1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include "misc.h" 18 #include "ctree.h" 19 #include "extent_map.h" 20 #include "disk-io.h" 21 #include "transaction.h" 22 #include "print-tree.h" 23 #include "volumes.h" 24 #include "raid56.h" 25 #include "async-thread.h" 26 #include "check-integrity.h" 27 #include "rcu-string.h" 28 #include "dev-replace.h" 29 #include "sysfs.h" 30 #include "tree-checker.h" 31 #include "space-info.h" 32 #include "block-group.h" 33 #include "discard.h" 34 35 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 36 [BTRFS_RAID_RAID10] = { 37 .sub_stripes = 2, 38 .dev_stripes = 1, 39 .devs_max = 0, /* 0 == as many as possible */ 40 .devs_min = 4, 41 .tolerated_failures = 1, 42 .devs_increment = 2, 43 .ncopies = 2, 44 .nparity = 0, 45 .raid_name = "raid10", 46 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 47 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 48 }, 49 [BTRFS_RAID_RAID1] = { 50 .sub_stripes = 1, 51 .dev_stripes = 1, 52 .devs_max = 2, 53 .devs_min = 2, 54 .tolerated_failures = 1, 55 .devs_increment = 2, 56 .ncopies = 2, 57 .nparity = 0, 58 .raid_name = "raid1", 59 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 60 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 61 }, 62 [BTRFS_RAID_RAID1C3] = { 63 .sub_stripes = 1, 64 .dev_stripes = 1, 65 .devs_max = 3, 66 .devs_min = 3, 67 .tolerated_failures = 2, 68 .devs_increment = 3, 69 .ncopies = 3, 70 .nparity = 0, 71 .raid_name = "raid1c3", 72 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 73 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 74 }, 75 [BTRFS_RAID_RAID1C4] = { 76 .sub_stripes = 1, 77 .dev_stripes = 1, 78 .devs_max = 4, 79 .devs_min = 4, 80 .tolerated_failures = 3, 81 .devs_increment = 4, 82 .ncopies = 4, 83 .nparity = 0, 84 .raid_name = "raid1c4", 85 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 86 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 87 }, 88 [BTRFS_RAID_DUP] = { 89 .sub_stripes = 1, 90 .dev_stripes = 2, 91 .devs_max = 1, 92 .devs_min = 1, 93 .tolerated_failures = 0, 94 .devs_increment = 1, 95 .ncopies = 2, 96 .nparity = 0, 97 .raid_name = "dup", 98 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 99 .mindev_error = 0, 100 }, 101 [BTRFS_RAID_RAID0] = { 102 .sub_stripes = 1, 103 .dev_stripes = 1, 104 .devs_max = 0, 105 .devs_min = 2, 106 .tolerated_failures = 0, 107 .devs_increment = 1, 108 .ncopies = 1, 109 .nparity = 0, 110 .raid_name = "raid0", 111 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 112 .mindev_error = 0, 113 }, 114 [BTRFS_RAID_SINGLE] = { 115 .sub_stripes = 1, 116 .dev_stripes = 1, 117 .devs_max = 1, 118 .devs_min = 1, 119 .tolerated_failures = 0, 120 .devs_increment = 1, 121 .ncopies = 1, 122 .nparity = 0, 123 .raid_name = "single", 124 .bg_flag = 0, 125 .mindev_error = 0, 126 }, 127 [BTRFS_RAID_RAID5] = { 128 .sub_stripes = 1, 129 .dev_stripes = 1, 130 .devs_max = 0, 131 .devs_min = 2, 132 .tolerated_failures = 1, 133 .devs_increment = 1, 134 .ncopies = 1, 135 .nparity = 1, 136 .raid_name = "raid5", 137 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 138 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 139 }, 140 [BTRFS_RAID_RAID6] = { 141 .sub_stripes = 1, 142 .dev_stripes = 1, 143 .devs_max = 0, 144 .devs_min = 3, 145 .tolerated_failures = 2, 146 .devs_increment = 1, 147 .ncopies = 1, 148 .nparity = 2, 149 .raid_name = "raid6", 150 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 151 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 152 }, 153 }; 154 155 const char *btrfs_bg_type_to_raid_name(u64 flags) 156 { 157 const int index = btrfs_bg_flags_to_raid_index(flags); 158 159 if (index >= BTRFS_NR_RAID_TYPES) 160 return NULL; 161 162 return btrfs_raid_array[index].raid_name; 163 } 164 165 /* 166 * Fill @buf with textual description of @bg_flags, no more than @size_buf 167 * bytes including terminating null byte. 168 */ 169 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 170 { 171 int i; 172 int ret; 173 char *bp = buf; 174 u64 flags = bg_flags; 175 u32 size_bp = size_buf; 176 177 if (!flags) { 178 strcpy(bp, "NONE"); 179 return; 180 } 181 182 #define DESCRIBE_FLAG(flag, desc) \ 183 do { \ 184 if (flags & (flag)) { \ 185 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 186 if (ret < 0 || ret >= size_bp) \ 187 goto out_overflow; \ 188 size_bp -= ret; \ 189 bp += ret; \ 190 flags &= ~(flag); \ 191 } \ 192 } while (0) 193 194 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 195 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 196 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 197 198 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 199 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 200 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 201 btrfs_raid_array[i].raid_name); 202 #undef DESCRIBE_FLAG 203 204 if (flags) { 205 ret = snprintf(bp, size_bp, "0x%llx|", flags); 206 size_bp -= ret; 207 } 208 209 if (size_bp < size_buf) 210 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 211 212 /* 213 * The text is trimmed, it's up to the caller to provide sufficiently 214 * large buffer 215 */ 216 out_overflow:; 217 } 218 219 static int init_first_rw_device(struct btrfs_trans_handle *trans); 220 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 221 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 222 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 223 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 224 enum btrfs_map_op op, 225 u64 logical, u64 *length, 226 struct btrfs_bio **bbio_ret, 227 int mirror_num, int need_raid_map); 228 229 /* 230 * Device locking 231 * ============== 232 * 233 * There are several mutexes that protect manipulation of devices and low-level 234 * structures like chunks but not block groups, extents or files 235 * 236 * uuid_mutex (global lock) 237 * ------------------------ 238 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 239 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 240 * device) or requested by the device= mount option 241 * 242 * the mutex can be very coarse and can cover long-running operations 243 * 244 * protects: updates to fs_devices counters like missing devices, rw devices, 245 * seeding, structure cloning, opening/closing devices at mount/umount time 246 * 247 * global::fs_devs - add, remove, updates to the global list 248 * 249 * does not protect: manipulation of the fs_devices::devices list in general 250 * but in mount context it could be used to exclude list modifications by eg. 251 * scan ioctl 252 * 253 * btrfs_device::name - renames (write side), read is RCU 254 * 255 * fs_devices::device_list_mutex (per-fs, with RCU) 256 * ------------------------------------------------ 257 * protects updates to fs_devices::devices, ie. adding and deleting 258 * 259 * simple list traversal with read-only actions can be done with RCU protection 260 * 261 * may be used to exclude some operations from running concurrently without any 262 * modifications to the list (see write_all_supers) 263 * 264 * Is not required at mount and close times, because our device list is 265 * protected by the uuid_mutex at that point. 266 * 267 * balance_mutex 268 * ------------- 269 * protects balance structures (status, state) and context accessed from 270 * several places (internally, ioctl) 271 * 272 * chunk_mutex 273 * ----------- 274 * protects chunks, adding or removing during allocation, trim or when a new 275 * device is added/removed. Additionally it also protects post_commit_list of 276 * individual devices, since they can be added to the transaction's 277 * post_commit_list only with chunk_mutex held. 278 * 279 * cleaner_mutex 280 * ------------- 281 * a big lock that is held by the cleaner thread and prevents running subvolume 282 * cleaning together with relocation or delayed iputs 283 * 284 * 285 * Lock nesting 286 * ============ 287 * 288 * uuid_mutex 289 * device_list_mutex 290 * chunk_mutex 291 * balance_mutex 292 * 293 * 294 * Exclusive operations 295 * ==================== 296 * 297 * Maintains the exclusivity of the following operations that apply to the 298 * whole filesystem and cannot run in parallel. 299 * 300 * - Balance (*) 301 * - Device add 302 * - Device remove 303 * - Device replace (*) 304 * - Resize 305 * 306 * The device operations (as above) can be in one of the following states: 307 * 308 * - Running state 309 * - Paused state 310 * - Completed state 311 * 312 * Only device operations marked with (*) can go into the Paused state for the 313 * following reasons: 314 * 315 * - ioctl (only Balance can be Paused through ioctl) 316 * - filesystem remounted as read-only 317 * - filesystem unmounted and mounted as read-only 318 * - system power-cycle and filesystem mounted as read-only 319 * - filesystem or device errors leading to forced read-only 320 * 321 * The status of exclusive operation is set and cleared atomically. 322 * During the course of Paused state, fs_info::exclusive_operation remains set. 323 * A device operation in Paused or Running state can be canceled or resumed 324 * either by ioctl (Balance only) or when remounted as read-write. 325 * The exclusive status is cleared when the device operation is canceled or 326 * completed. 327 */ 328 329 DEFINE_MUTEX(uuid_mutex); 330 static LIST_HEAD(fs_uuids); 331 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 332 { 333 return &fs_uuids; 334 } 335 336 /* 337 * alloc_fs_devices - allocate struct btrfs_fs_devices 338 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 339 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 340 * 341 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 342 * The returned struct is not linked onto any lists and can be destroyed with 343 * kfree() right away. 344 */ 345 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 346 const u8 *metadata_fsid) 347 { 348 struct btrfs_fs_devices *fs_devs; 349 350 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 351 if (!fs_devs) 352 return ERR_PTR(-ENOMEM); 353 354 mutex_init(&fs_devs->device_list_mutex); 355 356 INIT_LIST_HEAD(&fs_devs->devices); 357 INIT_LIST_HEAD(&fs_devs->alloc_list); 358 INIT_LIST_HEAD(&fs_devs->fs_list); 359 INIT_LIST_HEAD(&fs_devs->seed_list); 360 if (fsid) 361 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 362 363 if (metadata_fsid) 364 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 365 else if (fsid) 366 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 367 368 return fs_devs; 369 } 370 371 void btrfs_free_device(struct btrfs_device *device) 372 { 373 WARN_ON(!list_empty(&device->post_commit_list)); 374 rcu_string_free(device->name); 375 extent_io_tree_release(&device->alloc_state); 376 bio_put(device->flush_bio); 377 kfree(device); 378 } 379 380 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 381 { 382 struct btrfs_device *device; 383 WARN_ON(fs_devices->opened); 384 while (!list_empty(&fs_devices->devices)) { 385 device = list_entry(fs_devices->devices.next, 386 struct btrfs_device, dev_list); 387 list_del(&device->dev_list); 388 btrfs_free_device(device); 389 } 390 kfree(fs_devices); 391 } 392 393 void __exit btrfs_cleanup_fs_uuids(void) 394 { 395 struct btrfs_fs_devices *fs_devices; 396 397 while (!list_empty(&fs_uuids)) { 398 fs_devices = list_entry(fs_uuids.next, 399 struct btrfs_fs_devices, fs_list); 400 list_del(&fs_devices->fs_list); 401 free_fs_devices(fs_devices); 402 } 403 } 404 405 /* 406 * Returns a pointer to a new btrfs_device on success; ERR_PTR() on error. 407 * Returned struct is not linked onto any lists and must be destroyed using 408 * btrfs_free_device. 409 */ 410 static struct btrfs_device *__alloc_device(struct btrfs_fs_info *fs_info) 411 { 412 struct btrfs_device *dev; 413 414 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 415 if (!dev) 416 return ERR_PTR(-ENOMEM); 417 418 /* 419 * Preallocate a bio that's always going to be used for flushing device 420 * barriers and matches the device lifespan 421 */ 422 dev->flush_bio = bio_alloc_bioset(GFP_KERNEL, 0, NULL); 423 if (!dev->flush_bio) { 424 kfree(dev); 425 return ERR_PTR(-ENOMEM); 426 } 427 428 INIT_LIST_HEAD(&dev->dev_list); 429 INIT_LIST_HEAD(&dev->dev_alloc_list); 430 INIT_LIST_HEAD(&dev->post_commit_list); 431 432 atomic_set(&dev->reada_in_flight, 0); 433 atomic_set(&dev->dev_stats_ccnt, 0); 434 btrfs_device_data_ordered_init(dev, fs_info); 435 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 436 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_DIRECT_RECLAIM); 437 extent_io_tree_init(fs_info, &dev->alloc_state, 438 IO_TREE_DEVICE_ALLOC_STATE, NULL); 439 440 return dev; 441 } 442 443 static noinline struct btrfs_fs_devices *find_fsid( 444 const u8 *fsid, const u8 *metadata_fsid) 445 { 446 struct btrfs_fs_devices *fs_devices; 447 448 ASSERT(fsid); 449 450 /* Handle non-split brain cases */ 451 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 452 if (metadata_fsid) { 453 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 454 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 455 BTRFS_FSID_SIZE) == 0) 456 return fs_devices; 457 } else { 458 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 459 return fs_devices; 460 } 461 } 462 return NULL; 463 } 464 465 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 466 struct btrfs_super_block *disk_super) 467 { 468 469 struct btrfs_fs_devices *fs_devices; 470 471 /* 472 * Handle scanned device having completed its fsid change but 473 * belonging to a fs_devices that was created by first scanning 474 * a device which didn't have its fsid/metadata_uuid changed 475 * at all and the CHANGING_FSID_V2 flag set. 476 */ 477 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 478 if (fs_devices->fsid_change && 479 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 480 BTRFS_FSID_SIZE) == 0 && 481 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 482 BTRFS_FSID_SIZE) == 0) { 483 return fs_devices; 484 } 485 } 486 /* 487 * Handle scanned device having completed its fsid change but 488 * belonging to a fs_devices that was created by a device that 489 * has an outdated pair of fsid/metadata_uuid and 490 * CHANGING_FSID_V2 flag set. 491 */ 492 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 493 if (fs_devices->fsid_change && 494 memcmp(fs_devices->metadata_uuid, 495 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 496 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 497 BTRFS_FSID_SIZE) == 0) { 498 return fs_devices; 499 } 500 } 501 502 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 503 } 504 505 506 static int 507 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 508 int flush, struct block_device **bdev, 509 struct btrfs_super_block **disk_super) 510 { 511 int ret; 512 513 *bdev = blkdev_get_by_path(device_path, flags, holder); 514 515 if (IS_ERR(*bdev)) { 516 ret = PTR_ERR(*bdev); 517 goto error; 518 } 519 520 if (flush) 521 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 522 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 523 if (ret) { 524 blkdev_put(*bdev, flags); 525 goto error; 526 } 527 invalidate_bdev(*bdev); 528 *disk_super = btrfs_read_dev_super(*bdev); 529 if (IS_ERR(*disk_super)) { 530 ret = PTR_ERR(*disk_super); 531 blkdev_put(*bdev, flags); 532 goto error; 533 } 534 535 return 0; 536 537 error: 538 *bdev = NULL; 539 return ret; 540 } 541 542 static bool device_path_matched(const char *path, struct btrfs_device *device) 543 { 544 int found; 545 546 rcu_read_lock(); 547 found = strcmp(rcu_str_deref(device->name), path); 548 rcu_read_unlock(); 549 550 return found == 0; 551 } 552 553 /* 554 * Search and remove all stale (devices which are not mounted) devices. 