xref: /openbmc/linux/fs/buffer.c (revision 155130a4f7848b1aac439cab6bda1a175507c71c)
1 /*
2  *  linux/fs/buffer.c
3  *
4  *  Copyright (C) 1991, 1992, 2002  Linus Torvalds
5  */
6 
7 /*
8  * Start bdflush() with kernel_thread not syscall - Paul Gortmaker, 12/95
9  *
10  * Removed a lot of unnecessary code and simplified things now that
11  * the buffer cache isn't our primary cache - Andrew Tridgell 12/96
12  *
13  * Speed up hash, lru, and free list operations.  Use gfp() for allocating
14  * hash table, use SLAB cache for buffer heads. SMP threading.  -DaveM
15  *
16  * Added 32k buffer block sizes - these are required older ARM systems. - RMK
17  *
18  * async buffer flushing, 1999 Andrea Arcangeli <andrea@suse.de>
19  */
20 
21 #include <linux/kernel.h>
22 #include <linux/syscalls.h>
23 #include <linux/fs.h>
24 #include <linux/mm.h>
25 #include <linux/percpu.h>
26 #include <linux/slab.h>
27 #include <linux/capability.h>
28 #include <linux/blkdev.h>
29 #include <linux/file.h>
30 #include <linux/quotaops.h>
31 #include <linux/highmem.h>
32 #include <linux/module.h>
33 #include <linux/writeback.h>
34 #include <linux/hash.h>
35 #include <linux/suspend.h>
36 #include <linux/buffer_head.h>
37 #include <linux/task_io_accounting_ops.h>
38 #include <linux/bio.h>
39 #include <linux/notifier.h>
40 #include <linux/cpu.h>
41 #include <linux/bitops.h>
42 #include <linux/mpage.h>
43 #include <linux/bit_spinlock.h>
44 
45 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list);
46 
47 #define BH_ENTRY(list) list_entry((list), struct buffer_head, b_assoc_buffers)
48 
49 inline void
50 init_buffer(struct buffer_head *bh, bh_end_io_t *handler, void *private)
51 {
52 	bh->b_end_io = handler;
53 	bh->b_private = private;
54 }
55 EXPORT_SYMBOL(init_buffer);
56 
57 static int sync_buffer(void *word)
58 {
59 	struct block_device *bd;
60 	struct buffer_head *bh
61 		= container_of(word, struct buffer_head, b_state);
62 
63 	smp_mb();
64 	bd = bh->b_bdev;
65 	if (bd)
66 		blk_run_address_space(bd->bd_inode->i_mapping);
67 	io_schedule();
68 	return 0;
69 }
70 
71 void __lock_buffer(struct buffer_head *bh)
72 {
73 	wait_on_bit_lock(&bh->b_state, BH_Lock, sync_buffer,
74 							TASK_UNINTERRUPTIBLE);
75 }
76 EXPORT_SYMBOL(__lock_buffer);
77 
78 void unlock_buffer(struct buffer_head *bh)
79 {
80 	clear_bit_unlock(BH_Lock, &bh->b_state);
81 	smp_mb__after_clear_bit();
82 	wake_up_bit(&bh->b_state, BH_Lock);
83 }
84 EXPORT_SYMBOL(unlock_buffer);
85 
86 /*
87  * Block until a buffer comes unlocked.  This doesn't stop it
88  * from becoming locked again - you have to lock it yourself
89  * if you want to preserve its state.
90  */
91 void __wait_on_buffer(struct buffer_head * bh)
92 {
93 	wait_on_bit(&bh->b_state, BH_Lock, sync_buffer, TASK_UNINTERRUPTIBLE);
94 }
95 EXPORT_SYMBOL(__wait_on_buffer);
96 
97 static void
98 __clear_page_buffers(struct page *page)
99 {
100 	ClearPagePrivate(page);
101 	set_page_private(page, 0);
102 	page_cache_release(page);
103 }
104 
105 
106 static int quiet_error(struct buffer_head *bh)
107 {
108 	if (!test_bit(BH_Quiet, &bh->b_state) && printk_ratelimit())
109 		return 0;
110 	return 1;
111 }
112 
113 
114 static void buffer_io_error(struct buffer_head *bh)
115 {
116 	char b[BDEVNAME_SIZE];
117 	printk(KERN_ERR "Buffer I/O error on device %s, logical block %Lu\n",
118 			bdevname(bh->b_bdev, b),
119 			(unsigned long long)bh->b_blocknr);
120 }
121 
122 /*
123  * End-of-IO handler helper function which does not touch the bh after
124  * unlocking it.
125  * Note: unlock_buffer() sort-of does touch the bh after unlocking it, but
126  * a race there is benign: unlock_buffer() only use the bh's address for
127  * hashing after unlocking the buffer, so it doesn't actually touch the bh
128  * itself.
129  */
130 static void __end_buffer_read_notouch(struct buffer_head *bh, int uptodate)
131 {
132 	if (uptodate) {
133 		set_buffer_uptodate(bh);
134 	} else {
135 		/* This happens, due to failed READA attempts. */
136 		clear_buffer_uptodate(bh);
137 	}
138 	unlock_buffer(bh);
139 }
140 
141 /*
142  * Default synchronous end-of-IO handler..  Just mark it up-to-date and
143  * unlock the buffer. This is what ll_rw_block uses too.
144  */
145 void end_buffer_read_sync(struct buffer_head *bh, int uptodate)
146 {
147 	__end_buffer_read_notouch(bh, uptodate);
148 	put_bh(bh);
149 }
150 EXPORT_SYMBOL(end_buffer_read_sync);
151 
152 void end_buffer_write_sync(struct buffer_head *bh, int uptodate)
153 {
154 	char b[BDEVNAME_SIZE];
155 
156 	if (uptodate) {
157 		set_buffer_uptodate(bh);
158 	} else {
159 		if (!buffer_eopnotsupp(bh) && !quiet_error(bh)) {
160 			buffer_io_error(bh);
161 			printk(KERN_WARNING "lost page write due to "
162 					"I/O error on %s\n",
163 				       bdevname(bh->b_bdev, b));
164 		}
165 		set_buffer_write_io_error(bh);
166 		clear_buffer_uptodate(bh);
167 	}
168 	unlock_buffer(bh);
169 	put_bh(bh);
170 }
171 EXPORT_SYMBOL(end_buffer_write_sync);
172 
173 /*
174  * Various filesystems appear to want __find_get_block to be non-blocking.
175  * But it's the page lock which protects the buffers.  To get around this,
176  * we get exclusion from try_to_free_buffers with the blockdev mapping's
177  * private_lock.
178  *
179  * Hack idea: for the blockdev mapping, i_bufferlist_lock contention
180  * may be quite high.  This code could TryLock the page, and if that
181  * succeeds, there is no need to take private_lock. (But if
182  * private_lock is contended then so is mapping->tree_lock).
183  */
184 static struct buffer_head *
185 __find_get_block_slow(struct block_device *bdev, sector_t block)
186 {
187 	struct inode *bd_inode = bdev->bd_inode;
188 	struct address_space *bd_mapping = bd_inode->i_mapping;
189 	struct buffer_head *ret = NULL;
190 	pgoff_t index;
191 	struct buffer_head *bh;
192 	struct buffer_head *head;
193 	struct page *page;
194 	int all_mapped = 1;
195 
196 	index = block >> (PAGE_CACHE_SHIFT - bd_inode->i_blkbits);
197 	page = find_get_page(bd_mapping, index);
198 	if (!page)
199 		goto out;
200 
201 	spin_lock(&bd_mapping->private_lock);
202 	if (!page_has_buffers(page))
203 		goto out_unlock;
204 	head = page_buffers(page);
205 	bh = head;
206 	do {
207 		if (!buffer_mapped(bh))
208 			all_mapped = 0;
209 		else if (bh->b_blocknr == block) {
210 			ret = bh;
211 			get_bh(bh);
212 			goto out_unlock;
213 		}
214 		bh = bh->b_this_page;
215 	} while (bh != head);
216 
217 	/* we might be here because some of the buffers on this page are
218 	 * not mapped.  This is due to various races between
219 	 * file io on the block device and getblk.  It gets dealt with
220 	 * elsewhere, don't buffer_error if we had some unmapped buffers
221 	 */
222 	if (all_mapped) {
223 		printk("__find_get_block_slow() failed. "
224 			"block=%llu, b_blocknr=%llu\n",
225 			(unsigned long long)block,
226 			(unsigned long long)bh->b_blocknr);
227 		printk("b_state=0x%08lx, b_size=%zu\n",
228 			bh->b_state, bh->b_size);
229 		printk("device blocksize: %d\n", 1 << bd_inode->i_blkbits);
230 	}
231 out_unlock:
232 	spin_unlock(&bd_mapping->private_lock);
233 	page_cache_release(page);
234 out:
235 	return ret;
236 }
237 
238 /* If invalidate_buffers() will trash dirty buffers, it means some kind
239    of fs corruption is going on. Trashing dirty data always imply losing
240    information that was supposed to be just stored on the physical layer
241    by the user.
242 
243    Thus invalidate_buffers in general usage is not allwowed to trash
244    dirty buffers. For example ioctl(FLSBLKBUF) expects dirty data to
245    be preserved.  These buffers are simply skipped.
246 
247    We also skip buffers which are still in use.  For example this can
248    happen if a userspace program is reading the block device.
249 
250    NOTE: In the case where the user removed a removable-media-disk even if
251    there's still dirty data not synced on disk (due a bug in the device driver
252    or due an error of the user), by not destroying the dirty buffers we could
253    generate corruption also on the next media inserted, thus a parameter is
254    necessary to handle this case in the most safe way possible (trying
255    to not corrupt also the new disk inserted with the data belonging to
256    the old now corrupted disk). Also for the ramdisk the natural thing
257    to do in order to release the ramdisk memory is to destroy dirty buffers.
258 
259    These are two special cases. Normal usage imply the device driver
260    to issue a sync on the device (without waiting I/O completion) and
261    then an invalidate_buffers call that doesn't trash dirty buffers.
262 
263    For handling cache coherency with the blkdev pagecache the 'update' case
264    is been introduced. It is needed to re-read from disk any pinned
265    buffer. NOTE: re-reading from disk is destructive so we can do it only
266    when we assume nobody is changing the buffercache under our I/O and when
267    we think the disk contains more recent information than the buffercache.
268    The update == 1 pass marks the buffers we need to update, the update == 2
269    pass does the actual I/O. */
270 void invalidate_bdev(struct block_device *bdev)
271 {
272 	struct address_space *mapping = bdev->bd_inode->i_mapping;
273 
274 	if (mapping->nrpages == 0)
275 		return;
276 
277 	invalidate_bh_lrus();
278 	lru_add_drain_all();	/* make sure all lru add caches are flushed */
279 	invalidate_mapping_pages(mapping, 0, -1);
280 }
281 EXPORT_SYMBOL(invalidate_bdev);
282 
283 /*
284  * Kick the writeback threads then try to free up some ZONE_NORMAL memory.
285  */
286 static void free_more_memory(void)
287 {
288 	struct zone *zone;
289 	int nid;
290 
291 	wakeup_flusher_threads(1024);
292 	yield();
293 
294 	for_each_online_node(nid) {
295 		(void)first_zones_zonelist(node_zonelist(nid, GFP_NOFS),
296 						gfp_zone(GFP_NOFS), NULL,
297 						&zone);
298 		if (zone)
299 			try_to_free_pages(node_zonelist(nid, GFP_NOFS), 0,
300 						GFP_NOFS, NULL);
301 	}
302 }
303 
304 /*
305  * I/O completion handler for block_read_full_page() - pages
306  * which come unlocked at the end of I/O.
307  */
308 static void end_buffer_async_read(struct buffer_head *bh, int uptodate)
309 {
310 	unsigned long flags;
311 	struct buffer_head *first;
312 	struct buffer_head *tmp;
313 	struct page *page;
314 	int page_uptodate = 1;
315 
316 	BUG_ON(!buffer_async_read(bh));
317 
318 	page = bh->b_page;
319 	if (uptodate) {
320 		set_buffer_uptodate(bh);
321 	} else {
322 		clear_buffer_uptodate(bh);
323 		if (!quiet_error(bh))
324 			buffer_io_error(bh);
325 		SetPageError(page);
326 	}
327 
328 	/*
329 	 * Be _very_ careful from here on. Bad things can happen if
330 	 * two buffer heads end IO at almost the same time and both
331 	 * decide that the page is now completely done.
332 	 */
333 	first = page_buffers(page);
334 	local_irq_save(flags);
335 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
336 	clear_buffer_async_read(bh);
337 	unlock_buffer(bh);
338 	tmp = bh;
339 	do {
340 		if (!buffer_uptodate(tmp))
341 			page_uptodate = 0;
342 		if (buffer_async_read(tmp)) {
343 			BUG_ON(!buffer_locked(tmp));
344 			goto still_busy;
345 		}
346 		tmp = tmp->b_this_page;
347 	} while (tmp != bh);
348 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
349 	local_irq_restore(flags);
350 
351 	/*
352 	 * If none of the buffers had errors and they are all
353 	 * uptodate then we can set the page uptodate.
354 	 */
355 	if (page_uptodate && !PageError(page))
356 		SetPageUptodate(page);
357 	unlock_page(page);
358 	return;
359 
360 still_busy:
361 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
362 	local_irq_restore(flags);
363 	return;
364 }
365 
366 /*
367  * Completion handler for block_write_full_page() - pages which are unlocked
368  * during I/O, and which have PageWriteback cleared upon I/O completion.
369  */
370 void end_buffer_async_write(struct buffer_head *bh, int uptodate)
371 {
372 	char b[BDEVNAME_SIZE];
373 	unsigned long flags;
374 	struct buffer_head *first;
375 	struct buffer_head *tmp;
376 	struct page *page;
377 
378 	BUG_ON(!buffer_async_write(bh));
379 
380 	page = bh->b_page;
381 	if (uptodate) {
382 		set_buffer_uptodate(bh);
383 	} else {
384 		if (!quiet_error(bh)) {
385 			buffer_io_error(bh);
386 			printk(KERN_WARNING "lost page write due to "
387 					"I/O error on %s\n",
388 			       bdevname(bh->b_bdev, b));
389 		}
390 		set_bit(AS_EIO, &page->mapping->flags);
391 		set_buffer_write_io_error(bh);
392 		clear_buffer_uptodate(bh);
393 		SetPageError(page);
394 	}
395 
396 	first = page_buffers(page);
397 	local_irq_save(flags);
398 	bit_spin_lock(BH_Uptodate_Lock, &first->b_state);
399 
400 	clear_buffer_async_write(bh);
401 	unlock_buffer(bh);
402 	tmp = bh->b_this_page;
403 	while (tmp != bh) {
404 		if (buffer_async_write(tmp)) {
405 			BUG_ON(!buffer_locked(tmp));
406 			goto still_busy;
407 		}
408 		tmp = tmp->b_this_page;
409 	}
410 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
411 	local_irq_restore(flags);
412 	end_page_writeback(page);
413 	return;
414 
415 still_busy:
416 	bit_spin_unlock(BH_Uptodate_Lock, &first->b_state);
417 	local_irq_restore(flags);
418 	return;
419 }
420 EXPORT_SYMBOL(end_buffer_async_write);
421 
422 /*
423  * If a page's buffers are under async readin (end_buffer_async_read
424  * completion) then there is a possibility that another thread of
425  * control could lock one of the buffers after it has completed
426  * but while some of the other buffers have not completed.  This
427  * locked buffer would confuse end_buffer_async_read() into not unlocking
428  * the page.  So the absence of BH_Async_Read tells end_buffer_async_read()
429  * that this buffer is not under async I/O.
