2857  * For a data-integrity writeout, we need to wait upon any in-progress I/O
2858  * and then start new I/O and then wait upon it.  The caller must have a ref on
2859  * the buffer_head.
2860  */
2861 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags)
2862 {
2863 	WARN_ON(atomic_read(&bh->b_count) < 1);
2864 	lock_buffer(bh);
2865 	if (test_clear_buffer_dirty(bh)) {
2866 		/*
2867 		 * The bh should be mapped, but it might not be if the
2868 		 * device was hot-removed. Not much we can do but fail the I/O.
2869 		 */
2870 		if (!buffer_mapped(bh)) {
2871 			unlock_buffer(bh);
2872 			return -EIO;
2873 		}
2874 
2875 		get_bh(bh);
2876 		bh->b_end_io = end_buffer_write_sync;
2877 		submit_bh(REQ_OP_WRITE | op_flags, bh);
2878 		wait_on_buffer(bh);
2879 		if (!buffer_uptodate(bh))
2880 			return -EIO;
2881 	} else {
2882 		unlock_buffer(bh);
2883 	}
2884 	return 0;
2885 }
2886 EXPORT_SYMBOL(__sync_dirty_buffer);
2887 
2888 int sync_dirty_buffer(struct buffer_head *bh)
2889 {
2890 	return __sync_dirty_buffer(bh, REQ_SYNC);
2891 }
2892 EXPORT_SYMBOL(sync_dirty_buffer);
2893 
2894 /*
2895  * try_to_free_buffers() checks if all the buffers on this particular folio
2896  * are unused, and releases them if so.
2897  *
2898  * Exclusion against try_to_free_buffers may be obtained by either
2899  * locking the folio or by holding its mapping's private_lock.
2900  *
2901  * If the folio is dirty but all the buffers are clean then we need to
2902  * be sure to mark the folio clean as well.  This is because the folio
2903  * may be against a block device, and a later reattachment of buffers
2904  * to a dirty folio will set *all* buffers dirty.  Which would corrupt
2905  * filesystem data on the same device.
2906  *
2907  * The same applies to regular filesystem folios: if all the buffers are
2908  * clean then we set the folio clean and proceed.  To do that, we require
2909  * total exclusion from block_dirty_folio().  That is obtained with
2910  * private_lock.
2911  *
2912  * try_to_free_buffers() is non-blocking.
2913  */
2914 static inline int buffer_busy(struct buffer_head *bh)
2915 {
2916 	return atomic_read(&bh->b_count) |
2917 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
2918 }
2919 
2920 static bool
2921 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free)
2922 {
2923 	struct buffer_head *head = folio_buffers(folio);
2924 	struct buffer_head *bh;
2925 
2926 	bh = head;
2927 	do {
2928 		if (buffer_busy(bh))
2929 			goto failed;
2930 		bh = bh->b_this_page;
2931 	} while (bh != head);
2932 
2933 	do {
2934 		struct buffer_head *next = bh->b_this_page;
2935 
2936 		if (bh->b_assoc_map)
2937 			__remove_assoc_queue(bh);
2938 		bh = next;
2939 	} while (bh != head);
2940 	*buffers_to_free = head;
2941 	folio_detach_private(folio);
2942 	return true;
2943 failed:
2944 	return false;
2945 }
2946 
2947 bool try_to_free_buffers(struct folio *folio)
2948 {
2949 	struct address_space * const mapping = folio->mapping;
2950 	struct buffer_head *buffers_to_free = NULL;
2951 	bool ret = 0;
2952 
2953 	BUG_ON(!folio_test_locked(folio));
2954 	if (folio_test_writeback(folio))
2955 		return false;
2956 
2957 	if (mapping == NULL) {		/* can this still happen? */
2958 		ret = drop_buffers(folio, &buffers_to_free);
2959 		goto out;
2960 	}
2961 
2962 	spin_lock(&mapping->private_lock);
2963 	ret = drop_buffers(folio, &buffers_to_free);
2964 
2965 	/*
2966 	 * If the filesystem writes its buffers by hand (eg ext3)
2967 	 * then we can have clean buffers against a dirty folio.  We
2968 	 * clean the folio here; otherwise the VM will never notice
2969 	 * that the filesystem did any IO at all.
2970 	 *
2971 	 * Also, during truncate, discard_buffer will have marked all
2972 	 * the folio's buffers clean.  We discover that here and clean
2973 	 * the folio also.
2974 	 *
2975 	 * private_lock must be held over this entire operation in order
2976 	 * to synchronise against block_dirty_folio and prevent the
2977 	 * dirty bit from being lost.
2978 	 */
2979 	if (ret)
2980 		folio_cancel_dirty(folio);
2981 	spin_unlock(&mapping->private_lock);
2982 out:
2983 	if (buffers_to_free) {
2984 		struct buffer_head *bh = buffers_to_free;
2985 
2986 		do {
2987 			struct buffer_head *next = bh->b_this_page;
2988 			free_buffer_head(bh);
2989 			bh = next;
2990 		} while (bh != buffers_to_free);
2991 	}
2992 	return ret;
2993 }
2994 EXPORT_SYMBOL(try_to_free_buffers);
2995 
2996 /*
2997  * Buffer-head allocation
2998  */
2999 static struct kmem_cache *bh_cachep __read_mostly;
3000 
3001 /*
3002  * Once the number of bh's in the machine exceeds this level, we start
3003  * stripping them in writeback.
