1 // SPDX-License-Identifier: GPL-2.0 2 3 #include <linux/bitops.h> 4 #include <linux/slab.h> 5 #include <linux/blkdev.h> 6 #include <linux/sched/mm.h> 7 #include "ctree.h" 8 #include "volumes.h" 9 #include "zoned.h" 10 #include "rcu-string.h" 11 #include "disk-io.h" 12 #include "block-group.h" 13 #include "transaction.h" 14 #include "dev-replace.h" 15 #include "space-info.h" 16 17 /* Maximum number of zones to report per blkdev_report_zones() call */ 18 #define BTRFS_REPORT_NR_ZONES 4096 19 /* Invalid allocation pointer value for missing devices */ 20 #define WP_MISSING_DEV ((u64)-1) 21 /* Pseudo write pointer value for conventional zone */ 22 #define WP_CONVENTIONAL ((u64)-2) 23 24 /* Number of superblock log zones */ 25 #define BTRFS_NR_SB_LOG_ZONES 2 26 27 static int copy_zone_info_cb(struct blk_zone *zone, unsigned int idx, void *data) 28 { 29 struct blk_zone *zones = data; 30 31 memcpy(&zones[idx], zone, sizeof(*zone)); 32 33 return 0; 34 } 35 36 static int sb_write_pointer(struct block_device *bdev, struct blk_zone *zones, 37 u64 *wp_ret) 38 { 39 bool empty[BTRFS_NR_SB_LOG_ZONES]; 40 bool full[BTRFS_NR_SB_LOG_ZONES]; 41 sector_t sector; 42 43 ASSERT(zones[0].type != BLK_ZONE_TYPE_CONVENTIONAL && 44 zones[1].type != BLK_ZONE_TYPE_CONVENTIONAL); 45 46 empty[0] = (zones[0].cond == BLK_ZONE_COND_EMPTY); 47 empty[1] = (zones[1].cond == BLK_ZONE_COND_EMPTY); 48 full[0] = (zones[0].cond == BLK_ZONE_COND_FULL); 49 full[1] = (zones[1].cond == BLK_ZONE_COND_FULL); 50 51 /* 52 * Possible states of log buffer zones 53 * 54 * Empty[0] In use[0] Full[0] 55 * Empty[1] * x 0 56 * In use[1] 0 x 0 57 * Full[1] 1 1 C 58 * 59 * Log position: 60 * *: Special case, no superblock is written 61 * 0: Use write pointer of zones[0] 62 * 1: Use write pointer of zones[1] 63 * C: Compare super blcoks from zones[0] and zones[1], use the latest 64 * one determined by generation 65 * x: Invalid state 66 */ 67 68 if (empty[0] && empty[1]) { 69 /* Special case to distinguish no superblock to read */ 70 *wp_ret = zones[0].start << SECTOR_SHIFT; 71 return -ENOENT; 72 } else if (full[0] && full[1]) { 73 /* Compare two super blocks */ 74 struct address_space *mapping = bdev->bd_inode->i_mapping; 75 struct page *page[BTRFS_NR_SB_LOG_ZONES]; 76 struct btrfs_super_block *super[BTRFS_NR_SB_LOG_ZONES]; 77 int i; 78 79 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) { 80 u64 bytenr; 81 82 bytenr = ((zones[i].start + zones[i].len) 83 << SECTOR_SHIFT) - BTRFS_SUPER_INFO_SIZE; 84 85 page[i] = read_cache_page_gfp(mapping, 86 bytenr >> PAGE_SHIFT, GFP_NOFS); 87 if (IS_ERR(page[i])) { 88 if (i == 1) 89 btrfs_release_disk_super(super[0]); 90 return PTR_ERR(page[i]); 91 } 92 super[i] = page_address(page[i]); 93 } 94 95 if (super[0]->generation > super[1]->generation) 96 sector = zones[1].start; 97 else 98 sector = zones[0].start; 99 100 for (i = 0; i < BTRFS_NR_SB_LOG_ZONES; i++) 101 btrfs_release_disk_super(super[i]); 102 } else if (!full[0] && (empty[1] || full[1])) { 103 sector = zones[0].wp; 104 } else if (full[0]) { 105 sector = zones[1].wp; 106 } else { 107 return -EUCLEAN; 108 } 109 *wp_ret = sector << SECTOR_SHIFT; 110 return 0; 111 } 112 113 /* 114 * The following zones are reserved as the circular buffer on ZONED btrfs. 115 * - The primary superblock: zones 0 and 1 116 * - The first copy: zones 16 and 17 117 * - The second copy: zones 1024 or zone at 256GB which is minimum, and 118 * the following one 119 */ 120 static inline u32 sb_zone_number(int shift, int mirror) 121 { 122 ASSERT(mirror < BTRFS_SUPER_MIRROR_MAX); 123 124 switch (mirror) { 125 case 0: return 0; 126 case 1: return 16; 127 case 2: return min_t(u64, btrfs_sb_offset(mirror) >> shift, 1024); 128 } 129 130 return 0; 131 } 132 133 /* 134 * Emulate blkdev_report_zones() for a non-zoned device. It slices up the block 135 * device into static sized chunks and fake a conventional zone on each of 136 * them. 137 */ 138 static int emulate_report_zones(struct btrfs_device *device, u64 pos, 139 struct blk_zone *zones, unsigned int nr_zones) 140 { 141 const sector_t zone_sectors = device->fs_info->zone_size >> SECTOR_SHIFT; 142 sector_t bdev_size = bdev_nr_sectors(device->bdev); 143 unsigned int i; 144 145 pos >>= SECTOR_SHIFT; 146 for (i = 0; i < nr_zones; i++) { 147 zones[i].start = i * zone_sectors + pos; 148 zones[i].len = zone_sectors; 149 zones[i].capacity = zone_sectors; 150 zones[i].wp = zones[i].start + zone_sectors; 151 zones[i].type = BLK_ZONE_TYPE_CONVENTIONAL; 152 zones[i].cond = BLK_ZONE_COND_NOT_WP; 153 154 if (zones[i].wp >= bdev_size) { 155 i++; 156 break; 157 } 158 } 159 160 return i; 161 } 162 163 static int btrfs_get_dev_zones(struct btrfs_device *device, u64 pos, 164 struct blk_zone *zones, unsigned int *nr_zones) 165 { 166 int ret; 167 168 if (!