430  *
431  * The page comes unlocked when it has no locked buffer_async buffers
432  * left.
433  *
434  * PageLocked prevents anyone starting new async I/O reads any of
435  * the buffers.
436  *
437  * PageWriteback is used to prevent simultaneous writeout of the same
438  * page.
439  *
440  * PageLocked prevents anyone from starting writeback of a page which is
441  * under read I/O (PageWriteback is only ever set against a locked page).
442  */
443 static void mark_buffer_async_read(struct buffer_head *bh)
444 {
445 	bh->b_end_io = end_buffer_async_read;
446 	set_buffer_async_read(bh);
447 }
448 
449 static void mark_buffer_async_write_endio(struct buffer_head *bh,
450 					  bh_end_io_t *handler)
451 {
452 	bh->b_end_io = handler;
453 	set_buffer_async_write(bh);
454 }
455 
456 void mark_buffer_async_write(struct buffer_head *bh)
457 {
458 	mark_buffer_async_write_endio(bh, end_buffer_async_write);
459 }
460 EXPORT_SYMBOL(mark_buffer_async_write);
461 
462 
463 /*
464  * fs/buffer.c contains helper functions for buffer-backed address space's
465  * fsync functions.  A common requirement for buffer-based filesystems is
466  * that certain data from the backing blockdev needs to be written out for
467  * a successful fsync().  For example, ext2 indirect blocks need to be
468  * written back and waited upon before fsync() returns.
469  *
470  * The functions mark_buffer_inode_dirty(), fsync_inode_buffers(),
471  * inode_has_buffers() and invalidate_inode_buffers() are provided for the
472  * management of a list of dependent buffers at ->i_mapping->private_list.
473  *
474  * Locking is a little subtle: try_to_free_buffers() will remove buffers
475  * from their controlling inode's queue when they are being freed.  But
476  * try_to_free_buffers() will be operating against the *blockdev* mapping
477  * at the time, not against the S_ISREG file which depends on those buffers.
478  * So the locking for private_list is via the private_lock in the address_space
479  * which backs the buffers.  Which is different from the address_space
480  * against which the buffers are listed.  So for a particular address_space,
481  * mapping->private_lock does *not* protect mapping->private_list!  In fact,
482  * mapping->private_list will always be protected by the backing blockdev's
483  * ->private_lock.
484  *
485  * Which introduces a requirement: all buffers on an address_space's
486  * ->private_list must be from the same address_space: the blockdev's.
487  *
488  * address_spaces which do not place buffers at ->private_list via these
489  * utility functions are free to use private_lock and private_list for
490  * whatever they want.  The only requirement is that list_empty(private_list)
491  * be true at clear_inode() time.
492  *
493  * FIXME: clear_inode should not call invalidate_inode_buffers().  The
494  * filesystems should do that.  invalidate_inode_buffers() should just go
495  * BUG_ON(!list_empty).
496  *
497  * FIXME: mark_buffer_dirty_inode() is a data-plane operation.  It should
498  * take an address_space, not an inode.  And it should be called
499  * mark_buffer_dirty_fsync() to clearly define why those buffers are being
500  * queued up.
501  *
502  * FIXME: mark_buffer_dirty_inode() doesn't need to add the buffer to the
503  * list if it is already on a list.  Because if the buffer is on a list,
504  * it *must* already be on the right one.  If not, the filesystem is being
505  * silly.  This will save a ton of locking.  But first we have to ensure
506  * that buffers are taken *off* the old inode's list when they are freed
507  * (presumably in truncate).  That requires careful auditing of all
508  * filesystems (do it inside bforget()).  It could also be done by bringing
509  * b_inode back.
510  */
511 
512 /*
513  * The buffer's backing address_space's private_lock must be held
514  */
515 static void __remove_assoc_queue(struct buffer_head *bh)
516 {
517 	list_del_init(&bh->b_assoc_buffers);
518 	WARN_ON(!bh->b_assoc_map);
519 	if (buffer_write_io_error(bh))
520 		set_bit(AS_EIO, &bh->b_assoc_map->flags);
521 	bh->b_assoc_map = NULL;
522 }
523 
524 int inode_has_buffers(struct inode *inode)
525 {
526 	return !list_empty(&inode->i_data.private_list);
527 }
528 
529 /*
530  * osync is designed to support O_SYNC io.  It waits synchronously for
531  * all already-submitted IO to complete, but does not queue any new
532  * writes to the disk.
533  *
534  * To do O_SYNC writes, just queue the buffer writes with ll_rw_block as
535  * you dirty the buffers, and then use osync_inode_buffers to wait for
536  * completion.  Any other dirty buffers which are not yet queued for
537  * write will not be flushed to disk by the osync.
538  */
539 static int osync_buffers_list(spinlock_t *lock, struct list_head *list)
540 {
541 	struct buffer_head *bh;
542 	struct list_head *p;
543 	int err = 0;
544 
545 	spin_lock(lock);
546 repeat:
547 	list_for_each_prev(p, list) {
548 		bh = BH_ENTRY(p);
549 		if (buffer_locked(bh)) {
550 			get_bh(bh);
551 			spin_unlock(lock);
552 			wait_on_buffer(bh);
553 			if (!buffer_uptodate(bh))
554 				err = -EIO;
555 			brelse(bh);
556 			spin_lock(lock);
557 			goto repeat;
558 		}
559 	}
560 	spin_unlock(lock);
561 	return err;
562 }
563 
564 static void do_thaw_one(struct super_block *sb, void *unused)
565 {
566 	char b[BDEVNAME_SIZE];
567 	while (sb->s_bdev && !thaw_bdev(sb->s_bdev, sb))
568 		printk(KERN_WARNING "Emergency Thaw on %s\n",
569 		       bdevname(sb->s_bdev, b));
570 }
571 
572 static void do_thaw_all(struct work_struct *work)
573 {
574 	iterate_supers(do_thaw_one, NULL);
575 	kfree(work);
576 	printk(KERN_WARNING "Emergency Thaw complete\n");
577 }
578 
579 /**
580  * emergency_thaw_all -- forcibly thaw every frozen filesystem
581  *
582  * Used for emergency unfreeze of all filesystems via SysRq
583  */
584 void emergency_thaw_all(void)
585 {
586 	struct work_struct *work;
587 
588 	work = kmalloc(sizeof(*work), GFP_ATOMIC);
589 	if (work) {
590 		INIT_WORK(work, do_thaw_all);
591 		schedule_work(work);
592 	}
593 }
594 
595 /**
596  * sync_mapping_buffers - write out & wait upon a mapping's "associated" buffers
597  * @mapping: the mapping which wants those buffers written
598  *
599  * Starts I/O against the buffers at mapping->private_list, and waits upon
600  * that I/O.
601  *
602  * Basically, this is a convenience function for fsync().
603  * @mapping is a file or directory which needs those buffers to be written for
604  * a successful fsync().
605  */
606 int sync_mapping_buffers(struct address_space *mapping)
607 {
608 	struct address_space *buffer_mapping = mapping->assoc_mapping;
609 
610 	if (buffer_mapping == NULL || list_empty(&mapping->private_list))
611 		return 0;
612 
613 	return fsync_buffers_list(&buffer_mapping->private_lock,
614 					&mapping->private_list);
615 }
616 EXPORT_SYMBOL(sync_mapping_buffers);
617 
618 /*
619  * Called when we've recently written block `bblock', and it is known that
620  * `bblock' was for a buffer_boundary() buffer.  This means that the block at
621  * `bblock + 1' is probably a dirty indirect block.  Hunt it down and, if it's
622  * dirty, schedule it for IO.  So that indirects merge nicely with their data.
623  */
624 void write_boundary_block(struct block_device *bdev,
625 			sector_t bblock, unsigned blocksize)
626 {
627 	struct buffer_head *bh = __find_get_block(bdev, bblock + 1, blocksize);
628 	if (bh) {
629 		if (buffer_dirty(bh))
630 			ll_rw_block(WRITE, 1, &bh);
631 		put_bh(bh);
632 	}
633 }
634 
635 void mark_buffer_dirty_inode(struct buffer_head *bh, struct inode *inode)
636 {
637 	struct address_space *mapping = inode->i_mapping;
638 	struct address_space *buffer_mapping = bh->b_page->mapping;
639 
640 	mark_buffer_dirty(bh);
641 	if (!mapping->assoc_mapping) {
642 		mapping->assoc_mapping = buffer_mapping;
643 	} else {
644 		BUG_ON(mapping->assoc_mapping != buffer_mapping);
645 	}
646 	if (!bh->b_assoc_map) {
647 		spin_lock(&buffer_mapping->private_lock);
648 		list_move_tail(&bh->b_assoc_buffers,
649 				&mapping->private_list);
650 		bh->b_assoc_map = mapping;
651 		spin_unlock(&buffer_mapping->private_lock);
652 	}
653 }
654 EXPORT_SYMBOL(mark_buffer_dirty_inode);
655 
656 /*
657  * Mark the page dirty, and set it dirty in the radix tree, and mark the inode
658  * dirty.
659  *
660  * If warn is true, then emit a warning if the page is not uptodate and has
661  * not been truncated.
662  */
663 static void __set_page_dirty(struct page *page,
664 		struct address_space *mapping, int warn)
665 {
666 	spin_lock_irq(&mapping->tree_lock);
667 	if (page->mapping) {	/* Race with truncate? */
668 		WARN_ON_ONCE(warn && !PageUptodate(page));
669 		account_page_dirtied(page, mapping);
670 		radix_tree_tag_set(&mapping->page_tree,
671 				page_index(page), PAGECACHE_TAG_DIRTY);
672 	}
673 	spin_unlock_irq(&mapping->tree_lock);
674 	__mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
675 }
676 
677 /*
678  * Add a page to the dirty page list.
679  *
680  * It is a sad fact of life that this function is called from several places
681  * deeply under spinlocking.  It may not sleep.
682  *
683  * If the page has buffers, the uptodate buffers are set dirty, to preserve
684  * dirty-state coherency between the page and the buffers.  It the page does
685  * not have buffers then when they are later attached they will all be set
686  * dirty.
687  *
688  * The buffers are dirtied before the page is dirtied.  There's a small race
689  * window in which a writepage caller may see the page cleanness but not the
690  * buffer dirtiness.  That's fine.  If this code were to set the page dirty
691  * before the buffers, a concurrent writepage caller could clear the page dirty
692  * bit, see a bunch of clean buffers and we'd end up with dirty buffers/clean
693  * page on the dirty page list.
694  *
695  * We use private_lock to lock against try_to_free_buffers while using the
696  * page's buffer list.  Also use this to protect against clean buffers being
697  * added to the page after it was set dirty.
698  *
699  * FIXME: may need to call ->reservepage here as well.  That's rather up to the
700  * address_space though.
701  */
702 int __set_page_dirty_buffers(struct page *page)
703 {
704 	int newly_dirty;
705 	struct address_space *mapping = page_mapping(page);
706 
707 	if (unlikely(!mapping))
708 		return !TestSetPageDirty(page);
709 
710 	spin_lock(&mapping->private_lock);
711 	if (page_has_buffers(page)) {
712 		struct buffer_head *head = page_buffers(page);
713 		struct buffer_head *bh = head;
714 
715 		do {
716 			set_buffer_dirty(bh);
717 			bh = bh->b_this_page;
718 		} while (bh != head);
719 	}
720 	newly_dirty = !TestSetPageDirty(page);
721 	spin_unlock(&mapping->private_lock);
722 
723 	if (newly_dirty)
724 		__set_page_dirty(page, mapping, 1);
725 	return newly_dirty;
726 }
727 EXPORT_SYMBOL(__set_page_dirty_buffers);
728 
729 /*
730  * Write out and wait upon a list of buffers.
731  *
732  * We have conflicting pressures: we want to make sure that all
733  * initially dirty buffers get waited on, but that any subsequently
734  * dirtied buffers don't.  After all, we don't want fsync to last
735  * forever if somebody is actively writing to the file.
736  *
737  * Do this in two main stages: first we copy dirty buffers to a
738  * temporary inode list, queueing the writes as we go.  Then we clean
739  * up, waiting for those writes to complete.
740  *
741  * During this second stage, any subsequent updates to the file may end
742  * up refiling the buffer on the original inode's dirty list again, so
743  * there is a chance we will end up with a buffer queued for write but
744  * not yet completed on that list.  So, as a final cleanup we go through
745  * the osync code to catch these locked, dirty buffers without requeuing
746  * any newly dirty buffers for write.
747  */
748 static int fsync_buffers_list(spinlock_t *lock, struct list_head *list)
749 {
750 	struct buffer_head *bh;
751 	struct list_head tmp;
752 	struct address_space *mapping, *prev_mapping = NULL;
753 	int err = 0, err2;
754 
755 	INIT_LIST_HEAD(&tmp);
756 
757 	spin_lock(lock);
758 	while (!list_empty(list)) {
759 		bh = BH_ENTRY(list->next);
760 		mapping = bh->b_assoc_map;
761 		__remove_assoc_queue(bh);
762 		/* Avoid race with mark_buffer_dirty_inode() which does
763 		 * a lockless check and we rely on seeing the dirty bit */
764 		smp_mb();
765 		if (buffer_dirty(bh) || buffer_locked(bh)) {
766 			list_add(&bh->b_assoc_buffers, &tmp);
767 			bh->b_assoc_map = mapping;
768 			if (buffer_dirty(bh)) {
769 				get_bh(bh);
770 				spin_unlock(lock);
771 				/*
772 				 * Ensure any pending I/O completes so that
773 				 * ll_rw_block() actually writes the current
774 				 * contents - it is a noop if I/O is still in
775 				 * flight on potentially older contents.
776 				 */
777 				ll_rw_block(SWRITE_SYNC_PLUG, 1, &bh);
778 
779 				/*
780 				 * Kick off IO for the previous mapping. Note
781 				 * that we will not run the very last mapping,
782 				 * wait_on_buffer() will do that for us
783 				 * through sync_buffer().
784 				 */
785 				if (prev_mapping && prev_mapping != mapping)
786 					blk_run_address_space(prev_mapping);
787 				prev_mapping = mapping;
788 
789 				brelse(bh);
790 				spin_lock(lock);
791 			}
792 		}
793 	}
794 
795 	while (!list_empty(&tmp)) {
796 		bh = BH_ENTRY(tmp.prev);
797 		get_bh(bh);
798 		mapping = bh->b_assoc_map;
799 		__remove_assoc_queue(bh);
800 		/* Avoid race with mark_buffer_dirty_inode() which does
801 		 * a lockless check and we rely on seeing the dirty bit */
802 		smp_mb();
803 		if (buffer_dirty(bh)) {
804 			list_add(&bh->b_assoc_buffers,
805 				 &mapping->private_list);
806 			bh->b_assoc_map = mapping;
807 		}
808 		spin_unlock(lock);
809 		wait_on_buffer(bh);
810 		if (!buffer_uptodate(bh))
811 			err = -EIO;
812 		brelse(bh);
813 		spin_lock(lock);
814 	}
815 
816 	spin_unlock(lock);
817 	err2 = osync_buffers_list(lock, list);
818 	if (err)
819 		return err;
820 	else
821 		return err2;
822 }
823 
824 /*
825  * Invalidate any and all dirty buffers on a given inode.  We are
826  * probably unmounting the fs, but that doesn't mean we have already
827  * done a sync().  Just drop the buffers from the inode list.
