xref: /openbmc/linux/fs/btrfs/volumes.c (revision c1c9ff7c94e83fae89a742df74db51156869bad5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/slab.h>
21 #include <linux/buffer_head.h>
22 #include <linux/blkdev.h>
23 #include <linux/random.h>
24 #include <linux/iocontext.h>
25 #include <linux/capability.h>
26 #include <linux/ratelimit.h>
27 #include <linux/kthread.h>
28 #include <linux/raid/pq.h>
29 #include <linux/semaphore.h>
30 #include <asm/div64.h>
31 #include "compat.h"
32 #include "ctree.h"
33 #include "extent_map.h"
34 #include "disk-io.h"
35 #include "transaction.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "raid56.h"
39 #include "async-thread.h"
40 #include "check-integrity.h"
41 #include "rcu-string.h"
42 #include "math.h"
43 #include "dev-replace.h"
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev);
50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev);
51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device);
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 static void lock_chunks(struct btrfs_root *root)
57 {
58 	mutex_lock(&root->fs_info->chunk_mutex);
59 }
60 
61 static void unlock_chunks(struct btrfs_root *root)
62 {
63 	mutex_unlock(&root->fs_info->chunk_mutex);
64 }
65 
66 static struct btrfs_fs_devices *__alloc_fs_devices(void)
67 {
68 	struct btrfs_fs_devices *fs_devs;
69 
70 	fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS);
71 	if (!fs_devs)
72 		return ERR_PTR(-ENOMEM);
73 
74 	mutex_init(&fs_devs->device_list_mutex);
75 
76 	INIT_LIST_HEAD(&fs_devs->devices);
77 	INIT_LIST_HEAD(&fs_devs->alloc_list);
78 	INIT_LIST_HEAD(&fs_devs->list);
79 
80 	return fs_devs;
81 }
82 
83 /**
84  * alloc_fs_devices - allocate struct btrfs_fs_devices
85  * @fsid:	a pointer to UUID for this FS.  If NULL a new UUID is
86  *		generated.
87  *
88  * Return: a pointer to a new &struct btrfs_fs_devices on success;
89  * ERR_PTR() on error.  Returned struct is not linked onto any lists and
90  * can be destroyed with kfree() right away.
91  */
92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid)
93 {
94 	struct btrfs_fs_devices *fs_devs;
95 
96 	fs_devs = __alloc_fs_devices();
97 	if (IS_ERR(fs_devs))
98 		return fs_devs;
99 
100 	if (fsid)
101 		memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE);
102 	else
103 		generate_random_uuid(fs_devs->fsid);
104 
105 	return fs_devs;
106 }
107 
108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
109 {
110 	struct btrfs_device *device;
111 	WARN_ON(fs_devices->opened);
112 	while (!list_empty(&fs_devices->devices)) {
113 		device = list_entry(fs_devices->devices.next,
114 				    struct btrfs_device, dev_list);
115 		list_del(&device->dev_list);
116 		rcu_string_free(device->name);
117 		kfree(device);
118 	}
119 	kfree(fs_devices);
120 }
121 
122 static void btrfs_kobject_uevent(struct block_device *bdev,
123 				 enum kobject_action action)
124 {
125 	int ret;
126 
127 	ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action);
128 	if (ret)
129 		pr_warn("Sending event '%d' to kobject: '%s' (%p): failed\n",
130 			action,
131 			kobject_name(&disk_to_dev(bdev->bd_disk)->kobj),
132 			&disk_to_dev(bdev->bd_disk)->kobj);
133 }
134 
135 void btrfs_cleanup_fs_uuids(void)
136 {
137 	struct btrfs_fs_devices *fs_devices;
138 
139 	while (!list_empty(&fs_uuids)) {
140 		fs_devices = list_entry(fs_uuids.next,
141 					struct btrfs_fs_devices, list);
142 		list_del(&fs_devices->list);
143 		free_fs_devices(fs_devices);
144 	}
145 }
146 
147 static struct btrfs_device *__alloc_device(void)
148 {
149 	struct btrfs_device *dev;
150 
151 	dev = kzalloc(sizeof(*dev), GFP_NOFS);
152 	if (!dev)
153 		return ERR_PTR(-ENOMEM);
154 
155 	INIT_LIST_HEAD(&dev->dev_list);
156 	INIT_LIST_HEAD(&dev->dev_alloc_list);
157 
158 	spin_lock_init(&dev->io_lock);
159 
160 	spin_lock_init(&dev->reada_lock);
161 	atomic_set(&dev->reada_in_flight, 0);
162 	INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT);
163 	INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT);
164 
165 	return dev;
166 }
167 
168 static noinline struct btrfs_device *__find_device(struct list_head *head,
169 						   u64 devid, u8 *uuid)
170 {
171 	struct btrfs_device *dev;
172 
173 	list_for_each_entry(dev, head, dev_list) {
174 		if (dev->devid == devid &&
175 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
176 			return dev;
177 		}
178 	}
179 	return NULL;
180 }
181 
182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
183 {
184 	struct btrfs_fs_devices *fs_devices;
185 
186 	list_for_each_entry(fs_devices, &fs_uuids, list) {
187 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
188 			return fs_devices;
189 	}
190 	return NULL;
191 }
192 
193 static int
194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder,
195 		      int flush, struct block_device **bdev,
196 		      struct buffer_head **bh)
197 {
198 	int ret;
199 
200 	*bdev = blkdev_get_by_path(device_path, flags, holder);
201 
202 	if (IS_ERR(*bdev)) {
203 		ret = PTR_ERR(*bdev);
204 		printk(KERN_INFO "btrfs: open %s failed\n", device_path);
205 		goto error;
206 	}
207 
208 	if (flush)
209 		filemap_write_and_wait((*bdev)->bd_inode->i_mapping);
210 	ret = set_blocksize(*bdev, 4096);
211 	if (ret) {
212 		blkdev_put(*bdev, flags);
213 		goto error;
214 	}
215 	invalidate_bdev(*bdev);
216 	*bh = btrfs_read_dev_super(*bdev);
217 	if (!*bh) {
218 		ret = -EINVAL;
219 		blkdev_put(*bdev, flags);
220 		goto error;
221 	}
222 
223 	return 0;
224 
225 error:
226 	*bdev = NULL;
227 	*bh = NULL;
228 	return ret;
229 }
230 
231 static void requeue_list(struct btrfs_pending_bios *pending_bios,
232 			struct bio *head, struct bio *tail)
233 {
234 
235 	struct bio *old_head;
236 
237 	old_head = pending_bios->head;
238 	pending_bios->head = head;
239 	if (pending_bios->tail)
240 		tail->bi_next = old_head;
241 	else
242 		pending_bios->tail = tail;
243 }
244 
245 /*
246  * we try to collect pending bios for a device so we don't get a large
247  * number of procs sending bios down to the same device.  This greatly
248  * improves the schedulers ability to collect and merge the bios.
249  *
250  * But, it also turns into a long list of bios to process and that is sure
251  * to eventually make the worker thread block.  The solution here is to
252  * make some progress and then put this work struct back at the end of
253  * the list if the block device is congested.  This way, multiple devices
254  * can make progress from a single worker thread.
255  */
256 static noinline void run_scheduled_bios(struct btrfs_device *device)
257 {
258 	struct bio *pending;
259 	struct backing_dev_info *bdi;
260 	struct btrfs_fs_info *fs_info;
261 	struct btrfs_pending_bios *pending_bios;
262 	struct bio *tail;
263 	struct bio *cur;
264 	int again = 0;
265 	unsigned long num_run;
266 	unsigned long batch_run = 0;
267 	unsigned long limit;
268 	unsigned long last_waited = 0;
269 	int force_reg = 0;
270 	int sync_pending = 0;
271 	struct blk_plug plug;
272 
273 	/*
274 	 * this function runs all the bios we've collected for
275 	 * a particular device.  We don't want to wander off to
276 	 * another device without first sending all of these down.
277 	 * So, setup a plug here and finish it off before we return
278 	 */
279 	blk_start_plug(&plug);
280 
281 	bdi = blk_get_backing_dev_info(device->bdev);
282 	fs_info = device->dev_root->fs_info;
283 	limit = btrfs_async_submit_limit(fs_info);
284 	limit = limit * 2 / 3;
285 
286 loop:
287 	spin_lock(&device->io_lock);
288 
289 loop_lock:
290 	num_run = 0;
291 
292 	/* take all the bios off the list at once and process them
293 	 * later on (without the lock held).  But, remember the
294 	 * tail and other pointers so the bios can be properly reinserted
295 	 * into the list if we hit congestion
296 	 */
297 	if (!force_reg && device->pending_sync_bios.head) {
298 		pending_bios = &device->pending_sync_bios;
299 		force_reg = 1;
300 	} else {
301 		pending_bios = &device->pending_bios;
302 		force_reg = 0;
303 	}
304 
305 	pending = pending_bios->head;
306 	tail = pending_bios->tail;
307 	WARN_ON(pending && !tail);
308 
309 	/*
310 	 * if pending was null this time around, no bios need processing
311 	 * at all and we can stop.  Otherwise it'll loop back up again
312 	 * and do an additional check so no bios are missed.
313 	 *
314 	 * device->running_pending is used to synchronize with the
315 	 * schedule_bio code.
316 	 */
317 	if (device->pending_sync_bios.head == NULL &&
318 	    device->pending_bios.head == NULL) {
319 		again = 0;
320 		device->running_pending = 0;
321 	} else {
322 		again = 1;
323 		device->running_pending = 1;
324 	}
325 
326 	pending_bios->head = NULL;
327 	pending_bios->tail = NULL;
328 
329 	spin_unlock(&device->io_lock);
330 
331 	while (pending) {
332 
333 		rmb();
334 		/* we want to work on both lists, but do more bios on the
335 		 * sync list than the regular list
336 		 */
337 		if ((num_run > 32 &&
338 		    pending_bios != &device->pending_sync_bios &&
339 		    device->pending_sync_bios.head) ||
340 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
341 		    device->pending_bios.head)) {
342 			spin_lock(&device->io_lock);
343 			requeue_list(pending_bios, pending, tail);
344 			goto loop_lock;
345 		}
346 
347 		cur = pending;
348 		pending = pending->bi_next;
349 		cur->bi_next = NULL;
350 
351 		if (atomic_dec_return(&fs_info->nr_async_bios) < limit &&
352 		    waitqueue_active(&fs_info->async_submit_wait))
353 			wake_up(&fs_info->async_submit_wait);
354 
355 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
356 
357 		/*
358 		 * if we're doing the sync list, record that our
359 		 * plug has some sync requests on it
360 		 *
361 		 * If we're doing the regular list and there are
362 		 * sync requests sitting around, unplug before
363 		 * we add more
364 		 */
365 		if (pending_bios == &device->pending_sync_bios) {
366 			sync_pending = 1;
367 		} else if (sync_pending) {
368 			blk_finish_plug(&plug);
369 			blk_start_plug(&plug);
370 			sync_pending = 0;
371 		}
372 
373 		btrfsic_submit_bio(cur->bi_rw, cur);
374 		num_run++;
375 		batch_run++;
376 		if (need_resched())
377 			cond_resched();
378 
379 		/*
380 		 * we made progress, there is more work to do and the bdi
381 		 * is now congested.  Back off and let other work structs
382 		 * run instead
383 		 */
384 		if (pending && bdi_write_congested(bdi) && batch_run > 8 &&
385 		    fs_info->fs_devices->open_devices > 1) {
386 			struct io_context *ioc;
387 
388 			ioc = current->io_context;
389 
390 			/*
391 			 * the main goal here is that we don't want to
392 			 * block if we're going to be able to submit
393 			 * more requests without blocking.
394 			 *
395 			 * This code does two great things, it pokes into
396 			 * the elevator code from a filesystem _and_
397 			 * it makes assumptions about how batching works.
398 			 */
399 			if (ioc && ioc->nr_batch_requests > 0 &&
400 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
401 			    (last_waited == 0 ||
402 			     ioc->last_waited == last_waited)) {
403 				/*
404 				 * we want to go through our batch of
405 				 * requests and stop.  So, we copy out
406 				 * the ioc->last_waited time and test
407 				 * against it before looping
408 				 */
409 				last_waited = ioc->last_waited;
410 				if (need_resched())
411 					cond_resched();
412 				continue;
413 			}
414 			spin_lock(&device->io_lock);
415 			requeue_list(pending_bios, pending, tail);
416 			device->running_pending = 1;
417 
418 			spin_unlock(&device->io_lock);
419 			btrfs_requeue_work(&device->work);
420 			goto done;
421 		}
422 		/* unplug every 64 requests just for good measure */
423 		if (batch_run % 64 == 0) {
424 			blk_finish_plug(&plug);
425 			blk_start_plug(&plug);
426 			sync_pending = 0;
427 		}
428 	}
429 
430 	cond_resched();
431 	if (again)
432 		goto loop;
433 
434 	spin_lock(&device->io_lock);
435 	if (device->pending_bios.head || device->pending_sync_bios.head)
436 		goto loop_lock;
437 	spin_unlock(&device->io_lock);
438 
439 done:
440 	blk_finish_plug(&plug);
441 }
442 
443 static void pending_bios_fn(struct btrfs_work *work)
444 {
445 	struct btrfs_device *device;
446 
447 	device = container_of(work, struct btrfs_device, work);
448 	run_scheduled_bios(device);
449 }
450 
451 static noinline int device_list_add(const char *path,
452 			   struct btrfs_super_block *disk_super,
453 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
454 {
455 	struct btrfs_device *device;
456 	struct btrfs_fs_devices *fs_devices;
457 	struct rcu_string *name;
458 	u64 found_transid = btrfs_super_generation(disk_super);
459 
460 	fs_devices = find_fsid(disk_super->fsid);
461 	if (!fs_devices) {
462 		fs_devices = alloc_fs_devices(disk_super->fsid);
463 		if (IS_ERR(fs_devices))
464 			return PTR_ERR(fs_devices);
465 
466 		list_add(&fs_devices->list, &fs_uuids);
467 		fs_devices->latest_devid = devid;
468 		fs_devices->latest_trans = found_transid;
469 
470 		device = NULL;
471 	} else {
472 		device = __find_device(&fs_devices->devices, devid,
473 				       disk_super->dev_item.uuid);
474 	}
475 	if (!device) {
476 		if (fs_devices->opened)
477 			return -EBUSY;
478 
479 		device = btrfs_alloc_device(NULL, &devid,
480 					    disk_super->dev_item.uuid);
481 		if (IS_ERR(device)) {
482 			/* we can safely leave the fs_devices entry around */
483 			return PTR_ERR(device);
484 		}
485 
486 		name = rcu_string_strdup(path, GFP_NOFS);
487 		if (!name) {
488 			kfree(device);
489 			return -ENOMEM;
490 		}
491 		rcu_assign_pointer(device->name, name);
492 
493 		mutex_lock(&fs_devices->device_list_mutex);
494 		list_add_rcu(&device->dev_list, &fs_devices->devices);
495 		mutex_unlock(&fs_devices->device_list_mutex);
496 
497 		device->fs_devices = fs_devices;
498 		fs_devices->num_devices++;
499 	} else if (!device->name || strcmp(device->name->str, path)) {
500 		name = rcu_string_strdup(path, GFP_NOFS);
501 		if (!name)
502 			return -ENOMEM;
503 		rcu_string_free(device->name);
504 		rcu_assign_pointer(device->name, name);
505 		if (device->missing) {
506 			fs_devices->missing_devices--;
507 			device->missing = 0;
508 		}
509 	}
510 
511 	if (found_transid > fs_devices->latest_trans) {
512 		fs_devices->latest_devid = devid;
513 		fs_devices->latest_trans = found_transid;
514 	}
515 	*fs_devices_ret = fs_devices;
516 	return 0;
517 }
518 
519 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
520 {
521 	struct btrfs_fs_devices *fs_devices;
522 	struct btrfs_device *device;
523 	struct btrfs_device *orig_dev;
524 
525 	fs_devices = alloc_fs_devices(orig->fsid);
526 	if (IS_ERR(fs_devices))
527 		return fs_devices;
528 
529 	fs_devices->latest_devid = orig->latest_devid;
530 	fs_devices->latest_trans = orig->latest_trans;
531 	fs_devices->total_devices = orig->total_devices;
532 
533 	/* We have held the volume lock, it is safe to get the devices. */
534 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
535 		struct rcu_string *name;
536 
537 		device = btrfs_alloc_device(NULL, &orig_dev->devid,
538 					    orig_dev->uuid);
539 		if (IS_ERR(device))
540 			goto error;
541 
542 		/*
543 		 * This is ok to do without rcu read locked because we hold the
544 		 * uuid mutex so nothing we touch in here is going to disappear.
545 		 */
546 		name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS);
547 		if (!name) {
548 			kfree(device);
549 			goto error;
550 		}
551 		rcu_assign_pointer(device->name, name);
552 
553 		list_add(&device->dev_list, &fs_devices->devices);
554 		device->fs_devices = fs_devices;
555 		fs_devices->num_devices++;
556 	}
557 	return fs_devices;
558 error:
559 	free_fs_devices(fs_devices);
560 	return ERR_PTR(-ENOMEM);
561 }
562 
563 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info,
564 			       struct btrfs_fs_devices *fs_devices, int step)
565 {
566 	struct btrfs_device *device, *next;
567 
568 	struct block_device *latest_bdev = NULL;
569 	u64 latest_devid = 0;
570 	u64 latest_transid = 0;
571 
572 	mutex_lock(&uuid_mutex);
573 again:
574 	/* This is the initialized path, it is safe to release the devices. */
575 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
576 		if (device->in_fs_metadata) {
577 			if (!device->is_tgtdev_for_dev_replace &&
578 			    (!latest_transid ||
579 			     device->generation > latest_transid)) {
580 				latest_devid = device->devid;
581 				latest_transid = device->generation;
582 				latest_bdev = device->bdev;
583 			}
584 			continue;
585 		}
586 
587 		if (device->devid == BTRFS_DEV_REPLACE_DEVID) {
588 			/*
589 			 * In the first step, keep the device which has
590 			 * the correct fsid and the devid that is used
591 			 * for the dev_replace procedure.
592 			 * In the second step, the dev_replace state is
593 			 * read from the device tree and it is known
594 			 * whether the procedure is really active or
595 			 * not, which means whether this device is
596 			 * used or whether it should be removed.
597 			 */
598 			if (step == 0 || device->is_tgtdev_for_dev_replace) {
599 				continue;
600 			}
601 		}
602 		if (device->bdev) {
603 			blkdev_put(device->bdev, device->mode);
604 			device->bdev = NULL;
605 			fs_devices->open_devices--;
606 		}
607 		if (device->writeable) {
608 			list_del_init(&device->dev_alloc_list);
609 			device->writeable = 0;
610 			if (!device->is_tgtdev_for_dev_replace)
611 				fs_devices->rw_devices--;
612 		}
613 		list_del_init(&device->dev_list);
614 		fs_devices->num_devices--;
615 		rcu_string_free(device->name);
616 		kfree(device);
617 	}
618 
619 	if (fs_devices->seed) {
620 		fs_devices = fs_devices->seed;
621 		goto again;
622 	}
623 
624 	fs_devices->latest_bdev = latest_bdev;
625 	fs_devices->latest_devid = latest_devid;
626 	fs_devices->latest_trans = latest_transid;
627 
628 	mutex_unlock(&uuid_mutex);
629 }
630 
631 static void __free_device(struct work_struct *work)
632 {
633 	struct btrfs_device *device;
634 
635 	device = container_of(work, struct btrfs_device, rcu_work);
636 
637 	if (device->bdev)
638 		blkdev_put(device->bdev, device->mode);
639 
640 	rcu_string_free(device->name);
641 	kfree(device);
642 }
643 
644 static void free_device(struct rcu_head *head)
645 {
646 	struct btrfs_device *device;
647 
648 	device = container_of(head, struct btrfs_device, rcu);
649 
650 	INIT_WORK(&device->rcu_work, __free_device);
651 	schedule_work(&device->rcu_work);
652 }
653 
654 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
655 {
656 	struct btrfs_device *device;
657 
658 	if (--fs_devices->opened > 0)
659 		return 0;
660 
661 	mutex_lock(&fs_devices->device_list_mutex);
662 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
663 		struct btrfs_device *new_device;
664 		struct rcu_string *name;
665 
666 		if (device->bdev)
667 			fs_devices->open_devices--;
668 
669 		if (device->writeable && !device->is_tgtdev_for_dev_replace) {
670 			list_del_init(&device->dev_alloc_list);
671 			fs_devices->rw_devices--;
672 		}
673 
674 		if (device->can_discard)
675 			fs_devices->num_can_discard--;
676 
677 		new_device = btrfs_alloc_device(NULL, &device->devid,
678 						device->uuid);
679 		BUG_ON(IS_ERR(new_device)); /* -ENOMEM */
680 
681 		/* Safe because we are under uuid_mutex */
682 		if (device->name) {
683 			name = rcu_string_strdup(device->name->str, GFP_NOFS);
684 			BUG_ON(!name); /* -ENOMEM */
685 			rcu_assign_pointer(new_device->name, name);
686 		}
687 
688 		list_replace_rcu(&device->dev_list, &new_device->dev_list);
689 		new_device->fs_devices = device->fs_devices;
690 
691 		call_rcu(&device->rcu, free_device);
692 	}
693 	mutex_unlock(&fs_devices->device_list_mutex);
694 
695 	WARN_ON(fs_devices->open_devices);
696 	WARN_ON(fs_devices->rw_devices);
697 	fs_devices->opened = 0;
698 	fs_devices->seeding = 0;
699 
700 	return 0;
701 }
702 
703 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
704 {
705 	struct btrfs_fs_devices *seed_devices = NULL;
706 	int ret;
707 
708 	mutex_lock(&uuid_mutex);
709 	ret = __btrfs_close_devices(fs_devices);
710 	if (!fs_devices->opened) {
711 		seed_devices = fs_devices->seed;
712 		fs_devices->seed = NULL;
713 	}
714 	mutex_unlock(&uuid_mutex);
715 
716 	while (seed_devices) {
717 		fs_devices = seed_devices;
718 		seed_devices = fs_devices->seed;
719 		__btrfs_close_devices(fs_devices);
720 		free_fs_devices(fs_devices);
721 	}
722 	/*
723 	 * Wait for rcu kworkers under __btrfs_close_devices
724 	 * to finish all blkdev_puts so device is really
725 	 * free when umount is done.
726 	 */
727 	rcu_barrier();
728 	return ret;
729 }
730 
731 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
732 				fmode_t flags, void *holder)
733 {
734 	struct request_queue *q;
735 	struct block_device *bdev;
736 	struct list_head *head = &fs_devices->devices;
737 	struct btrfs_device *device;
738 	struct block_device *latest_bdev = NULL;
739 	struct buffer_head *bh;
740 	struct btrfs_super_block *disk_super;
741 	u64 latest_devid = 0;
742 	u64 latest_transid = 0;
743 	u64 devid;
744 	int seeding = 1;
745 	int ret = 0;
746 
747 	flags |= FMODE_EXCL;
748 
749 	list_for_each_entry(device, head, dev_list) {
750 		if (device->bdev)
751 			continue;
752 		if (!device->name)
753 			continue;
754 
755 		/* Just open everything we can; ignore failures here */
756 		if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1,
757 					    &bdev, &bh))
758 			continue;
759 
760 		disk_super = (struct btrfs_super_block *)bh->b_data;
761 		devid = btrfs_stack_device_id(&disk_super->dev_item);
762 		if (devid != device->devid)
763 			goto error_brelse;
764 
765 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
766 			   BTRFS_UUID_SIZE))
767 			goto error_brelse;
768 
769 		device->generation = btrfs_super_generation(disk_super);
770 		if (!latest_transid || device->generation > latest_transid) {
771 			latest_devid = devid;
772 			latest_transid = device->generation;
773 			latest_bdev = bdev;
774 		}
775 
776 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
777 			device->writeable = 0;
778 		} else {
779 			device->writeable = !bdev_read_only(bdev);
780 			seeding = 0;
781 		}
782 
783 		q = bdev_get_queue(bdev);
784 		if (blk_queue_discard(q)) {
785 			device->can_discard = 1;
786 			fs_devices->num_can_discard++;
787 		}
788 
789 		device->bdev = bdev;
790 		device->in_fs_metadata = 0;
791 		device->mode = flags;
792 
793 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
794 			fs_devices->rotating = 1;
795 
796 		fs_devices->open_devices++;
797 		if (device->writeable && !device->is_tgtdev_for_dev_replace) {
798 			fs_devices->rw_devices++;
799 			list_add(&device->dev_alloc_list,
800 				 &fs_devices->alloc_list);
801 		}
802 		brelse(bh);
803 		continue;
804 
805 error_brelse:
806 		brelse(bh);
807 		blkdev_put(bdev, flags);
808 		continue;
809 	}
810 	if (fs_devices->open_devices == 0) {
811 		ret = -EINVAL;
812 		goto out;
813 	}
814 	fs_devices->seeding = seeding;
815 	fs_devices->opened = 1;
816 	fs_devices->latest_bdev = latest_bdev;
817 	fs_devices->latest_devid = latest_devid;
818 	fs_devices->latest_trans = latest_transid;
819 	fs_devices->total_rw_bytes = 0;
820 out:
821 	return ret;
822 }
823 
824 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
825 		       fmode_t flags, void *holder)
826 {
827 	int ret;
828 
829 	mutex_lock(&uuid_mutex);
830 	if (fs_devices->opened) {
831 		fs_devices->opened++;
832 		ret = 0;
833 	} else {
834 		ret = __btrfs_open_devices(fs_devices, flags, holder);
835 	}
836 	mutex_unlock(&uuid_mutex);
837 	return ret;
838 }
839 
840 /*
841  * Look for a btrfs signature on a device. This may be called out of the mount path
842  * and we are not allowed to call set_blocksize during the scan. The superblock
843  * is read via pagecache
844  */
845 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
846 			  struct btrfs_fs_devices **fs_devices_ret)
847 {
848 	struct btrfs_super_block *disk_super;
849 	struct block_device *bdev;
850 	struct page *page;
851 	void *p;
852 	int ret = -EINVAL;
853 	u64 devid;
854 	u64 transid;
855 	u64 total_devices;
856 	u64 bytenr;
857 	pgoff_t index;
858 
859 	/*
860 	 * we would like to check all the supers, but that would make
861 	 * a btrfs mount succeed after a mkfs from a different FS.