*nr_zones) 169 return 0; 170 171 if (!bdev_is_zoned(device->bdev)) { 172 ret = emulate_report_zones(device, pos, zones, *nr_zones); 173 *nr_zones = ret; 174 return 0; 175 } 176 177 ret = blkdev_report_zones(device->bdev, pos >> SECTOR_SHIFT, *nr_zones, 178 copy_zone_info_cb, zones); 179 if (ret < 0) { 180 btrfs_err_in_rcu(device->fs_info, 181 "zoned: failed to read zone %llu on %s (devid %llu)", 182 pos, rcu_str_deref(device->name), 183 device->devid); 184 return ret; 185 } 186 *nr_zones = ret; 187 if (!ret) 188 return -EIO; 189 190 return 0; 191 } 192 193 /* The emulated zone size is determined from the size of device extent */ 194 static int calculate_emulated_zone_size(struct btrfs_fs_info *fs_info) 195 { 196 struct btrfs_path *path; 197 struct btrfs_root *root = fs_info->dev_root; 198 struct btrfs_key key; 199 struct extent_buffer *leaf; 200 struct btrfs_dev_extent *dext; 201 int ret = 0; 202 203 key.objectid = 1; 204 key.type = BTRFS_DEV_EXTENT_KEY; 205 key.offset = 0; 206 207 path = btrfs_alloc_path(); 208 if (!path) 209 return -ENOMEM; 210 211 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 212 if (ret < 0) 213 goto out; 214 215 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 216 ret = btrfs_next_item(root, path); 217 if (ret < 0) 218 goto out; 219 /* No dev extents at all? Not good */ 220 if (ret > 0) { 221 ret = -EUCLEAN; 222 goto out; 223 } 224 } 225 226 leaf = path->nodes[0]; 227 dext = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_extent); 228 fs_info->zone_size = btrfs_dev_extent_length(leaf, dext); 229 ret = 0; 230 231 out: 232 btrfs_free_path(path); 233 234 return ret; 235 } 236 237 int btrfs_get_dev_zone_info_all_devices(struct btrfs_fs_info *fs_info) 238 { 239 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 240 struct btrfs_device *device; 241 int ret = 0; 242 243 /* fs_info->zone_size might not set yet. Use the incomapt flag here. */ 244 if (!btrfs_fs_incompat(fs_info, ZONED)) 245 return 0; 246 247 mutex_lock(&fs_devices->device_list_mutex); 248 list_for_each_entry(device, &fs_devices->devices, dev_list) { 249 /* We can skip reading of zone info for missing devices */ 250 if (!device->bdev) 251 continue; 252 253 ret = btrfs_get_dev_zone_info(device); 254 if (ret) 255 break; 256 } 257 mutex_unlock(&fs_devices->device_list_mutex); 258 259 return ret; 260 } 261 262 int btrfs_get_dev_zone_info(struct btrfs_device *device) 263 { 264 struct btrfs_fs_info *fs_info = device->fs_info; 265 struct btrfs_zoned_device_info *zone_info = NULL; 266 struct block_device *bdev = device->bdev; 267 struct request_queue *queue = bdev_get_queue(bdev); 268 sector_t nr_sectors; 269 sector_t sector = 0; 270 struct blk_zone *zones = NULL; 271 unsigned int i, nreported = 0, nr_zones; 272 unsigned int zone_sectors; 273 char *model, *emulated; 274 int ret; 275 276 /* 277 * Cannot use btrfs_is_zoned here, since fs_info::zone_size might not 278 * yet be set. 279 */ 280 if (!btrfs_fs_incompat(fs_info, ZONED)) 281 return 0; 282 283 if (device->zone_info) 284 return 0; 285 286 zone_info = kzalloc(sizeof(*zone_info), GFP_KERNEL); 287 if (!zone_info) 288 return -ENOMEM; 289 290 if (!bdev_is_zoned(bdev)) { 291 if (!fs_info->zone_size) { 292 ret = calculate_emulated_zone_size(fs_info); 293 if (ret) 294 goto out; 295 } 296 297 ASSERT(fs_info->zone_size); 298 zone_sectors = fs_info->zone_size >> SECTOR_SHIFT; 299 } else { 300 zone_sectors = bdev_zone_sectors(bdev); 301 } 302 303 nr_sectors = bdev_nr_sectors(bdev); 304 /* Check if it's power of 2 (see is_power_of_2) */ 305 ASSERT(zone_sectors != 0 && (zone_sectors & (zone_sectors - 1)) == 0); 306 zone_info->zone_size = zone_sectors << SECTOR_SHIFT; 307 zone_info->zone_size_shift = ilog2(zone_info->zone_size); 308 zone_info->max_zone_append_size = 309 (u64)queue_max_zone_append_sectors(queue) << SECTOR_SHIFT; 310 zone_info->nr_zones = nr_sectors >> ilog2(zone_sectors); 311 if (!IS_ALIGNED(nr_sectors, zone_sectors)) 312 zone_info->nr_zones++; 313 314 zone_info->seq_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 315 if (!zone_info->seq_zones) { 316 ret = -ENOMEM; 317 goto out; 318 } 319 320 zone_info->empty_zones = bitmap_zalloc(zone_info->nr_zones, GFP_KERNEL); 321 if (!zone_info->empty_zones) { 322 ret = -ENOMEM; 323 goto out; 324 } 325 326 zones = kcalloc(BTRFS_REPORT_NR_ZONES, sizeof(struct blk_zone), GFP_KERNEL); 327 if (!zones) { 328 ret = -ENOMEM; 329 goto out; 330 } 331 332 /* Get zones type */ 333 while (sector < nr_sectors) { 334 nr_zones = BTRFS_REPORT_NR_ZONES; 335 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, zones, 336 &nr_zones); 337 if (ret) 338 goto out; 339 340 for (i = 0; i < nr_zones; i++) { 341 if (zones[i].type == BLK_ZONE_TYPE_SEQWRITE_REQ) 342 __set_bit(nreported, zone_info->seq_zones); 343 if (zones[i].cond == BLK_ZONE_COND_EMPTY) 344 __set_bit(nreported, zone_info->empty_zones); 345 nreported++; 346 } 347 sector = zones[nr_zones - 1].start + zones[nr_zones - 1].len; 348 } 349 350 if (nreported != zone_info->nr_zones) { 351 btrfs_err_in_rcu(device->fs_info, 352 "inconsistent number of zones on %s (%u/%u)", 353 rcu_str_deref(device->name), nreported, 354 zone_info->nr_zones); 355 ret = -EIO; 356 goto out; 357 } 358 359 /* Validate superblock log */ 360 nr_zones = BTRFS_NR_SB_LOG_ZONES; 361 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 362 