828  *
829  * NOTE: we take the inode's blockdev's mapping's private_lock.  Which
830  * assumes that all the buffers are against the blockdev.  Not true
831  * for reiserfs.
832  */
833 void invalidate_inode_buffers(struct inode *inode)
834 {
835 	if (inode_has_buffers(inode)) {
836 		struct address_space *mapping = &inode->i_data;
837 		struct list_head *list = &mapping->private_list;
838 		struct address_space *buffer_mapping = mapping->assoc_mapping;
839 
840 		spin_lock(&buffer_mapping->private_lock);
841 		while (!list_empty(list))
842 			__remove_assoc_queue(BH_ENTRY(list->next));
843 		spin_unlock(&buffer_mapping->private_lock);
844 	}
845 }
846 EXPORT_SYMBOL(invalidate_inode_buffers);
847 
848 /*
849  * Remove any clean buffers from the inode's buffer list.  This is called
850  * when we're trying to free the inode itself.  Those buffers can pin it.
851  *
852  * Returns true if all buffers were removed.
853  */
854 int remove_inode_buffers(struct inode *inode)
855 {
856 	int ret = 1;
857 
858 	if (inode_has_buffers(inode)) {
859 		struct address_space *mapping = &inode->i_data;
860 		struct list_head *list = &mapping->private_list;
861 		struct address_space *buffer_mapping = mapping->assoc_mapping;
862 
863 		spin_lock(&buffer_mapping->private_lock);
864 		while (!list_empty(list)) {
865 			struct buffer_head *bh = BH_ENTRY(list->next);
866 			if (buffer_dirty(bh)) {
867 				ret = 0;
868 				break;
869 			}
870 			__remove_assoc_queue(bh);
871 		}
872 		spin_unlock(&buffer_mapping->private_lock);
873 	}
874 	return ret;
875 }
876 
877 /*
878  * Create the appropriate buffers when given a page for data area and
879  * the size of each buffer.. Use the bh->b_this_page linked list to
880  * follow the buffers created.  Return NULL if unable to create more
881  * buffers.
882  *
883  * The retry flag is used to differentiate async IO (paging, swapping)
884  * which may not fail from ordinary buffer allocations.
885  */
886 struct buffer_head *alloc_page_buffers(struct page *page, unsigned long size,
887 		int retry)
888 {
889 	struct buffer_head *bh, *head;
890 	long offset;
891 
892 try_again:
893 	head = NULL;
894 	offset = PAGE_SIZE;
895 	while ((offset -= size) >= 0) {
896 		bh = alloc_buffer_head(GFP_NOFS);
897 		if (!bh)
898 			goto no_grow;
899 
900 		bh->b_bdev = NULL;
901 		bh->b_this_page = head;
902 		bh->b_blocknr = -1;
903 		head = bh;
904 
905 		bh->b_state = 0;
906 		atomic_set(&bh->b_count, 0);
907 		bh->b_private = NULL;
908 		bh->b_size = size;
909 
910 		/* Link the buffer to its page */
911 		set_bh_page(bh, page, offset);
912 
913 		init_buffer(bh, NULL, NULL);
914 	}
915 	return head;
916 /*
917  * In case anything failed, we just free everything we got.
918  */
919 no_grow:
920 	if (head) {
921 		do {
922 			bh = head;
923 			head = head->b_this_page;
924 			free_buffer_head(bh);
925 		} while (head);
926 	}
927 
928 	/*
929 	 * Return failure for non-async IO requests.  Async IO requests
930 	 * are not allowed to fail, so we have to wait until buffer heads
931 	 * become available.  But we don't want tasks sleeping with
932 	 * partially complete buffers, so all were released above.
933 	 */
934 	if (!retry)
935 		return NULL;
936 
937 	/* We're _really_ low on memory. Now we just
938 	 * wait for old buffer heads to become free due to
939 	 * finishing IO.  Since this is an async request and
940 	 * the reserve list is empty, we're sure there are
941 	 * async buffer heads in use.
942 	 */
943 	free_more_memory();
944 	goto try_again;
945 }
946 EXPORT_SYMBOL_GPL(alloc_page_buffers);
947 
948 static inline void
949 link_dev_buffers(struct page *page, struct buffer_head *head)
950 {
951 	struct buffer_head *bh, *tail;
952 
953 	bh = head;
954 	do {
955 		tail = bh;
956 		bh = bh->b_this_page;
957 	} while (bh);
958 	tail->b_this_page = head;
959 	attach_page_buffers(page, head);
960 }
961 
962 /*
963  * Initialise the state of a blockdev page's buffers.
964  */
965 static void
966 init_page_buffers(struct page *page, struct block_device *bdev,
967 			sector_t block, int size)
968 {
969 	struct buffer_head *head = page_buffers(page);
970 	struct buffer_head *bh = head;
971 	int uptodate = PageUptodate(page);
972 
973 	do {
974 		if (!buffer_mapped(bh)) {
975 			init_buffer(bh, NULL, NULL);
976 			bh->b_bdev = bdev;
977 			bh->b_blocknr = block;
978 			if (uptodate)
979 				set_buffer_uptodate(bh);
980 			set_buffer_mapped(bh);
981 		}
982 		block++;
983 		bh = bh->b_this_page;
984 	} while (bh != head);
985 }
986 
987 /*
988  * Create the page-cache page that contains the requested block.
989  *
990  * This is user purely for blockdev mappings.
991  */
992 static struct page *
993 grow_dev_page(struct block_device *bdev, sector_t block,
994 		pgoff_t index, int size)
995 {
996 	struct inode *inode = bdev->bd_inode;
997 	struct page *page;
998 	struct buffer_head *bh;
999 
1000 	page = find_or_create_page(inode->i_mapping, index,
1001 		(mapping_gfp_mask(inode->i_mapping) & ~__GFP_FS)|__GFP_MOVABLE);
1002 	if (!page)
1003 		return NULL;
1004 
1005 	BUG_ON(!PageLocked(page));
1006 
1007 	if (page_has_buffers(page)) {
1008 		bh = page_buffers(page);
1009 		if (bh->b_size == size) {
1010 			init_page_buffers(page, bdev, block, size);
1011 			return page;
1012 		}
1013 		if (!try_to_free_buffers(page))
1014 			goto failed;
1015 	}
1016 
1017 	/*
1018 	 * Allocate some buffers for this page
1019 	 */
1020 	bh = alloc_page_buffers(page, size, 0);
1021 	if (!bh)
1022 		goto failed;
1023 
1024 	/*
1025 	 * Link the page to the buffers and initialise them.  Take the
1026 	 * lock to be atomic wrt __find_get_block(), which does not
1027 	 * run under the page lock.
1028 	 */
1029 	spin_lock(&inode->i_mapping->private_lock);
1030 	link_dev_buffers(page, bh);
1031 	init_page_buffers(page, bdev, block, size);
1032 	spin_unlock(&inode->i_mapping->private_lock);
1033 	return page;
1034 
1035 failed:
1036 	BUG();
1037 	unlock_page(page);
1038 	page_cache_release(page);
1039 	return NULL;
1040 }
1041 
1042 /*
1043  * Create buffers for the specified block device block's page.  If
1044  * that page was dirty, the buffers are set dirty also.
1045  */
1046 static int
1047 grow_buffers(struct block_device *bdev, sector_t block, int size)
1048 {
1049 	struct page *page;
1050 	pgoff_t index;
1051 	int sizebits;
1052 
1053 	sizebits = -1;
1054 	do {
1055 		sizebits++;
1056 	} while ((size << sizebits) < PAGE_SIZE);
1057 
1058 	index = block >> sizebits;
1059 
1060 	/*
1061 	 * Check for a block which wants to lie outside our maximum possible
1062 	 * pagecache index.  (this comparison is done using sector_t types).
1063 	 */
1064 	if (unlikely(index != block >> sizebits)) {
1065 		char b[BDEVNAME_SIZE];
1066 
1067 		printk(KERN_ERR "%s: requested out-of-range block %llu for "
1068 			"device %s\n",
1069 			__func__, (unsigned long long)block,
1070 			bdevname(bdev, b));
1071 		return -EIO;
1072 	}
1073 	block = index << sizebits;
1074 	/* Create a page with the proper size buffers.. */
1075 	page = grow_dev_page(bdev, block, index, size);
1076 	if (!page)
1077 		return 0;
1078 	unlock_page(page);
1079 	page_cache_release(page);
1080 	return 1;
1081 }
1082 
1083 static struct buffer_head *
1084 __getblk_slow(struct block_device *bdev, sector_t block, int size)
1085 {
1086 	/* Size must be multiple of hard sectorsize */
1087 	if (unlikely(size & (bdev_logical_block_size(bdev)-1) ||
1088 			(size < 512 || size > PAGE_SIZE))) {
1089 		printk(KERN_ERR "getblk(): invalid block size %d requested\n",
1090 					size);
1091 		printk(KERN_ERR "logical block size: %d\n",
1092 					bdev_logical_block_size(bdev));
1093 
1094 		dump_stack();
1095 		return NULL;
1096 	}
1097 
1098 	for (;;) {
1099 		struct buffer_head * bh;
1100 		int ret;
1101 
1102 		bh = __find_get_block(bdev, block, size);
1103 		if (bh)
1104 			return bh;
1105 
1106 		ret = grow_buffers(bdev, block, size);
1107 		if (ret < 0)
1108 			return NULL;
1109 		if (ret == 0)
1110 			free_more_memory();
1111 	}
1112 }
1113 
1114 /*
1115  * The relationship between dirty buffers and dirty pages:
1116  *
1117  * Whenever a page has any dirty buffers, the page's dirty bit is set, and
1118  * the page is tagged dirty in its radix tree.
1119  *
1120  * At all times, the dirtiness of the buffers represents the dirtiness of
1121  * subsections of the page.  If the page has buffers, the page dirty bit is
1122  * merely a hint about the true dirty state.
1123  *
1124  * When a page is set dirty in its entirety, all its buffers are marked dirty
1125  * (if the page has buffers).
1126  *
1127  * When a buffer is marked dirty, its page is dirtied, but the page's other
1128  * buffers are not.
1129  *
1130  * Also.  When blockdev buffers are explicitly read with bread(), they
1131  * individually become uptodate.  But their backing page remains not
1132  * uptodate - even if all of its buffers are uptodate.  A subsequent
1133  * block_read_full_page() against that page will discover all the uptodate
1134  * buffers, will set the page uptodate and will perform no I/O.
1135  */
1136 
1137 /**
1138  * mark_buffer_dirty - mark a buffer_head as needing writeout
1139  * @bh: the buffer_head to mark dirty
1140  *
1141  * mark_buffer_dirty() will set the dirty bit against the buffer, then set its
1142  * backing page dirty, then tag the page as dirty in its address_space's radix
1143  * tree and then attach the address_space's inode to its superblock's dirty
1144  * inode list.
1145  *
1146  * mark_buffer_dirty() is atomic.  It takes bh->b_page->mapping->private_lock,
1147  * mapping->tree_lock and the global inode_lock.
1148  */
1149 void mark_buffer_dirty(struct buffer_head *bh)
1150 {
1151 	WARN_ON_ONCE(!buffer_uptodate(bh));
1152 
1153 	/*
1154 	 * Very *carefully* optimize the it-is-already-dirty case.
1155 	 *
1156 	 * Don't let the final "is it dirty" escape to before we
1157 	 * perhaps modified the buffer.
1158 	 */
1159 	if (buffer_dirty(bh)) {
1160 		smp_mb();
1161 		if (buffer_dirty(bh))
1162 			return;
1163 	}
1164 
1165 	if (!test_set_buffer_dirty(bh)) {
1166 		struct page *page = bh->b_page;
1167 		if (!TestSetPageDirty(page)) {
1168 			struct address_space *mapping = page_mapping(page);
1169 			if (mapping)
1170 				__set_page_dirty(page, mapping, 0);
1171 		}
1172 	}
1173 }
1174 EXPORT_SYMBOL(mark_buffer_dirty);
1175 
1176 /*
1177  * Decrement a buffer_head's reference count.  If all buffers against a page
1178  * have zero reference count, are clean and unlocked, and if the page is clean
1179  * and unlocked then try_to_free_buffers() may strip the buffers from the page
1180  * in preparation for freeing it (sometimes, rarely, buffers are removed from
1181  * a page but it ends up not being freed, and buffers may later be reattached).
1182  */
1183 void __brelse(struct buffer_head * buf)
1184 {
1185 	if (atomic_read(&buf->b_count)) {
1186 		put_bh(buf);
1187 		return;
1188 	}
1189 	WARN(1, KERN_ERR "VFS: brelse: Trying to free free buffer\n");
1190 }
1191 EXPORT_SYMBOL(__brelse);
1192 
1193 /*
1194  * bforget() is like brelse(), except it discards any
1195  * potentially dirty data.
1196  */
1197 void __bforget(struct buffer_head *bh)
1198 {
1199 	clear_buffer_dirty(bh);
1200 	if (bh->b_assoc_map) {
1201 		struct address_space *buffer_mapping = bh->b_page->mapping;
1202 
1203 		spin_lock(&buffer_mapping->private_lock);
1204 		list_del_init(&bh->b_assoc_buffers);
1205 		bh->b_assoc_map = NULL;
1206 		spin_unlock(&buffer_mapping->private_lock);
1207 	}
1208 	__brelse(bh);
1209 }
1210 EXPORT_SYMBOL(__bforget);
1211 
1212 static struct buffer_head *__bread_slow(struct buffer_head *bh)
1213 {
1214 	lock_buffer(bh);
1215 	if (buffer_uptodate(bh)) {
1216 		unlock_buffer(bh);
1217 		return bh;
1218 	} else {
1219 		get_bh(bh);
1220 		bh->b_end_io = end_buffer_read_sync;
1221 		submit_bh(READ, bh);
1222 		wait_on_buffer(bh);
1223 		if (buffer_uptodate(bh))
1224 			return bh;
1225 	}
1226 	brelse(bh);
1227 	return NULL;
1228 }
1229 
1230 /*
1231  * Per-cpu buffer LRU implementation.  To reduce the cost of __find_get_block().
1232  * The bhs[] array is sorted - newest buffer is at bhs[0].  Buffers have their
1233  * refcount elevated by one when they're in an LRU.  A buffer can only appear
1234  * once in a particular CPU's LRU.  A single buffer can be present in multiple
1235  * CPU's LRUs at the same time.
1236  *
1237  * This is a transparent caching front-end to sb_bread(), sb_getblk() and
1238  * sb_find_get_block().
1239  *
1240  * The LRUs themselves only need locking against invalidate_bh_lrus.  We use
1241  * a local interrupt disable for that.
1242  */
1243 
1244 #define BH_LRU_SIZE	8
1245 
1246 struct bh_lru {
1247 	struct buffer_head *bhs[BH_LRU_SIZE];
1248 };
1249 
1250 static DEFINE_PER_CPU(struct bh_lru, bh_lrus) = {{ NULL }};
1251 
1252 #ifdef CONFIG_SMP
1253 #define bh_lru_lock()	local_irq_disable()
1254 #define bh_lru_unlock()	local_irq_enable()
1255 #else
1256 #define bh_lru_lock()	preempt_disable()
1257 #define bh_lru_unlock()	preempt_enable()
1258 #endif
1259 
1260 static inline void check_irqs_on(void)
1261 {
1262 #ifdef irqs_disabled
1263 	BUG_ON(irqs_disabled());
1264 #endif
1265 }
1266 
1267 /*
1268  * The LRU management algorithm is dopey-but-simple.  Sorry.
