1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/buffer.c 4 * 5 * Copyright (C) 1991, 1992, 2002 Linus Torvalds 6 */ 7 8 /* 9 * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95 10 * 11 * Removed a lot of unnecessary code and simplified things now that 12 * the buffer cache isn't our primary cache - Andrew Tridgell 12/96 13 * 14 * Speed up hash, lru, and free list operations. Use gfp() for allocating 15 * hash table, use SLAB cache for buffer heads. SMP threading. -DaveM 16 * 17 * Added 32k buffer block sizes - these are required older ARM systems. - RMK 18 * 19 * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de> 20 */ 21 22 #include <linux/kernel.h> 23 #include <linux/sched/signal.h> 24 #include <linux/syscalls.h> 25 #include <linux/fs.h> 26 #include <linux/iomap.h> 27 #include <linux/mm.h> 28 #include <linux/percpu.h> 29 #include <linux/slab.h> 30 #include <linux/capability.h> 31 #include <linux/blkdev.h> 32 #include <linux/file.h> 33 #include <linux/quotaops.h> 34 #include <linux/highmem.h> 35 #include <linux/export.h> 36 #include <linux/backing-dev.h> 37 #include <linux/writeback.h> 38 #include <linux/hash.h> 39 #include <linux/suspend.h> 40 #include <linux/buffer_head.h> 41 #include <linux/task_io_accounting_ops.h> 42 #include <linux/bio.h> 43 #include <linux/cpu.h> 44 #include <linux/bitops.h> 45 #include <linux/mpage.h> 46 #include <linux/bit_spinlock.h> 47 #include <linux/pagevec.h> 48 #include <linux/sched/mm.h> 49 #include <trace/events/block.h> 50 #include <linux/fscrypt.h> 51 #include <linux/fsverity.h> 52 53 #include "internal.h" 54 55 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list); 56 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 57 struct writeback_control *wbc); 58 59 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers) 60 61 inline void touch_buffer(struct buffer_head *bh) 62 { 63 trace_block_touch_buffer(bh); 64 folio_mark_accessed(bh->b_folio); 65 } 66 EXPORT_SYMBOL(touch_buffer); 67 68 void __lock_buffer(struct buffer_head *bh) 69 { 70 wait_on_bit_lock_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 71 } 72 EXPORT_SYMBOL(__lock_buffer); 73 74 void unlock_buffer(struct buffer_head *bh) 75 { 76 clear_bit_unlock(BH_Lock, &bh->b_state); 77 smp_mb__after_atomic(); 78 wake_up_bit(&bh->b_state, BH_Lock); 79 } 80 EXPORT_SYMBOL(unlock_buffer); 81 82 /* 83 * Returns if the folio has dirty or writeback buffers. If all the buffers 84 * are unlocked and clean then the folio_test_dirty information is stale. If 85 * any of the buffers are locked, it is assumed they are locked for IO. 86 */ 87 void buffer_check_dirty_writeback(struct folio *folio, 88 bool *dirty, bool *writeback) 89 { 90 struct buffer_head *head, *bh; 91 *dirty = false; 92 *writeback = false; 93 94 BUG_ON(!folio_test_locked(folio)); 95 96 head = folio_buffers(folio); 97 if (!head) 98 return; 99 100 if (folio_test_writeback(folio)) 101 *writeback = true; 102 103 bh = head; 104 do { 105 if (buffer_locked(bh)) 106 *writeback = true; 107 108 if (buffer_dirty(bh)) 109 *dirty = true; 110 111 bh = bh->b_this_page; 112 } while (bh != head); 113 } 114 115 /* 116 * Block until a buffer comes unlocked. This doesn't stop it 117 * from becoming locked again - you have to lock it yourself 118 * if you want to preserve its state. 119 */ 120 void __wait_on_buffer(struct buffer_head * bh) 121 { 122 wait_on_bit_io(&bh->b_state, BH_Lock, TASK_UNINTERRUPTIBLE); 123 } 124 EXPORT_SYMBOL(__wait_on_buffer); 125 126 static void buffer_io_error(struct buffer_head *bh, char *msg) 127 { 128 if (!test_bit(BH_Quiet, &bh->b_state)) 129 printk_ratelimited(KERN_ERR 130 "Buffer I/O error on dev %pg, logical block %llu%s\n", 131 bh->b_bdev, (unsigned long long)bh->b_blocknr, msg); 132 } 133 134 /* 135 * End-of-IO handler helper function which does not touch the bh after 136 * unlocking it. 137 * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but 138 * a race there is benign: unlock_buffer() only use the bh's address for 139 * hashing after unlocking the buffer, so it doesn't actually touch the bh 140 * itself. 141 */ 142 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate) 143 { 144 if (uptodate) { 145 set_buffer_uptodate(bh); 146 } else { 147 /* This happens, due to failed read-ahead attempts. */ 148 clear_buffer_uptodate(bh); 149 } 150 unlock_buffer(bh); 151 } 152 153 /* 154 * Default synchronous end-of-IO handler.. Just mark it up-to-date and 155 * unlock the buffer. 156 */ 157 void end_buffer_read_sync(struct buffer_head *bh, int uptodate) 158 { 159 __end_buffer_read_notouch(bh, uptodate); 160 put_bh(bh); 161 } 162 EXPORT_SYMBOL(end_buffer_read_sync); 163 164 void end_buffer_write_sync(struct buffer_head *bh, int uptodate) 165 { 166 if (uptodate) { 167 set_buffer_uptodate(bh); 168 } else { 169 buffer_io_error(bh, ", lost sync page write"); 170 mark_buffer_write_io_error(bh); 171 clear_buffer_uptodate(bh); 172 } 173 unlock_buffer(bh); 174 put_bh(bh); 175 } 176 EXPORT_SYMBOL(end_buffer_write_sync); 177 178 /* 179 * Various filesystems appear to want __find_get_block to be non-blocking. 180 * But it's the page lock which protects the buffers. To get around this, 181 * we get exclusion from try_to_free_buffers with the blockdev mapping's 182 * private_lock. 183 * 184 * Hack idea: for the blockdev mapping, private_lock contention 185 * may be quite high. This code could TryLock the page, and if that 186 * succeeds, there is no need to take private_lock. 187 */ 188 static struct buffer_head * 189 __find_get_block_slow(struct block_device *bdev, sector_t block) 190 { 191 struct inode *bd_inode = bdev->bd_inode; 192 struct address_space *bd_mapping = bd_inode->i_mapping; 193 struct buffer_head *ret = NULL; 194 pgoff_t index; 195 struct buffer_head *bh; 196 struct buffer_head *head; 197 struct folio *folio; 198 int all_mapped = 1; 199 static DEFINE_RATELIMIT_STATE(last_warned, HZ, 1); 200 201 index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 202 folio = __filemap_get_folio(bd_mapping, index, FGP_ACCESSED, 0); 203 if (IS_ERR(folio)) 204 goto out; 205 206 spin_lock(&bd_mapping->private_lock); 207 head = folio_buffers(folio); 208 if (!head) 209 goto out_unlock; 210 bh = head; 211 do { 212 if (!buffer_mapped(bh)) 213 all_mapped = 0; 214 else if (bh->b_blocknr == block) { 215 ret = bh; 216 get_bh(bh); 217 goto out_unlock; 218 } 219 bh = bh->b_this_page; 220 } while (bh != head); 221 222 /* we might be here because some of the buffers on this page are 223 * not mapped. This is due to various races between 224 * file io on the block device and getblk. It gets dealt with 225 * elsewhere, don't buffer_error if we had some unmapped buffers 226 */ 227 ratelimit_set_flags(&last_warned, RATELIMIT_MSG_ON_RELEASE); 228 if (all_mapped && __ratelimit(&last_warned)) { 229 printk("__find_get_block_slow() failed. block=%llu, " 230 "b_blocknr=%llu, b_state=0x%08lx, b_size=%zu, " 231 "device %pg blocksize: %d\n", 232 (unsigned long long)block, 233 (unsigned long long)bh->b_blocknr, 234 bh->b_state, bh->b_size, bdev, 235 1 << bd_inode->i_blkbits); 236 } 237 out_unlock: 238 spin_unlock(&bd_mapping->private_lock); 239 folio_put(folio); 240 out: 241 return ret; 242 } 243 244 static void end_buffer_async_read(struct buffer_head *bh, int uptodate) 245 { 246 unsigned long flags; 247 struct buffer_head *first; 248 struct buffer_head *tmp; 249 struct folio *folio; 250 int folio_uptodate = 1; 251 252 BUG_ON(!buffer_async_read(bh)); 253 254 folio = bh->b_folio; 255 if (uptodate) { 256 set_buffer_uptodate(bh); 257 } else { 258 clear_buffer_uptodate(bh); 259 buffer_io_error(bh, ", async page read"); 260 folio_set_error(folio); 261 } 262 263 /* 264 * Be _very_ careful from here on. Bad things can happen if 265 * two buffer heads end IO at almost the same time and both 266 * decide that the page is now completely done. 267 */ 268 first = folio_buffers(folio); 269 spin_lock_irqsave(&first->b_uptodate_lock, flags); 270 clear_buffer_async_read(bh); 271 unlock_buffer(bh); 272 tmp = bh; 273 do { 274 if (!buffer_uptodate(tmp)) 275 folio_uptodate = 0; 276 if (buffer_async_read(tmp)) { 277 BUG_ON(!buffer_locked(tmp)); 278 goto still_busy; 279 } 280 tmp = tmp->b_this_page; 281 } while (tmp != bh); 282 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 283 284 /* 285 * If all of the buffers are uptodate then we can set the page 286 * uptodate. 287 */ 288 if (folio_uptodate) 289 folio_mark_uptodate(folio); 290 folio_unlock(folio); 291 return; 292 293 still_busy: 294 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 295 return; 296 } 297 298 struct postprocess_bh_ctx { 299 struct work_struct work; 300 struct buffer_head *bh; 301 }; 302 303 static void verify_bh(struct work_struct *work) 304 { 305 struct postprocess_bh_ctx *ctx = 306 container_of(work, struct postprocess_bh_ctx, work); 307 struct buffer_head *bh = ctx->bh; 308 bool valid; 309 310 valid = fsverity_verify_blocks(bh->b_folio, bh->b_size, bh_offset(bh)); 311 end_buffer_async_read(bh, valid); 312 kfree(ctx); 313 } 314 315 static bool need_fsverity(struct buffer_head *bh) 316 { 317 struct folio *folio = bh->b_folio; 318 struct inode *inode = folio->mapping->host; 319 320 return fsverity_active(inode) && 321 /* needed by ext4 */ 322 folio->index < DIV_ROUND_UP(inode->i_size, PAGE_SIZE); 323 } 324 325 static void decrypt_bh(struct work_struct *work) 326 { 327 struct postprocess_bh_ctx *ctx = 328 container_of(work, struct postprocess_bh_ctx, work); 329 struct buffer_head *bh = ctx->bh; 330 int err; 331 332 err = fscrypt_decrypt_pagecache_blocks(bh->b_folio, bh->b_size, 333 bh_offset(bh)); 334 if (err == 0 && need_fsverity(bh)) { 335 /* 336 * We use different work queues for decryption and for verity 337 * because verity may require reading metadata pages that need 338 * decryption, and we shouldn't recurse to the same workqueue. 339 */ 340 INIT_WORK(&ctx->work, verify_bh); 341 fsverity_enqueue_verify_work(&ctx->work); 342 return; 343 } 344 end_buffer_async_read(bh, err == 0); 345 kfree(ctx); 346 } 347 348 /* 349 * I/O completion handler for block_read_full_folio() - pages 350 * which come unlocked at the end of I/O. 351 */ 352 static void end_buffer_async_read_io(struct buffer_head *bh, int uptodate) 353 { 354 struct inode *inode = bh->b_folio->mapping->host; 355 bool decrypt = fscrypt_inode_uses_fs_layer_crypto(inode); 356 bool verify = need_fsverity(bh); 357 358 /* Decrypt (with fscrypt) and/or verify (with fsverity) if needed. */ 359 if (uptodate && (decrypt || verify)) { 360 struct postprocess_bh_ctx *ctx = 361 kmalloc(sizeof(*ctx), GFP_ATOMIC); 362 363 if (ctx) { 364 ctx->bh = bh; 365 if (decrypt) { 366 INIT_WORK(&ctx->work, decrypt_bh); 367 fscrypt_enqueue_decrypt_work(&ctx->work); 368 } else { 369 INIT_WORK(&ctx->work, verify_bh); 370 fsverity_enqueue_verify_work(&ctx->work); 371 } 372 return; 373 } 374 uptodate = 0; 375 } 376 end_buffer_async_read(bh, uptodate); 377 } 378 379 /* 380 * Completion handler for block_write_full_page() - pages which are unlocked 381 * during I/O, and which have PageWriteback cleared upon I/O completion. 