555 * When both inputs are NULL, it will search and release all stale devices. 556 * path: Optional. When provided will it release all unmounted devices 557 * matching this path only. 558 * skip_dev: Optional. Will skip this device when searching for the stale 559 * devices. 560 * Return: 0 for success or if @path is NULL. 561 * -EBUSY if @path is a mounted device. 562 * -ENOENT if @path does not match any device in the list. 563 */ 564 static int btrfs_free_stale_devices(const char *path, 565 struct btrfs_device *skip_device) 566 { 567 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 568 struct btrfs_device *device, *tmp_device; 569 int ret = 0; 570 571 if (path) 572 ret = -ENOENT; 573 574 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 575 576 mutex_lock(&fs_devices->device_list_mutex); 577 list_for_each_entry_safe(device, tmp_device, 578 &fs_devices->devices, dev_list) { 579 if (skip_device && skip_device == device) 580 continue; 581 if (path && !device->name) 582 continue; 583 if (path && !device_path_matched(path, device)) 584 continue; 585 if (fs_devices->opened) { 586 /* for an already deleted device return 0 */ 587 if (path && ret != 0) 588 ret = -EBUSY; 589 break; 590 } 591 592 /* delete the stale device */ 593 fs_devices->num_devices--; 594 list_del(&device->dev_list); 595 btrfs_free_device(device); 596 597 ret = 0; 598 } 599 mutex_unlock(&fs_devices->device_list_mutex); 600 601 if (fs_devices->num_devices == 0) { 602 btrfs_sysfs_remove_fsid(fs_devices); 603 list_del(&fs_devices->fs_list); 604 free_fs_devices(fs_devices); 605 } 606 } 607 608 return ret; 609 } 610 611 /* 612 * This is only used on mount, and we are protected from competing things 613 * messing with our fs_devices by the uuid_mutex, thus we do not need the 614 * fs_devices->device_list_mutex here. 615 */ 616 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 617 struct btrfs_device *device, fmode_t flags, 618 void *holder) 619 { 620 struct request_queue *q; 621 struct block_device *bdev; 622 struct btrfs_super_block *disk_super; 623 u64 devid; 624 int ret; 625 626 if (device->bdev) 627 return -EINVAL; 628 if (!device->name) 629 return -EINVAL; 630 631 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 632 &bdev, &disk_super); 633 if (ret) 634 return ret; 635 636 devid = btrfs_stack_device_id(&disk_super->dev_item); 637 if (devid != device->devid) 638 goto error_free_page; 639 640 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 641 goto error_free_page; 642 643 device->generation = btrfs_super_generation(disk_super); 644 645 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 646 if (btrfs_super_incompat_flags(disk_super) & 647 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 648 pr_err( 649 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 650 goto error_free_page; 651 } 652 653 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 654 fs_devices->seeding = true; 655 } else { 656 if (bdev_read_only(bdev)) 657 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 658 else 659 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 660 } 661 662 q = bdev_get_queue(bdev); 663 if (!blk_queue_nonrot(q)) 664 fs_devices->rotating = true; 665 666 device->bdev = bdev; 667 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 668 device->mode = flags; 669 670 fs_devices->open_devices++; 671 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 672 device->devid != BTRFS_DEV_REPLACE_DEVID) { 673 fs_devices->rw_devices++; 674 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 675 } 676 btrfs_release_disk_super(disk_super); 677 678 return 0; 679 680 error_free_page: 681 btrfs_release_disk_super(disk_super); 682 blkdev_put(bdev, flags); 683 684 return -EINVAL; 685 } 686 687 /* 688 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 689 * being created with a disk that has already completed its fsid change. Such 690 * disk can belong to an fs which has its FSID changed or to one which doesn't. 691 * Handle both cases here. 692 */ 693 static struct btrfs_fs_devices *find_fsid_inprogress( 694 struct btrfs_super_block *disk_super) 695 { 696 struct btrfs_fs_devices *fs_devices; 697 698 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 699 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 700 BTRFS_FSID_SIZE) != 0 && 701 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 702 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 703 return fs_devices; 704 } 705 } 706 707 return find_fsid(disk_super->fsid, NULL); 708 } 709 710 711 static struct btrfs_fs_devices *find_fsid_changed( 712 struct btrfs_super_block *disk_super) 713 { 714 struct btrfs_fs_devices *fs_devices; 715 716 /* 717 * Handles the case where scanned device is part of an fs that had 718 * multiple successful changes of FSID but curently device didn't 719 * observe it. Meaning our fsid will be different than theirs. We need 720 * to handle two subcases : 721 * 1 - The fs still continues to have different METADATA/FSID uuids. 722 * 2 - The fs is switched back to its original FSID (METADATA/FSID 723 * are equal). 724 */ 725 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 726 /* Changed UUIDs */ 727 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 728 BTRFS_FSID_SIZE) != 0 && 729 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 730 BTRFS_FSID_SIZE) == 0 && 731 memcmp(fs_devices->fsid, disk_super->fsid, 732 BTRFS_FSID_SIZE) != 0) 733 return fs_devices; 734 735 /* Unchanged UUIDs */ 736 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 737 BTRFS_FSID_SIZE) == 0 && 738 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 739 BTRFS_FSID_SIZE) == 0) 740 return fs_devices; 741 } 742 743 return NULL; 744 } 745 746 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 747 struct btrfs_super_block *disk_super) 748 { 749 struct btrfs_fs_devices *fs_devices; 750 751 /* 752 * Handle the case where the scanned device is part of an fs whose last 753 * metadata UUID change reverted it to the original FSID. At the same 754 * time * fs_devices was first created by another constitutent device 755 * which didn't fully observe the operation. This results in an 756 * btrfs_fs_devices created with metadata/fsid different AND 757 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 758 * fs_devices equal to the FSID of the disk. 759 */ 760 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 761 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 762 BTRFS_FSID_SIZE) != 0 && 763 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 764 BTRFS_FSID_SIZE) == 0 && 765 fs_devices->fsid_change) 766 return fs_devices; 767 } 768 769 return NULL; 770 } 771 /* 772 * Add new device to list of registered devices 773 * 774 * Returns: 775 * device pointer which was just added or updated when successful 776 * error pointer when failed 777 */ 778 static noinline struct btrfs_device *device_list_add(const char *path, 779 struct btrfs_super_block *disk_super, 780 bool *new_device_added) 781 { 782 struct btrfs_device *device; 783 struct btrfs_fs_devices *fs_devices = NULL; 784 struct rcu_string *name; 785 u64 found_transid = btrfs_super_generation(disk_super); 786 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 787 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 788 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 789 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 790 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 791 792 if (fsid_change_in_progress) { 793 if (!has_metadata_uuid) 794 fs_devices = find_fsid_inprogress(disk_super); 795 else 796 fs_devices = find_fsid_changed(disk_super); 797 } else if (has_metadata_uuid) { 798 fs_devices = find_fsid_with_metadata_uuid(disk_super); 799 } else { 800 fs_devices = find_fsid_reverted_metadata(disk_super); 801 if (!fs_devices) 802 fs_devices = find_fsid(disk_super->fsid, NULL); 803 } 804 805 806 if (!fs_devices) { 807 if (has_metadata_uuid) 808 fs_devices = alloc_fs_devices(disk_super->fsid, 809 disk_super->metadata_uuid); 810 else 811 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 812 813 if (IS_ERR(fs_devices)) 814 return ERR_CAST(fs_devices); 815 816 fs_devices->fsid_change = fsid_change_in_progress; 817 818 mutex_lock(&fs_devices->device_list_mutex); 819 list_add(&fs_devices->fs_list, &fs_uuids); 820 821 device = NULL; 822 } else { 823 mutex_lock(&fs_devices->device_list_mutex); 824 device = btrfs_find_device(fs_devices, devid, 825 disk_super->dev_item.uuid, NULL, false); 826 827 /* 828 * If this disk has been pulled into an fs devices created by 829 * a device which had the CHANGING_FSID_V2 flag then replace the 830 * metadata_uuid/fsid values of the fs_devices. 831 */ 832 if (fs_devices->fsid_change && 833 found_transid > fs_devices->latest_generation) { 834 memcpy(fs_devices->fsid, disk_super->fsid, 835 BTRFS_FSID_SIZE); 836 837 if (has_metadata_uuid) 838 memcpy(fs_devices->metadata_uuid, 839 disk_super->metadata_uuid, 840 BTRFS_FSID_SIZE); 841 else 842 memcpy(fs_devices->metadata_uuid, 843 disk_super->fsid, BTRFS_FSID_SIZE); 844 845 fs_devices->fsid_change = false; 846 } 847 } 848 849 if (!device) { 850 if (fs_devices->opened) { 851 mutex_unlock(&fs_devices->device_list_mutex); 852 return ERR_PTR(-EBUSY); 853 } 854 855 device = btrfs_alloc_device(NULL, &devid, 856 disk_super->dev_item.uuid); 857 if (IS_ERR(device)) { 858 mutex_unlock(&fs_devices->device_list_mutex); 859 /* we can safely leave the fs_devices entry around */ 860 return device; 861 } 862 863 name = rcu_string_strdup(path, GFP_NOFS); 864 if (!name) { 865 btrfs_free_device(device); 866 mutex_unlock(&fs_devices->device_list_mutex); 867 return ERR_PTR(-ENOMEM); 868 } 869 rcu_assign_pointer(device->name, name); 870 871 list_add_rcu(&device->dev_list, &fs_devices->devices); 872 fs_devices->num_devices++; 873 874 device->fs_devices = fs_devices; 875 *new_device_added = true; 876 877 if (disk_super->label[0]) 878 pr_info( 879 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 880 disk_super->label, devid, found_transid, path, 881 current->comm, task_pid_nr(current)); 882 else 883 pr_info( 884 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 885 disk_super->fsid, devid, found_transid, path, 886 current->comm, task_pid_nr(current)); 887 888 } else if (!device->name || strcmp(device->name->str, path)) { 889 /* 890 * When FS is already mounted. 891 * 1. If you are here and if the device->name is NULL that 892 * means this device was missing at time of FS mount. 893 * 2. If you are here and if the device->name is different 894 * from 'path' that means either 895 * a. The same device disappeared and reappeared with 896 * different name. or 897 * b. The missing-disk-which-was-replaced, has 898 * reappeared now. 899 * 900 * We must allow 1 and 2a above. But 2b would be a spurious 901 * and unintentional. 902 * 903 * Further in case of 1 and 2a above, the disk at 'path' 904 * would have missed some transaction when it was away and 905 * in case of 2a the stale bdev has to be updated as well. 906 * 2b must not be allowed at all time. 907 */ 908 909 /* 910 * For now, we do allow update to btrfs_fs_device through the 911 * btrfs dev scan cli after FS has been mounted. We're still 912 * tracking a problem where systems fail mount by subvolume id 913 * when we reject replacement on a mounted FS. 914 */ 915 if (!fs_devices->opened && found_transid < device->generation) { 916 /* 917 * That is if the FS is _not_ mounted and if you 918 * are here, that means there is more than one 919 * disk with same uuid and devid.We keep the one 920 * with larger generation number or the last-in if 921 * generation are equal. 922 */ 923 mutex_unlock(&fs_devices->device_list_mutex); 924 return ERR_PTR(-EEXIST); 925 } 926 927 /* 928 * We are going to replace the device path for a given devid, 929 * make sure it's the same device if the device is mounted 930 */ 931 if (device->bdev) { 932 struct block_device *path_bdev; 933 934 path_bdev = lookup_bdev(path); 935 if (IS_ERR(path_bdev)) { 936 mutex_unlock(&fs_devices->device_list_mutex); 937 return ERR_CAST(path_bdev); 938 } 939 940 if (device->bdev != path_bdev) { 941 bdput(path_bdev); 942 mutex_unlock(&fs_devices->device_list_mutex); 943 btrfs_warn_in_rcu(device->fs_info, 944 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 945 path, devid, found_transid, 946 current->comm, 947 task_pid_nr(current)); 948 return ERR_PTR(-EEXIST); 949 } 950 bdput(path_bdev); 951 btrfs_info_in_rcu(device->fs_info, 952 "devid %llu device path %s changed to %s scanned by %s (%d)", 953 devid, rcu_str_deref(device->name), 954 path, current->comm, 955 task_pid_nr(current)); 956 } 957 958 name = rcu_string_strdup(path, GFP_NOFS); 959 if (!name) { 960 mutex_unlock(&fs_devices->device_list_mutex); 961 return ERR_PTR(-ENOMEM); 962 } 963 rcu_string_free(device->name); 964 rcu_assign_pointer(device->name, name); 965 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 966 fs_devices->missing_devices--; 967 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 968 } 969 } 970 971 /* 972 * Unmount does not free the btrfs_device struct but would zero 973 * generation along with most of the other members. So just update 974 * it back. We need it to pick the disk with largest generation 975 * (as above). 976 */ 977 if (!fs_devices->opened) { 978 device->generation = found_transid; 979 fs_devices->latest_generation = max_t(u64, found_transid, 980 fs_devices->latest_generation); 981 } 982 983 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 984 985 mutex_unlock(&fs_devices->device_list_mutex); 986 return device; 987 } 988 989 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 990 { 991 struct btrfs_fs_devices *fs_devices; 992 struct btrfs_device *device; 993 struct btrfs_device *orig_dev; 994 int ret = 0; 995 996 fs_devices = alloc_fs_devices(orig->fsid, NULL); 997 if (IS_ERR(fs_devices)) 998 return fs_devices; 999 1000 mutex_lock(&orig->device_list_mutex); 1001 fs_devices->total_devices = orig->total_devices; 1002 1003 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 1004 struct rcu_string *name; 1005 1006 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1007 orig_dev->uuid); 1008 if (IS_ERR(device)) { 1009 ret = PTR_ERR(device); 1010 goto error; 1011 } 1012 1013 /* 1014 * This is ok to do without rcu read locked because we hold the 1015 * uuid mutex so nothing we touch in here is going to disappear. 