862 	 * So, we need to add a special mount option to scan for
863 	 * later supers, using BTRFS_SUPER_MIRROR_MAX instead
864 	 */
865 	bytenr = btrfs_sb_offset(0);
866 	flags |= FMODE_EXCL;
867 	mutex_lock(&uuid_mutex);
868 
869 	bdev = blkdev_get_by_path(path, flags, holder);
870 
871 	if (IS_ERR(bdev)) {
872 		ret = PTR_ERR(bdev);
873 		goto error;
874 	}
875 
876 	/* make sure our super fits in the device */
877 	if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode))
878 		goto error_bdev_put;
879 
880 	/* make sure our super fits in the page */
881 	if (sizeof(*disk_super) > PAGE_CACHE_SIZE)
882 		goto error_bdev_put;
883 
884 	/* make sure our super doesn't straddle pages on disk */
885 	index = bytenr >> PAGE_CACHE_SHIFT;
886 	if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index)
887 		goto error_bdev_put;
888 
889 	/* pull in the page with our super */
890 	page = read_cache_page_gfp(bdev->bd_inode->i_mapping,
891 				   index, GFP_NOFS);
892 
893 	if (IS_ERR_OR_NULL(page))
894 		goto error_bdev_put;
895 
896 	p = kmap(page);
897 
898 	/* align our pointer to the offset of the super block */
899 	disk_super = p + (bytenr & ~PAGE_CACHE_MASK);
900 
901 	if (btrfs_super_bytenr(disk_super) != bytenr ||
902 	    btrfs_super_magic(disk_super) != BTRFS_MAGIC)
903 		goto error_unmap;
904 
905 	devid = btrfs_stack_device_id(&disk_super->dev_item);
906 	transid = btrfs_super_generation(disk_super);
907 	total_devices = btrfs_super_num_devices(disk_super);
908 
909 	if (disk_super->label[0]) {
910 		if (disk_super->label[BTRFS_LABEL_SIZE - 1])
911 			disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0';
912 		printk(KERN_INFO "device label %s ", disk_super->label);
913 	} else {
914 		printk(KERN_INFO "device fsid %pU ", disk_super->fsid);
915 	}
916 
917 	printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path);
918 
919 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
920 	if (!ret && fs_devices_ret)
921 		(*fs_devices_ret)->total_devices = total_devices;
922 
923 error_unmap:
924 	kunmap(page);
925 	page_cache_release(page);
926 
927 error_bdev_put:
928 	blkdev_put(bdev, flags);
929 error:
930 	mutex_unlock(&uuid_mutex);
931 	return ret;
932 }
933 
934 /* helper to account the used device space in the range */
935 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start,
936 				   u64 end, u64 *length)
937 {
938 	struct btrfs_key key;
939 	struct btrfs_root *root = device->dev_root;
940 	struct btrfs_dev_extent *dev_extent;
941 	struct btrfs_path *path;
942 	u64 extent_end;
943 	int ret;
944 	int slot;
945 	struct extent_buffer *l;
946 
947 	*length = 0;
948 
949 	if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace)
950 		return 0;
951 
952 	path = btrfs_alloc_path();
953 	if (!path)
954 		return -ENOMEM;
955 	path->reada = 2;
956 
957 	key.objectid = device->devid;
958 	key.offset = start;
959 	key.type = BTRFS_DEV_EXTENT_KEY;
960 
961 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
962 	if (ret < 0)
963 		goto out;
964 	if (ret > 0) {
965 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
966 		if (ret < 0)
967 			goto out;
968 	}
969 
970 	while (1) {
971 		l = path->nodes[0];
972 		slot = path->slots[0];
973 		if (slot >= btrfs_header_nritems(l)) {
974 			ret = btrfs_next_leaf(root, path);
975 			if (ret == 0)
976 				continue;
977 			if (ret < 0)
978 				goto out;
979 
980 			break;
981 		}
982 		btrfs_item_key_to_cpu(l, &key, slot);
983 
984 		if (key.objectid < device->devid)
985 			goto next;
986 
987 		if (key.objectid > device->devid)
988 			break;
989 
990 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
991 			goto next;
992 
993 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
994 		extent_end = key.offset + btrfs_dev_extent_length(l,
995 								  dev_extent);
996 		if (key.offset <= start && extent_end > end) {
997 			*length = end - start + 1;
998 			break;
999 		} else if (key.offset <= start && extent_end > start)
1000 			*length += extent_end - start;
1001 		else if (key.offset > start && extent_end <= end)
1002 			*length += extent_end - key.offset;
1003 		else if (key.offset > start && key.offset <= end) {
1004 			*length += end - key.offset + 1;
1005 			break;
1006 		} else if (key.offset > end)
1007 			break;
1008 
1009 next:
1010 		path->slots[0]++;
1011 	}
1012 	ret = 0;
1013 out:
1014 	btrfs_free_path(path);
1015 	return ret;
1016 }
1017 
1018 static int contains_pending_extent(struct btrfs_trans_handle *trans,
1019 				   struct btrfs_device *device,
1020 				   u64 *start, u64 len)
1021 {
1022 	struct extent_map *em;
1023 	int ret = 0;
1024 
1025 	list_for_each_entry(em, &trans->transaction->pending_chunks, list) {
1026 		struct map_lookup *map;
1027 		int i;
1028 
1029 		map = (struct map_lookup *)em->bdev;
1030 		for (i = 0; i < map->num_stripes; i++) {
1031 			if (map->stripes[i].dev != device)
1032 				continue;
1033 			if (map->stripes[i].physical >= *start + len ||
1034 			    map->stripes[i].physical + em->orig_block_len <=
1035 			    *start)
1036 				continue;
1037 			*start = map->stripes[i].physical +
1038 				em->orig_block_len;
1039 			ret = 1;
1040 		}
1041 	}
1042 
1043 	return ret;
1044 }
1045 
1046 
1047 /*
1048  * find_free_dev_extent - find free space in the specified device
1049  * @device:	the device which we search the free space in
1050  * @num_bytes:	the size of the free space that we need
1051  * @start:	store the start of the free space.
1052  * @len:	the size of the free space. that we find, or the size of the max
1053  * 		free space if we don't find suitable free space
1054  *
1055  * this uses a pretty simple search, the expectation is that it is
1056  * called very infrequently and that a given device has a small number
1057  * of extents
1058  *
1059  * @start is used to store the start of the free space if we find. But if we
1060  * don't find suitable free space, it will be used to store the start position
1061  * of the max free space.
1062  *
1063  * @len is used to store the size of the free space that we find.
1064  * But if we don't find suitable free space, it is used to store the size of
1065  * the max free space.
1066  */
1067 int find_free_dev_extent(struct btrfs_trans_handle *trans,
1068 			 struct btrfs_device *device, u64 num_bytes,
1069 			 u64 *start, u64 *len)
1070 {
1071 	struct btrfs_key key;
1072 	struct btrfs_root *root = device->dev_root;
1073 	struct btrfs_dev_extent *dev_extent;
1074 	struct btrfs_path *path;
1075 	u64 hole_size;
1076 	u64 max_hole_start;
1077 	u64 max_hole_size;
1078 	u64 extent_end;
1079 	u64 search_start;
1080 	u64 search_end = device->total_bytes;
1081 	int ret;
1082 	int slot;
1083 	struct extent_buffer *l;
1084 
1085 	/* FIXME use last free of some kind */
1086 
1087 	/* we don't want to overwrite the superblock on the drive,
1088 	 * so we make sure to start at an offset of at least 1MB
1089 	 */
1090 	search_start = max(root->fs_info->alloc_start, 1024ull * 1024);
1091 
1092 	path = btrfs_alloc_path();
1093 	if (!path)
1094 		return -ENOMEM;
1095 again:
1096 	max_hole_start = search_start;
1097 	max_hole_size = 0;
1098 	hole_size = 0;
1099 
1100 	if (search_start >= search_end || device->is_tgtdev_for_dev_replace) {
1101 		ret = -ENOSPC;
1102 		goto out;
1103 	}
1104 
1105 	path->reada = 2;
1106 	path->search_commit_root = 1;
1107 	path->skip_locking = 1;
1108 
1109 	key.objectid = device->devid;
1110 	key.offset = search_start;
1111 	key.type = BTRFS_DEV_EXTENT_KEY;
1112 
1113 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1114 	if (ret < 0)
1115 		goto out;
1116 	if (ret > 0) {
1117 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
1118 		if (ret < 0)
1119 			goto out;
1120 	}
1121 
1122 	while (1) {
1123 		l = path->nodes[0];
1124 		slot = path->slots[0];
1125 		if (slot >= btrfs_header_nritems(l)) {
1126 			ret = btrfs_next_leaf(root, path);
1127 			if (ret == 0)
1128 				continue;
1129 			if (ret < 0)
1130 				goto out;
1131 
1132 			break;
1133 		}
1134 		btrfs_item_key_to_cpu(l, &key, slot);
1135 
1136 		if (key.objectid < device->devid)
1137 			goto next;
1138 
1139 		if (key.objectid > device->devid)
1140 			break;
1141 
1142 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
1143 			goto next;
1144 
1145 		if (key.offset > search_start) {
1146 			hole_size = key.offset - search_start;
1147 
1148 			/*
1149 			 * Have to check before we set max_hole_start, otherwise
1150 			 * we could end up sending back this offset anyway.
1151 			 */
1152 			if (contains_pending_extent(trans, device,
1153 						    &search_start,
1154 						    hole_size))
1155 				hole_size = 0;
1156 
1157 			if (hole_size > max_hole_size) {
1158 				max_hole_start = search_start;
1159 				max_hole_size = hole_size;
1160 			}
1161 
1162 			/*
1163 			 * If this free space is greater than which we need,
1164 			 * it must be the max free space that we have found
1165 			 * until now, so max_hole_start must point to the start
1166 			 * of this free space and the length of this free space
1167 			 * is stored in max_hole_size. Thus, we return
1168 			 * max_hole_start and max_hole_size and go back to the
1169 			 * caller.
1170 			 */
1171 			if (hole_size >= num_bytes) {
1172 				ret = 0;
1173 				goto out;
1174 			}
1175 		}
1176 
1177 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
1178 		extent_end = key.offset + btrfs_dev_extent_length(l,
1179 								  dev_extent);
1180 		if (extent_end > search_start)
1181 			search_start = extent_end;
1182 next:
1183 		path->slots[0]++;
1184 		cond_resched();
1185 	}
1186 
1187 	/*
1188 	 * At this point, search_start should be the end of
1189 	 * allocated dev extents, and when shrinking the device,
1190 	 * search_end may be smaller than search_start.
1191 	 */
1192 	if (search_end > search_start)
1193 		hole_size = search_end - search_start;
1194 
1195 	if (hole_size > max_hole_size) {
1196 		max_hole_start = search_start;
1197 		max_hole_size = hole_size;
1198 	}
1199 
1200 	if (contains_pending_extent(trans, device, &search_start, hole_size)) {
1201 		btrfs_release_path(path);
1202 		goto again;
1203 	}
1204 
1205 	/* See above. */
1206 	if (hole_size < num_bytes)
1207 		ret = -ENOSPC;
1208 	else
1209 		ret = 0;
1210 
1211 out:
1212 	btrfs_free_path(path);
1213 	*start = max_hole_start;
1214 	if (len)
1215 		*len = max_hole_size;
1216 	return ret;
1217 }
1218 
1219 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
1220 			  struct btrfs_device *device,
1221 			  u64 start)
1222 {
1223 	int ret;
1224 	struct btrfs_path *path;
1225 	struct btrfs_root *root = device->dev_root;
1226 	struct btrfs_key key;
1227 	struct btrfs_key found_key;
1228 	struct extent_buffer *leaf = NULL;
1229 	struct btrfs_dev_extent *extent = NULL;
1230 
1231 	path = btrfs_alloc_path();
1232 	if (!path)
1233 		return -ENOMEM;
1234 
1235 	key.objectid = device->devid;
1236 	key.offset = start;
1237 	key.type = BTRFS_DEV_EXTENT_KEY;
1238 again:
1239 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1240 	if (ret > 0) {
1241 		ret = btrfs_previous_item(root, path, key.objectid,
1242 					  BTRFS_DEV_EXTENT_KEY);
1243 		if (ret)
1244 			goto out;
1245 		leaf = path->nodes[0];
1246 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1247 		extent = btrfs_item_ptr(leaf, path->slots[0],
1248 					struct btrfs_dev_extent);
1249 		BUG_ON(found_key.offset > start || found_key.offset +
1250 		       btrfs_dev_extent_length(leaf, extent) < start);
1251 		key = found_key;
1252 		btrfs_release_path(path);
1253 		goto again;
1254 	} else if (ret == 0) {
1255 		leaf = path->nodes[0];
1256 		extent = btrfs_item_ptr(leaf, path->slots[0],
1257 					struct btrfs_dev_extent);
1258 	} else {
1259 		btrfs_error(root->fs_info, ret, "Slot search failed");
1260 		goto out;
1261 	}
1262 
1263 	if (device->bytes_used > 0) {
1264 		u64 len = btrfs_dev_extent_length(leaf, extent);
1265 		device->bytes_used -= len;
1266 		spin_lock(&root->fs_info->free_chunk_lock);
1267 		root->fs_info->free_chunk_space += len;
1268 		spin_unlock(&root->fs_info->free_chunk_lock);
1269 	}
1270 	ret = btrfs_del_item(trans, root, path);
1271 	if (ret) {
1272 		btrfs_error(root->fs_info, ret,
1273 			    "Failed to remove dev extent item");
1274 	}
1275 out:
1276 	btrfs_free_path(path);
1277 	return ret;
1278 }
1279 
1280 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
1281 				  struct btrfs_device *device,
1282 				  u64 chunk_tree, u64 chunk_objectid,
1283 				  u64 chunk_offset, u64 start, u64 num_bytes)
1284 {
1285 	int ret;
1286 	struct btrfs_path *path;
1287 	struct btrfs_root *root = device->dev_root;
1288 	struct btrfs_dev_extent *extent;
1289 	struct extent_buffer *leaf;
1290 	struct btrfs_key key;
1291 
1292 	WARN_ON(!device->in_fs_metadata);
1293 	WARN_ON(device->is_tgtdev_for_dev_replace);
1294 	path = btrfs_alloc_path();
1295 	if (!path)
1296 		return -ENOMEM;
1297 
1298 	key.objectid = device->devid;
1299 	key.offset = start;
1300 	key.type = BTRFS_DEV_EXTENT_KEY;
1301 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1302 				      sizeof(*extent));
1303 	if (ret)
1304 		goto out;
1305 
1306 	leaf = path->nodes[0];
1307 	extent = btrfs_item_ptr(leaf, path->slots[0],
1308 				struct btrfs_dev_extent);
1309 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
1310 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
1311 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
1312 
1313 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
1314 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
1315 		    BTRFS_UUID_SIZE);
1316 
1317 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
1318 	btrfs_mark_buffer_dirty(leaf);
1319 out:
1320 	btrfs_free_path(path);
1321 	return ret;
1322 }
1323 
1324 static u64 find_next_chunk(struct btrfs_fs_info *fs_info)
1325 {
1326 	struct extent_map_tree *em_tree;
1327 	struct extent_map *em;
1328 	struct rb_node *n;
1329 	u64 ret = 0;
1330 
1331 	em_tree = &fs_info->mapping_tree.map_tree;
1332 	read_lock(&em_tree->lock);
1333 	n = rb_last(&em_tree->map);
1334 	if (n) {
1335 		em = rb_entry(n, struct extent_map, rb_node);
1336 		ret = em->start + em->len;
1337 	}
1338 	read_unlock(&em_tree->lock);
1339 
1340 	return ret;
1341 }
1342 
1343 static noinline int find_next_devid(struct btrfs_fs_info *fs_info,
1344 				    u64 *devid_ret)
1345 {
1346 	int ret;
1347 	struct btrfs_key key;
1348 	struct btrfs_key found_key;
1349 	struct btrfs_path *path;
1350 
1351 	path = btrfs_alloc_path();
1352 	if (!path)
1353 		return -ENOMEM;
1354 
1355 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1356 	key.type = BTRFS_DEV_ITEM_KEY;
1357 	key.offset = (u64)-1;
1358 
1359 	ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0);
1360 	if (ret < 0)
1361 		goto error;
1362 
1363 	BUG_ON(ret == 0); /* Corruption */
1364 
1365 	ret = btrfs_previous_item(fs_info->chunk_root, path,
1366 				  BTRFS_DEV_ITEMS_OBJECTID,
1367 				  BTRFS_DEV_ITEM_KEY);
1368 	if (ret) {
1369 		*devid_ret = 1;
1370 	} else {
1371 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1372 				      path->slots[0]);
1373 		*devid_ret = found_key.offset + 1;
1374 	}
1375 	ret = 0;
1376 error:
1377 	btrfs_free_path(path);
1378 	return ret;
1379 }
1380 
1381 /*
1382  * the device information is stored in the chunk root
1383  * the btrfs_device struct should be fully filled in
1384  */
1385 static int btrfs_add_device(struct btrfs_trans_handle *trans,
1386 			    struct btrfs_root *root,
1387 			    struct btrfs_device *device)
1388 {
1389 	int ret;
1390 	struct btrfs_path *path;
1391 	struct btrfs_dev_item *dev_item;
1392 	struct extent_buffer *leaf;
1393 	struct btrfs_key key;
1394 	unsigned long ptr;
1395 
1396 	root = root->fs_info->chunk_root;
1397 
1398 	path = btrfs_alloc_path();
1399 	if (!path)
1400 		return -ENOMEM;
1401 
1402 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1403 	key.type = BTRFS_DEV_ITEM_KEY;
1404 	key.offset = device->devid;
1405 
1406 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1407 				      sizeof(*dev_item));
1408 	if (ret)
1409 		goto out;
1410 
1411 	leaf = path->nodes[0];
1412 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1413 
1414 	btrfs_set_device_id(leaf, dev_item, device->devid);
1415 	btrfs_set_device_generation(leaf, dev_item, 0);
1416 	btrfs_set_device_type(leaf, dev_item, device->type);
1417 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1418 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1419 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1420 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1421 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1422 	btrfs_set_device_group(leaf, dev_item, 0);
1423 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1424 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1425 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1426 
1427 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1428 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1429 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1430 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1431 	btrfs_mark_buffer_dirty(leaf);
1432 
1433 	ret = 0;
1434 out:
1435 	btrfs_free_path(path);
1436 	return ret;
1437 }
1438 
1439 static int btrfs_rm_dev_item(struct btrfs_root *root,
1440 			     struct btrfs_device *device)
1441 {
1442 	int ret;
1443 	struct btrfs_path *path;
1444 	struct btrfs_key key;
1445 	struct btrfs_trans_handle *trans;
1446 
1447 	root = root->fs_info->chunk_root;
1448 
1449 	path = btrfs_alloc_path();
1450 	if (!path)
1451 		return -ENOMEM;
1452 
1453 	trans = btrfs_start_transaction(root, 0);
1454 	if (IS_ERR(trans)) {
1455 		btrfs_free_path(path);
1456 		return PTR_ERR(trans);
1457 	}
1458 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1459 	key.type = BTRFS_DEV_ITEM_KEY;
1460 	key.offset = device->devid;
1461 	lock_chunks(root);
1462 
1463 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1464 	if (ret < 0)
1465 		goto out;
1466 
1467 	if (ret > 0) {
1468 		ret = -ENOENT;
1469 		goto out;
1470 	}
1471 
1472 	ret = btrfs_del_item(trans, root, path);
1473 	if (ret)
1474 		goto out;
1475 out:
1476 	btrfs_free_path(path);
1477 	unlock_chunks(root);
1478 	btrfs_commit_transaction(trans, root);
1479 	return ret;
1480 }
1481 
1482 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1483 {
1484 	struct btrfs_device *device;
1485 	struct btrfs_device *next_device;
1486 	struct block_device *bdev;
1487 	struct buffer_head *bh = NULL;
1488 	struct btrfs_super_block *disk_super;
1489 	struct btrfs_fs_devices *cur_devices;
1490 	u64 all_avail;
1491 	u64 devid;
1492 	u64 num_devices;
1493 	u8 *dev_uuid;
1494 	unsigned seq;
1495 	int ret = 0;
1496 	bool clear_super = false;
1497 
1498 	mutex_lock(&uuid_mutex);
1499 
1500 	do {
1501 		seq = read_seqbegin(&root->fs_info->profiles_lock);
1502 
1503 		all_avail = root->fs_info->avail_data_alloc_bits |
1504 			    root->fs_info->avail_system_alloc_bits |
1505 			    root->fs_info->avail_metadata_alloc_bits;
1506 	} while (read_seqretry(&root->fs_info->profiles_lock, seq));
1507 
1508 	num_devices = root->fs_info->fs_devices->num_devices;
1509 	btrfs_dev_replace_lock(&root->fs_info->dev_replace);
1510 	if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) {
1511 		WARN_ON(num_devices < 1);
1512 		num_devices--;
1513 	}
1514 	btrfs_dev_replace_unlock(&root->fs_info->dev_replace);
1515 
1516 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) {
1517 		ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET;
1518 		goto out;
1519 	}
1520 
1521 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) {
1522 		ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET;
1523 		goto out;
1524 	}
1525 
1526 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) &&
1527 	    root->fs_info->fs_devices->rw_devices <= 2) {
1528 		ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET;
1529 		goto out;
1530 	}
1531 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) &&
1532 	    root->fs_info->fs_devices->rw_devices <= 3) {
1533 		ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET;
1534 		goto out;
1535 	}
1536 
1537 	if (strcmp(device_path, "missing") == 0) {
1538 		struct list_head *devices;
1539 		struct btrfs_device *tmp;
1540 
1541 		device = NULL;
1542 		devices = &root->fs_info->fs_devices->devices;
1543 		/*
1544 		 * It is safe to read the devices since the volume_mutex
1545 		 * is held.
1546 		 */
1547 		list_for_each_entry(tmp, devices, dev_list) {
1548 			if (tmp->in_fs_metadata &&
1549 			    !tmp->is_tgtdev_for_dev_replace &&
1550 			    !tmp->bdev) {
1551 				device = tmp;
1552 				break;
1553 			}
1554 		}
1555 		bdev = NULL;
1556 		bh = NULL;
1557 		disk_super = NULL;
1558 		if (!device) {
1559 			ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND;
1560 			goto out;
1561 		}
1562 	} else {
1563 		ret = btrfs_get_bdev_and_sb(device_path,
1564 					    FMODE_WRITE | FMODE_EXCL,
1565 					    root->fs_info->bdev_holder, 0,
1566 					    &bdev, &bh);
1567 		if (ret)
1568 			goto out;
1569 		disk_super = (struct btrfs_super_block *)bh->b_data;
1570 		devid = btrfs_stack_device_id(&disk_super->dev_item);
1571 		dev_uuid = disk_super->dev_item.uuid;
1572 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1573 					   disk_super->fsid);
1574 		if (!device) {
1575 			ret = -ENOENT;
1576 			goto error_brelse;
1577 		}
1578 	}
1579 
1580 	if (device->is_tgtdev_for_dev_replace) {
1581 		ret = BTRFS_ERROR_DEV_TGT_REPLACE;
1582 		goto error_brelse;
1583 	}
1584 
1585 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1586 		ret = BTRFS_ERROR_DEV_ONLY_WRITABLE;
1587 		goto error_brelse;
1588 	}
1589 
1590 	if (device->writeable) {
1591 		lock_chunks(root);
1592 		list_del_init(&device->dev_alloc_list);
1593 		unlock_chunks(root);
1594 		root->fs_info->fs_devices->rw_devices--;
1595 		clear_super = true;
1596 	}
1597 
1598 	mutex_unlock(&uuid_mutex);
1599 	ret = btrfs_shrink_device(device, 0);
1600 	mutex_lock(&uuid_mutex);
1601 	if (ret)
1602 		goto error_undo;
1603 
1604 	/*
1605 	 * TODO: the superblock still includes this device in its num_devices
1606 	 * counter although write_all_supers() is not locked out. This
1607 	 * could give a filesystem state which requires a degraded mount.
1608 	 */
1609 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1610 	if (ret)
1611 		goto error_undo;
1612 
1613 	spin_lock(&root->fs_info->free_chunk_lock);
1614 	root->fs_info->free_chunk_space = device->total_bytes -
1615 		device->bytes_used;
1616 	spin_unlock(&root->fs_info->free_chunk_lock);
1617 
1618 	device->in_fs_metadata = 0;
1619 	btrfs_scrub_cancel_dev(root->fs_info, device);
1620 
1621 	/*
1622 	 * the device list mutex makes sure that we don't change
1623 	 * the device list while someone else is writing out all
1624 	 * the device supers.
