xref: /openbmc/linux/fs/btrfs/volumes.c (revision 9134d02bc0af4a8747d448d1f811ec5f8eb96df6)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 #include <linux/sched.h>
19 #include <linux/bio.h>
20 #include <linux/buffer_head.h>
21 #include <linux/blkdev.h>
22 #include <linux/random.h>
23 #include <linux/iocontext.h>
24 #include <asm/div64.h>
25 #include "compat.h"
26 #include "ctree.h"
27 #include "extent_map.h"
28 #include "disk-io.h"
29 #include "transaction.h"
30 #include "print-tree.h"
31 #include "volumes.h"
32 #include "async-thread.h"
33 
34 struct map_lookup {
35 	u64 type;
36 	int io_align;
37 	int io_width;
38 	int stripe_len;
39 	int sector_size;
40 	int num_stripes;
41 	int sub_stripes;
42 	struct btrfs_bio_stripe stripes[];
43 };
44 
45 static int init_first_rw_device(struct btrfs_trans_handle *trans,
46 				struct btrfs_root *root,
47 				struct btrfs_device *device);
48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root);
49 
50 #define map_lookup_size(n) (sizeof(struct map_lookup) + \
51 			    (sizeof(struct btrfs_bio_stripe) * (n)))
52 
53 static DEFINE_MUTEX(uuid_mutex);
54 static LIST_HEAD(fs_uuids);
55 
56 void btrfs_lock_volumes(void)
57 {
58 	mutex_lock(&uuid_mutex);
59 }
60 
61 void btrfs_unlock_volumes(void)
62 {
63 	mutex_unlock(&uuid_mutex);
64 }
65 
66 static void lock_chunks(struct btrfs_root *root)
67 {
68 	mutex_lock(&root->fs_info->chunk_mutex);
69 }
70 
71 static void unlock_chunks(struct btrfs_root *root)
72 {
73 	mutex_unlock(&root->fs_info->chunk_mutex);
74 }
75 
76 static void free_fs_devices(struct btrfs_fs_devices *fs_devices)
77 {
78 	struct btrfs_device *device;
79 	WARN_ON(fs_devices->opened);
80 	while (!list_empty(&fs_devices->devices)) {
81 		device = list_entry(fs_devices->devices.next,
82 				    struct btrfs_device, dev_list);
83 		list_del(&device->dev_list);
84 		kfree(device->name);
85 		kfree(device);
86 	}
87 	kfree(fs_devices);
88 }
89 
90 int btrfs_cleanup_fs_uuids(void)
91 {
92 	struct btrfs_fs_devices *fs_devices;
93 
94 	while (!list_empty(&fs_uuids)) {
95 		fs_devices = list_entry(fs_uuids.next,
96 					struct btrfs_fs_devices, list);
97 		list_del(&fs_devices->list);
98 		free_fs_devices(fs_devices);
99 	}
100 	return 0;
101 }
102 
103 static noinline struct btrfs_device *__find_device(struct list_head *head,
104 						   u64 devid, u8 *uuid)
105 {
106 	struct btrfs_device *dev;
107 
108 	list_for_each_entry(dev, head, dev_list) {
109 		if (dev->devid == devid &&
110 		    (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) {
111 			return dev;
112 		}
113 	}
114 	return NULL;
115 }
116 
117 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid)
118 {
119 	struct btrfs_fs_devices *fs_devices;
120 
121 	list_for_each_entry(fs_devices, &fs_uuids, list) {
122 		if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0)
123 			return fs_devices;
124 	}
125 	return NULL;
126 }
127 
128 static void requeue_list(struct btrfs_pending_bios *pending_bios,
129 			struct bio *head, struct bio *tail)
130 {
131 
132 	struct bio *old_head;
133 
134 	old_head = pending_bios->head;
135 	pending_bios->head = head;
136 	if (pending_bios->tail)
137 		tail->bi_next = old_head;
138 	else
139 		pending_bios->tail = tail;
140 }
141 
142 /*
143  * we try to collect pending bios for a device so we don't get a large
144  * number of procs sending bios down to the same device.  This greatly
145  * improves the schedulers ability to collect and merge the bios.
146  *
147  * But, it also turns into a long list of bios to process and that is sure
148  * to eventually make the worker thread block.  The solution here is to
149  * make some progress and then put this work struct back at the end of
150  * the list if the block device is congested.  This way, multiple devices
151  * can make progress from a single worker thread.
152  */
153 static noinline int run_scheduled_bios(struct btrfs_device *device)
154 {
155 	struct bio *pending;
156 	struct backing_dev_info *bdi;
157 	struct btrfs_fs_info *fs_info;
158 	struct btrfs_pending_bios *pending_bios;
159 	struct bio *tail;
160 	struct bio *cur;
161 	int again = 0;
162 	unsigned long num_run;
163 	unsigned long num_sync_run;
164 	unsigned long batch_run = 0;
165 	unsigned long limit;
166 	unsigned long last_waited = 0;
167 	int force_reg = 0;
168 
169 	bdi = blk_get_backing_dev_info(device->bdev);
170 	fs_info = device->dev_root->fs_info;
171 	limit = btrfs_async_submit_limit(fs_info);
172 	limit = limit * 2 / 3;
173 
174 	/* we want to make sure that every time we switch from the sync
175 	 * list to the normal list, we unplug
176 	 */
177 	num_sync_run = 0;
178 
179 loop:
180 	spin_lock(&device->io_lock);
181 
182 loop_lock:
183 	num_run = 0;
184 
185 	/* take all the bios off the list at once and process them
186 	 * later on (without the lock held).  But, remember the
187 	 * tail and other pointers so the bios can be properly reinserted
188 	 * into the list if we hit congestion
189 	 */
190 	if (!force_reg && device->pending_sync_bios.head) {
191 		pending_bios = &device->pending_sync_bios;
192 		force_reg = 1;
193 	} else {
194 		pending_bios = &device->pending_bios;
195 		force_reg = 0;
196 	}
197 
198 	pending = pending_bios->head;
199 	tail = pending_bios->tail;
200 	WARN_ON(pending && !tail);
201 
202 	/*
203 	 * if pending was null this time around, no bios need processing
204 	 * at all and we can stop.  Otherwise it'll loop back up again
205 	 * and do an additional check so no bios are missed.
206 	 *
207 	 * device->running_pending is used to synchronize with the
208 	 * schedule_bio code.
209 	 */
210 	if (device->pending_sync_bios.head == NULL &&
211 	    device->pending_bios.head == NULL) {
212 		again = 0;
213 		device->running_pending = 0;
214 	} else {
215 		again = 1;
216 		device->running_pending = 1;
217 	}
218 
219 	pending_bios->head = NULL;
220 	pending_bios->tail = NULL;
221 
222 	spin_unlock(&device->io_lock);
223 
224 	/*
225 	 * if we're doing the regular priority list, make sure we unplug
226 	 * for any high prio bios we've sent down
227 	 */
228 	if (pending_bios == &device->pending_bios && num_sync_run > 0) {
229 		num_sync_run = 0;
230 		blk_run_backing_dev(bdi, NULL);
231 	}
232 
233 	while (pending) {
234 
235 		rmb();
236 		/* we want to work on both lists, but do more bios on the
237 		 * sync list than the regular list
238 		 */
239 		if ((num_run > 32 &&
240 		    pending_bios != &device->pending_sync_bios &&
241 		    device->pending_sync_bios.head) ||
242 		   (num_run > 64 && pending_bios == &device->pending_sync_bios &&
243 		    device->pending_bios.head)) {
244 			spin_lock(&device->io_lock);
245 			requeue_list(pending_bios, pending, tail);
246 			goto loop_lock;
247 		}
248 
249 		cur = pending;
250 		pending = pending->bi_next;
251 		cur->bi_next = NULL;
252 		atomic_dec(&fs_info->nr_async_bios);
253 
254 		if (atomic_read(&fs_info->nr_async_bios) < limit &&
255 		    waitqueue_active(&fs_info->async_submit_wait))
256 			wake_up(&fs_info->async_submit_wait);
257 
258 		BUG_ON(atomic_read(&cur->bi_cnt) == 0);
259 		submit_bio(cur->bi_rw, cur);
260 		num_run++;
261 		batch_run++;
262 
263 		if (bio_sync(cur))
264 			num_sync_run++;
265 
266 		if (need_resched()) {
267 			if (num_sync_run) {
268 				blk_run_backing_dev(bdi, NULL);
269 				num_sync_run = 0;
270 			}
271 			cond_resched();
272 		}
273 
274 		/*
275 		 * we made progress, there is more work to do and the bdi
276 		 * is now congested.  Back off and let other work structs
277 		 * run instead
278 		 */
279 		if (pending && bdi_write_congested(bdi) && batch_run > 32 &&
280 		    fs_info->fs_devices->open_devices > 1) {
281 			struct io_context *ioc;
282 
283 			ioc = current->io_context;
284 
285 			/*
286 			 * the main goal here is that we don't want to
287 			 * block if we're going to be able to submit
288 			 * more requests without blocking.
289 			 *
290 			 * This code does two great things, it pokes into
291 			 * the elevator code from a filesystem _and_
292 			 * it makes assumptions about how batching works.
293 			 */
294 			if (ioc && ioc->nr_batch_requests > 0 &&
295 			    time_before(jiffies, ioc->last_waited + HZ/50UL) &&
296 			    (last_waited == 0 ||
297 			     ioc->last_waited == last_waited)) {
298 				/*
299 				 * we want to go through our batch of
300 				 * requests and stop.  So, we copy out
301 				 * the ioc->last_waited time and test
302 				 * against it before looping
303 				 */
304 				last_waited = ioc->last_waited;
305 				if (need_resched()) {
306 					if (num_sync_run) {
307 						blk_run_backing_dev(bdi, NULL);
308 						num_sync_run = 0;
309 					}
310 					cond_resched();
311 				}
312 				continue;
313 			}
314 			spin_lock(&device->io_lock);
315 			requeue_list(pending_bios, pending, tail);
316 			device->running_pending = 1;
317 
318 			spin_unlock(&device->io_lock);
319 			btrfs_requeue_work(&device->work);
320 			goto done;
321 		}
322 	}
323 
324 	if (num_sync_run) {
325 		num_sync_run = 0;
326 		blk_run_backing_dev(bdi, NULL);
327 	}
328 
329 	cond_resched();
330 	if (again)
331 		goto loop;
332 
333 	spin_lock(&device->io_lock);
334 	if (device->pending_bios.head || device->pending_sync_bios.head)
335 		goto loop_lock;
336 	spin_unlock(&device->io_lock);
337 
338 	/*
339 	 * IO has already been through a long path to get here.  Checksumming,
340 	 * async helper threads, perhaps compression.  We've done a pretty
341 	 * good job of collecting a batch of IO and should just unplug
342 	 * the device right away.
343 	 *
344 	 * This will help anyone who is waiting on the IO, they might have
345 	 * already unplugged, but managed to do so before the bio they
346 	 * cared about found its way down here.