1016 */ 1017 if (orig_dev->name) { 1018 name = rcu_string_strdup(orig_dev->name->str, 1019 GFP_KERNEL); 1020 if (!name) { 1021 btrfs_free_device(device); 1022 ret = -ENOMEM; 1023 goto error; 1024 } 1025 rcu_assign_pointer(device->name, name); 1026 } 1027 1028 list_add(&device->dev_list, &fs_devices->devices); 1029 device->fs_devices = fs_devices; 1030 fs_devices->num_devices++; 1031 } 1032 mutex_unlock(&orig->device_list_mutex); 1033 return fs_devices; 1034 error: 1035 mutex_unlock(&orig->device_list_mutex); 1036 free_fs_devices(fs_devices); 1037 return ERR_PTR(ret); 1038 } 1039 1040 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1041 int step, struct btrfs_device **latest_dev) 1042 { 1043 struct btrfs_device *device, *next; 1044 1045 /* This is the initialized path, it is safe to release the devices. */ 1046 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1047 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1048 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1049 &device->dev_state) && 1050 !test_bit(BTRFS_DEV_STATE_MISSING, 1051 &device->dev_state) && 1052 (!*latest_dev || 1053 device->generation > (*latest_dev)->generation)) { 1054 *latest_dev = device; 1055 } 1056 continue; 1057 } 1058 1059 /* 1060 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1061 * in btrfs_init_dev_replace() so just continue. 1062 */ 1063 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1064 continue; 1065 1066 if (device->bdev) { 1067 blkdev_put(device->bdev, device->mode); 1068 device->bdev = NULL; 1069 fs_devices->open_devices--; 1070 } 1071 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1072 list_del_init(&device->dev_alloc_list); 1073 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1074 } 1075 list_del_init(&device->dev_list); 1076 fs_devices->num_devices--; 1077 btrfs_free_device(device); 1078 } 1079 1080 } 1081 1082 /* 1083 * After we have read the system tree and know devids belonging to this 1084 * filesystem, remove the device which does not belong there. 1085 */ 1086 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, int step) 1087 { 1088 struct btrfs_device *latest_dev = NULL; 1089 struct btrfs_fs_devices *seed_dev; 1090 1091 mutex_lock(&uuid_mutex); 1092 __btrfs_free_extra_devids(fs_devices, step, &latest_dev); 1093 1094 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1095 __btrfs_free_extra_devids(seed_dev, step, &latest_dev); 1096 1097 fs_devices->latest_bdev = latest_dev->bdev; 1098 1099 mutex_unlock(&uuid_mutex); 1100 } 1101 1102 static void btrfs_close_bdev(struct btrfs_device *device) 1103 { 1104 if (!device->bdev) 1105 return; 1106 1107 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1108 sync_blockdev(device->bdev); 1109 invalidate_bdev(device->bdev); 1110 } 1111 1112 blkdev_put(device->bdev, device->mode); 1113 } 1114 1115 static void btrfs_close_one_device(struct btrfs_device *device) 1116 { 1117 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1118 1119 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1120 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1121 list_del_init(&device->dev_alloc_list); 1122 fs_devices->rw_devices--; 1123 } 1124 1125 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 1126 fs_devices->missing_devices--; 1127 1128 btrfs_close_bdev(device); 1129 if (device->bdev) { 1130 fs_devices->open_devices--; 1131 device->bdev = NULL; 1132 } 1133 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1134 1135 device->fs_info = NULL; 1136 atomic_set(&device->dev_stats_ccnt, 0); 1137 extent_io_tree_release(&device->alloc_state); 1138 1139 /* Verify the device is back in a pristine state */ 1140 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1141 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1142 ASSERT(list_empty(&device->dev_alloc_list)); 1143 ASSERT(list_empty(&device->post_commit_list)); 1144 ASSERT(atomic_read(&device->reada_in_flight) == 0); 1145 } 1146 1147 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1148 { 1149 struct btrfs_device *device, *tmp; 1150 1151 lockdep_assert_held(&uuid_mutex); 1152 1153 if (--fs_devices->opened > 0) 1154 return; 1155 1156 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1157 btrfs_close_one_device(device); 1158 1159 WARN_ON(fs_devices->open_devices); 1160 WARN_ON(fs_devices->rw_devices); 1161 fs_devices->opened = 0; 1162 fs_devices->seeding = false; 1163 fs_devices->fs_info = NULL; 1164 } 1165 1166 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1167 { 1168 LIST_HEAD(list); 1169 struct btrfs_fs_devices *tmp; 1170 1171 mutex_lock(&uuid_mutex); 1172 close_fs_devices(fs_devices); 1173 if (!fs_devices->opened) 1174 list_splice_init(&fs_devices->seed_list, &list); 1175 1176 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1177 close_fs_devices(fs_devices); 1178 list_del(&fs_devices->seed_list); 1179 free_fs_devices(fs_devices); 1180 } 1181 mutex_unlock(&uuid_mutex); 1182 } 1183 1184 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1185 fmode_t flags, void *holder) 1186 { 1187 struct btrfs_device *device; 1188 struct btrfs_device *latest_dev = NULL; 1189 struct btrfs_device *tmp_device; 1190 1191 flags |= FMODE_EXCL; 1192 1193 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1194 dev_list) { 1195 int ret; 1196 1197 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1198 if (ret == 0 && 1199 (!latest_dev || device->generation > latest_dev->generation)) { 1200 latest_dev = device; 1201 } else if (ret == -ENODATA) { 1202 fs_devices->num_devices--; 1203 list_del(&device->dev_list); 1204 btrfs_free_device(device); 1205 } 1206 } 1207 if (fs_devices->open_devices == 0) 1208 return -EINVAL; 1209 1210 fs_devices->opened = 1; 1211 fs_devices->latest_bdev = latest_dev->bdev; 1212 fs_devices->total_rw_bytes = 0; 1213 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1214 1215 return 0; 1216 } 1217 1218 static int devid_cmp(void *priv, struct list_head *a, struct list_head *b) 1219 { 1220 struct btrfs_device *dev1, *dev2; 1221 1222 dev1 = list_entry(a, struct btrfs_device, dev_list); 1223 dev2 = list_entry(b, struct btrfs_device, dev_list); 1224 1225 if (dev1->devid < dev2->devid) 1226 return -1; 1227 else if (dev1->devid > dev2->devid) 1228 return 1; 1229 return 0; 1230 } 1231 1232 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1233 fmode_t flags, void *holder) 1234 { 1235 int ret; 1236 1237 lockdep_assert_held(&uuid_mutex); 1238 /* 1239 * The device_list_mutex cannot be taken here in case opening the 1240 * underlying device takes further locks like bd_mutex. 1241 * 1242 * We also don't need the lock here as this is called during mount and 1243 * exclusion is provided by uuid_mutex 1244 */ 1245 1246 if (fs_devices->opened) { 1247 fs_devices->opened++; 1248 ret = 0; 1249 } else { 1250 list_sort(NULL, &fs_devices->devices, devid_cmp); 1251 ret = open_fs_devices(fs_devices, flags, holder); 1252 } 1253 1254 return ret; 1255 } 1256 1257 void btrfs_release_disk_super(struct btrfs_super_block *super) 1258 { 1259 struct page *page = virt_to_page(super); 1260 1261 put_page(page); 1262 } 1263 1264 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1265 u64 bytenr) 1266 { 1267 struct btrfs_super_block *disk_super; 1268 struct page *page; 1269 void *p; 1270 pgoff_t index; 1271 1272 /* make sure our super fits in the device */ 1273 if (bytenr + PAGE_SIZE >= i_size_read(bdev->bd_inode)) 1274 return ERR_PTR(-EINVAL); 1275 1276 /* make sure our super fits in the page */ 1277 if (sizeof(*disk_super) > PAGE_SIZE) 1278 return ERR_PTR(-EINVAL); 1279 1280 /* make sure our super doesn't straddle pages on disk */ 1281 index = bytenr >> PAGE_SHIFT; 1282 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1283 return ERR_PTR(-EINVAL); 1284 1285 /* pull in the page with our super */ 1286 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1287 1288 if (IS_ERR(page)) 1289 return ERR_CAST(page); 1290 1291 p = page_address(page); 1292 1293 /* align our pointer to the offset of the super block */ 1294 disk_super = p + offset_in_page(bytenr); 1295 1296 if (btrfs_super_bytenr(disk_super) != bytenr || 1297 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1298 btrfs_release_disk_super(p); 1299 return ERR_PTR(-EINVAL); 1300 } 1301 1302 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1303 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1304 1305 return disk_super; 1306 } 1307 1308 int btrfs_forget_devices(const char *path) 1309 { 1310 int ret; 1311 1312 mutex_lock(&uuid_mutex); 1313 ret = btrfs_free_stale_devices(strlen(path) ? path : NULL, NULL); 1314 mutex_unlock(&uuid_mutex); 1315 1316 return ret; 1317 } 1318 1319 /* 1320 * Look for a btrfs signature on a device. This may be called out of the mount path 1321 * and we are not allowed to call set_blocksize during the scan. The superblock 1322 * is read via pagecache 1323 */ 1324 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1325 void *holder) 1326 { 1327 struct btrfs_super_block *disk_super; 1328 bool new_device_added = false; 1329 struct btrfs_device *device = NULL; 1330 struct block_device *bdev; 1331 u64 bytenr; 1332 1333 lockdep_assert_held(&uuid_mutex); 1334 1335 /* 1336 * we would like to check all the supers, but that would make 1337 * a btrfs mount succeed after a mkfs from a different FS. 1338 * So, we need to add a special mount option to scan for 1339 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1340 */ 1341 bytenr = btrfs_sb_offset(0); 1342 flags |= FMODE_EXCL; 1343 1344 bdev = blkdev_get_by_path(path, flags, holder); 1345 if (IS_ERR(bdev)) 1346 return ERR_CAST(bdev); 1347 1348 disk_super = btrfs_read_disk_super(bdev, bytenr); 1349 if (IS_ERR(disk_super)) { 1350 device = ERR_CAST(disk_super); 1351 goto error_bdev_put; 1352 } 1353 1354 device = device_list_add(path, disk_super, &new_device_added); 1355 if (!IS_ERR(device)) { 1356 if (new_device_added) 1357 btrfs_free_stale_devices(path, device); 1358 } 1359 1360 btrfs_release_disk_super(disk_super); 1361 1362 error_bdev_put: 1363 blkdev_put(bdev, flags); 1364 1365 return device; 1366 } 1367 1368 /* 1369 * Try to find a chunk that intersects [start, start + len] range and when one 1370 * such is found, record the end of it in *start 1371 */ 1372 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1373 u64 len) 1374 { 1375 u64 physical_start, physical_end; 1376 1377 lockdep_assert_held(&device->fs_info->chunk_mutex); 1378 1379 if (!find_first_extent_bit(&device->alloc_state, *start, 1380 &physical_start, &physical_end, 1381 CHUNK_ALLOCATED, NULL)) { 1382 1383 if (in_range(physical_start, *start, len) || 1384 in_range(*start, physical_start, 1385 physical_end - physical_start)) { 1386 *start = physical_end + 1; 1387 return true; 1388 } 1389 } 1390 return false; 1391 } 1392 1393 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1394 { 1395 switch (device->fs_devices->chunk_alloc_policy) { 1396 case BTRFS_CHUNK_ALLOC_REGULAR: 1397 /* 1398 * We don't want to overwrite the superblock on the drive nor 1399 * any area used by the boot loader (grub for example), so we 1400 * make sure to start at an offset of at least 1MB. 1401 */ 1402 return max_t(u64, start, SZ_1M); 1403 default: 1404 BUG(); 1405 } 1406 } 1407 1408 /** 1409 * dev_extent_hole_check - check if specified hole is suitable for allocation 1410 * @device: the device which we have the hole 1411 * @hole_start: starting position of the hole 1412 * @hole_size: the size of the hole 1413 * @num_bytes: the size of the free space that we need 1414 * 1415 * This function may modify @hole_start and @hole_end to reflect the suitable 1416 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1417 */ 1418 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1419 u64 *hole_size, u64 num_bytes) 1420 { 1421 bool changed = false; 1422 u64 hole_end = *hole_start + *hole_size; 1423 1424 /* 1425 * Check before we set max_hole_start, otherwise we could end up 1426 * sending back this offset anyway. 1427 */ 1428 if (contains_pending_extent(device, hole_start, *hole_size)) { 1429 if (hole_end >= *hole_start) 1430 *hole_size = hole_end - *hole_start; 1431 else 1432 *hole_size = 0; 1433 changed = true; 1434 } 1435 1436 switch (device->fs_devices->chunk_alloc_policy) { 1437 case BTRFS_CHUNK_ALLOC_REGULAR: 1438 /* No extra check */ 1439 break; 1440 default: 1441 BUG(); 1442 } 1443 1444 return changed; 1445 } 1446 1447 /* 1448 * find_free_dev_extent_start - find free space in the specified device 1449 * @device: the device which we search the free space in 1450 * @num_bytes: the size of the free space that we need 1451 * @search_start: the position from which to begin the search 1452 * @start: store the start of the free space. 1453 * @len: the size of the free space. that we find, or the size 1454 * of the max free space if we don't find suitable free space 1455 * 1456 * this uses a pretty simple search, the expectation is that it is 1457 * called very infrequently and that a given device has a small number 1458 * of extents 1459 * 1460 * @start is used to store the start of the free space if we find. But if we 1461 * don't find suitable free space, it will be used to store the start position 1462 * of the max free space. 1463 * 1464 * @len is used to store the size of the free space that we find. 1465 * But if we don't find suitable free space, it is used to store the size of 1466 * the max free space. 1467 * 1468 * NOTE: This function will search *commit* root of device tree, and does extra 1469 * check to ensure dev extents are not double allocated. 1470 * This makes the function safe to allocate dev extents but may not report 1471 * correct usable device space, as device extent freed in current transaction 1472 * is not reported as avaiable. 1473 */ 1474 static int find_free_dev_extent_start(struct btrfs_device *device, 1475 u64 num_bytes, u64 search_start, u64 *start, 1476 u64 *len) 1477 { 1478 struct btrfs_fs_info *fs_info = device->fs_info; 1479 struct btrfs_root *root = fs_info->dev_root; 1480 struct btrfs_key key; 1481 struct btrfs_dev_extent *dev_extent; 1482 struct btrfs_path *path; 1483 u64 hole_size; 1484 u64 max_hole_start; 1485 u64 max_hole_size; 1486 u64 extent_end; 1487 u64 search_end = device->total_bytes; 1488 int ret; 1489 int slot; 1490 struct extent_buffer *l; 1491 1492 search_start = dev_extent_search_start(device, search_start); 1493 1494 path = btrfs_alloc_path(); 1495 if (!path) 1496 return -ENOMEM; 1497 1498 max_hole_start = search_start; 1499 max_hole_size = 0; 1500 1501 again: 1502 if (search_start >= search_end || 1503 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1504 ret = -ENOSPC; 1505 goto out; 1506 } 1507 1508 path->reada = READA_FORWARD; 1509 path->search_commit_root = 1; 1510 path->skip_locking = 1; 1511 1512 key.objectid = device->devid; 1513 key.offset = search_start; 1514 key.type = BTRFS_DEV_EXTENT_KEY; 1515 1516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1517 if (ret < 0) 1518 goto out; 1519 if (ret > 0) { 1520 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1521 if (ret < 0) 1522 goto out; 1523 } 1524 1525 while (1) { 1526 l = path->nodes[0]; 1527 slot = path->slots[0]; 1528 if (slot >= btrfs_header_nritems(l)) { 1529 ret = btrfs_next_leaf(root, path); 1530 if (ret == 0) 1531 continue; 1532 if (ret < 0) 1533 goto out; 1534 1535 break; 1536 } 1537 btrfs_item_key_to_cpu(l, &key, slot); 1538 1539 if (key.objectid < device->devid) 1540 goto next; 1541 1542 if (key.objectid > device->devid) 1543 break; 1544 1545 if (key.type != BTRFS_DEV_EXTENT_KEY) 1546 goto next; 1547 1548 if (key.offset > search_start) { 1549 hole_size = key.offset - search_start; 1550 dev_extent_hole_check(device, &search_start, &hole_size, 1551 num_bytes); 1552 1553 if (hole_size > max_hole_size) { 1554 max_hole_start = search_start; 1555 max_hole_size = hole_size; 1556 } 1557 1558 /* 1559 * If this free space is greater than which we need, 1560 * it must be the max free space that we have found 1561 * until now, so max_hole_start must point to the start 1562 * of this free space and the length of this free space 1563 * is stored in max_hole_size. Thus, we return 1564 * max_hole_start and max_hole_size and go back to the 1565 * caller. 