1625 	 */
1626 
1627 	cur_devices = device->fs_devices;
1628 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1629 	list_del_rcu(&device->dev_list);
1630 
1631 	device->fs_devices->num_devices--;
1632 	device->fs_devices->total_devices--;
1633 
1634 	if (device->missing)
1635 		root->fs_info->fs_devices->missing_devices--;
1636 
1637 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1638 				 struct btrfs_device, dev_list);
1639 	if (device->bdev == root->fs_info->sb->s_bdev)
1640 		root->fs_info->sb->s_bdev = next_device->bdev;
1641 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1642 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1643 
1644 	if (device->bdev)
1645 		device->fs_devices->open_devices--;
1646 
1647 	call_rcu(&device->rcu, free_device);
1648 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1649 
1650 	num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1;
1651 	btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices);
1652 
1653 	if (cur_devices->open_devices == 0) {
1654 		struct btrfs_fs_devices *fs_devices;
1655 		fs_devices = root->fs_info->fs_devices;
1656 		while (fs_devices) {
1657 			if (fs_devices->seed == cur_devices)
1658 				break;
1659 			fs_devices = fs_devices->seed;
1660 		}
1661 		fs_devices->seed = cur_devices->seed;
1662 		cur_devices->seed = NULL;
1663 		lock_chunks(root);
1664 		__btrfs_close_devices(cur_devices);
1665 		unlock_chunks(root);
1666 		free_fs_devices(cur_devices);
1667 	}
1668 
1669 	root->fs_info->num_tolerated_disk_barrier_failures =
1670 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
1671 
1672 	/*
1673 	 * at this point, the device is zero sized.  We want to
1674 	 * remove it from the devices list and zero out the old super
1675 	 */
1676 	if (clear_super && disk_super) {
1677 		/* make sure this device isn't detected as part of
1678 		 * the FS anymore
1679 		 */
1680 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1681 		set_buffer_dirty(bh);
1682 		sync_dirty_buffer(bh);
1683 	}
1684 
1685 	ret = 0;
1686 
1687 	/* Notify udev that device has changed */
1688 	if (bdev)
1689 		btrfs_kobject_uevent(bdev, KOBJ_CHANGE);
1690 
1691 error_brelse:
1692 	brelse(bh);
1693 	if (bdev)
1694 		blkdev_put(bdev, FMODE_READ | FMODE_EXCL);
1695 out:
1696 	mutex_unlock(&uuid_mutex);
1697 	return ret;
1698 error_undo:
1699 	if (device->writeable) {
1700 		lock_chunks(root);
1701 		list_add(&device->dev_alloc_list,
1702 			 &root->fs_info->fs_devices->alloc_list);
1703 		unlock_chunks(root);
1704 		root->fs_info->fs_devices->rw_devices++;
1705 	}
1706 	goto error_brelse;
1707 }
1708 
1709 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info,
1710 				 struct btrfs_device *srcdev)
1711 {
1712 	WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex));
1713 	list_del_rcu(&srcdev->dev_list);
1714 	list_del_rcu(&srcdev->dev_alloc_list);
1715 	fs_info->fs_devices->num_devices--;
1716 	if (srcdev->missing) {
1717 		fs_info->fs_devices->missing_devices--;
1718 		fs_info->fs_devices->rw_devices++;
1719 	}
1720 	if (srcdev->can_discard)
1721 		fs_info->fs_devices->num_can_discard--;
1722 	if (srcdev->bdev)
1723 		fs_info->fs_devices->open_devices--;
1724 
1725 	call_rcu(&srcdev->rcu, free_device);
1726 }
1727 
1728 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info,
1729 				      struct btrfs_device *tgtdev)
1730 {
1731 	struct btrfs_device *next_device;
1732 
1733 	WARN_ON(!tgtdev);
1734 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1735 	if (tgtdev->bdev) {
1736 		btrfs_scratch_superblock(tgtdev);
1737 		fs_info->fs_devices->open_devices--;
1738 	}
1739 	fs_info->fs_devices->num_devices--;
1740 	if (tgtdev->can_discard)
1741 		fs_info->fs_devices->num_can_discard++;
1742 
1743 	next_device = list_entry(fs_info->fs_devices->devices.next,
1744 				 struct btrfs_device, dev_list);
1745 	if (tgtdev->bdev == fs_info->sb->s_bdev)
1746 		fs_info->sb->s_bdev = next_device->bdev;
1747 	if (tgtdev->bdev == fs_info->fs_devices->latest_bdev)
1748 		fs_info->fs_devices->latest_bdev = next_device->bdev;
1749 	list_del_rcu(&tgtdev->dev_list);
1750 
1751 	call_rcu(&tgtdev->rcu, free_device);
1752 
1753 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1754 }
1755 
1756 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path,
1757 				     struct btrfs_device **device)
1758 {
1759 	int ret = 0;
1760 	struct btrfs_super_block *disk_super;
1761 	u64 devid;
1762 	u8 *dev_uuid;
1763 	struct block_device *bdev;
1764 	struct buffer_head *bh;
1765 
1766 	*device = NULL;
1767 	ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ,
1768 				    root->fs_info->bdev_holder, 0, &bdev, &bh);
1769 	if (ret)
1770 		return ret;
1771 	disk_super = (struct btrfs_super_block *)bh->b_data;
1772 	devid = btrfs_stack_device_id(&disk_super->dev_item);
1773 	dev_uuid = disk_super->dev_item.uuid;
1774 	*device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1775 				    disk_super->fsid);
1776 	brelse(bh);
1777 	if (!*device)
1778 		ret = -ENOENT;
1779 	blkdev_put(bdev, FMODE_READ);
1780 	return ret;
1781 }
1782 
1783 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root,
1784 					 char *device_path,
1785 					 struct btrfs_device **device)
1786 {
1787 	*device = NULL;
1788 	if (strcmp(device_path, "missing") == 0) {
1789 		struct list_head *devices;
1790 		struct btrfs_device *tmp;
1791 
1792 		devices = &root->fs_info->fs_devices->devices;
1793 		/*
1794 		 * It is safe to read the devices since the volume_mutex
1795 		 * is held by the caller.
1796 		 */
1797 		list_for_each_entry(tmp, devices, dev_list) {
1798 			if (tmp->in_fs_metadata && !tmp->bdev) {
1799 				*device = tmp;
1800 				break;
1801 			}
1802 		}
1803 
1804 		if (!*device) {
1805 			pr_err("btrfs: no missing device found\n");
1806 			return -ENOENT;
1807 		}
1808 
1809 		return 0;
1810 	} else {
1811 		return btrfs_find_device_by_path(root, device_path, device);
1812 	}
1813 }
1814 
1815 /*
1816  * does all the dirty work required for changing file system's UUID.
1817  */
1818 static int btrfs_prepare_sprout(struct btrfs_root *root)
1819 {
1820 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1821 	struct btrfs_fs_devices *old_devices;
1822 	struct btrfs_fs_devices *seed_devices;
1823 	struct btrfs_super_block *disk_super = root->fs_info->super_copy;
1824 	struct btrfs_device *device;
1825 	u64 super_flags;
1826 
1827 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1828 	if (!fs_devices->seeding)
1829 		return -EINVAL;
1830 
1831 	seed_devices = __alloc_fs_devices();
1832 	if (IS_ERR(seed_devices))
1833 		return PTR_ERR(seed_devices);
1834 
1835 	old_devices = clone_fs_devices(fs_devices);
1836 	if (IS_ERR(old_devices)) {
1837 		kfree(seed_devices);
1838 		return PTR_ERR(old_devices);
1839 	}
1840 
1841 	list_add(&old_devices->list, &fs_uuids);
1842 
1843 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1844 	seed_devices->opened = 1;
1845 	INIT_LIST_HEAD(&seed_devices->devices);
1846 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1847 	mutex_init(&seed_devices->device_list_mutex);
1848 
1849 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1850 	list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices,
1851 			      synchronize_rcu);
1852 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1853 
1854 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1855 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1856 		device->fs_devices = seed_devices;
1857 	}
1858 
1859 	fs_devices->seeding = 0;
1860 	fs_devices->num_devices = 0;
1861 	fs_devices->open_devices = 0;
1862 	fs_devices->total_devices = 0;
1863 	fs_devices->seed = seed_devices;
1864 
1865 	generate_random_uuid(fs_devices->fsid);
1866 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1867 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1868 	super_flags = btrfs_super_flags(disk_super) &
1869 		      ~BTRFS_SUPER_FLAG_SEEDING;
1870 	btrfs_set_super_flags(disk_super, super_flags);
1871 
1872 	return 0;
1873 }
1874 
1875 /*
1876  * strore the expected generation for seed devices in device items.
1877  */
1878 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1879 			       struct btrfs_root *root)
1880 {
1881 	struct btrfs_path *path;
1882 	struct extent_buffer *leaf;
1883 	struct btrfs_dev_item *dev_item;
1884 	struct btrfs_device *device;
1885 	struct btrfs_key key;
1886 	u8 fs_uuid[BTRFS_UUID_SIZE];
1887 	u8 dev_uuid[BTRFS_UUID_SIZE];
1888 	u64 devid;
1889 	int ret;
1890 
1891 	path = btrfs_alloc_path();
1892 	if (!path)
1893 		return -ENOMEM;
1894 
1895 	root = root->fs_info->chunk_root;
1896 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1897 	key.offset = 0;
1898 	key.type = BTRFS_DEV_ITEM_KEY;
1899 
1900 	while (1) {
1901 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1902 		if (ret < 0)
1903 			goto error;
1904 
1905 		leaf = path->nodes[0];
1906 next_slot:
1907 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1908 			ret = btrfs_next_leaf(root, path);
1909 			if (ret > 0)
1910 				break;
1911 			if (ret < 0)
1912 				goto error;
1913 			leaf = path->nodes[0];
1914 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1915 			btrfs_release_path(path);
1916 			continue;
1917 		}
1918 
1919 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1920 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1921 		    key.type != BTRFS_DEV_ITEM_KEY)
1922 			break;
1923 
1924 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1925 					  struct btrfs_dev_item);
1926 		devid = btrfs_device_id(leaf, dev_item);
1927 		read_extent_buffer(leaf, dev_uuid,
1928 				   (unsigned long)btrfs_device_uuid(dev_item),
1929 				   BTRFS_UUID_SIZE);
1930 		read_extent_buffer(leaf, fs_uuid,
1931 				   (unsigned long)btrfs_device_fsid(dev_item),
1932 				   BTRFS_UUID_SIZE);
1933 		device = btrfs_find_device(root->fs_info, devid, dev_uuid,
1934 					   fs_uuid);
1935 		BUG_ON(!device); /* Logic error */
1936 
1937 		if (device->fs_devices->seeding) {
1938 			btrfs_set_device_generation(leaf, dev_item,
1939 						    device->generation);
1940 			btrfs_mark_buffer_dirty(leaf);
1941 		}
1942 
1943 		path->slots[0]++;
1944 		goto next_slot;
1945 	}
1946 	ret = 0;
1947 error:
1948 	btrfs_free_path(path);
1949 	return ret;
1950 }
1951 
1952 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1953 {
1954 	struct request_queue *q;
1955 	struct btrfs_trans_handle *trans;
1956 	struct btrfs_device *device;
1957 	struct block_device *bdev;
1958 	struct list_head *devices;
1959 	struct super_block *sb = root->fs_info->sb;
1960 	struct rcu_string *name;
1961 	u64 total_bytes;
1962 	int seeding_dev = 0;
1963 	int ret = 0;
1964 
1965 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1966 		return -EROFS;
1967 
1968 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
1969 				  root->fs_info->bdev_holder);
1970 	if (IS_ERR(bdev))
1971 		return PTR_ERR(bdev);
1972 
1973 	if (root->fs_info->fs_devices->seeding) {
1974 		seeding_dev = 1;
1975 		down_write(&sb->s_umount);
1976 		mutex_lock(&uuid_mutex);
1977 	}
1978 
1979 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1980 
1981 	devices = &root->fs_info->fs_devices->devices;
1982 
1983 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1984 	list_for_each_entry(device, devices, dev_list) {
1985 		if (device->bdev == bdev) {
1986 			ret = -EEXIST;
1987 			mutex_unlock(
1988 				&root->fs_info->fs_devices->device_list_mutex);
1989 			goto error;
1990 		}
1991 	}
1992 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1993 
1994 	device = btrfs_alloc_device(root->fs_info, NULL, NULL);
1995 	if (IS_ERR(device)) {
1996 		/* we can safely leave the fs_devices entry around */
1997 		ret = PTR_ERR(device);
1998 		goto error;
1999 	}
2000 
2001 	name = rcu_string_strdup(device_path, GFP_NOFS);
2002 	if (!name) {
2003 		kfree(device);
2004 		ret = -ENOMEM;
2005 		goto error;
2006 	}
2007 	rcu_assign_pointer(device->name, name);
2008 
2009 	trans = btrfs_start_transaction(root, 0);
2010 	if (IS_ERR(trans)) {
2011 		rcu_string_free(device->name);
2012 		kfree(device);
2013 		ret = PTR_ERR(trans);
2014 		goto error;
2015 	}
2016 
2017 	lock_chunks(root);
2018 
2019 	q = bdev_get_queue(bdev);
2020 	if (blk_queue_discard(q))
2021 		device->can_discard = 1;
2022 	device->writeable = 1;
2023 	device->generation = trans->transid;
2024 	device->io_width = root->sectorsize;
2025 	device->io_align = root->sectorsize;
2026 	device->sector_size = root->sectorsize;
2027 	device->total_bytes = i_size_read(bdev->bd_inode);
2028 	device->disk_total_bytes = device->total_bytes;
2029 	device->dev_root = root->fs_info->dev_root;
2030 	device->bdev = bdev;
2031 	device->in_fs_metadata = 1;
2032 	device->is_tgtdev_for_dev_replace = 0;
2033 	device->mode = FMODE_EXCL;
2034 	set_blocksize(device->bdev, 4096);
2035 
2036 	if (seeding_dev) {
2037 		sb->s_flags &= ~MS_RDONLY;
2038 		ret = btrfs_prepare_sprout(root);
2039 		BUG_ON(ret); /* -ENOMEM */
2040 	}
2041 
2042 	device->fs_devices = root->fs_info->fs_devices;
2043 
2044 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2045 	list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices);
2046 	list_add(&device->dev_alloc_list,
2047 		 &root->fs_info->fs_devices->alloc_list);
2048 	root->fs_info->fs_devices->num_devices++;
2049 	root->fs_info->fs_devices->open_devices++;
2050 	root->fs_info->fs_devices->rw_devices++;
2051 	root->fs_info->fs_devices->total_devices++;
2052 	if (device->can_discard)
2053 		root->fs_info->fs_devices->num_can_discard++;
2054 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
2055 
2056 	spin_lock(&root->fs_info->free_chunk_lock);
2057 	root->fs_info->free_chunk_space += device->total_bytes;
2058 	spin_unlock(&root->fs_info->free_chunk_lock);
2059 
2060 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
2061 		root->fs_info->fs_devices->rotating = 1;
2062 
2063 	total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
2064 	btrfs_set_super_total_bytes(root->fs_info->super_copy,
2065 				    total_bytes + device->total_bytes);
2066 
2067 	total_bytes = btrfs_super_num_devices(root->fs_info->super_copy);
2068 	btrfs_set_super_num_devices(root->fs_info->super_copy,
2069 				    total_bytes + 1);
2070 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2071 
2072 	if (seeding_dev) {
2073 		ret = init_first_rw_device(trans, root, device);
2074 		if (ret) {
2075 			btrfs_abort_transaction(trans, root, ret);
2076 			goto error_trans;
2077 		}
2078 		ret = btrfs_finish_sprout(trans, root);
2079 		if (ret) {
2080 			btrfs_abort_transaction(trans, root, ret);
2081 			goto error_trans;
2082 		}
2083 	} else {
2084 		ret = btrfs_add_device(trans, root, device);
2085 		if (ret) {
2086 			btrfs_abort_transaction(trans, root, ret);
2087 			goto error_trans;
2088 		}
2089 	}
2090 
2091 	/*
2092 	 * we've got more storage, clear any full flags on the space
2093 	 * infos
2094 	 */
2095 	btrfs_clear_space_info_full(root->fs_info);
2096 
2097 	unlock_chunks(root);
2098 	root->fs_info->num_tolerated_disk_barrier_failures =
2099 		btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info);
2100 	ret = btrfs_commit_transaction(trans, root);
2101 
2102 	if (seeding_dev) {
2103 		mutex_unlock(&uuid_mutex);
2104 		up_write(&sb->s_umount);
2105 
2106 		if (ret) /* transaction commit */
2107 			return ret;
2108 
2109 		ret = btrfs_relocate_sys_chunks(root);
2110 		if (ret < 0)
2111 			btrfs_error(root->fs_info, ret,
2112 				    "Failed to relocate sys chunks after "
2113 				    "device initialization. This can be fixed "
2114 				    "using the \"btrfs balance\" command.");
2115 		trans = btrfs_attach_transaction(root);
2116 		if (IS_ERR(trans)) {
2117 			if (PTR_ERR(trans) == -ENOENT)
2118 				return 0;
2119 			return PTR_ERR(trans);
2120 		}
2121 		ret = btrfs_commit_transaction(trans, root);
2122 	}
2123 
2124 	return ret;
2125 
2126 error_trans:
2127 	unlock_chunks(root);
2128 	btrfs_end_transaction(trans, root);
2129 	rcu_string_free(device->name);
2130 	kfree(device);
2131 error:
2132 	blkdev_put(bdev, FMODE_EXCL);
2133 	if (seeding_dev) {
2134 		mutex_unlock(&uuid_mutex);
2135 		up_write(&sb->s_umount);
2136 	}
2137 	return ret;
2138 }
2139 
2140 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path,
2141 				  struct btrfs_device **device_out)
2142 {
2143 	struct request_queue *q;
2144 	struct btrfs_device *device;
2145 	struct block_device *bdev;
2146 	struct btrfs_fs_info *fs_info = root->fs_info;
2147 	struct list_head *devices;
2148 	struct rcu_string *name;
2149 	u64 devid = BTRFS_DEV_REPLACE_DEVID;
2150 	int ret = 0;
2151 
2152 	*device_out = NULL;
2153 	if (fs_info->fs_devices->seeding)
2154 		return -EINVAL;
2155 
2156 	bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL,
2157 				  fs_info->bdev_holder);
2158 	if (IS_ERR(bdev))
2159 		return PTR_ERR(bdev);
2160 
2161 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
2162 
2163 	devices = &fs_info->fs_devices->devices;
2164 	list_for_each_entry(device, devices, dev_list) {
2165 		if (device->bdev == bdev) {
2166 			ret = -EEXIST;
2167 			goto error;
2168 		}
2169 	}
2170 
2171 	device = btrfs_alloc_device(NULL, &devid, NULL);
2172 	if (IS_ERR(device)) {
2173 		ret = PTR_ERR(device);
2174 		goto error;
2175 	}
2176 
2177 	name = rcu_string_strdup(device_path, GFP_NOFS);
2178 	if (!name) {
2179 		kfree(device);
2180 		ret = -ENOMEM;
2181 		goto error;
2182 	}
2183 	rcu_assign_pointer(device->name, name);
2184 
2185 	q = bdev_get_queue(bdev);
2186 	if (blk_queue_discard(q))
2187 		device->can_discard = 1;
2188 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
2189 	device->writeable = 1;
2190 	device->generation = 0;
2191 	device->io_width = root->sectorsize;
2192 	device->io_align = root->sectorsize;
2193 	device->sector_size = root->sectorsize;
2194 	device->total_bytes = i_size_read(bdev->bd_inode);
2195 	device->disk_total_bytes = device->total_bytes;
2196 	device->dev_root = fs_info->dev_root;
2197 	device->bdev = bdev;
2198 	device->in_fs_metadata = 1;
2199 	device->is_tgtdev_for_dev_replace = 1;
2200 	device->mode = FMODE_EXCL;
2201 	set_blocksize(device->bdev, 4096);
2202 	device->fs_devices = fs_info->fs_devices;
2203 	list_add(&device->dev_list, &fs_info->fs_devices->devices);
2204 	fs_info->fs_devices->num_devices++;
2205 	fs_info->fs_devices->open_devices++;
2206 	if (device->can_discard)
2207 		fs_info->fs_devices->num_can_discard++;
2208 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
2209 
2210 	*device_out = device;
2211 	return ret;
2212 
2213 error:
2214 	blkdev_put(bdev, FMODE_EXCL);
2215 	return ret;
2216 }
2217 
2218 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info,
2219 					      struct btrfs_device *tgtdev)
2220 {
2221 	WARN_ON(fs_info->fs_devices->rw_devices == 0);
2222 	tgtdev->io_width = fs_info->dev_root->sectorsize;
2223 	tgtdev->io_align = fs_info->dev_root->sectorsize;
2224 	tgtdev->sector_size = fs_info->dev_root->sectorsize;
2225 	tgtdev->dev_root = fs_info->dev_root;
2226 	tgtdev->in_fs_metadata = 1;
2227 }
2228 
2229 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
2230 					struct btrfs_device *device)
2231 {
2232 	int ret;
2233 	struct btrfs_path *path;
2234 	struct btrfs_root *root;
2235 	struct btrfs_dev_item *dev_item;
2236 	struct extent_buffer *leaf;
2237 	struct btrfs_key key;
2238 
2239 	root = device->dev_root->fs_info->chunk_root;
2240 
2241 	path = btrfs_alloc_path();
2242 	if (!path)
2243 		return -ENOMEM;
2244 
2245 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
2246 	key.type = BTRFS_DEV_ITEM_KEY;
2247 	key.offset = device->devid;
2248 
2249 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
2250 	if (ret < 0)
2251 		goto out;
2252 
2253 	if (ret > 0) {
2254 		ret = -ENOENT;
2255 		goto out;
2256 	}
2257 
2258 	leaf = path->nodes[0];
2259 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
2260 
2261 	btrfs_set_device_id(leaf, dev_item, device->devid);
2262 	btrfs_set_device_type(leaf, dev_item, device->type);
2263 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
2264 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
2265 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
2266 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
2267 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
2268 	btrfs_mark_buffer_dirty(leaf);
2269 
2270 out:
2271 	btrfs_free_path(path);
2272 	return ret;
2273 }
2274 
2275 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
2276 		      struct btrfs_device *device, u64 new_size)
2277 {
2278 	struct btrfs_super_block *super_copy =
2279 		device->dev_root->fs_info->super_copy;
2280 	u64 old_total = btrfs_super_total_bytes(super_copy);
2281 	u64 diff = new_size - device->total_bytes;
2282 
2283 	if (!device->writeable)
2284 		return -EACCES;
2285 	if (new_size <= device->total_bytes ||
2286 	    device->is_tgtdev_for_dev_replace)
2287 		return -EINVAL;
2288 
2289 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
2290 	device->fs_devices->total_rw_bytes += diff;
2291 
2292 	device->total_bytes = new_size;
2293 	device->disk_total_bytes = new_size;
2294 	btrfs_clear_space_info_full(device->dev_root->fs_info);
2295 
2296 	return btrfs_update_device(trans, device);
2297 }
2298 
2299 int btrfs_grow_device(struct btrfs_trans_handle *trans,
2300 		      struct btrfs_device *device, u64 new_size)
2301 {
2302 	int ret;
2303 	lock_chunks(device->dev_root);
2304 	ret = __btrfs_grow_device(trans, device, new_size);
2305 	unlock_chunks(device->dev_root);
2306 	return ret;
2307 }
2308 
2309 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
2310 			    struct btrfs_root *root,
2311 			    u64 chunk_tree, u64 chunk_objectid,
2312 			    u64 chunk_offset)
2313 {
2314 	int ret;
2315 	struct btrfs_path *path;
2316 	struct btrfs_key key;
2317 
2318 	root = root->fs_info->chunk_root;
2319 	path = btrfs_alloc_path();
2320 	if (!path)
2321 		return -ENOMEM;
2322 
2323 	key.objectid = chunk_objectid;
2324 	key.offset = chunk_offset;
2325 	key.type = BTRFS_CHUNK_ITEM_KEY;
2326 
2327 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2328 	if (ret < 0)
2329 		goto out;
2330 	else if (ret > 0) { /* Logic error or corruption */
2331 		btrfs_error(root->fs_info, -ENOENT,
2332 			    "Failed lookup while freeing chunk.");
2333 		ret = -ENOENT;
2334 		goto out;
2335 	}
2336 
2337 	ret = btrfs_del_item(trans, root, path);
2338 	if (ret < 0)
2339 		btrfs_error(root->fs_info, ret,
2340 			    "Failed to delete chunk item.");
2341 out:
2342 	btrfs_free_path(path);
2343 	return ret;
2344 }
2345 
2346 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
2347 			chunk_offset)
2348 {
2349 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
2350 	struct btrfs_disk_key *disk_key;
2351 	struct btrfs_chunk *chunk;
2352 	u8 *ptr;
2353 	int ret = 0;
2354 	u32 num_stripes;
2355 	u32 array_size;
2356 	u32 len = 0;
2357 	u32 cur;
2358 	struct btrfs_key key;
2359 
2360 	array_size = btrfs_super_sys_array_size(super_copy);
2361 
2362 	ptr = super_copy->sys_chunk_array;
2363 	cur = 0;
2364 
2365 	while (cur < array_size) {
2366 		disk_key = (struct btrfs_disk_key *)ptr;
2367 		btrfs_disk_key_to_cpu(&key, disk_key);
2368 
2369 		len = sizeof(*disk_key);
2370 
2371 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
2372 			chunk = (struct btrfs_chunk *)(ptr + len);
2373 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
2374 			len += btrfs_chunk_item_size(num_stripes);
2375 		} else {
2376 			ret = -EIO;
2377 			break;
2378 		}
2379 		if (key.objectid == chunk_objectid &&
2380 		    key.offset == chunk_offset) {
2381 			memmove(ptr, ptr + len, array_size - (cur + len));
2382 			array_size -= len;
2383 			btrfs_set_super_sys_array_size(super_copy, array_size);
2384 		} else {
2385 			ptr += len;
2386 			cur += len;
2387 		}
2388 	}
2389 	return ret;
2390 }
2391 
2392 static int btrfs_relocate_chunk(struct btrfs_root *root,
2393 			 u64 chunk_tree, u64 chunk_objectid,
2394 			 u64 chunk_offset)
2395 {
2396 	struct extent_map_tree *em_tree;
2397 	struct btrfs_root *extent_root;
2398 	struct btrfs_trans_handle *trans;
2399 	struct extent_map *em;
2400 	struct map_lookup *map;
2401 	int ret;
2402 	int i;
2403 
2404 	root = root->fs_info->chunk_root;
2405 	extent_root = root->fs_info->extent_root;
2406 	em_tree = &root->fs_info->mapping_tree.map_tree;
2407 
2408 	ret = btrfs_can_relocate(extent_root, chunk_offset);
2409 	if (ret)
2410 		return -ENOSPC;
2411 
2412 	/* step one, relocate all the extents inside this chunk */
2413 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
2414 	if (ret)
2415 		return ret;
2416 
2417 	trans = btrfs_start_transaction(root, 0);
2418 	if (IS_ERR(trans)) {
2419 		ret = PTR_ERR(trans);
2420 		btrfs_std_error(root->fs_info, ret);
2421 		return ret;
2422 	}
2423 
2424 	lock_chunks(root);
2425 
2426 	/*
2427 	 * step two, delete the device extents and the
2428 	 * chunk tree entries
2429 	 */
2430 	read_lock(&em_tree->lock);
2431 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
2432 	read_unlock(&em_tree->lock);
2433 
2434 	BUG_ON(!em || em->start > chunk_offset ||
2435 	       em->start + em->len < chunk_offset);
2436 	map = (struct map_lookup *)em->bdev;
2437 
2438 	for (i = 0; i < map->num_stripes; i++) {
2439 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
2440 					    map->stripes[i].physical);
2441 		BUG_ON(ret);
2442 
2443 		if (map->stripes[i].dev) {
2444 			ret = btrfs_update_device(trans, map->stripes[i].dev);
2445 			BUG_ON(ret);
2446 		}
2447 	}
2448 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
2449 			       chunk_offset);
2450 
2451 	BUG_ON(ret);
2452 
2453 	trace_btrfs_chunk_free(root, map, chunk_offset, em->len);
2454 
2455 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2456 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
2457 		BUG_ON(ret);
2458 	}
2459 
2460 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
2461 	BUG_ON(ret);
2462 
2463 	write_lock(&em_tree->lock);
2464 	remove_extent_mapping(em_tree, em);
2465 	write_unlock(&em_tree->lock);
2466 
2467 	kfree(map);
2468 	em->bdev = NULL;
2469 
2470 	/* once for the tree */
2471 	free_extent_map(em);
2472 	/* once for us */
2473 	free_extent_map(em);
2474 
2475 	unlock_chunks(root);
2476 	btrfs_end_transaction(trans, root);
2477 	return 0;
2478 }
2479 
2480 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
2481 {
2482 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
2483 	struct btrfs_path *path;
2484 	struct extent_buffer *leaf;
2485 	struct btrfs_chunk *chunk;
2486 	struct btrfs_key key;
2487 	struct btrfs_key found_key;
2488 	u64 chunk_tree = chunk_root->root_key.objectid;
2489 	u64 chunk_type;
2490 	bool retried = false;
2491 	int failed = 0;
2492 	int ret;
2493 
2494 	path = btrfs_alloc_path();
2495 	if (!path)
2496 		return -ENOMEM;
2497 
2498 again:
2499 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2500 	key.offset = (u64)-1;
2501 	key.type = BTRFS_CHUNK_ITEM_KEY;
2502 
2503 	while (1) {
2504 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2505 		if (ret < 0)
2506 			goto error;
2507 		BUG_ON(ret == 0); /* Corruption */
2508 
2509 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
2510 					  key.type);
2511 		if (ret < 0)
2512 			goto error;
2513 		if (ret > 0)
2514 			break;
2515 
2516 		leaf = path->nodes[0];
2517 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
2518 
2519 		chunk = btrfs_item_ptr(leaf, path->slots[0],
2520 				       struct btrfs_chunk);
2521 		chunk_type = btrfs_chunk_type(leaf, chunk);
2522 		btrfs_release_path(path);
2523 
2524 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
2525 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
2526 						   found_key.objectid,
2527 						   found_key.offset);
2528 			if (ret == -ENOSPC)
2529 				failed++;
2530 			else if (ret)
2531 				BUG();
2532 		}
2533 
2534 		if (found_key.offset == 0)
2535 			break;
2536 		key.offset = found_key.offset - 1;
2537 	}
2538 	ret = 0;
2539 	if (failed && !retried) {
2540 		failed = 0;
2541 		retried = true;
2542 		goto again;
2543 	} else if (failed && retried) {
2544 		WARN_ON(1);
2545 		ret = -ENOSPC;
2546 	}
2547 error:
2548 	btrfs_free_path(path);
2549 	return ret;
2550 }
2551 
2552 static int insert_balance_item(struct btrfs_root *root,
2553 			       struct btrfs_balance_control *bctl)
2554 {
2555 	struct btrfs_trans_handle *trans;
2556 	struct btrfs_balance_item *item;
2557 	struct btrfs_disk_balance_args disk_bargs;
2558 	struct btrfs_path *path;
2559 	struct extent_buffer *leaf;
2560 	struct btrfs_key key;
2561 	int ret, err;
2562 
2563 	path = btrfs_alloc_path();
2564 	if (!path)
2565 		return -ENOMEM;
2566 
2567 	trans = btrfs_start_transaction(root, 0);
2568 	if (IS_ERR(trans)) {
2569 		btrfs_free_path(path);
2570 		return PTR_ERR(trans);
2571 	}
2572 
2573 	key.objectid = BTRFS_BALANCE_OBJECTID;
2574 	key.type = BTRFS_BALANCE_ITEM_KEY;
2575 	key.offset = 0;
2576 
2577 	ret = btrfs_insert_empty_item(trans, root, path, &key,
2578 				      sizeof(*item));
2579 	if (ret)
2580 		goto out;
2581 
2582 	leaf = path->nodes[0];
2583 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
2584 
2585 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
2586 
2587 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data);
2588 	btrfs_set_balance_data(leaf, item, &disk_bargs);
2589 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta);
2590 	btrfs_set_balance_meta(leaf, item, &disk_bargs);
2591 	btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys);
2592 	btrfs_set_balance_sys(leaf, item, &disk_bargs);
2593 
2594 	btrfs_set_balance_flags(leaf, item, bctl->flags);
2595 
2596 	btrfs_mark_buffer_dirty(leaf);
2597 out:
2598 	btrfs_free_path(path);
2599 	err = btrfs_commit_transaction(trans, root);
2600 	if (err && !ret)
2601 		ret = err;
2602 	return ret;
2603 }
2604 
2605 static int del_balance_item(struct btrfs_root *root)
2606 {
2607 	struct btrfs_trans_handle *trans;
2608 	struct btrfs_path *path;
2609 	struct btrfs_key key;
2610 	int ret, err;
2611 
2612 	path = btrfs_alloc_path();
2613 	if (!path)
2614 		return -ENOMEM;
2615 
2616 	trans = btrfs_start_transaction(root, 0);
2617 	if (IS_ERR(trans)) {
2618 		btrfs_free_path(path);
2619 		return PTR_ERR(trans);
2620 	}
2621 
2622 	key.objectid = BTRFS_BALANCE_OBJECTID;
2623 	key.type = BTRFS_BALANCE_ITEM_KEY;
2624 	key.offset = 0;
2625 
2626 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
2627 	if (ret < 0)
2628 		goto out;
2629 	if (ret > 0) {
2630 		ret = -ENOENT;
2631 		goto out;
2632 	}
2633 
2634 	ret = btrfs_del_item(trans, root, path);
2635 out:
2636 	btrfs_free_path(path);
2637 	err = btrfs_commit_transaction(trans, root);
2638 	if (err && !ret)
2639 		ret = err;
2640 	return ret;
2641 }
2642 
2643 /*
2644  * This is a heuristic used to reduce the number of chunks balanced on
2645  * resume after balance was interrupted.