382 */ 383 void end_buffer_async_write(struct buffer_head *bh, int uptodate) 384 { 385 unsigned long flags; 386 struct buffer_head *first; 387 struct buffer_head *tmp; 388 struct folio *folio; 389 390 BUG_ON(!buffer_async_write(bh)); 391 392 folio = bh->b_folio; 393 if (uptodate) { 394 set_buffer_uptodate(bh); 395 } else { 396 buffer_io_error(bh, ", lost async page write"); 397 mark_buffer_write_io_error(bh); 398 clear_buffer_uptodate(bh); 399 folio_set_error(folio); 400 } 401 402 first = folio_buffers(folio); 403 spin_lock_irqsave(&first->b_uptodate_lock, flags); 404 405 clear_buffer_async_write(bh); 406 unlock_buffer(bh); 407 tmp = bh->b_this_page; 408 while (tmp != bh) { 409 if (buffer_async_write(tmp)) { 410 BUG_ON(!buffer_locked(tmp)); 411 goto still_busy; 412 } 413 tmp = tmp->b_this_page; 414 } 415 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 416 folio_end_writeback(folio); 417 return; 418 419 still_busy: 420 spin_unlock_irqrestore(&first->b_uptodate_lock, flags); 421 return; 422 } 423 EXPORT_SYMBOL(end_buffer_async_write); 424 425 /* 426 * If a page's buffers are under async readin (end_buffer_async_read 427 * completion) then there is a possibility that another thread of 428 * control could lock one of the buffers after it has completed 429 * but while some of the other buffers have not completed. This 430 * locked buffer would confuse end_buffer_async_read() into not unlocking 431 * the page. So the absence of BH_Async_Read tells end_buffer_async_read() 432 * that this buffer is not under async I/O. 433 * 434 * The page comes unlocked when it has no locked buffer_async buffers 435 * left. 436 * 437 * PageLocked prevents anyone starting new async I/O reads any of 438 * the buffers. 439 * 440 * PageWriteback is used to prevent simultaneous writeout of the same 441 * page. 442 * 443 * PageLocked prevents anyone from starting writeback of a page which is 444 * under read I/O (PageWriteback is only ever set against a locked page). 445 */ 446 static void mark_buffer_async_read(struct buffer_head *bh) 447 { 448 bh->b_end_io = end_buffer_async_read_io; 449 set_buffer_async_read(bh); 450 } 451 452 static void mark_buffer_async_write_endio(struct buffer_head *bh, 453 bh_end_io_t *handler) 454 { 455 bh->b_end_io = handler; 456 set_buffer_async_write(bh); 457 } 458 459 void mark_buffer_async_write(struct buffer_head *bh) 460 { 461 mark_buffer_async_write_endio(bh, end_buffer_async_write); 462 } 463 EXPORT_SYMBOL(mark_buffer_async_write); 464 465 466 /* 467 * fs/buffer.c contains helper functions for buffer-backed address space's 468 * fsync functions. A common requirement for buffer-based filesystems is 469 * that certain data from the backing blockdev needs to be written out for 470 * a successful fsync(). For example, ext2 indirect blocks need to be 471 * written back and waited upon before fsync() returns. 472 * 473 * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(), 474 * inode_has_buffers() and invalidate_inode_buffers() are provided for the 475 * management of a list of dependent buffers at ->i_mapping->private_list. 476 * 477 * Locking is a little subtle: try_to_free_buffers() will remove buffers 478 * from their controlling inode's queue when they are being freed. But 479 * try_to_free_buffers() will be operating against the *blockdev* mapping 480 * at the time, not against the S_ISREG file which depends on those buffers. 481 * So the locking for private_list is via the private_lock in the address_space 482 * which backs the buffers. Which is different from the address_space 483 * against which the buffers are listed. So for a particular address_space, 484 * mapping->private_lock does *not* protect mapping->private_list! In fact, 485 * mapping->private_list will always be protected by the backing blockdev's 486 * ->private_lock. 487 * 488 * Which introduces a requirement: all buffers on an address_space's 489 * ->private_list must be from the same address_space: the blockdev's. 490 * 491 * address_spaces which do not place buffers at ->private_list via these 492 * utility functions are free to use private_lock and private_list for 493 * whatever they want. The only requirement is that list_empty(private_list) 494 * be true at clear_inode() time. 495 * 496 * FIXME: clear_inode should not call invalidate_inode_buffers(). The 497 * filesystems should do that. invalidate_inode_buffers() should just go 498 * BUG_ON(!list_empty). 499 * 500 * FIXME: mark_buffer_dirty_inode() is a data-plane operation. It should 501 * take an address_space, not an inode. And it should be called 502 * mark_buffer_dirty_fsync() to clearly define why those buffers are being 503 * queued up. 504 * 505 * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the 506 * list if it is already on a list. Because if the buffer is on a list, 507 * it *must* already be on the right one. If not, the filesystem is being 508 * silly. This will save a ton of locking. But first we have to ensure 509 * that buffers are taken *off* the old inode's list when they are freed 510 * (presumably in truncate). That requires careful auditing of all 511 * filesystems (do it inside bforget()). It could also be done by bringing 512 * b_inode back. 513 */ 514 515 /* 516 * The buffer's backing address_space's private_lock must be held 517 */ 518 static void __remove_assoc_queue(struct buffer_head *bh) 519 { 520 list_del_init(&bh->b_assoc_buffers); 521 WARN_ON(!bh->b_assoc_map); 522 bh->b_assoc_map = NULL; 523 } 524 525 int inode_has_buffers(struct inode *inode) 526 { 527 return !list_empty(&inode->i_data.private_list); 528 } 529 530 /* 531 * osync is designed to support O_SYNC io. It waits synchronously for 532 * all already-submitted IO to complete, but does not queue any new 533 * writes to the disk. 534 * 535 * To do O_SYNC writes, just queue the buffer writes with write_dirty_buffer 536 * as you dirty the buffers, and then use osync_inode_buffers to wait for 537 * completion. Any other dirty buffers which are not yet queued for 538 * write will not be flushed to disk by the osync. 539 */ 540 static int osync_buffers_list(spinlock_t *lock, struct list_head *list) 541 { 542 struct buffer_head *bh; 543 struct list_head *p; 544 int err = 0; 545 546 spin_lock(lock); 547 repeat: 548 list_for_each_prev(p, list) { 549 bh = BH_ENTRY(p); 550 if (buffer_locked(bh)) { 551 get_bh(bh); 552 spin_unlock(lock); 553 wait_on_buffer(bh); 554 if (!buffer_uptodate(bh)) 555 err = -EIO; 556 brelse(bh); 557 spin_lock(lock); 558 goto repeat; 559 } 560 } 561 spin_unlock(lock); 562 return err; 563 } 564 565 /** 566 * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers 567 * @mapping: the mapping which wants those buffers written 568 * 569 * Starts I/O against the buffers at mapping->private_list, and waits upon 570 * that I/O. 571 * 572 * Basically, this is a convenience function for fsync(). 573 * @mapping is a file or directory which needs those buffers to be written for 574 * a successful fsync(). 575 */ 576 int sync_mapping_buffers(struct address_space *mapping) 577 { 578 struct address_space *buffer_mapping = mapping->private_data; 579 580 if (buffer_mapping == NULL || list_empty(&mapping->private_list)) 581 return 0; 582 583 return fsync_buffers_list(&buffer_mapping->private_lock, 584 &mapping->private_list); 585 } 586 EXPORT_SYMBOL(sync_mapping_buffers); 587 588 /** 589 * generic_buffers_fsync_noflush - generic buffer fsync implementation 590 * for simple filesystems with no inode lock 591 * 592 * @file: file to synchronize 593 * @start: start offset in bytes 594 * @end: end offset in bytes (inclusive) 595 * @datasync: only synchronize essential metadata if true 596 * 597 * This is a generic implementation of the fsync method for simple 598 * filesystems which track all non-inode metadata in the buffers list 599 * hanging off the address_space structure. 600 */ 601 int generic_buffers_fsync_noflush(struct file *file, loff_t start, loff_t end, 602 bool datasync) 603 { 604 struct inode *inode = file->f_mapping->host; 605 int err; 606 int ret; 607 608 err = file_write_and_wait_range(file, start, end); 609 if (err) 610 return err; 611 612 ret = sync_mapping_buffers(inode->i_mapping); 613 if (!(inode->i_state & I_DIRTY_ALL)) 614 goto out; 615 if (datasync && !(inode->i_state & I_DIRTY_DATASYNC)) 616 goto out; 617 618 err = sync_inode_metadata(inode, 1); 619 if (ret == 0) 620 ret = err; 621 622 out: 623 /* check and advance again to catch errors after syncing out buffers */ 624 err = file_check_and_advance_wb_err(file); 625 if (ret == 0) 626 ret = err; 627 return ret; 628 } 629 EXPORT_SYMBOL(generic_buffers_fsync_noflush); 630 631 /** 632 * generic_buffers_fsync - generic buffer fsync implementation 633 * for simple filesystems with no inode lock 634 * 635 * @file: file to synchronize 636 * @start: start offset in bytes 637 * @end: end offset in bytes (inclusive) 638 * @datasync: only synchronize essential metadata if true 639 * 640 * This is a generic implementation of the fsync method for simple 641 * filesystems which track all non-inode metadata in the buffers list 642 * hanging off the address_space structure. This also makes sure that 643 * a device cache flush operation is called at the end. 644 */ 645 int generic_buffers_fsync(struct file *file, loff_t start, loff_t end, 646 bool datasync) 647 { 648 struct inode *inode = file->f_mapping->host; 649 int ret; 650 651 ret = generic_buffers_fsync_noflush(file, start, end, datasync); 652 if (!ret) 653 ret = blkdev_issue_flush(inode->i_sb->s_bdev); 654 return ret; 655 } 656 EXPORT_SYMBOL(generic_buffers_fsync); 657 658 /* 659 * Called when we've recently written block `bblock', and it is known that 660 * `bblock' was for a buffer_boundary() buffer. This means that the block at 661 * `bblock + 1' is probably a dirty indirect block. Hunt it down and, if it's 662 * dirty, schedule it for IO. So that indirects merge nicely with their data. 663 */ 664 void write_boundary_block(struct block_device *bdev, 665 sector_t bblock, unsigned blocksize) 666 { 667 struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize); 668 if (bh) { 669 if (buffer_dirty(bh)) 670 write_dirty_buffer(bh, 0); 671 put_bh(bh); 672 } 673 } 674 675 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode) 676 { 677 struct address_space *mapping = inode->i_mapping; 678 struct address_space *buffer_mapping = bh->b_folio->mapping; 679 680 mark_buffer_dirty(bh); 681 if (!mapping->private_data) { 682 mapping->private_data = buffer_mapping; 683 } else { 684 BUG_ON(mapping->private_data != buffer_mapping); 685 } 686 if (!bh->b_assoc_map) { 687 spin_lock(&buffer_mapping->private_lock); 688 list_move_tail(&bh->b_assoc_buffers, 689 &mapping->private_list); 690 bh->b_assoc_map = mapping; 691 spin_unlock(&buffer_mapping->private_lock); 692 } 693 } 694 EXPORT_SYMBOL(mark_buffer_dirty_inode); 695 696 /* 697 * Add a page to the dirty page list. 698 * 699 * It is a sad fact of life that this function is called from several places 700 * deeply under spinlocking. It may not sleep. 701 * 702 * If the page has buffers, the uptodate buffers are set dirty, to preserve 703 * dirty-state coherency between the page and the buffers. It the page does 704 * not have buffers then when they are later attached they will all be set 705 * dirty. 706 * 707 * The buffers are dirtied before the page is dirtied. There's a small race 708 * window in which a writepage caller may see the page cleanness but not the 709 * buffer dirtiness. That's fine. If this code were to set the page dirty 710 * before the buffers, a concurrent writepage caller could clear the page dirty 711 * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean 712 * page on the dirty page list. 713 * 714 * We use private_lock to lock against try_to_free_buffers while using the 715 * page's buffer list. Also use this to protect against clean buffers being 716 * added to the page after it was set dirty. 717 * 718 * FIXME: may need to call ->reservepage here as well. That's rather up to the 719 * address_space though. 720 */ 721 bool block_dirty_folio(struct address_space *mapping, struct folio *folio) 722 { 723 struct buffer_head *head; 724 bool newly_dirty; 725 726 spin_lock(&mapping->private_lock); 727 head = folio_buffers(folio); 728 if (head) { 729 struct buffer_head *bh = head; 730 731 do { 732 set_buffer_dirty(bh); 733 bh = bh->b_this_page; 734 } while (bh != head); 735 } 736 /* 737 * Lock out page's memcg migration to keep PageDirty 738 * synchronized with per-memcg dirty page counters. 