u32 sb_zone; 363 u64 sb_wp; 364 int sb_pos = BTRFS_NR_SB_LOG_ZONES * i; 365 366 sb_zone = sb_zone_number(zone_info->zone_size_shift, i); 367 if (sb_zone + 1 >= zone_info->nr_zones) 368 continue; 369 370 sector = sb_zone << (zone_info->zone_size_shift - SECTOR_SHIFT); 371 ret = btrfs_get_dev_zones(device, sector << SECTOR_SHIFT, 372 &zone_info->sb_zones[sb_pos], 373 &nr_zones); 374 if (ret) 375 goto out; 376 377 if (nr_zones != BTRFS_NR_SB_LOG_ZONES) { 378 btrfs_err_in_rcu(device->fs_info, 379 "zoned: failed to read super block log zone info at devid %llu zone %u", 380 device->devid, sb_zone); 381 ret = -EUCLEAN; 382 goto out; 383 } 384 385 /* 386 * If zones[0] is conventional, always use the beggining of the 387 * zone to record superblock. No need to validate in that case. 388 */ 389 if (zone_info->sb_zones[BTRFS_NR_SB_LOG_ZONES * i].type == 390 BLK_ZONE_TYPE_CONVENTIONAL) 391 continue; 392 393 ret = sb_write_pointer(device->bdev, 394 &zone_info->sb_zones[sb_pos], &sb_wp); 395 if (ret != -ENOENT && ret) { 396 btrfs_err_in_rcu(device->fs_info, 397 "zoned: super block log zone corrupted devid %llu zone %u", 398 device->devid, sb_zone); 399 ret = -EUCLEAN; 400 goto out; 401 } 402 } 403 404 405 kfree(zones); 406 407 device->zone_info = zone_info; 408 409 switch (bdev_zoned_model(bdev)) { 410 case BLK_ZONED_HM: 411 model = "host-managed zoned"; 412 emulated = ""; 413 break; 414 case BLK_ZONED_HA: 415 model = "host-aware zoned"; 416 emulated = ""; 417 break; 418 case BLK_ZONED_NONE: 419 model = "regular"; 420 emulated = "emulated "; 421 break; 422 default: 423 /* Just in case */ 424 btrfs_err_in_rcu(fs_info, "zoned: unsupported model %d on %s", 425 bdev_zoned_model(bdev), 426 rcu_str_deref(device->name)); 427 ret = -EOPNOTSUPP; 428 goto out_free_zone_info; 429 } 430 431 btrfs_info_in_rcu(fs_info, 432 "%s block device %s, %u %szones of %llu bytes", 433 model, rcu_str_deref(device->name), zone_info->nr_zones, 434 emulated, zone_info->zone_size); 435 436 return 0; 437 438 out: 439 kfree(zones); 440 out_free_zone_info: 441 bitmap_free(zone_info->empty_zones); 442 bitmap_free(zone_info->seq_zones); 443 kfree(zone_info); 444 device->zone_info = NULL; 445 446 return ret; 447 } 448 449 void btrfs_destroy_dev_zone_info(struct btrfs_device *device) 450 { 451 struct btrfs_zoned_device_info *zone_info = device->zone_info; 452 453 if (!zone_info) 454 return; 455 456 bitmap_free(zone_info->seq_zones); 457 bitmap_free(zone_info->empty_zones); 458 kfree(zone_info); 459 device->zone_info = NULL; 460 } 461 462 int btrfs_get_dev_zone(struct btrfs_device *device, u64 pos, 463 struct blk_zone *zone) 464 { 465 unsigned int nr_zones = 1; 466 int ret; 467 468 ret = btrfs_get_dev_zones(device, pos, zone, &nr_zones); 469 if (ret != 0 || !nr_zones) 470 return ret ? ret : -EIO; 471 472 return 0; 473 } 474 475 int btrfs_check_zoned_mode(struct btrfs_fs_info *fs_info) 476 { 477 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 478 struct btrfs_device *device; 479 u64 zoned_devices = 0; 480 u64 nr_devices = 0; 481 u64 zone_size = 0; 482 u64 max_zone_append_size = 0; 483 const bool incompat_zoned = btrfs_fs_incompat(fs_info, ZONED); 484 int ret = 0; 485 486 /* Count zoned devices */ 487 list_for_each_entry(device, &fs_devices->devices, dev_list) { 488 enum blk_zoned_model model; 489 490 if (!device->bdev) 491 continue; 492 493 model = bdev_zoned_model(device->bdev); 494 /* 495 * A Host-Managed zoned device must be used as a zoned device. 496 * A Host-Aware zoned device and a non-zoned devices can be 497 * treated as a zoned device, if ZONED flag is enabled in the 498 * superblock. 499 */ 500 if (model == BLK_ZONED_HM || 501 (model == BLK_ZONED_HA && incompat_zoned) || 502 (model == BLK_ZONED_NONE && incompat_zoned)) { 503 struct btrfs_zoned_device_info *zone_info = 504 device->zone_info; 505 506 zone_info = device->zone_info; 507 zoned_devices++; 508 if (!zone_size) { 509 zone_size = zone_info->zone_size; 510 } else if (zone_info->zone_size != zone_size) { 511 btrfs_err(fs_info, 512 "zoned: unequal block device zone sizes: have %llu found %llu", 513 device->zone_info->zone_size, 514 zone_size); 515 ret = -EINVAL; 516 goto out; 517 } 518 if (!max_zone_append_size || 519 (zone_info->max_zone_append_size && 520 zone_info->max_zone_append_size < max_zone_append_size)) 521 max_zone_append_size = 522 zone_info->max_zone_append_size; 523 } 524 nr_devices++; 525 } 526 527 if (!zoned_devices && !incompat_zoned) 528 goto out; 529 530 if (!zoned_devices && incompat_zoned) { 531 /* No zoned block device found on ZONED filesystem */ 532 btrfs_err(fs_info, 533 "zoned: no zoned devices found on a zoned filesystem"); 534 ret = -EINVAL; 535 goto out; 536 } 537 538 if (zoned_devices && !incompat_zoned) { 539 btrfs_err(fs_info, 540 "zoned: mode not enabled but zoned device found"); 541 ret = -EINVAL; 542 goto out; 543 } 544 545 if (zoned_devices != nr_devices) { 546 btrfs_err(fs_info, 547 "zoned: cannot mix zoned and regular devices"); 548 ret = -EINVAL; 549 goto out; 550 } 551 552 /* 553 * stripe_size is always