1269  */
1270 static void bh_lru_install(struct buffer_head *bh)
1271 {
1272 	struct buffer_head *evictee = NULL;
1273 	struct bh_lru *lru;
1274 
1275 	check_irqs_on();
1276 	bh_lru_lock();
1277 	lru = &__get_cpu_var(bh_lrus);
1278 	if (lru->bhs[0] != bh) {
1279 		struct buffer_head *bhs[BH_LRU_SIZE];
1280 		int in;
1281 		int out = 0;
1282 
1283 		get_bh(bh);
1284 		bhs[out++] = bh;
1285 		for (in = 0; in < BH_LRU_SIZE; in++) {
1286 			struct buffer_head *bh2 = lru->bhs[in];
1287 
1288 			if (bh2 == bh) {
1289 				__brelse(bh2);
1290 			} else {
1291 				if (out >= BH_LRU_SIZE) {
1292 					BUG_ON(evictee != NULL);
1293 					evictee = bh2;
1294 				} else {
1295 					bhs[out++] = bh2;
1296 				}
1297 			}
1298 		}
1299 		while (out < BH_LRU_SIZE)
1300 			bhs[out++] = NULL;
1301 		memcpy(lru->bhs, bhs, sizeof(bhs));
1302 	}
1303 	bh_lru_unlock();
1304 
1305 	if (evictee)
1306 		__brelse(evictee);
1307 }
1308 
1309 /*
1310  * Look up the bh in this cpu's LRU.  If it's there, move it to the head.
1311  */
1312 static struct buffer_head *
1313 lookup_bh_lru(struct block_device *bdev, sector_t block, unsigned size)
1314 {
1315 	struct buffer_head *ret = NULL;
1316 	struct bh_lru *lru;
1317 	unsigned int i;
1318 
1319 	check_irqs_on();
1320 	bh_lru_lock();
1321 	lru = &__get_cpu_var(bh_lrus);
1322 	for (i = 0; i < BH_LRU_SIZE; i++) {
1323 		struct buffer_head *bh = lru->bhs[i];
1324 
1325 		if (bh && bh->b_bdev == bdev &&
1326 				bh->b_blocknr == block && bh->b_size == size) {
1327 			if (i) {
1328 				while (i) {
1329 					lru->bhs[i] = lru->bhs[i - 1];
1330 					i--;
1331 				}
1332 				lru->bhs[0] = bh;
1333 			}
1334 			get_bh(bh);
1335 			ret = bh;
1336 			break;
1337 		}
1338 	}
1339 	bh_lru_unlock();
1340 	return ret;
1341 }
1342 
1343 /*
1344  * Perform a pagecache lookup for the matching buffer.  If it's there, refresh
1345  * it in the LRU and mark it as accessed.  If it is not present then return
1346  * NULL
1347  */
1348 struct buffer_head *
1349 __find_get_block(struct block_device *bdev, sector_t block, unsigned size)
1350 {
1351 	struct buffer_head *bh = lookup_bh_lru(bdev, block, size);
1352 
1353 	if (bh == NULL) {
1354 		bh = __find_get_block_slow(bdev, block);
1355 		if (bh)
1356 			bh_lru_install(bh);
1357 	}
1358 	if (bh)
1359 		touch_buffer(bh);
1360 	return bh;
1361 }
1362 EXPORT_SYMBOL(__find_get_block);
1363 
1364 /*
1365  * __getblk will locate (and, if necessary, create) the buffer_head
1366  * which corresponds to the passed block_device, block and size. The
1367  * returned buffer has its reference count incremented.
1368  *
1369  * __getblk() cannot fail - it just keeps trying.  If you pass it an
1370  * illegal block number, __getblk() will happily return a buffer_head
1371  * which represents the non-existent block.  Very weird.
1372  *
1373  * __getblk() will lock up the machine if grow_dev_page's try_to_free_buffers()
1374  * attempt is failing.  FIXME, perhaps?
1375  */
1376 struct buffer_head *
1377 __getblk(struct block_device *bdev, sector_t block, unsigned size)
1378 {
1379 	struct buffer_head *bh = __find_get_block(bdev, block, size);
1380 
1381 	might_sleep();
1382 	if (bh == NULL)
1383 		bh = __getblk_slow(bdev, block, size);
1384 	return bh;
1385 }
1386 EXPORT_SYMBOL(__getblk);
1387 
1388 /*
1389  * Do async read-ahead on a buffer..
1390  */
1391 void __breadahead(struct block_device *bdev, sector_t block, unsigned size)
1392 {
1393 	struct buffer_head *bh = __getblk(bdev, block, size);
1394 	if (likely(bh)) {
1395 		ll_rw_block(READA, 1, &bh);
1396 		brelse(bh);
1397 	}
1398 }
1399 EXPORT_SYMBOL(__breadahead);
1400 
1401 /**
1402  *  __bread() - reads a specified block and returns the bh
1403  *  @bdev: the block_device to read from
1404  *  @block: number of block
1405  *  @size: size (in bytes) to read
1406  *
1407  *  Reads a specified block, and returns buffer head that contains it.
1408  *  It returns NULL if the block was unreadable.
1409  */
1410 struct buffer_head *
1411 __bread(struct block_device *bdev, sector_t block, unsigned size)
1412 {
1413 	struct buffer_head *bh = __getblk(bdev, block, size);
1414 
1415 	if (likely(bh) && !buffer_uptodate(bh))
1416 		bh = __bread_slow(bh);
1417 	return bh;
1418 }
1419 EXPORT_SYMBOL(__bread);
1420 
1421 /*
1422  * invalidate_bh_lrus() is called rarely - but not only at unmount.
1423  * This doesn't race because it runs in each cpu either in irq
1424  * or with preempt disabled.
1425  */
1426 static void invalidate_bh_lru(void *arg)
1427 {
1428 	struct bh_lru *b = &get_cpu_var(bh_lrus);
1429 	int i;
1430 
1431 	for (i = 0; i < BH_LRU_SIZE; i++) {
1432 		brelse(b->bhs[i]);
1433 		b->bhs[i] = NULL;
1434 	}
1435 	put_cpu_var(bh_lrus);
1436 }
1437 
1438 void invalidate_bh_lrus(void)
1439 {
1440 	on_each_cpu(invalidate_bh_lru, NULL, 1);
1441 }
1442 EXPORT_SYMBOL_GPL(invalidate_bh_lrus);
1443 
1444 void set_bh_page(struct buffer_head *bh,
1445 		struct page *page, unsigned long offset)
1446 {
1447 	bh->b_page = page;
1448 	BUG_ON(offset >= PAGE_SIZE);
1449 	if (PageHighMem(page))
1450 		/*
1451 		 * This catches illegal uses and preserves the offset:
1452 		 */
1453 		bh->b_data = (char *)(0 + offset);
1454 	else
1455 		bh->b_data = page_address(page) + offset;
1456 }
1457 EXPORT_SYMBOL(set_bh_page);
1458 
1459 /*
1460  * Called when truncating a buffer on a page completely.
1461  */
1462 static void discard_buffer(struct buffer_head * bh)
1463 {
1464 	lock_buffer(bh);
1465 	clear_buffer_dirty(bh);
1466 	bh->b_bdev = NULL;
1467 	clear_buffer_mapped(bh);
1468 	clear_buffer_req(bh);
1469 	clear_buffer_new(bh);
1470 	clear_buffer_delay(bh);
1471 	clear_buffer_unwritten(bh);
1472 	unlock_buffer(bh);
1473 }
1474 
1475 /**
1476  * block_invalidatepage - invalidate part of all of a buffer-backed page
1477  *
1478  * @page: the page which is affected
1479  * @offset: the index of the truncation point
1480  *
1481  * block_invalidatepage() is called when all or part of the page has become
1482  * invalidatedby a truncate operation.
1483  *
1484  * block_invalidatepage() does not have to release all buffers, but it must
1485  * ensure that no dirty buffer is left outside @offset and that no I/O
1486  * is underway against any of the blocks which are outside the truncation
1487  * point.  Because the caller is about to free (and possibly reuse) those
1488  * blocks on-disk.
1489  */
1490 void block_invalidatepage(struct page *page, unsigned long offset)
1491 {
1492 	struct buffer_head *head, *bh, *next;
1493 	unsigned int curr_off = 0;
1494 
1495 	BUG_ON(!PageLocked(page));
1496 	if (!page_has_buffers(page))
1497 		goto out;
1498 
1499 	head = page_buffers(page);
1500 	bh = head;
1501 	do {
1502 		unsigned int next_off = curr_off + bh->b_size;
1503 		next = bh->b_this_page;
1504 
1505 		/*
1506 		 * is this block fully invalidated?
1507 		 */
1508 		if (offset <= curr_off)
1509 			discard_buffer(bh);
1510 		curr_off = next_off;
1511 		bh = next;
1512 	} while (bh != head);
1513 
1514 	/*
1515 	 * We release buffers only if the entire page is being invalidated.
1516 	 * The get_block cached value has been unconditionally invalidated,
1517 	 * so real IO is not possible anymore.
1518 	 */
1519 	if (offset == 0)
1520 		try_to_release_page(page, 0);
1521 out:
1522 	return;
1523 }
1524 EXPORT_SYMBOL(block_invalidatepage);
1525 
1526 /*
1527  * We attach and possibly dirty the buffers atomically wrt
1528  * __set_page_dirty_buffers() via private_lock.  try_to_free_buffers
1529  * is already excluded via the page lock.
1530  */
1531 void create_empty_buffers(struct page *page,
1532 			unsigned long blocksize, unsigned long b_state)
1533 {
1534 	struct buffer_head *bh, *head, *tail;
1535 
1536 	head = alloc_page_buffers(page, blocksize, 1);
1537 	bh = head;
1538 	do {
1539 		bh->b_state |= b_state;
1540 		tail = bh;
1541 		bh = bh->b_this_page;
1542 	} while (bh);
1543 	tail->b_this_page = head;
1544 
1545 	spin_lock(&page->mapping->private_lock);
1546 	if (PageUptodate(page) || PageDirty(page)) {
1547 		bh = head;
1548 		do {
1549 			if (PageDirty(page))
1550 				set_buffer_dirty(bh);
1551 			if (PageUptodate(page))
1552 				set_buffer_uptodate(bh);
1553 			bh = bh->b_this_page;
1554 		} while (bh != head);
1555 	}
1556 	attach_page_buffers(page, head);
1557 	spin_unlock(&page->mapping->private_lock);
1558 }
1559 EXPORT_SYMBOL(create_empty_buffers);
1560 
1561 /*
1562  * We are taking a block for data and we don't want any output from any
1563  * buffer-cache aliases starting from return from that function and
1564  * until the moment when something will explicitly mark the buffer
1565  * dirty (hopefully that will not happen until we will free that block ;-)
1566  * We don't even need to mark it not-uptodate - nobody can expect
1567  * anything from a newly allocated buffer anyway. We used to used
1568  * unmap_buffer() for such invalidation, but that was wrong. We definitely
1569  * don't want to mark the alias unmapped, for example - it would confuse
1570  * anyone who might pick it with bread() afterwards...
1571  *
1572  * Also..  Note that bforget() doesn't lock the buffer.  So there can
1573  * be writeout I/O going on against recently-freed buffers.  We don't
1574  * wait on that I/O in bforget() - it's more efficient to wait on the I/O
1575  * only if we really need to.  That happens here.
1576  */
1577 void unmap_underlying_metadata(struct block_device *bdev, sector_t block)
1578 {
1579 	struct buffer_head *old_bh;
1580 
1581 	might_sleep();
1582 
1583 	old_bh = __find_get_block_slow(bdev, block);
1584 	if (old_bh) {
1585 		clear_buffer_dirty(old_bh);
1586 		wait_on_buffer(old_bh);
1587 		clear_buffer_req(old_bh);
1588 		__brelse(old_bh);
1589 	}
1590 }
1591 EXPORT_SYMBOL(unmap_underlying_metadata);
1592 
1593 /*
1594  * NOTE! All mapped/uptodate combinations are valid:
1595  *
1596  *	Mapped	Uptodate	Meaning
1597  *
1598  *	No	No		"unknown" - must do get_block()
1599  *	No	Yes		"hole" - zero-filled
1600  *	Yes	No		"allocated" - allocated on disk, not read in
1601  *	Yes	Yes		"valid" - allocated and up-to-date in memory.
1602  *
1603  * "Dirty" is valid only with the last case (mapped+uptodate).
1604  */
1605 
1606 /*
1607  * While block_write_full_page is writing back the dirty buffers under
1608  * the page lock, whoever dirtied the buffers may decide to clean them
1609  * again at any time.  We handle that by only looking at the buffer
1610  * state inside lock_buffer().
1611  *
1612  * If block_write_full_page() is called for regular writeback
1613  * (wbc->sync_mode == WB_SYNC_NONE) then it will redirty a page which has a
1614  * locked buffer.   This only can happen if someone has written the buffer
1615  * directly, with submit_bh().  At the address_space level PageWriteback
1616  * prevents this contention from occurring.
1617  *
1618  * If block_write_full_page() is called with wbc->sync_mode ==
1619  * WB_SYNC_ALL, the writes are posted using WRITE_SYNC_PLUG; this
1620  * causes the writes to be flagged as synchronous writes, but the
1621  * block device queue will NOT be unplugged, since usually many pages
1622  * will be pushed to the out before the higher-level caller actually
1623  * waits for the writes to be completed.  The various wait functions,
1624  * such as wait_on_writeback_range() will ultimately call sync_page()
1625  * which will ultimately call blk_run_backing_dev(), which will end up
1626  * unplugging the device queue.
1627  */
1628 static int __block_write_full_page(struct inode *inode, struct page *page,
1629 			get_block_t *get_block, struct writeback_control *wbc,
1630 			bh_end_io_t *handler)
1631 {
1632 	int err;
1633 	sector_t block;
1634 	sector_t last_block;
1635 	struct buffer_head *bh, *head;
1636 	const unsigned blocksize = 1 << inode->i_blkbits;
1637 	int nr_underway = 0;
1638 	int write_op = (wbc->sync_mode == WB_SYNC_ALL ?
1639 			WRITE_SYNC_PLUG : WRITE);
1640 
1641 	BUG_ON(!PageLocked(page));
1642 
1643 	last_block = (i_size_read(inode) - 1) >> inode->i_blkbits;
1644 
1645 	if (!page_has_buffers(page)) {
1646 		create_empty_buffers(page, blocksize,
1647 					(1 << BH_Dirty)|(1 << BH_Uptodate));
1648 	}
1649 
1650 	/*
1651 	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
1652 	 * here, and the (potentially unmapped) buffers may become dirty at
1653 	 * any time.  If a buffer becomes dirty here after we've inspected it
1654 	 * then we just miss that fact, and the page stays dirty.
1655 	 *
1656 	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
1657 	 * handle that here by just cleaning them.
1658 	 */
1659 
1660 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
1661 	head = page_buffers(page);
1662 	bh = head;
1663 
1664 	/*
1665 	 * Get all the dirty buffers mapped to disk addresses and
1666 	 * handle any aliases from the underlying blockdev's mapping.
1667 	 */
1668 	do {
1669 		if (block > last_block) {
1670 			/*
1671 			 * mapped buffers outside i_size will occur, because
1672 			 * this page can be outside i_size when there is a
1673 			 * truncate in progress.