1566 */ 1567 if (hole_size >= num_bytes) { 1568 ret = 0; 1569 goto out; 1570 } 1571 } 1572 1573 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1574 extent_end = key.offset + btrfs_dev_extent_length(l, 1575 dev_extent); 1576 if (extent_end > search_start) 1577 search_start = extent_end; 1578 next: 1579 path->slots[0]++; 1580 cond_resched(); 1581 } 1582 1583 /* 1584 * At this point, search_start should be the end of 1585 * allocated dev extents, and when shrinking the device, 1586 * search_end may be smaller than search_start. 1587 */ 1588 if (search_end > search_start) { 1589 hole_size = search_end - search_start; 1590 if (dev_extent_hole_check(device, &search_start, &hole_size, 1591 num_bytes)) { 1592 btrfs_release_path(path); 1593 goto again; 1594 } 1595 1596 if (hole_size > max_hole_size) { 1597 max_hole_start = search_start; 1598 max_hole_size = hole_size; 1599 } 1600 } 1601 1602 /* See above. */ 1603 if (max_hole_size < num_bytes) 1604 ret = -ENOSPC; 1605 else 1606 ret = 0; 1607 1608 out: 1609 btrfs_free_path(path); 1610 *start = max_hole_start; 1611 if (len) 1612 *len = max_hole_size; 1613 return ret; 1614 } 1615 1616 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1617 u64 *start, u64 *len) 1618 { 1619 /* FIXME use last free of some kind */ 1620 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1621 } 1622 1623 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1624 struct btrfs_device *device, 1625 u64 start, u64 *dev_extent_len) 1626 { 1627 struct btrfs_fs_info *fs_info = device->fs_info; 1628 struct btrfs_root *root = fs_info->dev_root; 1629 int ret; 1630 struct btrfs_path *path; 1631 struct btrfs_key key; 1632 struct btrfs_key found_key; 1633 struct extent_buffer *leaf = NULL; 1634 struct btrfs_dev_extent *extent = NULL; 1635 1636 path = btrfs_alloc_path(); 1637 if (!path) 1638 return -ENOMEM; 1639 1640 key.objectid = device->devid; 1641 key.offset = start; 1642 key.type = BTRFS_DEV_EXTENT_KEY; 1643 again: 1644 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1645 if (ret > 0) { 1646 ret = btrfs_previous_item(root, path, key.objectid, 1647 BTRFS_DEV_EXTENT_KEY); 1648 if (ret) 1649 goto out; 1650 leaf = path->nodes[0]; 1651 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1652 extent = btrfs_item_ptr(leaf, path->slots[0], 1653 struct btrfs_dev_extent); 1654 BUG_ON(found_key.offset > start || found_key.offset + 1655 btrfs_dev_extent_length(leaf, extent) < start); 1656 key = found_key; 1657 btrfs_release_path(path); 1658 goto again; 1659 } else if (ret == 0) { 1660 leaf = path->nodes[0]; 1661 extent = btrfs_item_ptr(leaf, path->slots[0], 1662 struct btrfs_dev_extent); 1663 } else { 1664 btrfs_handle_fs_error(fs_info, ret, "Slot search failed"); 1665 goto out; 1666 } 1667 1668 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1669 1670 ret = btrfs_del_item(trans, root, path); 1671 if (ret) { 1672 btrfs_handle_fs_error(fs_info, ret, 1673 "Failed to remove dev extent item"); 1674 } else { 1675 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1676 } 1677 out: 1678 btrfs_free_path(path); 1679 return ret; 1680 } 1681 1682 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1683 struct btrfs_device *device, 1684 u64 chunk_offset, u64 start, u64 num_bytes) 1685 { 1686 int ret; 1687 struct btrfs_path *path; 1688 struct btrfs_fs_info *fs_info = device->fs_info; 1689 struct btrfs_root *root = fs_info->dev_root; 1690 struct btrfs_dev_extent *extent; 1691 struct extent_buffer *leaf; 1692 struct btrfs_key key; 1693 1694 WARN_ON(!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)); 1695 WARN_ON(test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1696 path = btrfs_alloc_path(); 1697 if (!path) 1698 return -ENOMEM; 1699 1700 key.objectid = device->devid; 1701 key.offset = start; 1702 key.type = BTRFS_DEV_EXTENT_KEY; 1703 ret = btrfs_insert_empty_item(trans, root, path, &key, 1704 sizeof(*extent)); 1705 if (ret) 1706 goto out; 1707 1708 leaf = path->nodes[0]; 1709 extent = btrfs_item_ptr(leaf, path->slots[0], 1710 struct btrfs_dev_extent); 1711 btrfs_set_dev_extent_chunk_tree(leaf, extent, 1712 BTRFS_CHUNK_TREE_OBJECTID); 1713 btrfs_set_dev_extent_chunk_objectid(leaf, extent, 1714 BTRFS_FIRST_CHUNK_TREE_OBJECTID); 1715 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1716 1717 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1718 btrfs_mark_buffer_dirty(leaf); 1719 out: 1720 btrfs_free_path(path); 1721 return ret; 1722 } 1723 1724 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1725 { 1726 struct extent_map_tree *em_tree; 1727 struct extent_map *em; 1728 struct rb_node *n; 1729 u64 ret = 0; 1730 1731 em_tree = &fs_info->mapping_tree; 1732 read_lock(&em_tree->lock); 1733 n = rb_last(&em_tree->map.rb_root); 1734 if (n) { 1735 em = rb_entry(n, struct extent_map, rb_node); 1736 ret = em->start + em->len; 1737 } 1738 read_unlock(&em_tree->lock); 1739 1740 return ret; 1741 } 1742 1743 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1744 u64 *devid_ret) 1745 { 1746 int ret; 1747 struct btrfs_key key; 1748 struct btrfs_key found_key; 1749 struct btrfs_path *path; 1750 1751 path = btrfs_alloc_path(); 1752 if (!path) 1753 return -ENOMEM; 1754 1755 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1756 key.type = BTRFS_DEV_ITEM_KEY; 1757 key.offset = (u64)-1; 1758 1759 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1760 if (ret < 0) 1761 goto error; 1762 1763 if (ret == 0) { 1764 /* Corruption */ 1765 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1766 ret = -EUCLEAN; 1767 goto error; 1768 } 1769 1770 ret = btrfs_previous_item(fs_info->chunk_root, path, 1771 BTRFS_DEV_ITEMS_OBJECTID, 1772 BTRFS_DEV_ITEM_KEY); 1773 if (ret) { 1774 *devid_ret = 1; 1775 } else { 1776 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1777 path->slots[0]); 1778 *devid_ret = found_key.offset + 1; 1779 } 1780 ret = 0; 1781 error: 1782 btrfs_free_path(path); 1783 return ret; 1784 } 1785 1786 /* 1787 * the device information is stored in the chunk root 1788 * the btrfs_device struct should be fully filled in 1789 */ 1790 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1791 struct btrfs_device *device) 1792 { 1793 int ret; 1794 struct btrfs_path *path; 1795 struct btrfs_dev_item *dev_item; 1796 struct extent_buffer *leaf; 1797 struct btrfs_key key; 1798 unsigned long ptr; 1799 1800 path = btrfs_alloc_path(); 1801 if (!path) 1802 return -ENOMEM; 1803 1804 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1805 key.type = BTRFS_DEV_ITEM_KEY; 1806 key.offset = device->devid; 1807 1808 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1809 &key, sizeof(*dev_item)); 1810 if (ret) 1811 goto out; 1812 1813 leaf = path->nodes[0]; 1814 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1815 1816 btrfs_set_device_id(leaf, dev_item, device->devid); 1817 btrfs_set_device_generation(leaf, dev_item, 0); 1818 btrfs_set_device_type(leaf, dev_item, device->type); 1819 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1820 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1821 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1822 btrfs_set_device_total_bytes(leaf, dev_item, 1823 btrfs_device_get_disk_total_bytes(device)); 1824 btrfs_set_device_bytes_used(leaf, dev_item, 1825 btrfs_device_get_bytes_used(device)); 1826 btrfs_set_device_group(leaf, dev_item, 0); 1827 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1828 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1829 btrfs_set_device_start_offset(leaf, dev_item, 0); 1830 1831 ptr = btrfs_device_uuid(dev_item); 1832 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1833 ptr = btrfs_device_fsid(dev_item); 1834 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1835 ptr, BTRFS_FSID_SIZE); 1836 btrfs_mark_buffer_dirty(leaf); 1837 1838 ret = 0; 1839 out: 1840 btrfs_free_path(path); 1841 return ret; 1842 } 1843 1844 /* 1845 * Function to update ctime/mtime for a given device path. 1846 * Mainly used for ctime/mtime based probe like libblkid. 1847 */ 1848 static void update_dev_time(const char *path_name) 1849 { 1850 struct file *filp; 1851 1852 filp = filp_open(path_name, O_RDWR, 0); 1853 if (IS_ERR(filp)) 1854 return; 1855 file_update_time(filp); 1856 filp_close(filp, NULL); 1857 } 1858 1859 static int btrfs_rm_dev_item(struct btrfs_device *device) 1860 { 1861 struct btrfs_root *root = device->fs_info->chunk_root; 1862 int ret; 1863 struct btrfs_path *path; 1864 struct btrfs_key key; 1865 struct btrfs_trans_handle *trans; 1866 1867 path = btrfs_alloc_path(); 1868 if (!path) 1869 return -ENOMEM; 1870 1871 trans = btrfs_start_transaction(root, 0); 1872 if (IS_ERR(trans)) { 1873 btrfs_free_path(path); 1874 return PTR_ERR(trans); 1875 } 1876 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1877 key.type = BTRFS_DEV_ITEM_KEY; 1878 key.offset = device->devid; 1879 1880 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1881 if (ret) { 1882 if (ret > 0) 1883 ret = -ENOENT; 1884 btrfs_abort_transaction(trans, ret); 1885 btrfs_end_transaction(trans); 1886 goto out; 1887 } 1888 1889 ret = btrfs_del_item(trans, root, path); 1890 if (ret) { 1891 btrfs_abort_transaction(trans, ret); 1892 btrfs_end_transaction(trans); 1893 } 1894 1895 out: 1896 btrfs_free_path(path); 1897 if (!ret) 1898 ret = btrfs_commit_transaction(trans); 1899 return ret; 1900 } 1901 1902 /* 1903 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1904 * filesystem. It's up to the caller to adjust that number regarding eg. device 1905 * replace. 1906 */ 1907 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1908 u64 num_devices) 1909 { 1910 u64 all_avail; 1911 unsigned seq; 1912 int i; 1913 1914 do { 1915 seq = read_seqbegin(&fs_info->profiles_lock); 1916 1917 all_avail = fs_info->avail_data_alloc_bits | 1918 fs_info->avail_system_alloc_bits | 1919 fs_info->avail_metadata_alloc_bits; 1920 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1921 1922 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1923 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1924 continue; 1925 1926 if (num_devices < btrfs_raid_array[i].devs_min) { 1927 int ret = btrfs_raid_array[i].mindev_error; 1928 1929 if (ret) 1930 return ret; 1931 } 1932 } 1933 1934 return 0; 1935 } 1936 1937 static struct btrfs_device * btrfs_find_next_active_device( 1938 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1939 { 1940 struct btrfs_device *next_device; 1941 1942 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1943 if (next_device != device && 1944 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1945 && next_device->bdev) 1946 return next_device; 1947 } 1948 1949 return NULL; 1950 } 1951 1952 /* 1953 * Helper function to check if the given device is part of s_bdev / latest_bdev 1954 * and replace it with the provided or the next active device, in the context 1955 * where this function called, there should be always be another device (or 1956 * this_dev) which is active. 1957 */ 1958 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1959 struct btrfs_device *next_device) 1960 { 1961 struct btrfs_fs_info *fs_info = device->fs_info; 1962 1963 if (!next_device) 1964 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 1965 device); 1966 ASSERT(next_device); 1967 1968 if (fs_info->sb->s_bdev && 1969 (fs_info->sb->s_bdev == device->bdev)) 1970 fs_info->sb->s_bdev = next_device->bdev; 1971 1972 if (fs_info->fs_devices->latest_bdev == device->bdev) 1973 fs_info->fs_devices->latest_bdev = next_device->bdev; 1974 } 1975 1976 /* 1977 * Return btrfs_fs_devices::num_devices excluding the device that's being 1978 * currently replaced. 1979 */ 1980 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 1981 { 1982 u64 num_devices = fs_info->fs_devices->num_devices; 1983 1984 down_read(&fs_info->dev_replace.rwsem); 1985 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 1986 ASSERT(num_devices > 1); 1987 num_devices--; 1988 } 1989 up_read(&fs_info->dev_replace.rwsem); 1990 1991 return num_devices; 1992 } 1993 1994 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 1995 struct block_device *bdev, 1996 const char *device_path) 1997 { 1998 struct btrfs_super_block *disk_super; 1999 int copy_num; 2000 2001 if (!bdev) 2002 return; 2003 2004 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2005 struct page *page; 2006 int ret; 2007 2008 disk_super = btrfs_read_dev_one_super(bdev, copy_num); 2009 if (IS_ERR(disk_super)) 2010 continue; 2011 2012 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2013 2014 page = virt_to_page(disk_super); 2015 set_page_dirty(page); 2016 lock_page(page); 2017 /* write_on_page() unlocks the page */ 2018 ret = write_one_page(page); 2019 if (ret) 2020 btrfs_warn(fs_info, 2021 "error clearing superblock number %d (%d)", 2022 copy_num, ret); 2023 btrfs_release_disk_super(disk_super); 2024 2025 } 2026 2027 /* Notify udev that device has changed */ 2028 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2029 2030 /* Update ctime/mtime for device path for libblkid */ 2031 update_dev_time(device_path); 2032 } 2033 2034 int btrfs_rm_device(struct btrfs_fs_info *fs_info, const char *device_path, 2035 u64 devid) 2036 { 2037 struct btrfs_device *device; 2038 struct btrfs_fs_devices *cur_devices; 2039 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2040 u64 num_devices; 2041 int ret = 0; 2042 2043 mutex_lock(&uuid_mutex); 2044 2045 num_devices = btrfs_num_devices(fs_info); 2046 2047 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2048 if (ret) 2049 goto out; 2050 2051 device = btrfs_find_device_by_devspec(fs_info, devid, device_path); 2052 2053 if (IS_ERR(device)) { 2054 if (PTR_ERR(device) == -ENOENT && 2055 strcmp(device_path, "missing") == 0) 2056 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2057 else 2058 ret = PTR_ERR(device); 2059 goto out; 2060 } 2061 2062 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2063 btrfs_warn_in_rcu(fs_info, 2064 "cannot remove device %s (devid %llu) due to active swapfile", 2065 rcu_str_deref(device->name), device->devid); 2066 ret = -ETXTBSY; 2067 goto out; 2068 } 2069 2070 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2071 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 2072 goto out; 2073 } 2074 2075 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2076 fs_info->fs_devices->rw_devices == 1) { 2077 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 2078 goto out; 2079 } 2080 2081 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2082 mutex_lock(&fs_info->chunk_mutex); 2083 list_del_init(&device->dev_alloc_list); 2084 device->fs_devices->rw_devices--; 2085 mutex_unlock(&fs_info->chunk_mutex); 2086 } 2087 2088 mutex_unlock(&uuid_mutex); 2089 ret = btrfs_shrink_device(device, 0); 2090 if (!ret) 2091 btrfs_reada_remove_dev(device); 2092 mutex_lock(&uuid_mutex); 2093 if (ret) 2094 goto error_undo; 2095 2096 /* 2097 * TODO: the superblock still includes this device in its num_devices 2098 * counter although write_all_supers() is not locked out. This 2099 * could give a filesystem state which requires a degraded mount. 