347 	 */
348 	blk_run_backing_dev(bdi, NULL);
349 done:
350 	return 0;
351 }
352 
353 static void pending_bios_fn(struct btrfs_work *work)
354 {
355 	struct btrfs_device *device;
356 
357 	device = container_of(work, struct btrfs_device, work);
358 	run_scheduled_bios(device);
359 }
360 
361 static noinline int device_list_add(const char *path,
362 			   struct btrfs_super_block *disk_super,
363 			   u64 devid, struct btrfs_fs_devices **fs_devices_ret)
364 {
365 	struct btrfs_device *device;
366 	struct btrfs_fs_devices *fs_devices;
367 	u64 found_transid = btrfs_super_generation(disk_super);
368 
369 	fs_devices = find_fsid(disk_super->fsid);
370 	if (!fs_devices) {
371 		fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
372 		if (!fs_devices)
373 			return -ENOMEM;
374 		INIT_LIST_HEAD(&fs_devices->devices);
375 		INIT_LIST_HEAD(&fs_devices->alloc_list);
376 		list_add(&fs_devices->list, &fs_uuids);
377 		memcpy(fs_devices->fsid, disk_super->fsid, BTRFS_FSID_SIZE);
378 		fs_devices->latest_devid = devid;
379 		fs_devices->latest_trans = found_transid;
380 		mutex_init(&fs_devices->device_list_mutex);
381 		device = NULL;
382 	} else {
383 		device = __find_device(&fs_devices->devices, devid,
384 				       disk_super->dev_item.uuid);
385 	}
386 	if (!device) {
387 		if (fs_devices->opened)
388 			return -EBUSY;
389 
390 		device = kzalloc(sizeof(*device), GFP_NOFS);
391 		if (!device) {
392 			/* we can safely leave the fs_devices entry around */
393 			return -ENOMEM;
394 		}
395 		device->devid = devid;
396 		device->work.func = pending_bios_fn;
397 		memcpy(device->uuid, disk_super->dev_item.uuid,
398 		       BTRFS_UUID_SIZE);
399 		device->barriers = 1;
400 		spin_lock_init(&device->io_lock);
401 		device->name = kstrdup(path, GFP_NOFS);
402 		if (!device->name) {
403 			kfree(device);
404 			return -ENOMEM;
405 		}
406 		INIT_LIST_HEAD(&device->dev_alloc_list);
407 
408 		mutex_lock(&fs_devices->device_list_mutex);
409 		list_add(&device->dev_list, &fs_devices->devices);
410 		mutex_unlock(&fs_devices->device_list_mutex);
411 
412 		device->fs_devices = fs_devices;
413 		fs_devices->num_devices++;
414 	}
415 
416 	if (found_transid > fs_devices->latest_trans) {
417 		fs_devices->latest_devid = devid;
418 		fs_devices->latest_trans = found_transid;
419 	}
420 	*fs_devices_ret = fs_devices;
421 	return 0;
422 }
423 
424 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig)
425 {
426 	struct btrfs_fs_devices *fs_devices;
427 	struct btrfs_device *device;
428 	struct btrfs_device *orig_dev;
429 
430 	fs_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
431 	if (!fs_devices)
432 		return ERR_PTR(-ENOMEM);
433 
434 	INIT_LIST_HEAD(&fs_devices->devices);
435 	INIT_LIST_HEAD(&fs_devices->alloc_list);
436 	INIT_LIST_HEAD(&fs_devices->list);
437 	mutex_init(&fs_devices->device_list_mutex);
438 	fs_devices->latest_devid = orig->latest_devid;
439 	fs_devices->latest_trans = orig->latest_trans;
440 	memcpy(fs_devices->fsid, orig->fsid, sizeof(fs_devices->fsid));
441 
442 	mutex_lock(&orig->device_list_mutex);
443 	list_for_each_entry(orig_dev, &orig->devices, dev_list) {
444 		device = kzalloc(sizeof(*device), GFP_NOFS);
445 		if (!device)
446 			goto error;
447 
448 		device->name = kstrdup(orig_dev->name, GFP_NOFS);
449 		if (!device->name)
450 			goto error;
451 
452 		device->devid = orig_dev->devid;
453 		device->work.func = pending_bios_fn;
454 		memcpy(device->uuid, orig_dev->uuid, sizeof(device->uuid));
455 		device->barriers = 1;
456 		spin_lock_init(&device->io_lock);
457 		INIT_LIST_HEAD(&device->dev_list);
458 		INIT_LIST_HEAD(&device->dev_alloc_list);
459 
460 		list_add(&device->dev_list, &fs_devices->devices);
461 		device->fs_devices = fs_devices;
462 		fs_devices->num_devices++;
463 	}
464 	mutex_unlock(&orig->device_list_mutex);
465 	return fs_devices;
466 error:
467 	mutex_unlock(&orig->device_list_mutex);
468 	free_fs_devices(fs_devices);
469 	return ERR_PTR(-ENOMEM);
470 }
471 
472 int btrfs_close_extra_devices(struct btrfs_fs_devices *fs_devices)
473 {
474 	struct btrfs_device *device, *next;
475 
476 	mutex_lock(&uuid_mutex);
477 again:
478 	mutex_lock(&fs_devices->device_list_mutex);
479 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
480 		if (device->in_fs_metadata)
481 			continue;
482 
483 		if (device->bdev) {
484 			close_bdev_exclusive(device->bdev, device->mode);
485 			device->bdev = NULL;
486 			fs_devices->open_devices--;
487 		}
488 		if (device->writeable) {
489 			list_del_init(&device->dev_alloc_list);
490 			device->writeable = 0;
491 			fs_devices->rw_devices--;
492 		}
493 		list_del_init(&device->dev_list);
494 		fs_devices->num_devices--;
495 		kfree(device->name);
496 		kfree(device);
497 	}
498 	mutex_unlock(&fs_devices->device_list_mutex);
499 
500 	if (fs_devices->seed) {
501 		fs_devices = fs_devices->seed;
502 		goto again;
503 	}
504 
505 	mutex_unlock(&uuid_mutex);
506 	return 0;
507 }
508 
509 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
510 {
511 	struct btrfs_device *device;
512 
513 	if (--fs_devices->opened > 0)
514 		return 0;
515 
516 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
517 		if (device->bdev) {
518 			close_bdev_exclusive(device->bdev, device->mode);
519 			fs_devices->open_devices--;
520 		}
521 		if (device->writeable) {
522 			list_del_init(&device->dev_alloc_list);
523 			fs_devices->rw_devices--;
524 		}
525 
526 		device->bdev = NULL;
527 		device->writeable = 0;
528 		device->in_fs_metadata = 0;
529 	}
530 	WARN_ON(fs_devices->open_devices);
531 	WARN_ON(fs_devices->rw_devices);
532 	fs_devices->opened = 0;
533 	fs_devices->seeding = 0;
534 
535 	return 0;
536 }
537 
538 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices)
539 {
540 	struct btrfs_fs_devices *seed_devices = NULL;
541 	int ret;
542 
543 	mutex_lock(&uuid_mutex);
544 	ret = __btrfs_close_devices(fs_devices);
545 	if (!fs_devices->opened) {
546 		seed_devices = fs_devices->seed;
547 		fs_devices->seed = NULL;
548 	}
549 	mutex_unlock(&uuid_mutex);
550 
551 	while (seed_devices) {
552 		fs_devices = seed_devices;
553 		seed_devices = fs_devices->seed;
554 		__btrfs_close_devices(fs_devices);
555 		free_fs_devices(fs_devices);
556 	}
557 	return ret;
558 }
559 
560 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
561 				fmode_t flags, void *holder)
562 {
563 	struct block_device *bdev;
564 	struct list_head *head = &fs_devices->devices;
565 	struct btrfs_device *device;
566 	struct block_device *latest_bdev = NULL;
567 	struct buffer_head *bh;
568 	struct btrfs_super_block *disk_super;
569 	u64 latest_devid = 0;
570 	u64 latest_transid = 0;
571 	u64 devid;
572 	int seeding = 1;
573 	int ret = 0;
574 
575 	list_for_each_entry(device, head, dev_list) {
576 		if (device->bdev)
577 			continue;
578 		if (!device->name)
579 			continue;
580 
581 		bdev = open_bdev_exclusive(device->name, flags, holder);
582 		if (IS_ERR(bdev)) {
583 			printk(KERN_INFO "open %s failed\n", device->name);
584 			goto error;
585 		}
586 		set_blocksize(bdev, 4096);
587 
588 		bh = btrfs_read_dev_super(bdev);
589 		if (!bh)
590 			goto error_close;
591 
592 		disk_super = (struct btrfs_super_block *)bh->b_data;
593 		devid = le64_to_cpu(disk_super->dev_item.devid);
594 		if (devid != device->devid)
595 			goto error_brelse;
596 
597 		if (memcmp(device->uuid, disk_super->dev_item.uuid,
598 			   BTRFS_UUID_SIZE))
599 			goto error_brelse;
600 
601 		device->generation = btrfs_super_generation(disk_super);
602 		if (!latest_transid || device->generation > latest_transid) {
603 			latest_devid = devid;
604 			latest_transid = device->generation;
605 			latest_bdev = bdev;
606 		}
607 
608 		if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) {
609 			device->writeable = 0;
610 		} else {
611 			device->writeable = !bdev_read_only(bdev);
612 			seeding = 0;
613 		}
614 
615 		device->bdev = bdev;
616 		device->in_fs_metadata = 0;
617 		device->mode = flags;
618 
619 		if (!blk_queue_nonrot(bdev_get_queue(bdev)))
620 			fs_devices->rotating = 1;
621 
622 		fs_devices->open_devices++;
623 		if (device->writeable) {
624 			fs_devices->rw_devices++;
625 			list_add(&device->dev_alloc_list,
626 				 &fs_devices->alloc_list);
627 		}
628 		continue;
629 
630 error_brelse:
631 		brelse(bh);
632 error_close:
633 		close_bdev_exclusive(bdev, FMODE_READ);
634 error:
635 		continue;
636 	}
637 	if (fs_devices->open_devices == 0) {
638 		ret = -EIO;
639 		goto out;
640 	}
641 	fs_devices->seeding = seeding;
642 	fs_devices->opened = 1;
643 	fs_devices->latest_bdev = latest_bdev;
644 	fs_devices->latest_devid = latest_devid;
645 	fs_devices->latest_trans = latest_transid;
646 	fs_devices->total_rw_bytes = 0;
647 out:
648 	return ret;
649 }
650 
651 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices,
652 		       fmode_t flags, void *holder)
653 {
654 	int ret;
655 
656 	mutex_lock(&uuid_mutex);
657 	if (fs_devices->opened) {
658 		fs_devices->opened++;
659 		ret = 0;
660 	} else {
661 		ret = __btrfs_open_devices(fs_devices, flags, holder);
662 	}
663 	mutex_unlock(&uuid_mutex);
664 	return ret;
665 }
666 
667 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder,
668 			  struct btrfs_fs_devices **fs_devices_ret)
669 {
670 	struct btrfs_super_block *disk_super;
671 	struct block_device *bdev;
672 	struct buffer_head *bh;
673 	int ret;
674 	u64 devid;
675 	u64 transid;
676 
677 	mutex_lock(&uuid_mutex);
678 
679 	bdev = open_bdev_exclusive(path, flags, holder);
680 
681 	if (IS_ERR(bdev)) {
682 		ret = PTR_ERR(bdev);
683 		goto error;
684 	}
685 
686 	ret = set_blocksize(bdev, 4096);
687 	if (ret)
688 		goto error_close;
689 	bh = btrfs_read_dev_super(bdev);
690 	if (!bh) {
691 		ret = -EIO;
692 		goto error_close;
693 	}
694 	disk_super = (struct btrfs_super_block *)bh->b_data;
695 	devid = le64_to_cpu(disk_super->dev_item.devid);
696 	transid = btrfs_super_generation(disk_super);
697 	if (disk_super->label[0])
698 		printk(KERN_INFO "device label %s ", disk_super->label);
699 	else {
700 		/* FIXME, make a readl uuid parser */
701 		printk(KERN_INFO "device fsid %llx-%llx ",
702 		       *(unsigned long long *)disk_super->fsid,
703 		       *(unsigned long long *)(disk_super->fsid + 8));
704 	}
705 	printk(KERN_CONT "devid %llu transid %llu %s\n",
706 	       (unsigned long long)devid, (unsigned long long)transid, path);
707 	ret = device_list_add(path, disk_super, devid, fs_devices_ret);
708 
709 	brelse(bh);
710 error_close:
711 	close_bdev_exclusive(bdev, flags);
712 error:
713 	mutex_unlock(&uuid_mutex);
714 	return ret;
715 }
716 
717 /*
718  * this uses a pretty simple search, the expectation is that it is
719  * called very infrequently and that a given device has a small number
720  * of extents
721  */
722 static noinline int find_free_dev_extent(struct btrfs_trans_handle *trans,
723 					 struct btrfs_device *device,
724 					 u64 num_bytes, u64 *start,
725 					 u64 *max_avail)
726 {
727 	struct btrfs_key key;
728 	struct btrfs_root *root = device->dev_root;
729 	struct btrfs_dev_extent *dev_extent = NULL;
730 	struct btrfs_path *path;
731 	u64 hole_size = 0;
732 	u64 last_byte = 0;
733 	u64 search_start = 0;
734 	u64 search_end = device->total_bytes;
735 	int ret;
736 	int slot = 0;
737 	int start_found;
738 	struct extent_buffer *l;
739 
740 	path = btrfs_alloc_path();
741 	if (!path)
742 		return -ENOMEM;
743 	path->reada = 2;
744 	start_found = 0;
745 
746 	/* FIXME use last free of some kind */
747 
748 	/* we don't want to overwrite the superblock on the drive,
749 	 * so we make sure to start at an offset of at least 1MB
750 	 */
751 	search_start = max((u64)1024 * 1024, search_start);
752 
753 	if (root->fs_info->alloc_start + num_bytes <= device->total_bytes)
754 		search_start = max(root->fs_info->alloc_start, search_start);
755 
756 	key.objectid = device->devid;
757 	key.offset = search_start;
758 	key.type = BTRFS_DEV_EXTENT_KEY;
759 	ret = btrfs_search_slot(trans, root, &key, path, 0, 0);
760 	if (ret < 0)
761 		goto error;
762 	if (ret > 0) {
763 		ret = btrfs_previous_item(root, path, key.objectid, key.type);
764 		if (ret < 0)
765 			goto error;
766 		if (ret > 0)
767 			start_found = 1;
768 	}
769 	l = path->nodes[0];
770 	btrfs_item_key_to_cpu(l, &key, path->slots[0]);
771 	while (1) {
772 		l = path->nodes[0];
773 		slot = path->slots[0];
774 		if (slot >= btrfs_header_nritems(l)) {
775 			ret = btrfs_next_leaf(root, path);
776 			if (ret == 0)
777 				continue;
778 			if (ret < 0)
779 				goto error;
780 no_more_items:
781 			if (!start_found) {
782 				if (search_start >= search_end) {
783 					ret = -ENOSPC;
784 					goto error;
785 				}
786 				*start = search_start;
787 				start_found = 1;
788 				goto check_pending;
789 			}
790 			*start = last_byte > search_start ?