1674 			 */
1675 			/*
1676 			 * The buffer was zeroed by block_write_full_page()
1677 			 */
1678 			clear_buffer_dirty(bh);
1679 			set_buffer_uptodate(bh);
1680 		} else if ((!buffer_mapped(bh) || buffer_delay(bh)) &&
1681 			   buffer_dirty(bh)) {
1682 			WARN_ON(bh->b_size != blocksize);
1683 			err = get_block(inode, block, bh, 1);
1684 			if (err)
1685 				goto recover;
1686 			clear_buffer_delay(bh);
1687 			if (buffer_new(bh)) {
1688 				/* blockdev mappings never come here */
1689 				clear_buffer_new(bh);
1690 				unmap_underlying_metadata(bh->b_bdev,
1691 							bh->b_blocknr);
1692 			}
1693 		}
1694 		bh = bh->b_this_page;
1695 		block++;
1696 	} while (bh != head);
1697 
1698 	do {
1699 		if (!buffer_mapped(bh))
1700 			continue;
1701 		/*
1702 		 * If it's a fully non-blocking write attempt and we cannot
1703 		 * lock the buffer then redirty the page.  Note that this can
1704 		 * potentially cause a busy-wait loop from writeback threads
1705 		 * and kswapd activity, but those code paths have their own
1706 		 * higher-level throttling.
1707 		 */
1708 		if (wbc->sync_mode != WB_SYNC_NONE || !wbc->nonblocking) {
1709 			lock_buffer(bh);
1710 		} else if (!trylock_buffer(bh)) {
1711 			redirty_page_for_writepage(wbc, page);
1712 			continue;
1713 		}
1714 		if (test_clear_buffer_dirty(bh)) {
1715 			mark_buffer_async_write_endio(bh, handler);
1716 		} else {
1717 			unlock_buffer(bh);
1718 		}
1719 	} while ((bh = bh->b_this_page) != head);
1720 
1721 	/*
1722 	 * The page and its buffers are protected by PageWriteback(), so we can
1723 	 * drop the bh refcounts early.
1724 	 */
1725 	BUG_ON(PageWriteback(page));
1726 	set_page_writeback(page);
1727 
1728 	do {
1729 		struct buffer_head *next = bh->b_this_page;
1730 		if (buffer_async_write(bh)) {
1731 			submit_bh(write_op, bh);
1732 			nr_underway++;
1733 		}
1734 		bh = next;
1735 	} while (bh != head);
1736 	unlock_page(page);
1737 
1738 	err = 0;
1739 done:
1740 	if (nr_underway == 0) {
1741 		/*
1742 		 * The page was marked dirty, but the buffers were
1743 		 * clean.  Someone wrote them back by hand with
1744 		 * ll_rw_block/submit_bh.  A rare case.
1745 		 */
1746 		end_page_writeback(page);
1747 
1748 		/*
1749 		 * The page and buffer_heads can be released at any time from
1750 		 * here on.
1751 		 */
1752 	}
1753 	return err;
1754 
1755 recover:
1756 	/*
1757 	 * ENOSPC, or some other error.  We may already have added some
1758 	 * blocks to the file, so we need to write these out to avoid
1759 	 * exposing stale data.
1760 	 * The page is currently locked and not marked for writeback
1761 	 */
1762 	bh = head;
1763 	/* Recovery: lock and submit the mapped buffers */
1764 	do {
1765 		if (buffer_mapped(bh) && buffer_dirty(bh) &&
1766 		    !buffer_delay(bh)) {
1767 			lock_buffer(bh);
1768 			mark_buffer_async_write_endio(bh, handler);
1769 		} else {
1770 			/*
1771 			 * The buffer may have been set dirty during
1772 			 * attachment to a dirty page.
1773 			 */
1774 			clear_buffer_dirty(bh);
1775 		}
1776 	} while ((bh = bh->b_this_page) != head);
1777 	SetPageError(page);
1778 	BUG_ON(PageWriteback(page));
1779 	mapping_set_error(page->mapping, err);
1780 	set_page_writeback(page);
1781 	do {
1782 		struct buffer_head *next = bh->b_this_page;
1783 		if (buffer_async_write(bh)) {
1784 			clear_buffer_dirty(bh);
1785 			submit_bh(write_op, bh);
1786 			nr_underway++;
1787 		}
1788 		bh = next;
1789 	} while (bh != head);
1790 	unlock_page(page);
1791 	goto done;
1792 }
1793 
1794 /*
1795  * If a page has any new buffers, zero them out here, and mark them uptodate
1796  * and dirty so they'll be written out (in order to prevent uninitialised
1797  * block data from leaking). And clear the new bit.
1798  */
1799 void page_zero_new_buffers(struct page *page, unsigned from, unsigned to)
1800 {
1801 	unsigned int block_start, block_end;
1802 	struct buffer_head *head, *bh;
1803 
1804 	BUG_ON(!PageLocked(page));
1805 	if (!page_has_buffers(page))
1806 		return;
1807 
1808 	bh = head = page_buffers(page);
1809 	block_start = 0;
1810 	do {
1811 		block_end = block_start + bh->b_size;
1812 
1813 		if (buffer_new(bh)) {
1814 			if (block_end > from && block_start < to) {
1815 				if (!PageUptodate(page)) {
1816 					unsigned start, size;
1817 
1818 					start = max(from, block_start);
1819 					size = min(to, block_end) - start;
1820 
1821 					zero_user(page, start, size);
1822 					set_buffer_uptodate(bh);
1823 				}
1824 
1825 				clear_buffer_new(bh);
1826 				mark_buffer_dirty(bh);
1827 			}
1828 		}
1829 
1830 		block_start = block_end;
1831 		bh = bh->b_this_page;
1832 	} while (bh != head);
1833 }
1834 EXPORT_SYMBOL(page_zero_new_buffers);
1835 
1836 int block_prepare_write(struct page *page, unsigned from, unsigned to,
1837 		get_block_t *get_block)
1838 {
1839 	struct inode *inode = page->mapping->host;
1840 	unsigned block_start, block_end;
1841 	sector_t block;
1842 	int err = 0;
1843 	unsigned blocksize, bbits;
1844 	struct buffer_head *bh, *head, *wait[2], **wait_bh=wait;
1845 
1846 	BUG_ON(!PageLocked(page));
1847 	BUG_ON(from > PAGE_CACHE_SIZE);
1848 	BUG_ON(to > PAGE_CACHE_SIZE);
1849 	BUG_ON(from > to);
1850 
1851 	blocksize = 1 << inode->i_blkbits;
1852 	if (!page_has_buffers(page))
1853 		create_empty_buffers(page, blocksize, 0);
1854 	head = page_buffers(page);
1855 
1856 	bbits = inode->i_blkbits;
1857 	block = (sector_t)page->index << (PAGE_CACHE_SHIFT - bbits);
1858 
1859 	for(bh = head, block_start = 0; bh != head || !block_start;
1860 	    block++, block_start=block_end, bh = bh->b_this_page) {
1861 		block_end = block_start + blocksize;
1862 		if (block_end <= from || block_start >= to) {
1863 			if (PageUptodate(page)) {
1864 				if (!buffer_uptodate(bh))
1865 					set_buffer_uptodate(bh);
1866 			}
1867 			continue;
1868 		}
1869 		if (buffer_new(bh))
1870 			clear_buffer_new(bh);
1871 		if (!buffer_mapped(bh)) {
1872 			WARN_ON(bh->b_size != blocksize);
1873 			err = get_block(inode, block, bh, 1);
1874 			if (err)
1875 				break;
1876 			if (buffer_new(bh)) {
1877 				unmap_underlying_metadata(bh->b_bdev,
1878 							bh->b_blocknr);
1879 				if (PageUptodate(page)) {
1880 					clear_buffer_new(bh);
1881 					set_buffer_uptodate(bh);
1882 					mark_buffer_dirty(bh);
1883 					continue;
1884 				}
1885 				if (block_end > to || block_start < from)
1886 					zero_user_segments(page,
1887 						to, block_end,
1888 						block_start, from);
1889 				continue;
1890 			}
1891 		}
1892 		if (PageUptodate(page)) {
1893 			if (!buffer_uptodate(bh))
1894 				set_buffer_uptodate(bh);
1895 			continue;
1896 		}
1897 		if (!buffer_uptodate(bh) && !buffer_delay(bh) &&
1898 		    !buffer_unwritten(bh) &&
1899 		     (block_start < from || block_end > to)) {
1900 			ll_rw_block(READ, 1, &bh);
1901 			*wait_bh++=bh;
1902 		}
1903 	}
1904 	/*
1905 	 * If we issued read requests - let them complete.
1906 	 */
1907 	while(wait_bh > wait) {
1908 		wait_on_buffer(*--wait_bh);
1909 		if (!buffer_uptodate(*wait_bh))
1910 			err = -EIO;
1911 	}
1912 	if (unlikely(err)) {
1913 		page_zero_new_buffers(page, from, to);
1914 		ClearPageUptodate(page);
1915 	}
1916 	return err;
1917 }
1918 EXPORT_SYMBOL(block_prepare_write);
1919 
1920 static int __block_commit_write(struct inode *inode, struct page *page,
1921 		unsigned from, unsigned to)
1922 {
1923 	unsigned block_start, block_end;
1924 	int partial = 0;
1925 	unsigned blocksize;
1926 	struct buffer_head *bh, *head;
1927 
1928 	blocksize = 1 << inode->i_blkbits;
1929 
1930 	for(bh = head = page_buffers(page), block_start = 0;
1931 	    bh != head || !block_start;
1932 	    block_start=block_end, bh = bh->b_this_page) {
1933 		block_end = block_start + blocksize;
1934 		if (block_end <= from || block_start >= to) {
1935 			if (!buffer_uptodate(bh))
1936 				partial = 1;
1937 		} else {
1938 			set_buffer_uptodate(bh);
1939 			mark_buffer_dirty(bh);
1940 		}
1941 		clear_buffer_new(bh);
1942 	}
1943 
1944 	/*
1945 	 * If this is a partial write which happened to make all buffers
1946 	 * uptodate then we can optimize away a bogus readpage() for
1947 	 * the next read(). Here we 'discover' whether the page went
1948 	 * uptodate as a result of this (potentially partial) write.
1949 	 */
1950 	if (!partial)
1951 		SetPageUptodate(page);
1952 	return 0;
1953 }
1954 
1955 int __block_write_begin(struct page *page, loff_t pos, unsigned len,
1956 		get_block_t *get_block)
1957 {
1958 	unsigned start = pos & (PAGE_CACHE_SIZE - 1);
1959 
1960 	return block_prepare_write(page, start, start + len, get_block);
1961 }
1962 EXPORT_SYMBOL(__block_write_begin);
1963 
1964 /*
1965  * block_write_begin takes care of the basic task of block allocation and
1966  * bringing partial write blocks uptodate first.
1967  *
1968  * The filesystem needs to handle block truncation upon failure.
1969  */
1970 int block_write_begin(struct address_space *mapping, loff_t pos, unsigned len,
1971 		unsigned flags, struct page **pagep, get_block_t *get_block)
1972 {
1973 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
1974 	struct page *page;
1975 	int status;
1976 
1977 	page = grab_cache_page_write_begin(mapping, index, flags);
1978 	if (!page)
1979 		return -ENOMEM;
1980 
1981 	status = __block_write_begin(page, pos, len, get_block);
1982 	if (unlikely(status)) {
1983 		unlock_page(page);
1984 		page_cache_release(page);
1985 		page = NULL;
1986 	}
1987 
1988 	*pagep = page;
1989 	return status;
1990 }
1991 EXPORT_SYMBOL(block_write_begin);
1992 
1993 int block_write_end(struct file *file, struct address_space *mapping,
1994 			loff_t pos, unsigned len, unsigned copied,
1995 			struct page *page, void *fsdata)
1996 {
1997 	struct inode *inode = mapping->host;
1998 	unsigned start;
1999 
2000 	start = pos & (PAGE_CACHE_SIZE - 1);
2001 
2002 	if (unlikely(copied < len)) {
2003 		/*
2004 		 * The buffers that were written will now be uptodate, so we
2005 		 * don't have to worry about a readpage reading them and
2006 		 * overwriting a partial write. However if we have encountered
2007 		 * a short write and only partially written into a buffer, it
2008 		 * will not be marked uptodate, so a readpage might come in and
2009 		 * destroy our partial write.
2010 		 *
2011 		 * Do the simplest thing, and just treat any short write to a
2012 		 * non uptodate page as a zero-length write, and force the
2013 		 * caller to redo the whole thing.
2014 		 */
2015 		if (!PageUptodate(page))
2016 			copied = 0;
2017 
2018 		page_zero_new_buffers(page, start+copied, start+len);
2019 	}
2020 	flush_dcache_page(page);
2021 
2022 	/* This could be a short (even 0-length) commit */
2023 	__block_commit_write(inode, page, start, start+copied);
2024 
2025 	return copied;
2026 }
2027 EXPORT_SYMBOL(block_write_end);
2028 
2029 int generic_write_end(struct file *file, struct address_space *mapping,
2030 			loff_t pos, unsigned len, unsigned copied,
2031 			struct page *page, void *fsdata)
2032 {
2033 	struct inode *inode = mapping->host;
2034 	int i_size_changed = 0;
2035 
2036 	copied = block_write_end(file, mapping, pos, len, copied, page, fsdata);
2037 
2038 	/*
2039 	 * No need to use i_size_read() here, the i_size
2040 	 * cannot change under us because we hold i_mutex.
2041 	 *
2042 	 * But it's important to update i_size while still holding page lock:
2043 	 * page writeout could otherwise come in and zero beyond i_size.
2044 	 */
2045 	if (pos+copied > inode->i_size) {
2046 		i_size_write(inode, pos+copied);
2047 		i_size_changed = 1;
2048 	}
2049 
2050 	unlock_page(page);
2051 	page_cache_release(page);
2052 
2053 	/*
2054 	 * Don't mark the inode dirty under page lock. First, it unnecessarily
2055 	 * makes the holding time of page lock longer. Second, it forces lock
2056 	 * ordering of page lock and transaction start for journaling
2057 	 * filesystems.
2058 	 */
2059 	if (i_size_changed)
2060 		mark_inode_dirty(inode);
2061 
2062 	return copied;
2063 }
2064 EXPORT_SYMBOL(generic_write_end);
2065 
2066 /*
2067  * block_is_partially_uptodate checks whether buffers within a page are
2068  * uptodate or not.
2069  *
2070  * Returns true if all buffers which correspond to a file portion
2071  * we want to read are uptodate.
2072  */
2073 int block_is_partially_uptodate(struct page *page, read_descriptor_t *desc,
2074 					unsigned long from)
2075 {
2076 	struct inode *inode = page->mapping->host;
2077 	unsigned block_start, block_end, blocksize;
2078 	unsigned to;
2079 	struct buffer_head *bh, *head;
2080 	int ret = 1;
2081 
2082 	if (!page_has_buffers(page))
2083 		return 0;
2084 
2085 	blocksize = 1 << inode->i_blkbits;
2086 	to = min_t(unsigned, PAGE_CACHE_SIZE - from, desc->count);
2087 	to = from + to;
2088 	if (from < blocksize && to > PAGE_CACHE_SIZE - blocksize)
2089 		return 0;
2090 
2091 	head = page_buffers(page);
2092 	bh = head;
2093 	block_start = 0;
2094 	do {
2095 		block_end = block_start + blocksize;
2096 		if (block_end > from && block_start < to) {
2097 			if (!buffer_uptodate(bh)) {
2098 				ret = 0;
2099 				break;
2100 			}
2101 			if (block_end >= to)
2102 				break;
2103 		}
2104 		block_start = block_end;
2105 		bh = bh->b_this_page;
2106 	} while (bh != head);
2107 
2108 	return ret;
2109 }
2110 EXPORT_SYMBOL(block_is_partially_uptodate);
2111 
2112 /*
2113  * Generic "read page" function for block devices that have the normal
2114  * get_block functionality. This is most of the block device filesystems.