2646  */
2647 static void update_balance_args(struct btrfs_balance_control *bctl)
2648 {
2649 	/*
2650 	 * Turn on soft mode for chunk types that were being converted.
2651 	 */
2652 	if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)
2653 		bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT;
2654 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)
2655 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT;
2656 	if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)
2657 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT;
2658 
2659 	/*
2660 	 * Turn on usage filter if is not already used.  The idea is
2661 	 * that chunks that we have already balanced should be
2662 	 * reasonably full.  Don't do it for chunks that are being
2663 	 * converted - that will keep us from relocating unconverted
2664 	 * (albeit full) chunks.
2665 	 */
2666 	if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2667 	    !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2668 		bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE;
2669 		bctl->data.usage = 90;
2670 	}
2671 	if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2672 	    !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2673 		bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE;
2674 		bctl->sys.usage = 90;
2675 	}
2676 	if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) &&
2677 	    !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) {
2678 		bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE;
2679 		bctl->meta.usage = 90;
2680 	}
2681 }
2682 
2683 /*
2684  * Should be called with both balance and volume mutexes held to
2685  * serialize other volume operations (add_dev/rm_dev/resize) with
2686  * restriper.  Same goes for unset_balance_control.
2687  */
2688 static void set_balance_control(struct btrfs_balance_control *bctl)
2689 {
2690 	struct btrfs_fs_info *fs_info = bctl->fs_info;
2691 
2692 	BUG_ON(fs_info->balance_ctl);
2693 
2694 	spin_lock(&fs_info->balance_lock);
2695 	fs_info->balance_ctl = bctl;
2696 	spin_unlock(&fs_info->balance_lock);
2697 }
2698 
2699 static void unset_balance_control(struct btrfs_fs_info *fs_info)
2700 {
2701 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2702 
2703 	BUG_ON(!fs_info->balance_ctl);
2704 
2705 	spin_lock(&fs_info->balance_lock);
2706 	fs_info->balance_ctl = NULL;
2707 	spin_unlock(&fs_info->balance_lock);
2708 
2709 	kfree(bctl);
2710 }
2711 
2712 /*
2713  * Balance filters.  Return 1 if chunk should be filtered out
2714  * (should not be balanced).
2715  */
2716 static int chunk_profiles_filter(u64 chunk_type,
2717 				 struct btrfs_balance_args *bargs)
2718 {
2719 	chunk_type = chunk_to_extended(chunk_type) &
2720 				BTRFS_EXTENDED_PROFILE_MASK;
2721 
2722 	if (bargs->profiles & chunk_type)
2723 		return 0;
2724 
2725 	return 1;
2726 }
2727 
2728 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset,
2729 			      struct btrfs_balance_args *bargs)
2730 {
2731 	struct btrfs_block_group_cache *cache;
2732 	u64 chunk_used, user_thresh;
2733 	int ret = 1;
2734 
2735 	cache = btrfs_lookup_block_group(fs_info, chunk_offset);
2736 	chunk_used = btrfs_block_group_used(&cache->item);
2737 
2738 	if (bargs->usage == 0)
2739 		user_thresh = 1;
2740 	else if (bargs->usage > 100)
2741 		user_thresh = cache->key.offset;
2742 	else
2743 		user_thresh = div_factor_fine(cache->key.offset,
2744 					      bargs->usage);
2745 
2746 	if (chunk_used < user_thresh)
2747 		ret = 0;
2748 
2749 	btrfs_put_block_group(cache);
2750 	return ret;
2751 }
2752 
2753 static int chunk_devid_filter(struct extent_buffer *leaf,
2754 			      struct btrfs_chunk *chunk,
2755 			      struct btrfs_balance_args *bargs)
2756 {
2757 	struct btrfs_stripe *stripe;
2758 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2759 	int i;
2760 
2761 	for (i = 0; i < num_stripes; i++) {
2762 		stripe = btrfs_stripe_nr(chunk, i);
2763 		if (btrfs_stripe_devid(leaf, stripe) == bargs->devid)
2764 			return 0;
2765 	}
2766 
2767 	return 1;
2768 }
2769 
2770 /* [pstart, pend) */
2771 static int chunk_drange_filter(struct extent_buffer *leaf,
2772 			       struct btrfs_chunk *chunk,
2773 			       u64 chunk_offset,
2774 			       struct btrfs_balance_args *bargs)
2775 {
2776 	struct btrfs_stripe *stripe;
2777 	int num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
2778 	u64 stripe_offset;
2779 	u64 stripe_length;
2780 	int factor;
2781 	int i;
2782 
2783 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID))
2784 		return 0;
2785 
2786 	if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP |
2787 	     BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) {
2788 		factor = num_stripes / 2;
2789 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) {
2790 		factor = num_stripes - 1;
2791 	} else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) {
2792 		factor = num_stripes - 2;
2793 	} else {
2794 		factor = num_stripes;
2795 	}
2796 
2797 	for (i = 0; i < num_stripes; i++) {
2798 		stripe = btrfs_stripe_nr(chunk, i);
2799 		if (btrfs_stripe_devid(leaf, stripe) != bargs->devid)
2800 			continue;
2801 
2802 		stripe_offset = btrfs_stripe_offset(leaf, stripe);
2803 		stripe_length = btrfs_chunk_length(leaf, chunk);
2804 		do_div(stripe_length, factor);
2805 
2806 		if (stripe_offset < bargs->pend &&
2807 		    stripe_offset + stripe_length > bargs->pstart)
2808 			return 0;
2809 	}
2810 
2811 	return 1;
2812 }
2813 
2814 /* [vstart, vend) */
2815 static int chunk_vrange_filter(struct extent_buffer *leaf,
2816 			       struct btrfs_chunk *chunk,
2817 			       u64 chunk_offset,
2818 			       struct btrfs_balance_args *bargs)
2819 {
2820 	if (chunk_offset < bargs->vend &&
2821 	    chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart)
2822 		/* at least part of the chunk is inside this vrange */
2823 		return 0;
2824 
2825 	return 1;
2826 }
2827 
2828 static int chunk_soft_convert_filter(u64 chunk_type,
2829 				     struct btrfs_balance_args *bargs)
2830 {
2831 	if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT))
2832 		return 0;
2833 
2834 	chunk_type = chunk_to_extended(chunk_type) &
2835 				BTRFS_EXTENDED_PROFILE_MASK;
2836 
2837 	if (bargs->target == chunk_type)
2838 		return 1;
2839 
2840 	return 0;
2841 }
2842 
2843 static int should_balance_chunk(struct btrfs_root *root,
2844 				struct extent_buffer *leaf,
2845 				struct btrfs_chunk *chunk, u64 chunk_offset)
2846 {
2847 	struct btrfs_balance_control *bctl = root->fs_info->balance_ctl;
2848 	struct btrfs_balance_args *bargs = NULL;
2849 	u64 chunk_type = btrfs_chunk_type(leaf, chunk);
2850 
2851 	/* type filter */
2852 	if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) &
2853 	      (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) {
2854 		return 0;
2855 	}
2856 
2857 	if (chunk_type & BTRFS_BLOCK_GROUP_DATA)
2858 		bargs = &bctl->data;
2859 	else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM)
2860 		bargs = &bctl->sys;
2861 	else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA)
2862 		bargs = &bctl->meta;
2863 
2864 	/* profiles filter */
2865 	if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) &&
2866 	    chunk_profiles_filter(chunk_type, bargs)) {
2867 		return 0;
2868 	}
2869 
2870 	/* usage filter */
2871 	if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) &&
2872 	    chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) {
2873 		return 0;
2874 	}
2875 
2876 	/* devid filter */
2877 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) &&
2878 	    chunk_devid_filter(leaf, chunk, bargs)) {
2879 		return 0;
2880 	}
2881 
2882 	/* drange filter, makes sense only with devid filter */
2883 	if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) &&
2884 	    chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) {
2885 		return 0;
2886 	}
2887 
2888 	/* vrange filter */
2889 	if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) &&
2890 	    chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) {
2891 		return 0;
2892 	}
2893 
2894 	/* soft profile changing mode */
2895 	if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) &&
2896 	    chunk_soft_convert_filter(chunk_type, bargs)) {
2897 		return 0;
2898 	}
2899 
2900 	return 1;
2901 }
2902 
2903 static int __btrfs_balance(struct btrfs_fs_info *fs_info)
2904 {
2905 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
2906 	struct btrfs_root *chunk_root = fs_info->chunk_root;
2907 	struct btrfs_root *dev_root = fs_info->dev_root;
2908 	struct list_head *devices;
2909 	struct btrfs_device *device;
2910 	u64 old_size;
2911 	u64 size_to_free;
2912 	struct btrfs_chunk *chunk;
2913 	struct btrfs_path *path;
2914 	struct btrfs_key key;
2915 	struct btrfs_key found_key;
2916 	struct btrfs_trans_handle *trans;
2917 	struct extent_buffer *leaf;
2918 	int slot;
2919 	int ret;
2920 	int enospc_errors = 0;
2921 	bool counting = true;
2922 
2923 	/* step one make some room on all the devices */
2924 	devices = &fs_info->fs_devices->devices;
2925 	list_for_each_entry(device, devices, dev_list) {
2926 		old_size = device->total_bytes;
2927 		size_to_free = div_factor(old_size, 1);
2928 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
2929 		if (!device->writeable ||
2930 		    device->total_bytes - device->bytes_used > size_to_free ||
2931 		    device->is_tgtdev_for_dev_replace)
2932 			continue;
2933 
2934 		ret = btrfs_shrink_device(device, old_size - size_to_free);
2935 		if (ret == -ENOSPC)
2936 			break;
2937 		BUG_ON(ret);
2938 
2939 		trans = btrfs_start_transaction(dev_root, 0);
2940 		BUG_ON(IS_ERR(trans));
2941 
2942 		ret = btrfs_grow_device(trans, device, old_size);
2943 		BUG_ON(ret);
2944 
2945 		btrfs_end_transaction(trans, dev_root);
2946 	}
2947 
2948 	/* step two, relocate all the chunks */
2949 	path = btrfs_alloc_path();
2950 	if (!path) {
2951 		ret = -ENOMEM;
2952 		goto error;
2953 	}
2954 
2955 	/* zero out stat counters */
2956 	spin_lock(&fs_info->balance_lock);
2957 	memset(&bctl->stat, 0, sizeof(bctl->stat));
2958 	spin_unlock(&fs_info->balance_lock);
2959 again:
2960 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2961 	key.offset = (u64)-1;
2962 	key.type = BTRFS_CHUNK_ITEM_KEY;
2963 
2964 	while (1) {
2965 		if ((!counting && atomic_read(&fs_info->balance_pause_req)) ||
2966 		    atomic_read(&fs_info->balance_cancel_req)) {
2967 			ret = -ECANCELED;
2968 			goto error;
2969 		}
2970 
2971 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
2972 		if (ret < 0)
2973 			goto error;
2974 
2975 		/*
2976 		 * this shouldn't happen, it means the last relocate
2977 		 * failed
2978 		 */
2979 		if (ret == 0)
2980 			BUG(); /* FIXME break ? */
2981 
2982 		ret = btrfs_previous_item(chunk_root, path, 0,
2983 					  BTRFS_CHUNK_ITEM_KEY);
2984 		if (ret) {
2985 			ret = 0;
2986 			break;
2987 		}
2988 
2989 		leaf = path->nodes[0];
2990 		slot = path->slots[0];
2991 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
2992 
2993 		if (found_key.objectid != key.objectid)
2994 			break;
2995 
2996 		/* chunk zero is special */
2997 		if (found_key.offset == 0)
2998 			break;
2999 
3000 		chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3001 
3002 		if (!counting) {
3003 			spin_lock(&fs_info->balance_lock);
3004 			bctl->stat.considered++;
3005 			spin_unlock(&fs_info->balance_lock);
3006 		}
3007 
3008 		ret = should_balance_chunk(chunk_root, leaf, chunk,
3009 					   found_key.offset);
3010 		btrfs_release_path(path);
3011 		if (!ret)
3012 			goto loop;
3013 
3014 		if (counting) {
3015 			spin_lock(&fs_info->balance_lock);
3016 			bctl->stat.expected++;
3017 			spin_unlock(&fs_info->balance_lock);
3018 			goto loop;
3019 		}
3020 
3021 		ret = btrfs_relocate_chunk(chunk_root,
3022 					   chunk_root->root_key.objectid,
3023 					   found_key.objectid,
3024 					   found_key.offset);
3025 		if (ret && ret != -ENOSPC)
3026 			goto error;
3027 		if (ret == -ENOSPC) {
3028 			enospc_errors++;
3029 		} else {
3030 			spin_lock(&fs_info->balance_lock);
3031 			bctl->stat.completed++;
3032 			spin_unlock(&fs_info->balance_lock);
3033 		}
3034 loop:
3035 		key.offset = found_key.offset - 1;
3036 	}
3037 
3038 	if (counting) {
3039 		btrfs_release_path(path);
3040 		counting = false;
3041 		goto again;
3042 	}
3043 error:
3044 	btrfs_free_path(path);
3045 	if (enospc_errors) {
3046 		printk(KERN_INFO "btrfs: %d enospc errors during balance\n",
3047 		       enospc_errors);
3048 		if (!ret)
3049 			ret = -ENOSPC;
3050 	}
3051 
3052 	return ret;
3053 }
3054 
3055 /**
3056  * alloc_profile_is_valid - see if a given profile is valid and reduced
3057  * @flags: profile to validate
3058  * @extended: if true @flags is treated as an extended profile
3059  */
3060 static int alloc_profile_is_valid(u64 flags, int extended)
3061 {
3062 	u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK :
3063 			       BTRFS_BLOCK_GROUP_PROFILE_MASK);
3064 
3065 	flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK;
3066 
3067 	/* 1) check that all other bits are zeroed */
3068 	if (flags & ~mask)
3069 		return 0;
3070 
3071 	/* 2) see if profile is reduced */
3072 	if (flags == 0)
3073 		return !extended; /* "0" is valid for usual profiles */
3074 
3075 	/* true if exactly one bit set */
3076 	return (flags & (flags - 1)) == 0;
3077 }
3078 
3079 static inline int balance_need_close(struct btrfs_fs_info *fs_info)
3080 {
3081 	/* cancel requested || normal exit path */
3082 	return atomic_read(&fs_info->balance_cancel_req) ||
3083 		(atomic_read(&fs_info->balance_pause_req) == 0 &&
3084 		 atomic_read(&fs_info->balance_cancel_req) == 0);
3085 }
3086 
3087 static void __cancel_balance(struct btrfs_fs_info *fs_info)
3088 {
3089 	int ret;
3090 
3091 	unset_balance_control(fs_info);
3092 	ret = del_balance_item(fs_info->tree_root);
3093 	if (ret)
3094 		btrfs_std_error(fs_info, ret);
3095 
3096 	atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3097 }
3098 
3099 /*
3100  * Should be called with both balance and volume mutexes held
3101  */
3102 int btrfs_balance(struct btrfs_balance_control *bctl,
3103 		  struct btrfs_ioctl_balance_args *bargs)
3104 {
3105 	struct btrfs_fs_info *fs_info = bctl->fs_info;
3106 	u64 allowed;
3107 	int mixed = 0;
3108 	int ret;
3109 	u64 num_devices;
3110 	unsigned seq;
3111 
3112 	if (btrfs_fs_closing(fs_info) ||
3113 	    atomic_read(&fs_info->balance_pause_req) ||
3114 	    atomic_read(&fs_info->balance_cancel_req)) {
3115 		ret = -EINVAL;
3116 		goto out;
3117 	}
3118 
3119 	allowed = btrfs_super_incompat_flags(fs_info->super_copy);
3120 	if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
3121 		mixed = 1;
3122 
3123 	/*
3124 	 * In case of mixed groups both data and meta should be picked,
3125 	 * and identical options should be given for both of them.