aligned to BTRFS_STRIPE_LEN in 554 * __btrfs_alloc_chunk(). Since we want stripe_len == zone_size, 555 * check the alignment here. 556 */ 557 if (!IS_ALIGNED(zone_size, BTRFS_STRIPE_LEN)) { 558 btrfs_err(fs_info, 559 "zoned: zone size %llu not aligned to stripe %u", 560 zone_size, BTRFS_STRIPE_LEN); 561 ret = -EINVAL; 562 goto out; 563 } 564 565 if (btrfs_fs_incompat(fs_info, MIXED_GROUPS)) { 566 btrfs_err(fs_info, "zoned: mixed block groups not supported"); 567 ret = -EINVAL; 568 goto out; 569 } 570 571 fs_info->zone_size = zone_size; 572 fs_info->max_zone_append_size = max_zone_append_size; 573 fs_info->fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_ZONED; 574 575 /* 576 * Check mount options here, because we might change fs_info->zoned 577 * from fs_info->zone_size. 578 */ 579 ret = btrfs_check_mountopts_zoned(fs_info); 580 if (ret) 581 goto out; 582 583 btrfs_info(fs_info, "zoned mode enabled with zone size %llu", zone_size); 584 out: 585 return ret; 586 } 587 588 int btrfs_check_mountopts_zoned(struct btrfs_fs_info *info) 589 { 590 if (!btrfs_is_zoned(info)) 591 return 0; 592 593 /* 594 * Space cache writing is not COWed. Disable that to avoid write errors 595 * in sequential zones. 596 */ 597 if (btrfs_test_opt(info, SPACE_CACHE)) { 598 btrfs_err(info, "zoned: space cache v1 is not supported"); 599 return -EINVAL; 600 } 601 602 if (btrfs_test_opt(info, NODATACOW)) { 603 btrfs_err(info, "zoned: NODATACOW not supported"); 604 return -EINVAL; 605 } 606 607 return 0; 608 } 609 610 static int sb_log_location(struct block_device *bdev, struct blk_zone *zones, 611 int rw, u64 *bytenr_ret) 612 { 613 u64 wp; 614 int ret; 615 616 if (zones[0].type == BLK_ZONE_TYPE_CONVENTIONAL) { 617 *bytenr_ret = zones[0].start << SECTOR_SHIFT; 618 return 0; 619 } 620 621 ret = sb_write_pointer(bdev, zones, &wp); 622 if (ret != -ENOENT && ret < 0) 623 return ret; 624 625 if (rw == WRITE) { 626 struct blk_zone *reset = NULL; 627 628 if (wp == zones[0].start << SECTOR_SHIFT) 629 reset = &zones[0]; 630 else if (wp == zones[1].start << SECTOR_SHIFT) 631 reset = &zones[1]; 632 633 if (reset && reset->cond != BLK_ZONE_COND_EMPTY) { 634 ASSERT(reset->cond == BLK_ZONE_COND_FULL); 635 636 ret = blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 637 reset->start, reset->len, 638 GFP_NOFS); 639 if (ret) 640 return ret; 641 642 reset->cond = BLK_ZONE_COND_EMPTY; 643 reset->wp = reset->start; 644 } 645 } else if (ret != -ENOENT) { 646 /* For READ, we want the precious one */ 647 if (wp == zones[0].start << SECTOR_SHIFT) 648 wp = (zones[1].start + zones[1].len) << SECTOR_SHIFT; 649 wp -= BTRFS_SUPER_INFO_SIZE; 650 } 651 652 *bytenr_ret = wp; 653 return 0; 654 655 } 656 657 int btrfs_sb_log_location_bdev(struct block_device *bdev, int mirror, int rw, 658 u64 *bytenr_ret) 659 { 660 struct blk_zone zones[BTRFS_NR_SB_LOG_ZONES]; 661 unsigned int zone_sectors; 662 u32 sb_zone; 663 int ret; 664 u8 zone_sectors_shift; 665 sector_t nr_sectors; 666 u32 nr_zones; 667 668 if (!bdev_is_zoned(bdev)) { 669 *bytenr_ret = btrfs_sb_offset(mirror); 670 return 0; 671 } 672 673 ASSERT(rw == READ || rw == WRITE); 674 675 zone_sectors = bdev_zone_sectors(bdev); 676 if (!is_power_of_2(zone_sectors)) 677 return -EINVAL; 678 zone_sectors_shift = ilog2(zone_sectors); 679 nr_sectors = bdev_nr_sectors(bdev); 680 nr_zones = nr_sectors >> zone_sectors_shift; 681 682 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 683 if (sb_zone + 1 >= nr_zones) 684 return -ENOENT; 685 686 ret = blkdev_report_zones(bdev, sb_zone << zone_sectors_shift, 687 BTRFS_NR_SB_LOG_ZONES, copy_zone_info_cb, 688 zones); 689 if (ret < 0) 690 return ret; 691 if (ret != BTRFS_NR_SB_LOG_ZONES) 692 return -EIO; 693 694 return sb_log_location(bdev, zones, rw, bytenr_ret); 695 } 696 697 int btrfs_sb_log_location(struct btrfs_device *device, int mirror, int rw, 698 u64 *bytenr_ret) 699 { 700 struct btrfs_zoned_device_info *zinfo = device->zone_info; 701 u32 zone_num; 702 703 /* 704 * For a zoned filesystem on a non-zoned block device, use the same 705 * super block locations as regular filesystem. Doing so, the super 706 * block can always be retrieved and the zoned flag of the volume 707 * detected from the super block information. 708 */ 709 if (!bdev_is_zoned(device->bdev)) { 710 *bytenr_ret = btrfs_sb_offset(mirror); 711 return 0; 712 } 713 714 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 715 if (zone_num + 1 >= zinfo->nr_zones) 716 return -ENOENT; 717 718 return sb_log_location(device->bdev, 719 &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror], 720 rw, bytenr_ret); 721 } 722 723 static inline bool is_sb_log_zone(struct btrfs_zoned_device_info *zinfo, 724 int mirror) 725 { 726 u32 zone_num; 727 728 if (!zinfo) 729 return false; 730 731 zone_num = sb_zone_number(zinfo->zone_size_shift, mirror); 732 if (zone_num + 1 >= zinfo->nr_zones) 733 return false; 734 735 if (!test_bit(zone_num, zinfo->seq_zones)) 736 return false; 737 738 return true; 739 } 740 741 void btrfs_advance_sb_log(struct btrfs_device *device, int mirror) 