2100 */ 2101 ret = btrfs_rm_dev_item(device); 2102 if (ret) 2103 goto error_undo; 2104 2105 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2106 btrfs_scrub_cancel_dev(device); 2107 2108 /* 2109 * the device list mutex makes sure that we don't change 2110 * the device list while someone else is writing out all 2111 * the device supers. Whoever is writing all supers, should 2112 * lock the device list mutex before getting the number of 2113 * devices in the super block (super_copy). Conversely, 2114 * whoever updates the number of devices in the super block 2115 * (super_copy) should hold the device list mutex. 2116 */ 2117 2118 /* 2119 * In normal cases the cur_devices == fs_devices. But in case 2120 * of deleting a seed device, the cur_devices should point to 2121 * its own fs_devices listed under the fs_devices->seed. 2122 */ 2123 cur_devices = device->fs_devices; 2124 mutex_lock(&fs_devices->device_list_mutex); 2125 list_del_rcu(&device->dev_list); 2126 2127 cur_devices->num_devices--; 2128 cur_devices->total_devices--; 2129 /* Update total_devices of the parent fs_devices if it's seed */ 2130 if (cur_devices != fs_devices) 2131 fs_devices->total_devices--; 2132 2133 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2134 cur_devices->missing_devices--; 2135 2136 btrfs_assign_next_active_device(device, NULL); 2137 2138 if (device->bdev) { 2139 cur_devices->open_devices--; 2140 /* remove sysfs entry */ 2141 btrfs_sysfs_remove_device(device); 2142 } 2143 2144 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2145 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2146 mutex_unlock(&fs_devices->device_list_mutex); 2147 2148 /* 2149 * at this point, the device is zero sized and detached from 2150 * the devices list. All that's left is to zero out the old 2151 * supers and free the device. 2152 */ 2153 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2154 btrfs_scratch_superblocks(fs_info, device->bdev, 2155 device->name->str); 2156 2157 btrfs_close_bdev(device); 2158 synchronize_rcu(); 2159 btrfs_free_device(device); 2160 2161 if (cur_devices->open_devices == 0) { 2162 list_del_init(&cur_devices->seed_list); 2163 close_fs_devices(cur_devices); 2164 free_fs_devices(cur_devices); 2165 } 2166 2167 out: 2168 mutex_unlock(&uuid_mutex); 2169 return ret; 2170 2171 error_undo: 2172 btrfs_reada_undo_remove_dev(device); 2173 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2174 mutex_lock(&fs_info->chunk_mutex); 2175 list_add(&device->dev_alloc_list, 2176 &fs_devices->alloc_list); 2177 device->fs_devices->rw_devices++; 2178 mutex_unlock(&fs_info->chunk_mutex); 2179 } 2180 goto out; 2181 } 2182 2183 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2184 { 2185 struct btrfs_fs_devices *fs_devices; 2186 2187 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2188 2189 /* 2190 * in case of fs with no seed, srcdev->fs_devices will point 2191 * to fs_devices of fs_info. However when the dev being replaced is 2192 * a seed dev it will point to the seed's local fs_devices. In short 2193 * srcdev will have its correct fs_devices in both the cases. 2194 */ 2195 fs_devices = srcdev->fs_devices; 2196 2197 list_del_rcu(&srcdev->dev_list); 2198 list_del(&srcdev->dev_alloc_list); 2199 fs_devices->num_devices--; 2200 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2201 fs_devices->missing_devices--; 2202 2203 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2204 fs_devices->rw_devices--; 2205 2206 if (srcdev->bdev) 2207 fs_devices->open_devices--; 2208 } 2209 2210 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2211 { 2212 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2213 2214 mutex_lock(&uuid_mutex); 2215 2216 btrfs_close_bdev(srcdev); 2217 synchronize_rcu(); 2218 btrfs_free_device(srcdev); 2219 2220 /* if this is no devs we rather delete the fs_devices */ 2221 if (!fs_devices->num_devices) { 2222 /* 2223 * On a mounted FS, num_devices can't be zero unless it's a 2224 * seed. In case of a seed device being replaced, the replace 2225 * target added to the sprout FS, so there will be no more 2226 * device left under the seed FS. 2227 */ 2228 ASSERT(fs_devices->seeding); 2229 2230 list_del_init(&fs_devices->seed_list); 2231 close_fs_devices(fs_devices); 2232 free_fs_devices(fs_devices); 2233 } 2234 mutex_unlock(&uuid_mutex); 2235 } 2236 2237 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2238 { 2239 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2240 2241 mutex_lock(&fs_devices->device_list_mutex); 2242 2243 btrfs_sysfs_remove_device(tgtdev); 2244 2245 if (tgtdev->bdev) 2246 fs_devices->open_devices--; 2247 2248 fs_devices->num_devices--; 2249 2250 btrfs_assign_next_active_device(tgtdev, NULL); 2251 2252 list_del_rcu(&tgtdev->dev_list); 2253 2254 mutex_unlock(&fs_devices->device_list_mutex); 2255 2256 /* 2257 * The update_dev_time() with in btrfs_scratch_superblocks() 2258 * may lead to a call to btrfs_show_devname() which will try 2259 * to hold device_list_mutex. And here this device 2260 * is already out of device list, so we don't have to hold 2261 * the device_list_mutex lock. 2262 */ 2263 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2264 tgtdev->name->str); 2265 2266 btrfs_close_bdev(tgtdev); 2267 synchronize_rcu(); 2268 btrfs_free_device(tgtdev); 2269 } 2270 2271 static struct btrfs_device *btrfs_find_device_by_path( 2272 struct btrfs_fs_info *fs_info, const char *device_path) 2273 { 2274 int ret = 0; 2275 struct btrfs_super_block *disk_super; 2276 u64 devid; 2277 u8 *dev_uuid; 2278 struct block_device *bdev; 2279 struct btrfs_device *device; 2280 2281 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 2282 fs_info->bdev_holder, 0, &bdev, &disk_super); 2283 if (ret) 2284 return ERR_PTR(ret); 2285 2286 devid = btrfs_stack_device_id(&disk_super->dev_item); 2287 dev_uuid = disk_super->dev_item.uuid; 2288 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2289 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2290 disk_super->metadata_uuid, true); 2291 else 2292 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2293 disk_super->fsid, true); 2294 2295 btrfs_release_disk_super(disk_super); 2296 if (!device) 2297 device = ERR_PTR(-ENOENT); 2298 blkdev_put(bdev, FMODE_READ); 2299 return device; 2300 } 2301 2302 /* 2303 * Lookup a device given by device id, or the path if the id is 0. 2304 */ 2305 struct btrfs_device *btrfs_find_device_by_devspec( 2306 struct btrfs_fs_info *fs_info, u64 devid, 2307 const char *device_path) 2308 { 2309 struct btrfs_device *device; 2310 2311 if (devid) { 2312 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, 2313 NULL, true); 2314 if (!device) 2315 return ERR_PTR(-ENOENT); 2316 return device; 2317 } 2318 2319 if (!device_path || !device_path[0]) 2320 return ERR_PTR(-EINVAL); 2321 2322 if (strcmp(device_path, "missing") == 0) { 2323 /* Find first missing device */ 2324 list_for_each_entry(device, &fs_info->fs_devices->devices, 2325 dev_list) { 2326 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 2327 &device->dev_state) && !device->bdev) 2328 return device; 2329 } 2330 return ERR_PTR(-ENOENT); 2331 } 2332 2333 return btrfs_find_device_by_path(fs_info, device_path); 2334 } 2335 2336 /* 2337 * does all the dirty work required for changing file system's UUID. 2338 */ 2339 static int btrfs_prepare_sprout(struct btrfs_fs_info *fs_info) 2340 { 2341 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2342 struct btrfs_fs_devices *old_devices; 2343 struct btrfs_fs_devices *seed_devices; 2344 struct btrfs_super_block *disk_super = fs_info->super_copy; 2345 struct btrfs_device *device; 2346 u64 super_flags; 2347 2348 lockdep_assert_held(&uuid_mutex); 2349 if (!fs_devices->seeding) 2350 return -EINVAL; 2351 2352 /* 2353 * Private copy of the seed devices, anchored at 2354 * fs_info->fs_devices->seed_list 2355 */ 2356 seed_devices = alloc_fs_devices(NULL, NULL); 2357 if (IS_ERR(seed_devices)) 2358 return PTR_ERR(seed_devices); 2359 2360 /* 2361 * It's necessary to retain a copy of the original seed fs_devices in 2362 * fs_uuids so that filesystems which have been seeded can successfully 2363 * reference the seed device from open_seed_devices. This also supports 2364 * multiple fs seed. 2365 */ 2366 old_devices = clone_fs_devices(fs_devices); 2367 if (IS_ERR(old_devices)) { 2368 kfree(seed_devices); 2369 return PTR_ERR(old_devices); 2370 } 2371 2372 list_add(&old_devices->fs_list, &fs_uuids); 2373 2374 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2375 seed_devices->opened = 1; 2376 INIT_LIST_HEAD(&seed_devices->devices); 2377 INIT_LIST_HEAD(&seed_devices->alloc_list); 2378 mutex_init(&seed_devices->device_list_mutex); 2379 2380 mutex_lock(&fs_devices->device_list_mutex); 2381 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2382 synchronize_rcu); 2383 list_for_each_entry(device, &seed_devices->devices, dev_list) 2384 device->fs_devices = seed_devices; 2385 2386 fs_devices->seeding = false; 2387 fs_devices->num_devices = 0; 2388 fs_devices->open_devices = 0; 2389 fs_devices->missing_devices = 0; 2390 fs_devices->rotating = false; 2391 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2392 2393 generate_random_uuid(fs_devices->fsid); 2394 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2395 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2396 mutex_unlock(&fs_devices->device_list_mutex); 2397 2398 super_flags = btrfs_super_flags(disk_super) & 2399 ~BTRFS_SUPER_FLAG_SEEDING; 2400 btrfs_set_super_flags(disk_super, super_flags); 2401 2402 return 0; 2403 } 2404 2405 /* 2406 * Store the expected generation for seed devices in device items. 2407 */ 2408 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2409 { 2410 struct btrfs_fs_info *fs_info = trans->fs_info; 2411 struct btrfs_root *root = fs_info->chunk_root; 2412 struct btrfs_path *path; 2413 struct extent_buffer *leaf; 2414 struct btrfs_dev_item *dev_item; 2415 struct btrfs_device *device; 2416 struct btrfs_key key; 2417 u8 fs_uuid[BTRFS_FSID_SIZE]; 2418 u8 dev_uuid[BTRFS_UUID_SIZE]; 2419 u64 devid; 2420 int ret; 2421 2422 path = btrfs_alloc_path(); 2423 if (!path) 2424 return -ENOMEM; 2425 2426 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2427 key.offset = 0; 2428 key.type = BTRFS_DEV_ITEM_KEY; 2429 2430 while (1) { 2431 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2432 if (ret < 0) 2433 goto error; 2434 2435 leaf = path->nodes[0]; 2436 next_slot: 2437 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2438 ret = btrfs_next_leaf(root, path); 2439 if (ret > 0) 2440 break; 2441 if (ret < 0) 2442 goto error; 2443 leaf = path->nodes[0]; 2444 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2445 btrfs_release_path(path); 2446 continue; 2447 } 2448 2449 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2450 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2451 key.type != BTRFS_DEV_ITEM_KEY) 2452 break; 2453 2454 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2455 struct btrfs_dev_item); 2456 devid = btrfs_device_id(leaf, dev_item); 2457 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2458 BTRFS_UUID_SIZE); 2459 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2460 BTRFS_FSID_SIZE); 2461 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 2462 fs_uuid, true); 2463 BUG_ON(!device); /* Logic error */ 2464 2465 if (device->fs_devices->seeding) { 2466 btrfs_set_device_generation(leaf, dev_item, 2467 device->generation); 2468 btrfs_mark_buffer_dirty(leaf); 2469 } 2470 2471 path->slots[0]++; 2472 goto next_slot; 2473 } 2474 ret = 0; 2475 error: 2476 btrfs_free_path(path); 2477 return ret; 2478 } 2479 2480 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2481 { 2482 struct btrfs_root *root = fs_info->dev_root; 2483 struct request_queue *q; 2484 struct btrfs_trans_handle *trans; 2485 struct btrfs_device *device; 2486 struct block_device *bdev; 2487 struct super_block *sb = fs_info->sb; 2488 struct rcu_string *name; 2489 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2490 u64 orig_super_total_bytes; 2491 u64 orig_super_num_devices; 2492 int seeding_dev = 0; 2493 int ret = 0; 2494 bool locked = false; 2495 2496 if (sb_rdonly(sb) && !fs_devices->seeding) 2497 return -EROFS; 2498 2499 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2500 fs_info->bdev_holder); 2501 if (IS_ERR(bdev)) 2502 return PTR_ERR(bdev); 2503 2504 if (fs_devices->seeding) { 2505 seeding_dev = 1; 2506 down_write(&sb->s_umount); 2507 mutex_lock(&uuid_mutex); 2508 locked = true; 2509 } 2510 2511 sync_blockdev(bdev); 2512 2513 rcu_read_lock(); 2514 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2515 if (device->bdev == bdev) { 2516 ret = -EEXIST; 2517 rcu_read_unlock(); 2518 goto error; 2519 } 2520 } 2521 rcu_read_unlock(); 2522 2523 device = btrfs_alloc_device(fs_info, NULL, NULL); 2524 if (IS_ERR(device)) { 2525 /* we can safely leave the fs_devices entry around */ 2526 ret = PTR_ERR(device); 2527 goto error; 2528 } 2529 2530 name = rcu_string_strdup(device_path, GFP_KERNEL); 2531 if (!name) { 2532 ret = -ENOMEM; 2533 goto error_free_device; 2534 } 2535 rcu_assign_pointer(device->name, name); 2536 2537 trans = btrfs_start_transaction(root, 0); 2538 if (IS_ERR(trans)) { 2539 ret = PTR_ERR(trans); 2540 goto error_free_device; 2541 } 2542 2543 q = bdev_get_queue(bdev); 2544 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2545 device->generation = trans->transid; 2546 device->io_width = fs_info->sectorsize; 2547 device->io_align = fs_info->sectorsize; 2548 device->sector_size = fs_info->sectorsize; 2549 device->total_bytes = round_down(i_size_read(bdev->bd_inode), 2550 fs_info->sectorsize); 2551 device->disk_total_bytes = device->total_bytes; 2552 device->commit_total_bytes = device->total_bytes; 2553 device->fs_info = fs_info; 2554 device->bdev = bdev; 2555 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2556 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2557 device->mode = FMODE_EXCL; 2558 device->dev_stats_valid = 1; 2559 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2560 2561 if (seeding_dev) { 2562 sb->s_flags &= ~SB_RDONLY; 2563 ret = btrfs_prepare_sprout(fs_info); 2564 if (ret) { 2565 btrfs_abort_transaction(trans, ret); 2566 goto error_trans; 2567 } 2568 } 2569 2570 device->fs_devices = fs_devices; 2571 2572 mutex_lock(&fs_devices->device_list_mutex); 2573 mutex_lock(&fs_info->chunk_mutex); 2574 list_add_rcu(&device->dev_list, &fs_devices->devices); 2575 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2576 fs_devices->num_devices++; 2577 fs_devices->open_devices++; 2578 fs_devices->rw_devices++; 2579 fs_devices->total_devices++; 2580 fs_devices->total_rw_bytes += device->total_bytes; 2581 2582 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2583 2584 if (!blk_queue_nonrot(q)) 2585 fs_devices->rotating = true; 2586 2587 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2588 btrfs_set_super_total_bytes(fs_info->super_copy, 2589 round_down(orig_super_total_bytes + device->total_bytes, 2590 fs_info->sectorsize)); 2591 2592 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2593 btrfs_set_super_num_devices(fs_info->super_copy, 2594 orig_super_num_devices + 1); 2595 2596 /* 2597 * we've got more storage, clear any full flags on the space 2598 * infos 2599 */ 2600 btrfs_clear_space_info_full(fs_info); 2601 2602 mutex_unlock(&fs_info->chunk_mutex); 2603 2604 /* Add sysfs device entry */ 2605 btrfs_sysfs_add_device(device); 2606 2607 mutex_unlock(&fs_devices->device_list_mutex); 2608 2609 if (seeding_dev) { 2610 mutex_lock(&fs_info->chunk_mutex); 2611 ret = init_first_rw_device(trans); 2612 mutex_unlock(&fs_info->chunk_mutex); 2613 if (ret) { 2614 btrfs_abort_transaction(trans, ret); 2615 goto error_sysfs; 2616 } 2617 } 2618 2619 ret = btrfs_add_dev_item(trans, device); 2620 if (ret) { 2621 btrfs_abort_transaction(trans, ret); 2622 goto error_sysfs; 2623 } 2624 2625 if (seeding_dev) { 2626 ret = btrfs_finish_sprout(trans); 2627 if (ret) { 2628 btrfs_abort_transaction(trans, ret); 2629 goto error_sysfs; 2630 } 2631 2632 /* 2633 * fs_devices now represents the newly sprouted filesystem and 2634 * its fsid has been changed by btrfs_prepare_sprout 2635 */ 2636 btrfs_sysfs_update_sprout_fsid(fs_devices); 2637 } 2638 2639 ret = btrfs_commit_transaction(trans); 2640 2641 if (seeding_dev) { 2642 mutex_unlock(&uuid_mutex); 2643 up_write(&sb->s_umount); 2644 locked = false; 2645 2646 if (ret) /* transaction commit */ 2647 return ret; 2648 2649 ret = btrfs_relocate_sys_chunks(fs_info); 2650 if (ret < 0) 2651 btrfs_handle_fs_error(fs_info, ret, 2652 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2653 trans = btrfs_attach_transaction(root); 2654 if (IS_ERR(trans)) { 2655 if (PTR_ERR(trans) == -ENOENT) 2656 return 0; 2657 ret = PTR_ERR(trans); 2658 trans = NULL; 2659 goto error_sysfs; 2660 } 2661 ret = btrfs_commit_transaction(trans); 2662 } 2663 2664 /* 2665 * Now that we have written a new super block to this device, check all 2666 * other fs_devices list if device_path alienates any other scanned 2667 * device. 