3126 	 */
3127 	allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA;
3128 	if (mixed && (bctl->flags & allowed)) {
3129 		if (!(bctl->flags & BTRFS_BALANCE_DATA) ||
3130 		    !(bctl->flags & BTRFS_BALANCE_METADATA) ||
3131 		    memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) {
3132 			printk(KERN_ERR "btrfs: with mixed groups data and "
3133 			       "metadata balance options must be the same\n");
3134 			ret = -EINVAL;
3135 			goto out;
3136 		}
3137 	}
3138 
3139 	num_devices = fs_info->fs_devices->num_devices;
3140 	btrfs_dev_replace_lock(&fs_info->dev_replace);
3141 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) {
3142 		BUG_ON(num_devices < 1);
3143 		num_devices--;
3144 	}
3145 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
3146 	allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE;
3147 	if (num_devices == 1)
3148 		allowed |= BTRFS_BLOCK_GROUP_DUP;
3149 	else if (num_devices > 1)
3150 		allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1);
3151 	if (num_devices > 2)
3152 		allowed |= BTRFS_BLOCK_GROUP_RAID5;
3153 	if (num_devices > 3)
3154 		allowed |= (BTRFS_BLOCK_GROUP_RAID10 |
3155 			    BTRFS_BLOCK_GROUP_RAID6);
3156 	if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3157 	    (!alloc_profile_is_valid(bctl->data.target, 1) ||
3158 	     (bctl->data.target & ~allowed))) {
3159 		printk(KERN_ERR "btrfs: unable to start balance with target "
3160 		       "data profile %llu\n",
3161 		       bctl->data.target);
3162 		ret = -EINVAL;
3163 		goto out;
3164 	}
3165 	if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3166 	    (!alloc_profile_is_valid(bctl->meta.target, 1) ||
3167 	     (bctl->meta.target & ~allowed))) {
3168 		printk(KERN_ERR "btrfs: unable to start balance with target "
3169 		       "metadata profile %llu\n",
3170 		       bctl->meta.target);
3171 		ret = -EINVAL;
3172 		goto out;
3173 	}
3174 	if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3175 	    (!alloc_profile_is_valid(bctl->sys.target, 1) ||
3176 	     (bctl->sys.target & ~allowed))) {
3177 		printk(KERN_ERR "btrfs: unable to start balance with target "
3178 		       "system profile %llu\n",
3179 		       bctl->sys.target);
3180 		ret = -EINVAL;
3181 		goto out;
3182 	}
3183 
3184 	/* allow dup'ed data chunks only in mixed mode */
3185 	if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3186 	    (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) {
3187 		printk(KERN_ERR "btrfs: dup for data is not allowed\n");
3188 		ret = -EINVAL;
3189 		goto out;
3190 	}
3191 
3192 	/* allow to reduce meta or sys integrity only if force set */
3193 	allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
3194 			BTRFS_BLOCK_GROUP_RAID10 |
3195 			BTRFS_BLOCK_GROUP_RAID5 |
3196 			BTRFS_BLOCK_GROUP_RAID6;
3197 	do {
3198 		seq = read_seqbegin(&fs_info->profiles_lock);
3199 
3200 		if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3201 		     (fs_info->avail_system_alloc_bits & allowed) &&
3202 		     !(bctl->sys.target & allowed)) ||
3203 		    ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) &&
3204 		     (fs_info->avail_metadata_alloc_bits & allowed) &&
3205 		     !(bctl->meta.target & allowed))) {
3206 			if (bctl->flags & BTRFS_BALANCE_FORCE) {
3207 				printk(KERN_INFO "btrfs: force reducing metadata "
3208 				       "integrity\n");
3209 			} else {
3210 				printk(KERN_ERR "btrfs: balance will reduce metadata "
3211 				       "integrity, use force if you want this\n");
3212 				ret = -EINVAL;
3213 				goto out;
3214 			}
3215 		}
3216 	} while (read_seqretry(&fs_info->profiles_lock, seq));
3217 
3218 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3219 		int num_tolerated_disk_barrier_failures;
3220 		u64 target = bctl->sys.target;
3221 
3222 		num_tolerated_disk_barrier_failures =
3223 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3224 		if (num_tolerated_disk_barrier_failures > 0 &&
3225 		    (target &
3226 		     (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 |
3227 		      BTRFS_AVAIL_ALLOC_BIT_SINGLE)))
3228 			num_tolerated_disk_barrier_failures = 0;
3229 		else if (num_tolerated_disk_barrier_failures > 1 &&
3230 			 (target &
3231 			  (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)))
3232 			num_tolerated_disk_barrier_failures = 1;
3233 
3234 		fs_info->num_tolerated_disk_barrier_failures =
3235 			num_tolerated_disk_barrier_failures;
3236 	}
3237 
3238 	ret = insert_balance_item(fs_info->tree_root, bctl);
3239 	if (ret && ret != -EEXIST)
3240 		goto out;
3241 
3242 	if (!(bctl->flags & BTRFS_BALANCE_RESUME)) {
3243 		BUG_ON(ret == -EEXIST);
3244 		set_balance_control(bctl);
3245 	} else {
3246 		BUG_ON(ret != -EEXIST);
3247 		spin_lock(&fs_info->balance_lock);
3248 		update_balance_args(bctl);
3249 		spin_unlock(&fs_info->balance_lock);
3250 	}
3251 
3252 	atomic_inc(&fs_info->balance_running);
3253 	mutex_unlock(&fs_info->balance_mutex);
3254 
3255 	ret = __btrfs_balance(fs_info);
3256 
3257 	mutex_lock(&fs_info->balance_mutex);
3258 	atomic_dec(&fs_info->balance_running);
3259 
3260 	if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) {
3261 		fs_info->num_tolerated_disk_barrier_failures =
3262 			btrfs_calc_num_tolerated_disk_barrier_failures(fs_info);
3263 	}
3264 
3265 	if (bargs) {
3266 		memset(bargs, 0, sizeof(*bargs));
3267 		update_ioctl_balance_args(fs_info, 0, bargs);
3268 	}
3269 
3270 	if ((ret && ret != -ECANCELED && ret != -ENOSPC) ||
3271 	    balance_need_close(fs_info)) {
3272 		__cancel_balance(fs_info);
3273 	}
3274 
3275 	wake_up(&fs_info->balance_wait_q);
3276 
3277 	return ret;
3278 out:
3279 	if (bctl->flags & BTRFS_BALANCE_RESUME)
3280 		__cancel_balance(fs_info);
3281 	else {
3282 		kfree(bctl);
3283 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
3284 	}
3285 	return ret;
3286 }
3287 
3288 static int balance_kthread(void *data)
3289 {
3290 	struct btrfs_fs_info *fs_info = data;
3291 	int ret = 0;
3292 
3293 	mutex_lock(&fs_info->volume_mutex);
3294 	mutex_lock(&fs_info->balance_mutex);
3295 
3296 	if (fs_info->balance_ctl) {
3297 		printk(KERN_INFO "btrfs: continuing balance\n");
3298 		ret = btrfs_balance(fs_info->balance_ctl, NULL);
3299 	}
3300 
3301 	mutex_unlock(&fs_info->balance_mutex);
3302 	mutex_unlock(&fs_info->volume_mutex);
3303 
3304 	return ret;
3305 }
3306 
3307 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info)
3308 {
3309 	struct task_struct *tsk;
3310 
3311 	spin_lock(&fs_info->balance_lock);
3312 	if (!fs_info->balance_ctl) {
3313 		spin_unlock(&fs_info->balance_lock);
3314 		return 0;
3315 	}
3316 	spin_unlock(&fs_info->balance_lock);
3317 
3318 	if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) {
3319 		printk(KERN_INFO "btrfs: force skipping balance\n");
3320 		return 0;
3321 	}
3322 
3323 	tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance");
3324 	return PTR_RET(tsk);
3325 }
3326 
3327 int btrfs_recover_balance(struct btrfs_fs_info *fs_info)
3328 {
3329 	struct btrfs_balance_control *bctl;
3330 	struct btrfs_balance_item *item;
3331 	struct btrfs_disk_balance_args disk_bargs;
3332 	struct btrfs_path *path;
3333 	struct extent_buffer *leaf;
3334 	struct btrfs_key key;
3335 	int ret;
3336 
3337 	path = btrfs_alloc_path();
3338 	if (!path)
3339 		return -ENOMEM;
3340 
3341 	key.objectid = BTRFS_BALANCE_OBJECTID;
3342 	key.type = BTRFS_BALANCE_ITEM_KEY;
3343 	key.offset = 0;
3344 
3345 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
3346 	if (ret < 0)
3347 		goto out;
3348 	if (ret > 0) { /* ret = -ENOENT; */
3349 		ret = 0;
3350 		goto out;
3351 	}
3352 
3353 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3354 	if (!bctl) {
3355 		ret = -ENOMEM;
3356 		goto out;
3357 	}
3358 
3359 	leaf = path->nodes[0];
3360 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item);
3361 
3362 	bctl->fs_info = fs_info;
3363 	bctl->flags = btrfs_balance_flags(leaf, item);
3364 	bctl->flags |= BTRFS_BALANCE_RESUME;
3365 
3366 	btrfs_balance_data(leaf, item, &disk_bargs);
3367 	btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs);
3368 	btrfs_balance_meta(leaf, item, &disk_bargs);
3369 	btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs);
3370 	btrfs_balance_sys(leaf, item, &disk_bargs);
3371 	btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs);
3372 
3373 	WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1));
3374 
3375 	mutex_lock(&fs_info->volume_mutex);
3376 	mutex_lock(&fs_info->balance_mutex);
3377 
3378 	set_balance_control(bctl);
3379 
3380 	mutex_unlock(&fs_info->balance_mutex);
3381 	mutex_unlock(&fs_info->volume_mutex);
3382 out:
3383 	btrfs_free_path(path);
3384 	return ret;
3385 }
3386 
3387 int btrfs_pause_balance(struct btrfs_fs_info *fs_info)
3388 {
3389 	int ret = 0;
3390 
3391 	mutex_lock(&fs_info->balance_mutex);
3392 	if (!fs_info->balance_ctl) {
3393 		mutex_unlock(&fs_info->balance_mutex);
3394 		return -ENOTCONN;
3395 	}
3396 
3397 	if (atomic_read(&fs_info->balance_running)) {
3398 		atomic_inc(&fs_info->balance_pause_req);
3399 		mutex_unlock(&fs_info->balance_mutex);
3400 
3401 		wait_event(fs_info->balance_wait_q,
3402 			   atomic_read(&fs_info->balance_running) == 0);
3403 
3404 		mutex_lock(&fs_info->balance_mutex);
3405 		/* we are good with balance_ctl ripped off from under us */
3406 		BUG_ON(atomic_read(&fs_info->balance_running));
3407 		atomic_dec(&fs_info->balance_pause_req);
3408 	} else {
3409 		ret = -ENOTCONN;
3410 	}
3411 
3412 	mutex_unlock(&fs_info->balance_mutex);
3413 	return ret;
3414 }
3415 
3416 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info)
3417 {
3418 	mutex_lock(&fs_info->balance_mutex);
3419 	if (!fs_info->balance_ctl) {
3420 		mutex_unlock(&fs_info->balance_mutex);
3421 		return -ENOTCONN;
3422 	}
3423 
3424 	atomic_inc(&fs_info->balance_cancel_req);
3425 	/*
3426 	 * if we are running just wait and return, balance item is
3427 	 * deleted in btrfs_balance in this case
3428 	 */
3429 	if (atomic_read(&fs_info->balance_running)) {
3430 		mutex_unlock(&fs_info->balance_mutex);
3431 		wait_event(fs_info->balance_wait_q,
3432 			   atomic_read(&fs_info->balance_running) == 0);
3433 		mutex_lock(&fs_info->balance_mutex);
3434 	} else {
3435 		/* __cancel_balance needs volume_mutex */
3436 		mutex_unlock(&fs_info->balance_mutex);
3437 		mutex_lock(&fs_info->volume_mutex);
3438 		mutex_lock(&fs_info->balance_mutex);
3439 
3440 		if (fs_info->balance_ctl)
3441 			__cancel_balance(fs_info);
3442 
3443 		mutex_unlock(&fs_info->volume_mutex);
3444 	}
3445 
3446 	BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running));
3447 	atomic_dec(&fs_info->balance_cancel_req);
3448 	mutex_unlock(&fs_info->balance_mutex);
3449 	return 0;
3450 }
3451 
3452 static int btrfs_uuid_scan_kthread(void *data)
3453 {
3454 	struct btrfs_fs_info *fs_info = data;
3455 	struct btrfs_root *root = fs_info->tree_root;
3456 	struct btrfs_key key;
3457 	struct btrfs_key max_key;
3458 	struct btrfs_path *path = NULL;
3459 	int ret = 0;
3460 	struct extent_buffer *eb;
3461 	int slot;
3462 	struct btrfs_root_item root_item;
3463 	u32 item_size;
3464 	struct btrfs_trans_handle *trans;
3465 
3466 	path = btrfs_alloc_path();
3467 	if (!path) {
3468 		ret = -ENOMEM;
3469 		goto out;
3470 	}
3471 
3472 	key.objectid = 0;
3473 	key.type = BTRFS_ROOT_ITEM_KEY;
3474 	key.offset = 0;
3475 
3476 	max_key.objectid = (u64)-1;
3477 	max_key.type = BTRFS_ROOT_ITEM_KEY;
3478 	max_key.offset = (u64)-1;
3479 
3480 	path->keep_locks = 1;
3481 
3482 	while (1) {
3483 		ret = btrfs_search_forward(root, &key, &max_key, path, 0);
3484 		if (ret) {
3485 			if (ret > 0)
3486 				ret = 0;
3487 			break;
3488 		}
3489 
3490 		if (key.type != BTRFS_ROOT_ITEM_KEY ||
3491 		    (key.objectid < BTRFS_FIRST_FREE_OBJECTID &&
3492 		     key.objectid != BTRFS_FS_TREE_OBJECTID) ||
3493 		    key.objectid > BTRFS_LAST_FREE_OBJECTID)
3494 			goto skip;
3495 
3496 		eb = path->nodes[0];
3497 		slot = path->slots[0];
3498 		item_size = btrfs_item_size_nr(eb, slot);
3499 		if (item_size < sizeof(root_item))
3500 			goto skip;
3501 
3502 		trans = NULL;
3503 		read_extent_buffer(eb, &root_item,
3504 				   btrfs_item_ptr_offset(eb, slot),
3505 				   (int)sizeof(root_item));
3506 		if (btrfs_root_refs(&root_item) == 0)
3507 			goto skip;
3508 		if (!btrfs_is_empty_uuid(root_item.uuid)) {
3509 			/*
3510 			 * 1 - subvol uuid item
3511 			 * 1 - received_subvol uuid item
3512 			 */
3513 			trans = btrfs_start_transaction(fs_info->uuid_root, 2);
3514 			if (IS_ERR(trans)) {
3515 				ret = PTR_ERR(trans);
3516 				break;
3517 			}
3518 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3519 						  root_item.uuid,
3520 						  BTRFS_UUID_KEY_SUBVOL,
3521 						  key.objectid);
3522 			if (ret < 0) {
3523 				pr_warn("btrfs: uuid_tree_add failed %d\n",
3524 					ret);
3525 				btrfs_end_transaction(trans,
3526 						      fs_info->uuid_root);
3527 				break;
3528 			}
3529 		}
3530 
3531 		if (!btrfs_is_empty_uuid(root_item.received_uuid)) {
3532 			if (!trans) {
3533 				/* 1 - received_subvol uuid item */
3534 				trans = btrfs_start_transaction(
3535 						fs_info->uuid_root, 1);
3536 				if (IS_ERR(trans)) {
3537 					ret = PTR_ERR(trans);
3538 					break;
3539 				}
3540 			}
3541 			ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
3542 						  root_item.received_uuid,
3543 						 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
3544 						  key.objectid);
3545 			if (ret < 0) {
3546 				pr_warn("btrfs: uuid_tree_add failed %d\n",
3547 					ret);
3548 				btrfs_end_transaction(trans,
3549 						      fs_info->uuid_root);
3550 				break;
3551 			}
3552 		}
3553 
3554 		if (trans) {
3555 			ret = btrfs_end_transaction(trans, fs_info->uuid_root);
3556 			if (ret)
3557 				break;
3558 		}
3559 
3560 skip:
3561 		btrfs_release_path(path);
3562 		if (key.offset < (u64)-1) {
3563 			key.offset++;
3564 		} else if (key.type < BTRFS_ROOT_ITEM_KEY) {
3565 			key.offset = 0;
3566 			key.type = BTRFS_ROOT_ITEM_KEY;
3567 		} else if (key.objectid < (u64)-1) {
3568 			key.offset = 0;
3569 			key.type = BTRFS_ROOT_ITEM_KEY;
3570 			key.objectid++;
3571 		} else {
3572 			break;
3573 		}
3574 		cond_resched();
3575 	}
3576 
3577 out:
3578 	btrfs_free_path(path);
3579 	if (ret)
3580 		pr_warn("btrfs: btrfs_uuid_scan_kthread failed %d\n", ret);
3581 	else
3582 		fs_info->update_uuid_tree_gen = 1;
3583 	up(&fs_info->uuid_tree_rescan_sem);
3584 	return 0;
3585 }
3586 
3587 /*
3588  * Callback for btrfs_uuid_tree_iterate().
3589  * returns:
3590  * 0	check succeeded, the entry is not outdated.
3591  * < 0	if an error occured.
3592  * > 0	if the check failed, which means the caller shall remove the entry.
3593  */
3594 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info,
3595 				       u8 *uuid, u8 type, u64 subid)
3596 {
3597 	struct btrfs_key key;
3598 	int ret = 0;
3599 	struct btrfs_root *subvol_root;
3600 
3601 	if (type != BTRFS_UUID_KEY_SUBVOL &&
3602 	    type != BTRFS_UUID_KEY_RECEIVED_SUBVOL)
3603 		goto out;
3604 
3605 	key.objectid = subid;
3606 	key.type = BTRFS_ROOT_ITEM_KEY;
3607 	key.offset = (u64)-1;
3608 	subvol_root = btrfs_read_fs_root_no_name(fs_info, &key);
3609 	if (IS_ERR(subvol_root)) {
3610 		ret = PTR_ERR(subvol_root);
3611 		if (ret == -ENOENT)
3612 			ret = 1;
3613 		goto out;
3614 	}
3615 
3616 	switch (type) {
3617 	case BTRFS_UUID_KEY_SUBVOL:
3618 		if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE))
3619 			ret = 1;
3620 		break;
3621 	case BTRFS_UUID_KEY_RECEIVED_SUBVOL:
3622 		if (memcmp(uuid, subvol_root->root_item.received_uuid,
3623 			   BTRFS_UUID_SIZE))
3624 			ret = 1;
3625 		break;
3626 	}
3627 
3628 out:
3629 	return ret;
3630 }
3631 
3632 static int btrfs_uuid_rescan_kthread(void *data)
3633 {
3634 	struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data;
3635 	int ret;
3636 
3637 	/*
3638 	 * 1st step is to iterate through the existing UUID tree and
3639 	 * to delete all entries that contain outdated data.
3640 	 * 2nd step is to add all missing entries to the UUID tree.
3641 	 */
3642 	ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry);
3643 	if (ret < 0) {
3644 		pr_warn("btrfs: iterating uuid_tree failed %d\n", ret);
3645 		up(&fs_info->uuid_tree_rescan_sem);
3646 		return ret;
3647 	}
3648 	return btrfs_uuid_scan_kthread(data);
3649 }
3650 
3651 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info)
3652 {
3653 	struct btrfs_trans_handle *trans;
3654 	struct btrfs_root *tree_root = fs_info->tree_root;
3655 	struct btrfs_root *uuid_root;
3656 	struct task_struct *task;
3657 	int ret;
3658 
3659 	/*
3660 	 * 1 - root node
3661 	 * 1 - root item
3662 	 */
3663 	trans = btrfs_start_transaction(tree_root, 2);
3664 	if (IS_ERR(trans))
3665 		return PTR_ERR(trans);
3666 
3667 	uuid_root = btrfs_create_tree(trans, fs_info,
3668 				      BTRFS_UUID_TREE_OBJECTID);
3669 	if (IS_ERR(uuid_root)) {
3670 		btrfs_abort_transaction(trans, tree_root,
3671 					PTR_ERR(uuid_root));
3672 		return PTR_ERR(uuid_root);
3673 	}
3674 
3675 	fs_info->uuid_root = uuid_root;
3676 
3677 	ret = btrfs_commit_transaction(trans, tree_root);
3678 	if (ret)
3679 		return ret;
3680 
3681 	down(&fs_info->uuid_tree_rescan_sem);
3682 	task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid");
3683 	if (IS_ERR(task)) {
3684 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3685 		pr_warn("btrfs: failed to start uuid_scan task\n");
3686 		up(&fs_info->uuid_tree_rescan_sem);
3687 		return PTR_ERR(task);
3688 	}
3689 
3690 	return 0;
3691 }
3692 
3693 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info)
3694 {
3695 	struct task_struct *task;
3696 
3697 	down(&fs_info->uuid_tree_rescan_sem);
3698 	task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid");
3699 	if (IS_ERR(task)) {
3700 		/* fs_info->update_uuid_tree_gen remains 0 in all error case */
3701 		pr_warn("btrfs: failed to start uuid_rescan task\n");
3702 		up(&fs_info->uuid_tree_rescan_sem);
3703 		return PTR_ERR(task);
3704 	}
3705 
3706 	return 0;
3707 }
3708 
3709 /*
3710  * shrinking a device means finding all of the device extents past
3711  * the new size, and then following the back refs to the chunks.
3712  * The chunk relocation code actually frees the device extent
3713  */
3714 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
3715 {
3716 	struct btrfs_trans_handle *trans;
3717 	struct btrfs_root *root = device->dev_root;
3718 	struct btrfs_dev_extent *dev_extent = NULL;
3719 	struct btrfs_path *path;
3720 	u64 length;
3721 	u64 chunk_tree;
3722 	u64 chunk_objectid;
3723 	u64 chunk_offset;
3724 	int ret;
3725 	int slot;
3726 	int failed = 0;
3727 	bool retried = false;
3728 	struct extent_buffer *l;
3729 	struct btrfs_key key;
3730 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3731 	u64 old_total = btrfs_super_total_bytes(super_copy);
3732 	u64 old_size = device->total_bytes;
3733 	u64 diff = device->total_bytes - new_size;
3734 
3735 	if (device->is_tgtdev_for_dev_replace)
3736 		return -EINVAL;
3737 
3738 	path = btrfs_alloc_path();
3739 	if (!path)
3740 		return -ENOMEM;
3741 
3742 	path->reada = 2;
3743 
3744 	lock_chunks(root);
3745 
3746 	device->total_bytes = new_size;
3747 	if (device->writeable) {
3748 		device->fs_devices->total_rw_bytes -= diff;
3749 		spin_lock(&root->fs_info->free_chunk_lock);
3750 		root->fs_info->free_chunk_space -= diff;
3751 		spin_unlock(&root->fs_info->free_chunk_lock);
3752 	}
3753 	unlock_chunks(root);
3754 
3755 again:
3756 	key.objectid = device->devid;
3757 	key.offset = (u64)-1;
3758 	key.type = BTRFS_DEV_EXTENT_KEY;
3759 
3760 	do {
3761 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3762 		if (ret < 0)
3763 			goto done;
3764 
3765 		ret = btrfs_previous_item(root, path, 0, key.type);
3766 		if (ret < 0)
3767 			goto done;
3768 		if (ret) {
3769 			ret = 0;
3770 			btrfs_release_path(path);
3771 			break;
3772 		}
3773 
3774 		l = path->nodes[0];
3775 		slot = path->slots[0];
3776 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
3777 
3778 		if (key.objectid != device->devid) {
3779 			btrfs_release_path(path);
3780 			break;
3781 		}
3782 
3783 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3784 		length = btrfs_dev_extent_length(l, dev_extent);
3785 
3786 		if (key.offset + length <= new_size) {
3787 			btrfs_release_path(path);
3788 			break;
3789 		}
3790 
3791 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
3792 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
3793 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3794 		btrfs_release_path(path);
3795 
3796 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
3797 					   chunk_offset);
3798 		if (ret && ret != -ENOSPC)
3799 			goto done;
3800 		if (ret == -ENOSPC)
3801 			failed++;
3802 	} while (key.offset-- > 0);
3803 
3804 	if (failed && !retried) {
3805 		failed = 0;
3806 		retried = true;
3807 		goto again;
3808 	} else if (failed && retried) {
3809 		ret = -ENOSPC;
3810 		lock_chunks(root);
3811 
3812 		device->total_bytes = old_size;
3813 		if (device->writeable)
3814 			device->fs_devices->total_rw_bytes += diff;
3815 		spin_lock(&root->fs_info->free_chunk_lock);
3816 		root->fs_info->free_chunk_space += diff;
3817 		spin_unlock(&root->fs_info->free_chunk_lock);
3818 		unlock_chunks(root);
3819 		goto done;
3820 	}
3821 
3822 	/* Shrinking succeeded, else we would be at "done". */
3823 	trans = btrfs_start_transaction(root, 0);
3824 	if (IS_ERR(trans)) {
3825 		ret = PTR_ERR(trans);
3826 		goto done;
3827 	}
3828 
3829 	lock_chunks(root);
3830 
3831 	device->disk_total_bytes = new_size;
3832 	/* Now btrfs_update_device() will change the on-disk size. */
3833 	ret = btrfs_update_device(trans, device);
3834 	if (ret) {
3835 		unlock_chunks(root);
3836 		btrfs_end_transaction(trans, root);
3837 		goto done;
3838 	}
3839 	WARN_ON(diff > old_total);
3840 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
3841 	unlock_chunks(root);
3842 	btrfs_end_transaction(trans, root);
3843 done:
3844 	btrfs_free_path(path);
3845 	return ret;
3846 }
3847 
3848 static int btrfs_add_system_chunk(struct btrfs_root *root,
3849 			   struct btrfs_key *key,
3850 			   struct btrfs_chunk *chunk, int item_size)
3851 {
3852 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
3853 	struct btrfs_disk_key disk_key;
3854 	u32 array_size;
3855 	u8 *ptr;
3856 
3857 	array_size = btrfs_super_sys_array_size(super_copy);
3858 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
3859 		return -EFBIG;
3860 
3861 	ptr = super_copy->sys_chunk_array + array_size;
3862 	btrfs_cpu_key_to_disk(&disk_key, key);
3863 	memcpy(ptr, &disk_key, sizeof(disk_key));
3864 	ptr += sizeof(disk_key);
3865 	memcpy(ptr, chunk, item_size);
3866 	item_size += sizeof(disk_key);
3867 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
3868 	return 0;
3869 }
3870 
3871 /*
3872  * sort the devices in descending order by max_avail, total_avail
3873  */
3874 static int btrfs_cmp_device_info(const void *a, const void *b)
3875 {
3876 	const struct btrfs_device_info *di_a = a;
3877 	const struct btrfs_device_info *di_b = b;
3878 
3879 	if (di_a->max_avail > di_b->max_avail)
3880 		return -1;
3881 	if (di_a->max_avail < di_b->max_avail)
3882 		return 1;
3883 	if (di_a->total_avail > di_b->total_avail)
3884 		return -1;
3885 	if (di_a->total_avail < di_b->total_avail)
3886 		return 1;
3887 	return 0;
3888 }
3889 
3890 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = {
3891 	[BTRFS_RAID_RAID10] = {
3892 		.sub_stripes	= 2,
3893 		.dev_stripes	= 1,
3894 		.devs_max	= 0,	/* 0 == as many as possible */
3895 		.devs_min	= 4,
3896 		.devs_increment	= 2,
3897 		.ncopies	= 2,
3898 	},
3899 	[BTRFS_RAID_RAID1] = {
3900 		.sub_stripes	= 1,
3901 		.dev_stripes	= 1,
3902 		.devs_max	= 2,
3903 		.devs_min	= 2,
3904 		.devs_increment	= 2,
3905 		.ncopies	= 2,
3906 	},
3907 	[BTRFS_RAID_DUP] = {
3908 		.sub_stripes	= 1,
3909 		.dev_stripes	= 2,
3910 		.devs_max	= 1,
3911 		.devs_min	= 1,
3912 		.devs_increment	= 1,
3913 		.ncopies	= 2,
3914 	},
3915 	[BTRFS_RAID_RAID0] = {
3916 		.sub_stripes	= 1,
3917 		.dev_stripes	= 1,
3918 		.devs_max	= 0,
3919 		.devs_min	= 2,
3920 		.devs_increment	= 1,
3921 		.ncopies	= 1,
3922 	},
3923 	[BTRFS_RAID_SINGLE] = {
3924 		.sub_stripes	= 1,
3925 		.dev_stripes	= 1,
3926 		.devs_max	= 1,
3927 		.devs_min	= 1,
3928 		.devs_increment	= 1,
3929 		.ncopies	= 1,
3930 	},
3931 	[BTRFS_RAID_RAID5] = {
3932 		.sub_stripes	= 1,
3933 		.dev_stripes	= 1,
3934 		.devs_max	= 0,
3935 		.devs_min	= 2,
3936 		.devs_increment	= 1,
3937 		.ncopies	= 2,
3938 	},
3939 	[BTRFS_RAID_RAID6] = {
3940 		.sub_stripes	= 1,
3941 		.dev_stripes	= 1,
3942 		.devs_max	= 0,
3943 		.devs_min	= 3,
3944 		.devs_increment	= 1,
3945 		.ncopies	= 3,
3946 	},
3947 };
3948 
3949 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target)
3950 {
3951 	/* TODO allow them to set a preferred stripe size */
3952 	return 64 * 1024;
3953 }
3954 
3955 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type)
3956 {
3957 	if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)))
3958 		return;
3959 
3960 	btrfs_set_fs_incompat(info, RAID56);
3961 }
3962 
3963 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
3964 			       struct btrfs_root *extent_root, u64 start,
3965 			       u64 type)
3966 {
3967 	struct btrfs_fs_info *info = extent_root->fs_info;
3968 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
3969 	struct list_head *cur;
3970 	struct map_lookup *map = NULL;
3971 	struct extent_map_tree *em_tree;
3972 	struct extent_map *em;
3973 	struct btrfs_device_info *devices_info = NULL;
3974 	u64 total_avail;
3975 	int num_stripes;	/* total number of stripes to allocate */
3976 	int data_stripes;	/* number of stripes that count for
3977 				   block group size */
3978 	int sub_stripes;	/* sub_stripes info for map */
3979 	int dev_stripes;	/* stripes per dev */
3980 	int devs_max;		/* max devs to use */
3981 	int devs_min;		/* min devs needed */
3982 	int devs_increment;	/* ndevs has to be a multiple of this */
3983 	int ncopies;		/* how many copies to data has */
3984 	int ret;
3985 	u64 max_stripe_size;
3986 	u64 max_chunk_size;
3987 	u64 stripe_size;
3988 	u64 num_bytes;
3989 	u64 raid_stripe_len = BTRFS_STRIPE_LEN;
3990 	int ndevs;
3991 	int i;
3992 	int j;
3993 	int index;
3994 
3995 	BUG_ON(!alloc_profile_is_valid(type, 0));
3996 
3997 	if (list_empty(&fs_devices->alloc_list))
3998 		return -ENOSPC;
3999 
4000 	index = __get_raid_index(type);
4001 
4002 	sub_stripes = btrfs_raid_array[index].sub_stripes;
4003 	dev_stripes = btrfs_raid_array[index].dev_stripes;
4004 	devs_max = btrfs_raid_array[index].devs_max;
4005 	devs_min = btrfs_raid_array[index].devs_min;
4006 	devs_increment = btrfs_raid_array[index].devs_increment;
4007 	ncopies = btrfs_raid_array[index].ncopies;
4008 
4009 	if (type & BTRFS_BLOCK_GROUP_DATA) {
4010 		max_stripe_size = 1024 * 1024 * 1024;
4011 		max_chunk_size = 10 * max_stripe_size;
4012 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
4013 		/* for larger filesystems, use larger metadata chunks */
4014 		if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024)
4015 			max_stripe_size = 1024 * 1024 * 1024;
4016 		else
4017 			max_stripe_size = 256 * 1024 * 1024;
4018 		max_chunk_size = max_stripe_size;
4019 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
4020 		max_stripe_size = 32 * 1024 * 1024;
4021 		max_chunk_size = 2 * max_stripe_size;
4022 	} else {
4023 		printk(KERN_ERR "btrfs: invalid chunk type 0x%llx requested\n",
4024 		       type);
4025 		BUG_ON(1);
4026 	}
4027 
4028 	/* we don't want a chunk larger than 10% of writeable space */
4029 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
4030 			     max_chunk_size);
4031 
4032 	devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices,
4033 			       GFP_NOFS);
4034 	if (!devices_info)
4035 		return -ENOMEM;
4036 
4037 	cur = fs_devices->alloc_list.next;
4038 
4039 	/*
4040 	 * in the first pass through the devices list, we gather information
4041 	 * about the available holes on each device.