742 { 743 struct btrfs_zoned_device_info *zinfo = device->zone_info; 744 struct blk_zone *zone; 745 746 if (!is_sb_log_zone(zinfo, mirror)) 747 return; 748 749 zone = &zinfo->sb_zones[BTRFS_NR_SB_LOG_ZONES * mirror]; 750 if (zone->cond != BLK_ZONE_COND_FULL) { 751 if (zone->cond == BLK_ZONE_COND_EMPTY) 752 zone->cond = BLK_ZONE_COND_IMP_OPEN; 753 754 zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT); 755 756 if (zone->wp == zone->start + zone->len) 757 zone->cond = BLK_ZONE_COND_FULL; 758 759 return; 760 } 761 762 zone++; 763 ASSERT(zone->cond != BLK_ZONE_COND_FULL); 764 if (zone->cond == BLK_ZONE_COND_EMPTY) 765 zone->cond = BLK_ZONE_COND_IMP_OPEN; 766 767 zone->wp += (BTRFS_SUPER_INFO_SIZE >> SECTOR_SHIFT); 768 769 if (zone->wp == zone->start + zone->len) 770 zone->cond = BLK_ZONE_COND_FULL; 771 } 772 773 int btrfs_reset_sb_log_zones(struct block_device *bdev, int mirror) 774 { 775 sector_t zone_sectors; 776 sector_t nr_sectors; 777 u8 zone_sectors_shift; 778 u32 sb_zone; 779 u32 nr_zones; 780 781 zone_sectors = bdev_zone_sectors(bdev); 782 zone_sectors_shift = ilog2(zone_sectors); 783 nr_sectors = bdev_nr_sectors(bdev); 784 nr_zones = nr_sectors >> zone_sectors_shift; 785 786 sb_zone = sb_zone_number(zone_sectors_shift + SECTOR_SHIFT, mirror); 787 if (sb_zone + 1 >= nr_zones) 788 return -ENOENT; 789 790 return blkdev_zone_mgmt(bdev, REQ_OP_ZONE_RESET, 791 sb_zone << zone_sectors_shift, 792 zone_sectors * BTRFS_NR_SB_LOG_ZONES, GFP_NOFS); 793 } 794 795 /** 796 * btrfs_find_allocatable_zones - find allocatable zones within a given region 797 * 798 * @device: the device to allocate a region on 799 * @hole_start: the position of the hole to allocate the region 800 * @num_bytes: size of wanted region 801 * @hole_end: the end of the hole 802 * @return: position of allocatable zones 803 * 804 * Allocatable region should not contain any superblock locations. 805 */ 806 u64 btrfs_find_allocatable_zones(struct btrfs_device *device, u64 hole_start, 807 u64 hole_end, u64 num_bytes) 808 { 809 struct btrfs_zoned_device_info *zinfo = device->zone_info; 810 const u8 shift = zinfo->zone_size_shift; 811 u64 nzones = num_bytes >> shift; 812 u64 pos = hole_start; 813 u64 begin, end; 814 bool have_sb; 815 int i; 816 817 ASSERT(IS_ALIGNED(hole_start, zinfo->zone_size)); 818 ASSERT(IS_ALIGNED(num_bytes, zinfo->zone_size)); 819 820 while (pos < hole_end) { 821 begin = pos >> shift; 822 end = begin + nzones; 823 824 if (end > zinfo->nr_zones) 825 return hole_end; 826 827 /* Check if zones in the region are all empty */ 828 if (btrfs_dev_is_sequential(device, pos) && 829 find_next_zero_bit(zinfo->empty_zones, end, begin) != end) { 830 pos += zinfo->zone_size; 831 continue; 832 } 833 834 have_sb = false; 835 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 836 u32 sb_zone; 837 u64 sb_pos; 838 839 sb_zone = sb_zone_number(shift, i); 840 if (!(end <= sb_zone || 841 sb_zone + BTRFS_NR_SB_LOG_ZONES <= begin)) { 842 have_sb = true; 843 pos = ((u64)sb_zone + BTRFS_NR_SB_LOG_ZONES) << shift; 844 break; 845 } 846 847 /* We also need to exclude regular superblock positions */ 848 sb_pos = btrfs_sb_offset(i); 849 if (!(pos + num_bytes <= sb_pos || 850 sb_pos + BTRFS_SUPER_INFO_SIZE <= pos)) { 851 have_sb = true; 852 pos = ALIGN(sb_pos + BTRFS_SUPER_INFO_SIZE, 853 zinfo->zone_size); 854 break; 855 } 856 } 857 if (!have_sb) 858 break; 859 } 860 861 return pos; 862 } 863 864 int btrfs_reset_device_zone(struct btrfs_device *device, u64 physical, 865 u64 length, u64 *bytes) 866 { 867 int ret; 868 869 *bytes = 0; 870 ret = blkdev_zone_mgmt(device->bdev, REQ_OP_ZONE_RESET, 871 physical >> SECTOR_SHIFT, length >> SECTOR_SHIFT, 872 GFP_NOFS); 873 if (ret) 874 return ret; 875 876 *bytes = length; 877 while (length) { 878 btrfs_dev_set_zone_empty(device, physical); 879 physical += device->zone_info->zone_size; 880 length -= device->zone_info->zone_size; 881 } 882 883 return 0; 884 } 885 886 int btrfs_ensure_empty_zones(struct btrfs_device *device, u64 start, u64 size) 887 { 888 struct btrfs_zoned_device_info *zinfo = device->zone_info; 889 const u8 shift = zinfo->zone_size_shift; 890 unsigned long begin = start >> shift; 891 unsigned long end = (start + size) >> shift; 892 u64 pos; 893 int ret; 894 895 ASSERT(IS_ALIGNED(start, zinfo->zone_size)); 896 ASSERT(IS_ALIGNED(size, zinfo->zone_size)); 897 898 if (end > zinfo->nr_zones) 899 return -ERANGE; 900 901 /* All the zones are conventional */ 902 if (find_next_bit(zinfo->seq_zones, begin, end) == end) 903 return 0; 904 905 /* All the zones are sequential and empty */ 906 if (find_next_zero_bit(zinfo->seq_zones, begin, end) == end && 907 find_next_zero_bit(zinfo->empty_zones, begin, end) == end) 908 return 0; 909 910 for (pos = start; pos < start + size; pos += zinfo->zone_size) { 911 u64 reset_bytes; 912 913 if (!btrfs_dev_is_sequential(device, pos) || 914 btrfs_dev_is_empty_zone(device, pos)) 915 continue; 916 917 /* Free regions should be empty */ 918 btrfs_warn_in_rcu( 919 device->fs_info, 920 "zoned: resetting device %s (devid %llu) zone %llu for allocation", 921 rcu_str_deref(device->name), device->devid, pos >> shift); 922 WARN_ON_ONCE(1); 923 924 ret = btrfs_reset_device_zone(device, pos, zinfo->zone_size, 925 &reset_bytes); 926 if (ret) 927 return ret; 928 } 929 930 return 0; 931 } 932 933 /* 934 * Calculate an allocation pointer from the extent allocation information 935 * for a block group consist of conventional zones. It is pointed to the 936 * end of the highest addressed extent in the block group as an allocation 937 * offset. 