791 				last_byte : search_start;
792 			if (search_end <= *start) {
793 				ret = -ENOSPC;
794 				goto error;
795 			}
796 			goto check_pending;
797 		}
798 		btrfs_item_key_to_cpu(l, &key, slot);
799 
800 		if (key.objectid < device->devid)
801 			goto next;
802 
803 		if (key.objectid > device->devid)
804 			goto no_more_items;
805 
806 		if (key.offset >= search_start && key.offset > last_byte &&
807 		    start_found) {
808 			if (last_byte < search_start)
809 				last_byte = search_start;
810 			hole_size = key.offset - last_byte;
811 
812 			if (hole_size > *max_avail)
813 				*max_avail = hole_size;
814 
815 			if (key.offset > last_byte &&
816 			    hole_size >= num_bytes) {
817 				*start = last_byte;
818 				goto check_pending;
819 			}
820 		}
821 		if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY)
822 			goto next;
823 
824 		start_found = 1;
825 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
826 		last_byte = key.offset + btrfs_dev_extent_length(l, dev_extent);
827 next:
828 		path->slots[0]++;
829 		cond_resched();
830 	}
831 check_pending:
832 	/* we have to make sure we didn't find an extent that has already
833 	 * been allocated by the map tree or the original allocation
834 	 */
835 	BUG_ON(*start < search_start);
836 
837 	if (*start + num_bytes > search_end) {
838 		ret = -ENOSPC;
839 		goto error;
840 	}
841 	/* check for pending inserts here */
842 	ret = 0;
843 
844 error:
845 	btrfs_free_path(path);
846 	return ret;
847 }
848 
849 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans,
850 			  struct btrfs_device *device,
851 			  u64 start)
852 {
853 	int ret;
854 	struct btrfs_path *path;
855 	struct btrfs_root *root = device->dev_root;
856 	struct btrfs_key key;
857 	struct btrfs_key found_key;
858 	struct extent_buffer *leaf = NULL;
859 	struct btrfs_dev_extent *extent = NULL;
860 
861 	path = btrfs_alloc_path();
862 	if (!path)
863 		return -ENOMEM;
864 
865 	key.objectid = device->devid;
866 	key.offset = start;
867 	key.type = BTRFS_DEV_EXTENT_KEY;
868 
869 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
870 	if (ret > 0) {
871 		ret = btrfs_previous_item(root, path, key.objectid,
872 					  BTRFS_DEV_EXTENT_KEY);
873 		BUG_ON(ret);
874 		leaf = path->nodes[0];
875 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
876 		extent = btrfs_item_ptr(leaf, path->slots[0],
877 					struct btrfs_dev_extent);
878 		BUG_ON(found_key.offset > start || found_key.offset +
879 		       btrfs_dev_extent_length(leaf, extent) < start);
880 		ret = 0;
881 	} else if (ret == 0) {
882 		leaf = path->nodes[0];
883 		extent = btrfs_item_ptr(leaf, path->slots[0],
884 					struct btrfs_dev_extent);
885 	}
886 	BUG_ON(ret);
887 
888 	if (device->bytes_used > 0)
889 		device->bytes_used -= btrfs_dev_extent_length(leaf, extent);
890 	ret = btrfs_del_item(trans, root, path);
891 	BUG_ON(ret);
892 
893 	btrfs_free_path(path);
894 	return ret;
895 }
896 
897 int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans,
898 			   struct btrfs_device *device,
899 			   u64 chunk_tree, u64 chunk_objectid,
900 			   u64 chunk_offset, u64 start, u64 num_bytes)
901 {
902 	int ret;
903 	struct btrfs_path *path;
904 	struct btrfs_root *root = device->dev_root;
905 	struct btrfs_dev_extent *extent;
906 	struct extent_buffer *leaf;
907 	struct btrfs_key key;
908 
909 	WARN_ON(!device->in_fs_metadata);
910 	path = btrfs_alloc_path();
911 	if (!path)
912 		return -ENOMEM;
913 
914 	key.objectid = device->devid;
915 	key.offset = start;
916 	key.type = BTRFS_DEV_EXTENT_KEY;
917 	ret = btrfs_insert_empty_item(trans, root, path, &key,
918 				      sizeof(*extent));
919 	BUG_ON(ret);
920 
921 	leaf = path->nodes[0];
922 	extent = btrfs_item_ptr(leaf, path->slots[0],
923 				struct btrfs_dev_extent);
924 	btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree);
925 	btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid);
926 	btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset);
927 
928 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
929 		    (unsigned long)btrfs_dev_extent_chunk_tree_uuid(extent),
930 		    BTRFS_UUID_SIZE);
931 
932 	btrfs_set_dev_extent_length(leaf, extent, num_bytes);
933 	btrfs_mark_buffer_dirty(leaf);
934 	btrfs_free_path(path);
935 	return ret;
936 }
937 
938 static noinline int find_next_chunk(struct btrfs_root *root,
939 				    u64 objectid, u64 *offset)
940 {
941 	struct btrfs_path *path;
942 	int ret;
943 	struct btrfs_key key;
944 	struct btrfs_chunk *chunk;
945 	struct btrfs_key found_key;
946 
947 	path = btrfs_alloc_path();
948 	BUG_ON(!path);
949 
950 	key.objectid = objectid;
951 	key.offset = (u64)-1;
952 	key.type = BTRFS_CHUNK_ITEM_KEY;
953 
954 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
955 	if (ret < 0)
956 		goto error;
957 
958 	BUG_ON(ret == 0);
959 
960 	ret = btrfs_previous_item(root, path, 0, BTRFS_CHUNK_ITEM_KEY);
961 	if (ret) {
962 		*offset = 0;
963 	} else {
964 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
965 				      path->slots[0]);
966 		if (found_key.objectid != objectid)
967 			*offset = 0;
968 		else {
969 			chunk = btrfs_item_ptr(path->nodes[0], path->slots[0],
970 					       struct btrfs_chunk);
971 			*offset = found_key.offset +
972 				btrfs_chunk_length(path->nodes[0], chunk);
973 		}
974 	}
975 	ret = 0;
976 error:
977 	btrfs_free_path(path);
978 	return ret;
979 }
980 
981 static noinline int find_next_devid(struct btrfs_root *root, u64 *objectid)
982 {
983 	int ret;
984 	struct btrfs_key key;
985 	struct btrfs_key found_key;
986 	struct btrfs_path *path;
987 
988 	root = root->fs_info->chunk_root;
989 
990 	path = btrfs_alloc_path();
991 	if (!path)
992 		return -ENOMEM;
993 
994 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
995 	key.type = BTRFS_DEV_ITEM_KEY;
996 	key.offset = (u64)-1;
997 
998 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
999 	if (ret < 0)
1000 		goto error;
1001 
1002 	BUG_ON(ret == 0);
1003 
1004 	ret = btrfs_previous_item(root, path, BTRFS_DEV_ITEMS_OBJECTID,
1005 				  BTRFS_DEV_ITEM_KEY);
1006 	if (ret) {
1007 		*objectid = 1;
1008 	} else {
1009 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1010 				      path->slots[0]);
1011 		*objectid = found_key.offset + 1;
1012 	}
1013 	ret = 0;
1014 error:
1015 	btrfs_free_path(path);
1016 	return ret;
1017 }
1018 
1019 /*
1020  * the device information is stored in the chunk root
1021  * the btrfs_device struct should be fully filled in
1022  */
1023 int btrfs_add_device(struct btrfs_trans_handle *trans,
1024 		     struct btrfs_root *root,
1025 		     struct btrfs_device *device)
1026 {
1027 	int ret;
1028 	struct btrfs_path *path;
1029 	struct btrfs_dev_item *dev_item;
1030 	struct extent_buffer *leaf;
1031 	struct btrfs_key key;
1032 	unsigned long ptr;
1033 
1034 	root = root->fs_info->chunk_root;
1035 
1036 	path = btrfs_alloc_path();
1037 	if (!path)
1038 		return -ENOMEM;
1039 
1040 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1041 	key.type = BTRFS_DEV_ITEM_KEY;
1042 	key.offset = device->devid;
1043 
1044 	ret = btrfs_insert_empty_item(trans, root, path, &key,
1045 				      sizeof(*dev_item));
1046 	if (ret)
1047 		goto out;
1048 
1049 	leaf = path->nodes[0];
1050 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1051 
1052 	btrfs_set_device_id(leaf, dev_item, device->devid);
1053 	btrfs_set_device_generation(leaf, dev_item, 0);
1054 	btrfs_set_device_type(leaf, dev_item, device->type);
1055 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1056 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1057 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1058 	btrfs_set_device_total_bytes(leaf, dev_item, device->total_bytes);
1059 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1060 	btrfs_set_device_group(leaf, dev_item, 0);
1061 	btrfs_set_device_seek_speed(leaf, dev_item, 0);
1062 	btrfs_set_device_bandwidth(leaf, dev_item, 0);
1063 	btrfs_set_device_start_offset(leaf, dev_item, 0);
1064 
1065 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
1066 	write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
1067 	ptr = (unsigned long)btrfs_device_fsid(dev_item);
1068 	write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE);
1069 	btrfs_mark_buffer_dirty(leaf);
1070 
1071 	ret = 0;
1072 out:
1073 	btrfs_free_path(path);
1074 	return ret;
1075 }
1076 
1077 static int btrfs_rm_dev_item(struct btrfs_root *root,
1078 			     struct btrfs_device *device)
1079 {
1080 	int ret;
1081 	struct btrfs_path *path;
1082 	struct btrfs_key key;
1083 	struct btrfs_trans_handle *trans;
1084 
1085 	root = root->fs_info->chunk_root;
1086 
1087 	path = btrfs_alloc_path();
1088 	if (!path)
1089 		return -ENOMEM;
1090 
1091 	trans = btrfs_start_transaction(root, 1);
1092 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1093 	key.type = BTRFS_DEV_ITEM_KEY;
1094 	key.offset = device->devid;
1095 	lock_chunks(root);
1096 
1097 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1098 	if (ret < 0)
1099 		goto out;
1100 
1101 	if (ret > 0) {
1102 		ret = -ENOENT;
1103 		goto out;
1104 	}
1105 
1106 	ret = btrfs_del_item(trans, root, path);
1107 	if (ret)
1108 		goto out;
1109 out:
1110 	btrfs_free_path(path);
1111 	unlock_chunks(root);
1112 	btrfs_commit_transaction(trans, root);
1113 	return ret;
1114 }
1115 
1116 int btrfs_rm_device(struct btrfs_root *root, char *device_path)
1117 {
1118 	struct btrfs_device *device;
1119 	struct btrfs_device *next_device;
1120 	struct block_device *bdev;
1121 	struct buffer_head *bh = NULL;
1122 	struct btrfs_super_block *disk_super;
1123 	u64 all_avail;
1124 	u64 devid;
1125 	u64 num_devices;
1126 	u8 *dev_uuid;
1127 	int ret = 0;
1128 
1129 	mutex_lock(&uuid_mutex);
1130 	mutex_lock(&root->fs_info->volume_mutex);
1131 
1132 	all_avail = root->fs_info->avail_data_alloc_bits |
1133 		root->fs_info->avail_system_alloc_bits |
1134 		root->fs_info->avail_metadata_alloc_bits;
1135 
1136 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) &&
1137 	    root->fs_info->fs_devices->rw_devices <= 4) {
1138 		printk(KERN_ERR "btrfs: unable to go below four devices "
1139 		       "on raid10\n");
1140 		ret = -EINVAL;
1141 		goto out;
1142 	}
1143 
1144 	if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) &&
1145 	    root->fs_info->fs_devices->rw_devices <= 2) {
1146 		printk(KERN_ERR "btrfs: unable to go below two "
1147 		       "devices on raid1\n");
1148 		ret = -EINVAL;
1149 		goto out;
1150 	}
1151 
1152 	if (strcmp(device_path, "missing") == 0) {
1153 		struct list_head *devices;
1154 		struct btrfs_device *tmp;
1155 
1156 		device = NULL;
1157 		devices = &root->fs_info->fs_devices->devices;
1158 		mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1159 		list_for_each_entry(tmp, devices, dev_list) {
1160 			if (tmp->in_fs_metadata && !tmp->bdev) {
1161 				device = tmp;
1162 				break;
1163 			}
1164 		}
1165 		mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1166 		bdev = NULL;
1167 		bh = NULL;
1168 		disk_super = NULL;
1169 		if (!device) {
1170 			printk(KERN_ERR "btrfs: no missing devices found to "
1171 			       "remove\n");
1172 			goto out;
1173 		}
1174 	} else {
1175 		bdev = open_bdev_exclusive(device_path, FMODE_READ,
1176 				      root->fs_info->bdev_holder);
1177 		if (IS_ERR(bdev)) {
1178 			ret = PTR_ERR(bdev);
1179 			goto out;
1180 		}
1181 
1182 		set_blocksize(bdev, 4096);
1183 		bh = btrfs_read_dev_super(bdev);
1184 		if (!bh) {
1185 			ret = -EIO;
1186 			goto error_close;
1187 		}
1188 		disk_super = (struct btrfs_super_block *)bh->b_data;
1189 		devid = le64_to_cpu(disk_super->dev_item.devid);
1190 		dev_uuid = disk_super->dev_item.uuid;
1191 		device = btrfs_find_device(root, devid, dev_uuid,
1192 					   disk_super->fsid);
1193 		if (!device) {
1194 			ret = -ENOENT;
1195 			goto error_brelse;
1196 		}
1197 	}
1198 
1199 	if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) {
1200 		printk(KERN_ERR "btrfs: unable to remove the only writeable "
1201 		       "device\n");
1202 		ret = -EINVAL;
1203 		goto error_brelse;
1204 	}
1205 
1206 	if (device->writeable) {
1207 		list_del_init(&device->dev_alloc_list);
1208 		root->fs_info->fs_devices->rw_devices--;
1209 	}
1210 
1211 	ret = btrfs_shrink_device(device, 0);
1212 	if (ret)
1213 		goto error_brelse;
1214 
1215 	ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device);
1216 	if (ret)
1217 		goto error_brelse;
1218 
1219 	device->in_fs_metadata = 0;
1220 
1221 	/*
1222 	 * the device list mutex makes sure that we don't change
1223 	 * the device list while someone else is writing out all
1224 	 * the device supers.
1225 	 */
1226 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1227 	list_del_init(&device->dev_list);
1228 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1229 
1230 	device->fs_devices->num_devices--;
1231 
1232 	next_device = list_entry(root->fs_info->fs_devices->devices.next,
1233 				 struct btrfs_device, dev_list);
1234 	if (device->bdev == root->fs_info->sb->s_bdev)
1235 		root->fs_info->sb->s_bdev = next_device->bdev;
1236 	if (device->bdev == root->fs_info->fs_devices->latest_bdev)
1237 		root->fs_info->fs_devices->latest_bdev = next_device->bdev;
1238 
1239 	if (device->bdev) {
1240 		close_bdev_exclusive(device->bdev, device->mode);
1241 		device->bdev = NULL;
1242 		device->fs_devices->open_devices--;
1243 	}
1244 
1245 	num_devices = btrfs_super_num_devices(&root->fs_info->super_copy) - 1;
1246 	btrfs_set_super_num_devices(&root->fs_info->super_copy, num_devices);
1247 
1248 	if (device->fs_devices->open_devices == 0) {
1249 		struct btrfs_fs_devices *fs_devices;
1250 		fs_devices = root->fs_info->fs_devices;
1251 		while (fs_devices) {
1252 			if (fs_devices->seed == device->fs_devices)
1253 				break;
1254 			fs_devices = fs_devices->seed;
1255 		}
1256 		fs_devices->seed = device->fs_devices->seed;
1257 		device->fs_devices->seed = NULL;
1258 		__btrfs_close_devices(device->fs_devices);
1259 		free_fs_devices(device->fs_devices);
1260 	}
1261 
1262 	/*
1263 	 * at this point, the device is zero sized.  We want to
1264 	 * remove it from the devices list and zero out the old super
1265 	 */
1266 	if (device->writeable) {
1267 		/* make sure this device isn't detected as part of
1268 		 * the FS anymore
1269 		 */
1270 		memset(&disk_super->magic, 0, sizeof(disk_super->magic));
1271 		set_buffer_dirty(bh);
1272 		sync_dirty_buffer(bh);
1273 	}
1274 
1275 	kfree(device->name);
1276 	kfree(device);
1277 	ret = 0;
1278 
1279 error_brelse:
1280 	brelse(bh);
1281 error_close:
1282 	if (bdev)
1283 		close_bdev_exclusive(bdev, FMODE_READ);
1284 out:
1285 	mutex_unlock(&root->fs_info->volume_mutex);
1286 	mutex_unlock(&uuid_mutex);
1287 	return ret;
1288 }
1289 
1290 /*
1291  * does all the dirty work required for changing file system's UUID.
1292  */
1293 static int btrfs_prepare_sprout(struct btrfs_trans_handle *trans,
1294 				struct btrfs_root *root)
1295 {
1296 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
1297 	struct btrfs_fs_devices *old_devices;
1298 	struct btrfs_fs_devices *seed_devices;
1299 	struct btrfs_super_block *disk_super = &root->fs_info->super_copy;
1300 	struct btrfs_device *device;
1301 	u64 super_flags;
1302 
1303 	BUG_ON(!mutex_is_locked(&uuid_mutex));
1304 	if (!fs_devices->seeding)
1305 		return -EINVAL;
1306 
1307 	seed_devices = kzalloc(sizeof(*fs_devices), GFP_NOFS);
1308 	if (!seed_devices)
1309 		return -ENOMEM;
1310 
1311 	old_devices = clone_fs_devices(fs_devices);
1312 	if (IS_ERR(old_devices)) {
1313 		kfree(seed_devices);
1314 		return PTR_ERR(old_devices);
1315 	}
1316 
1317 	list_add(&old_devices->list, &fs_uuids);
1318 
1319 	memcpy(seed_devices, fs_devices, sizeof(*seed_devices));
1320 	seed_devices->opened = 1;
1321 	INIT_LIST_HEAD(&seed_devices->devices);
1322 	INIT_LIST_HEAD(&seed_devices->alloc_list);
1323 	mutex_init(&seed_devices->device_list_mutex);
1324 	list_splice_init(&fs_devices->devices, &seed_devices->devices);
1325 	list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list);
1326 	list_for_each_entry(device, &seed_devices->devices, dev_list) {
1327 		device->fs_devices = seed_devices;
1328 	}
1329 
1330 	fs_devices->seeding = 0;
1331 	fs_devices->num_devices = 0;
1332 	fs_devices->open_devices = 0;
1333 	fs_devices->seed = seed_devices;
1334 
1335 	generate_random_uuid(fs_devices->fsid);
1336 	memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1337 	memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1338 	super_flags = btrfs_super_flags(disk_super) &
1339 		      ~BTRFS_SUPER_FLAG_SEEDING;
1340 	btrfs_set_super_flags(disk_super, super_flags);
1341 
1342 	return 0;
1343 }
1344 
1345 /*
1346  * strore the expected generation for seed devices in device items.