4042 	 */
4043 	ndevs = 0;
4044 	while (cur != &fs_devices->alloc_list) {
4045 		struct btrfs_device *device;
4046 		u64 max_avail;
4047 		u64 dev_offset;
4048 
4049 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
4050 
4051 		cur = cur->next;
4052 
4053 		if (!device->writeable) {
4054 			WARN(1, KERN_ERR
4055 			       "btrfs: read-only device in alloc_list\n");
4056 			continue;
4057 		}
4058 
4059 		if (!device->in_fs_metadata ||
4060 		    device->is_tgtdev_for_dev_replace)
4061 			continue;
4062 
4063 		if (device->total_bytes > device->bytes_used)
4064 			total_avail = device->total_bytes - device->bytes_used;
4065 		else
4066 			total_avail = 0;
4067 
4068 		/* If there is no space on this device, skip it. */
4069 		if (total_avail == 0)
4070 			continue;
4071 
4072 		ret = find_free_dev_extent(trans, device,
4073 					   max_stripe_size * dev_stripes,
4074 					   &dev_offset, &max_avail);
4075 		if (ret && ret != -ENOSPC)
4076 			goto error;
4077 
4078 		if (ret == 0)
4079 			max_avail = max_stripe_size * dev_stripes;
4080 
4081 		if (max_avail < BTRFS_STRIPE_LEN * dev_stripes)
4082 			continue;
4083 
4084 		if (ndevs == fs_devices->rw_devices) {
4085 			WARN(1, "%s: found more than %llu devices\n",
4086 			     __func__, fs_devices->rw_devices);
4087 			break;
4088 		}
4089 		devices_info[ndevs].dev_offset = dev_offset;
4090 		devices_info[ndevs].max_avail = max_avail;
4091 		devices_info[ndevs].total_avail = total_avail;
4092 		devices_info[ndevs].dev = device;
4093 		++ndevs;
4094 	}
4095 
4096 	/*
4097 	 * now sort the devices by hole size / available space
4098 	 */
4099 	sort(devices_info, ndevs, sizeof(struct btrfs_device_info),
4100 	     btrfs_cmp_device_info, NULL);
4101 
4102 	/* round down to number of usable stripes */
4103 	ndevs -= ndevs % devs_increment;
4104 
4105 	if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) {
4106 		ret = -ENOSPC;
4107 		goto error;
4108 	}
4109 
4110 	if (devs_max && ndevs > devs_max)
4111 		ndevs = devs_max;
4112 	/*
4113 	 * the primary goal is to maximize the number of stripes, so use as many
4114 	 * devices as possible, even if the stripes are not maximum sized.
4115 	 */
4116 	stripe_size = devices_info[ndevs-1].max_avail;
4117 	num_stripes = ndevs * dev_stripes;
4118 
4119 	/*
4120 	 * this will have to be fixed for RAID1 and RAID10 over
4121 	 * more drives
4122 	 */
4123 	data_stripes = num_stripes / ncopies;
4124 
4125 	if (type & BTRFS_BLOCK_GROUP_RAID5) {
4126 		raid_stripe_len = find_raid56_stripe_len(ndevs - 1,
4127 				 btrfs_super_stripesize(info->super_copy));
4128 		data_stripes = num_stripes - 1;
4129 	}
4130 	if (type & BTRFS_BLOCK_GROUP_RAID6) {
4131 		raid_stripe_len = find_raid56_stripe_len(ndevs - 2,
4132 				 btrfs_super_stripesize(info->super_copy));
4133 		data_stripes = num_stripes - 2;
4134 	}
4135 
4136 	/*
4137 	 * Use the number of data stripes to figure out how big this chunk
4138 	 * is really going to be in terms of logical address space,
4139 	 * and compare that answer with the max chunk size
4140 	 */
4141 	if (stripe_size * data_stripes > max_chunk_size) {
4142 		u64 mask = (1ULL << 24) - 1;
4143 		stripe_size = max_chunk_size;
4144 		do_div(stripe_size, data_stripes);
4145 
4146 		/* bump the answer up to a 16MB boundary */
4147 		stripe_size = (stripe_size + mask) & ~mask;
4148 
4149 		/* but don't go higher than the limits we found
4150 		 * while searching for free extents
4151 		 */
4152 		if (stripe_size > devices_info[ndevs-1].max_avail)
4153 			stripe_size = devices_info[ndevs-1].max_avail;
4154 	}
4155 
4156 	do_div(stripe_size, dev_stripes);
4157 
4158 	/* align to BTRFS_STRIPE_LEN */
4159 	do_div(stripe_size, raid_stripe_len);
4160 	stripe_size *= raid_stripe_len;
4161 
4162 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
4163 	if (!map) {
4164 		ret = -ENOMEM;
4165 		goto error;
4166 	}
4167 	map->num_stripes = num_stripes;
4168 
4169 	for (i = 0; i < ndevs; ++i) {
4170 		for (j = 0; j < dev_stripes; ++j) {
4171 			int s = i * dev_stripes + j;
4172 			map->stripes[s].dev = devices_info[i].dev;
4173 			map->stripes[s].physical = devices_info[i].dev_offset +
4174 						   j * stripe_size;
4175 		}
4176 	}
4177 	map->sector_size = extent_root->sectorsize;
4178 	map->stripe_len = raid_stripe_len;
4179 	map->io_align = raid_stripe_len;
4180 	map->io_width = raid_stripe_len;
4181 	map->type = type;
4182 	map->sub_stripes = sub_stripes;
4183 
4184 	num_bytes = stripe_size * data_stripes;
4185 
4186 	trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes);
4187 
4188 	em = alloc_extent_map();
4189 	if (!em) {
4190 		ret = -ENOMEM;
4191 		goto error;
4192 	}
4193 	em->bdev = (struct block_device *)map;
4194 	em->start = start;
4195 	em->len = num_bytes;
4196 	em->block_start = 0;
4197 	em->block_len = em->len;
4198 	em->orig_block_len = stripe_size;
4199 
4200 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4201 	write_lock(&em_tree->lock);
4202 	ret = add_extent_mapping(em_tree, em, 0);
4203 	if (!ret) {
4204 		list_add_tail(&em->list, &trans->transaction->pending_chunks);
4205 		atomic_inc(&em->refs);
4206 	}
4207 	write_unlock(&em_tree->lock);
4208 	if (ret) {
4209 		free_extent_map(em);
4210 		goto error;
4211 	}
4212 
4213 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
4214 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4215 				     start, num_bytes);
4216 	if (ret)
4217 		goto error_del_extent;
4218 
4219 	free_extent_map(em);
4220 	check_raid56_incompat_flag(extent_root->fs_info, type);
4221 
4222 	kfree(devices_info);
4223 	return 0;
4224 
4225 error_del_extent:
4226 	write_lock(&em_tree->lock);
4227 	remove_extent_mapping(em_tree, em);
4228 	write_unlock(&em_tree->lock);
4229 
4230 	/* One for our allocation */
4231 	free_extent_map(em);
4232 	/* One for the tree reference */
4233 	free_extent_map(em);
4234 error:
4235 	kfree(map);
4236 	kfree(devices_info);
4237 	return ret;
4238 }
4239 
4240 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans,
4241 				struct btrfs_root *extent_root,
4242 				u64 chunk_offset, u64 chunk_size)
4243 {
4244 	struct btrfs_key key;
4245 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
4246 	struct btrfs_device *device;
4247 	struct btrfs_chunk *chunk;
4248 	struct btrfs_stripe *stripe;
4249 	struct extent_map_tree *em_tree;
4250 	struct extent_map *em;
4251 	struct map_lookup *map;
4252 	size_t item_size;
4253 	u64 dev_offset;
4254 	u64 stripe_size;
4255 	int i = 0;
4256 	int ret;
4257 
4258 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
4259 	read_lock(&em_tree->lock);
4260 	em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size);
4261 	read_unlock(&em_tree->lock);
4262 
4263 	if (!em) {
4264 		btrfs_crit(extent_root->fs_info, "unable to find logical "
4265 			   "%Lu len %Lu", chunk_offset, chunk_size);
4266 		return -EINVAL;
4267 	}
4268 
4269 	if (em->start != chunk_offset || em->len != chunk_size) {
4270 		btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted"
4271 			  " %Lu-%Lu, found %Lu-%Lu\n", chunk_offset,
4272 			  chunk_size, em->start, em->len);
4273 		free_extent_map(em);
4274 		return -EINVAL;
4275 	}
4276 
4277 	map = (struct map_lookup *)em->bdev;
4278 	item_size = btrfs_chunk_item_size(map->num_stripes);
4279 	stripe_size = em->orig_block_len;
4280 
4281 	chunk = kzalloc(item_size, GFP_NOFS);
4282 	if (!chunk) {
4283 		ret = -ENOMEM;
4284 		goto out;
4285 	}
4286 
4287 	for (i = 0; i < map->num_stripes; i++) {
4288 		device = map->stripes[i].dev;
4289 		dev_offset = map->stripes[i].physical;
4290 
4291 		device->bytes_used += stripe_size;
4292 		ret = btrfs_update_device(trans, device);
4293 		if (ret)
4294 			goto out;
4295 		ret = btrfs_alloc_dev_extent(trans, device,
4296 					     chunk_root->root_key.objectid,
4297 					     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
4298 					     chunk_offset, dev_offset,
4299 					     stripe_size);
4300 		if (ret)
4301 			goto out;
4302 	}
4303 
4304 	spin_lock(&extent_root->fs_info->free_chunk_lock);
4305 	extent_root->fs_info->free_chunk_space -= (stripe_size *
4306 						   map->num_stripes);
4307 	spin_unlock(&extent_root->fs_info->free_chunk_lock);
4308 
4309 	stripe = &chunk->stripe;
4310 	for (i = 0; i < map->num_stripes; i++) {
4311 		device = map->stripes[i].dev;
4312 		dev_offset = map->stripes[i].physical;
4313 
4314 		btrfs_set_stack_stripe_devid(stripe, device->devid);
4315 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
4316 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
4317 		stripe++;
4318 	}
4319 
4320 	btrfs_set_stack_chunk_length(chunk, chunk_size);
4321 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
4322 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
4323 	btrfs_set_stack_chunk_type(chunk, map->type);
4324 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
4325 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
4326 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
4327 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
4328 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
4329 
4330 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
4331 	key.type = BTRFS_CHUNK_ITEM_KEY;
4332 	key.offset = chunk_offset;
4333 
4334 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
4335 	if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
4336 		/*
4337 		 * TODO: Cleanup of inserted chunk root in case of
4338 		 * failure.
4339 		 */
4340 		ret = btrfs_add_system_chunk(chunk_root, &key, chunk,
4341 					     item_size);
4342 	}
4343 
4344 out:
4345 	kfree(chunk);
4346 	free_extent_map(em);
4347 	return ret;
4348 }
4349 
4350 /*
4351  * Chunk allocation falls into two parts. The first part does works
4352  * that make the new allocated chunk useable, but not do any operation
4353  * that modifies the chunk tree. The second part does the works that
4354  * require modifying the chunk tree. This division is important for the
4355  * bootstrap process of adding storage to a seed btrfs.
4356  */
4357 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
4358 		      struct btrfs_root *extent_root, u64 type)
4359 {
4360 	u64 chunk_offset;
4361 
4362 	chunk_offset = find_next_chunk(extent_root->fs_info);
4363 	return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type);
4364 }
4365 
4366 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
4367 					 struct btrfs_root *root,
4368 					 struct btrfs_device *device)
4369 {
4370 	u64 chunk_offset;
4371 	u64 sys_chunk_offset;
4372 	u64 alloc_profile;
4373 	struct btrfs_fs_info *fs_info = root->fs_info;
4374 	struct btrfs_root *extent_root = fs_info->extent_root;
4375 	int ret;
4376 
4377 	chunk_offset = find_next_chunk(fs_info);
4378 	alloc_profile = btrfs_get_alloc_profile(extent_root, 0);
4379 	ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset,
4380 				  alloc_profile);
4381 	if (ret)
4382 		return ret;
4383 
4384 	sys_chunk_offset = find_next_chunk(root->fs_info);
4385 	alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0);
4386 	ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset,
4387 				  alloc_profile);
4388 	if (ret) {
4389 		btrfs_abort_transaction(trans, root, ret);
4390 		goto out;
4391 	}
4392 
4393 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
4394 	if (ret)
4395 		btrfs_abort_transaction(trans, root, ret);
4396 out:
4397 	return ret;
4398 }
4399 
4400 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
4401 {
4402 	struct extent_map *em;
4403 	struct map_lookup *map;
4404 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
4405 	int readonly = 0;
4406 	int i;
4407 
4408 	read_lock(&map_tree->map_tree.lock);
4409 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
4410 	read_unlock(&map_tree->map_tree.lock);
4411 	if (!em)
4412 		return 1;
4413 
4414 	if (btrfs_test_opt(root, DEGRADED)) {
4415 		free_extent_map(em);
4416 		return 0;
4417 	}
4418 
4419 	map = (struct map_lookup *)em->bdev;
4420 	for (i = 0; i < map->num_stripes; i++) {
4421 		if (!map->stripes[i].dev->writeable) {
4422 			readonly = 1;
4423 			break;
4424 		}
4425 	}
4426 	free_extent_map(em);
4427 	return readonly;
4428 }
4429 
4430 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
4431 {
4432 	extent_map_tree_init(&tree->map_tree);
4433 }
4434 
4435 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
4436 {
4437 	struct extent_map *em;
4438 
4439 	while (1) {
4440 		write_lock(&tree->map_tree.lock);
4441 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
4442 		if (em)
4443 			remove_extent_mapping(&tree->map_tree, em);
4444 		write_unlock(&tree->map_tree.lock);
4445 		if (!em)
4446 			break;
4447 		kfree(em->bdev);
4448 		/* once for us */
4449 		free_extent_map(em);
4450 		/* once for the tree */
4451 		free_extent_map(em);
4452 	}
4453 }
4454 
4455 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len)
4456 {
4457 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4458 	struct extent_map *em;
4459 	struct map_lookup *map;
4460 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4461 	int ret;
4462 
4463 	read_lock(&em_tree->lock);
4464 	em = lookup_extent_mapping(em_tree, logical, len);
4465 	read_unlock(&em_tree->lock);
4466 
4467 	/*
4468 	 * We could return errors for these cases, but that could get ugly and
4469 	 * we'd probably do the same thing which is just not do anything else
4470 	 * and exit, so return 1 so the callers don't try to use other copies.
4471 	 */
4472 	if (!em) {
4473 		btrfs_crit(fs_info, "No mapping for %Lu-%Lu\n", logical,
4474 			    logical+len);
4475 		return 1;
4476 	}
4477 
4478 	if (em->start > logical || em->start + em->len < logical) {
4479 		btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got "
4480 			    "%Lu-%Lu\n", logical, logical+len, em->start,
4481 			    em->start + em->len);
4482 		return 1;
4483 	}
4484 
4485 	map = (struct map_lookup *)em->bdev;
4486 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
4487 		ret = map->num_stripes;
4488 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
4489 		ret = map->sub_stripes;
4490 	else if (map->type & BTRFS_BLOCK_GROUP_RAID5)
4491 		ret = 2;
4492 	else if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4493 		ret = 3;
4494 	else
4495 		ret = 1;
4496 	free_extent_map(em);
4497 
4498 	btrfs_dev_replace_lock(&fs_info->dev_replace);
4499 	if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))
4500 		ret++;
4501 	btrfs_dev_replace_unlock(&fs_info->dev_replace);
4502 
4503 	return ret;
4504 }
4505 
4506 unsigned long btrfs_full_stripe_len(struct btrfs_root *root,
4507 				    struct btrfs_mapping_tree *map_tree,
4508 				    u64 logical)
4509 {
4510 	struct extent_map *em;
4511 	struct map_lookup *map;
4512 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4513 	unsigned long len = root->sectorsize;
4514 
4515 	read_lock(&em_tree->lock);
4516 	em = lookup_extent_mapping(em_tree, logical, len);
4517 	read_unlock(&em_tree->lock);
4518 	BUG_ON(!em);
4519 
4520 	BUG_ON(em->start > logical || em->start + em->len < logical);
4521 	map = (struct map_lookup *)em->bdev;
4522 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4523 			 BTRFS_BLOCK_GROUP_RAID6)) {
4524 		len = map->stripe_len * nr_data_stripes(map);
4525 	}
4526 	free_extent_map(em);
4527 	return len;
4528 }
4529 
4530 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree,
4531 			   u64 logical, u64 len, int mirror_num)
4532 {
4533 	struct extent_map *em;
4534 	struct map_lookup *map;
4535 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4536 	int ret = 0;
4537 
4538 	read_lock(&em_tree->lock);
4539 	em = lookup_extent_mapping(em_tree, logical, len);
4540 	read_unlock(&em_tree->lock);
4541 	BUG_ON(!em);
4542 
4543 	BUG_ON(em->start > logical || em->start + em->len < logical);
4544 	map = (struct map_lookup *)em->bdev;
4545 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4546 			 BTRFS_BLOCK_GROUP_RAID6))
4547 		ret = 1;
4548 	free_extent_map(em);
4549 	return ret;
4550 }
4551 
4552 static int find_live_mirror(struct btrfs_fs_info *fs_info,
4553 			    struct map_lookup *map, int first, int num,
4554 			    int optimal, int dev_replace_is_ongoing)
4555 {
4556 	int i;
4557 	int tolerance;
4558 	struct btrfs_device *srcdev;
4559 
4560 	if (dev_replace_is_ongoing &&
4561 	    fs_info->dev_replace.cont_reading_from_srcdev_mode ==
4562 	     BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID)
4563 		srcdev = fs_info->dev_replace.srcdev;
4564 	else
4565 		srcdev = NULL;
4566 
4567 	/*
4568 	 * try to avoid the drive that is the source drive for a
4569 	 * dev-replace procedure, only choose it if no other non-missing
4570 	 * mirror is available
4571 	 */
4572 	for (tolerance = 0; tolerance < 2; tolerance++) {
4573 		if (map->stripes[optimal].dev->bdev &&
4574 		    (tolerance || map->stripes[optimal].dev != srcdev))
4575 			return optimal;
4576 		for (i = first; i < first + num; i++) {
4577 			if (map->stripes[i].dev->bdev &&
4578 			    (tolerance || map->stripes[i].dev != srcdev))
4579 				return i;
4580 		}
4581 	}
4582 
4583 	/* we couldn't find one that doesn't fail.  Just return something
4584 	 * and the io error handling code will clean up eventually
4585 	 */
4586 	return optimal;
4587 }
4588 
4589 static inline int parity_smaller(u64 a, u64 b)
4590 {
4591 	return a > b;
4592 }
4593 
4594 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */
4595 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map)
4596 {
4597 	struct btrfs_bio_stripe s;
4598 	int i;
4599 	u64 l;
4600 	int again = 1;
4601 
4602 	while (again) {
4603 		again = 0;
4604 		for (i = 0; i < bbio->num_stripes - 1; i++) {
4605 			if (parity_smaller(raid_map[i], raid_map[i+1])) {
4606 				s = bbio->stripes[i];
4607 				l = raid_map[i];
4608 				bbio->stripes[i] = bbio->stripes[i+1];
4609 				raid_map[i] = raid_map[i+1];
4610 				bbio->stripes[i+1] = s;
4611 				raid_map[i+1] = l;
4612 				again = 1;
4613 			}
4614 		}
4615 	}
4616 }
4617 
4618 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
4619 			     u64 logical, u64 *length,
4620 			     struct btrfs_bio **bbio_ret,
4621 			     int mirror_num, u64 **raid_map_ret)
4622 {
4623 	struct extent_map *em;
4624 	struct map_lookup *map;
4625 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
4626 	struct extent_map_tree *em_tree = &map_tree->map_tree;
4627 	u64 offset;
4628 	u64 stripe_offset;
4629 	u64 stripe_end_offset;
4630 	u64 stripe_nr;
4631 	u64 stripe_nr_orig;
4632 	u64 stripe_nr_end;
4633 	u64 stripe_len;
4634 	u64 *raid_map = NULL;
4635 	int stripe_index;
4636 	int i;
4637 	int ret = 0;
4638 	int num_stripes;
4639 	int max_errors = 0;
4640 	struct btrfs_bio *bbio = NULL;
4641 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
4642 	int dev_replace_is_ongoing = 0;
4643 	int num_alloc_stripes;
4644 	int patch_the_first_stripe_for_dev_replace = 0;
4645 	u64 physical_to_patch_in_first_stripe = 0;
4646 	u64 raid56_full_stripe_start = (u64)-1;
4647 
4648 	read_lock(&em_tree->lock);
4649 	em = lookup_extent_mapping(em_tree, logical, *length);
4650 	read_unlock(&em_tree->lock);
4651 
4652 	if (!em) {
4653 		btrfs_crit(fs_info, "unable to find logical %llu len %llu",
4654 			logical, *length);
4655 		return -EINVAL;
4656 	}
4657 
4658 	if (em->start > logical || em->start + em->len < logical) {
4659 		btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, "
4660 			   "found %Lu-%Lu\n", logical, em->start,
4661 			   em->start + em->len);
4662 		return -EINVAL;
4663 	}
4664 
4665 	map = (struct map_lookup *)em->bdev;
4666 	offset = logical - em->start;
4667 
4668 	stripe_len = map->stripe_len;
4669 	stripe_nr = offset;
4670 	/*
4671 	 * stripe_nr counts the total number of stripes we have to stride
4672 	 * to get to this block
4673 	 */
4674 	do_div(stripe_nr, stripe_len);
4675 
4676 	stripe_offset = stripe_nr * stripe_len;
4677 	BUG_ON(offset < stripe_offset);
4678 
4679 	/* stripe_offset is the offset of this block in its stripe*/
4680 	stripe_offset = offset - stripe_offset;
4681 
4682 	/* if we're here for raid56, we need to know the stripe aligned start */
4683 	if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4684 		unsigned long full_stripe_len = stripe_len * nr_data_stripes(map);
4685 		raid56_full_stripe_start = offset;
4686 
4687 		/* allow a write of a full stripe, but make sure we don't
4688 		 * allow straddling of stripes
4689 		 */
4690 		do_div(raid56_full_stripe_start, full_stripe_len);
4691 		raid56_full_stripe_start *= full_stripe_len;
4692 	}
4693 
4694 	if (rw & REQ_DISCARD) {
4695 		/* we don't discard raid56 yet */
4696 		if (map->type &
4697 		    (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) {
4698 			ret = -EOPNOTSUPP;
4699 			goto out;
4700 		}
4701 		*length = min_t(u64, em->len - offset, *length);
4702 	} else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) {
4703 		u64 max_len;
4704 		/* For writes to RAID[56], allow a full stripeset across all disks.
4705 		   For other RAID types and for RAID[56] reads, just allow a single
4706 		   stripe (on a single disk). */
4707 		if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) &&
4708 		    (rw & REQ_WRITE)) {
4709 			max_len = stripe_len * nr_data_stripes(map) -
4710 				(offset - raid56_full_stripe_start);
4711 		} else {
4712 			/* we limit the length of each bio to what fits in a stripe */
4713 			max_len = stripe_len - stripe_offset;
4714 		}
4715 		*length = min_t(u64, em->len - offset, max_len);
4716 	} else {
4717 		*length = em->len - offset;
4718 	}
4719 
4720 	/* This is for when we're called from btrfs_merge_bio_hook() and all
4721 	   it cares about is the length */
4722 	if (!bbio_ret)
4723 		goto out;
4724 
4725 	btrfs_dev_replace_lock(dev_replace);
4726 	dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace);
4727 	if (!dev_replace_is_ongoing)
4728 		btrfs_dev_replace_unlock(dev_replace);
4729 
4730 	if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 &&
4731 	    !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) &&
4732 	    dev_replace->tgtdev != NULL) {
4733 		/*
4734 		 * in dev-replace case, for repair case (that's the only
4735 		 * case where the mirror is selected explicitly when
4736 		 * calling btrfs_map_block), blocks left of the left cursor
4737 		 * can also be read from the target drive.
4738 		 * For REQ_GET_READ_MIRRORS, the target drive is added as
4739 		 * the last one to the array of stripes. For READ, it also
4740 		 * needs to be supported using the same mirror number.
4741 		 * If the requested block is not left of the left cursor,
4742 		 * EIO is returned. This can happen because btrfs_num_copies()
4743 		 * returns one more in the dev-replace case.
4744 		 */
4745 		u64 tmp_length = *length;
4746 		struct btrfs_bio *tmp_bbio = NULL;
4747 		int tmp_num_stripes;
4748 		u64 srcdev_devid = dev_replace->srcdev->devid;
4749 		int index_srcdev = 0;
4750 		int found = 0;
4751 		u64 physical_of_found = 0;
4752 
4753 		ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS,
4754 			     logical, &tmp_length, &tmp_bbio, 0, NULL);
4755 		if (ret) {
4756 			WARN_ON(tmp_bbio != NULL);
4757 			goto out;
4758 		}
4759 
4760 		tmp_num_stripes = tmp_bbio->num_stripes;
4761 		if (mirror_num > tmp_num_stripes) {
4762 			/*
4763 			 * REQ_GET_READ_MIRRORS does not contain this
4764 			 * mirror, that means that the requested area
4765 			 * is not left of the left cursor
4766 			 */
4767 			ret = -EIO;
4768 			kfree(tmp_bbio);
4769 			goto out;
4770 		}
4771 
4772 		/*
4773 		 * process the rest of the function using the mirror_num
4774 		 * of the source drive. Therefore look it up first.