2668 * We can ignore the return value as it typically returns -EINVAL and 2669 * only succeeds if the device was an alien. 2670 */ 2671 btrfs_forget_devices(device_path); 2672 2673 /* Update ctime/mtime for blkid or udev */ 2674 update_dev_time(device_path); 2675 2676 return ret; 2677 2678 error_sysfs: 2679 btrfs_sysfs_remove_device(device); 2680 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2681 mutex_lock(&fs_info->chunk_mutex); 2682 list_del_rcu(&device->dev_list); 2683 list_del(&device->dev_alloc_list); 2684 fs_info->fs_devices->num_devices--; 2685 fs_info->fs_devices->open_devices--; 2686 fs_info->fs_devices->rw_devices--; 2687 fs_info->fs_devices->total_devices--; 2688 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2689 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2690 btrfs_set_super_total_bytes(fs_info->super_copy, 2691 orig_super_total_bytes); 2692 btrfs_set_super_num_devices(fs_info->super_copy, 2693 orig_super_num_devices); 2694 mutex_unlock(&fs_info->chunk_mutex); 2695 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2696 error_trans: 2697 if (seeding_dev) 2698 sb->s_flags |= SB_RDONLY; 2699 if (trans) 2700 btrfs_end_transaction(trans); 2701 error_free_device: 2702 btrfs_free_device(device); 2703 error: 2704 blkdev_put(bdev, FMODE_EXCL); 2705 if (locked) { 2706 mutex_unlock(&uuid_mutex); 2707 up_write(&sb->s_umount); 2708 } 2709 return ret; 2710 } 2711 2712 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2713 struct btrfs_device *device) 2714 { 2715 int ret; 2716 struct btrfs_path *path; 2717 struct btrfs_root *root = device->fs_info->chunk_root; 2718 struct btrfs_dev_item *dev_item; 2719 struct extent_buffer *leaf; 2720 struct btrfs_key key; 2721 2722 path = btrfs_alloc_path(); 2723 if (!path) 2724 return -ENOMEM; 2725 2726 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2727 key.type = BTRFS_DEV_ITEM_KEY; 2728 key.offset = device->devid; 2729 2730 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2731 if (ret < 0) 2732 goto out; 2733 2734 if (ret > 0) { 2735 ret = -ENOENT; 2736 goto out; 2737 } 2738 2739 leaf = path->nodes[0]; 2740 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2741 2742 btrfs_set_device_id(leaf, dev_item, device->devid); 2743 btrfs_set_device_type(leaf, dev_item, device->type); 2744 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2745 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2746 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2747 btrfs_set_device_total_bytes(leaf, dev_item, 2748 btrfs_device_get_disk_total_bytes(device)); 2749 btrfs_set_device_bytes_used(leaf, dev_item, 2750 btrfs_device_get_bytes_used(device)); 2751 btrfs_mark_buffer_dirty(leaf); 2752 2753 out: 2754 btrfs_free_path(path); 2755 return ret; 2756 } 2757 2758 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2759 struct btrfs_device *device, u64 new_size) 2760 { 2761 struct btrfs_fs_info *fs_info = device->fs_info; 2762 struct btrfs_super_block *super_copy = fs_info->super_copy; 2763 u64 old_total; 2764 u64 diff; 2765 2766 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2767 return -EACCES; 2768 2769 new_size = round_down(new_size, fs_info->sectorsize); 2770 2771 mutex_lock(&fs_info->chunk_mutex); 2772 old_total = btrfs_super_total_bytes(super_copy); 2773 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2774 2775 if (new_size <= device->total_bytes || 2776 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2777 mutex_unlock(&fs_info->chunk_mutex); 2778 return -EINVAL; 2779 } 2780 2781 btrfs_set_super_total_bytes(super_copy, 2782 round_down(old_total + diff, fs_info->sectorsize)); 2783 device->fs_devices->total_rw_bytes += diff; 2784 2785 btrfs_device_set_total_bytes(device, new_size); 2786 btrfs_device_set_disk_total_bytes(device, new_size); 2787 btrfs_clear_space_info_full(device->fs_info); 2788 if (list_empty(&device->post_commit_list)) 2789 list_add_tail(&device->post_commit_list, 2790 &trans->transaction->dev_update_list); 2791 mutex_unlock(&fs_info->chunk_mutex); 2792 2793 return btrfs_update_device(trans, device); 2794 } 2795 2796 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2797 { 2798 struct btrfs_fs_info *fs_info = trans->fs_info; 2799 struct btrfs_root *root = fs_info->chunk_root; 2800 int ret; 2801 struct btrfs_path *path; 2802 struct btrfs_key key; 2803 2804 path = btrfs_alloc_path(); 2805 if (!path) 2806 return -ENOMEM; 2807 2808 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2809 key.offset = chunk_offset; 2810 key.type = BTRFS_CHUNK_ITEM_KEY; 2811 2812 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2813 if (ret < 0) 2814 goto out; 2815 else if (ret > 0) { /* Logic error or corruption */ 2816 btrfs_handle_fs_error(fs_info, -ENOENT, 2817 "Failed lookup while freeing chunk."); 2818 ret = -ENOENT; 2819 goto out; 2820 } 2821 2822 ret = btrfs_del_item(trans, root, path); 2823 if (ret < 0) 2824 btrfs_handle_fs_error(fs_info, ret, 2825 "Failed to delete chunk item."); 2826 out: 2827 btrfs_free_path(path); 2828 return ret; 2829 } 2830 2831 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2832 { 2833 struct btrfs_super_block *super_copy = fs_info->super_copy; 2834 struct btrfs_disk_key *disk_key; 2835 struct btrfs_chunk *chunk; 2836 u8 *ptr; 2837 int ret = 0; 2838 u32 num_stripes; 2839 u32 array_size; 2840 u32 len = 0; 2841 u32 cur; 2842 struct btrfs_key key; 2843 2844 mutex_lock(&fs_info->chunk_mutex); 2845 array_size = btrfs_super_sys_array_size(super_copy); 2846 2847 ptr = super_copy->sys_chunk_array; 2848 cur = 0; 2849 2850 while (cur < array_size) { 2851 disk_key = (struct btrfs_disk_key *)ptr; 2852 btrfs_disk_key_to_cpu(&key, disk_key); 2853 2854 len = sizeof(*disk_key); 2855 2856 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2857 chunk = (struct btrfs_chunk *)(ptr + len); 2858 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2859 len += btrfs_chunk_item_size(num_stripes); 2860 } else { 2861 ret = -EIO; 2862 break; 2863 } 2864 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 2865 key.offset == chunk_offset) { 2866 memmove(ptr, ptr + len, array_size - (cur + len)); 2867 array_size -= len; 2868 btrfs_set_super_sys_array_size(super_copy, array_size); 2869 } else { 2870 ptr += len; 2871 cur += len; 2872 } 2873 } 2874 mutex_unlock(&fs_info->chunk_mutex); 2875 return ret; 2876 } 2877 2878 /* 2879 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 2880 * @logical: Logical block offset in bytes. 2881 * @length: Length of extent in bytes. 2882 * 2883 * Return: Chunk mapping or ERR_PTR. 2884 */ 2885 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 2886 u64 logical, u64 length) 2887 { 2888 struct extent_map_tree *em_tree; 2889 struct extent_map *em; 2890 2891 em_tree = &fs_info->mapping_tree; 2892 read_lock(&em_tree->lock); 2893 em = lookup_extent_mapping(em_tree, logical, length); 2894 read_unlock(&em_tree->lock); 2895 2896 if (!em) { 2897 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 2898 logical, length); 2899 return ERR_PTR(-EINVAL); 2900 } 2901 2902 if (em->start > logical || em->start + em->len < logical) { 2903 btrfs_crit(fs_info, 2904 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 2905 logical, length, em->start, em->start + em->len); 2906 free_extent_map(em); 2907 return ERR_PTR(-EINVAL); 2908 } 2909 2910 /* callers are responsible for dropping em's ref. */ 2911 return em; 2912 } 2913 2914 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2915 { 2916 struct btrfs_fs_info *fs_info = trans->fs_info; 2917 struct extent_map *em; 2918 struct map_lookup *map; 2919 u64 dev_extent_len = 0; 2920 int i, ret = 0; 2921 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2922 2923 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 2924 if (IS_ERR(em)) { 2925 /* 2926 * This is a logic error, but we don't want to just rely on the 2927 * user having built with ASSERT enabled, so if ASSERT doesn't 2928 * do anything we still error out. 2929 */ 2930 ASSERT(0); 2931 return PTR_ERR(em); 2932 } 2933 map = em->map_lookup; 2934 mutex_lock(&fs_info->chunk_mutex); 2935 check_system_chunk(trans, map->type); 2936 mutex_unlock(&fs_info->chunk_mutex); 2937 2938 /* 2939 * Take the device list mutex to prevent races with the final phase of 2940 * a device replace operation that replaces the device object associated 2941 * with map stripes (dev-replace.c:btrfs_dev_replace_finishing()). 2942 */ 2943 mutex_lock(&fs_devices->device_list_mutex); 2944 for (i = 0; i < map->num_stripes; i++) { 2945 struct btrfs_device *device = map->stripes[i].dev; 2946 ret = btrfs_free_dev_extent(trans, device, 2947 map->stripes[i].physical, 2948 &dev_extent_len); 2949 if (ret) { 2950 mutex_unlock(&fs_devices->device_list_mutex); 2951 btrfs_abort_transaction(trans, ret); 2952 goto out; 2953 } 2954 2955 if (device->bytes_used > 0) { 2956 mutex_lock(&fs_info->chunk_mutex); 2957 btrfs_device_set_bytes_used(device, 2958 device->bytes_used - dev_extent_len); 2959 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 2960 btrfs_clear_space_info_full(fs_info); 2961 mutex_unlock(&fs_info->chunk_mutex); 2962 } 2963 2964 ret = btrfs_update_device(trans, device); 2965 if (ret) { 2966 mutex_unlock(&fs_devices->device_list_mutex); 2967 btrfs_abort_transaction(trans, ret); 2968 goto out; 2969 } 2970 } 2971 mutex_unlock(&fs_devices->device_list_mutex); 2972 2973 ret = btrfs_free_chunk(trans, chunk_offset); 2974 if (ret) { 2975 btrfs_abort_transaction(trans, ret); 2976 goto out; 2977 } 2978 2979 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 2980 2981 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2982 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 2983 if (ret) { 2984 btrfs_abort_transaction(trans, ret); 2985 goto out; 2986 } 2987 } 2988 2989 ret = btrfs_remove_block_group(trans, chunk_offset, em); 2990 if (ret) { 2991 btrfs_abort_transaction(trans, ret); 2992 goto out; 2993 } 2994 2995 out: 2996 /* once for us */ 2997 free_extent_map(em); 2998 return ret; 2999 } 3000 3001 static int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3002 { 3003 struct btrfs_root *root = fs_info->chunk_root; 3004 struct btrfs_trans_handle *trans; 3005 struct btrfs_block_group *block_group; 3006 int ret; 3007 3008 /* 3009 * Prevent races with automatic removal of unused block groups. 3010 * After we relocate and before we remove the chunk with offset 3011 * chunk_offset, automatic removal of the block group can kick in, 3012 * resulting in a failure when calling btrfs_remove_chunk() below. 3013 * 3014 * Make sure to acquire this mutex before doing a tree search (dev 3015 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3016 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3017 * we release the path used to search the chunk/dev tree and before 3018 * the current task acquires this mutex and calls us. 3019 */ 3020 lockdep_assert_held(&fs_info->delete_unused_bgs_mutex); 3021 3022 /* step one, relocate all the extents inside this chunk */ 3023 btrfs_scrub_pause(fs_info); 3024 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3025 btrfs_scrub_continue(fs_info); 3026 if (ret) 3027 return ret; 3028 3029 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3030 if (!block_group) 3031 return -ENOENT; 3032 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3033 btrfs_put_block_group(block_group); 3034 3035 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3036 chunk_offset); 3037 if (IS_ERR(trans)) { 3038 ret = PTR_ERR(trans); 3039 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3040 return ret; 3041 } 3042 3043 /* 3044 * step two, delete the device extents and the 3045 * chunk tree entries 3046 */ 3047 ret = btrfs_remove_chunk(trans, chunk_offset); 3048 btrfs_end_transaction(trans); 3049 return ret; 3050 } 3051 3052 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3053 { 3054 struct btrfs_root *chunk_root = fs_info->chunk_root; 3055 struct btrfs_path *path; 3056 struct extent_buffer *leaf; 3057 struct btrfs_chunk *chunk; 3058 struct btrfs_key key; 3059 struct btrfs_key found_key; 3060 u64 chunk_type; 3061 bool retried = false; 3062 int failed = 0; 3063 int ret; 3064 3065 path = btrfs_alloc_path(); 3066 if (!path) 3067 return -ENOMEM; 3068 3069 again: 3070 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3071 key.offset = (u64)-1; 3072 key.type = BTRFS_CHUNK_ITEM_KEY; 3073 3074 while (1) { 3075 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3076 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3077 if (ret < 0) { 3078 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3079 goto error; 3080 } 3081 BUG_ON(ret == 0); /* Corruption */ 3082 3083 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3084 key.type); 3085 if (ret) 3086 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3087 if (ret < 0) 3088 goto error; 3089 if (ret > 0) 3090 break; 3091 3092 leaf = path->nodes[0]; 3093 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3094 3095 chunk = btrfs_item_ptr(leaf, path->slots[0], 3096 struct btrfs_chunk); 3097 chunk_type = btrfs_chunk_type(leaf, chunk); 3098 btrfs_release_path(path); 3099 3100 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3101 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3102 if (ret == -ENOSPC) 3103 failed++; 3104 else 3105 BUG_ON(ret); 3106 } 3107 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3108 3109 if (found_key.offset == 0) 3110 break; 3111 key.offset = found_key.offset - 1; 3112 } 3113 ret = 0; 3114 if (failed && !retried) { 3115 failed = 0; 3116 retried = true; 3117 goto again; 3118 } else if (WARN_ON(failed && retried)) { 3119 ret = -ENOSPC; 3120 } 3121 error: 3122 btrfs_free_path(path); 3123 return ret; 3124 } 3125 3126 /* 3127 * return 1 : allocate a data chunk successfully, 3128 * return <0: errors during allocating a data chunk, 3129 * return 0 : no need to allocate a data chunk. 