739 */ 740 folio_memcg_lock(folio); 741 newly_dirty = !folio_test_set_dirty(folio); 742 spin_unlock(&mapping->private_lock); 743 744 if (newly_dirty) 745 __folio_mark_dirty(folio, mapping, 1); 746 747 folio_memcg_unlock(folio); 748 749 if (newly_dirty) 750 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 751 752 return newly_dirty; 753 } 754 EXPORT_SYMBOL(block_dirty_folio); 755 756 /* 757 * Write out and wait upon a list of buffers. 758 * 759 * We have conflicting pressures: we want to make sure that all 760 * initially dirty buffers get waited on, but that any subsequently 761 * dirtied buffers don't. After all, we don't want fsync to last 762 * forever if somebody is actively writing to the file. 763 * 764 * Do this in two main stages: first we copy dirty buffers to a 765 * temporary inode list, queueing the writes as we go. Then we clean 766 * up, waiting for those writes to complete. 767 * 768 * During this second stage, any subsequent updates to the file may end 769 * up refiling the buffer on the original inode's dirty list again, so 770 * there is a chance we will end up with a buffer queued for write but 771 * not yet completed on that list. So, as a final cleanup we go through 772 * the osync code to catch these locked, dirty buffers without requeuing 773 * any newly dirty buffers for write. 774 */ 775 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list) 776 { 777 struct buffer_head *bh; 778 struct list_head tmp; 779 struct address_space *mapping; 780 int err = 0, err2; 781 struct blk_plug plug; 782 783 INIT_LIST_HEAD(&tmp); 784 blk_start_plug(&plug); 785 786 spin_lock(lock); 787 while (!list_empty(list)) { 788 bh = BH_ENTRY(list->next); 789 mapping = bh->b_assoc_map; 790 __remove_assoc_queue(bh); 791 /* Avoid race with mark_buffer_dirty_inode() which does 792 * a lockless check and we rely on seeing the dirty bit */ 793 smp_mb(); 794 if (buffer_dirty(bh) || buffer_locked(bh)) { 795 list_add(&bh->b_assoc_buffers, &tmp); 796 bh->b_assoc_map = mapping; 797 if (buffer_dirty(bh)) { 798 get_bh(bh); 799 spin_unlock(lock); 800 /* 801 * Ensure any pending I/O completes so that 802 * write_dirty_buffer() actually writes the 803 * current contents - it is a noop if I/O is 804 * still in flight on potentially older 805 * contents. 806 */ 807 write_dirty_buffer(bh, REQ_SYNC); 808 809 /* 810 * Kick off IO for the previous mapping. Note 811 * that we will not run the very last mapping, 812 * wait_on_buffer() will do that for us 813 * through sync_buffer(). 814 */ 815 brelse(bh); 816 spin_lock(lock); 817 } 818 } 819 } 820 821 spin_unlock(lock); 822 blk_finish_plug(&plug); 823 spin_lock(lock); 824 825 while (!list_empty(&tmp)) { 826 bh = BH_ENTRY(tmp.prev); 827 get_bh(bh); 828 mapping = bh->b_assoc_map; 829 __remove_assoc_queue(bh); 830 /* Avoid race with mark_buffer_dirty_inode() which does 831 * a lockless check and we rely on seeing the dirty bit */ 832 smp_mb(); 833 if (buffer_dirty(bh)) { 834 list_add(&bh->b_assoc_buffers, 835 &mapping->private_list); 836 bh->b_assoc_map = mapping; 837 } 838 spin_unlock(lock); 839 wait_on_buffer(bh); 840 if (!buffer_uptodate(bh)) 841 err = -EIO; 842 brelse(bh); 843 spin_lock(lock); 844 } 845 846 spin_unlock(lock); 847 err2 = osync_buffers_list(lock, list); 848 if (err) 849 return err; 850 else 851 return err2; 852 } 853 854 /* 855 * Invalidate any and all dirty buffers on a given inode. We are 856 * probably unmounting the fs, but that doesn't mean we have already 857 * done a sync(). Just drop the buffers from the inode list. 858 * 859 * NOTE: we take the inode's blockdev's mapping's private_lock. Which 860 * assumes that all the buffers are against the blockdev. Not true 861 * for reiserfs. 862 */ 863 void invalidate_inode_buffers(struct inode *inode) 864 { 865 if (inode_has_buffers(inode)) { 866 struct address_space *mapping = &inode->i_data; 867 struct list_head *list = &mapping->private_list; 868 struct address_space *buffer_mapping = mapping->private_data; 869 870 spin_lock(&buffer_mapping->private_lock); 871 while (!list_empty(list)) 872 __remove_assoc_queue(BH_ENTRY(list->next)); 873 spin_unlock(&buffer_mapping->private_lock); 874 } 875 } 876 EXPORT_SYMBOL(invalidate_inode_buffers); 877 878 /* 879 * Remove any clean buffers from the inode's buffer list. This is called 880 * when we're trying to free the inode itself. Those buffers can pin it. 881 * 882 * Returns true if all buffers were removed. 883 */ 884 int remove_inode_buffers(struct inode *inode) 885 { 886 int ret = 1; 887 888 if (inode_has_buffers(inode)) { 889 struct address_space *mapping = &inode->i_data; 890 struct list_head *list = &mapping->private_list; 891 struct address_space *buffer_mapping = mapping->private_data; 892 893 spin_lock(&buffer_mapping->private_lock); 894 while (!list_empty(list)) { 895 struct buffer_head *bh = BH_ENTRY(list->next); 896 if (buffer_dirty(bh)) { 897 ret = 0; 898 break; 899 } 900 __remove_assoc_queue(bh); 901 } 902 spin_unlock(&buffer_mapping->private_lock); 903 } 904 return ret; 905 } 906 907 /* 908 * Create the appropriate buffers when given a folio for data area and 909 * the size of each buffer.. Use the bh->b_this_page linked list to 910 * follow the buffers created. Return NULL if unable to create more 911 * buffers. 912 * 913 * The retry flag is used to differentiate async IO (paging, swapping) 914 * which may not fail from ordinary buffer allocations. 915 */ 916 struct buffer_head *folio_alloc_buffers(struct folio *folio, unsigned long size, 917 bool retry) 918 { 919 struct buffer_head *bh, *head; 920 gfp_t gfp = GFP_NOFS | __GFP_ACCOUNT; 921 long offset; 922 struct mem_cgroup *memcg, *old_memcg; 923 924 if (retry) 925 gfp |= __GFP_NOFAIL; 926 927 /* The folio lock pins the memcg */ 928 memcg = folio_memcg(folio); 929 old_memcg = set_active_memcg(memcg); 930 931 head = NULL; 932 offset = folio_size(folio); 933 while ((offset -= size) >= 0) { 934 bh = alloc_buffer_head(gfp); 935 if (!bh) 936 goto no_grow; 937 938 bh->b_this_page = head; 939 bh->b_blocknr = -1; 940 head = bh; 941 942 bh->b_size = size; 943 944 /* Link the buffer to its folio */ 945 folio_set_bh(bh, folio, offset); 946 } 947 out: 948 set_active_memcg(old_memcg); 949 return head; 950 /* 951 * In case anything failed, we just free everything we got. 952 */ 953 no_grow: 954 if (head) { 955 do { 956 bh = head; 957 head = head->b_this_page; 958 free_buffer_head(bh); 959 } while (head); 960 } 961 962 goto out; 963 } 964 EXPORT_SYMBOL_GPL(folio_alloc_buffers); 965 966 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size, 967 bool retry) 968 { 969 return folio_alloc_buffers(page_folio(page), size, retry); 970 } 971 EXPORT_SYMBOL_GPL(alloc_page_buffers); 972 973 static inline void link_dev_buffers(struct folio *folio, 974 struct buffer_head *head) 975 { 976 struct buffer_head *bh, *tail; 977 978 bh = head; 979 do { 980 tail = bh; 981 bh = bh->b_this_page; 982 } while (bh); 983 tail->b_this_page = head; 984 folio_attach_private(folio, head); 985 } 986 987 static sector_t blkdev_max_block(struct block_device *bdev, unsigned int size) 988 { 989 sector_t retval = ~((sector_t)0); 990 loff_t sz = bdev_nr_bytes(bdev); 991 992 if (sz) { 993 unsigned int sizebits = blksize_bits(size); 994 retval = (sz >> sizebits); 995 } 996 return retval; 997 } 998 999 /* 1000 * Initialise the state of a blockdev folio's buffers. 1001 */ 1002 static sector_t folio_init_buffers(struct folio *folio, 1003 struct block_device *bdev, sector_t block, int size) 1004 { 1005 struct buffer_head *head = folio_buffers(folio); 1006 struct buffer_head *bh = head; 1007 bool uptodate = folio_test_uptodate(folio); 1008 sector_t end_block = blkdev_max_block(bdev, size); 1009 1010 do { 1011 if (!buffer_mapped(bh)) { 1012 bh->b_end_io = NULL; 1013 bh->b_private = NULL; 1014 bh->b_bdev = bdev; 1015 bh->b_blocknr = block; 1016 if (uptodate) 1017 set_buffer_uptodate(bh); 1018 if (block < end_block) 1019 set_buffer_mapped(bh); 1020 } 1021 block++; 1022 bh = bh->b_this_page; 1023 } while (bh != head); 1024 1025 /* 1026 * Caller needs to validate requested block against end of device. 1027 */ 1028 return end_block; 1029 } 1030 1031 /* 1032 * Create the page-cache page that contains the requested block. 1033 * 1034 * This is used purely for blockdev mappings. 1035 */ 1036 static int 1037 grow_dev_page(struct block_device *bdev, sector_t block, 1038 pgoff_t index, int size, int sizebits, gfp_t gfp) 1039 { 1040 struct inode *inode = bdev->bd_inode; 1041 struct folio *folio; 1042 struct buffer_head *bh; 1043 sector_t end_block; 1044 int ret = 0; 1045 gfp_t gfp_mask; 1046 1047 gfp_mask = mapping_gfp_constraint(inode->i_mapping, ~__GFP_FS) | gfp; 1048 1049 /* 1050 * XXX: __getblk_slow() can not really deal with failure and 1051 * will endlessly loop on improvised global reclaim. Prefer 1052 * looping in the allocator rather than here, at least that 1053 * code knows what it's doing. 1054 */ 1055 gfp_mask |= __GFP_NOFAIL; 1056 1057 folio = __filemap_get_folio(inode->i_mapping, index, 1058 FGP_LOCK | FGP_ACCESSED | FGP_CREAT, gfp_mask); 1059 1060 bh = folio_buffers(folio); 1061 if (bh) { 1062 if (bh->b_size == size) { 1063 end_block = folio_init_buffers(folio, bdev, 1064 (sector_t)index << sizebits, size); 1065 goto done; 1066 } 1067 if (!try_to_free_buffers(folio)) 1068 goto failed; 1069 } 1070 1071 bh = folio_alloc_buffers(folio, size, true); 1072 1073 /* 1074 * Link the folio to the buffers and initialise them. Take the 1075 * lock to be atomic wrt __find_get_block(), which does not 1076 * run under the folio lock. 1077 */ 1078 spin_lock(&inode->i_mapping->private_lock); 1079 link_dev_buffers(folio, bh); 1080 end_block = folio_init_buffers(folio, bdev, 1081 (sector_t)index << sizebits, size); 1082 spin_unlock(&inode->i_mapping->private_lock); 1083 done: 1084 ret = (block < end_block) ? 1 : -ENXIO; 1085 failed: 1086 folio_unlock(folio); 1087 folio_put(folio); 1088 return ret; 1089 } 1090 1091 /* 1092 * Create buffers for the specified block device block's page. If 1093 * that page was dirty, the buffers are set dirty also. 1094 */ 1095 static int 1096 grow_buffers(struct block_device *bdev, sector_t block, int size, gfp_t gfp) 1097 { 1098 pgoff_t index; 1099 int sizebits; 1100 1101 sizebits = PAGE_SHIFT - __ffs(size); 1102 index = block >> sizebits; 1103 1104 /* 1105 * Check for a block which wants to lie outside our maximum possible 1106 * pagecache index. (this comparison is done using sector_t types). 1107 */ 1108 if (unlikely(index != block >> sizebits)) { 1109 printk(KERN_ERR "%s: requested out-of-range block %llu for " 1110 "device %pg\n", 1111 __func__, (unsigned long long)block, 1112 bdev); 1113 return -EIO; 1114 } 1115 1116 /* Create a page with the proper size buffers.. */ 1117 return grow_dev_page(bdev, block, index, size, sizebits, gfp); 1118 } 1119 1120 static struct buffer_head * 1121 __getblk_slow(struct block_device *bdev, sector_t block, 1122 unsigned size, gfp_t gfp) 1123 { 1124 /* Size must be multiple of hard sectorsize */ 1125 if (unlikely(size & (bdev_logical_block_size(bdev)-1) || 1126 (size < 512 || size > PAGE_SIZE))) { 1127 printk(KERN_ERR "getblk(): invalid block size %d requested\n", 1128 size); 1129 printk(KERN_ERR "logical block size: %d\n", 1130 bdev_logical_block_size(bdev)); 1131 1132 dump_stack(); 1133 return NULL; 1134 } 1135 1136 for (;;) { 1137 struct buffer_head *bh; 1138 int ret; 1139 1140 bh = __find_get_block(bdev, block, size); 1141 if (bh) 1142 return bh; 1143 1144 ret = grow_buffers(bdev, block, size, gfp); 1145 if (ret < 0) 1146 return NULL; 1147 } 1148 } 1149 1150 /* 1151 * The relationship between dirty buffers and dirty pages: 1152 * 1153 * Whenever a page has any dirty buffers, the page's dirty bit is set, and 1154 * the page is tagged dirty in the page cache. 1155 * 1156 * At all times, the dirtiness of the buffers represents the dirtiness of 1157 * subsections of the page. If the page has buffers, the page dirty bit is 1158 * merely a hint about the true dirty state. 