4775 		 * At the end, patch the device pointer to the one of the
4776 		 * target drive.
4777 		 */
4778 		for (i = 0; i < tmp_num_stripes; i++) {
4779 			if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) {
4780 				/*
4781 				 * In case of DUP, in order to keep it
4782 				 * simple, only add the mirror with the
4783 				 * lowest physical address
4784 				 */
4785 				if (found &&
4786 				    physical_of_found <=
4787 				     tmp_bbio->stripes[i].physical)
4788 					continue;
4789 				index_srcdev = i;
4790 				found = 1;
4791 				physical_of_found =
4792 					tmp_bbio->stripes[i].physical;
4793 			}
4794 		}
4795 
4796 		if (found) {
4797 			mirror_num = index_srcdev + 1;
4798 			patch_the_first_stripe_for_dev_replace = 1;
4799 			physical_to_patch_in_first_stripe = physical_of_found;
4800 		} else {
4801 			WARN_ON(1);
4802 			ret = -EIO;
4803 			kfree(tmp_bbio);
4804 			goto out;
4805 		}
4806 
4807 		kfree(tmp_bbio);
4808 	} else if (mirror_num > map->num_stripes) {
4809 		mirror_num = 0;
4810 	}
4811 
4812 	num_stripes = 1;
4813 	stripe_index = 0;
4814 	stripe_nr_orig = stripe_nr;
4815 	stripe_nr_end = ALIGN(offset + *length, map->stripe_len);
4816 	do_div(stripe_nr_end, map->stripe_len);
4817 	stripe_end_offset = stripe_nr_end * map->stripe_len -
4818 			    (offset + *length);
4819 
4820 	if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
4821 		if (rw & REQ_DISCARD)
4822 			num_stripes = min_t(u64, map->num_stripes,
4823 					    stripe_nr_end - stripe_nr_orig);
4824 		stripe_index = do_div(stripe_nr, map->num_stripes);
4825 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
4826 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS))
4827 			num_stripes = map->num_stripes;
4828 		else if (mirror_num)
4829 			stripe_index = mirror_num - 1;
4830 		else {
4831 			stripe_index = find_live_mirror(fs_info, map, 0,
4832 					    map->num_stripes,
4833 					    current->pid % map->num_stripes,
4834 					    dev_replace_is_ongoing);
4835 			mirror_num = stripe_index + 1;
4836 		}
4837 
4838 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
4839 		if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) {
4840 			num_stripes = map->num_stripes;
4841 		} else if (mirror_num) {
4842 			stripe_index = mirror_num - 1;
4843 		} else {
4844 			mirror_num = 1;
4845 		}
4846 
4847 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
4848 		int factor = map->num_stripes / map->sub_stripes;
4849 
4850 		stripe_index = do_div(stripe_nr, factor);
4851 		stripe_index *= map->sub_stripes;
4852 
4853 		if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS))
4854 			num_stripes = map->sub_stripes;
4855 		else if (rw & REQ_DISCARD)
4856 			num_stripes = min_t(u64, map->sub_stripes *
4857 					    (stripe_nr_end - stripe_nr_orig),
4858 					    map->num_stripes);
4859 		else if (mirror_num)
4860 			stripe_index += mirror_num - 1;
4861 		else {
4862 			int old_stripe_index = stripe_index;
4863 			stripe_index = find_live_mirror(fs_info, map,
4864 					      stripe_index,
4865 					      map->sub_stripes, stripe_index +
4866 					      current->pid % map->sub_stripes,
4867 					      dev_replace_is_ongoing);
4868 			mirror_num = stripe_index - old_stripe_index + 1;
4869 		}
4870 
4871 	} else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
4872 				BTRFS_BLOCK_GROUP_RAID6)) {
4873 		u64 tmp;
4874 
4875 		if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1)
4876 		    && raid_map_ret) {
4877 			int i, rot;
4878 
4879 			/* push stripe_nr back to the start of the full stripe */
4880 			stripe_nr = raid56_full_stripe_start;
4881 			do_div(stripe_nr, stripe_len);
4882 
4883 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4884 
4885 			/* RAID[56] write or recovery. Return all stripes */
4886 			num_stripes = map->num_stripes;
4887 			max_errors = nr_parity_stripes(map);
4888 
4889 			raid_map = kmalloc(sizeof(u64) * num_stripes,
4890 					   GFP_NOFS);
4891 			if (!raid_map) {
4892 				ret = -ENOMEM;
4893 				goto out;
4894 			}
4895 
4896 			/* Work out the disk rotation on this stripe-set */
4897 			tmp = stripe_nr;
4898 			rot = do_div(tmp, num_stripes);
4899 
4900 			/* Fill in the logical address of each stripe */
4901 			tmp = stripe_nr * nr_data_stripes(map);
4902 			for (i = 0; i < nr_data_stripes(map); i++)
4903 				raid_map[(i+rot) % num_stripes] =
4904 					em->start + (tmp + i) * map->stripe_len;
4905 
4906 			raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE;
4907 			if (map->type & BTRFS_BLOCK_GROUP_RAID6)
4908 				raid_map[(i+rot+1) % num_stripes] =
4909 					RAID6_Q_STRIPE;
4910 
4911 			*length = map->stripe_len;
4912 			stripe_index = 0;
4913 			stripe_offset = 0;
4914 		} else {
4915 			/*
4916 			 * Mirror #0 or #1 means the original data block.
4917 			 * Mirror #2 is RAID5 parity block.
4918 			 * Mirror #3 is RAID6 Q block.
4919 			 */
4920 			stripe_index = do_div(stripe_nr, nr_data_stripes(map));
4921 			if (mirror_num > 1)
4922 				stripe_index = nr_data_stripes(map) +
4923 						mirror_num - 2;
4924 
4925 			/* We distribute the parity blocks across stripes */
4926 			tmp = stripe_nr + stripe_index;
4927 			stripe_index = do_div(tmp, map->num_stripes);
4928 		}
4929 	} else {
4930 		/*
4931 		 * after this do_div call, stripe_nr is the number of stripes
4932 		 * on this device we have to walk to find the data, and
4933 		 * stripe_index is the number of our device in the stripe array
4934 		 */
4935 		stripe_index = do_div(stripe_nr, map->num_stripes);
4936 		mirror_num = stripe_index + 1;
4937 	}
4938 	BUG_ON(stripe_index >= map->num_stripes);
4939 
4940 	num_alloc_stripes = num_stripes;
4941 	if (dev_replace_is_ongoing) {
4942 		if (rw & (REQ_WRITE | REQ_DISCARD))
4943 			num_alloc_stripes <<= 1;
4944 		if (rw & REQ_GET_READ_MIRRORS)
4945 			num_alloc_stripes++;
4946 	}
4947 	bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS);
4948 	if (!bbio) {
4949 		kfree(raid_map);
4950 		ret = -ENOMEM;
4951 		goto out;
4952 	}
4953 	atomic_set(&bbio->error, 0);
4954 
4955 	if (rw & REQ_DISCARD) {
4956 		int factor = 0;
4957 		int sub_stripes = 0;
4958 		u64 stripes_per_dev = 0;
4959 		u32 remaining_stripes = 0;
4960 		u32 last_stripe = 0;
4961 
4962 		if (map->type &
4963 		    (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
4964 			if (map->type & BTRFS_BLOCK_GROUP_RAID0)
4965 				sub_stripes = 1;
4966 			else
4967 				sub_stripes = map->sub_stripes;
4968 
4969 			factor = map->num_stripes / sub_stripes;
4970 			stripes_per_dev = div_u64_rem(stripe_nr_end -
4971 						      stripe_nr_orig,
4972 						      factor,
4973 						      &remaining_stripes);
4974 			div_u64_rem(stripe_nr_end - 1, factor, &last_stripe);
4975 			last_stripe *= sub_stripes;
4976 		}
4977 
4978 		for (i = 0; i < num_stripes; i++) {
4979 			bbio->stripes[i].physical =
4980 				map->stripes[stripe_index].physical +
4981 				stripe_offset + stripe_nr * map->stripe_len;
4982 			bbio->stripes[i].dev = map->stripes[stripe_index].dev;
4983 
4984 			if (map->type & (BTRFS_BLOCK_GROUP_RAID0 |
4985 					 BTRFS_BLOCK_GROUP_RAID10)) {
4986 				bbio->stripes[i].length = stripes_per_dev *
4987 							  map->stripe_len;
4988 
4989 				if (i / sub_stripes < remaining_stripes)
4990 					bbio->stripes[i].length +=
4991 						map->stripe_len;
4992 
4993 				/*
4994 				 * Special for the first stripe and
4995 				 * the last stripe:
4996 				 *
4997 				 * |-------|...|-------|
4998 				 *     |----------|
4999 				 *    off     end_off
5000 				 */
5001 				if (i < sub_stripes)
5002 					bbio->stripes[i].length -=
5003 						stripe_offset;
5004 
5005 				if (stripe_index >= last_stripe &&
5006 				    stripe_index <= (last_stripe +
5007 						     sub_stripes - 1))
5008 					bbio->stripes[i].length -=
5009 						stripe_end_offset;
5010 
5011 				if (i == sub_stripes - 1)
5012 					stripe_offset = 0;
5013 			} else
5014 				bbio->stripes[i].length = *length;
5015 
5016 			stripe_index++;
5017 			if (stripe_index == map->num_stripes) {
5018 				/* This could only happen for RAID0/10 */
5019 				stripe_index = 0;
5020 				stripe_nr++;
5021 			}
5022 		}
5023 	} else {
5024 		for (i = 0; i < num_stripes; i++) {
5025 			bbio->stripes[i].physical =
5026 				map->stripes[stripe_index].physical +
5027 				stripe_offset +
5028 				stripe_nr * map->stripe_len;
5029 			bbio->stripes[i].dev =
5030 				map->stripes[stripe_index].dev;
5031 			stripe_index++;
5032 		}
5033 	}
5034 
5035 	if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) {
5036 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
5037 				 BTRFS_BLOCK_GROUP_RAID10 |
5038 				 BTRFS_BLOCK_GROUP_RAID5 |
5039 				 BTRFS_BLOCK_GROUP_DUP)) {
5040 			max_errors = 1;
5041 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID6) {
5042 			max_errors = 2;
5043 		}
5044 	}
5045 
5046 	if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) &&
5047 	    dev_replace->tgtdev != NULL) {
5048 		int index_where_to_add;
5049 		u64 srcdev_devid = dev_replace->srcdev->devid;
5050 
5051 		/*
5052 		 * duplicate the write operations while the dev replace
5053 		 * procedure is running. Since the copying of the old disk
5054 		 * to the new disk takes place at run time while the
5055 		 * filesystem is mounted writable, the regular write
5056 		 * operations to the old disk have to be duplicated to go
5057 		 * to the new disk as well.
5058 		 * Note that device->missing is handled by the caller, and
5059 		 * that the write to the old disk is already set up in the
5060 		 * stripes array.
5061 		 */
5062 		index_where_to_add = num_stripes;
5063 		for (i = 0; i < num_stripes; i++) {
5064 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5065 				/* write to new disk, too */
5066 				struct btrfs_bio_stripe *new =
5067 					bbio->stripes + index_where_to_add;
5068 				struct btrfs_bio_stripe *old =
5069 					bbio->stripes + i;
5070 
5071 				new->physical = old->physical;
5072 				new->length = old->length;
5073 				new->dev = dev_replace->tgtdev;
5074 				index_where_to_add++;
5075 				max_errors++;
5076 			}
5077 		}
5078 		num_stripes = index_where_to_add;
5079 	} else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) &&
5080 		   dev_replace->tgtdev != NULL) {
5081 		u64 srcdev_devid = dev_replace->srcdev->devid;
5082 		int index_srcdev = 0;
5083 		int found = 0;
5084 		u64 physical_of_found = 0;
5085 
5086 		/*
5087 		 * During the dev-replace procedure, the target drive can
5088 		 * also be used to read data in case it is needed to repair
5089 		 * a corrupt block elsewhere. This is possible if the
5090 		 * requested area is left of the left cursor. In this area,
5091 		 * the target drive is a full copy of the source drive.
5092 		 */
5093 		for (i = 0; i < num_stripes; i++) {
5094 			if (bbio->stripes[i].dev->devid == srcdev_devid) {
5095 				/*
5096 				 * In case of DUP, in order to keep it
5097 				 * simple, only add the mirror with the
5098 				 * lowest physical address
5099 				 */
5100 				if (found &&
5101 				    physical_of_found <=
5102 				     bbio->stripes[i].physical)
5103 					continue;
5104 				index_srcdev = i;
5105 				found = 1;
5106 				physical_of_found = bbio->stripes[i].physical;
5107 			}
5108 		}
5109 		if (found) {
5110 			u64 length = map->stripe_len;
5111 
5112 			if (physical_of_found + length <=
5113 			    dev_replace->cursor_left) {
5114 				struct btrfs_bio_stripe *tgtdev_stripe =
5115 					bbio->stripes + num_stripes;
5116 
5117 				tgtdev_stripe->physical = physical_of_found;
5118 				tgtdev_stripe->length =
5119 					bbio->stripes[index_srcdev].length;
5120 				tgtdev_stripe->dev = dev_replace->tgtdev;
5121 
5122 				num_stripes++;
5123 			}
5124 		}
5125 	}
5126 
5127 	*bbio_ret = bbio;
5128 	bbio->num_stripes = num_stripes;
5129 	bbio->max_errors = max_errors;
5130 	bbio->mirror_num = mirror_num;
5131 
5132 	/*
5133 	 * this is the case that REQ_READ && dev_replace_is_ongoing &&
5134 	 * mirror_num == num_stripes + 1 && dev_replace target drive is
5135 	 * available as a mirror
5136 	 */
5137 	if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) {
5138 		WARN_ON(num_stripes > 1);
5139 		bbio->stripes[0].dev = dev_replace->tgtdev;
5140 		bbio->stripes[0].physical = physical_to_patch_in_first_stripe;
5141 		bbio->mirror_num = map->num_stripes + 1;
5142 	}
5143 	if (raid_map) {
5144 		sort_parity_stripes(bbio, raid_map);
5145 		*raid_map_ret = raid_map;
5146 	}
5147 out:
5148 	if (dev_replace_is_ongoing)
5149 		btrfs_dev_replace_unlock(dev_replace);
5150 	free_extent_map(em);
5151 	return ret;
5152 }
5153 
5154 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw,
5155 		      u64 logical, u64 *length,
5156 		      struct btrfs_bio **bbio_ret, int mirror_num)
5157 {
5158 	return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret,
5159 				 mirror_num, NULL);
5160 }
5161 
5162 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
5163 		     u64 chunk_start, u64 physical, u64 devid,
5164 		     u64 **logical, int *naddrs, int *stripe_len)
5165 {
5166 	struct extent_map_tree *em_tree = &map_tree->map_tree;
5167 	struct extent_map *em;
5168 	struct map_lookup *map;
5169 	u64 *buf;
5170 	u64 bytenr;
5171 	u64 length;
5172 	u64 stripe_nr;
5173 	u64 rmap_len;
5174 	int i, j, nr = 0;
5175 
5176 	read_lock(&em_tree->lock);
5177 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
5178 	read_unlock(&em_tree->lock);
5179 
5180 	if (!em) {
5181 		printk(KERN_ERR "btrfs: couldn't find em for chunk %Lu\n",
5182 		       chunk_start);
5183 		return -EIO;
5184 	}
5185 
5186 	if (em->start != chunk_start) {
5187 		printk(KERN_ERR "btrfs: bad chunk start, em=%Lu, wanted=%Lu\n",
5188 		       em->start, chunk_start);
5189 		free_extent_map(em);
5190 		return -EIO;
5191 	}
5192 	map = (struct map_lookup *)em->bdev;
5193 
5194 	length = em->len;
5195 	rmap_len = map->stripe_len;
5196 
5197 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
5198 		do_div(length, map->num_stripes / map->sub_stripes);
5199 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
5200 		do_div(length, map->num_stripes);
5201 	else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 |
5202 			      BTRFS_BLOCK_GROUP_RAID6)) {
5203 		do_div(length, nr_data_stripes(map));
5204 		rmap_len = map->stripe_len * nr_data_stripes(map);
5205 	}
5206 
5207 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
5208 	BUG_ON(!buf); /* -ENOMEM */
5209 
5210 	for (i = 0; i < map->num_stripes; i++) {
5211 		if (devid && map->stripes[i].dev->devid != devid)
5212 			continue;
5213 		if (map->stripes[i].physical > physical ||
5214 		    map->stripes[i].physical + length <= physical)
5215 			continue;
5216 
5217 		stripe_nr = physical - map->stripes[i].physical;
5218 		do_div(stripe_nr, map->stripe_len);
5219 
5220 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
5221 			stripe_nr = stripe_nr * map->num_stripes + i;
5222 			do_div(stripe_nr, map->sub_stripes);
5223 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
5224 			stripe_nr = stripe_nr * map->num_stripes + i;
5225 		} /* else if RAID[56], multiply by nr_data_stripes().
5226 		   * Alternatively, just use rmap_len below instead of
5227 		   * map->stripe_len */
5228 
5229 		bytenr = chunk_start + stripe_nr * rmap_len;
5230 		WARN_ON(nr >= map->num_stripes);
5231 		for (j = 0; j < nr; j++) {
5232 			if (buf[j] == bytenr)
5233 				break;
5234 		}
5235 		if (j == nr) {
5236 			WARN_ON(nr >= map->num_stripes);
5237 			buf[nr++] = bytenr;
5238 		}
5239 	}
5240 
5241 	*logical = buf;
5242 	*naddrs = nr;
5243 	*stripe_len = rmap_len;
5244 
5245 	free_extent_map(em);
5246 	return 0;
5247 }
5248 
5249 static void btrfs_end_bio(struct bio *bio, int err)
5250 {
5251 	struct btrfs_bio *bbio = bio->bi_private;
5252 	int is_orig_bio = 0;
5253 
5254 	if (err) {
5255 		atomic_inc(&bbio->error);
5256 		if (err == -EIO || err == -EREMOTEIO) {
5257 			unsigned int stripe_index =
5258 				btrfs_io_bio(bio)->stripe_index;
5259 			struct btrfs_device *dev;
5260 
5261 			BUG_ON(stripe_index >= bbio->num_stripes);
5262 			dev = bbio->stripes[stripe_index].dev;
5263 			if (dev->bdev) {
5264 				if (bio->bi_rw & WRITE)
5265 					btrfs_dev_stat_inc(dev,
5266 						BTRFS_DEV_STAT_WRITE_ERRS);
5267 				else
5268 					btrfs_dev_stat_inc(dev,
5269 						BTRFS_DEV_STAT_READ_ERRS);
5270 				if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH)
5271 					btrfs_dev_stat_inc(dev,
5272 						BTRFS_DEV_STAT_FLUSH_ERRS);
5273 				btrfs_dev_stat_print_on_error(dev);
5274 			}
5275 		}
5276 	}
5277 
5278 	if (bio == bbio->orig_bio)
5279 		is_orig_bio = 1;
5280 
5281 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5282 		if (!is_orig_bio) {
5283 			bio_put(bio);
5284 			bio = bbio->orig_bio;
5285 		}
5286 		bio->bi_private = bbio->private;
5287 		bio->bi_end_io = bbio->end_io;
5288 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5289 		/* only send an error to the higher layers if it is
5290 		 * beyond the tolerance of the btrfs bio
5291 		 */
5292 		if (atomic_read(&bbio->error) > bbio->max_errors) {
5293 			err = -EIO;
5294 		} else {
5295 			/*
5296 			 * this bio is actually up to date, we didn't
5297 			 * go over the max number of errors
5298 			 */
5299 			set_bit(BIO_UPTODATE, &bio->bi_flags);
5300 			err = 0;
5301 		}
5302 		kfree(bbio);
5303 
5304 		bio_endio(bio, err);
5305 	} else if (!is_orig_bio) {
5306 		bio_put(bio);
5307 	}
5308 }
5309 
5310 struct async_sched {
5311 	struct bio *bio;
5312 	int rw;
5313 	struct btrfs_fs_info *info;
5314 	struct btrfs_work work;
5315 };
5316 
5317 /*
5318  * see run_scheduled_bios for a description of why bios are collected for
5319  * async submit.
5320  *
5321  * This will add one bio to the pending list for a device and make sure
5322  * the work struct is scheduled.
5323  */
5324 static noinline void btrfs_schedule_bio(struct btrfs_root *root,
5325 					struct btrfs_device *device,
5326 					int rw, struct bio *bio)
5327 {
5328 	int should_queue = 1;
5329 	struct btrfs_pending_bios *pending_bios;
5330 
5331 	if (device->missing || !device->bdev) {
5332 		bio_endio(bio, -EIO);
5333 		return;
5334 	}
5335 
5336 	/* don't bother with additional async steps for reads, right now */
5337 	if (!(rw & REQ_WRITE)) {
5338 		bio_get(bio);
5339 		btrfsic_submit_bio(rw, bio);
5340 		bio_put(bio);
5341 		return;
5342 	}
5343 
5344 	/*
5345 	 * nr_async_bios allows us to reliably return congestion to the
5346 	 * higher layers.  Otherwise, the async bio makes it appear we have
5347 	 * made progress against dirty pages when we've really just put it
5348 	 * on a queue for later
5349 	 */
5350 	atomic_inc(&root->fs_info->nr_async_bios);
5351 	WARN_ON(bio->bi_next);
5352 	bio->bi_next = NULL;
5353 	bio->bi_rw |= rw;
5354 
5355 	spin_lock(&device->io_lock);
5356 	if (bio->bi_rw & REQ_SYNC)
5357 		pending_bios = &device->pending_sync_bios;
5358 	else
5359 		pending_bios = &device->pending_bios;
5360 
5361 	if (pending_bios->tail)
5362 		pending_bios->tail->bi_next = bio;
5363 
5364 	pending_bios->tail = bio;
5365 	if (!pending_bios->head)
5366 		pending_bios->head = bio;
5367 	if (device->running_pending)
5368 		should_queue = 0;
5369 
5370 	spin_unlock(&device->io_lock);
5371 
5372 	if (should_queue)
5373 		btrfs_queue_worker(&root->fs_info->submit_workers,
5374 				   &device->work);
5375 }
5376 
5377 static int bio_size_ok(struct block_device *bdev, struct bio *bio,
5378 		       sector_t sector)
5379 {
5380 	struct bio_vec *prev;
5381 	struct request_queue *q = bdev_get_queue(bdev);
5382 	unsigned short max_sectors = queue_max_sectors(q);
5383 	struct bvec_merge_data bvm = {
5384 		.bi_bdev = bdev,
5385 		.bi_sector = sector,
5386 		.bi_rw = bio->bi_rw,
5387 	};
5388 
5389 	if (bio->bi_vcnt == 0) {
5390 		WARN_ON(1);
5391 		return 1;
5392 	}
5393 
5394 	prev = &bio->bi_io_vec[bio->bi_vcnt - 1];
5395 	if (bio_sectors(bio) > max_sectors)
5396 		return 0;
5397 
5398 	if (!q->merge_bvec_fn)
5399 		return 1;
5400 
5401 	bvm.bi_size = bio->bi_size - prev->bv_len;
5402 	if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len)
5403 		return 0;
5404 	return 1;
5405 }
5406 
5407 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5408 			      struct bio *bio, u64 physical, int dev_nr,
5409 			      int rw, int async)
5410 {
5411 	struct btrfs_device *dev = bbio->stripes[dev_nr].dev;
5412 
5413 	bio->bi_private = bbio;
5414 	btrfs_io_bio(bio)->stripe_index = dev_nr;
5415 	bio->bi_end_io = btrfs_end_bio;
5416 	bio->bi_sector = physical >> 9;
5417 #ifdef DEBUG
5418 	{
5419 		struct rcu_string *name;
5420 
5421 		rcu_read_lock();
5422 		name = rcu_dereference(dev->name);
5423 		pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu "
5424 			 "(%s id %llu), size=%u\n", rw,
5425 			 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev,
5426 			 name->str, dev->devid, bio->bi_size);
5427 		rcu_read_unlock();
5428 	}
5429 #endif
5430 	bio->bi_bdev = dev->bdev;
5431 	if (async)
5432 		btrfs_schedule_bio(root, dev, rw, bio);
5433 	else
5434 		btrfsic_submit_bio(rw, bio);
5435 }
5436 
5437 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio,
5438 			      struct bio *first_bio, struct btrfs_device *dev,
5439 			      int dev_nr, int rw, int async)
5440 {
5441 	struct bio_vec *bvec = first_bio->bi_io_vec;
5442 	struct bio *bio;
5443 	int nr_vecs = bio_get_nr_vecs(dev->bdev);
5444 	u64 physical = bbio->stripes[dev_nr].physical;
5445 
5446 again:
5447 	bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS);
5448 	if (!bio)
5449 		return -ENOMEM;
5450 
5451 	while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) {
5452 		if (bio_add_page(bio, bvec->bv_page, bvec->bv_len,
5453 				 bvec->bv_offset) < bvec->bv_len) {
5454 			u64 len = bio->bi_size;
5455 
5456 			atomic_inc(&bbio->stripes_pending);
5457 			submit_stripe_bio(root, bbio, bio, physical, dev_nr,
5458 					  rw, async);
5459 			physical += len;
5460 			goto again;
5461 		}
5462 		bvec++;
5463 	}
5464 
5465 	submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async);
5466 	return 0;
5467 }
5468 
5469 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical)
5470 {
5471 	atomic_inc(&bbio->error);
5472 	if (atomic_dec_and_test(&bbio->stripes_pending)) {
5473 		bio->bi_private = bbio->private;
5474 		bio->bi_end_io = bbio->end_io;
5475 		btrfs_io_bio(bio)->mirror_num = bbio->mirror_num;
5476 		bio->bi_sector = logical >> 9;
5477 		kfree(bbio);
5478 		bio_endio(bio, -EIO);
5479 	}
5480 }
5481 
5482 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
5483 		  int mirror_num, int async_submit)
5484 {
5485 	struct btrfs_device *dev;
5486 	struct bio *first_bio = bio;
5487 	u64 logical = (u64)bio->bi_sector << 9;
5488 	u64 length = 0;
5489 	u64 map_length;
5490 	u64 *raid_map = NULL;
5491 	int ret;
5492 	int dev_nr = 0;
5493 	int total_devs = 1;
5494 	struct btrfs_bio *bbio = NULL;
5495 
5496 	length = bio->bi_size;
5497 	map_length = length;
5498 
5499 	ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio,
5500 			      mirror_num, &raid_map);
5501 	if (ret) /* -ENOMEM */
5502 		return ret;
5503 
5504 	total_devs = bbio->num_stripes;
5505 	bbio->orig_bio = first_bio;
5506 	bbio->private = first_bio->bi_private;
5507 	bbio->end_io = first_bio->bi_end_io;
5508 	atomic_set(&bbio->stripes_pending, bbio->num_stripes);
5509 
5510 	if (raid_map) {
5511 		/* In this case, map_length has been set to the length of
5512 		   a single stripe; not the whole write */
5513 		if (rw & WRITE) {
5514 			return raid56_parity_write(root, bio, bbio,
5515 						   raid_map, map_length);
5516 		} else {
5517 			return raid56_parity_recover(root, bio, bbio,
5518 						     raid_map, map_length,
5519 						     mirror_num);
5520 		}
5521 	}
5522 
5523 	if (map_length < length) {
5524 		btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu",
5525 			logical, length, map_length);
5526 		BUG();
5527 	}
5528 
5529 	while (dev_nr < total_devs) {
5530 		dev = bbio->stripes[dev_nr].dev;
5531 		if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) {
5532 			bbio_error(bbio, first_bio, logical);
5533 			dev_nr++;
5534 			continue;
5535 		}
5536 
5537 		/*
5538 		 * Check and see if we're ok with this bio based on it's size
5539 		 * and offset with the given device.