3130 */ 3131 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3132 u64 chunk_offset) 3133 { 3134 struct btrfs_block_group *cache; 3135 u64 bytes_used; 3136 u64 chunk_type; 3137 3138 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3139 ASSERT(cache); 3140 chunk_type = cache->flags; 3141 btrfs_put_block_group(cache); 3142 3143 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3144 return 0; 3145 3146 spin_lock(&fs_info->data_sinfo->lock); 3147 bytes_used = fs_info->data_sinfo->bytes_used; 3148 spin_unlock(&fs_info->data_sinfo->lock); 3149 3150 if (!bytes_used) { 3151 struct btrfs_trans_handle *trans; 3152 int ret; 3153 3154 trans = btrfs_join_transaction(fs_info->tree_root); 3155 if (IS_ERR(trans)) 3156 return PTR_ERR(trans); 3157 3158 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3159 btrfs_end_transaction(trans); 3160 if (ret < 0) 3161 return ret; 3162 return 1; 3163 } 3164 3165 return 0; 3166 } 3167 3168 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3169 struct btrfs_balance_control *bctl) 3170 { 3171 struct btrfs_root *root = fs_info->tree_root; 3172 struct btrfs_trans_handle *trans; 3173 struct btrfs_balance_item *item; 3174 struct btrfs_disk_balance_args disk_bargs; 3175 struct btrfs_path *path; 3176 struct extent_buffer *leaf; 3177 struct btrfs_key key; 3178 int ret, err; 3179 3180 path = btrfs_alloc_path(); 3181 if (!path) 3182 return -ENOMEM; 3183 3184 trans = btrfs_start_transaction(root, 0); 3185 if (IS_ERR(trans)) { 3186 btrfs_free_path(path); 3187 return PTR_ERR(trans); 3188 } 3189 3190 key.objectid = BTRFS_BALANCE_OBJECTID; 3191 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3192 key.offset = 0; 3193 3194 ret = btrfs_insert_empty_item(trans, root, path, &key, 3195 sizeof(*item)); 3196 if (ret) 3197 goto out; 3198 3199 leaf = path->nodes[0]; 3200 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3201 3202 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3203 3204 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3205 btrfs_set_balance_data(leaf, item, &disk_bargs); 3206 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3207 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3208 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3209 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3210 3211 btrfs_set_balance_flags(leaf, item, bctl->flags); 3212 3213 btrfs_mark_buffer_dirty(leaf); 3214 out: 3215 btrfs_free_path(path); 3216 err = btrfs_commit_transaction(trans); 3217 if (err && !ret) 3218 ret = err; 3219 return ret; 3220 } 3221 3222 static int del_balance_item(struct btrfs_fs_info *fs_info) 3223 { 3224 struct btrfs_root *root = fs_info->tree_root; 3225 struct btrfs_trans_handle *trans; 3226 struct btrfs_path *path; 3227 struct btrfs_key key; 3228 int ret, err; 3229 3230 path = btrfs_alloc_path(); 3231 if (!path) 3232 return -ENOMEM; 3233 3234 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3235 if (IS_ERR(trans)) { 3236 btrfs_free_path(path); 3237 return PTR_ERR(trans); 3238 } 3239 3240 key.objectid = BTRFS_BALANCE_OBJECTID; 3241 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3242 key.offset = 0; 3243 3244 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3245 if (ret < 0) 3246 goto out; 3247 if (ret > 0) { 3248 ret = -ENOENT; 3249 goto out; 3250 } 3251 3252 ret = btrfs_del_item(trans, root, path); 3253 out: 3254 btrfs_free_path(path); 3255 err = btrfs_commit_transaction(trans); 3256 if (err && !ret) 3257 ret = err; 3258 return ret; 3259 } 3260 3261 /* 3262 * This is a heuristic used to reduce the number of chunks balanced on 3263 * resume after balance was interrupted. 3264 */ 3265 static void update_balance_args(struct btrfs_balance_control *bctl) 3266 { 3267 /* 3268 * Turn on soft mode for chunk types that were being converted. 3269 */ 3270 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3271 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3272 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3273 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3274 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3275 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3276 3277 /* 3278 * Turn on usage filter if is not already used. The idea is 3279 * that chunks that we have already balanced should be 3280 * reasonably full. Don't do it for chunks that are being 3281 * converted - that will keep us from relocating unconverted 3282 * (albeit full) chunks. 3283 */ 3284 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3285 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3286 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3287 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3288 bctl->data.usage = 90; 3289 } 3290 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3291 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3292 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3293 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3294 bctl->sys.usage = 90; 3295 } 3296 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3297 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3298 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3299 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3300 bctl->meta.usage = 90; 3301 } 3302 } 3303 3304 /* 3305 * Clear the balance status in fs_info and delete the balance item from disk. 3306 */ 3307 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3308 { 3309 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3310 int ret; 3311 3312 BUG_ON(!fs_info->balance_ctl); 3313 3314 spin_lock(&fs_info->balance_lock); 3315 fs_info->balance_ctl = NULL; 3316 spin_unlock(&fs_info->balance_lock); 3317 3318 kfree(bctl); 3319 ret = del_balance_item(fs_info); 3320 if (ret) 3321 btrfs_handle_fs_error(fs_info, ret, NULL); 3322 } 3323 3324 /* 3325 * Balance filters. Return 1 if chunk should be filtered out 3326 * (should not be balanced). 3327 */ 3328 static int chunk_profiles_filter(u64 chunk_type, 3329 struct btrfs_balance_args *bargs) 3330 { 3331 chunk_type = chunk_to_extended(chunk_type) & 3332 BTRFS_EXTENDED_PROFILE_MASK; 3333 3334 if (bargs->profiles & chunk_type) 3335 return 0; 3336 3337 return 1; 3338 } 3339 3340 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3341 struct btrfs_balance_args *bargs) 3342 { 3343 struct btrfs_block_group *cache; 3344 u64 chunk_used; 3345 u64 user_thresh_min; 3346 u64 user_thresh_max; 3347 int ret = 1; 3348 3349 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3350 chunk_used = cache->used; 3351 3352 if (bargs->usage_min == 0) 3353 user_thresh_min = 0; 3354 else 3355 user_thresh_min = div_factor_fine(cache->length, 3356 bargs->usage_min); 3357 3358 if (bargs->usage_max == 0) 3359 user_thresh_max = 1; 3360 else if (bargs->usage_max > 100) 3361 user_thresh_max = cache->length; 3362 else 3363 user_thresh_max = div_factor_fine(cache->length, 3364 bargs->usage_max); 3365 3366 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3367 ret = 0; 3368 3369 btrfs_put_block_group(cache); 3370 return ret; 3371 } 3372 3373 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3374 u64 chunk_offset, struct btrfs_balance_args *bargs) 3375 { 3376 struct btrfs_block_group *cache; 3377 u64 chunk_used, user_thresh; 3378 int ret = 1; 3379 3380 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3381 chunk_used = cache->used; 3382 3383 if (bargs->usage_min == 0) 3384 user_thresh = 1; 3385 else if (bargs->usage > 100) 3386 user_thresh = cache->length; 3387 else 3388 user_thresh = div_factor_fine(cache->length, bargs->usage); 3389 3390 if (chunk_used < user_thresh) 3391 ret = 0; 3392 3393 btrfs_put_block_group(cache); 3394 return ret; 3395 } 3396 3397 static int chunk_devid_filter(struct extent_buffer *leaf, 3398 struct btrfs_chunk *chunk, 3399 struct btrfs_balance_args *bargs) 3400 { 3401 struct btrfs_stripe *stripe; 3402 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3403 int i; 3404 3405 for (i = 0; i < num_stripes; i++) { 3406 stripe = btrfs_stripe_nr(chunk, i); 3407 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3408 return 0; 3409 } 3410 3411 return 1; 3412 } 3413 3414 static u64 calc_data_stripes(u64 type, int num_stripes) 3415 { 3416 const int index = btrfs_bg_flags_to_raid_index(type); 3417 const int ncopies = btrfs_raid_array[index].ncopies; 3418 const int nparity = btrfs_raid_array[index].nparity; 3419 3420 if (nparity) 3421 return num_stripes - nparity; 3422 else 3423 return num_stripes / ncopies; 3424 } 3425 3426 /* [pstart, pend) */ 3427 static int chunk_drange_filter(struct extent_buffer *leaf, 3428 struct btrfs_chunk *chunk, 3429 struct btrfs_balance_args *bargs) 3430 { 3431 struct btrfs_stripe *stripe; 3432 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3433 u64 stripe_offset; 3434 u64 stripe_length; 3435 u64 type; 3436 int factor; 3437 int i; 3438 3439 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3440 return 0; 3441 3442 type = btrfs_chunk_type(leaf, chunk); 3443 factor = calc_data_stripes(type, num_stripes); 3444 3445 for (i = 0; i < num_stripes; i++) { 3446 stripe = btrfs_stripe_nr(chunk, i); 3447 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3448 continue; 3449 3450 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3451 stripe_length = btrfs_chunk_length(leaf, chunk); 3452 stripe_length = div_u64(stripe_length, factor); 3453 3454 if (stripe_offset < bargs->pend && 3455 stripe_offset + stripe_length > bargs->pstart) 3456 return 0; 3457 } 3458 3459 return 1; 3460 } 3461 3462 /* [vstart, vend) */ 3463 static int chunk_vrange_filter(struct extent_buffer *leaf, 3464 struct btrfs_chunk *chunk, 3465 u64 chunk_offset, 3466 struct btrfs_balance_args *bargs) 3467 { 3468 if (chunk_offset < bargs->vend && 3469 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3470 /* at least part of the chunk is inside this vrange */ 3471 return 0; 3472 3473 return 1; 3474 } 3475 3476 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3477 struct btrfs_chunk *chunk, 3478 struct btrfs_balance_args *bargs) 3479 { 3480 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3481 3482 if (bargs->stripes_min <= num_stripes 3483 && num_stripes <= bargs->stripes_max) 3484 return 0; 3485 3486 return 1; 3487 } 3488 3489 static int chunk_soft_convert_filter(u64 chunk_type, 3490 struct btrfs_balance_args *bargs) 3491 { 3492 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3493 return 0; 3494 3495 chunk_type = chunk_to_extended(chunk_type) & 3496 BTRFS_EXTENDED_PROFILE_MASK; 3497 3498 if (bargs->target == chunk_type) 3499 return 1; 3500 3501 return 0; 3502 } 3503 3504 static int should_balance_chunk(struct extent_buffer *leaf, 3505 struct btrfs_chunk *chunk, u64 chunk_offset) 3506 { 3507 struct btrfs_fs_info *fs_info = leaf->fs_info; 3508 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3509 struct btrfs_balance_args *bargs = NULL; 3510 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3511 3512 /* type filter */ 3513 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3514 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3515 return 0; 3516 } 3517 3518 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3519 bargs = &bctl->data; 3520 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3521 bargs = &bctl->sys; 3522 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3523 bargs = &bctl->meta; 3524 3525 /* profiles filter */ 3526 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3527 chunk_profiles_filter(chunk_type, bargs)) { 3528 return 0; 3529 } 3530 3531 /* usage filter */ 3532 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3533 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3534 return 0; 3535 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3536 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3537 return 0; 3538 } 3539 3540 /* devid filter */ 3541 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3542 chunk_devid_filter(leaf, chunk, bargs)) { 3543 return 0; 3544 } 3545 3546 /* drange filter, makes sense only with devid filter */ 3547 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3548 chunk_drange_filter(leaf, chunk, bargs)) { 3549 return 0; 3550 } 3551 3552 /* vrange filter */ 3553 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3554 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3555 return 0; 3556 } 3557 3558 /* stripes filter */ 3559 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3560 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3561 return 0; 3562 } 3563 3564 /* soft profile changing mode */ 3565 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3566 chunk_soft_convert_filter(chunk_type, bargs)) { 3567 return 0; 3568 } 3569 3570 /* 3571 * limited by count, must be the last filter 3572 */ 3573 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3574 if (bargs->limit == 0) 3575 return 0; 3576 else 3577 bargs->limit--; 3578 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3579 /* 3580 * Same logic as the 'limit' filter; the minimum cannot be 3581 * determined here because we do not have the global information 3582 * about the count of all chunks that satisfy the filters. 