1347  */
1348 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans,
1349 			       struct btrfs_root *root)
1350 {
1351 	struct btrfs_path *path;
1352 	struct extent_buffer *leaf;
1353 	struct btrfs_dev_item *dev_item;
1354 	struct btrfs_device *device;
1355 	struct btrfs_key key;
1356 	u8 fs_uuid[BTRFS_UUID_SIZE];
1357 	u8 dev_uuid[BTRFS_UUID_SIZE];
1358 	u64 devid;
1359 	int ret;
1360 
1361 	path = btrfs_alloc_path();
1362 	if (!path)
1363 		return -ENOMEM;
1364 
1365 	root = root->fs_info->chunk_root;
1366 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1367 	key.offset = 0;
1368 	key.type = BTRFS_DEV_ITEM_KEY;
1369 
1370 	while (1) {
1371 		ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1372 		if (ret < 0)
1373 			goto error;
1374 
1375 		leaf = path->nodes[0];
1376 next_slot:
1377 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
1378 			ret = btrfs_next_leaf(root, path);
1379 			if (ret > 0)
1380 				break;
1381 			if (ret < 0)
1382 				goto error;
1383 			leaf = path->nodes[0];
1384 			btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1385 			btrfs_release_path(root, path);
1386 			continue;
1387 		}
1388 
1389 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1390 		if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID ||
1391 		    key.type != BTRFS_DEV_ITEM_KEY)
1392 			break;
1393 
1394 		dev_item = btrfs_item_ptr(leaf, path->slots[0],
1395 					  struct btrfs_dev_item);
1396 		devid = btrfs_device_id(leaf, dev_item);
1397 		read_extent_buffer(leaf, dev_uuid,
1398 				   (unsigned long)btrfs_device_uuid(dev_item),
1399 				   BTRFS_UUID_SIZE);
1400 		read_extent_buffer(leaf, fs_uuid,
1401 				   (unsigned long)btrfs_device_fsid(dev_item),
1402 				   BTRFS_UUID_SIZE);
1403 		device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
1404 		BUG_ON(!device);
1405 
1406 		if (device->fs_devices->seeding) {
1407 			btrfs_set_device_generation(leaf, dev_item,
1408 						    device->generation);
1409 			btrfs_mark_buffer_dirty(leaf);
1410 		}
1411 
1412 		path->slots[0]++;
1413 		goto next_slot;
1414 	}
1415 	ret = 0;
1416 error:
1417 	btrfs_free_path(path);
1418 	return ret;
1419 }
1420 
1421 int btrfs_init_new_device(struct btrfs_root *root, char *device_path)
1422 {
1423 	struct btrfs_trans_handle *trans;
1424 	struct btrfs_device *device;
1425 	struct block_device *bdev;
1426 	struct list_head *devices;
1427 	struct super_block *sb = root->fs_info->sb;
1428 	u64 total_bytes;
1429 	int seeding_dev = 0;
1430 	int ret = 0;
1431 
1432 	if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding)
1433 		return -EINVAL;
1434 
1435 	bdev = open_bdev_exclusive(device_path, 0, root->fs_info->bdev_holder);
1436 	if (!bdev)
1437 		return -EIO;
1438 
1439 	if (root->fs_info->fs_devices->seeding) {
1440 		seeding_dev = 1;
1441 		down_write(&sb->s_umount);
1442 		mutex_lock(&uuid_mutex);
1443 	}
1444 
1445 	filemap_write_and_wait(bdev->bd_inode->i_mapping);
1446 	mutex_lock(&root->fs_info->volume_mutex);
1447 
1448 	devices = &root->fs_info->fs_devices->devices;
1449 	/*
1450 	 * we have the volume lock, so we don't need the extra
1451 	 * device list mutex while reading the list here.
1452 	 */
1453 	list_for_each_entry(device, devices, dev_list) {
1454 		if (device->bdev == bdev) {
1455 			ret = -EEXIST;
1456 			goto error;
1457 		}
1458 	}
1459 
1460 	device = kzalloc(sizeof(*device), GFP_NOFS);
1461 	if (!device) {
1462 		/* we can safely leave the fs_devices entry around */
1463 		ret = -ENOMEM;
1464 		goto error;
1465 	}
1466 
1467 	device->name = kstrdup(device_path, GFP_NOFS);
1468 	if (!device->name) {
1469 		kfree(device);
1470 		ret = -ENOMEM;
1471 		goto error;
1472 	}
1473 
1474 	ret = find_next_devid(root, &device->devid);
1475 	if (ret) {
1476 		kfree(device);
1477 		goto error;
1478 	}
1479 
1480 	trans = btrfs_start_transaction(root, 1);
1481 	lock_chunks(root);
1482 
1483 	device->barriers = 1;
1484 	device->writeable = 1;
1485 	device->work.func = pending_bios_fn;
1486 	generate_random_uuid(device->uuid);
1487 	spin_lock_init(&device->io_lock);
1488 	device->generation = trans->transid;
1489 	device->io_width = root->sectorsize;
1490 	device->io_align = root->sectorsize;
1491 	device->sector_size = root->sectorsize;
1492 	device->total_bytes = i_size_read(bdev->bd_inode);
1493 	device->disk_total_bytes = device->total_bytes;
1494 	device->dev_root = root->fs_info->dev_root;
1495 	device->bdev = bdev;
1496 	device->in_fs_metadata = 1;
1497 	device->mode = 0;
1498 	set_blocksize(device->bdev, 4096);
1499 
1500 	if (seeding_dev) {
1501 		sb->s_flags &= ~MS_RDONLY;
1502 		ret = btrfs_prepare_sprout(trans, root);
1503 		BUG_ON(ret);
1504 	}
1505 
1506 	device->fs_devices = root->fs_info->fs_devices;
1507 
1508 	/*
1509 	 * we don't want write_supers to jump in here with our device
1510 	 * half setup
1511 	 */
1512 	mutex_lock(&root->fs_info->fs_devices->device_list_mutex);
1513 	list_add(&device->dev_list, &root->fs_info->fs_devices->devices);
1514 	list_add(&device->dev_alloc_list,
1515 		 &root->fs_info->fs_devices->alloc_list);
1516 	root->fs_info->fs_devices->num_devices++;
1517 	root->fs_info->fs_devices->open_devices++;
1518 	root->fs_info->fs_devices->rw_devices++;
1519 	root->fs_info->fs_devices->total_rw_bytes += device->total_bytes;
1520 
1521 	if (!blk_queue_nonrot(bdev_get_queue(bdev)))
1522 		root->fs_info->fs_devices->rotating = 1;
1523 
1524 	total_bytes = btrfs_super_total_bytes(&root->fs_info->super_copy);
1525 	btrfs_set_super_total_bytes(&root->fs_info->super_copy,
1526 				    total_bytes + device->total_bytes);
1527 
1528 	total_bytes = btrfs_super_num_devices(&root->fs_info->super_copy);
1529 	btrfs_set_super_num_devices(&root->fs_info->super_copy,
1530 				    total_bytes + 1);
1531 	mutex_unlock(&root->fs_info->fs_devices->device_list_mutex);
1532 
1533 	if (seeding_dev) {
1534 		ret = init_first_rw_device(trans, root, device);
1535 		BUG_ON(ret);
1536 		ret = btrfs_finish_sprout(trans, root);
1537 		BUG_ON(ret);
1538 	} else {
1539 		ret = btrfs_add_device(trans, root, device);
1540 	}
1541 
1542 	/*
1543 	 * we've got more storage, clear any full flags on the space
1544 	 * infos
1545 	 */
1546 	btrfs_clear_space_info_full(root->fs_info);
1547 
1548 	unlock_chunks(root);
1549 	btrfs_commit_transaction(trans, root);
1550 
1551 	if (seeding_dev) {
1552 		mutex_unlock(&uuid_mutex);
1553 		up_write(&sb->s_umount);
1554 
1555 		ret = btrfs_relocate_sys_chunks(root);
1556 		BUG_ON(ret);
1557 	}
1558 out:
1559 	mutex_unlock(&root->fs_info->volume_mutex);
1560 	return ret;
1561 error:
1562 	close_bdev_exclusive(bdev, 0);
1563 	if (seeding_dev) {
1564 		mutex_unlock(&uuid_mutex);
1565 		up_write(&sb->s_umount);
1566 	}
1567 	goto out;
1568 }
1569 
1570 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans,
1571 					struct btrfs_device *device)
1572 {
1573 	int ret;
1574 	struct btrfs_path *path;
1575 	struct btrfs_root *root;
1576 	struct btrfs_dev_item *dev_item;
1577 	struct extent_buffer *leaf;
1578 	struct btrfs_key key;
1579 
1580 	root = device->dev_root->fs_info->chunk_root;
1581 
1582 	path = btrfs_alloc_path();
1583 	if (!path)
1584 		return -ENOMEM;
1585 
1586 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
1587 	key.type = BTRFS_DEV_ITEM_KEY;
1588 	key.offset = device->devid;
1589 
1590 	ret = btrfs_search_slot(trans, root, &key, path, 0, 1);
1591 	if (ret < 0)
1592 		goto out;
1593 
1594 	if (ret > 0) {
1595 		ret = -ENOENT;
1596 		goto out;
1597 	}
1598 
1599 	leaf = path->nodes[0];
1600 	dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item);
1601 
1602 	btrfs_set_device_id(leaf, dev_item, device->devid);
1603 	btrfs_set_device_type(leaf, dev_item, device->type);
1604 	btrfs_set_device_io_align(leaf, dev_item, device->io_align);
1605 	btrfs_set_device_io_width(leaf, dev_item, device->io_width);
1606 	btrfs_set_device_sector_size(leaf, dev_item, device->sector_size);
1607 	btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes);
1608 	btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used);
1609 	btrfs_mark_buffer_dirty(leaf);
1610 
1611 out:
1612 	btrfs_free_path(path);
1613 	return ret;
1614 }
1615 
1616 static int __btrfs_grow_device(struct btrfs_trans_handle *trans,
1617 		      struct btrfs_device *device, u64 new_size)
1618 {
1619 	struct btrfs_super_block *super_copy =
1620 		&device->dev_root->fs_info->super_copy;
1621 	u64 old_total = btrfs_super_total_bytes(super_copy);
1622 	u64 diff = new_size - device->total_bytes;
1623 
1624 	if (!device->writeable)
1625 		return -EACCES;
1626 	if (new_size <= device->total_bytes)
1627 		return -EINVAL;
1628 
1629 	btrfs_set_super_total_bytes(super_copy, old_total + diff);
1630 	device->fs_devices->total_rw_bytes += diff;
1631 
1632 	device->total_bytes = new_size;
1633 	device->disk_total_bytes = new_size;
1634 	btrfs_clear_space_info_full(device->dev_root->fs_info);
1635 
1636 	return btrfs_update_device(trans, device);
1637 }
1638 
1639 int btrfs_grow_device(struct btrfs_trans_handle *trans,
1640 		      struct btrfs_device *device, u64 new_size)
1641 {
1642 	int ret;
1643 	lock_chunks(device->dev_root);
1644 	ret = __btrfs_grow_device(trans, device, new_size);
1645 	unlock_chunks(device->dev_root);
1646 	return ret;
1647 }
1648 
1649 static int btrfs_free_chunk(struct btrfs_trans_handle *trans,
1650 			    struct btrfs_root *root,
1651 			    u64 chunk_tree, u64 chunk_objectid,
1652 			    u64 chunk_offset)
1653 {
1654 	int ret;
1655 	struct btrfs_path *path;
1656 	struct btrfs_key key;
1657 
1658 	root = root->fs_info->chunk_root;
1659 	path = btrfs_alloc_path();
1660 	if (!path)
1661 		return -ENOMEM;
1662 
1663 	key.objectid = chunk_objectid;
1664 	key.offset = chunk_offset;
1665 	key.type = BTRFS_CHUNK_ITEM_KEY;
1666 
1667 	ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1668 	BUG_ON(ret);
1669 
1670 	ret = btrfs_del_item(trans, root, path);
1671 	BUG_ON(ret);
1672 
1673 	btrfs_free_path(path);
1674 	return 0;
1675 }
1676 
1677 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64
1678 			chunk_offset)
1679 {
1680 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1681 	struct btrfs_disk_key *disk_key;
1682 	struct btrfs_chunk *chunk;
1683 	u8 *ptr;
1684 	int ret = 0;
1685 	u32 num_stripes;
1686 	u32 array_size;
1687 	u32 len = 0;
1688 	u32 cur;
1689 	struct btrfs_key key;
1690 
1691 	array_size = btrfs_super_sys_array_size(super_copy);
1692 
1693 	ptr = super_copy->sys_chunk_array;
1694 	cur = 0;
1695 
1696 	while (cur < array_size) {
1697 		disk_key = (struct btrfs_disk_key *)ptr;
1698 		btrfs_disk_key_to_cpu(&key, disk_key);
1699 
1700 		len = sizeof(*disk_key);
1701 
1702 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
1703 			chunk = (struct btrfs_chunk *)(ptr + len);
1704 			num_stripes = btrfs_stack_chunk_num_stripes(chunk);
1705 			len += btrfs_chunk_item_size(num_stripes);
1706 		} else {
1707 			ret = -EIO;
1708 			break;
1709 		}
1710 		if (key.objectid == chunk_objectid &&
1711 		    key.offset == chunk_offset) {
1712 			memmove(ptr, ptr + len, array_size - (cur + len));
1713 			array_size -= len;
1714 			btrfs_set_super_sys_array_size(super_copy, array_size);
1715 		} else {
1716 			ptr += len;
1717 			cur += len;
1718 		}
1719 	}
1720 	return ret;
1721 }
1722 
1723 static int btrfs_relocate_chunk(struct btrfs_root *root,
1724 			 u64 chunk_tree, u64 chunk_objectid,
1725 			 u64 chunk_offset)
1726 {
1727 	struct extent_map_tree *em_tree;
1728 	struct btrfs_root *extent_root;