1159 * 1160 * When a page is set dirty in its entirety, all its buffers are marked dirty 1161 * (if the page has buffers). 1162 * 1163 * When a buffer is marked dirty, its page is dirtied, but the page's other 1164 * buffers are not. 1165 * 1166 * Also. When blockdev buffers are explicitly read with bread(), they 1167 * individually become uptodate. But their backing page remains not 1168 * uptodate - even if all of its buffers are uptodate. A subsequent 1169 * block_read_full_folio() against that folio will discover all the uptodate 1170 * buffers, will set the folio uptodate and will perform no I/O. 1171 */ 1172 1173 /** 1174 * mark_buffer_dirty - mark a buffer_head as needing writeout 1175 * @bh: the buffer_head to mark dirty 1176 * 1177 * mark_buffer_dirty() will set the dirty bit against the buffer, then set 1178 * its backing page dirty, then tag the page as dirty in the page cache 1179 * and then attach the address_space's inode to its superblock's dirty 1180 * inode list. 1181 * 1182 * mark_buffer_dirty() is atomic. It takes bh->b_folio->mapping->private_lock, 1183 * i_pages lock and mapping->host->i_lock. 1184 */ 1185 void mark_buffer_dirty(struct buffer_head *bh) 1186 { 1187 WARN_ON_ONCE(!buffer_uptodate(bh)); 1188 1189 trace_block_dirty_buffer(bh); 1190 1191 /* 1192 * Very *carefully* optimize the it-is-already-dirty case. 1193 * 1194 * Don't let the final "is it dirty" escape to before we 1195 * perhaps modified the buffer. 1196 */ 1197 if (buffer_dirty(bh)) { 1198 smp_mb(); 1199 if (buffer_dirty(bh)) 1200 return; 1201 } 1202 1203 if (!test_set_buffer_dirty(bh)) { 1204 struct folio *folio = bh->b_folio; 1205 struct address_space *mapping = NULL; 1206 1207 folio_memcg_lock(folio); 1208 if (!folio_test_set_dirty(folio)) { 1209 mapping = folio->mapping; 1210 if (mapping) 1211 __folio_mark_dirty(folio, mapping, 0); 1212 } 1213 folio_memcg_unlock(folio); 1214 if (mapping) 1215 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES); 1216 } 1217 } 1218 EXPORT_SYMBOL(mark_buffer_dirty); 1219 1220 void mark_buffer_write_io_error(struct buffer_head *bh) 1221 { 1222 struct super_block *sb; 1223 1224 set_buffer_write_io_error(bh); 1225 /* FIXME: do we need to set this in both places? */ 1226 if (bh->b_folio && bh->b_folio->mapping) 1227 mapping_set_error(bh->b_folio->mapping, -EIO); 1228 if (bh->b_assoc_map) 1229 mapping_set_error(bh->b_assoc_map, -EIO); 1230 rcu_read_lock(); 1231 sb = READ_ONCE(bh->b_bdev->bd_super); 1232 if (sb) 1233 errseq_set(&sb->s_wb_err, -EIO); 1234 rcu_read_unlock(); 1235 } 1236 EXPORT_SYMBOL(mark_buffer_write_io_error); 1237 1238 /* 1239 * Decrement a buffer_head's reference count. If all buffers against a page 1240 * have zero reference count, are clean and unlocked, and if the page is clean 1241 * and unlocked then try_to_free_buffers() may strip the buffers from the page 1242 * in preparation for freeing it (sometimes, rarely, buffers are removed from 1243 * a page but it ends up not being freed, and buffers may later be reattached). 1244 */ 1245 void __brelse(struct buffer_head * buf) 1246 { 1247 if (atomic_read(&buf->b_count)) { 1248 put_bh(buf); 1249 return; 1250 } 1251 WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n"); 1252 } 1253 EXPORT_SYMBOL(__brelse); 1254 1255 /* 1256 * bforget() is like brelse(), except it discards any 1257 * potentially dirty data. 1258 */ 1259 void __bforget(struct buffer_head *bh) 1260 { 1261 clear_buffer_dirty(bh); 1262 if (bh->b_assoc_map) { 1263 struct address_space *buffer_mapping = bh->b_folio->mapping; 1264 1265 spin_lock(&buffer_mapping->private_lock); 1266 list_del_init(&bh->b_assoc_buffers); 1267 bh->b_assoc_map = NULL; 1268 spin_unlock(&buffer_mapping->private_lock); 1269 } 1270 __brelse(bh); 1271 } 1272 EXPORT_SYMBOL(__bforget); 1273 1274 static struct buffer_head *__bread_slow(struct buffer_head *bh) 1275 { 1276 lock_buffer(bh); 1277 if (buffer_uptodate(bh)) { 1278 unlock_buffer(bh); 1279 return bh; 1280 } else { 1281 get_bh(bh); 1282 bh->b_end_io = end_buffer_read_sync; 1283 submit_bh(REQ_OP_READ, bh); 1284 wait_on_buffer(bh); 1285 if (buffer_uptodate(bh)) 1286 return bh; 1287 } 1288 brelse(bh); 1289 return NULL; 1290 } 1291 1292 /* 1293 * Per-cpu buffer LRU implementation. To reduce the cost of __find_get_block(). 1294 * The bhs[] array is sorted - newest buffer is at bhs[0]. Buffers have their 1295 * refcount elevated by one when they're in an LRU. A buffer can only appear 1296 * once in a particular CPU's LRU. A single buffer can be present in multiple 1297 * CPU's LRUs at the same time. 1298 * 1299 * This is a transparent caching front-end to sb_bread(), sb_getblk() and 1300 * sb_find_get_block(). 1301 * 1302 * The LRUs themselves only need locking against invalidate_bh_lrus. We use 1303 * a local interrupt disable for that. 1304 */ 1305 1306 #define BH_LRU_SIZE 16 1307 1308 struct bh_lru { 1309 struct buffer_head *bhs[BH_LRU_SIZE]; 1310 }; 1311 1312 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }}; 1313 1314 #ifdef CONFIG_SMP 1315 #define bh_lru_lock() local_irq_disable() 1316 #define bh_lru_unlock() local_irq_enable() 1317 #else 1318 #define bh_lru_lock() preempt_disable() 1319 #define bh_lru_unlock() preempt_enable() 1320 #endif 1321 1322 static inline void check_irqs_on(void) 1323 { 1324 #ifdef irqs_disabled 1325 BUG_ON(irqs_disabled()); 1326 #endif 1327 } 1328 1329 /* 1330 * Install a buffer_head into this cpu's LRU. If not already in the LRU, it is 1331 * inserted at the front, and the buffer_head at the back if any is evicted. 1332 * Or, if already in the LRU it is moved to the front. 1333 */ 1334 static void bh_lru_install(struct buffer_head *bh) 1335 { 1336 struct buffer_head *evictee = bh; 1337 struct bh_lru *b; 1338 int i; 1339 1340 check_irqs_on(); 1341 bh_lru_lock(); 1342 1343 /* 1344 * the refcount of buffer_head in bh_lru prevents dropping the 1345 * attached page(i.e., try_to_free_buffers) so it could cause 1346 * failing page migration. 1347 * Skip putting upcoming bh into bh_lru until migration is done. 1348 */ 1349 if (lru_cache_disabled()) { 1350 bh_lru_unlock(); 1351 return; 1352 } 1353 1354 b = this_cpu_ptr(&bh_lrus); 1355 for (i = 0; i < BH_LRU_SIZE; i++) { 1356 swap(evictee, b->bhs[i]); 1357 if (evictee == bh) { 1358 bh_lru_unlock(); 1359 return; 1360 } 1361 } 1362 1363 get_bh(bh); 1364 bh_lru_unlock(); 1365 brelse(evictee); 1366 } 1367 1368 /* 1369 * Look up the bh in this cpu's LRU. If it's there, move it to the head. 1370 */ 1371 static struct buffer_head * 1372 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size) 1373 { 1374 struct buffer_head *ret = NULL; 1375 unsigned int i; 1376 1377 check_irqs_on(); 1378 bh_lru_lock(); 1379 for (i = 0; i < BH_LRU_SIZE; i++) { 1380 struct buffer_head *bh = __this_cpu_read(bh_lrus.bhs[i]); 1381 1382 if (bh && bh->b_blocknr == block && bh->b_bdev == bdev && 1383 bh->b_size == size) { 1384 if (i) { 1385 while (i) { 1386 __this_cpu_write(bh_lrus.bhs[i], 1387 __this_cpu_read(bh_lrus.bhs[i - 1])); 1388 i--; 1389 } 1390 __this_cpu_write(bh_lrus.bhs[0], bh); 1391 } 1392 get_bh(bh); 1393 ret = bh; 1394 break; 1395 } 1396 } 1397 bh_lru_unlock(); 1398 return ret; 1399 } 1400 1401 /* 1402 * Perform a pagecache lookup for the matching buffer. If it's there, refresh 1403 * it in the LRU and mark it as accessed. If it is not present then return 1404 * NULL 1405 */ 1406 struct buffer_head * 1407 __find_get_block(struct block_device *bdev, sector_t block, unsigned size) 1408 { 1409 struct buffer_head *bh = lookup_bh_lru(bdev, block, size); 1410 1411 if (bh == NULL) { 1412 /* __find_get_block_slow will mark the page accessed */ 1413 bh = __find_get_block_slow(bdev, block); 1414 if (bh) 1415 bh_lru_install(bh); 1416 } else 1417 touch_buffer(bh); 1418 1419 return bh; 1420 } 1421 EXPORT_SYMBOL(__find_get_block); 1422 1423 /* 1424 * __getblk_gfp() will locate (and, if necessary, create) the buffer_head 1425 * which corresponds to the passed block_device, block and size. The 1426 * returned buffer has its reference count incremented. 1427 * 1428 * __getblk_gfp() will lock up the machine if grow_dev_page's 1429 * try_to_free_buffers() attempt is failing. FIXME, perhaps? 1430 */ 1431 struct buffer_head * 1432 __getblk_gfp(struct block_device *bdev, sector_t block, 1433 unsigned size, gfp_t gfp) 1434 { 1435 struct buffer_head *bh = __find_get_block(bdev, block, size); 1436 1437 might_sleep(); 1438 if (bh == NULL) 1439 bh = __getblk_slow(bdev, block, size, gfp); 1440 return bh; 1441 } 1442 EXPORT_SYMBOL(__getblk_gfp); 1443 1444 /* 1445 * Do async read-ahead on a buffer.. 1446 */ 1447 void __breadahead(struct block_device *bdev, sector_t block, unsigned size) 1448 { 1449 struct buffer_head *bh = __getblk(bdev, block, size); 1450 if (likely(bh)) { 1451 bh_readahead(bh, REQ_RAHEAD); 1452 brelse(bh); 1453 } 1454 } 1455 EXPORT_SYMBOL(__breadahead); 1456 1457 /** 1458 * __bread_gfp() - reads a specified block and returns the bh 1459 * @bdev: the block_device to read from 1460 * @block: number of block 1461 * @size: size (in bytes) to read 1462 * @gfp: page allocation flag 1463 * 1464 * Reads a specified block, and returns buffer head that contains it. 1465 * The page cache can be allocated from non-movable area 1466 * not to prevent page migration if you set gfp to zero. 1467 * It returns NULL if the block was unreadable. 1468 */ 1469 struct buffer_head * 1470 __bread_gfp(struct block_device *bdev, sector_t block, 1471 unsigned size, gfp_t gfp) 1472 { 1473 struct buffer_head *bh = __getblk_gfp(bdev, block, size, gfp); 1474 1475 if (likely(bh) && !buffer_uptodate(bh)) 1476 bh = __bread_slow(bh); 1477 return bh; 1478 } 1479 EXPORT_SYMBOL(__bread_gfp); 1480 1481 static void __invalidate_bh_lrus(struct bh_lru *b) 1482 { 1483 int i; 1484 1485 for (i = 0; i < BH_LRU_SIZE; i++) { 1486 brelse(b->bhs[i]); 1487 b->bhs[i] = NULL; 1488 } 1489 } 1490 /* 1491 * invalidate_bh_lrus() is called rarely - but not only at unmount. 1492 * This doesn't race because it runs in each cpu either in irq 1493 * or with preempt disabled. 1494 */ 1495 static void invalidate_bh_lru(void *arg) 1496 { 1497 struct bh_lru *b = &get_cpu_var(bh_lrus); 1498 1499 __invalidate_bh_lrus(b); 1500 put_cpu_var(bh_lrus); 1501 } 1502 1503 bool has_bh_in_lru(int cpu, void *dummy) 1504 { 1505 struct bh_lru *b = per_cpu_ptr(&bh_lrus, cpu); 1506 int i; 1507 1508 for (i = 0; i < BH_LRU_SIZE; i++) { 1509 if (b->bhs[i]) 1510 return true; 1511 } 1512 1513 return false; 1514 } 1515 1516 void invalidate_bh_lrus(void) 1517 { 1518 on_each_cpu_cond(has_bh_in_lru, invalidate_bh_lru, NULL, 1); 1519 } 1520 EXPORT_SYMBOL_GPL(invalidate_bh_lrus); 1521 1522 /* 1523 * It's called from workqueue context so we need a bh_lru_lock to close 1524 * the race with preemption/irq. 1525 */ 1526 void invalidate_bh_lrus_cpu(void) 1527 { 1528 struct bh_lru *b; 1529 1530 bh_lru_lock(); 1531 b = this_cpu_ptr(&bh_lrus); 1532 __invalidate_bh_lrus(b); 1533 bh_lru_unlock(); 1534 } 1535 1536 void set_bh_page(struct buffer_head *bh, 1537 struct page *page, unsigned long offset) 1538 { 1539 bh->b_page = page; 1540 BUG_ON(offset >= PAGE_SIZE); 1541 if (PageHighMem(page)) 1542 /* 1543 * This catches illegal uses and preserves the offset: 1544 */ 1545 bh->b_data = (char *)(0 + offset); 1546 else 1547 bh->b_data = page_address(page) + offset; 1548 } 1549 EXPORT_SYMBOL(set_bh_page); 1550 1551 void folio_set_bh(struct buffer_head *bh, struct folio *folio, 1552 unsigned long offset) 1553 { 1554 bh->b_folio = folio; 1555 BUG_ON(offset >= folio_size(folio)); 1556 if (folio_test_highmem(folio)) 1557 /* 1558 * This catches illegal uses and preserves the offset: 1559 */ 1560 bh->b_data = (char *)(0 + offset); 1561 else 1562 bh->b_data = folio_address(folio) + offset; 1563 } 1564 EXPORT_SYMBOL(folio_set_bh); 1565 1566 /* 1567 * Called when truncating a buffer on a page completely. 