2115  * Reads the page asynchronously --- the unlock_buffer() and
2116  * set/clear_buffer_uptodate() functions propagate buffer state into the
2117  * page struct once IO has completed.
2118  */
2119 int block_read_full_page(struct page *page, get_block_t *get_block)
2120 {
2121 	struct inode *inode = page->mapping->host;
2122 	sector_t iblock, lblock;
2123 	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
2124 	unsigned int blocksize;
2125 	int nr, i;
2126 	int fully_mapped = 1;
2127 
2128 	BUG_ON(!PageLocked(page));
2129 	blocksize = 1 << inode->i_blkbits;
2130 	if (!page_has_buffers(page))
2131 		create_empty_buffers(page, blocksize, 0);
2132 	head = page_buffers(page);
2133 
2134 	iblock = (sector_t)page->index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2135 	lblock = (i_size_read(inode)+blocksize-1) >> inode->i_blkbits;
2136 	bh = head;
2137 	nr = 0;
2138 	i = 0;
2139 
2140 	do {
2141 		if (buffer_uptodate(bh))
2142 			continue;
2143 
2144 		if (!buffer_mapped(bh)) {
2145 			int err = 0;
2146 
2147 			fully_mapped = 0;
2148 			if (iblock < lblock) {
2149 				WARN_ON(bh->b_size != blocksize);
2150 				err = get_block(inode, iblock, bh, 0);
2151 				if (err)
2152 					SetPageError(page);
2153 			}
2154 			if (!buffer_mapped(bh)) {
2155 				zero_user(page, i * blocksize, blocksize);
2156 				if (!err)
2157 					set_buffer_uptodate(bh);
2158 				continue;
2159 			}
2160 			/*
2161 			 * get_block() might have updated the buffer
2162 			 * synchronously
2163 			 */
2164 			if (buffer_uptodate(bh))
2165 				continue;
2166 		}
2167 		arr[nr++] = bh;
2168 	} while (i++, iblock++, (bh = bh->b_this_page) != head);
2169 
2170 	if (fully_mapped)
2171 		SetPageMappedToDisk(page);
2172 
2173 	if (!nr) {
2174 		/*
2175 		 * All buffers are uptodate - we can set the page uptodate
2176 		 * as well. But not if get_block() returned an error.
2177 		 */
2178 		if (!PageError(page))
2179 			SetPageUptodate(page);
2180 		unlock_page(page);
2181 		return 0;
2182 	}
2183 
2184 	/* Stage two: lock the buffers */
2185 	for (i = 0; i < nr; i++) {
2186 		bh = arr[i];
2187 		lock_buffer(bh);
2188 		mark_buffer_async_read(bh);
2189 	}
2190 
2191 	/*
2192 	 * Stage 3: start the IO.  Check for uptodateness
2193 	 * inside the buffer lock in case another process reading
2194 	 * the underlying blockdev brought it uptodate (the sct fix).
2195 	 */
2196 	for (i = 0; i < nr; i++) {
2197 		bh = arr[i];
2198 		if (buffer_uptodate(bh))
2199 			end_buffer_async_read(bh, 1);
2200 		else
2201 			submit_bh(READ, bh);
2202 	}
2203 	return 0;
2204 }
2205 EXPORT_SYMBOL(block_read_full_page);
2206 
2207 /* utility function for filesystems that need to do work on expanding
2208  * truncates.  Uses filesystem pagecache writes to allow the filesystem to
2209  * deal with the hole.
2210  */
2211 int generic_cont_expand_simple(struct inode *inode, loff_t size)
2212 {
2213 	struct address_space *mapping = inode->i_mapping;
2214 	struct page *page;
2215 	void *fsdata;
2216 	int err;
2217 
2218 	err = inode_newsize_ok(inode, size);
2219 	if (err)
2220 		goto out;
2221 
2222 	err = pagecache_write_begin(NULL, mapping, size, 0,
2223 				AOP_FLAG_UNINTERRUPTIBLE|AOP_FLAG_CONT_EXPAND,
2224 				&page, &fsdata);
2225 	if (err)
2226 		goto out;
2227 
2228 	err = pagecache_write_end(NULL, mapping, size, 0, 0, page, fsdata);
2229 	BUG_ON(err > 0);
2230 
2231 out:
2232 	return err;
2233 }
2234 EXPORT_SYMBOL(generic_cont_expand_simple);
2235 
2236 static int cont_expand_zero(struct file *file, struct address_space *mapping,
2237 			    loff_t pos, loff_t *bytes)
2238 {
2239 	struct inode *inode = mapping->host;
2240 	unsigned blocksize = 1 << inode->i_blkbits;
2241 	struct page *page;
2242 	void *fsdata;
2243 	pgoff_t index, curidx;
2244 	loff_t curpos;
2245 	unsigned zerofrom, offset, len;
2246 	int err = 0;
2247 
2248 	index = pos >> PAGE_CACHE_SHIFT;
2249 	offset = pos & ~PAGE_CACHE_MASK;
2250 
2251 	while (index > (curidx = (curpos = *bytes)>>PAGE_CACHE_SHIFT)) {
2252 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2253 		if (zerofrom & (blocksize-1)) {
2254 			*bytes |= (blocksize-1);
2255 			(*bytes)++;
2256 		}
2257 		len = PAGE_CACHE_SIZE - zerofrom;
2258 
2259 		err = pagecache_write_begin(file, mapping, curpos, len,
2260 						AOP_FLAG_UNINTERRUPTIBLE,
2261 						&page, &fsdata);
2262 		if (err)
2263 			goto out;
2264 		zero_user(page, zerofrom, len);
2265 		err = pagecache_write_end(file, mapping, curpos, len, len,
2266 						page, fsdata);
2267 		if (err < 0)
2268 			goto out;
2269 		BUG_ON(err != len);
2270 		err = 0;
2271 
2272 		balance_dirty_pages_ratelimited(mapping);
2273 	}
2274 
2275 	/* page covers the boundary, find the boundary offset */
2276 	if (index == curidx) {
2277 		zerofrom = curpos & ~PAGE_CACHE_MASK;
2278 		/* if we will expand the thing last block will be filled */
2279 		if (offset <= zerofrom) {
2280 			goto out;
2281 		}
2282 		if (zerofrom & (blocksize-1)) {
2283 			*bytes |= (blocksize-1);
2284 			(*bytes)++;
2285 		}
2286 		len = offset - zerofrom;
2287 
2288 		err = pagecache_write_begin(file, mapping, curpos, len,
2289 						AOP_FLAG_UNINTERRUPTIBLE,
2290 						&page, &fsdata);
2291 		if (err)
2292 			goto out;
2293 		zero_user(page, zerofrom, len);
2294 		err = pagecache_write_end(file, mapping, curpos, len, len,
2295 						page, fsdata);
2296 		if (err < 0)
2297 			goto out;
2298 		BUG_ON(err != len);
2299 		err = 0;
2300 	}
2301 out:
2302 	return err;
2303 }
2304 
2305 /*
2306  * For moronic filesystems that do not allow holes in file.
2307  * We may have to extend the file.
2308  */
2309 int cont_write_begin(struct file *file, struct address_space *mapping,
2310 			loff_t pos, unsigned len, unsigned flags,
2311 			struct page **pagep, void **fsdata,
2312 			get_block_t *get_block, loff_t *bytes)
2313 {
2314 	struct inode *inode = mapping->host;
2315 	unsigned blocksize = 1 << inode->i_blkbits;
2316 	unsigned zerofrom;
2317 	int err;
2318 
2319 	err = cont_expand_zero(file, mapping, pos, bytes);
2320 	if (err)
2321 		return err;
2322 
2323 	zerofrom = *bytes & ~PAGE_CACHE_MASK;
2324 	if (pos+len > *bytes && zerofrom & (blocksize-1)) {
2325 		*bytes |= (blocksize-1);
2326 		(*bytes)++;
2327 	}
2328 
2329 	return block_write_begin(mapping, pos, len, flags, pagep, get_block);
2330 }
2331 EXPORT_SYMBOL(cont_write_begin);
2332 
2333 int block_commit_write(struct page *page, unsigned from, unsigned to)
2334 {
2335 	struct inode *inode = page->mapping->host;
2336 	__block_commit_write(inode,page,from,to);
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL(block_commit_write);
2340 
2341 /*
2342  * block_page_mkwrite() is not allowed to change the file size as it gets
2343  * called from a page fault handler when a page is first dirtied. Hence we must
2344  * be careful to check for EOF conditions here. We set the page up correctly
2345  * for a written page which means we get ENOSPC checking when writing into
2346  * holes and correct delalloc and unwritten extent mapping on filesystems that
2347  * support these features.
2348  *
2349  * We are not allowed to take the i_mutex here so we have to play games to
2350  * protect against truncate races as the page could now be beyond EOF.  Because
2351  * truncate writes the inode size before removing pages, once we have the
2352  * page lock we can determine safely if the page is beyond EOF. If it is not
2353  * beyond EOF, then the page is guaranteed safe against truncation until we
2354  * unlock the page.
2355  */
2356 int
2357 block_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf,
2358 		   get_block_t get_block)
2359 {
2360 	struct page *page = vmf->page;
2361 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
2362 	unsigned long end;
2363 	loff_t size;
2364 	int ret = VM_FAULT_NOPAGE; /* make the VM retry the fault */
2365 
2366 	lock_page(page);
2367 	size = i_size_read(inode);
2368 	if ((page->mapping != inode->i_mapping) ||
2369 	    (page_offset(page) > size)) {
2370 		/* page got truncated out from underneath us */
2371 		unlock_page(page);
2372 		goto out;
2373 	}
2374 
2375 	/* page is wholly or partially inside EOF */
2376 	if (((page->index + 1) << PAGE_CACHE_SHIFT) > size)
2377 		end = size & ~PAGE_CACHE_MASK;
2378 	else
2379 		end = PAGE_CACHE_SIZE;
2380 
2381 	ret = block_prepare_write(page, 0, end, get_block);
2382 	if (!ret)
2383 		ret = block_commit_write(page, 0, end);
2384 
2385 	if (unlikely(ret)) {
2386 		unlock_page(page);
2387 		if (ret == -ENOMEM)
2388 			ret = VM_FAULT_OOM;
2389 		else /* -ENOSPC, -EIO, etc */
2390 			ret = VM_FAULT_SIGBUS;
2391 	} else
2392 		ret = VM_FAULT_LOCKED;
2393 
2394 out:
2395 	return ret;
2396 }
2397 EXPORT_SYMBOL(block_page_mkwrite);
2398 
2399 /*
2400  * nobh_write_begin()'s prereads are special: the buffer_heads are freed
2401  * immediately, while under the page lock.  So it needs a special end_io
2402  * handler which does not touch the bh after unlocking it.
2403  */
2404 static void end_buffer_read_nobh(struct buffer_head *bh, int uptodate)
2405 {
2406 	__end_buffer_read_notouch(bh, uptodate);
2407 }
2408 
2409 /*
2410  * Attach the singly-linked list of buffers created by nobh_write_begin, to
2411  * the page (converting it to circular linked list and taking care of page
2412  * dirty races).
2413  */
2414 static void attach_nobh_buffers(struct page *page, struct buffer_head *head)
2415 {
2416 	struct buffer_head *bh;
2417 
2418 	BUG_ON(!PageLocked(page));
2419 
2420 	spin_lock(&page->mapping->private_lock);
2421 	bh = head;
2422 	do {
2423 		if (PageDirty(page))
2424 			set_buffer_dirty(bh);
2425 		if (!bh->b_this_page)
2426 			bh->b_this_page = head;
2427 		bh = bh->b_this_page;
2428 	} while (bh != head);
2429 	attach_page_buffers(page, head);
2430 	spin_unlock(&page->mapping->private_lock);
2431 }
2432 
2433 /*
2434  * On entry, the page is fully not uptodate.
2435  * On exit the page is fully uptodate in the areas outside (from,to)
2436  * The filesystem needs to handle block truncation upon failure.
2437  */
2438 int nobh_write_begin(struct address_space *mapping,
2439 			loff_t pos, unsigned len, unsigned flags,
2440 			struct page **pagep, void **fsdata,
2441 			get_block_t *get_block)
2442 {
2443 	struct inode *inode = mapping->host;
2444 	const unsigned blkbits = inode->i_blkbits;
2445 	const unsigned blocksize = 1 << blkbits;
2446 	struct buffer_head *head, *bh;
2447 	struct page *page;
2448 	pgoff_t index;
2449 	unsigned from, to;
2450 	unsigned block_in_page;
2451 	unsigned block_start, block_end;
2452 	sector_t block_in_file;
2453 	int nr_reads = 0;
2454 	int ret = 0;
2455 	int is_mapped_to_disk = 1;
2456 
2457 	index = pos >> PAGE_CACHE_SHIFT;
2458 	from = pos & (PAGE_CACHE_SIZE - 1);
2459 	to = from + len;
2460 
2461 	page = grab_cache_page_write_begin(mapping, index, flags);
2462 	if (!page)
2463 		return -ENOMEM;
2464 	*pagep = page;
2465 	*fsdata = NULL;
2466 
2467 	if (page_has_buffers(page)) {
2468 		unlock_page(page);
2469 		page_cache_release(page);
2470 		*pagep = NULL;
2471 		return block_write_begin(mapping, pos, len, flags, pagep,
2472 					 get_block);
2473 	}
2474 
2475 	if (PageMappedToDisk(page))
2476 		return 0;
2477 
2478 	/*
2479 	 * Allocate buffers so that we can keep track of state, and potentially
2480 	 * attach them to the page if an error occurs. In the common case of
2481 	 * no error, they will just be freed again without ever being attached
2482 	 * to the page (which is all OK, because we're under the page lock).
2483 	 *
2484 	 * Be careful: the buffer linked list is a NULL terminated one, rather
2485 	 * than the circular one we're used to.
2486 	 */
2487 	head = alloc_page_buffers(page, blocksize, 0);
2488 	if (!head) {
2489 		ret = -ENOMEM;
2490 		goto out_release;
2491 	}
2492 
2493 	block_in_file = (sector_t)page->index << (PAGE_CACHE_SHIFT - blkbits);
2494 
2495 	/*
2496 	 * We loop across all blocks in the page, whether or not they are
2497 	 * part of the affected region.  This is so we can discover if the
2498 	 * page is fully mapped-to-disk.