1729 	struct btrfs_trans_handle *trans;
1730 	struct extent_map *em;
1731 	struct map_lookup *map;
1732 	int ret;
1733 	int i;
1734 
1735 	root = root->fs_info->chunk_root;
1736 	extent_root = root->fs_info->extent_root;
1737 	em_tree = &root->fs_info->mapping_tree.map_tree;
1738 
1739 	/* step one, relocate all the extents inside this chunk */
1740 	ret = btrfs_relocate_block_group(extent_root, chunk_offset);
1741 	BUG_ON(ret);
1742 
1743 	trans = btrfs_start_transaction(root, 1);
1744 	BUG_ON(!trans);
1745 
1746 	lock_chunks(root);
1747 
1748 	/*
1749 	 * step two, delete the device extents and the
1750 	 * chunk tree entries
1751 	 */
1752 	spin_lock(&em_tree->lock);
1753 	em = lookup_extent_mapping(em_tree, chunk_offset, 1);
1754 	spin_unlock(&em_tree->lock);
1755 
1756 	BUG_ON(em->start > chunk_offset ||
1757 	       em->start + em->len < chunk_offset);
1758 	map = (struct map_lookup *)em->bdev;
1759 
1760 	for (i = 0; i < map->num_stripes; i++) {
1761 		ret = btrfs_free_dev_extent(trans, map->stripes[i].dev,
1762 					    map->stripes[i].physical);
1763 		BUG_ON(ret);
1764 
1765 		if (map->stripes[i].dev) {
1766 			ret = btrfs_update_device(trans, map->stripes[i].dev);
1767 			BUG_ON(ret);
1768 		}
1769 	}
1770 	ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid,
1771 			       chunk_offset);
1772 
1773 	BUG_ON(ret);
1774 
1775 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
1776 		ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset);
1777 		BUG_ON(ret);
1778 	}
1779 
1780 	ret = btrfs_remove_block_group(trans, extent_root, chunk_offset);
1781 	BUG_ON(ret);
1782 
1783 	spin_lock(&em_tree->lock);
1784 	remove_extent_mapping(em_tree, em);
1785 	spin_unlock(&em_tree->lock);
1786 
1787 	kfree(map);
1788 	em->bdev = NULL;
1789 
1790 	/* once for the tree */
1791 	free_extent_map(em);
1792 	/* once for us */
1793 	free_extent_map(em);
1794 
1795 	unlock_chunks(root);
1796 	btrfs_end_transaction(trans, root);
1797 	return 0;
1798 }
1799 
1800 static int btrfs_relocate_sys_chunks(struct btrfs_root *root)
1801 {
1802 	struct btrfs_root *chunk_root = root->fs_info->chunk_root;
1803 	struct btrfs_path *path;
1804 	struct extent_buffer *leaf;
1805 	struct btrfs_chunk *chunk;
1806 	struct btrfs_key key;
1807 	struct btrfs_key found_key;
1808 	u64 chunk_tree = chunk_root->root_key.objectid;
1809 	u64 chunk_type;
1810 	int ret;
1811 
1812 	path = btrfs_alloc_path();
1813 	if (!path)
1814 		return -ENOMEM;
1815 
1816 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1817 	key.offset = (u64)-1;
1818 	key.type = BTRFS_CHUNK_ITEM_KEY;
1819 
1820 	while (1) {
1821 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1822 		if (ret < 0)
1823 			goto error;
1824 		BUG_ON(ret == 0);
1825 
1826 		ret = btrfs_previous_item(chunk_root, path, key.objectid,
1827 					  key.type);
1828 		if (ret < 0)
1829 			goto error;
1830 		if (ret > 0)
1831 			break;
1832 
1833 		leaf = path->nodes[0];
1834 		btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
1835 
1836 		chunk = btrfs_item_ptr(leaf, path->slots[0],
1837 				       struct btrfs_chunk);
1838 		chunk_type = btrfs_chunk_type(leaf, chunk);
1839 		btrfs_release_path(chunk_root, path);
1840 
1841 		if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) {
1842 			ret = btrfs_relocate_chunk(chunk_root, chunk_tree,
1843 						   found_key.objectid,
1844 						   found_key.offset);
1845 			BUG_ON(ret);
1846 		}
1847 
1848 		if (found_key.offset == 0)
1849 			break;
1850 		key.offset = found_key.offset - 1;
1851 	}
1852 	ret = 0;
1853 error:
1854 	btrfs_free_path(path);
1855 	return ret;
1856 }
1857 
1858 static u64 div_factor(u64 num, int factor)
1859 {
1860 	if (factor == 10)
1861 		return num;
1862 	num *= factor;
1863 	do_div(num, 10);
1864 	return num;
1865 }
1866 
1867 int btrfs_balance(struct btrfs_root *dev_root)
1868 {
1869 	int ret;
1870 	struct list_head *devices = &dev_root->fs_info->fs_devices->devices;
1871 	struct btrfs_device *device;
1872 	u64 old_size;
1873 	u64 size_to_free;
1874 	struct btrfs_path *path;
1875 	struct btrfs_key key;
1876 	struct btrfs_chunk *chunk;
1877 	struct btrfs_root *chunk_root = dev_root->fs_info->chunk_root;
1878 	struct btrfs_trans_handle *trans;
1879 	struct btrfs_key found_key;
1880 
1881 	if (dev_root->fs_info->sb->s_flags & MS_RDONLY)
1882 		return -EROFS;
1883 
1884 	mutex_lock(&dev_root->fs_info->volume_mutex);
1885 	dev_root = dev_root->fs_info->dev_root;
1886 
1887 	/* step one make some room on all the devices */
1888 	list_for_each_entry(device, devices, dev_list) {
1889 		old_size = device->total_bytes;
1890 		size_to_free = div_factor(old_size, 1);
1891 		size_to_free = min(size_to_free, (u64)1 * 1024 * 1024);
1892 		if (!device->writeable ||
1893 		    device->total_bytes - device->bytes_used > size_to_free)
1894 			continue;
1895 
1896 		ret = btrfs_shrink_device(device, old_size - size_to_free);
1897 		BUG_ON(ret);
1898 
1899 		trans = btrfs_start_transaction(dev_root, 1);
1900 		BUG_ON(!trans);
1901 
1902 		ret = btrfs_grow_device(trans, device, old_size);
1903 		BUG_ON(ret);
1904 
1905 		btrfs_end_transaction(trans, dev_root);
1906 	}
1907 
1908 	/* step two, relocate all the chunks */
1909 	path = btrfs_alloc_path();
1910 	BUG_ON(!path);
1911 
1912 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
1913 	key.offset = (u64)-1;
1914 	key.type = BTRFS_CHUNK_ITEM_KEY;
1915 
1916 	while (1) {
1917 		ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0);
1918 		if (ret < 0)
1919 			goto error;
1920 
1921 		/*
1922 		 * this shouldn't happen, it means the last relocate
1923 		 * failed
1924 		 */
1925 		if (ret == 0)
1926 			break;
1927 
1928 		ret = btrfs_previous_item(chunk_root, path, 0,
1929 					  BTRFS_CHUNK_ITEM_KEY);
1930 		if (ret)
1931 			break;
1932 
1933 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1934 				      path->slots[0]);
1935 		if (found_key.objectid != key.objectid)
1936 			break;
1937 
1938 		chunk = btrfs_item_ptr(path->nodes[0],
1939 				       path->slots[0],
1940 				       struct btrfs_chunk);
1941 		key.offset = found_key.offset;
1942 		/* chunk zero is special */
1943 		if (key.offset == 0)
1944 			break;
1945 
1946 		btrfs_release_path(chunk_root, path);
1947 		ret = btrfs_relocate_chunk(chunk_root,
1948 					   chunk_root->root_key.objectid,
1949 					   found_key.objectid,
1950 					   found_key.offset);
1951 		BUG_ON(ret);
1952 	}
1953 	ret = 0;
1954 error:
1955 	btrfs_free_path(path);
1956 	mutex_unlock(&dev_root->fs_info->volume_mutex);
1957 	return ret;
1958 }
1959 
1960 /*
1961  * shrinking a device means finding all of the device extents past
1962  * the new size, and then following the back refs to the chunks.
1963  * The chunk relocation code actually frees the device extent
1964  */
1965 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size)
1966 {
1967 	struct btrfs_trans_handle *trans;
1968 	struct btrfs_root *root = device->dev_root;
1969 	struct btrfs_dev_extent *dev_extent = NULL;
1970 	struct btrfs_path *path;
1971 	u64 length;
1972 	u64 chunk_tree;
1973 	u64 chunk_objectid;
1974 	u64 chunk_offset;
1975 	int ret;
1976 	int slot;
1977 	struct extent_buffer *l;
1978 	struct btrfs_key key;
1979 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
1980 	u64 old_total = btrfs_super_total_bytes(super_copy);
1981 	u64 diff = device->total_bytes - new_size;
1982 
1983 	if (new_size >= device->total_bytes)
1984 		return -EINVAL;
1985 
1986 	path = btrfs_alloc_path();
1987 	if (!path)
1988 		return -ENOMEM;
1989 
1990 	trans = btrfs_start_transaction(root, 1);
1991 	if (!trans) {
1992 		ret = -ENOMEM;
1993 		goto done;
1994 	}
1995 
1996 	path->reada = 2;
1997 
1998 	lock_chunks(root);
1999 
2000 	device->total_bytes = new_size;
2001 	if (device->writeable)
2002 		device->fs_devices->total_rw_bytes -= diff;
2003 	unlock_chunks(root);
2004 	btrfs_end_transaction(trans, root);
2005 
2006 	key.objectid = device->devid;
2007 	key.offset = (u64)-1;
2008 	key.type = BTRFS_DEV_EXTENT_KEY;
2009 
2010 	while (1) {
2011 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2012 		if (ret < 0)
2013 			goto done;
2014 
2015 		ret = btrfs_previous_item(root, path, 0, key.type);
2016 		if (ret < 0)
2017 			goto done;
2018 		if (ret) {
2019 			ret = 0;
2020 			break;
2021 		}
2022 
2023 		l = path->nodes[0];
2024 		slot = path->slots[0];
2025 		btrfs_item_key_to_cpu(l, &key, path->slots[0]);
2026 
2027 		if (key.objectid != device->devid)
2028 			break;
2029 
2030 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
2031 		length = btrfs_dev_extent_length(l, dev_extent);
2032 
2033 		if (key.offset + length <= new_size)
2034 			break;
2035 
2036 		chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent);
2037 		chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent);
2038 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
2039 		btrfs_release_path(root, path);
2040 
2041 		ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid,
2042 					   chunk_offset);
2043 		if (ret)
2044 			goto done;
2045 	}
2046 
2047 	/* Shrinking succeeded, else we would be at "done". */
2048 	trans = btrfs_start_transaction(root, 1);
2049 	if (!trans) {
2050 		ret = -ENOMEM;
2051 		goto done;
2052 	}
2053 	lock_chunks(root);
2054 
2055 	device->disk_total_bytes = new_size;
2056 	/* Now btrfs_update_device() will change the on-disk size. */
2057 	ret = btrfs_update_device(trans, device);
2058 	if (ret) {
2059 		unlock_chunks(root);
2060 		btrfs_end_transaction(trans, root);
2061 		goto done;
2062 	}
2063 	WARN_ON(diff > old_total);
2064 	btrfs_set_super_total_bytes(super_copy, old_total - diff);
2065 	unlock_chunks(root);
2066 	btrfs_end_transaction(trans, root);
2067 done:
2068 	btrfs_free_path(path);
2069 	return ret;
2070 }
2071 
2072 static int btrfs_add_system_chunk(struct btrfs_trans_handle *trans,
2073 			   struct btrfs_root *root,
2074 			   struct btrfs_key *key,
2075 			   struct btrfs_chunk *chunk, int item_size)
2076 {
2077 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
2078 	struct btrfs_disk_key disk_key;
2079 	u32 array_size;
2080 	u8 *ptr;
2081 
2082 	array_size = btrfs_super_sys_array_size(super_copy);
2083 	if (array_size + item_size > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE)
2084 		return -EFBIG;
2085 
2086 	ptr = super_copy->sys_chunk_array + array_size;
2087 	btrfs_cpu_key_to_disk(&disk_key, key);
2088 	memcpy(ptr, &disk_key, sizeof(disk_key));
2089 	ptr += sizeof(disk_key);
2090 	memcpy(ptr, chunk, item_size);
2091 	item_size += sizeof(disk_key);
2092 	btrfs_set_super_sys_array_size(super_copy, array_size + item_size);
2093 	return 0;
2094 }
2095 
2096 static noinline u64 chunk_bytes_by_type(u64 type, u64 calc_size,
2097 					int num_stripes, int sub_stripes)
2098 {
2099 	if (type & (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_DUP))
2100 		return calc_size;
2101 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
2102 		return calc_size * (num_stripes / sub_stripes);
2103 	else
2104 		return calc_size * num_stripes;
2105 }
2106 
2107 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2108 			       struct btrfs_root *extent_root,
2109 			       struct map_lookup **map_ret,
2110 			       u64 *num_bytes, u64 *stripe_size,
2111 			       u64 start, u64 type)
2112 {
2113 	struct btrfs_fs_info *info = extent_root->fs_info;
2114 	struct btrfs_device *device = NULL;
2115 	struct btrfs_fs_devices *fs_devices = info->fs_devices;
2116 	struct list_head *cur;
2117 	struct map_lookup *map = NULL;