1568 */ 1569 1570 /* Bits that are cleared during an invalidate */ 1571 #define BUFFER_FLAGS_DISCARD \ 1572 (1 << BH_Mapped | 1 << BH_New | 1 << BH_Req | \ 1573 1 << BH_Delay | 1 << BH_Unwritten) 1574 1575 static void discard_buffer(struct buffer_head * bh) 1576 { 1577 unsigned long b_state; 1578 1579 lock_buffer(bh); 1580 clear_buffer_dirty(bh); 1581 bh->b_bdev = NULL; 1582 b_state = READ_ONCE(bh->b_state); 1583 do { 1584 } while (!try_cmpxchg(&bh->b_state, &b_state, 1585 b_state & ~BUFFER_FLAGS_DISCARD)); 1586 unlock_buffer(bh); 1587 } 1588 1589 /** 1590 * block_invalidate_folio - Invalidate part or all of a buffer-backed folio. 1591 * @folio: The folio which is affected. 1592 * @offset: start of the range to invalidate 1593 * @length: length of the range to invalidate 1594 * 1595 * block_invalidate_folio() is called when all or part of the folio has been 1596 * invalidated by a truncate operation. 1597 * 1598 * block_invalidate_folio() does not have to release all buffers, but it must 1599 * ensure that no dirty buffer is left outside @offset and that no I/O 1600 * is underway against any of the blocks which are outside the truncation 1601 * point. Because the caller is about to free (and possibly reuse) those 1602 * blocks on-disk. 1603 */ 1604 void block_invalidate_folio(struct folio *folio, size_t offset, size_t length) 1605 { 1606 struct buffer_head *head, *bh, *next; 1607 size_t curr_off = 0; 1608 size_t stop = length + offset; 1609 1610 BUG_ON(!folio_test_locked(folio)); 1611 1612 /* 1613 * Check for overflow 1614 */ 1615 BUG_ON(stop > folio_size(folio) || stop < length); 1616 1617 head = folio_buffers(folio); 1618 if (!head) 1619 return; 1620 1621 bh = head; 1622 do { 1623 size_t next_off = curr_off + bh->b_size; 1624 next = bh->b_this_page; 1625 1626 /* 1627 * Are we still fully in range ? 1628 */ 1629 if (next_off > stop) 1630 goto out; 1631 1632 /* 1633 * is this block fully invalidated? 1634 */ 1635 if (offset <= curr_off) 1636 discard_buffer(bh); 1637 curr_off = next_off; 1638 bh = next; 1639 } while (bh != head); 1640 1641 /* 1642 * We release buffers only if the entire folio is being invalidated. 1643 * The get_block cached value has been unconditionally invalidated, 1644 * so real IO is not possible anymore. 1645 */ 1646 if (length == folio_size(folio)) 1647 filemap_release_folio(folio, 0); 1648 out: 1649 return; 1650 } 1651 EXPORT_SYMBOL(block_invalidate_folio); 1652 1653 /* 1654 * We attach and possibly dirty the buffers atomically wrt 1655 * block_dirty_folio() via private_lock. try_to_free_buffers 1656 * is already excluded via the folio lock. 1657 */ 1658 void folio_create_empty_buffers(struct folio *folio, unsigned long blocksize, 1659 unsigned long b_state) 1660 { 1661 struct buffer_head *bh, *head, *tail; 1662 1663 head = folio_alloc_buffers(folio, blocksize, true); 1664 bh = head; 1665 do { 1666 bh->b_state |= b_state; 1667 tail = bh; 1668 bh = bh->b_this_page; 1669 } while (bh); 1670 tail->b_this_page = head; 1671 1672 spin_lock(&folio->mapping->private_lock); 1673 if (folio_test_uptodate(folio) || folio_test_dirty(folio)) { 1674 bh = head; 1675 do { 1676 if (folio_test_dirty(folio)) 1677 set_buffer_dirty(bh); 1678 if (folio_test_uptodate(folio)) 1679 set_buffer_uptodate(bh); 1680 bh = bh->b_this_page; 1681 } while (bh != head); 1682 } 1683 folio_attach_private(folio, head); 1684 spin_unlock(&folio->mapping->private_lock); 1685 } 1686 EXPORT_SYMBOL(folio_create_empty_buffers); 1687 1688 void create_empty_buffers(struct page *page, 1689 unsigned long blocksize, unsigned long b_state) 1690 { 1691 folio_create_empty_buffers(page_folio(page), blocksize, b_state); 1692 } 1693 EXPORT_SYMBOL(create_empty_buffers); 1694 1695 /** 1696 * clean_bdev_aliases: clean a range of buffers in block device 1697 * @bdev: Block device to clean buffers in 1698 * @block: Start of a range of blocks to clean 1699 * @len: Number of blocks to clean 1700 * 1701 * We are taking a range of blocks for data and we don't want writeback of any 1702 * buffer-cache aliases starting from return from this function and until the 1703 * moment when something will explicitly mark the buffer dirty (hopefully that 1704 * will not happen until we will free that block ;-) We don't even need to mark 1705 * it not-uptodate - nobody can expect anything from a newly allocated buffer 1706 * anyway. We used to use unmap_buffer() for such invalidation, but that was 1707 * wrong. We definitely don't want to mark the alias unmapped, for example - it 1708 * would confuse anyone who might pick it with bread() afterwards... 1709 * 1710 * Also.. Note that bforget() doesn't lock the buffer. So there can be 1711 * writeout I/O going on against recently-freed buffers. We don't wait on that 1712 * I/O in bforget() - it's more efficient to wait on the I/O only if we really 1713 * need to. That happens here. 1714 */ 1715 void clean_bdev_aliases(struct block_device *bdev, sector_t block, sector_t len) 1716 { 1717 struct inode *bd_inode = bdev->bd_inode; 1718 struct address_space *bd_mapping = bd_inode->i_mapping; 1719 struct folio_batch fbatch; 1720 pgoff_t index = block >> (PAGE_SHIFT - bd_inode->i_blkbits); 1721 pgoff_t end; 1722 int i, count; 1723 struct buffer_head *bh; 1724 struct buffer_head *head; 1725 1726 end = (block + len - 1) >> (PAGE_SHIFT - bd_inode->i_blkbits); 1727 folio_batch_init(&fbatch); 1728 while (filemap_get_folios(bd_mapping, &index, end, &fbatch)) { 1729 count = folio_batch_count(&fbatch); 1730 for (i = 0; i < count; i++) { 1731 struct folio *folio = fbatch.folios[i]; 1732 1733 if (!folio_buffers(folio)) 1734 continue; 1735 /* 1736 * We use folio lock instead of bd_mapping->private_lock 1737 * to pin buffers here since we can afford to sleep and 1738 * it scales better than a global spinlock lock. 1739 */ 1740 folio_lock(folio); 1741 /* Recheck when the folio is locked which pins bhs */ 1742 head = folio_buffers(folio); 1743 if (!head) 1744 goto unlock_page; 1745 bh = head; 1746 do { 1747 if (!buffer_mapped(bh) || (bh->b_blocknr < block)) 1748 goto next; 1749 if (bh->b_blocknr >= block + len) 1750 break; 1751 clear_buffer_dirty(bh); 1752 wait_on_buffer(bh); 1753 clear_buffer_req(bh); 1754 next: 1755 bh = bh->b_this_page; 1756 } while (bh != head); 1757 unlock_page: 1758 folio_unlock(folio); 1759 } 1760 folio_batch_release(&fbatch); 1761 cond_resched(); 1762 /* End of range already reached? */ 1763 if (index > end || !index) 1764 break; 1765 } 1766 } 1767 EXPORT_SYMBOL(clean_bdev_aliases); 1768 1769 /* 1770 * Size is a power-of-two in the range 512..PAGE_SIZE, 1771 * and the case we care about most is PAGE_SIZE. 1772 * 1773 * So this *could* possibly be written with those 1774 * constraints in mind (relevant mostly if some 1775 * architecture has a slow bit-scan instruction) 1776 */ 1777 static inline int block_size_bits(unsigned int blocksize) 1778 { 1779 return ilog2(blocksize); 1780 } 1781 1782 static struct buffer_head *folio_create_buffers(struct folio *folio, 1783 struct inode *inode, 1784 unsigned int b_state) 1785 { 1786 BUG_ON(!folio_test_locked(folio)); 1787 1788 if (!folio_buffers(folio)) 1789 folio_create_empty_buffers(folio, 1790 1 << READ_ONCE(inode->i_blkbits), 1791 b_state); 1792 return folio_buffers(folio); 1793 } 1794 1795 /* 1796 * NOTE! All mapped/uptodate combinations are valid: 1797 * 1798 * Mapped Uptodate Meaning 1799 * 1800 * No No "unknown" - must do get_block() 1801 * No Yes "hole" - zero-filled 1802 * Yes No "allocated" - allocated on disk, not read in 1803 * Yes Yes "valid" - allocated and up-to-date in memory. 1804 * 1805 * "Dirty" is valid only with the last case (mapped+uptodate). 1806 */ 1807 1808 /* 1809 * While block_write_full_page is writing back the dirty buffers under 1810 * the page lock, whoever dirtied the buffers may decide to clean them 1811 * again at any time. We handle that by only looking at the buffer 1812 * state inside lock_buffer(). 1813 * 1814 * If block_write_full_page() is called for regular writeback 1815 * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a 1816 * locked buffer. This only can happen if someone has written the buffer 1817 * directly, with submit_bh(). At the address_space level PageWriteback 1818 * prevents this contention from occurring. 1819 * 1820 * If block_write_full_page() is called with wbc->sync_mode == 1821 * WB_SYNC_ALL, the writes are posted using REQ_SYNC; this 1822 * causes the writes to be flagged as synchronous writes. 1823 */ 1824 int __block_write_full_folio(struct inode *inode, struct folio *folio, 1825 get_block_t *get_block, struct writeback_control *wbc, 1826 bh_end_io_t *handler) 1827 { 1828 int err; 1829 sector_t block; 1830 sector_t last_block; 1831 struct buffer_head *bh, *head; 1832 unsigned int blocksize, bbits; 1833 int nr_underway = 0; 1834 blk_opf_t write_flags = wbc_to_write_flags(wbc); 1835 1836 head = folio_create_buffers(folio, inode, 1837 (1 << BH_Dirty) | (1 << BH_Uptodate)); 1838 1839 /* 1840 * Be very careful. We have no exclusion from block_dirty_folio 1841 * here, and the (potentially unmapped) buffers may become dirty at 1842 * any time. If a buffer becomes dirty here after we've inspected it 1843 * then we just miss that fact, and the folio stays dirty. 1844 * 1845 * Buffers outside i_size may be dirtied by block_dirty_folio; 1846 * handle that here by just cleaning them. 1847 */ 1848 1849 bh = head; 1850 blocksize = bh->b_size; 1851 bbits = block_size_bits(blocksize); 1852 1853 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 1854 last_block = (i_size_read(inode) - 1) >> bbits; 1855 1856 /* 1857 * Get all the dirty buffers mapped to disk addresses and 1858 * handle any aliases from the underlying blockdev's mapping. 1859 */ 1860 do { 1861 if (block > last_block) { 1862 /* 1863 * mapped buffers outside i_size will occur, because 1864 * this folio can be outside i_size when there is a 1865 * truncate in progress. 1866 */ 1867 /* 1868 * The buffer was zeroed by block_write_full_page() 1869 */ 1870 clear_buffer_dirty(bh); 1871 set_buffer_uptodate(bh); 1872 } else if ((!buffer_mapped(bh) || buffer_delay(bh)) && 1873 buffer_dirty(bh)) { 1874 WARN_ON(bh->b_size != blocksize); 1875 err = get_block(inode, block, bh, 1); 1876 if (err) 1877 goto recover; 1878 clear_buffer_delay(bh); 1879 if (buffer_new(bh)) { 1880 /* blockdev mappings never come here */ 1881 clear_buffer_new(bh); 1882 clean_bdev_bh_alias(bh); 1883 } 1884 } 1885 bh = bh->b_this_page; 1886 block++; 1887 } while (bh != head); 1888 1889 do { 1890 if (!buffer_mapped(bh)) 1891 continue; 1892 /* 1893 * If it's a fully non-blocking write attempt and we cannot 1894 * lock the buffer then redirty the folio. Note that this can 1895 * potentially cause a busy-wait loop from writeback threads 1896 * and kswapd activity, but those code paths have their own 1897 * higher-level throttling. 1898 */ 1899 if (wbc->sync_mode != WB_SYNC_NONE) { 1900 lock_buffer(bh); 1901 } else if (!trylock_buffer(bh)) { 1902 folio_redirty_for_writepage(wbc, folio); 1903 continue; 1904 } 1905 if (test_clear_buffer_dirty(bh)) { 1906 mark_buffer_async_write_endio(bh, handler); 1907 } else { 1908 unlock_buffer(bh); 1909 } 1910 } while ((bh = bh->b_this_page) != head); 1911 1912 /* 1913 * The folio and its buffers are protected by the writeback flag, 1914 * so we can drop the bh refcounts early. 