2499 	 */
2500 	for (block_start = 0, block_in_page = 0, bh = head;
2501 		  block_start < PAGE_CACHE_SIZE;
2502 		  block_in_page++, block_start += blocksize, bh = bh->b_this_page) {
2503 		int create;
2504 
2505 		block_end = block_start + blocksize;
2506 		bh->b_state = 0;
2507 		create = 1;
2508 		if (block_start >= to)
2509 			create = 0;
2510 		ret = get_block(inode, block_in_file + block_in_page,
2511 					bh, create);
2512 		if (ret)
2513 			goto failed;
2514 		if (!buffer_mapped(bh))
2515 			is_mapped_to_disk = 0;
2516 		if (buffer_new(bh))
2517 			unmap_underlying_metadata(bh->b_bdev, bh->b_blocknr);
2518 		if (PageUptodate(page)) {
2519 			set_buffer_uptodate(bh);
2520 			continue;
2521 		}
2522 		if (buffer_new(bh) || !buffer_mapped(bh)) {
2523 			zero_user_segments(page, block_start, from,
2524 							to, block_end);
2525 			continue;
2526 		}
2527 		if (buffer_uptodate(bh))
2528 			continue;	/* reiserfs does this */
2529 		if (block_start < from || block_end > to) {
2530 			lock_buffer(bh);
2531 			bh->b_end_io = end_buffer_read_nobh;
2532 			submit_bh(READ, bh);
2533 			nr_reads++;
2534 		}
2535 	}
2536 
2537 	if (nr_reads) {
2538 		/*
2539 		 * The page is locked, so these buffers are protected from
2540 		 * any VM or truncate activity.  Hence we don't need to care
2541 		 * for the buffer_head refcounts.
2542 		 */
2543 		for (bh = head; bh; bh = bh->b_this_page) {
2544 			wait_on_buffer(bh);
2545 			if (!buffer_uptodate(bh))
2546 				ret = -EIO;
2547 		}
2548 		if (ret)
2549 			goto failed;
2550 	}
2551 
2552 	if (is_mapped_to_disk)
2553 		SetPageMappedToDisk(page);
2554 
2555 	*fsdata = head; /* to be released by nobh_write_end */
2556 
2557 	return 0;
2558 
2559 failed:
2560 	BUG_ON(!ret);
2561 	/*
2562 	 * Error recovery is a bit difficult. We need to zero out blocks that
2563 	 * were newly allocated, and dirty them to ensure they get written out.
2564 	 * Buffers need to be attached to the page at this point, otherwise
2565 	 * the handling of potential IO errors during writeout would be hard
2566 	 * (could try doing synchronous writeout, but what if that fails too?)
2567 	 */
2568 	attach_nobh_buffers(page, head);
2569 	page_zero_new_buffers(page, from, to);
2570 
2571 out_release:
2572 	unlock_page(page);
2573 	page_cache_release(page);
2574 	*pagep = NULL;
2575 
2576 	return ret;
2577 }
2578 EXPORT_SYMBOL(nobh_write_begin);
2579 
2580 int nobh_write_end(struct file *file, struct address_space *mapping,
2581 			loff_t pos, unsigned len, unsigned copied,
2582 			struct page *page, void *fsdata)
2583 {
2584 	struct inode *inode = page->mapping->host;
2585 	struct buffer_head *head = fsdata;
2586 	struct buffer_head *bh;
2587 	BUG_ON(fsdata != NULL && page_has_buffers(page));
2588 
2589 	if (unlikely(copied < len) && head)
2590 		attach_nobh_buffers(page, head);
2591 	if (page_has_buffers(page))
2592 		return generic_write_end(file, mapping, pos, len,
2593 					copied, page, fsdata);
2594 
2595 	SetPageUptodate(page);
2596 	set_page_dirty(page);
2597 	if (pos+copied > inode->i_size) {
2598 		i_size_write(inode, pos+copied);
2599 		mark_inode_dirty(inode);
2600 	}
2601 
2602 	unlock_page(page);
2603 	page_cache_release(page);
2604 
2605 	while (head) {
2606 		bh = head;
2607 		head = head->b_this_page;
2608 		free_buffer_head(bh);
2609 	}
2610 
2611 	return copied;
2612 }
2613 EXPORT_SYMBOL(nobh_write_end);
2614 
2615 /*
2616  * nobh_writepage() - based on block_full_write_page() except
2617  * that it tries to operate without attaching bufferheads to
2618  * the page.
2619  */
2620 int nobh_writepage(struct page *page, get_block_t *get_block,
2621 			struct writeback_control *wbc)
2622 {
2623 	struct inode * const inode = page->mapping->host;
2624 	loff_t i_size = i_size_read(inode);
2625 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2626 	unsigned offset;
2627 	int ret;
2628 
2629 	/* Is the page fully inside i_size? */
2630 	if (page->index < end_index)
2631 		goto out;
2632 
2633 	/* Is the page fully outside i_size? (truncate in progress) */
2634 	offset = i_size & (PAGE_CACHE_SIZE-1);
2635 	if (page->index >= end_index+1 || !offset) {
2636 		/*
2637 		 * The page may have dirty, unmapped buffers.  For example,
2638 		 * they may have been added in ext3_writepage().  Make them
2639 		 * freeable here, so the page does not leak.
2640 		 */
2641 #if 0
2642 		/* Not really sure about this  - do we need this ? */
2643 		if (page->mapping->a_ops->invalidatepage)
2644 			page->mapping->a_ops->invalidatepage(page, offset);
2645 #endif
2646 		unlock_page(page);
2647 		return 0; /* don't care */
2648 	}
2649 
2650 	/*
2651 	 * The page straddles i_size.  It must be zeroed out on each and every
2652 	 * writepage invocation because it may be mmapped.  "A file is mapped
2653 	 * in multiples of the page size.  For a file that is not a multiple of
2654 	 * the  page size, the remaining memory is zeroed when mapped, and
2655 	 * writes to that region are not written out to the file."
2656 	 */
2657 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2658 out:
2659 	ret = mpage_writepage(page, get_block, wbc);
2660 	if (ret == -EAGAIN)
2661 		ret = __block_write_full_page(inode, page, get_block, wbc,
2662 					      end_buffer_async_write);
2663 	return ret;
2664 }
2665 EXPORT_SYMBOL(nobh_writepage);
2666 
2667 int nobh_truncate_page(struct address_space *mapping,
2668 			loff_t from, get_block_t *get_block)
2669 {
2670 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2671 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2672 	unsigned blocksize;
2673 	sector_t iblock;
2674 	unsigned length, pos;
2675 	struct inode *inode = mapping->host;
2676 	struct page *page;
2677 	struct buffer_head map_bh;
2678 	int err;
2679 
2680 	blocksize = 1 << inode->i_blkbits;
2681 	length = offset & (blocksize - 1);
2682 
2683 	/* Block boundary? Nothing to do */
2684 	if (!length)
2685 		return 0;
2686 
2687 	length = blocksize - length;
2688 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2689 
2690 	page = grab_cache_page(mapping, index);
2691 	err = -ENOMEM;
2692 	if (!page)
2693 		goto out;
2694 
2695 	if (page_has_buffers(page)) {
2696 has_buffers:
2697 		unlock_page(page);
2698 		page_cache_release(page);
2699 		return block_truncate_page(mapping, from, get_block);
2700 	}
2701 
2702 	/* Find the buffer that contains "offset" */
2703 	pos = blocksize;
2704 	while (offset >= pos) {
2705 		iblock++;
2706 		pos += blocksize;
2707 	}
2708 
2709 	map_bh.b_size = blocksize;
2710 	map_bh.b_state = 0;
2711 	err = get_block(inode, iblock, &map_bh, 0);
2712 	if (err)
2713 		goto unlock;
2714 	/* unmapped? It's a hole - nothing to do */
2715 	if (!buffer_mapped(&map_bh))
2716 		goto unlock;
2717 
2718 	/* Ok, it's mapped. Make sure it's up-to-date */
2719 	if (!PageUptodate(page)) {
2720 		err = mapping->a_ops->readpage(NULL, page);
2721 		if (err) {
2722 			page_cache_release(page);
2723 			goto out;
2724 		}
2725 		lock_page(page);
2726 		if (!PageUptodate(page)) {
2727 			err = -EIO;
2728 			goto unlock;
2729 		}
2730 		if (page_has_buffers(page))
2731 			goto has_buffers;
2732 	}
2733 	zero_user(page, offset, length);
2734 	set_page_dirty(page);
2735 	err = 0;
2736 
2737 unlock:
2738 	unlock_page(page);
2739 	page_cache_release(page);
2740 out:
2741 	return err;
2742 }
2743 EXPORT_SYMBOL(nobh_truncate_page);
2744 
2745 int block_truncate_page(struct address_space *mapping,
2746 			loff_t from, get_block_t *get_block)
2747 {
2748 	pgoff_t index = from >> PAGE_CACHE_SHIFT;
2749 	unsigned offset = from & (PAGE_CACHE_SIZE-1);
2750 	unsigned blocksize;
2751 	sector_t iblock;
2752 	unsigned length, pos;
2753 	struct inode *inode = mapping->host;
2754 	struct page *page;
2755 	struct buffer_head *bh;
2756 	int err;
2757 
2758 	blocksize = 1 << inode->i_blkbits;
2759 	length = offset & (blocksize - 1);
2760 
2761 	/* Block boundary? Nothing to do */
2762 	if (!length)
2763 		return 0;
2764 
2765 	length = blocksize - length;
2766 	iblock = (sector_t)index << (PAGE_CACHE_SHIFT - inode->i_blkbits);
2767 
2768 	page = grab_cache_page(mapping, index);
2769 	err = -ENOMEM;
2770 	if (!page)
2771 		goto out;
2772 
2773 	if (!page_has_buffers(page))
2774 		create_empty_buffers(page, blocksize, 0);
2775 
2776 	/* Find the buffer that contains "offset" */
2777 	bh = page_buffers(page);
2778 	pos = blocksize;
2779 	while (offset >= pos) {
2780 		bh = bh->b_this_page;
2781 		iblock++;
2782 		pos += blocksize;
2783 	}
2784 
2785 	err = 0;
2786 	if (!buffer_mapped(bh)) {
2787 		WARN_ON(bh->b_size != blocksize);
2788 		err = get_block(inode, iblock, bh, 0);
2789 		if (err)
2790 			goto unlock;
2791 		/* unmapped? It's a hole - nothing to do */
2792 		if (!buffer_mapped(bh))
2793 			goto unlock;
2794 	}
2795 
2796 	/* Ok, it's mapped. Make sure it's up-to-date */
2797 	if (PageUptodate(page))
2798 		set_buffer_uptodate(bh);
2799 
2800 	if (!buffer_uptodate(bh) && !buffer_delay(bh) && !buffer_unwritten(bh)) {
2801 		err = -EIO;
2802 		ll_rw_block(READ, 1, &bh);
2803 		wait_on_buffer(bh);
2804 		/* Uhhuh. Read error. Complain and punt. */
2805 		if (!buffer_uptodate(bh))
2806 			goto unlock;
2807 	}
2808 
2809 	zero_user(page, offset, length);
2810 	mark_buffer_dirty(bh);
2811 	err = 0;
2812 
2813 unlock:
2814 	unlock_page(page);
2815 	page_cache_release(page);
2816 out:
2817 	return err;
2818 }
2819 EXPORT_SYMBOL(block_truncate_page);
2820 
2821 /*
2822  * The generic ->writepage function for buffer-backed address_spaces
2823  * this form passes in the end_io handler used to finish the IO.
2824  */
2825 int block_write_full_page_endio(struct page *page, get_block_t *get_block,
2826 			struct writeback_control *wbc, bh_end_io_t *handler)
2827 {
2828 	struct inode * const inode = page->mapping->host;
2829 	loff_t i_size = i_size_read(inode);
2830 	const pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2831 	unsigned offset;
2832 
2833 	/* Is the page fully inside i_size? */
2834 	if (page->index < end_index)
2835 		return __block_write_full_page(inode, page, get_block, wbc,
2836 					       handler);
2837 
2838 	/* Is the page fully outside i_size? (truncate in progress) */
2839 	offset = i_size & (PAGE_CACHE_SIZE-1);
2840 	if (page->index >= end_index+1 || !offset) {
2841 		/*
2842 		 * The page may have dirty, unmapped buffers.  For example,
2843 		 * they may have been added in ext3_writepage().  Make them
2844 		 * freeable here, so the page does not leak.
2845 		 */
2846 		do_invalidatepage(page, 0);
2847 		unlock_page(page);
2848 		return 0; /* don't care */
2849 	}
2850 
2851 	/*
2852 	 * The page straddles i_size.  It must be zeroed out on each and every
2853 	 * writepage invocation because it may be mmapped.  "A file is mapped
2854 	 * in multiples of the page size.  For a file that is not a multiple of
2855 	 * the  page size, the remaining memory is zeroed when mapped, and
2856 	 * writes to that region are not written out to the file."
2857 	 */
2858 	zero_user_segment(page, offset, PAGE_CACHE_SIZE);
2859 	return __block_write_full_page(inode, page, get_block, wbc, handler);
2860 }
2861 EXPORT_SYMBOL(block_write_full_page_endio);
2862 
2863 /*
2864  * The generic ->writepage function for buffer-backed address_spaces
2865  */
2866 int block_write_full_page(struct page *page, get_block_t *get_block,
2867 			struct writeback_control *wbc)
2868 {
2869 	return block_write_full_page_endio(page, get_block, wbc,
2870 					   end_buffer_async_write);
2871 }
2872 EXPORT_SYMBOL(block_write_full_page);
2873 
2874 sector_t generic_block_bmap(struct address_space *mapping, sector_t block,
2875 			    get_block_t *get_block)
2876 {
2877 	struct buffer_head tmp;
2878 	struct inode *inode = mapping->host;
2879 	tmp.b_state = 0;
2880 	tmp.b_blocknr = 0;
2881 	tmp.b_size = 1 << inode->i_blkbits;
2882 	get_block(inode, block, &tmp, 0);
2883 	return tmp.b_blocknr;
2884 }
2885 EXPORT_SYMBOL(generic_block_bmap);
2886 
2887 static void end_bio_bh_io_sync(struct bio *bio, int err)
2888 {
2889 	struct buffer_head *bh = bio->bi_private;
2890 
2891 	if (err == -EOPNOTSUPP) {
2892 		set_bit(BIO_EOPNOTSUPP, &bio->bi_flags);
2893 		set_bit(BH_Eopnotsupp, &bh->b_state);
2894 	}
2895 
2896 	if (unlikely (test_bit(BIO_QUIET,&bio->bi_flags)))
2897 		set_bit(BH_Quiet, &bh->b_state);
2898 
2899 	bh->b_end_io(bh, test_bit(BIO_UPTODATE, &bio->bi_flags));
2900 	bio_put(bio);
2901 }
2902 
2903 int submit_bh(int rw, struct buffer_head * bh)
2904 {
2905 	struct bio *bio;
2906 	int ret = 0;
2907 
2908 	BUG_ON(!buffer_locked(bh));
2909 	BUG_ON(!buffer_mapped(bh));
2910 	BUG_ON(!bh->b_end_io);
2911 	BUG_ON(buffer_delay(bh));
2912 	BUG_ON(buffer_unwritten(bh));
2913 
2914 	/*
2915 	 * Mask in barrier bit for a write (could be either a WRITE or a
2916 	 * WRITE_SYNC
2917 	 */
2918 	if (buffer_ordered(bh) && (rw & WRITE))
2919 		rw |= WRITE_BARRIER;
2920 
2921 	/*
2922 	 * Only clear out a write error when rewriting
2923 	 */
2924 	if (test_set_buffer_req(bh) && (rw & WRITE))
2925 		clear_buffer_write_io_error(bh);
2926 
2927 	/*
2928 	 * from here on down, it's all bio -- do the initial mapping,
2929 	 * submit_bio -> generic_make_request may further map this bio around
2930 	 */
2931 	bio = bio_alloc(GFP_NOIO, 1);
2932 
2933 	bio->bi_sector = bh->b_blocknr * (bh->b_size >> 9);
2934 	bio->bi_bdev = bh->b_bdev;
2935 	bio->bi_io_vec[0].bv_page = bh->b_page;
2936 	bio->bi_io_vec[0].bv_len = bh->b_size;
2937 	bio->bi_io_vec[0].bv_offset = bh_offset(bh);
2938 
2939 	bio->bi_vcnt = 1;
2940 	bio->bi_idx = 0;
2941 	bio->bi_size = bh->b_size;
2942 
2943 	bio->bi_end_io = end_bio_bh_io_sync;
2944 	bio->bi_private = bh;
2945 
2946 	bio_get(bio);
2947 	submit_bio(rw, bio);
2948 
2949 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2950 		ret = -EOPNOTSUPP;
2951 
2952 	bio_put(bio);
2953 	return ret;
2954 }
2955 EXPORT_SYMBOL(submit_bh);
2956 
2957 /**
2958  * ll_rw_block: low-level access to block devices (DEPRECATED)
2959  * @rw: whether to %READ or %WRITE or %SWRITE or maybe %READA (readahead)
2960  * @nr: number of &struct buffer_heads in the array
2961  * @bhs: array of pointers to &struct buffer_head
2962  *
2963  * ll_rw_block() takes an array of pointers to &struct buffer_heads, and
2964  * requests an I/O operation on them, either a %READ or a %WRITE.  The third
2965  * %SWRITE is like %WRITE only we make sure that the *current* data in buffers
2966  * are sent to disk. The fourth %READA option is described in the documentation
2967  * for generic_make_request() which ll_rw_block() calls.