938 */ 939 static int calculate_alloc_pointer(struct btrfs_block_group *cache, 940 u64 *offset_ret) 941 { 942 struct btrfs_fs_info *fs_info = cache->fs_info; 943 struct btrfs_root *root = fs_info->extent_root; 944 struct btrfs_path *path; 945 struct btrfs_key key; 946 struct btrfs_key found_key; 947 int ret; 948 u64 length; 949 950 path = btrfs_alloc_path(); 951 if (!path) 952 return -ENOMEM; 953 954 key.objectid = cache->start + cache->length; 955 key.type = 0; 956 key.offset = 0; 957 958 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 959 /* We should not find the exact match */ 960 if (!ret) 961 ret = -EUCLEAN; 962 if (ret < 0) 963 goto out; 964 965 ret = btrfs_previous_extent_item(root, path, cache->start); 966 if (ret) { 967 if (ret == 1) { 968 ret = 0; 969 *offset_ret = 0; 970 } 971 goto out; 972 } 973 974 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 975 976 if (found_key.type == BTRFS_EXTENT_ITEM_KEY) 977 length = found_key.offset; 978 else 979 length = fs_info->nodesize; 980 981 if (!(found_key.objectid >= cache->start && 982 found_key.objectid + length <= cache->start + cache->length)) { 983 ret = -EUCLEAN; 984 goto out; 985 } 986 *offset_ret = found_key.objectid + length - cache->start; 987 ret = 0; 988 989 out: 990 btrfs_free_path(path); 991 return ret; 992 } 993 994 int btrfs_load_block_group_zone_info(struct btrfs_block_group *cache, bool new) 995 { 996 struct btrfs_fs_info *fs_info = cache->fs_info; 997 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 998 struct extent_map *em; 999 struct map_lookup *map; 1000 struct btrfs_device *device; 1001 u64 logical = cache->start; 1002 u64 length = cache->length; 1003 u64 physical = 0; 1004 int ret; 1005 int i; 1006 unsigned int nofs_flag; 1007 u64 *alloc_offsets = NULL; 1008 u64 last_alloc = 0; 1009 u32 num_sequential = 0, num_conventional = 0; 1010 1011 if (!btrfs_is_zoned(fs_info)) 1012 return 0; 1013 1014 /* Sanity check */ 1015 if (!IS_ALIGNED(length, fs_info->zone_size)) { 1016 btrfs_err(fs_info, 1017 "zoned: block group %llu len %llu unaligned to zone size %llu", 1018 logical, length, fs_info->zone_size); 1019 return -EIO; 1020 } 1021 1022 /* Get the chunk mapping */ 1023 read_lock(&em_tree->lock); 1024 em = lookup_extent_mapping(em_tree, logical, length); 1025 read_unlock(&em_tree->lock); 1026 1027 if (!em) 1028 return -EINVAL; 1029 1030 map = em->map_lookup; 1031 1032 alloc_offsets = kcalloc(map->num_stripes, sizeof(*alloc_offsets), GFP_NOFS); 1033 if (!alloc_offsets) { 1034 free_extent_map(em); 1035 return -ENOMEM; 1036 } 1037 1038 for (i = 0; i < map->num_stripes; i++) { 1039 bool is_sequential; 1040 struct blk_zone zone; 1041 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 1042 int dev_replace_is_ongoing = 0; 1043 1044 device = map->stripes[i].dev; 1045 physical = map->stripes[i].physical; 1046 1047 if (device->bdev == NULL) { 1048 alloc_offsets[i] = WP_MISSING_DEV; 1049 continue; 1050 } 1051 1052 is_sequential = btrfs_dev_is_sequential(device, physical); 1053 if (is_sequential) 1054 num_sequential++; 1055 else 1056 num_conventional++; 1057 1058 if (!is_sequential) { 1059 alloc_offsets[i] = WP_CONVENTIONAL; 1060 continue; 1061 } 1062 1063 /* 1064 * This zone will be used for allocation, so mark this zone 1065 * non-empty. 1066 */ 1067 btrfs_dev_clear_zone_empty(device, physical); 1068 1069 down_read(&dev_replace->rwsem); 1070 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 1071 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) 1072 btrfs_dev_clear_zone_empty(dev_replace->tgtdev, physical); 1073 up_read(&dev_replace->rwsem); 1074 1075 /* 1076 * The group is mapped to a sequential zone. Get the zone write 1077 * pointer to determine the allocation offset within the zone. 1078 */ 1079 WARN_ON(!IS_ALIGNED(physical, fs_info->zone_size)); 1080 nofs_flag = memalloc_nofs_save(); 1081 ret = btrfs_get_dev_zone(device, physical, &zone); 1082 memalloc_nofs_restore(nofs_flag); 1083 if (ret == -EIO || ret == -EOPNOTSUPP) { 1084 ret = 0; 1085 alloc_offsets[i] = WP_MISSING_DEV; 1086 continue; 1087 } else if (ret) { 1088 goto out; 1089 } 1090 1091 switch (zone.cond) { 1092 case BLK_ZONE_COND_OFFLINE: 1093 case BLK_ZONE_COND_READONLY: 1094 btrfs_err(fs_info, 1095 "zoned: offline/readonly zone %llu on device %s (devid %llu)", 1096 physical >> device->zone_info->zone_size_shift, 1097 rcu_str_deref(device->name), device->devid); 1098 alloc_offsets[i] = WP_MISSING_DEV; 1099 break; 1100 case BLK_ZONE_COND_EMPTY: 1101 alloc_offsets[i] = 0; 1102 break; 1103 case BLK_ZONE_COND_FULL: 1104 alloc_offsets[i] = fs_info->zone_size; 1105 break; 1106 default: 1107 /* Partially used zone */ 1108 alloc_offsets[i] = 1109 ((zone.wp - zone.start) << SECTOR_SHIFT); 1110 break; 1111 } 1112 } 1113 1114 if (num_sequential > 0) 1115 cache->seq_zone = true; 1116 1117 if (num_conventional > 0) { 1118 /* 1119 * Avoid calling calculate_alloc_pointer() for new BG. It 1120 * is no use for new BG. It must be always 0. 