1915 */ 1916 BUG_ON(folio_test_writeback(folio)); 1917 folio_start_writeback(folio); 1918 1919 do { 1920 struct buffer_head *next = bh->b_this_page; 1921 if (buffer_async_write(bh)) { 1922 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1923 nr_underway++; 1924 } 1925 bh = next; 1926 } while (bh != head); 1927 folio_unlock(folio); 1928 1929 err = 0; 1930 done: 1931 if (nr_underway == 0) { 1932 /* 1933 * The folio was marked dirty, but the buffers were 1934 * clean. Someone wrote them back by hand with 1935 * write_dirty_buffer/submit_bh. A rare case. 1936 */ 1937 folio_end_writeback(folio); 1938 1939 /* 1940 * The folio and buffer_heads can be released at any time from 1941 * here on. 1942 */ 1943 } 1944 return err; 1945 1946 recover: 1947 /* 1948 * ENOSPC, or some other error. We may already have added some 1949 * blocks to the file, so we need to write these out to avoid 1950 * exposing stale data. 1951 * The folio is currently locked and not marked for writeback 1952 */ 1953 bh = head; 1954 /* Recovery: lock and submit the mapped buffers */ 1955 do { 1956 if (buffer_mapped(bh) && buffer_dirty(bh) && 1957 !buffer_delay(bh)) { 1958 lock_buffer(bh); 1959 mark_buffer_async_write_endio(bh, handler); 1960 } else { 1961 /* 1962 * The buffer may have been set dirty during 1963 * attachment to a dirty folio. 1964 */ 1965 clear_buffer_dirty(bh); 1966 } 1967 } while ((bh = bh->b_this_page) != head); 1968 folio_set_error(folio); 1969 BUG_ON(folio_test_writeback(folio)); 1970 mapping_set_error(folio->mapping, err); 1971 folio_start_writeback(folio); 1972 do { 1973 struct buffer_head *next = bh->b_this_page; 1974 if (buffer_async_write(bh)) { 1975 clear_buffer_dirty(bh); 1976 submit_bh_wbc(REQ_OP_WRITE | write_flags, bh, wbc); 1977 nr_underway++; 1978 } 1979 bh = next; 1980 } while (bh != head); 1981 folio_unlock(folio); 1982 goto done; 1983 } 1984 EXPORT_SYMBOL(__block_write_full_folio); 1985 1986 /* 1987 * If a folio has any new buffers, zero them out here, and mark them uptodate 1988 * and dirty so they'll be written out (in order to prevent uninitialised 1989 * block data from leaking). And clear the new bit. 1990 */ 1991 void folio_zero_new_buffers(struct folio *folio, size_t from, size_t to) 1992 { 1993 size_t block_start, block_end; 1994 struct buffer_head *head, *bh; 1995 1996 BUG_ON(!folio_test_locked(folio)); 1997 head = folio_buffers(folio); 1998 if (!head) 1999 return; 2000 2001 bh = head; 2002 block_start = 0; 2003 do { 2004 block_end = block_start + bh->b_size; 2005 2006 if (buffer_new(bh)) { 2007 if (block_end > from && block_start < to) { 2008 if (!folio_test_uptodate(folio)) { 2009 size_t start, xend; 2010 2011 start = max(from, block_start); 2012 xend = min(to, block_end); 2013 2014 folio_zero_segment(folio, start, xend); 2015 set_buffer_uptodate(bh); 2016 } 2017 2018 clear_buffer_new(bh); 2019 mark_buffer_dirty(bh); 2020 } 2021 } 2022 2023 block_start = block_end; 2024 bh = bh->b_this_page; 2025 } while (bh != head); 2026 } 2027 EXPORT_SYMBOL(folio_zero_new_buffers); 2028 2029 static void 2030 iomap_to_bh(struct inode *inode, sector_t block, struct buffer_head *bh, 2031 const struct iomap *iomap) 2032 { 2033 loff_t offset = block << inode->i_blkbits; 2034 2035 bh->b_bdev = iomap->bdev; 2036 2037 /* 2038 * Block points to offset in file we need to map, iomap contains 2039 * the offset at which the map starts. If the map ends before the 2040 * current block, then do not map the buffer and let the caller 2041 * handle it. 2042 */ 2043 BUG_ON(offset >= iomap->offset + iomap->length); 2044 2045 switch (iomap->type) { 2046 case IOMAP_HOLE: 2047 /* 2048 * If the buffer is not up to date or beyond the current EOF, 2049 * we need to mark it as new to ensure sub-block zeroing is 2050 * executed if necessary. 2051 */ 2052 if (!buffer_uptodate(bh) || 2053 (offset >= i_size_read(inode))) 2054 set_buffer_new(bh); 2055 break; 2056 case IOMAP_DELALLOC: 2057 if (!buffer_uptodate(bh) || 2058 (offset >= i_size_read(inode))) 2059 set_buffer_new(bh); 2060 set_buffer_uptodate(bh); 2061 set_buffer_mapped(bh); 2062 set_buffer_delay(bh); 2063 break; 2064 case IOMAP_UNWRITTEN: 2065 /* 2066 * For unwritten regions, we always need to ensure that regions 2067 * in the block we are not writing to are zeroed. Mark the 2068 * buffer as new to ensure this. 2069 */ 2070 set_buffer_new(bh); 2071 set_buffer_unwritten(bh); 2072 fallthrough; 2073 case IOMAP_MAPPED: 2074 if ((iomap->flags & IOMAP_F_NEW) || 2075 offset >= i_size_read(inode)) 2076 set_buffer_new(bh); 2077 bh->b_blocknr = (iomap->addr + offset - iomap->offset) >> 2078 inode->i_blkbits; 2079 set_buffer_mapped(bh); 2080 break; 2081 } 2082 } 2083 2084 int __block_write_begin_int(struct folio *folio, loff_t pos, unsigned len, 2085 get_block_t *get_block, const struct iomap *iomap) 2086 { 2087 unsigned from = pos & (PAGE_SIZE - 1); 2088 unsigned to = from + len; 2089 struct inode *inode = folio->mapping->host; 2090 unsigned block_start, block_end; 2091 sector_t block; 2092 int err = 0; 2093 unsigned blocksize, bbits; 2094 struct buffer_head *bh, *head, *wait[2], **wait_bh=wait; 2095 2096 BUG_ON(!folio_test_locked(folio)); 2097 BUG_ON(from > PAGE_SIZE); 2098 BUG_ON(to > PAGE_SIZE); 2099 BUG_ON(from > to); 2100 2101 head = folio_create_buffers(folio, inode, 0); 2102 blocksize = head->b_size; 2103 bbits = block_size_bits(blocksize); 2104 2105 block = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2106 2107 for(bh = head, block_start = 0; bh != head || !block_start; 2108 block++, block_start=block_end, bh = bh->b_this_page) { 2109 block_end = block_start + blocksize; 2110 if (block_end <= from || block_start >= to) { 2111 if (folio_test_uptodate(folio)) { 2112 if (!buffer_uptodate(bh)) 2113 set_buffer_uptodate(bh); 2114 } 2115 continue; 2116 } 2117 if (buffer_new(bh)) 2118 clear_buffer_new(bh); 2119 if (!buffer_mapped(bh)) { 2120 WARN_ON(bh->b_size != blocksize); 2121 if (get_block) { 2122 err = get_block(inode, block, bh, 1); 2123 if (err) 2124 break; 2125 } else { 2126 iomap_to_bh(inode, block, bh, iomap); 2127 } 2128 2129 if (buffer_new(bh)) { 2130 clean_bdev_bh_alias(bh); 2131 if (folio_test_uptodate(folio)) { 2132 clear_buffer_new(bh); 2133 set_buffer_uptodate(bh); 2134 mark_buffer_dirty(bh); 2135 continue; 2136 } 2137 if (block_end > to || block_start < from) 2138 folio_zero_segments(folio, 2139 to, block_end, 2140 block_start, from); 2141 continue; 2142 } 2143 } 2144 if (folio_test_uptodate(folio)) { 2145 if (!buffer_uptodate(bh)) 2146 set_buffer_uptodate(bh); 2147 continue; 2148 } 2149 if (!buffer_uptodate(bh) && !buffer_delay(bh) && 2150 !buffer_unwritten(bh) && 2151 (block_start < from || block_end > to)) { 2152 bh_read_nowait(bh, 0); 2153 *wait_bh++=bh; 2154 } 2155 } 2156 /* 2157 * If we issued read requests - let them complete. 2158 */ 2159 while(wait_bh > wait) { 2160 wait_on_buffer(*--wait_bh); 2161 if (!buffer_uptodate(*wait_bh)) 2162 err = -EIO; 2163 } 2164 if (unlikely(err)) 2165 folio_zero_new_buffers(folio, from, to); 2166 return err; 2167 } 2168 2169 int __block_write_begin(struct page *page, loff_t pos, unsigned len, 2170 get_block_t *get_block) 2171 { 2172 return __block_write_begin_int(page_folio(page), pos, len, get_block, 2173 NULL); 2174 } 2175 EXPORT_SYMBOL(__block_write_begin); 2176 2177 static int __block_commit_write(struct inode *inode, struct folio *folio, 2178 size_t from, size_t to) 2179 { 2180 size_t block_start, block_end; 2181 bool partial = false; 2182 unsigned blocksize; 2183 struct buffer_head *bh, *head; 2184 2185 bh = head = folio_buffers(folio); 2186 blocksize = bh->b_size; 2187 2188 block_start = 0; 2189 do { 2190 block_end = block_start + blocksize; 2191 if (block_end <= from || block_start >= to) { 2192 if (!buffer_uptodate(bh)) 2193 partial = true; 2194 } else { 2195 set_buffer_uptodate(bh); 2196 mark_buffer_dirty(bh); 2197 } 2198 if (buffer_new(bh)) 2199 clear_buffer_new(bh); 2200 2201 block_start = block_end; 2202 bh = bh->b_this_page; 2203 } while (bh != head); 2204 2205 /* 2206 * If this is a partial write which happened to make all buffers 2207 * uptodate then we can optimize away a bogus read_folio() for 2208 * the next read(). Here we 'discover' whether the folio went 2209 * uptodate as a result of this (potentially partial) write. 2210 */ 2211 if (!partial) 2212 folio_mark_uptodate(folio); 2213 return 0; 2214 } 2215 2216 /* 2217 * block_write_begin takes care of the basic task of block allocation and 2218 * bringing partial write blocks uptodate first. 2219 * 2220 * The filesystem needs to handle block truncation upon failure. 2221 */ 2222 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len, 2223 struct page **pagep, get_block_t *get_block) 2224 { 2225 pgoff_t index = pos >> PAGE_SHIFT; 2226 struct page *page; 2227 int status; 2228 2229 page = grab_cache_page_write_begin(mapping, index); 2230 if (!page) 2231 return -ENOMEM; 2232 2233 status = __block_write_begin(page, pos, len, get_block); 2234 if (unlikely(status)) { 2235 unlock_page(page); 2236 put_page(page); 2237 page = NULL; 2238 } 2239 2240 *pagep = page; 2241 return status; 2242 } 2243 EXPORT_SYMBOL(block_write_begin); 2244 2245 int block_write_end(struct file *file, struct address_space *mapping, 2246 loff_t pos, unsigned len, unsigned copied, 2247 struct page *page, void *fsdata) 2248 { 2249 struct folio *folio = page_folio(page); 2250 struct inode *inode = mapping->host; 2251 size_t start = pos - folio_pos(folio); 2252 2253 if (unlikely(copied < len)) { 2254 /* 2255 * The buffers that were written will now be uptodate, so 2256 * we don't have to worry about a read_folio reading them 2257 * and overwriting a partial write. However if we have 2258 * encountered a short write and only partially written 2259 * into a buffer, it will not be marked uptodate, so a 2260 * read_folio might come in and destroy our partial write. 2261 * 2262 * Do the simplest thing, and just treat any short write to a 2263 * non uptodate folio as a zero-length write, and force the 2264 * caller to redo the whole thing. 2265 */ 2266 if (!folio_test_uptodate(folio)) 2267 copied = 0; 2268 2269 folio_zero_new_buffers(folio, start+copied, start+len); 2270 } 2271 flush_dcache_folio(folio); 2272 2273 /* This could be a short (even 0-length) commit */ 2274 __block_commit_write(inode, folio, start, start + copied); 2275 2276 return copied; 2277 } 2278 EXPORT_SYMBOL(block_write_end); 2279 2280 int generic_write_end(struct file *file, struct address_space *mapping, 2281 loff_t pos, unsigned len, unsigned copied, 2282 struct page *page, void *fsdata) 2283 { 2284 struct inode *inode = mapping->host; 2285 loff_t old_size = inode->i_size; 2286 bool i_size_changed = false; 2287 2288 copied = block_write_end(file, mapping, pos, len, copied, page, fsdata); 2289 2290 /* 2291 * No need to use i_size_read() here, the i_size cannot change under us 2292 * because we hold i_rwsem. 2293 * 2294 * But it's important to update i_size while still holding page lock: 2295 * page writeout could otherwise come in and zero beyond i_size. 2296 */ 2297 if (pos + copied > inode->i_size) { 2298 i_size_write(inode, pos + copied); 2299 i_size_changed = true; 2300 } 2301 2302 unlock_page(page); 2303 put_page(page); 2304 2305 if (old_size < pos) 2306 pagecache_isize_extended(inode, old_size, pos); 2307 /* 2308 * Don't mark the inode dirty under page lock. First, it unnecessarily 2309 * makes the holding time of page lock longer. Second, it forces lock 2310 * ordering of page lock and transaction start for journaling 2311 * filesystems. 2312 */ 2313 if (i_size_changed) 2314 mark_inode_dirty(inode); 2315 return copied; 2316 } 2317 EXPORT_SYMBOL(generic_write_end); 2318 2319 /* 2320 * block_is_partially_uptodate checks whether buffers within a folio are 2321 * uptodate or not. 2322 * 2323 * Returns true if all buffers which correspond to the specified part 2324 * of the folio are uptodate. 