2968  *
2969  * This function drops any buffer that it cannot get a lock on (with the
2970  * BH_Lock state bit) unless SWRITE is required, any buffer that appears to be
2971  * clean when doing a write request, and any buffer that appears to be
2972  * up-to-date when doing read request.  Further it marks as clean buffers that
2973  * are processed for writing (the buffer cache won't assume that they are
2974  * actually clean until the buffer gets unlocked).
2975  *
2976  * ll_rw_block sets b_end_io to simple completion handler that marks
2977  * the buffer up-to-date (if approriate), unlocks the buffer and wakes
2978  * any waiters.
2979  *
2980  * All of the buffers must be for the same device, and must also be a
2981  * multiple of the current approved size for the device.
2982  */
2983 void ll_rw_block(int rw, int nr, struct buffer_head *bhs[])
2984 {
2985 	int i;
2986 
2987 	for (i = 0; i < nr; i++) {
2988 		struct buffer_head *bh = bhs[i];
2989 
2990 		if (rw == SWRITE || rw == SWRITE_SYNC || rw == SWRITE_SYNC_PLUG)
2991 			lock_buffer(bh);
2992 		else if (!trylock_buffer(bh))
2993 			continue;
2994 
2995 		if (rw == WRITE || rw == SWRITE || rw == SWRITE_SYNC ||
2996 		    rw == SWRITE_SYNC_PLUG) {
2997 			if (test_clear_buffer_dirty(bh)) {
2998 				bh->b_end_io = end_buffer_write_sync;
2999 				get_bh(bh);
3000 				if (rw == SWRITE_SYNC)
3001 					submit_bh(WRITE_SYNC, bh);
3002 				else
3003 					submit_bh(WRITE, bh);
3004 				continue;
3005 			}
3006 		} else {
3007 			if (!buffer_uptodate(bh)) {
3008 				bh->b_end_io = end_buffer_read_sync;
3009 				get_bh(bh);
3010 				submit_bh(rw, bh);
3011 				continue;
3012 			}
3013 		}
3014 		unlock_buffer(bh);
3015 	}
3016 }
3017 EXPORT_SYMBOL(ll_rw_block);
3018 
3019 /*
3020  * For a data-integrity writeout, we need to wait upon any in-progress I/O
3021  * and then start new I/O and then wait upon it.  The caller must have a ref on
3022  * the buffer_head.
3023  */
3024 int sync_dirty_buffer(struct buffer_head *bh)
3025 {
3026 	int ret = 0;
3027 
3028 	WARN_ON(atomic_read(&bh->b_count) < 1);
3029 	lock_buffer(bh);
3030 	if (test_clear_buffer_dirty(bh)) {
3031 		get_bh(bh);
3032 		bh->b_end_io = end_buffer_write_sync;
3033 		ret = submit_bh(WRITE_SYNC, bh);
3034 		wait_on_buffer(bh);
3035 		if (buffer_eopnotsupp(bh)) {
3036 			clear_buffer_eopnotsupp(bh);
3037 			ret = -EOPNOTSUPP;
3038 		}
3039 		if (!ret && !buffer_uptodate(bh))
3040 			ret = -EIO;
3041 	} else {
3042 		unlock_buffer(bh);
3043 	}
3044 	return ret;
3045 }
3046 EXPORT_SYMBOL(sync_dirty_buffer);
3047 
3048 /*
3049  * try_to_free_buffers() checks if all the buffers on this particular page
3050  * are unused, and releases them if so.
3051  *
3052  * Exclusion against try_to_free_buffers may be obtained by either
3053  * locking the page or by holding its mapping's private_lock.
3054  *
3055  * If the page is dirty but all the buffers are clean then we need to
3056  * be sure to mark the page clean as well.  This is because the page
3057  * may be against a block device, and a later reattachment of buffers
3058  * to a dirty page will set *all* buffers dirty.  Which would corrupt
3059  * filesystem data on the same device.
3060  *
3061  * The same applies to regular filesystem pages: if all the buffers are
3062  * clean then we set the page clean and proceed.  To do that, we require
3063  * total exclusion from __set_page_dirty_buffers().  That is obtained with
3064  * private_lock.
3065  *
3066  * try_to_free_buffers() is non-blocking.
3067  */
3068 static inline int buffer_busy(struct buffer_head *bh)
3069 {
3070 	return atomic_read(&bh->b_count) |
3071 		(bh->b_state & ((1 << BH_Dirty) | (1 << BH_Lock)));
3072 }
3073 
3074 static int
3075 drop_buffers(struct page *page, struct buffer_head **buffers_to_free)
3076 {
3077 	struct buffer_head *head = page_buffers(page);
3078 	struct buffer_head *bh;
3079 
3080 	bh = head;
3081 	do {
3082 		if (buffer_write_io_error(bh) && page->mapping)
3083 			set_bit(AS_EIO, &page->mapping->flags);
3084 		if (buffer_busy(bh))
3085 			goto failed;
3086 		bh = bh->b_this_page;
3087 	} while (bh != head);
3088 
3089 	do {
3090 		struct buffer_head *next = bh->b_this_page;
3091 
3092 		if (bh->b_assoc_map)
3093 			__remove_assoc_queue(bh);
3094 		bh = next;
3095 	} while (bh != head);
3096 	*buffers_to_free = head;
3097 	__clear_page_buffers(page);
3098 	return 1;
3099 failed:
3100 	return 0;
3101 }
3102 
3103 int try_to_free_buffers(struct page *page)
3104 {
3105 	struct address_space * const mapping = page->mapping;
3106 	struct buffer_head *buffers_to_free = NULL;
3107 	int ret = 0;
3108 
3109 	BUG_ON(!PageLocked(page));
3110 	if (PageWriteback(page))
3111 		return 0;
3112 
3113 	if (mapping == NULL) {		/* can this still happen? */
3114 		ret = drop_buffers(page, &buffers_to_free);
3115 		goto out;
3116 	}
3117 
3118 	spin_lock(&mapping->private_lock);
3119 	ret = drop_buffers(page, &buffers_to_free);
3120 
3121 	/*
3122 	 * If the filesystem writes its buffers by hand (eg ext3)
3123 	 * then we can have clean buffers against a dirty page.  We
3124 	 * clean the page here; otherwise the VM will never notice
3125 	 * that the filesystem did any IO at all.
3126 	 *
3127 	 * Also, during truncate, discard_buffer will have marked all
3128 	 * the page's buffers clean.  We discover that here and clean
3129 	 * the page also.
3130 	 *
3131 	 * private_lock must be held over this entire operation in order
3132 	 * to synchronise against __set_page_dirty_buffers and prevent the
3133 	 * dirty bit from being lost.
3134 	 */
3135 	if (ret)
3136 		cancel_dirty_page(page, PAGE_CACHE_SIZE);
3137 	spin_unlock(&mapping->private_lock);
3138 out:
3139 	if (buffers_to_free) {
3140 		struct buffer_head *bh = buffers_to_free;
3141 
3142 		do {
3143 			struct buffer_head *next = bh->b_this_page;
3144 			free_buffer_head(bh);
3145 			bh = next;
3146 		} while (bh != buffers_to_free);
3147 	}
3148 	return ret;
3149 }
3150 EXPORT_SYMBOL(try_to_free_buffers);
3151 
3152 void block_sync_page(struct page *page)
3153 {
3154 	struct address_space *mapping;
3155 
3156 	smp_mb();
3157 	mapping = page_mapping(page);
3158 	if (mapping)
3159 		blk_run_backing_dev(mapping->backing_dev_info, page);
3160 }
3161 EXPORT_SYMBOL(block_sync_page);
3162 
3163 /*
3164  * There are no bdflush tunables left.  But distributions are
3165  * still running obsolete flush daemons, so we terminate them here.
3166  *
3167  * Use of bdflush() is deprecated and will be removed in a future kernel.
3168  * The `flush-X' kernel threads fully replace bdflush daemons and this call.
3169  */
3170 SYSCALL_DEFINE2(bdflush, int, func, long, data)
3171 {
3172 	static int msg_count;
3173 
3174 	if (!capable(CAP_SYS_ADMIN))
3175 		return -EPERM;
3176 
3177 	if (msg_count < 5) {
3178 		msg_count++;
3179 		printk(KERN_INFO
3180 			"warning: process `%s' used the obsolete bdflush"
3181 			" system call\n", current->comm);
3182 		printk(KERN_INFO "Fix your initscripts?\n");
3183 	}
3184 
3185 	if (func == 1)
3186 		do_exit(0);
3187 	return 0;
3188 }
3189 
3190 /*
3191  * Buffer-head allocation
3192  */
3193 static struct kmem_cache *bh_cachep;
3194 
3195 /*
3196  * Once the number of bh's in the machine exceeds this level, we start
3197  * stripping them in writeback.
3198  */
3199 static int max_buffer_heads;
3200 
3201 int buffer_heads_over_limit;
3202 
3203 struct bh_accounting {
3204 	int nr;			/* Number of live bh's */
3205 	int ratelimit;		/* Limit cacheline bouncing */
3206 };
3207 
3208 static DEFINE_PER_CPU(struct bh_accounting, bh_accounting) = {0, 0};
3209 
3210 static void recalc_bh_state(void)
3211 {
3212 	int i;
3213 	int tot = 0;
3214 
3215 	if (__get_cpu_var(bh_accounting).ratelimit++ < 4096)
3216 		return;
3217 	__get_cpu_var(bh_accounting).ratelimit = 0;
3218 	for_each_online_cpu(i)
3219 		tot += per_cpu(bh_accounting, i).nr;
3220 	buffer_heads_over_limit = (tot > max_buffer_heads);
3221 }
3222 
3223 struct buffer_head *alloc_buffer_head(gfp_t gfp_flags)
3224 {
3225 	struct buffer_head *ret = kmem_cache_zalloc(bh_cachep, gfp_flags);
3226 	if (ret) {
3227 		INIT_LIST_HEAD(&ret->b_assoc_buffers);
3228 		get_cpu_var(bh_accounting).nr++;
3229 		recalc_bh_state();
3230 		put_cpu_var(bh_accounting);
3231 	}
3232 	return ret;
3233 }
3234 EXPORT_SYMBOL(alloc_buffer_head);
3235 
3236 void free_buffer_head(struct buffer_head *bh)
3237 {
3238 	BUG_ON(!list_empty(&bh->b_assoc_buffers));
3239 	kmem_cache_free(bh_cachep, bh);
3240 	get_cpu_var(bh_accounting).nr--;
3241 	recalc_bh_state();
3242 	put_cpu_var(bh_accounting);
3243 }
3244 EXPORT_SYMBOL(free_buffer_head);
3245 
3246 static void buffer_exit_cpu(int cpu)
3247 {
3248 	int i;
3249 	struct bh_lru *b = &per_cpu(bh_lrus, cpu);
3250 
3251 	for (i = 0; i < BH_LRU_SIZE; i++) {
3252 		brelse(b->bhs[i]);
3253 		b->bhs[i] = NULL;
3254 	}
3255 	get_cpu_var(bh_accounting).nr += per_cpu(bh_accounting, cpu).nr;
3256 	per_cpu(bh_accounting, cpu).nr = 0;
3257 	put_cpu_var(bh_accounting);
3258 }
3259 
3260 static int buffer_cpu_notify(struct notifier_block *self,
3261 			      unsigned long action, void *hcpu)
3262 {
3263 	if (action == CPU_DEAD || action == CPU_DEAD_FROZEN)
3264 		buffer_exit_cpu((unsigned long)hcpu);
3265 	return NOTIFY_OK;
3266 }
3267 
3268 /**
3269  * bh_uptodate_or_lock - Test whether the buffer is uptodate
3270  * @bh: struct buffer_head
3271  *
3272  * Return true if the buffer is up-to-date and false,
3273  * with the buffer locked, if not.
3274  */
3275 int bh_uptodate_or_lock(struct buffer_head *bh)
3276 {
3277 	if (!buffer_uptodate(bh)) {
3278 		lock_buffer(bh);
3279 		if (!buffer_uptodate(bh))
3280 			return 0;
3281 		unlock_buffer(bh);
3282 	}
3283 	return 1;
3284 }
3285 EXPORT_SYMBOL(bh_uptodate_or_lock);
3286 
3287 /**
3288  * bh_submit_read - Submit a locked buffer for reading
3289  * @bh: struct buffer_head
3290  *
3291  * Returns zero on success and -EIO on error.
3292  */
3293 int bh_submit_read(struct buffer_head *bh)
3294 {
3295 	BUG_ON(!buffer_locked(bh));
3296 
3297 	if (buffer_uptodate(bh)) {
3298 		unlock_buffer(bh);
3299 		return 0;
3300 	}
3301 
3302 	get_bh(bh);
3303 	bh->b_end_io = end_buffer_read_sync;
3304 	submit_bh(READ, bh);
3305 	wait_on_buffer(bh);
3306 	if (buffer_uptodate(bh))
3307 		return 0;
3308 	return -EIO;
3309 }
3310 EXPORT_SYMBOL(bh_submit_read);
3311 
3312 void __init buffer_init(void)
3313 {
3314 	int nrpages;
3315 
3316 	bh_cachep = kmem_cache_create("buffer_head",
3317 			sizeof(struct buffer_head), 0,
3318 				(SLAB_RECLAIM_ACCOUNT|SLAB_PANIC|
3319 				SLAB_MEM_SPREAD),
3320 				NULL);
3321 
3322 	/*
3323 	 * Limit the bh occupancy to 10% of ZONE_NORMAL
3324 	 */
3325 	nrpages = (nr_free_buffer_pages() * 10) / 100;
3326 	max_buffer_heads = nrpages * (PAGE_SIZE / sizeof(struct buffer_head));
3327 	hotcpu_notifier(buffer_cpu_notify, 0);
3328 }
3329