2118 	struct extent_map_tree *em_tree;
2119 	struct extent_map *em;
2120 	struct list_head private_devs;
2121 	int min_stripe_size = 1 * 1024 * 1024;
2122 	u64 calc_size = 1024 * 1024 * 1024;
2123 	u64 max_chunk_size = calc_size;
2124 	u64 min_free;
2125 	u64 avail;
2126 	u64 max_avail = 0;
2127 	u64 dev_offset;
2128 	int num_stripes = 1;
2129 	int min_stripes = 1;
2130 	int sub_stripes = 0;
2131 	int looped = 0;
2132 	int ret;
2133 	int index;
2134 	int stripe_len = 64 * 1024;
2135 
2136 	if ((type & BTRFS_BLOCK_GROUP_RAID1) &&
2137 	    (type & BTRFS_BLOCK_GROUP_DUP)) {
2138 		WARN_ON(1);
2139 		type &= ~BTRFS_BLOCK_GROUP_DUP;
2140 	}
2141 	if (list_empty(&fs_devices->alloc_list))
2142 		return -ENOSPC;
2143 
2144 	if (type & (BTRFS_BLOCK_GROUP_RAID0)) {
2145 		num_stripes = fs_devices->rw_devices;
2146 		min_stripes = 2;
2147 	}
2148 	if (type & (BTRFS_BLOCK_GROUP_DUP)) {
2149 		num_stripes = 2;
2150 		min_stripes = 2;
2151 	}
2152 	if (type & (BTRFS_BLOCK_GROUP_RAID1)) {
2153 		num_stripes = min_t(u64, 2, fs_devices->rw_devices);
2154 		if (num_stripes < 2)
2155 			return -ENOSPC;
2156 		min_stripes = 2;
2157 	}
2158 	if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2159 		num_stripes = fs_devices->rw_devices;
2160 		if (num_stripes < 4)
2161 			return -ENOSPC;
2162 		num_stripes &= ~(u32)1;
2163 		sub_stripes = 2;
2164 		min_stripes = 4;
2165 	}
2166 
2167 	if (type & BTRFS_BLOCK_GROUP_DATA) {
2168 		max_chunk_size = 10 * calc_size;
2169 		min_stripe_size = 64 * 1024 * 1024;
2170 	} else if (type & BTRFS_BLOCK_GROUP_METADATA) {
2171 		max_chunk_size = 4 * calc_size;
2172 		min_stripe_size = 32 * 1024 * 1024;
2173 	} else if (type & BTRFS_BLOCK_GROUP_SYSTEM) {
2174 		calc_size = 8 * 1024 * 1024;
2175 		max_chunk_size = calc_size * 2;
2176 		min_stripe_size = 1 * 1024 * 1024;
2177 	}
2178 
2179 	/* we don't want a chunk larger than 10% of writeable space */
2180 	max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1),
2181 			     max_chunk_size);
2182 
2183 again:
2184 	max_avail = 0;
2185 	if (!map || map->num_stripes != num_stripes) {
2186 		kfree(map);
2187 		map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
2188 		if (!map)
2189 			return -ENOMEM;
2190 		map->num_stripes = num_stripes;
2191 	}
2192 
2193 	if (calc_size * num_stripes > max_chunk_size) {
2194 		calc_size = max_chunk_size;
2195 		do_div(calc_size, num_stripes);
2196 		do_div(calc_size, stripe_len);
2197 		calc_size *= stripe_len;
2198 	}
2199 	/* we don't want tiny stripes */
2200 	calc_size = max_t(u64, min_stripe_size, calc_size);
2201 
2202 	do_div(calc_size, stripe_len);
2203 	calc_size *= stripe_len;
2204 
2205 	cur = fs_devices->alloc_list.next;
2206 	index = 0;
2207 
2208 	if (type & BTRFS_BLOCK_GROUP_DUP)
2209 		min_free = calc_size * 2;
2210 	else
2211 		min_free = calc_size;
2212 
2213 	/*
2214 	 * we add 1MB because we never use the first 1MB of the device, unless
2215 	 * we've looped, then we are likely allocating the maximum amount of
2216 	 * space left already
2217 	 */
2218 	if (!looped)
2219 		min_free += 1024 * 1024;
2220 
2221 	INIT_LIST_HEAD(&private_devs);
2222 	while (index < num_stripes) {
2223 		device = list_entry(cur, struct btrfs_device, dev_alloc_list);
2224 		BUG_ON(!device->writeable);
2225 		if (device->total_bytes > device->bytes_used)
2226 			avail = device->total_bytes - device->bytes_used;
2227 		else
2228 			avail = 0;
2229 		cur = cur->next;
2230 
2231 		if (device->in_fs_metadata && avail >= min_free) {
2232 			ret = find_free_dev_extent(trans, device,
2233 						   min_free, &dev_offset,
2234 						   &max_avail);
2235 			if (ret == 0) {
2236 				list_move_tail(&device->dev_alloc_list,
2237 					       &private_devs);
2238 				map->stripes[index].dev = device;
2239 				map->stripes[index].physical = dev_offset;
2240 				index++;
2241 				if (type & BTRFS_BLOCK_GROUP_DUP) {
2242 					map->stripes[index].dev = device;
2243 					map->stripes[index].physical =
2244 						dev_offset + calc_size;
2245 					index++;
2246 				}
2247 			}
2248 		} else if (device->in_fs_metadata && avail > max_avail)
2249 			max_avail = avail;
2250 		if (cur == &fs_devices->alloc_list)
2251 			break;
2252 	}
2253 	list_splice(&private_devs, &fs_devices->alloc_list);
2254 	if (index < num_stripes) {
2255 		if (index >= min_stripes) {
2256 			num_stripes = index;
2257 			if (type & (BTRFS_BLOCK_GROUP_RAID10)) {
2258 				num_stripes /= sub_stripes;
2259 				num_stripes *= sub_stripes;
2260 			}
2261 			looped = 1;
2262 			goto again;
2263 		}
2264 		if (!looped && max_avail > 0) {
2265 			looped = 1;
2266 			calc_size = max_avail;
2267 			goto again;
2268 		}
2269 		kfree(map);
2270 		return -ENOSPC;
2271 	}
2272 	map->sector_size = extent_root->sectorsize;
2273 	map->stripe_len = stripe_len;
2274 	map->io_align = stripe_len;
2275 	map->io_width = stripe_len;
2276 	map->type = type;
2277 	map->num_stripes = num_stripes;
2278 	map->sub_stripes = sub_stripes;
2279 
2280 	*map_ret = map;
2281 	*stripe_size = calc_size;
2282 	*num_bytes = chunk_bytes_by_type(type, calc_size,
2283 					 num_stripes, sub_stripes);
2284 
2285 	em = alloc_extent_map(GFP_NOFS);
2286 	if (!em) {
2287 		kfree(map);
2288 		return -ENOMEM;
2289 	}
2290 	em->bdev = (struct block_device *)map;
2291 	em->start = start;
2292 	em->len = *num_bytes;
2293 	em->block_start = 0;
2294 	em->block_len = em->len;
2295 
2296 	em_tree = &extent_root->fs_info->mapping_tree.map_tree;
2297 	spin_lock(&em_tree->lock);
2298 	ret = add_extent_mapping(em_tree, em);
2299 	spin_unlock(&em_tree->lock);
2300 	BUG_ON(ret);
2301 	free_extent_map(em);
2302 
2303 	ret = btrfs_make_block_group(trans, extent_root, 0, type,
2304 				     BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2305 				     start, *num_bytes);
2306 	BUG_ON(ret);
2307 
2308 	index = 0;
2309 	while (index < map->num_stripes) {
2310 		device = map->stripes[index].dev;
2311 		dev_offset = map->stripes[index].physical;
2312 
2313 		ret = btrfs_alloc_dev_extent(trans, device,
2314 				info->chunk_root->root_key.objectid,
2315 				BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2316 				start, dev_offset, calc_size);
2317 		BUG_ON(ret);
2318 		index++;
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 static int __finish_chunk_alloc(struct btrfs_trans_handle *trans,
2325 				struct btrfs_root *extent_root,
2326 				struct map_lookup *map, u64 chunk_offset,
2327 				u64 chunk_size, u64 stripe_size)
2328 {
2329 	u64 dev_offset;
2330 	struct btrfs_key key;
2331 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2332 	struct btrfs_device *device;
2333 	struct btrfs_chunk *chunk;
2334 	struct btrfs_stripe *stripe;
2335 	size_t item_size = btrfs_chunk_item_size(map->num_stripes);
2336 	int index = 0;
2337 	int ret;
2338 
2339 	chunk = kzalloc(item_size, GFP_NOFS);
2340 	if (!chunk)
2341 		return -ENOMEM;
2342 
2343 	index = 0;
2344 	while (index < map->num_stripes) {
2345 		device = map->stripes[index].dev;
2346 		device->bytes_used += stripe_size;
2347 		ret = btrfs_update_device(trans, device);
2348 		BUG_ON(ret);
2349 		index++;
2350 	}
2351 
2352 	index = 0;
2353 	stripe = &chunk->stripe;
2354 	while (index < map->num_stripes) {
2355 		device = map->stripes[index].dev;
2356 		dev_offset = map->stripes[index].physical;
2357 
2358 		btrfs_set_stack_stripe_devid(stripe, device->devid);
2359 		btrfs_set_stack_stripe_offset(stripe, dev_offset);
2360 		memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE);
2361 		stripe++;
2362 		index++;
2363 	}
2364 
2365 	btrfs_set_stack_chunk_length(chunk, chunk_size);
2366 	btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid);
2367 	btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len);
2368 	btrfs_set_stack_chunk_type(chunk, map->type);
2369 	btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes);
2370 	btrfs_set_stack_chunk_io_align(chunk, map->stripe_len);
2371 	btrfs_set_stack_chunk_io_width(chunk, map->stripe_len);
2372 	btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize);
2373 	btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes);
2374 
2375 	key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID;
2376 	key.type = BTRFS_CHUNK_ITEM_KEY;
2377 	key.offset = chunk_offset;
2378 
2379 	ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size);
2380 	BUG_ON(ret);
2381 
2382 	if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) {
2383 		ret = btrfs_add_system_chunk(trans, chunk_root, &key, chunk,
2384 					     item_size);
2385 		BUG_ON(ret);
2386 	}
2387 	kfree(chunk);
2388 	return 0;
2389 }
2390 
2391 /*
2392  * Chunk allocation falls into two parts. The first part does works
2393  * that make the new allocated chunk useable, but not do any operation
2394  * that modifies the chunk tree. The second part does the works that
2395  * require modifying the chunk tree. This division is important for the
2396  * bootstrap process of adding storage to a seed btrfs.
2397  */
2398 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans,
2399 		      struct btrfs_root *extent_root, u64 type)
2400 {
2401 	u64 chunk_offset;
2402 	u64 chunk_size;
2403 	u64 stripe_size;
2404 	struct map_lookup *map;
2405 	struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root;
2406 	int ret;
2407 
2408 	ret = find_next_chunk(chunk_root, BTRFS_FIRST_CHUNK_TREE_OBJECTID,
2409 			      &chunk_offset);
2410 	if (ret)
2411 		return ret;
2412 
2413 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2414 				  &stripe_size, chunk_offset, type);
2415 	if (ret)
2416 		return ret;
2417 
2418 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2419 				   chunk_size, stripe_size);
2420 	BUG_ON(ret);
2421 	return 0;
2422 }
2423 
2424 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans,
2425 					 struct btrfs_root *root,
2426 					 struct btrfs_device *device)
2427 {
2428 	u64 chunk_offset;
2429 	u64 sys_chunk_offset;
2430 	u64 chunk_size;
2431 	u64 sys_chunk_size;
2432 	u64 stripe_size;
2433 	u64 sys_stripe_size;
2434 	u64 alloc_profile;
2435 	struct map_lookup *map;
2436 	struct map_lookup *sys_map;
2437 	struct btrfs_fs_info *fs_info = root->fs_info;
2438 	struct btrfs_root *extent_root = fs_info->extent_root;
2439 	int ret;
2440 
2441 	ret = find_next_chunk(fs_info->chunk_root,
2442 			      BTRFS_FIRST_CHUNK_TREE_OBJECTID, &chunk_offset);
2443 	BUG_ON(ret);
2444 
2445 	alloc_profile = BTRFS_BLOCK_GROUP_METADATA |
2446 			(fs_info->metadata_alloc_profile &
2447 			 fs_info->avail_metadata_alloc_bits);
2448 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2449 
2450 	ret = __btrfs_alloc_chunk(trans, extent_root, &map, &chunk_size,
2451 				  &stripe_size, chunk_offset, alloc_profile);
2452 	BUG_ON(ret);
2453 
2454 	sys_chunk_offset = chunk_offset + chunk_size;
2455 
2456 	alloc_profile = BTRFS_BLOCK_GROUP_SYSTEM |
2457 			(fs_info->system_alloc_profile &
2458 			 fs_info->avail_system_alloc_bits);
2459 	alloc_profile = btrfs_reduce_alloc_profile(root, alloc_profile);
2460 
2461 	ret = __btrfs_alloc_chunk(trans, extent_root, &sys_map,
2462 				  &sys_chunk_size, &sys_stripe_size,
2463 				  sys_chunk_offset, alloc_profile);
2464 	BUG_ON(ret);
2465 
2466 	ret = btrfs_add_device(trans, fs_info->chunk_root, device);
2467 	BUG_ON(ret);
2468 
2469 	/*
2470 	 * Modifying chunk tree needs allocating new blocks from both
2471 	 * system block group and metadata block group. So we only can
2472 	 * do operations require modifying the chunk tree after both
2473 	 * block groups were created.