1121 * 1122 * Also, we have a lock chain of extent buffer lock -> 1123 * chunk mutex. For new BG, this function is called from 1124 * btrfs_make_block_group() which is already taking the 1125 * chunk mutex. Thus, we cannot call 1126 * calculate_alloc_pointer() which takes extent buffer 1127 * locks to avoid deadlock. 1128 */ 1129 if (new) { 1130 cache->alloc_offset = 0; 1131 goto out; 1132 } 1133 ret = calculate_alloc_pointer(cache, &last_alloc); 1134 if (ret || map->num_stripes == num_conventional) { 1135 if (!ret) 1136 cache->alloc_offset = last_alloc; 1137 else 1138 btrfs_err(fs_info, 1139 "zoned: failed to determine allocation offset of bg %llu", 1140 cache->start); 1141 goto out; 1142 } 1143 } 1144 1145 switch (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 1146 case 0: /* single */ 1147 cache->alloc_offset = alloc_offsets[0]; 1148 break; 1149 case BTRFS_BLOCK_GROUP_DUP: 1150 case BTRFS_BLOCK_GROUP_RAID1: 1151 case BTRFS_BLOCK_GROUP_RAID0: 1152 case BTRFS_BLOCK_GROUP_RAID10: 1153 case BTRFS_BLOCK_GROUP_RAID5: 1154 case BTRFS_BLOCK_GROUP_RAID6: 1155 /* non-single profiles are not supported yet */ 1156 default: 1157 btrfs_err(fs_info, "zoned: profile %s not yet supported", 1158 btrfs_bg_type_to_raid_name(map->type)); 1159 ret = -EINVAL; 1160 goto out; 1161 } 1162 1163 out: 1164 /* An extent is allocated after the write pointer */ 1165 if (!ret && num_conventional && last_alloc > cache->alloc_offset) { 1166 btrfs_err(fs_info, 1167 "zoned: got wrong write pointer in BG %llu: %llu > %llu", 1168 logical, last_alloc, cache->alloc_offset); 1169 ret = -EIO; 1170 } 1171 1172 if (!ret) 1173 cache->meta_write_pointer = cache->alloc_offset + cache->start; 1174 1175 kfree(alloc_offsets); 1176 free_extent_map(em); 1177 1178 return ret; 1179 } 1180 1181 void btrfs_calc_zone_unusable(struct btrfs_block_group *cache) 1182 { 1183 u64 unusable, free; 1184 1185 if (!btrfs_is_zoned(cache->fs_info)) 1186 return; 1187 1188 WARN_ON(cache->bytes_super != 0); 1189 unusable = cache->alloc_offset - cache->used; 1190 free = cache->length - cache->alloc_offset; 1191 1192 /* We only need ->free_space in ALLOC_SEQ block groups */ 1193 cache->last_byte_to_unpin = (u64)-1; 1194 cache->cached = BTRFS_CACHE_FINISHED; 1195 cache->free_space_ctl->free_space = free; 1196 cache->zone_unusable = unusable; 1197 1198 /* Should not have any excluded extents. Just in case, though */ 1199 btrfs_free_excluded_extents(cache); 1200 } 1201 1202 void btrfs_redirty_list_add(struct btrfs_transaction *trans, 1203 struct extent_buffer *eb) 1204 { 1205 struct btrfs_fs_info *fs_info = eb->fs_info; 1206 1207 if (!btrfs_is_zoned(fs_info) || 1208 btrfs_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN) || 1209 !list_empty(&eb->release_list)) 1210 return; 1211 1212 set_extent_buffer_dirty(eb); 1213 set_extent_bits_nowait(&trans->dirty_pages, eb->start, 1214 eb->start + eb->len - 1, EXTENT_DIRTY); 1215 memzero_extent_buffer(eb, 0, eb->len); 1216 set_bit(EXTENT_BUFFER_NO_CHECK, &eb->bflags); 1217 1218 spin_lock(&trans->releasing_ebs_lock); 1219 list_add_tail(&eb->release_list, &trans->releasing_ebs); 1220 spin_unlock(&trans->releasing_ebs_lock); 1221 atomic_inc(&eb->refs); 1222 } 1223 1224 void btrfs_free_redirty_list(struct btrfs_transaction *trans) 1225 { 1226 spin_lock(&trans->releasing_ebs_lock); 1227 while (!list_empty(&trans->releasing_ebs)) { 1228 struct extent_buffer *eb; 1229 1230 eb = list_first_entry(&trans->releasing_ebs, 1231 struct extent_buffer, release_list); 1232 list_del_init(&eb->release_list); 1233 free_extent_buffer(eb); 1234 } 1235 spin_unlock(&trans->releasing_ebs_lock); 1236 } 1237 1238 bool btrfs_use_zone_append(struct btrfs_inode *inode, struct extent_map *em) 1239 { 1240 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1241 struct btrfs_block_group *cache; 1242 bool ret = false; 1243 1244 if (!btrfs_is_zoned(fs_info)) 1245 return false; 1246 1247 if (!fs_info->max_zone_append_size) 1248 return false; 1249 1250 if (!is_data_inode(&inode->vfs_inode)) 1251 return false; 1252 1253 cache = btrfs_lookup_block_group(fs_info, em->block_start); 1254 ASSERT(cache); 1255 if (!cache) 1256 return false; 1257 1258 ret = cache->seq_zone; 1259 btrfs_put_block_group(cache); 1260 1261 return ret; 1262 } 1263 1264 void btrfs_record_physical_zoned(struct inode *inode, u64 file_offset, 1265 struct bio *bio) 1266 { 1267 struct btrfs_ordered_extent *ordered; 1268 const u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 1269 1270 if (bio_op(bio) != REQ_OP_ZONE_APPEND) 1271 return; 1272 1273 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), file_offset); 1274 if (WARN_ON(!ordered)) 1275 return; 