3004  */
3005 static unsigned long max_buffer_heads;
3006 
3007 int buffer_heads_over_limit;
3008 
3009 struct bh_accounting {
3010 	int nr;			/* Number of live bh's */
3011 	int ratelimit;		/* Limit cacheline bouncing */
3012 };
3013 
3014 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3015 
3016 static void recalc_bh_state(void)
3017 {
3018 	int i;
3019 	int tot = 0;
3020 
3021 	if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096)
3022 		return;
3023 	__this_cpu_write(bh_accounting.ratelimit, 0);
3024 	for_each_online_cpu(i)
3025 		tot += per_cpu(bh_accounting, i).nr;
3026 	buffer_heads_over_limit = (tot > max_buffer_heads);
3027 }
3028 
3029 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3030 {
3031 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3032 	if (ret) {
3033 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3034 		spin_lock_init(&ret->b_uptodate_lock);
3035 		preempt_disable();
3036 		__this_cpu_inc(bh_accounting.nr);
3037 		recalc_bh_state();
3038 		preempt_enable();
3039 	}
3040 	return ret;
3041 }
3042 EXPORT_SYMBOL(alloc_buffer_head);
3043 
3044 void free_buffer_head(struct buffer_head *bh)
3045 {
3046 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3047 	kmem_cache_free(bh_cachep, bh);
3048 	preempt_disable();
3049 	__this_cpu_dec(bh_accounting.nr);
3050 	recalc_bh_state();
3051 	preempt_enable();
3052 }
3053 EXPORT_SYMBOL(free_buffer_head);
3054 
3055 static int buffer_exit_cpu_dead(unsigned int cpu)
3056 {
3057 	int i;
3058 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3059 
3060 	for (i = 0; i < BH_LRU_SIZE; i++) {
3061 		brelse(b->bhs[i]);
3062 		b->bhs[i] = NULL;
3063 	}
3064 	this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr);
3065 	per_cpu(bh_accounting, cpu).nr = 0;
3066 	return 0;
3067 }
3068 
3069 /**
3070  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3071  * @bh: struct buffer_head
3072  *
3073  * Return true if the buffer is up-to-date and false,
3074  * with the buffer locked, if not.
3075  */
3076 int bh_uptodate_or_lock(struct buffer_head *bh)
3077 {
3078 	if (!buffer_uptodate(bh)) {
3079 		lock_buffer(bh);
3080 		if (!buffer_uptodate(bh))
3081 			return 0;
3082 		unlock_buffer(bh);
3083 	}
3084 	return 1;
3085 }
3086 EXPORT_SYMBOL(bh_uptodate_or_lock);
3087 
3088 /**
3089  * __bh_read - Submit read for a locked buffer
3090  * @bh: struct buffer_head
3091  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3092  * @wait: wait until reading finish
3093  *
3094  * Returns zero on success or don't wait, and -EIO on error.
3095  */
3096 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait)
3097 {
3098 	int ret = 0;
3099 
3100 	BUG_ON(!buffer_locked(bh));
3101 
3102 	get_bh(bh);
3103 	bh->b_end_io = end_buffer_read_sync;
3104 	submit_bh(REQ_OP_READ | op_flags, bh);
3105 	if (wait) {
3106 		wait_on_buffer(bh);
3107 		if (!buffer_uptodate(bh))
3108 			ret = -EIO;
3109 	}
3110 	return ret;
3111 }
3112 EXPORT_SYMBOL(__bh_read);
3113 
3114 /**
3115  * __bh_read_batch - Submit read for a batch of unlocked buffers
3116  * @nr: entry number of the buffer batch
3117  * @bhs: a batch of struct buffer_head
3118  * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ
3119  * @force_lock: force to get a lock on the buffer if set, otherwise drops any
3120  *              buffer that cannot lock.
3121  *
3122  * Returns zero on success or don't wait, and -EIO on error.
3123  */
3124 void __bh_read_batch(int nr, struct buffer_head *bhs[],
3125 		     blk_opf_t op_flags, bool force_lock)
3126 {
3127 	int i;
3128 
3129 	for (i = 0; i < nr; i++) {
3130 		struct buffer_head *bh = bhs[i];
3131 
3132 		if (buffer_uptodate(bh))
3133 			continue;
3134 
3135 		if (force_lock)
3136 			lock_buffer(bh);
3137 		else
3138 			if (!trylock_buffer(bh))
3139 				continue;
3140 
3141 		if (buffer_uptodate(bh)) {
3142 			unlock_buffer(bh);
3143 			continue;
3144 		}
3145 
3146 		bh->b_end_io = end_buffer_read_sync;
3147 		get_bh(bh);
3148 		submit_bh(REQ_OP_READ | op_flags, bh);
3149 	}
3150 }
3151 EXPORT_SYMBOL(__bh_read_batch);
3152 
3153 void __init buffer_init(void)
3154 {
3155 	unsigned long nrpages;
3156 	int ret;
3157 
3158 	bh_cachep = kmem_cache_create("buffer_head",
3159 			sizeof(struct buffer_head), 0,
3160 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3161 				SLAB_MEM_SPREAD),
3162 				NULL);
3163 
3164 	/*
3165 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3166 	 */
3167 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3168 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3169 	ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead",
3170 					NULL, buffer_exit_cpu_dead);
3171 	WARN_ON(ret < 0);
3172 }
3173