2474 	 */
2475 	ret = __finish_chunk_alloc(trans, extent_root, map, chunk_offset,
2476 				   chunk_size, stripe_size);
2477 	BUG_ON(ret);
2478 
2479 	ret = __finish_chunk_alloc(trans, extent_root, sys_map,
2480 				   sys_chunk_offset, sys_chunk_size,
2481 				   sys_stripe_size);
2482 	BUG_ON(ret);
2483 	return 0;
2484 }
2485 
2486 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset)
2487 {
2488 	struct extent_map *em;
2489 	struct map_lookup *map;
2490 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
2491 	int readonly = 0;
2492 	int i;
2493 
2494 	spin_lock(&map_tree->map_tree.lock);
2495 	em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1);
2496 	spin_unlock(&map_tree->map_tree.lock);
2497 	if (!em)
2498 		return 1;
2499 
2500 	map = (struct map_lookup *)em->bdev;
2501 	for (i = 0; i < map->num_stripes; i++) {
2502 		if (!map->stripes[i].dev->writeable) {
2503 			readonly = 1;
2504 			break;
2505 		}
2506 	}
2507 	free_extent_map(em);
2508 	return readonly;
2509 }
2510 
2511 void btrfs_mapping_init(struct btrfs_mapping_tree *tree)
2512 {
2513 	extent_map_tree_init(&tree->map_tree, GFP_NOFS);
2514 }
2515 
2516 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree)
2517 {
2518 	struct extent_map *em;
2519 
2520 	while (1) {
2521 		spin_lock(&tree->map_tree.lock);
2522 		em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1);
2523 		if (em)
2524 			remove_extent_mapping(&tree->map_tree, em);
2525 		spin_unlock(&tree->map_tree.lock);
2526 		if (!em)
2527 			break;
2528 		kfree(em->bdev);
2529 		/* once for us */
2530 		free_extent_map(em);
2531 		/* once for the tree */
2532 		free_extent_map(em);
2533 	}
2534 }
2535 
2536 int btrfs_num_copies(struct btrfs_mapping_tree *map_tree, u64 logical, u64 len)
2537 {
2538 	struct extent_map *em;
2539 	struct map_lookup *map;
2540 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2541 	int ret;
2542 
2543 	spin_lock(&em_tree->lock);
2544 	em = lookup_extent_mapping(em_tree, logical, len);
2545 	spin_unlock(&em_tree->lock);
2546 	BUG_ON(!em);
2547 
2548 	BUG_ON(em->start > logical || em->start + em->len < logical);
2549 	map = (struct map_lookup *)em->bdev;
2550 	if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1))
2551 		ret = map->num_stripes;
2552 	else if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2553 		ret = map->sub_stripes;
2554 	else
2555 		ret = 1;
2556 	free_extent_map(em);
2557 	return ret;
2558 }
2559 
2560 static int find_live_mirror(struct map_lookup *map, int first, int num,
2561 			    int optimal)
2562 {
2563 	int i;
2564 	if (map->stripes[optimal].dev->bdev)
2565 		return optimal;
2566 	for (i = first; i < first + num; i++) {
2567 		if (map->stripes[i].dev->bdev)
2568 			return i;
2569 	}
2570 	/* we couldn't find one that doesn't fail.  Just return something
2571 	 * and the io error handling code will clean up eventually
2572 	 */
2573 	return optimal;
2574 }
2575 
2576 static int __btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2577 			     u64 logical, u64 *length,
2578 			     struct btrfs_multi_bio **multi_ret,
2579 			     int mirror_num, struct page *unplug_page)
2580 {
2581 	struct extent_map *em;
2582 	struct map_lookup *map;
2583 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2584 	u64 offset;
2585 	u64 stripe_offset;
2586 	u64 stripe_nr;
2587 	int stripes_allocated = 8;
2588 	int stripes_required = 1;
2589 	int stripe_index;
2590 	int i;
2591 	int num_stripes;
2592 	int max_errors = 0;
2593 	struct btrfs_multi_bio *multi = NULL;
2594 
2595 	if (multi_ret && !(rw & (1 << BIO_RW)))
2596 		stripes_allocated = 1;
2597 again:
2598 	if (multi_ret) {
2599 		multi = kzalloc(btrfs_multi_bio_size(stripes_allocated),
2600 				GFP_NOFS);
2601 		if (!multi)
2602 			return -ENOMEM;
2603 
2604 		atomic_set(&multi->error, 0);
2605 	}
2606 
2607 	spin_lock(&em_tree->lock);
2608 	em = lookup_extent_mapping(em_tree, logical, *length);
2609 	spin_unlock(&em_tree->lock);
2610 
2611 	if (!em && unplug_page)
2612 		return 0;
2613 
2614 	if (!em) {
2615 		printk(KERN_CRIT "unable to find logical %llu len %llu\n",
2616 		       (unsigned long long)logical,
2617 		       (unsigned long long)*length);
2618 		BUG();
2619 	}
2620 
2621 	BUG_ON(em->start > logical || em->start + em->len < logical);
2622 	map = (struct map_lookup *)em->bdev;
2623 	offset = logical - em->start;
2624 
2625 	if (mirror_num > map->num_stripes)
2626 		mirror_num = 0;
2627 
2628 	/* if our multi bio struct is too small, back off and try again */
2629 	if (rw & (1 << BIO_RW)) {
2630 		if (map->type & (BTRFS_BLOCK_GROUP_RAID1 |
2631 				 BTRFS_BLOCK_GROUP_DUP)) {
2632 			stripes_required = map->num_stripes;
2633 			max_errors = 1;
2634 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2635 			stripes_required = map->sub_stripes;
2636 			max_errors = 1;
2637 		}
2638 	}
2639 	if (multi_ret && (rw & (1 << BIO_RW)) &&
2640 	    stripes_allocated < stripes_required) {
2641 		stripes_allocated = map->num_stripes;
2642 		free_extent_map(em);
2643 		kfree(multi);
2644 		goto again;
2645 	}
2646 	stripe_nr = offset;
2647 	/*
2648 	 * stripe_nr counts the total number of stripes we have to stride
2649 	 * to get to this block
2650 	 */
2651 	do_div(stripe_nr, map->stripe_len);
2652 
2653 	stripe_offset = stripe_nr * map->stripe_len;
2654 	BUG_ON(offset < stripe_offset);
2655 
2656 	/* stripe_offset is the offset of this block in its stripe*/
2657 	stripe_offset = offset - stripe_offset;
2658 
2659 	if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1 |
2660 			 BTRFS_BLOCK_GROUP_RAID10 |
2661 			 BTRFS_BLOCK_GROUP_DUP)) {
2662 		/* we limit the length of each bio to what fits in a stripe */
2663 		*length = min_t(u64, em->len - offset,
2664 			      map->stripe_len - stripe_offset);
2665 	} else {
2666 		*length = em->len - offset;
2667 	}
2668 
2669 	if (!multi_ret && !unplug_page)
2670 		goto out;
2671 
2672 	num_stripes = 1;
2673 	stripe_index = 0;
2674 	if (map->type & BTRFS_BLOCK_GROUP_RAID1) {
2675 		if (unplug_page || (rw & (1 << BIO_RW)))
2676 			num_stripes = map->num_stripes;
2677 		else if (mirror_num)
2678 			stripe_index = mirror_num - 1;
2679 		else {
2680 			stripe_index = find_live_mirror(map, 0,
2681 					    map->num_stripes,
2682 					    current->pid % map->num_stripes);
2683 		}
2684 
2685 	} else if (map->type & BTRFS_BLOCK_GROUP_DUP) {
2686 		if (rw & (1 << BIO_RW))
2687 			num_stripes = map->num_stripes;
2688 		else if (mirror_num)
2689 			stripe_index = mirror_num - 1;
2690 
2691 	} else if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2692 		int factor = map->num_stripes / map->sub_stripes;
2693 
2694 		stripe_index = do_div(stripe_nr, factor);
2695 		stripe_index *= map->sub_stripes;
2696 
2697 		if (unplug_page || (rw & (1 << BIO_RW)))
2698 			num_stripes = map->sub_stripes;
2699 		else if (mirror_num)
2700 			stripe_index += mirror_num - 1;
2701 		else {
2702 			stripe_index = find_live_mirror(map, stripe_index,
2703 					      map->sub_stripes, stripe_index +
2704 					      current->pid % map->sub_stripes);
2705 		}
2706 	} else {
2707 		/*
2708 		 * after this do_div call, stripe_nr is the number of stripes
2709 		 * on this device we have to walk to find the data, and
2710 		 * stripe_index is the number of our device in the stripe array
2711 		 */
2712 		stripe_index = do_div(stripe_nr, map->num_stripes);
2713 	}
2714 	BUG_ON(stripe_index >= map->num_stripes);
2715 
2716 	for (i = 0; i < num_stripes; i++) {
2717 		if (unplug_page) {
2718 			struct btrfs_device *device;
2719 			struct backing_dev_info *bdi;
2720 
2721 			device = map->stripes[stripe_index].dev;
2722 			if (device->bdev) {
2723 				bdi = blk_get_backing_dev_info(device->bdev);
2724 				if (bdi->unplug_io_fn)
2725 					bdi->unplug_io_fn(bdi, unplug_page);
2726 			}
2727 		} else {
2728 			multi->stripes[i].physical =
2729 				map->stripes[stripe_index].physical +
2730 				stripe_offset + stripe_nr * map->stripe_len;
2731 			multi->stripes[i].dev = map->stripes[stripe_index].dev;
2732 		}
2733 		stripe_index++;
2734 	}
2735 	if (multi_ret) {
2736 		*multi_ret = multi;
2737 		multi->num_stripes = num_stripes;
2738 		multi->max_errors = max_errors;
2739 	}
2740 out:
2741 	free_extent_map(em);
2742 	return 0;
2743 }
2744 
2745 int btrfs_map_block(struct btrfs_mapping_tree *map_tree, int rw,
2746 		      u64 logical, u64 *length,
2747 		      struct btrfs_multi_bio **multi_ret, int mirror_num)
2748 {
2749 	return __btrfs_map_block(map_tree, rw, logical, length, multi_ret,
2750 				 mirror_num, NULL);
2751 }
2752 
2753 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree,
2754 		     u64 chunk_start, u64 physical, u64 devid,
2755 		     u64 **logical, int *naddrs, int *stripe_len)
2756 {
2757 	struct extent_map_tree *em_tree = &map_tree->map_tree;
2758 	struct extent_map *em;
2759 	struct map_lookup *map;
2760 	u64 *buf;
2761 	u64 bytenr;
2762 	u64 length;
2763 	u64 stripe_nr;
2764 	int i, j, nr = 0;
2765 
2766 	spin_lock(&em_tree->lock);
2767 	em = lookup_extent_mapping(em_tree, chunk_start, 1);
2768 	spin_unlock(&em_tree->lock);
2769 
2770 	BUG_ON(!em || em->start != chunk_start);
2771 	map = (struct map_lookup *)em->bdev;
2772 
2773 	length = em->len;
2774 	if (map->type & BTRFS_BLOCK_GROUP_RAID10)
2775 		do_div(length, map->num_stripes / map->sub_stripes);
2776 	else if (map->type & BTRFS_BLOCK_GROUP_RAID0)
2777 		do_div(length, map->num_stripes);
2778 
2779 	buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS);
2780 	BUG_ON(!buf);
2781 
2782 	for (i = 0; i < map->num_stripes; i++) {
2783 		if (devid && map->stripes[i].dev->devid != devid)
2784 			continue;
2785 		if (map->stripes[i].physical > physical ||
2786 		    map->stripes[i].physical + length <= physical)
2787 			continue;
2788 
2789 		stripe_nr = physical - map->stripes[i].physical;
2790 		do_div(stripe_nr, map->stripe_len);
2791 
2792 		if (map->type & BTRFS_BLOCK_GROUP_RAID10) {
2793 			stripe_nr = stripe_nr * map->num_stripes + i;
2794 			do_div(stripe_nr, map->sub_stripes);
2795 		} else if (map->type & BTRFS_BLOCK_GROUP_RAID0) {
2796 			stripe_nr = stripe_nr * map->num_stripes + i;
2797 		}
2798 		bytenr = chunk_start + stripe_nr * map->stripe_len;
2799 		WARN_ON(nr >= map->num_stripes);
2800 		for (j = 0; j < nr; j++) {
2801 			if (buf[j] == bytenr)
2802 				break;
2803 		}
2804 		if (j == nr) {
2805 			WARN_ON(nr >= map->num_stripes);
2806 			buf[nr++] = bytenr;
2807 		}
2808 	}
2809 
2810 	*logical = buf;
2811 	*naddrs = nr;
2812 	*stripe_len = map->stripe_len;
2813 
2814 	free_extent_map(em);
2815 	return 0;
2816 }
2817 
2818 int btrfs_unplug_page(struct btrfs_mapping_tree *map_tree,
2819 		      u64 logical, struct page *page)
2820 {
2821 	u64 length = PAGE_CACHE_SIZE;
2822 	return __btrfs_map_block(map_tree, READ, logical, &length,
2823 				 NULL, 0, page);
2824 }
2825 
2826 static void end_bio_multi_stripe(struct bio *bio, int err)
2827 {
2828 	struct btrfs_multi_bio *multi = bio->bi_private;
2829 	int is_orig_bio = 0;
2830 
2831 	if (err)
2832 		atomic_inc(&multi->error);
2833 
2834 	if (bio == multi->orig_bio)
2835 		is_orig_bio = 1;
2836 
2837 	if (atomic_dec_and_test(&multi->stripes_pending)) {
2838 		if (!is_orig_bio) {
2839 			bio_put(bio);
2840 			bio = multi->orig_bio;
2841 		}
2842 		bio->bi_private = multi->private;
2843 		bio->bi_end_io = multi->end_io;
2844 		/* only send an error to the higher layers if it is
2845 		 * beyond the tolerance of the multi-bio
2846 		 */
2847 		if (atomic_read(&multi->error) > multi->max_errors) {
2848 			err = -EIO;
2849 		} else if (err) {
2850 			/*
2851 			 * this bio is actually up to date, we didn't
2852 			 * go over the max number of errors
2853 			 */
2854 			set_bit(BIO_UPTODATE, &bio->bi_flags);
2855 			err = 0;
2856 		}
2857 		kfree(multi);
2858 
2859 		bio_endio(bio, err);
2860 	} else if (!is_orig_bio) {
2861 		bio_put(bio);
2862 	}
2863 }
2864 
2865 struct async_sched {
2866 	struct bio *bio;
2867 	int rw;
2868 	struct btrfs_fs_info *info;
2869 	struct btrfs_work work;
2870 };
2871 
2872 /*
2873  * see run_scheduled_bios for a description of why bios are collected for
2874  * async submit.
2875  *
2876  * This will add one bio to the pending list for a device and make sure
2877  * the work struct is scheduled.