2325 */ 2326 bool block_is_partially_uptodate(struct folio *folio, size_t from, size_t count) 2327 { 2328 unsigned block_start, block_end, blocksize; 2329 unsigned to; 2330 struct buffer_head *bh, *head; 2331 bool ret = true; 2332 2333 head = folio_buffers(folio); 2334 if (!head) 2335 return false; 2336 blocksize = head->b_size; 2337 to = min_t(unsigned, folio_size(folio) - from, count); 2338 to = from + to; 2339 if (from < blocksize && to > folio_size(folio) - blocksize) 2340 return false; 2341 2342 bh = head; 2343 block_start = 0; 2344 do { 2345 block_end = block_start + blocksize; 2346 if (block_end > from && block_start < to) { 2347 if (!buffer_uptodate(bh)) { 2348 ret = false; 2349 break; 2350 } 2351 if (block_end >= to) 2352 break; 2353 } 2354 block_start = block_end; 2355 bh = bh->b_this_page; 2356 } while (bh != head); 2357 2358 return ret; 2359 } 2360 EXPORT_SYMBOL(block_is_partially_uptodate); 2361 2362 /* 2363 * Generic "read_folio" function for block devices that have the normal 2364 * get_block functionality. This is most of the block device filesystems. 2365 * Reads the folio asynchronously --- the unlock_buffer() and 2366 * set/clear_buffer_uptodate() functions propagate buffer state into the 2367 * folio once IO has completed. 2368 */ 2369 int block_read_full_folio(struct folio *folio, get_block_t *get_block) 2370 { 2371 struct inode *inode = folio->mapping->host; 2372 sector_t iblock, lblock; 2373 struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE]; 2374 unsigned int blocksize, bbits; 2375 int nr, i; 2376 int fully_mapped = 1; 2377 bool page_error = false; 2378 loff_t limit = i_size_read(inode); 2379 2380 /* This is needed for ext4. */ 2381 if (IS_ENABLED(CONFIG_FS_VERITY) && IS_VERITY(inode)) 2382 limit = inode->i_sb->s_maxbytes; 2383 2384 VM_BUG_ON_FOLIO(folio_test_large(folio), folio); 2385 2386 head = folio_create_buffers(folio, inode, 0); 2387 blocksize = head->b_size; 2388 bbits = block_size_bits(blocksize); 2389 2390 iblock = (sector_t)folio->index << (PAGE_SHIFT - bbits); 2391 lblock = (limit+blocksize-1) >> bbits; 2392 bh = head; 2393 nr = 0; 2394 i = 0; 2395 2396 do { 2397 if (buffer_uptodate(bh)) 2398 continue; 2399 2400 if (!buffer_mapped(bh)) { 2401 int err = 0; 2402 2403 fully_mapped = 0; 2404 if (iblock < lblock) { 2405 WARN_ON(bh->b_size != blocksize); 2406 err = get_block(inode, iblock, bh, 0); 2407 if (err) { 2408 folio_set_error(folio); 2409 page_error = true; 2410 } 2411 } 2412 if (!buffer_mapped(bh)) { 2413 folio_zero_range(folio, i * blocksize, 2414 blocksize); 2415 if (!err) 2416 set_buffer_uptodate(bh); 2417 continue; 2418 } 2419 /* 2420 * get_block() might have updated the buffer 2421 * synchronously 2422 */ 2423 if (buffer_uptodate(bh)) 2424 continue; 2425 } 2426 arr[nr++] = bh; 2427 } while (i++, iblock++, (bh = bh->b_this_page) != head); 2428 2429 if (fully_mapped) 2430 folio_set_mappedtodisk(folio); 2431 2432 if (!nr) { 2433 /* 2434 * All buffers are uptodate - we can set the folio uptodate 2435 * as well. But not if get_block() returned an error. 2436 */ 2437 if (!page_error) 2438 folio_mark_uptodate(folio); 2439 folio_unlock(folio); 2440 return 0; 2441 } 2442 2443 /* Stage two: lock the buffers */ 2444 for (i = 0; i < nr; i++) { 2445 bh = arr[i]; 2446 lock_buffer(bh); 2447 mark_buffer_async_read(bh); 2448 } 2449 2450 /* 2451 * Stage 3: start the IO. Check for uptodateness 2452 * inside the buffer lock in case another process reading 2453 * the underlying blockdev brought it uptodate (the sct fix). 2454 */ 2455 for (i = 0; i < nr; i++) { 2456 bh = arr[i]; 2457 if (buffer_uptodate(bh)) 2458 end_buffer_async_read(bh, 1); 2459 else 2460 submit_bh(REQ_OP_READ, bh); 2461 } 2462 return 0; 2463 } 2464 EXPORT_SYMBOL(block_read_full_folio); 2465 2466 /* utility function for filesystems that need to do work on expanding 2467 * truncates. Uses filesystem pagecache writes to allow the filesystem to 2468 * deal with the hole. 2469 */ 2470 int generic_cont_expand_simple(struct inode *inode, loff_t size) 2471 { 2472 struct address_space *mapping = inode->i_mapping; 2473 const struct address_space_operations *aops = mapping->a_ops; 2474 struct page *page; 2475 void *fsdata = NULL; 2476 int err; 2477 2478 err = inode_newsize_ok(inode, size); 2479 if (err) 2480 goto out; 2481 2482 err = aops->write_begin(NULL, mapping, size, 0, &page, &fsdata); 2483 if (err) 2484 goto out; 2485 2486 err = aops->write_end(NULL, mapping, size, 0, 0, page, fsdata); 2487 BUG_ON(err > 0); 2488 2489 out: 2490 return err; 2491 } 2492 EXPORT_SYMBOL(generic_cont_expand_simple); 2493 2494 static int cont_expand_zero(struct file *file, struct address_space *mapping, 2495 loff_t pos, loff_t *bytes) 2496 { 2497 struct inode *inode = mapping->host; 2498 const struct address_space_operations *aops = mapping->a_ops; 2499 unsigned int blocksize = i_blocksize(inode); 2500 struct page *page; 2501 void *fsdata = NULL; 2502 pgoff_t index, curidx; 2503 loff_t curpos; 2504 unsigned zerofrom, offset, len; 2505 int err = 0; 2506 2507 index = pos >> PAGE_SHIFT; 2508 offset = pos & ~PAGE_MASK; 2509 2510 while (index > (curidx = (curpos = *bytes)>>PAGE_SHIFT)) { 2511 zerofrom = curpos & ~PAGE_MASK; 2512 if (zerofrom & (blocksize-1)) { 2513 *bytes |= (blocksize-1); 2514 (*bytes)++; 2515 } 2516 len = PAGE_SIZE - zerofrom; 2517 2518 err = aops->write_begin(file, mapping, curpos, len, 2519 &page, &fsdata); 2520 if (err) 2521 goto out; 2522 zero_user(page, zerofrom, len); 2523 err = aops->write_end(file, mapping, curpos, len, len, 2524 page, fsdata); 2525 if (err < 0) 2526 goto out; 2527 BUG_ON(err != len); 2528 err = 0; 2529 2530 balance_dirty_pages_ratelimited(mapping); 2531 2532 if (fatal_signal_pending(current)) { 2533 err = -EINTR; 2534 goto out; 2535 } 2536 } 2537 2538 /* page covers the boundary, find the boundary offset */ 2539 if (index == curidx) { 2540 zerofrom = curpos & ~PAGE_MASK; 2541 /* if we will expand the thing last block will be filled */ 2542 if (offset <= zerofrom) { 2543 goto out; 2544 } 2545 if (zerofrom & (blocksize-1)) { 2546 *bytes |= (blocksize-1); 2547 (*bytes)++; 2548 } 2549 len = offset - zerofrom; 2550 2551 err = aops->write_begin(file, mapping, curpos, len, 2552 &page, &fsdata); 2553 if (err) 2554 goto out; 2555 zero_user(page, zerofrom, len); 2556 err = aops->write_end(file, mapping, curpos, len, len, 2557 page, fsdata); 2558 if (err < 0) 2559 goto out; 2560 BUG_ON(err != len); 2561 err = 0; 2562 } 2563 out: 2564 return err; 2565 } 2566 2567 /* 2568 * For moronic filesystems that do not allow holes in file. 2569 * We may have to extend the file. 2570 */ 2571 int cont_write_begin(struct file *file, struct address_space *mapping, 2572 loff_t pos, unsigned len, 2573 struct page **pagep, void **fsdata, 2574 get_block_t *get_block, loff_t *bytes) 2575 { 2576 struct inode *inode = mapping->host; 2577 unsigned int blocksize = i_blocksize(inode); 2578 unsigned int zerofrom; 2579 int err; 2580 2581 err = cont_expand_zero(file, mapping, pos, bytes); 2582 if (err) 2583 return err; 2584 2585 zerofrom = *bytes & ~PAGE_MASK; 2586 if (pos+len > *bytes && zerofrom & (blocksize-1)) { 2587 *bytes |= (blocksize-1); 2588 (*bytes)++; 2589 } 2590 2591 return block_write_begin(mapping, pos, len, pagep, get_block); 2592 } 2593 EXPORT_SYMBOL(cont_write_begin); 2594 2595 int block_commit_write(struct page *page, unsigned from, unsigned to) 2596 { 2597 struct folio *folio = page_folio(page); 2598 struct inode *inode = folio->mapping->host; 2599 __block_commit_write(inode, folio, from, to); 2600 return 0; 2601 } 2602 EXPORT_SYMBOL(block_commit_write); 2603 2604 /* 2605 * block_page_mkwrite() is not allowed to change the file size as it gets 2606 * called from a page fault handler when a page is first dirtied. Hence we must 2607 * be careful to check for EOF conditions here. We set the page up correctly 2608 * for a written page which means we get ENOSPC checking when writing into 2609 * holes and correct delalloc and unwritten extent mapping on filesystems that 2610 * support these features. 2611 * 2612 * We are not allowed to take the i_mutex here so we have to play games to 2613 * protect against truncate races as the page could now be beyond EOF. Because 2614 * truncate writes the inode size before removing pages, once we have the 2615 * page lock we can determine safely if the page is beyond EOF. If it is not 2616 * beyond EOF, then the page is guaranteed safe against truncation until we 2617 * unlock the page. 2618 * 2619 * Direct callers of this function should protect against filesystem freezing 2620 * using sb_start_pagefault() - sb_end_pagefault() functions. 2621 */ 2622 int block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf, 2623 get_block_t get_block) 2624 { 2625 struct folio *folio = page_folio(vmf->page); 2626 struct inode *inode = file_inode(vma->vm_file); 2627 unsigned long end; 2628 loff_t size; 2629 int ret; 2630 2631 folio_lock(folio); 2632 size = i_size_read(inode); 2633 if ((folio->mapping != inode->i_mapping) || 2634 (folio_pos(folio) >= size)) { 2635 /* We overload EFAULT to mean page got truncated */ 2636 ret = -EFAULT; 2637 goto out_unlock; 2638 } 2639 2640 end = folio_size(folio); 2641 /* folio is wholly or partially inside EOF */ 2642 if (folio_pos(folio) + end > size) 2643 end = size - folio_pos(folio); 2644 2645 ret = __block_write_begin_int(folio, 0, end, get_block, NULL); 2646 if (!ret) 2647 ret = __block_commit_write(inode, folio, 0, end); 2648 2649 if (unlikely(ret < 0)) 2650 goto out_unlock; 2651 folio_mark_dirty(folio); 2652 folio_wait_stable(folio); 2653 return 0; 2654 out_unlock: 2655 folio_unlock(folio); 2656 return ret; 2657 } 2658 EXPORT_SYMBOL(block_page_mkwrite); 2659 2660 int block_truncate_page(struct address_space *mapping, 2661 loff_t from, get_block_t *get_block) 2662 { 2663 pgoff_t index = from >> PAGE_SHIFT; 2664 unsigned blocksize; 2665 sector_t iblock; 2666 size_t offset, length, pos; 2667 struct inode *inode = mapping->host; 2668 struct folio *folio; 2669 struct buffer_head *bh; 2670 int err = 0; 2671 2672 blocksize = i_blocksize(inode); 2673 length = from & (blocksize - 1); 2674 2675 /* Block boundary? Nothing to do */ 2676 if (!length) 2677 return 0; 2678 2679 length = blocksize - length; 2680 iblock = (sector_t)index << (PAGE_SHIFT - inode->i_blkbits); 2681 2682 folio = filemap_grab_folio(mapping, index); 2683 if (IS_ERR(folio)) 2684 return PTR_ERR(folio); 2685 2686 bh = folio_buffers(folio); 2687 if (!bh) { 2688 folio_create_empty_buffers(folio, blocksize, 0); 2689 bh = folio_buffers(folio); 2690 } 2691 2692 /* Find the buffer that contains "offset" */ 2693 offset = offset_in_folio(folio, from); 2694 pos = blocksize; 2695 while (offset >= pos) { 2696 bh = bh->b_this_page; 2697 iblock++; 2698 pos += blocksize; 2699 } 2700 2701 if (!buffer_mapped(bh)) { 2702 WARN_ON(bh->b_size != blocksize); 2703 err = get_block(inode, iblock, bh, 0); 2704 if (err) 2705 goto unlock; 2706 /* unmapped? It's a hole - nothing to do */ 2707 if (!buffer_mapped(bh)) 2708 goto unlock; 2709 } 2710 2711 /* Ok, it's mapped. Make sure it's up-to-date */ 2712 if (folio_test_uptodate(folio)) 2713 set_buffer_uptodate(bh); 2714 2715 if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) { 2716 err = bh_read(bh, 0); 2717 /* Uhhuh. Read error. Complain and punt. */ 2718 if (err < 0) 2719 goto unlock; 2720 } 2721 2722 folio_zero_range(folio, offset, length); 2723 mark_buffer_dirty(bh); 2724 2725 unlock: 2726 folio_unlock(folio); 2727 folio_put(folio); 2728 2729 return err; 2730 } 2731 EXPORT_SYMBOL(block_truncate_page); 2732 2733 /* 2734 * The generic ->writepage function for buffer-backed address_spaces 2735 */ 2736 int block_write_full_page(struct page *page, get_block_t *get_block, 2737 struct writeback_control *wbc) 2738 { 2739 struct folio *folio = page_folio(page); 2740 struct inode * const inode = folio->mapping->host; 2741 loff_t i_size = i_size_read(inode); 2742 2743 /* Is the folio fully inside i_size? */ 2744 if (folio_pos(folio) + folio_size(folio) <= i_size) 2745 return __block_write_full_folio(inode, folio, get_block, wbc, 2746 end_buffer_async_write); 2747 2748 /* Is the folio fully outside i_size? (truncate in progress) */ 2749 if (folio_pos(folio) >= i_size) { 2750 folio_unlock(folio); 2751 return 0; /* don't care */ 2752 } 2753 2754 /* 2755 * The folio straddles i_size. It must be zeroed out on each and