1276 1277 ordered->physical = physical; 1278 ordered->disk = bio->bi_bdev->bd_disk; 1279 ordered->partno = bio->bi_bdev->bd_partno; 1280 1281 btrfs_put_ordered_extent(ordered); 1282 } 1283 1284 void btrfs_rewrite_logical_zoned(struct btrfs_ordered_extent *ordered) 1285 { 1286 struct btrfs_inode *inode = BTRFS_I(ordered->inode); 1287 struct btrfs_fs_info *fs_info = inode->root->fs_info; 1288 struct extent_map_tree *em_tree; 1289 struct extent_map *em; 1290 struct btrfs_ordered_sum *sum; 1291 struct block_device *bdev; 1292 u64 orig_logical = ordered->disk_bytenr; 1293 u64 *logical = NULL; 1294 int nr, stripe_len; 1295 1296 /* Zoned devices should not have partitions. So, we can assume it is 0 */ 1297 ASSERT(ordered->partno == 0); 1298 bdev = bdgrab(ordered->disk->part0); 1299 if (WARN_ON(!bdev)) 1300 return; 1301 1302 if (WARN_ON(btrfs_rmap_block(fs_info, orig_logical, bdev, 1303 ordered->physical, &logical, &nr, 1304 &stripe_len))) 1305 goto out; 1306 1307 WARN_ON(nr != 1); 1308 1309 if (orig_logical == *logical) 1310 goto out; 1311 1312 ordered->disk_bytenr = *logical; 1313 1314 em_tree = &inode->extent_tree; 1315 write_lock(&em_tree->lock); 1316 em = search_extent_mapping(em_tree, ordered->file_offset, 1317 ordered->num_bytes); 1318 em->block_start = *logical; 1319 free_extent_map(em); 1320 write_unlock(&em_tree->lock); 1321 1322 list_for_each_entry(sum, &ordered->list, list) { 1323 if (*logical < orig_logical) 1324 sum->bytenr -= orig_logical - *logical; 1325 else 1326 sum->bytenr += *logical - orig_logical; 1327 } 1328 1329 out: 1330 kfree(logical); 1331 bdput(bdev); 1332 } 1333 1334 bool btrfs_check_meta_write_pointer(struct btrfs_fs_info *fs_info, 1335 struct extent_buffer *eb, 1336 struct btrfs_block_group **cache_ret) 1337 { 1338 struct btrfs_block_group *cache; 1339 bool ret = true; 1340 1341 if (!btrfs_is_zoned(fs_info)) 1342 return true; 1343 1344 cache = *cache_ret; 1345 1346 if (cache && (eb->start < cache->start || 1347 cache->start + cache->length <= eb->start)) { 1348 btrfs_put_block_group(cache); 1349 cache = NULL; 1350 *cache_ret = NULL; 1351 } 1352 1353 if (!cache) 1354 cache = btrfs_lookup_block_group(fs_info, eb->start); 1355 1356 if (cache) { 1357 if (cache->meta_write_pointer != eb->start) { 1358 btrfs_put_block_group(cache); 1359 cache = NULL; 1360 ret = false; 1361 } else { 1362 cache->meta_write_pointer = eb->start + eb->len; 1363 } 1364 1365 *cache_ret = cache; 1366 } 1367 1368 return ret; 1369 } 1370 1371 void btrfs_revert_meta_write_pointer(struct btrfs_block_group *cache, 1372 struct extent_buffer *eb) 1373 { 1374 if (!btrfs_is_zoned(eb->fs_info) || !cache) 1375 return; 1376 1377 ASSERT(cache->meta_write_pointer == eb->start + eb->len); 1378 cache->meta_write_pointer = eb->start; 1379 } 1380 1381 int btrfs_zoned_issue_zeroout(struct btrfs_device *device, u64 physical, u64 length) 1382 { 1383 if (!btrfs_dev_is_sequential(device, physical)) 1384 return -EOPNOTSUPP; 1385 1386 return blkdev_issue_zeroout(device->bdev, physical >> SECTOR_SHIFT, 1387 length >> SECTOR_SHIFT, GFP_NOFS, 0); 1388 } 1389 1390 static int read_zone_info(struct btrfs_fs_info *fs_info, u64 logical, 1391 struct blk_zone *zone) 1392 { 1393 struct btrfs_bio *bbio = NULL; 1394 u64 mapped_length = PAGE_SIZE; 1395 unsigned int nofs_flag; 1396 int nmirrors; 1397 int i, ret; 1398 1399 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 1400 &mapped_length, &bbio); 1401 if (ret || !bbio || mapped_length < PAGE_SIZE) { 1402 btrfs_put_bbio(bbio); 1403 return -EIO; 1404 } 1405 1406 if (bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) 1407 return -EINVAL; 1408 1409 nofs_flag = memalloc_nofs_save(); 1410 nmirrors = (int)bbio->num_stripes; 1411 for (i = 0; i < nmirrors; i++) { 1412 u64 physical = bbio->stripes[i].physical; 1413 struct btrfs_device *dev = bbio->stripes[i].dev; 1414 1415 /* Missing device */ 1416 if (!dev->bdev) 1417 continue; 1418 1419 ret = btrfs_get_dev_zone(dev, physical, zone); 1420 /* Failing device */ 1421 if (ret == -EIO || ret == -EOPNOTSUPP) 1422 continue; 1423 break; 1424 } 1425 memalloc_nofs_restore(nofs_flag); 1426 1427 return ret; 1428 } 1429 1430 /* 1431 * Synchronize write pointer in a zone at @physical_start on @tgt_dev, by 1432 * filling zeros between @physical_pos to a write pointer of dev-replace 1433 * source device. 1434 */ 1435 int btrfs_sync_zone_write_pointer(struct btrfs_device *tgt_dev, u64 logical, 1436 u64 physical_start, u64 physical_pos) 1437 { 1438 struct btrfs_fs_info *fs_info = tgt_dev->fs_info; 1439 struct blk_zone zone; 1440 u64 length; 1441 u64 wp; 1442 int ret; 1443 1444 if (!btrfs_dev_is_sequential(tgt_dev, physical_pos)) 1445 return 0; 1446 1447 ret = read_zone_info(fs_info, logical, &zone); 1448 if (ret) 1449 return ret; 1450 1451 wp = physical_start + ((zone.wp - zone.start) << SECTOR_SHIFT); 1452 1453 if (physical_pos == wp) 1454 return 0; 1455 1456 if (physical_pos > wp) 1457 return -EUCLEAN; 1458 1459 length = wp - physical_pos; 1460 return btrfs_zoned_issue_zeroout(tgt_dev, physical_pos, length); 1461 } 1462