5540 		 */
5541 		if (!bio_size_ok(dev->bdev, first_bio,
5542 				 bbio->stripes[dev_nr].physical >> 9)) {
5543 			ret = breakup_stripe_bio(root, bbio, first_bio, dev,
5544 						 dev_nr, rw, async_submit);
5545 			BUG_ON(ret);
5546 			dev_nr++;
5547 			continue;
5548 		}
5549 
5550 		if (dev_nr < total_devs - 1) {
5551 			bio = btrfs_bio_clone(first_bio, GFP_NOFS);
5552 			BUG_ON(!bio); /* -ENOMEM */
5553 		} else {
5554 			bio = first_bio;
5555 		}
5556 
5557 		submit_stripe_bio(root, bbio, bio,
5558 				  bbio->stripes[dev_nr].physical, dev_nr, rw,
5559 				  async_submit);
5560 		dev_nr++;
5561 	}
5562 	return 0;
5563 }
5564 
5565 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid,
5566 				       u8 *uuid, u8 *fsid)
5567 {
5568 	struct btrfs_device *device;
5569 	struct btrfs_fs_devices *cur_devices;
5570 
5571 	cur_devices = fs_info->fs_devices;
5572 	while (cur_devices) {
5573 		if (!fsid ||
5574 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5575 			device = __find_device(&cur_devices->devices,
5576 					       devid, uuid);
5577 			if (device)
5578 				return device;
5579 		}
5580 		cur_devices = cur_devices->seed;
5581 	}
5582 	return NULL;
5583 }
5584 
5585 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
5586 					    u64 devid, u8 *dev_uuid)
5587 {
5588 	struct btrfs_device *device;
5589 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
5590 
5591 	device = btrfs_alloc_device(NULL, &devid, dev_uuid);
5592 	if (IS_ERR(device))
5593 		return NULL;
5594 
5595 	list_add(&device->dev_list, &fs_devices->devices);
5596 	device->fs_devices = fs_devices;
5597 	fs_devices->num_devices++;
5598 
5599 	device->missing = 1;
5600 	fs_devices->missing_devices++;
5601 
5602 	return device;
5603 }
5604 
5605 /**
5606  * btrfs_alloc_device - allocate struct btrfs_device
5607  * @fs_info:	used only for generating a new devid, can be NULL if
5608  *		devid is provided (i.e. @devid != NULL).
5609  * @devid:	a pointer to devid for this device.  If NULL a new devid
5610  *		is generated.
5611  * @uuid:	a pointer to UUID for this device.  If NULL a new UUID
5612  *		is generated.
5613  *
5614  * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR()
5615  * on error.  Returned struct is not linked onto any lists and can be
5616  * destroyed with kfree() right away.
5617  */
5618 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info,
5619 					const u64 *devid,
5620 					const u8 *uuid)
5621 {
5622 	struct btrfs_device *dev;
5623 	u64 tmp;
5624 
5625 	if (!devid && !fs_info) {
5626 		WARN_ON(1);
5627 		return ERR_PTR(-EINVAL);
5628 	}
5629 
5630 	dev = __alloc_device();
5631 	if (IS_ERR(dev))
5632 		return dev;
5633 
5634 	if (devid)
5635 		tmp = *devid;
5636 	else {
5637 		int ret;
5638 
5639 		ret = find_next_devid(fs_info, &tmp);
5640 		if (ret) {
5641 			kfree(dev);
5642 			return ERR_PTR(ret);
5643 		}
5644 	}
5645 	dev->devid = tmp;
5646 
5647 	if (uuid)
5648 		memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE);
5649 	else
5650 		generate_random_uuid(dev->uuid);
5651 
5652 	dev->work.func = pending_bios_fn;
5653 
5654 	return dev;
5655 }
5656 
5657 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
5658 			  struct extent_buffer *leaf,
5659 			  struct btrfs_chunk *chunk)
5660 {
5661 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
5662 	struct map_lookup *map;
5663 	struct extent_map *em;
5664 	u64 logical;
5665 	u64 length;
5666 	u64 devid;
5667 	u8 uuid[BTRFS_UUID_SIZE];
5668 	int num_stripes;
5669 	int ret;
5670 	int i;
5671 
5672 	logical = key->offset;
5673 	length = btrfs_chunk_length(leaf, chunk);
5674 
5675 	read_lock(&map_tree->map_tree.lock);
5676 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
5677 	read_unlock(&map_tree->map_tree.lock);
5678 
5679 	/* already mapped? */
5680 	if (em && em->start <= logical && em->start + em->len > logical) {
5681 		free_extent_map(em);
5682 		return 0;
5683 	} else if (em) {
5684 		free_extent_map(em);
5685 	}
5686 
5687 	em = alloc_extent_map();
5688 	if (!em)
5689 		return -ENOMEM;
5690 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
5691 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
5692 	if (!map) {
5693 		free_extent_map(em);
5694 		return -ENOMEM;
5695 	}
5696 
5697 	em->bdev = (struct block_device *)map;
5698 	em->start = logical;
5699 	em->len = length;
5700 	em->orig_start = 0;
5701 	em->block_start = 0;
5702 	em->block_len = em->len;
5703 
5704 	map->num_stripes = num_stripes;
5705 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
5706 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
5707 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
5708 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
5709 	map->type = btrfs_chunk_type(leaf, chunk);
5710 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
5711 	for (i = 0; i < num_stripes; i++) {
5712 		map->stripes[i].physical =
5713 			btrfs_stripe_offset_nr(leaf, chunk, i);
5714 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
5715 		read_extent_buffer(leaf, uuid, (unsigned long)
5716 				   btrfs_stripe_dev_uuid_nr(chunk, i),
5717 				   BTRFS_UUID_SIZE);
5718 		map->stripes[i].dev = btrfs_find_device(root->fs_info, devid,
5719 							uuid, NULL);
5720 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
5721 			kfree(map);
5722 			free_extent_map(em);
5723 			return -EIO;
5724 		}
5725 		if (!map->stripes[i].dev) {
5726 			map->stripes[i].dev =
5727 				add_missing_dev(root, devid, uuid);
5728 			if (!map->stripes[i].dev) {
5729 				kfree(map);
5730 				free_extent_map(em);
5731 				return -EIO;
5732 			}
5733 		}
5734 		map->stripes[i].dev->in_fs_metadata = 1;
5735 	}
5736 
5737 	write_lock(&map_tree->map_tree.lock);
5738 	ret = add_extent_mapping(&map_tree->map_tree, em, 0);
5739 	write_unlock(&map_tree->map_tree.lock);
5740 	BUG_ON(ret); /* Tree corruption */
5741 	free_extent_map(em);
5742 
5743 	return 0;
5744 }
5745 
5746 static void fill_device_from_item(struct extent_buffer *leaf,
5747 				 struct btrfs_dev_item *dev_item,
5748 				 struct btrfs_device *device)
5749 {
5750 	unsigned long ptr;
5751 
5752 	device->devid = btrfs_device_id(leaf, dev_item);
5753 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
5754 	device->total_bytes = device->disk_total_bytes;
5755 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
5756 	device->type = btrfs_device_type(leaf, dev_item);
5757 	device->io_align = btrfs_device_io_align(leaf, dev_item);
5758 	device->io_width = btrfs_device_io_width(leaf, dev_item);
5759 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
5760 	WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID);
5761 	device->is_tgtdev_for_dev_replace = 0;
5762 
5763 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
5764 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
5765 }
5766 
5767 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
5768 {
5769 	struct btrfs_fs_devices *fs_devices;
5770 	int ret;
5771 
5772 	BUG_ON(!mutex_is_locked(&uuid_mutex));
5773 
5774 	fs_devices = root->fs_info->fs_devices->seed;
5775 	while (fs_devices) {
5776 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
5777 			ret = 0;
5778 			goto out;
5779 		}
5780 		fs_devices = fs_devices->seed;
5781 	}
5782 
5783 	fs_devices = find_fsid(fsid);
5784 	if (!fs_devices) {
5785 		ret = -ENOENT;
5786 		goto out;
5787 	}
5788 
5789 	fs_devices = clone_fs_devices(fs_devices);
5790 	if (IS_ERR(fs_devices)) {
5791 		ret = PTR_ERR(fs_devices);
5792 		goto out;
5793 	}
5794 
5795 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
5796 				   root->fs_info->bdev_holder);
5797 	if (ret) {
5798 		free_fs_devices(fs_devices);
5799 		goto out;
5800 	}
5801 
5802 	if (!fs_devices->seeding) {
5803 		__btrfs_close_devices(fs_devices);
5804 		free_fs_devices(fs_devices);
5805 		ret = -EINVAL;
5806 		goto out;
5807 	}
5808 
5809 	fs_devices->seed = root->fs_info->fs_devices->seed;
5810 	root->fs_info->fs_devices->seed = fs_devices;
5811 out:
5812 	return ret;
5813 }
5814 
5815 static int read_one_dev(struct btrfs_root *root,
5816 			struct extent_buffer *leaf,
5817 			struct btrfs_dev_item *dev_item)
5818 {
5819 	struct btrfs_device *device;
5820 	u64 devid;
5821 	int ret;
5822 	u8 fs_uuid[BTRFS_UUID_SIZE];
5823 	u8 dev_uuid[BTRFS_UUID_SIZE];
5824 
5825 	devid = btrfs_device_id(leaf, dev_item);
5826 	read_extent_buffer(leaf, dev_uuid,
5827 			   (unsigned long)btrfs_device_uuid(dev_item),
5828 			   BTRFS_UUID_SIZE);
5829 	read_extent_buffer(leaf, fs_uuid,
5830 			   (unsigned long)btrfs_device_fsid(dev_item),
5831 			   BTRFS_UUID_SIZE);
5832 
5833 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
5834 		ret = open_seed_devices(root, fs_uuid);
5835 		if (ret && !btrfs_test_opt(root, DEGRADED))
5836 			return ret;
5837 	}
5838 
5839 	device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid);
5840 	if (!device || !device->bdev) {
5841 		if (!btrfs_test_opt(root, DEGRADED))
5842 			return -EIO;
5843 
5844 		if (!device) {
5845 			btrfs_warn(root->fs_info, "devid %llu missing", devid);
5846 			device = add_missing_dev(root, devid, dev_uuid);
5847 			if (!device)
5848 				return -ENOMEM;
5849 		} else if (!device->missing) {
5850 			/*
5851 			 * this happens when a device that was properly setup
5852 			 * in the device info lists suddenly goes bad.
5853 			 * device->bdev is NULL, and so we have to set
5854 			 * device->missing to one here
5855 			 */
5856 			root->fs_info->fs_devices->missing_devices++;
5857 			device->missing = 1;
5858 		}
5859 	}
5860 
5861 	if (device->fs_devices != root->fs_info->fs_devices) {
5862 		BUG_ON(device->writeable);
5863 		if (device->generation !=
5864 		    btrfs_device_generation(leaf, dev_item))
5865 			return -EINVAL;
5866 	}
5867 
5868 	fill_device_from_item(leaf, dev_item, device);
5869 	device->in_fs_metadata = 1;
5870 	if (device->writeable && !device->is_tgtdev_for_dev_replace) {
5871 		device->fs_devices->total_rw_bytes += device->total_bytes;
5872 		spin_lock(&root->fs_info->free_chunk_lock);
5873 		root->fs_info->free_chunk_space += device->total_bytes -
5874 			device->bytes_used;
5875 		spin_unlock(&root->fs_info->free_chunk_lock);
5876 	}
5877 	ret = 0;
5878 	return ret;
5879 }
5880 
5881 int btrfs_read_sys_array(struct btrfs_root *root)
5882 {
5883 	struct btrfs_super_block *super_copy = root->fs_info->super_copy;
5884 	struct extent_buffer *sb;
5885 	struct btrfs_disk_key *disk_key;
5886 	struct btrfs_chunk *chunk;
5887 	u8 *ptr;
5888 	unsigned long sb_ptr;
5889 	int ret = 0;
5890 	u32 num_stripes;
5891 	u32 array_size;
5892 	u32 len = 0;
5893 	u32 cur;
5894 	struct btrfs_key key;
5895 
5896 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
5897 					  BTRFS_SUPER_INFO_SIZE);
5898 	if (!sb)
5899 		return -ENOMEM;
5900 	btrfs_set_buffer_uptodate(sb);
5901 	btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0);
5902 	/*
5903 	 * The sb extent buffer is artifical and just used to read the system array.
5904 	 * btrfs_set_buffer_uptodate() call does not properly mark all it's
5905 	 * pages up-to-date when the page is larger: extent does not cover the
5906 	 * whole page and consequently check_page_uptodate does not find all
5907 	 * the page's extents up-to-date (the hole beyond sb),
5908 	 * write_extent_buffer then triggers a WARN_ON.
5909 	 *
5910 	 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle,
5911 	 * but sb spans only this function. Add an explicit SetPageUptodate call
5912 	 * to silence the warning eg. on PowerPC 64.
5913 	 */
5914 	if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE)
5915 		SetPageUptodate(sb->pages[0]);
5916 
5917 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
5918 	array_size = btrfs_super_sys_array_size(super_copy);
5919 
5920 	ptr = super_copy->sys_chunk_array;
5921 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
5922 	cur = 0;
5923 
5924 	while (cur < array_size) {
5925 		disk_key = (struct btrfs_disk_key *)ptr;
5926 		btrfs_disk_key_to_cpu(&key, disk_key);
5927 
5928 		len = sizeof(*disk_key); ptr += len;
5929 		sb_ptr += len;
5930 		cur += len;
5931 
5932 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
5933 			chunk = (struct btrfs_chunk *)sb_ptr;
5934 			ret = read_one_chunk(root, &key, sb, chunk);
5935 			if (ret)
5936 				break;
5937 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
5938 			len = btrfs_chunk_item_size(num_stripes);
5939 		} else {
5940 			ret = -EIO;
5941 			break;
5942 		}
5943 		ptr += len;
5944 		sb_ptr += len;
5945 		cur += len;
5946 	}
5947 	free_extent_buffer(sb);
5948 	return ret;
5949 }
5950 
5951 int btrfs_read_chunk_tree(struct btrfs_root *root)
5952 {
5953 	struct btrfs_path *path;
5954 	struct extent_buffer *leaf;
5955 	struct btrfs_key key;
5956 	struct btrfs_key found_key;
5957 	int ret;
5958 	int slot;
5959 
5960 	root = root->fs_info->chunk_root;
5961 
5962 	path = btrfs_alloc_path();
5963 	if (!path)
5964 		return -ENOMEM;
5965 
5966 	mutex_lock(&uuid_mutex);
5967 	lock_chunks(root);
5968 
5969 	/*
5970 	 * Read all device items, and then all the chunk items. All
5971 	 * device items are found before any chunk item (their object id
5972 	 * is smaller than the lowest possible object id for a chunk
5973 	 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID).
5974 	 */
5975 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
5976 	key.offset = 0;
5977 	key.type = 0;
5978 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
5979 	if (ret < 0)
5980 		goto error;
5981 	while (1) {
5982 		leaf = path->nodes[0];
5983 		slot = path->slots[0];
5984 		if (slot >= btrfs_header_nritems(leaf)) {
5985 			ret = btrfs_next_leaf(root, path);
5986 			if (ret == 0)
5987 				continue;
5988 			if (ret < 0)
5989 				goto error;
5990 			break;
5991 		}
5992 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
5993 		if (found_key.type == BTRFS_DEV_ITEM_KEY) {
5994 			struct btrfs_dev_item *dev_item;
5995 			dev_item = btrfs_item_ptr(leaf, slot,
5996 						  struct btrfs_dev_item);
5997 			ret = read_one_dev(root, leaf, dev_item);
5998 			if (ret)
5999 				goto error;
6000 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
6001 			struct btrfs_chunk *chunk;
6002 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
6003 			ret = read_one_chunk(root, &found_key, leaf, chunk);
6004 			if (ret)
6005 				goto error;
6006 		}
6007 		path->slots[0]++;
6008 	}
6009 	ret = 0;
6010 error:
6011 	unlock_chunks(root);
6012 	mutex_unlock(&uuid_mutex);
6013 
6014 	btrfs_free_path(path);
6015 	return ret;
6016 }
6017 
6018 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info)
6019 {
6020 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6021 	struct btrfs_device *device;
6022 
6023 	mutex_lock(&fs_devices->device_list_mutex);
6024 	list_for_each_entry(device, &fs_devices->devices, dev_list)
6025 		device->dev_root = fs_info->dev_root;
6026 	mutex_unlock(&fs_devices->device_list_mutex);
6027 }
6028 
6029 static void __btrfs_reset_dev_stats(struct btrfs_device *dev)
6030 {
6031 	int i;
6032 
6033 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6034 		btrfs_dev_stat_reset(dev, i);
6035 }
6036 
6037 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info)
6038 {
6039 	struct btrfs_key key;
6040 	struct btrfs_key found_key;
6041 	struct btrfs_root *dev_root = fs_info->dev_root;
6042 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6043 	struct extent_buffer *eb;
6044 	int slot;
6045 	int ret = 0;
6046 	struct btrfs_device *device;
6047 	struct btrfs_path *path = NULL;
6048 	int i;
6049 
6050 	path = btrfs_alloc_path();
6051 	if (!path) {
6052 		ret = -ENOMEM;
6053 		goto out;
6054 	}
6055 
6056 	mutex_lock(&fs_devices->device_list_mutex);
6057 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6058 		int item_size;
6059 		struct btrfs_dev_stats_item *ptr;
6060 
6061 		key.objectid = 0;
6062 		key.type = BTRFS_DEV_STATS_KEY;
6063 		key.offset = device->devid;
6064 		ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0);
6065 		if (ret) {
6066 			__btrfs_reset_dev_stats(device);
6067 			device->dev_stats_valid = 1;
6068 			btrfs_release_path(path);
6069 			continue;
6070 		}
6071 		slot = path->slots[0];
6072 		eb = path->nodes[0];
6073 		btrfs_item_key_to_cpu(eb, &found_key, slot);
6074 		item_size = btrfs_item_size_nr(eb, slot);
6075 
6076 		ptr = btrfs_item_ptr(eb, slot,
6077 				     struct btrfs_dev_stats_item);
6078 
6079 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6080 			if (item_size >= (1 + i) * sizeof(__le64))
6081 				btrfs_dev_stat_set(device, i,
6082 					btrfs_dev_stats_value(eb, ptr, i));
6083 			else
6084 				btrfs_dev_stat_reset(device, i);
6085 		}
6086 
6087 		device->dev_stats_valid = 1;
6088 		btrfs_dev_stat_print_on_load(device);
6089 		btrfs_release_path(path);
6090 	}
6091 	mutex_unlock(&fs_devices->device_list_mutex);
6092 
6093 out:
6094 	btrfs_free_path(path);
6095 	return ret < 0 ? ret : 0;
6096 }
6097 
6098 static int update_dev_stat_item(struct btrfs_trans_handle *trans,
6099 				struct btrfs_root *dev_root,
6100 				struct btrfs_device *device)
6101 {
6102 	struct btrfs_path *path;
6103 	struct btrfs_key key;
6104 	struct extent_buffer *eb;
6105 	struct btrfs_dev_stats_item *ptr;
6106 	int ret;
6107 	int i;
6108 
6109 	key.objectid = 0;
6110 	key.type = BTRFS_DEV_STATS_KEY;
6111 	key.offset = device->devid;
6112 
6113 	path = btrfs_alloc_path();
6114 	BUG_ON(!path);
6115 	ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1);
6116 	if (ret < 0) {
6117 		printk_in_rcu(KERN_WARNING "btrfs: error %d while searching for dev_stats item for device %s!\n",
6118 			      ret, rcu_str_deref(device->name));
6119 		goto out;
6120 	}
6121 
6122 	if (ret == 0 &&
6123 	    btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) {
6124 		/* need to delete old one and insert a new one */
6125 		ret = btrfs_del_item(trans, dev_root, path);
6126 		if (ret != 0) {
6127 			printk_in_rcu(KERN_WARNING "btrfs: delete too small dev_stats item for device %s failed %d!\n",
6128 				      rcu_str_deref(device->name), ret);
6129 			goto out;
6130 		}
6131 		ret = 1;
6132 	}
6133 
6134 	if (ret == 1) {
6135 		/* need to insert a new item */
6136 		btrfs_release_path(path);
6137 		ret = btrfs_insert_empty_item(trans, dev_root, path,
6138 					      &key, sizeof(*ptr));
6139 		if (ret < 0) {
6140 			printk_in_rcu(KERN_WARNING "btrfs: insert dev_stats item for device %s failed %d!\n",
6141 				      rcu_str_deref(device->name), ret);
6142 			goto out;
6143 		}
6144 	}
6145 
6146 	eb = path->nodes[0];
6147 	ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item);
6148 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6149 		btrfs_set_dev_stats_value(eb, ptr, i,
6150 					  btrfs_dev_stat_read(device, i));
6151 	btrfs_mark_buffer_dirty(eb);
6152 
6153 out:
6154 	btrfs_free_path(path);
6155 	return ret;
6156 }
6157 
6158 /*
6159  * called from commit_transaction. Writes all changed device stats to disk.
6160  */
6161 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans,
6162 			struct btrfs_fs_info *fs_info)
6163 {
6164 	struct btrfs_root *dev_root = fs_info->dev_root;
6165 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
6166 	struct btrfs_device *device;
6167 	int ret = 0;
6168 
6169 	mutex_lock(&fs_devices->device_list_mutex);
6170 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
6171 		if (!device->dev_stats_valid || !device->dev_stats_dirty)
6172 			continue;
6173 
6174 		ret = update_dev_stat_item(trans, dev_root, device);
6175 		if (!ret)
6176 			device->dev_stats_dirty = 0;
6177 	}
6178 	mutex_unlock(&fs_devices->device_list_mutex);
6179 
6180 	return ret;
6181 }
6182 
6183 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index)
6184 {
6185 	btrfs_dev_stat_inc(dev, index);
6186 	btrfs_dev_stat_print_on_error(dev);
6187 }
6188 
6189 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev)
6190 {
6191 	if (!dev->dev_stats_valid)
6192 		return;
6193 	printk_ratelimited_in_rcu(KERN_ERR
6194 			   "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6195 			   rcu_str_deref(dev->name),
6196 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6197 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6198 			   btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6199 			   btrfs_dev_stat_read(dev,
6200 					       BTRFS_DEV_STAT_CORRUPTION_ERRS),
6201 			   btrfs_dev_stat_read(dev,
6202 					       BTRFS_DEV_STAT_GENERATION_ERRS));
6203 }
6204 
6205 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev)
6206 {
6207 	int i;
6208 
6209 	for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6210 		if (btrfs_dev_stat_read(dev, i) != 0)
6211 			break;
6212 	if (i == BTRFS_DEV_STAT_VALUES_MAX)
6213 		return; /* all values == 0, suppress message */
6214 
6215 	printk_in_rcu(KERN_INFO "btrfs: bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n",
6216 	       rcu_str_deref(dev->name),
6217 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS),
6218 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS),
6219 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS),
6220 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS),
6221 	       btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS));
6222 }
6223 
6224 int btrfs_get_dev_stats(struct btrfs_root *root,
6225 			struct btrfs_ioctl_get_dev_stats *stats)
6226 {
6227 	struct btrfs_device *dev;
6228 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6229 	int i;
6230 
6231 	mutex_lock(&fs_devices->device_list_mutex);
6232 	dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL);
6233 	mutex_unlock(&fs_devices->device_list_mutex);
6234 
6235 	if (!dev) {
6236 		printk(KERN_WARNING
6237 		       "btrfs: get dev_stats failed, device not found\n");
6238 		return -ENODEV;
6239 	} else if (!dev->dev_stats_valid) {
6240 		printk(KERN_WARNING
6241 		       "btrfs: get dev_stats failed, not yet valid\n");
6242 		return -ENODEV;
6243 	} else if (stats->flags & BTRFS_DEV_STATS_RESET) {
6244 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) {
6245 			if (stats->nr_items > i)
6246 				stats->values[i] =
6247 					btrfs_dev_stat_read_and_reset(dev, i);
6248 			else
6249 				btrfs_dev_stat_reset(dev, i);
6250 		}
6251 	} else {
6252 		for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++)
6253 			if (stats->nr_items > i)
6254 				stats->values[i] = btrfs_dev_stat_read(dev, i);
6255 	}
6256 	if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX)
6257 		stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX;
6258 	return 0;
6259 }
6260 
6261 int btrfs_scratch_superblock(struct btrfs_device *device)
6262 {
6263 	struct buffer_head *bh;
6264 	struct btrfs_super_block *disk_super;
6265 
6266 	bh = btrfs_read_dev_super(device->bdev);
6267 	if (!bh)
6268 		return -EINVAL;
6269 	disk_super = (struct btrfs_super_block *)bh->b_data;
6270 
6271 	memset(&disk_super->magic, 0, sizeof(disk_super->magic));
6272 	set_buffer_dirty(bh);
6273 	sync_dirty_buffer(bh);
6274 	brelse(bh);
6275 
6276 	return 0;
6277 }
6278