every 2756 * writepage invocation because it may be mmapped. "A file is mapped 2757 * in multiples of the page size. For a file that is not a multiple of 2758 * the page size, the remaining memory is zeroed when mapped, and 2759 * writes to that region are not written out to the file." 2760 */ 2761 folio_zero_segment(folio, offset_in_folio(folio, i_size), 2762 folio_size(folio)); 2763 return __block_write_full_folio(inode, folio, get_block, wbc, 2764 end_buffer_async_write); 2765 } 2766 EXPORT_SYMBOL(block_write_full_page); 2767 2768 sector_t generic_block_bmap(struct address_space *mapping, sector_t block, 2769 get_block_t *get_block) 2770 { 2771 struct inode *inode = mapping->host; 2772 struct buffer_head tmp = { 2773 .b_size = i_blocksize(inode), 2774 }; 2775 2776 get_block(inode, block, &tmp, 0); 2777 return tmp.b_blocknr; 2778 } 2779 EXPORT_SYMBOL(generic_block_bmap); 2780 2781 static void end_bio_bh_io_sync(struct bio *bio) 2782 { 2783 struct buffer_head *bh = bio->bi_private; 2784 2785 if (unlikely(bio_flagged(bio, BIO_QUIET))) 2786 set_bit(BH_Quiet, &bh->b_state); 2787 2788 bh->b_end_io(bh, !bio->bi_status); 2789 bio_put(bio); 2790 } 2791 2792 static void submit_bh_wbc(blk_opf_t opf, struct buffer_head *bh, 2793 struct writeback_control *wbc) 2794 { 2795 const enum req_op op = opf & REQ_OP_MASK; 2796 struct bio *bio; 2797 2798 BUG_ON(!buffer_locked(bh)); 2799 BUG_ON(!buffer_mapped(bh)); 2800 BUG_ON(!bh->b_end_io); 2801 BUG_ON(buffer_delay(bh)); 2802 BUG_ON(buffer_unwritten(bh)); 2803 2804 /* 2805 * Only clear out a write error when rewriting 2806 */ 2807 if (test_set_buffer_req(bh) && (op == REQ_OP_WRITE)) 2808 clear_buffer_write_io_error(bh); 2809 2810 if (buffer_meta(bh)) 2811 opf |= REQ_META; 2812 if (buffer_prio(bh)) 2813 opf |= REQ_PRIO; 2814 2815 bio = bio_alloc(bh->b_bdev, 1, opf, GFP_NOIO); 2816 2817 fscrypt_set_bio_crypt_ctx_bh(bio, bh, GFP_NOIO); 2818 2819 bio->bi_iter.bi_sector = bh->b_blocknr * (bh->b_size >> 9); 2820 2821 __bio_add_page(bio, bh->b_page, bh->b_size, bh_offset(bh)); 2822 2823 bio->bi_end_io = end_bio_bh_io_sync; 2824 bio->bi_private = bh; 2825 2826 /* Take care of bh's that straddle the end of the device */ 2827 guard_bio_eod(bio); 2828 2829 if (wbc) { 2830 wbc_init_bio(wbc, bio); 2831 wbc_account_cgroup_owner(wbc, bh->b_page, bh->b_size); 2832 } 2833 2834 submit_bio(bio); 2835 } 2836 2837 void submit_bh(blk_opf_t opf, struct buffer_head *bh) 2838 { 2839 submit_bh_wbc(opf, bh, NULL); 2840 } 2841 EXPORT_SYMBOL(submit_bh); 2842 2843 void write_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2844 { 2845 lock_buffer(bh); 2846 if (!test_clear_buffer_dirty(bh)) { 2847 unlock_buffer(bh); 2848 return; 2849 } 2850 bh->b_end_io = end_buffer_write_sync; 2851 get_bh(bh); 2852 submit_bh(REQ_OP_WRITE | op_flags, bh); 2853 } 2854 EXPORT_SYMBOL(write_dirty_buffer); 2855 2856 /* 2857 * For a data-integrity writeout, we need to wait upon any in-progress I/O 2858 * and then start new I/O and then wait upon it. The caller must have a ref on 2859 * the buffer_head. 2860 */ 2861 int __sync_dirty_buffer(struct buffer_head *bh, blk_opf_t op_flags) 2862 { 2863 WARN_ON(atomic_read(&bh->b_count) < 1); 2864 lock_buffer(bh); 2865 if (test_clear_buffer_dirty(bh)) { 2866 /* 2867 * The bh should be mapped, but it might not be if the 2868 * device was hot-removed. Not much we can do but fail the I/O. 2869 */ 2870 if (!buffer_mapped(bh)) { 2871 unlock_buffer(bh); 2872 return -EIO; 2873 } 2874 2875 get_bh(bh); 2876 bh->b_end_io = end_buffer_write_sync; 2877 submit_bh(REQ_OP_WRITE | op_flags, bh); 2878 wait_on_buffer(bh); 2879 if (!buffer_uptodate(bh)) 2880 return -EIO; 2881 } else { 2882 unlock_buffer(bh); 2883 } 2884 return 0; 2885 } 2886 EXPORT_SYMBOL(__sync_dirty_buffer); 2887 2888 int sync_dirty_buffer(struct buffer_head *bh) 2889 { 2890 return __sync_dirty_buffer(bh, REQ_SYNC); 2891 } 2892 EXPORT_SYMBOL(sync_dirty_buffer); 2893 2894 /* 2895 * try_to_free_buffers() checks if all the buffers on this particular folio 2896 * are unused, and releases them if so. 2897 * 2898 * Exclusion against try_to_free_buffers may be obtained by either 2899 * locking the folio or by holding its mapping's private_lock. 2900 * 2901 * If the folio is dirty but all the buffers are clean then we need to 2902 * be sure to mark the folio clean as well. This is because the folio 2903 * may be against a block device, and a later reattachment of buffers 2904 * to a dirty folio will set *all* buffers dirty. Which would corrupt 2905 * filesystem data on the same device. 2906 * 2907 * The same applies to regular filesystem folios: if all the buffers are 2908 * clean then we set the folio clean and proceed. To do that, we require 2909 * total exclusion from block_dirty_folio(). That is obtained with 2910 * private_lock. 2911 * 2912 * try_to_free_buffers() is non-blocking. 2913 */ 2914 static inline int buffer_busy(struct buffer_head *bh) 2915 { 2916 return atomic_read(&bh->b_count) | 2917 (bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock))); 2918 } 2919 2920 static bool 2921 drop_buffers(struct folio *folio, struct buffer_head **buffers_to_free) 2922 { 2923 struct buffer_head *head = folio_buffers(folio); 2924 struct buffer_head *bh; 2925 2926 bh = head; 2927 do { 2928 if (buffer_busy(bh)) 2929 goto failed; 2930 bh = bh->b_this_page; 2931 } while (bh != head); 2932 2933 do { 2934 struct buffer_head *next = bh->b_this_page; 2935 2936 if (bh->b_assoc_map) 2937 __remove_assoc_queue(bh); 2938 bh = next; 2939 } while (bh != head); 2940 *buffers_to_free = head; 2941 folio_detach_private(folio); 2942 return true; 2943 failed: 2944 return false; 2945 } 2946 2947 bool try_to_free_buffers(struct folio *folio) 2948 { 2949 struct address_space * const mapping = folio->mapping; 2950 struct buffer_head *buffers_to_free = NULL; 2951 bool ret = 0; 2952 2953 BUG_ON(!folio_test_locked(folio)); 2954 if (folio_test_writeback(folio)) 2955 return false; 2956 2957 if (mapping == NULL) { /* can this still happen? */ 2958 ret = drop_buffers(folio, &buffers_to_free); 2959 goto out; 2960 } 2961 2962 spin_lock(&mapping->private_lock); 2963 ret = drop_buffers(folio, &buffers_to_free); 2964 2965 /* 2966 * If the filesystem writes its buffers by hand (eg ext3) 2967 * then we can have clean buffers against a dirty folio. We 2968 * clean the folio here; otherwise the VM will never notice 2969 * that the filesystem did any IO at all. 2970 * 2971 * Also, during truncate, discard_buffer will have marked all 2972 * the folio's buffers clean. We discover that here and clean 2973 * the folio also. 2974 * 2975 * private_lock must be held over this entire operation in order 2976 * to synchronise against block_dirty_folio and prevent the 2977 * dirty bit from being lost. 2978 */ 2979 if (ret) 2980 folio_cancel_dirty(folio); 2981 spin_unlock(&mapping->private_lock); 2982 out: 2983 if (buffers_to_free) { 2984 struct buffer_head *bh = buffers_to_free; 2985 2986 do { 2987 struct buffer_head *next = bh->b_this_page; 2988 free_buffer_head(bh); 2989 bh = next; 2990 } while (bh != buffers_to_free); 2991 } 2992 return ret; 2993 } 2994 EXPORT_SYMBOL(try_to_free_buffers); 2995 2996 /* 2997 * Buffer-head allocation 2998 */ 2999 static struct kmem_cache *bh_cachep __read_mostly; 3000 3001 /* 3002 * Once the number of bh's in the machine exceeds this level, we start 3003 * stripping them in writeback. 3004 */ 3005 static unsigned long max_buffer_heads; 3006 3007 int buffer_heads_over_limit; 3008 3009 struct bh_accounting { 3010 int nr; /* Number of live bh's */ 3011 int ratelimit; /* Limit cacheline bouncing */ 3012 }; 3013 3014 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0}; 3015 3016 static void recalc_bh_state(void) 3017 { 3018 int i; 3019 int tot = 0; 3020 3021 if (__this_cpu_inc_return(bh_accounting.ratelimit) - 1 < 4096) 3022 return; 3023 __this_cpu_write(bh_accounting.ratelimit, 0); 3024 for_each_online_cpu(i) 3025 tot += per_cpu(bh_accounting, i).nr; 3026 buffer_heads_over_limit = (tot > max_buffer_heads); 3027 } 3028 3029 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags) 3030 { 3031 struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags); 3032 if (ret) { 3033 INIT_LIST_HEAD(&ret->b_assoc_buffers); 3034 spin_lock_init(&ret->b_uptodate_lock); 3035 preempt_disable(); 3036 __this_cpu_inc(bh_accounting.nr); 3037 recalc_bh_state(); 3038 preempt_enable(); 3039 } 3040 return ret; 3041 } 3042 EXPORT_SYMBOL(alloc_buffer_head); 3043 3044 void free_buffer_head(struct buffer_head *bh) 3045 { 3046 BUG_ON(!list_empty(&bh->b_assoc_buffers)); 3047 kmem_cache_free(bh_cachep, bh); 3048 preempt_disable(); 3049 __this_cpu_dec(bh_accounting.nr); 3050 recalc_bh_state(); 3051 preempt_enable(); 3052 } 3053 EXPORT_SYMBOL(free_buffer_head); 3054 3055 static int buffer_exit_cpu_dead(unsigned int cpu) 3056 { 3057 int i; 3058 struct bh_lru *b = &per_cpu(bh_lrus, cpu); 3059 3060 for (i = 0; i < BH_LRU_SIZE; i++) { 3061 brelse(b->bhs[i]); 3062 b->bhs[i] = NULL; 3063 } 3064 this_cpu_add(bh_accounting.nr, per_cpu(bh_accounting, cpu).nr); 3065 per_cpu(bh_accounting, cpu).nr = 0; 3066 return 0; 3067 } 3068 3069 /** 3070 * bh_uptodate_or_lock - Test whether the buffer is uptodate 3071 * @bh: struct buffer_head 3072 * 3073 * Return true if the buffer is up-to-date and false, 3074 * with the buffer locked, if not. 3075 */ 3076 int bh_uptodate_or_lock(struct buffer_head *bh) 3077 { 3078 if (!buffer_uptodate(bh)) { 3079 lock_buffer(bh); 3080 if (!buffer_uptodate(bh)) 3081 return 0; 3082 unlock_buffer(bh); 3083 } 3084 return 1; 3085 } 3086 EXPORT_SYMBOL(bh_uptodate_or_lock); 3087 3088 /** 3089 * __bh_read - Submit read for a locked buffer 3090 * @bh: struct buffer_head 3091 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3092 * @wait: wait until reading finish 3093 * 3094 * Returns zero on success or don't wait, and -EIO on error. 3095 */ 3096 int __bh_read(struct buffer_head *bh, blk_opf_t op_flags, bool wait) 3097 { 3098 int ret = 0; 3099 3100 BUG_ON(!buffer_locked(bh)); 3101 3102 get_bh(bh); 3103 bh->b_end_io = end_buffer_read_sync; 3104 submit_bh(REQ_OP_READ | op_flags, bh); 3105 if (wait) { 3106 wait_on_buffer(bh); 3107 if (!buffer_uptodate(bh)) 3108 ret = -EIO; 3109 } 3110 return ret; 3111 } 3112 EXPORT_SYMBOL(__bh_read); 3113 3114 /** 3115 * __bh_read_batch - Submit read for a batch of unlocked buffers 3116 * @nr: entry number of the buffer batch 3117 * @bhs: a batch of struct buffer_head 3118 * @op_flags: appending REQ_OP_* flags besides REQ_OP_READ 3119 * @force_lock: force to get a lock on the buffer if set, otherwise drops any 3120 * buffer that cannot lock. 3121 * 3122 * Returns zero on success or don't wait, and -EIO on error. 3123 */ 3124 void __bh_read_batch(int nr, struct buffer_head *bhs[], 3125 blk_opf_t op_flags, bool force_lock) 3126 { 3127 int i; 3128 3129 for (i = 0; i < nr; i++) { 3130 struct buffer_head *bh = bhs[i]; 3131 3132 if (buffer_uptodate(bh)) 3133 continue; 3134 3135 if (force_lock) 3136 lock_buffer(bh); 3137 else 3138 if (!trylock_buffer(bh)) 3139 continue; 3140 3141 if (buffer_uptodate(bh)) { 3142 unlock_buffer(bh); 3143 continue; 3144 } 3145 3146 bh->b_end_io = end_buffer_read_sync; 3147 get_bh(bh); 3148 submit_bh(REQ_OP_READ | op_flags, bh); 3149 } 3150 } 3151 EXPORT_SYMBOL(__bh_read_batch); 3152 3153 void __init buffer_init(void) 3154 { 3155 unsigned long nrpages; 3156 int ret; 3157 3158 bh_cachep = kmem_cache_create("buffer_head", 3159 sizeof(struct buffer_head), 0, 3160 (SLAB_RECLAIM_ACCOUNT|SLAB_PANIC| 3161 SLAB_MEM_SPREAD), 3162 NULL); 3163 3164 /* 3165 * Limit the bh occupancy to 10% of ZONE_NORMAL 3166 */ 3167 nrpages = (nr_free_buffer_pages() * 10) / 100; 3168 max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head)); 3169 ret = cpuhp_setup_state_nocalls(CPUHP_FS_BUFF_DEAD, "fs/buffer:dead", 3170 NULL, buffer_exit_cpu_dead); 3171 WARN_ON(ret < 0); 3172 } 3173