2878  */
2879 static noinline int schedule_bio(struct btrfs_root *root,
2880 				 struct btrfs_device *device,
2881 				 int rw, struct bio *bio)
2882 {
2883 	int should_queue = 1;
2884 	struct btrfs_pending_bios *pending_bios;
2885 
2886 	/* don't bother with additional async steps for reads, right now */
2887 	if (!(rw & (1 << BIO_RW))) {
2888 		bio_get(bio);
2889 		submit_bio(rw, bio);
2890 		bio_put(bio);
2891 		return 0;
2892 	}
2893 
2894 	/*
2895 	 * nr_async_bios allows us to reliably return congestion to the
2896 	 * higher layers.  Otherwise, the async bio makes it appear we have
2897 	 * made progress against dirty pages when we've really just put it
2898 	 * on a queue for later
2899 	 */
2900 	atomic_inc(&root->fs_info->nr_async_bios);
2901 	WARN_ON(bio->bi_next);
2902 	bio->bi_next = NULL;
2903 	bio->bi_rw |= rw;
2904 
2905 	spin_lock(&device->io_lock);
2906 	if (bio_sync(bio))
2907 		pending_bios = &device->pending_sync_bios;
2908 	else
2909 		pending_bios = &device->pending_bios;
2910 
2911 	if (pending_bios->tail)
2912 		pending_bios->tail->bi_next = bio;
2913 
2914 	pending_bios->tail = bio;
2915 	if (!pending_bios->head)
2916 		pending_bios->head = bio;
2917 	if (device->running_pending)
2918 		should_queue = 0;
2919 
2920 	spin_unlock(&device->io_lock);
2921 
2922 	if (should_queue)
2923 		btrfs_queue_worker(&root->fs_info->submit_workers,
2924 				   &device->work);
2925 	return 0;
2926 }
2927 
2928 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio,
2929 		  int mirror_num, int async_submit)
2930 {
2931 	struct btrfs_mapping_tree *map_tree;
2932 	struct btrfs_device *dev;
2933 	struct bio *first_bio = bio;
2934 	u64 logical = (u64)bio->bi_sector << 9;
2935 	u64 length = 0;
2936 	u64 map_length;
2937 	struct btrfs_multi_bio *multi = NULL;
2938 	int ret;
2939 	int dev_nr = 0;
2940 	int total_devs = 1;
2941 
2942 	length = bio->bi_size;
2943 	map_tree = &root->fs_info->mapping_tree;
2944 	map_length = length;
2945 
2946 	ret = btrfs_map_block(map_tree, rw, logical, &map_length, &multi,
2947 			      mirror_num);
2948 	BUG_ON(ret);
2949 
2950 	total_devs = multi->num_stripes;
2951 	if (map_length < length) {
2952 		printk(KERN_CRIT "mapping failed logical %llu bio len %llu "
2953 		       "len %llu\n", (unsigned long long)logical,
2954 		       (unsigned long long)length,
2955 		       (unsigned long long)map_length);
2956 		BUG();
2957 	}
2958 	multi->end_io = first_bio->bi_end_io;
2959 	multi->private = first_bio->bi_private;
2960 	multi->orig_bio = first_bio;
2961 	atomic_set(&multi->stripes_pending, multi->num_stripes);
2962 
2963 	while (dev_nr < total_devs) {
2964 		if (total_devs > 1) {
2965 			if (dev_nr < total_devs - 1) {
2966 				bio = bio_clone(first_bio, GFP_NOFS);
2967 				BUG_ON(!bio);
2968 			} else {
2969 				bio = first_bio;
2970 			}
2971 			bio->bi_private = multi;
2972 			bio->bi_end_io = end_bio_multi_stripe;
2973 		}
2974 		bio->bi_sector = multi->stripes[dev_nr].physical >> 9;
2975 		dev = multi->stripes[dev_nr].dev;
2976 		BUG_ON(rw == WRITE && !dev->writeable);
2977 		if (dev && dev->bdev) {
2978 			bio->bi_bdev = dev->bdev;
2979 			if (async_submit)
2980 				schedule_bio(root, dev, rw, bio);
2981 			else
2982 				submit_bio(rw, bio);
2983 		} else {
2984 			bio->bi_bdev = root->fs_info->fs_devices->latest_bdev;
2985 			bio->bi_sector = logical >> 9;
2986 			bio_endio(bio, -EIO);
2987 		}
2988 		dev_nr++;
2989 	}
2990 	if (total_devs == 1)
2991 		kfree(multi);
2992 	return 0;
2993 }
2994 
2995 struct btrfs_device *btrfs_find_device(struct btrfs_root *root, u64 devid,
2996 				       u8 *uuid, u8 *fsid)
2997 {
2998 	struct btrfs_device *device;
2999 	struct btrfs_fs_devices *cur_devices;
3000 
3001 	cur_devices = root->fs_info->fs_devices;
3002 	while (cur_devices) {
3003 		if (!fsid ||
3004 		    !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3005 			device = __find_device(&cur_devices->devices,
3006 					       devid, uuid);
3007 			if (device)
3008 				return device;
3009 		}
3010 		cur_devices = cur_devices->seed;
3011 	}
3012 	return NULL;
3013 }
3014 
3015 static struct btrfs_device *add_missing_dev(struct btrfs_root *root,
3016 					    u64 devid, u8 *dev_uuid)
3017 {
3018 	struct btrfs_device *device;
3019 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
3020 
3021 	device = kzalloc(sizeof(*device), GFP_NOFS);
3022 	if (!device)
3023 		return NULL;
3024 	list_add(&device->dev_list,
3025 		 &fs_devices->devices);
3026 	device->barriers = 1;
3027 	device->dev_root = root->fs_info->dev_root;
3028 	device->devid = devid;
3029 	device->work.func = pending_bios_fn;
3030 	device->fs_devices = fs_devices;
3031 	fs_devices->num_devices++;
3032 	spin_lock_init(&device->io_lock);
3033 	INIT_LIST_HEAD(&device->dev_alloc_list);
3034 	memcpy(device->uuid, dev_uuid, BTRFS_UUID_SIZE);
3035 	return device;
3036 }
3037 
3038 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key,
3039 			  struct extent_buffer *leaf,
3040 			  struct btrfs_chunk *chunk)
3041 {
3042 	struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree;
3043 	struct map_lookup *map;
3044 	struct extent_map *em;
3045 	u64 logical;
3046 	u64 length;
3047 	u64 devid;
3048 	u8 uuid[BTRFS_UUID_SIZE];
3049 	int num_stripes;
3050 	int ret;
3051 	int i;
3052 
3053 	logical = key->offset;
3054 	length = btrfs_chunk_length(leaf, chunk);
3055 
3056 	spin_lock(&map_tree->map_tree.lock);
3057 	em = lookup_extent_mapping(&map_tree->map_tree, logical, 1);
3058 	spin_unlock(&map_tree->map_tree.lock);
3059 
3060 	/* already mapped? */
3061 	if (em && em->start <= logical && em->start + em->len > logical) {
3062 		free_extent_map(em);
3063 		return 0;
3064 	} else if (em) {
3065 		free_extent_map(em);
3066 	}
3067 
3068 	em = alloc_extent_map(GFP_NOFS);
3069 	if (!em)
3070 		return -ENOMEM;
3071 	num_stripes = btrfs_chunk_num_stripes(leaf, chunk);
3072 	map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS);
3073 	if (!map) {
3074 		free_extent_map(em);
3075 		return -ENOMEM;
3076 	}
3077 
3078 	em->bdev = (struct block_device *)map;
3079 	em->start = logical;
3080 	em->len = length;
3081 	em->block_start = 0;
3082 	em->block_len = em->len;
3083 
3084 	map->num_stripes = num_stripes;
3085 	map->io_width = btrfs_chunk_io_width(leaf, chunk);
3086 	map->io_align = btrfs_chunk_io_align(leaf, chunk);
3087 	map->sector_size = btrfs_chunk_sector_size(leaf, chunk);
3088 	map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk);
3089 	map->type = btrfs_chunk_type(leaf, chunk);
3090 	map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk);
3091 	for (i = 0; i < num_stripes; i++) {
3092 		map->stripes[i].physical =
3093 			btrfs_stripe_offset_nr(leaf, chunk, i);
3094 		devid = btrfs_stripe_devid_nr(leaf, chunk, i);
3095 		read_extent_buffer(leaf, uuid, (unsigned long)
3096 				   btrfs_stripe_dev_uuid_nr(chunk, i),
3097 				   BTRFS_UUID_SIZE);
3098 		map->stripes[i].dev = btrfs_find_device(root, devid, uuid,
3099 							NULL);
3100 		if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) {
3101 			kfree(map);
3102 			free_extent_map(em);
3103 			return -EIO;
3104 		}
3105 		if (!map->stripes[i].dev) {
3106 			map->stripes[i].dev =
3107 				add_missing_dev(root, devid, uuid);
3108 			if (!map->stripes[i].dev) {
3109 				kfree(map);
3110 				free_extent_map(em);
3111 				return -EIO;
3112 			}
3113 		}
3114 		map->stripes[i].dev->in_fs_metadata = 1;
3115 	}
3116 
3117 	spin_lock(&map_tree->map_tree.lock);
3118 	ret = add_extent_mapping(&map_tree->map_tree, em);
3119 	spin_unlock(&map_tree->map_tree.lock);
3120 	BUG_ON(ret);
3121 	free_extent_map(em);
3122 
3123 	return 0;
3124 }
3125 
3126 static int fill_device_from_item(struct extent_buffer *leaf,
3127 				 struct btrfs_dev_item *dev_item,
3128 				 struct btrfs_device *device)
3129 {
3130 	unsigned long ptr;
3131 
3132 	device->devid = btrfs_device_id(leaf, dev_item);
3133 	device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item);
3134 	device->total_bytes = device->disk_total_bytes;
3135 	device->bytes_used = btrfs_device_bytes_used(leaf, dev_item);
3136 	device->type = btrfs_device_type(leaf, dev_item);
3137 	device->io_align = btrfs_device_io_align(leaf, dev_item);
3138 	device->io_width = btrfs_device_io_width(leaf, dev_item);
3139 	device->sector_size = btrfs_device_sector_size(leaf, dev_item);
3140 
3141 	ptr = (unsigned long)btrfs_device_uuid(dev_item);
3142 	read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE);
3143 
3144 	return 0;
3145 }
3146 
3147 static int open_seed_devices(struct btrfs_root *root, u8 *fsid)
3148 {
3149 	struct btrfs_fs_devices *fs_devices;
3150 	int ret;
3151 
3152 	mutex_lock(&uuid_mutex);
3153 
3154 	fs_devices = root->fs_info->fs_devices->seed;
3155 	while (fs_devices) {
3156 		if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) {
3157 			ret = 0;
3158 			goto out;
3159 		}
3160 		fs_devices = fs_devices->seed;
3161 	}
3162 
3163 	fs_devices = find_fsid(fsid);
3164 	if (!fs_devices) {
3165 		ret = -ENOENT;
3166 		goto out;
3167 	}
3168 
3169 	fs_devices = clone_fs_devices(fs_devices);
3170 	if (IS_ERR(fs_devices)) {
3171 		ret = PTR_ERR(fs_devices);
3172 		goto out;
3173 	}
3174 
3175 	ret = __btrfs_open_devices(fs_devices, FMODE_READ,
3176 				   root->fs_info->bdev_holder);
3177 	if (ret)
3178 		goto out;
3179 
3180 	if (!fs_devices->seeding) {
3181 		__btrfs_close_devices(fs_devices);
3182 		free_fs_devices(fs_devices);
3183 		ret = -EINVAL;
3184 		goto out;
3185 	}
3186 
3187 	fs_devices->seed = root->fs_info->fs_devices->seed;
3188 	root->fs_info->fs_devices->seed = fs_devices;
3189 out:
3190 	mutex_unlock(&uuid_mutex);
3191 	return ret;
3192 }
3193 
3194 static int read_one_dev(struct btrfs_root *root,
3195 			struct extent_buffer *leaf,
3196 			struct btrfs_dev_item *dev_item)
3197 {
3198 	struct btrfs_device *device;
3199 	u64 devid;
3200 	int ret;
3201 	u8 fs_uuid[BTRFS_UUID_SIZE];
3202 	u8 dev_uuid[BTRFS_UUID_SIZE];
3203 
3204 	devid = btrfs_device_id(leaf, dev_item);
3205 	read_extent_buffer(leaf, dev_uuid,
3206 			   (unsigned long)btrfs_device_uuid(dev_item),
3207 			   BTRFS_UUID_SIZE);
3208 	read_extent_buffer(leaf, fs_uuid,
3209 			   (unsigned long)btrfs_device_fsid(dev_item),
3210 			   BTRFS_UUID_SIZE);
3211 
3212 	if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) {
3213 		ret = open_seed_devices(root, fs_uuid);
3214 		if (ret && !btrfs_test_opt(root, DEGRADED))
3215 			return ret;
3216 	}
3217 
3218 	device = btrfs_find_device(root, devid, dev_uuid, fs_uuid);
3219 	if (!device || !device->bdev) {
3220 		if (!btrfs_test_opt(root, DEGRADED))
3221 			return -EIO;
3222 
3223 		if (!device) {
3224 			printk(KERN_WARNING "warning devid %llu missing\n",
3225 			       (unsigned long long)devid);
3226 			device = add_missing_dev(root, devid, dev_uuid);
3227 			if (!device)
3228 				return -ENOMEM;
3229 		}
3230 	}
3231 
3232 	if (device->fs_devices != root->fs_info->fs_devices) {
3233 		BUG_ON(device->writeable);
3234 		if (device->generation !=
3235 		    btrfs_device_generation(leaf, dev_item))
3236 			return -EINVAL;
3237 	}
3238 
3239 	fill_device_from_item(leaf, dev_item, device);
3240 	device->dev_root = root->fs_info->dev_root;
3241 	device->in_fs_metadata = 1;
3242 	if (device->writeable)
3243 		device->fs_devices->total_rw_bytes += device->total_bytes;
3244 	ret = 0;
3245 	return ret;
3246 }
3247 
3248 int btrfs_read_super_device(struct btrfs_root *root, struct extent_buffer *buf)
3249 {
3250 	struct btrfs_dev_item *dev_item;
3251 
3252 	dev_item = (struct btrfs_dev_item *)offsetof(struct btrfs_super_block,
3253 						     dev_item);
3254 	return read_one_dev(root, buf, dev_item);
3255 }
3256 
3257 int btrfs_read_sys_array(struct btrfs_root *root)
3258 {
3259 	struct btrfs_super_block *super_copy = &root->fs_info->super_copy;
3260 	struct extent_buffer *sb;
3261 	struct btrfs_disk_key *disk_key;
3262 	struct btrfs_chunk *chunk;
3263 	u8 *ptr;
3264 	unsigned long sb_ptr;
3265 	int ret = 0;
3266 	u32 num_stripes;
3267 	u32 array_size;
3268 	u32 len = 0;
3269 	u32 cur;
3270 	struct btrfs_key key;
3271 
3272 	sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET,
3273 					  BTRFS_SUPER_INFO_SIZE);
3274 	if (!sb)
3275 		return -ENOMEM;
3276 	btrfs_set_buffer_uptodate(sb);
3277 	btrfs_set_buffer_lockdep_class(sb, 0);
3278 
3279 	write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE);
3280 	array_size = btrfs_super_sys_array_size(super_copy);
3281 
3282 	ptr = super_copy->sys_chunk_array;
3283 	sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array);
3284 	cur = 0;
3285 
3286 	while (cur < array_size) {
3287 		disk_key = (struct btrfs_disk_key *)ptr;
3288 		btrfs_disk_key_to_cpu(&key, disk_key);
3289 
3290 		len = sizeof(*disk_key); ptr += len;
3291 		sb_ptr += len;
3292 		cur += len;
3293 
3294 		if (key.type == BTRFS_CHUNK_ITEM_KEY) {
3295 			chunk = (struct btrfs_chunk *)sb_ptr;
3296 			ret = read_one_chunk(root, &key, sb, chunk);
3297 			if (ret)
3298 				break;
3299 			num_stripes = btrfs_chunk_num_stripes(sb, chunk);
3300 			len = btrfs_chunk_item_size(num_stripes);
3301 		} else {
3302 			ret = -EIO;
3303 			break;
3304 		}
3305 		ptr += len;
3306 		sb_ptr += len;
3307 		cur += len;
3308 	}
3309 	free_extent_buffer(sb);
3310 	return ret;
3311 }
3312 
3313 int btrfs_read_chunk_tree(struct btrfs_root *root)
3314 {
3315 	struct btrfs_path *path;
3316 	struct extent_buffer *leaf;
3317 	struct btrfs_key key;
3318 	struct btrfs_key found_key;
3319 	int ret;
3320 	int slot;
3321 
3322 	root = root->fs_info->chunk_root;
3323 
3324 	path = btrfs_alloc_path();
3325 	if (!path)
3326 		return -ENOMEM;
3327 
3328 	/* first we search for all of the device items, and then we
3329 	 * read in all of the chunk items.  This way we can create chunk
3330 	 * mappings that reference all of the devices that are afound
3331 	 */
3332 	key.objectid = BTRFS_DEV_ITEMS_OBJECTID;
3333 	key.offset = 0;
3334 	key.type = 0;
3335 again:
3336 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3337 	while (1) {
3338 		leaf = path->nodes[0];
3339 		slot = path->slots[0];
3340 		if (slot >= btrfs_header_nritems(leaf)) {
3341 			ret = btrfs_next_leaf(root, path);
3342 			if (ret == 0)
3343 				continue;
3344 			if (ret < 0)
3345 				goto error;
3346 			break;
3347 		}
3348 		btrfs_item_key_to_cpu(leaf, &found_key, slot);
3349 		if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3350 			if (found_key.objectid != BTRFS_DEV_ITEMS_OBJECTID)
3351 				break;
3352 			if (found_key.type == BTRFS_DEV_ITEM_KEY) {
3353 				struct btrfs_dev_item *dev_item;
3354 				dev_item = btrfs_item_ptr(leaf, slot,
3355 						  struct btrfs_dev_item);
3356 				ret = read_one_dev(root, leaf, dev_item);
3357 				if (ret)
3358 					goto error;
3359 			}
3360 		} else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) {
3361 			struct btrfs_chunk *chunk;
3362 			chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk);
3363 			ret = read_one_chunk(root, &found_key, leaf, chunk);
3364 			if (ret)
3365 				goto error;
3366 		}
3367 		path->slots[0]++;
3368 	}
3369 	if (key.objectid == BTRFS_DEV_ITEMS_OBJECTID) {
3370 		key.objectid = 0;
3371 		btrfs_release_path(root, path);
3372 		goto again;
3373 	}
3374 	ret = 0;
3375 error:
3376 	btrfs_free_path(path);
3377 	return ret;
3378 }
3379