3583 */ 3584 if (bargs->limit_max == 0) 3585 return 0; 3586 else 3587 bargs->limit_max--; 3588 } 3589 3590 return 1; 3591 } 3592 3593 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3594 { 3595 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3596 struct btrfs_root *chunk_root = fs_info->chunk_root; 3597 u64 chunk_type; 3598 struct btrfs_chunk *chunk; 3599 struct btrfs_path *path = NULL; 3600 struct btrfs_key key; 3601 struct btrfs_key found_key; 3602 struct extent_buffer *leaf; 3603 int slot; 3604 int ret; 3605 int enospc_errors = 0; 3606 bool counting = true; 3607 /* The single value limit and min/max limits use the same bytes in the */ 3608 u64 limit_data = bctl->data.limit; 3609 u64 limit_meta = bctl->meta.limit; 3610 u64 limit_sys = bctl->sys.limit; 3611 u32 count_data = 0; 3612 u32 count_meta = 0; 3613 u32 count_sys = 0; 3614 int chunk_reserved = 0; 3615 3616 path = btrfs_alloc_path(); 3617 if (!path) { 3618 ret = -ENOMEM; 3619 goto error; 3620 } 3621 3622 /* zero out stat counters */ 3623 spin_lock(&fs_info->balance_lock); 3624 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3625 spin_unlock(&fs_info->balance_lock); 3626 again: 3627 if (!counting) { 3628 /* 3629 * The single value limit and min/max limits use the same bytes 3630 * in the 3631 */ 3632 bctl->data.limit = limit_data; 3633 bctl->meta.limit = limit_meta; 3634 bctl->sys.limit = limit_sys; 3635 } 3636 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3637 key.offset = (u64)-1; 3638 key.type = BTRFS_CHUNK_ITEM_KEY; 3639 3640 while (1) { 3641 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3642 atomic_read(&fs_info->balance_cancel_req)) { 3643 ret = -ECANCELED; 3644 goto error; 3645 } 3646 3647 mutex_lock(&fs_info->delete_unused_bgs_mutex); 3648 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3649 if (ret < 0) { 3650 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3651 goto error; 3652 } 3653 3654 /* 3655 * this shouldn't happen, it means the last relocate 3656 * failed 3657 */ 3658 if (ret == 0) 3659 BUG(); /* FIXME break ? */ 3660 3661 ret = btrfs_previous_item(chunk_root, path, 0, 3662 BTRFS_CHUNK_ITEM_KEY); 3663 if (ret) { 3664 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3665 ret = 0; 3666 break; 3667 } 3668 3669 leaf = path->nodes[0]; 3670 slot = path->slots[0]; 3671 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3672 3673 if (found_key.objectid != key.objectid) { 3674 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3675 break; 3676 } 3677 3678 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3679 chunk_type = btrfs_chunk_type(leaf, chunk); 3680 3681 if (!counting) { 3682 spin_lock(&fs_info->balance_lock); 3683 bctl->stat.considered++; 3684 spin_unlock(&fs_info->balance_lock); 3685 } 3686 3687 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3688 3689 btrfs_release_path(path); 3690 if (!ret) { 3691 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3692 goto loop; 3693 } 3694 3695 if (counting) { 3696 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3697 spin_lock(&fs_info->balance_lock); 3698 bctl->stat.expected++; 3699 spin_unlock(&fs_info->balance_lock); 3700 3701 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3702 count_data++; 3703 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3704 count_sys++; 3705 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3706 count_meta++; 3707 3708 goto loop; 3709 } 3710 3711 /* 3712 * Apply limit_min filter, no need to check if the LIMITS 3713 * filter is used, limit_min is 0 by default 3714 */ 3715 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3716 count_data < bctl->data.limit_min) 3717 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3718 count_meta < bctl->meta.limit_min) 3719 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3720 count_sys < bctl->sys.limit_min)) { 3721 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3722 goto loop; 3723 } 3724 3725 if (!chunk_reserved) { 3726 /* 3727 * We may be relocating the only data chunk we have, 3728 * which could potentially end up with losing data's 3729 * raid profile, so lets allocate an empty one in 3730 * advance. 3731 */ 3732 ret = btrfs_may_alloc_data_chunk(fs_info, 3733 found_key.offset); 3734 if (ret < 0) { 3735 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3736 goto error; 3737 } else if (ret == 1) { 3738 chunk_reserved = 1; 3739 } 3740 } 3741 3742 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3743 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 3744 if (ret == -ENOSPC) { 3745 enospc_errors++; 3746 } else if (ret == -ETXTBSY) { 3747 btrfs_info(fs_info, 3748 "skipping relocation of block group %llu due to active swapfile", 3749 found_key.offset); 3750 ret = 0; 3751 } else if (ret) { 3752 goto error; 3753 } else { 3754 spin_lock(&fs_info->balance_lock); 3755 bctl->stat.completed++; 3756 spin_unlock(&fs_info->balance_lock); 3757 } 3758 loop: 3759 if (found_key.offset == 0) 3760 break; 3761 key.offset = found_key.offset - 1; 3762 } 3763 3764 if (counting) { 3765 btrfs_release_path(path); 3766 counting = false; 3767 goto again; 3768 } 3769 error: 3770 btrfs_free_path(path); 3771 if (enospc_errors) { 3772 btrfs_info(fs_info, "%d enospc errors during balance", 3773 enospc_errors); 3774 if (!ret) 3775 ret = -ENOSPC; 3776 } 3777 3778 return ret; 3779 } 3780 3781 /** 3782 * alloc_profile_is_valid - see if a given profile is valid and reduced 3783 * @flags: profile to validate 3784 * @extended: if true @flags is treated as an extended profile 3785 */ 3786 static int alloc_profile_is_valid(u64 flags, int extended) 3787 { 3788 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3789 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3790 3791 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3792 3793 /* 1) check that all other bits are zeroed */ 3794 if (flags & ~mask) 3795 return 0; 3796 3797 /* 2) see if profile is reduced */ 3798 if (flags == 0) 3799 return !extended; /* "0" is valid for usual profiles */ 3800 3801 return has_single_bit_set(flags); 3802 } 3803 3804 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3805 { 3806 /* cancel requested || normal exit path */ 3807 return atomic_read(&fs_info->balance_cancel_req) || 3808 (atomic_read(&fs_info->balance_pause_req) == 0 && 3809 atomic_read(&fs_info->balance_cancel_req) == 0); 3810 } 3811 3812 /* 3813 * Validate target profile against allowed profiles and return true if it's OK. 3814 * Otherwise print the error message and return false. 3815 */ 3816 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 3817 const struct btrfs_balance_args *bargs, 3818 u64 allowed, const char *type) 3819 { 3820 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3821 return true; 3822 3823 /* Profile is valid and does not have bits outside of the allowed set */ 3824 if (alloc_profile_is_valid(bargs->target, 1) && 3825 (bargs->target & ~allowed) == 0) 3826 return true; 3827 3828 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 3829 type, btrfs_bg_type_to_raid_name(bargs->target)); 3830 return false; 3831 } 3832 3833 /* 3834 * Fill @buf with textual description of balance filter flags @bargs, up to 3835 * @size_buf including the terminating null. The output may be trimmed if it 3836 * does not fit into the provided buffer. 3837 */ 3838 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 3839 u32 size_buf) 3840 { 3841 int ret; 3842 u32 size_bp = size_buf; 3843 char *bp = buf; 3844 u64 flags = bargs->flags; 3845 char tmp_buf[128] = {'\0'}; 3846 3847 if (!flags) 3848 return; 3849 3850 #define CHECK_APPEND_NOARG(a) \ 3851 do { \ 3852 ret = snprintf(bp, size_bp, (a)); \ 3853 if (ret < 0 || ret >= size_bp) \ 3854 goto out_overflow; \ 3855 size_bp -= ret; \ 3856 bp += ret; \ 3857 } while (0) 3858 3859 #define CHECK_APPEND_1ARG(a, v1) \ 3860 do { \ 3861 ret = snprintf(bp, size_bp, (a), (v1)); \ 3862 if (ret < 0 || ret >= size_bp) \ 3863 goto out_overflow; \ 3864 size_bp -= ret; \ 3865 bp += ret; \ 3866 } while (0) 3867 3868 #define CHECK_APPEND_2ARG(a, v1, v2) \ 3869 do { \ 3870 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 3871 if (ret < 0 || ret >= size_bp) \ 3872 goto out_overflow; \ 3873 size_bp -= ret; \ 3874 bp += ret; \ 3875 } while (0) 3876 3877 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 3878 CHECK_APPEND_1ARG("convert=%s,", 3879 btrfs_bg_type_to_raid_name(bargs->target)); 3880 3881 if (flags & BTRFS_BALANCE_ARGS_SOFT) 3882 CHECK_APPEND_NOARG("soft,"); 3883 3884 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 3885 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 3886 sizeof(tmp_buf)); 3887 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 3888 } 3889 3890 if (flags & BTRFS_BALANCE_ARGS_USAGE) 3891 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 3892 3893 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 3894 CHECK_APPEND_2ARG("usage=%u..%u,", 3895 bargs->usage_min, bargs->usage_max); 3896 3897 if (flags & BTRFS_BALANCE_ARGS_DEVID) 3898 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 3899 3900 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 3901 CHECK_APPEND_2ARG("drange=%llu..%llu,", 3902 bargs->pstart, bargs->pend); 3903 3904 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 3905 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 3906 bargs->vstart, bargs->vend); 3907 3908 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 3909 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 3910 3911 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 3912 CHECK_APPEND_2ARG("limit=%u..%u,", 3913 bargs->limit_min, bargs->limit_max); 3914 3915 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 3916 CHECK_APPEND_2ARG("stripes=%u..%u,", 3917 bargs->stripes_min, bargs->stripes_max); 3918 3919 #undef CHECK_APPEND_2ARG 3920 #undef CHECK_APPEND_1ARG 3921 #undef CHECK_APPEND_NOARG 3922 3923 out_overflow: 3924 3925 if (size_bp < size_buf) 3926 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 3927 else 3928 buf[0] = '\0'; 3929 } 3930 3931 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 3932 { 3933 u32 size_buf = 1024; 3934 char tmp_buf[192] = {'\0'}; 3935 char *buf; 3936 char *bp; 3937 u32 size_bp = size_buf; 3938 int ret; 3939 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3940 3941 buf = kzalloc(size_buf, GFP_KERNEL); 3942 if (!buf) 3943 return; 3944 3945 bp = buf; 3946 3947 #define CHECK_APPEND_1ARG(a, v1) \ 3948 do { \ 3949 ret = snprintf(bp, size_bp, (a), (v1)); \ 3950 if (ret < 0 || ret >= size_bp) \ 3951 goto out_overflow; \ 3952 size_bp -= ret; \ 3953 bp += ret; \ 3954 } while (0) 3955 3956 if (bctl->flags & BTRFS_BALANCE_FORCE) 3957 CHECK_APPEND_1ARG("%s", "-f "); 3958 3959 if (bctl->flags & BTRFS_BALANCE_DATA) { 3960 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 3961 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 3962 } 3963 3964 if (bctl->flags & BTRFS_BALANCE_METADATA) { 3965 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 3966 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 3967 } 3968 3969 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 3970 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 3971 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 3972 } 3973 3974 #undef CHECK_APPEND_1ARG 3975 3976 out_overflow: 3977 3978 if (size_bp < size_buf) 3979 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 3980 btrfs_info(fs_info, "balance: %s %s", 3981 (bctl->flags & BTRFS_BALANCE_RESUME) ? 3982 "resume" : "start", buf); 3983 3984 kfree(buf); 3985 } 3986 3987 /* 3988 * Should be called with balance mutexe held 3989 */ 3990 int btrfs_balance(struct btrfs_fs_info *fs_info, 3991 struct btrfs_balance_control *bctl, 3992 struct btrfs_ioctl_balance_args *bargs) 3993 { 3994 u64 meta_target, data_target; 3995 u64 allowed; 3996 int mixed = 0; 3997 int ret; 3998 u64 num_devices; 3999 unsigned seq; 4000 bool reducing_redundancy; 4001 int i; 4002 4003 if (btrfs_fs_closing(fs_info) || 4004 atomic_read(&fs_info->balance_pause_req) || 4005 btrfs_should_cancel_balance(fs_info)) { 4006 ret = -EINVAL; 4007 goto out; 4008 } 4009 4010 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4011 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4012 mixed = 1; 4013 4014 /* 4015 * In case of mixed groups both data and meta should be picked, 4016 * and identical options should be given for both of them. 4017 */ 4018 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4019 if (mixed && (bctl->flags & allowed)) { 4020 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4021 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4022 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4023 btrfs_err(fs_info, 4024 "balance: mixed groups data and metadata options must be the same"); 4025 ret = -EINVAL; 4026 goto out; 4027 } 4028 } 4029 4030 /* 4031 * rw_devices will not change at the moment, device add/delete/replace 4032 * are exclusive 4033 */ 4034 num_devices = fs_info->fs_devices->rw_devices; 4035 4036 /* 4037 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4038 * special bit for it, to make it easier to distinguish. Thus we need 4039 * to set it manually, or balance would refuse the profile. 4040 */ 4041 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4042 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4043 if (num_devices >= btrfs_raid_array[i].devs_min) 4044 allowed |= btrfs_raid_array[i].bg_flag; 4045 4046 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4047 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4048 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4049 ret = -EINVAL; 4050 goto out; 4051 } 4052 4053 /* 4054 * Allow to reduce metadata or system integrity only if force set for 4055 * profiles with redundancy (copies, parity) 4056 */ 4057 allowed = 0; 4058 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4059 if (btrfs_raid_array[i].ncopies >= 2 || 4060 btrfs_raid_array[i].tolerated_failures >= 1) 4061 allowed |= btrfs_raid_array[i].bg_flag; 4062 } 4063 do { 4064 seq = read_seqbegin(&fs_info->profiles_lock); 4065 4066 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4067 (fs_info->avail_system_alloc_bits & allowed) && 4068 !(bctl->sys.target & allowed)) || 4069 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4070 (fs_info->avail_metadata_alloc_bits & allowed) && 4071 !(bctl->meta.target & allowed))) 4072 reducing_redundancy = true; 4073 else 4074 reducing_redundancy = false; 4075 4076 /* if we're not converting, the target field is uninitialized */ 4077 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4078 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4079 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4080 bctl->data.target : fs_info->avail_data_alloc_bits; 4081 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4082 4083 if (reducing_redundancy) { 4084 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4085 btrfs_info(fs_info, 4086 "balance: force reducing metadata redundancy"); 4087 } else { 4088 btrfs_err(fs_info, 4089 "balance: reduces metadata redundancy, use --force if you want this"); 4090 ret = -EINVAL; 4091 goto out; 4092 } 4093 } 4094 4095 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4096 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4097 btrfs_warn(fs_info, 4098 "balance: metadata profile %s has lower redundancy than data profile %s", 4099 btrfs_bg_type_to_raid_name(meta_target), 4100 btrfs_bg_type_to_raid_name(data_target)); 4101 } 4102 4103 if (fs_info->send_in_progress) { 4104 btrfs_warn_rl(fs_info, 4105 "cannot run balance while send operations are in progress (%d in progress)", 4106 fs_info->send_in_progress); 4107 ret = -EAGAIN; 4108 goto out; 4109 } 4110 4111 ret = insert_balance_item(fs_info, bctl); 4112 if (ret && ret != -EEXIST) 4113 goto out; 4114 4115 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4116 BUG_ON(ret == -EEXIST); 4117 BUG_ON(fs_info->balance_ctl); 4118 spin_lock(&fs_info->balance_lock); 4119 fs_info->balance_ctl = bctl; 4120 spin_unlock(&fs_info->balance_lock); 4121 } else { 4122 BUG_ON(ret != -EEXIST); 4123 spin_lock(&fs_info->balance_lock); 4124 update_balance_args(bctl); 4125 spin_unlock(&fs_info->balance_lock); 4126 } 4127 4128 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4129 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4130 describe_balance_start_or_resume(fs_info); 4131 mutex_unlock(&fs_info->balance_mutex); 4132 4133 ret = __btrfs_balance(fs_info); 4134 4135 mutex_lock(&fs_info->balance_mutex); 4136 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) 4137 btrfs_info(fs_info, "balance: paused"); 4138 /* 4139 * Balance can be canceled by: 4140 * 4141 * - Regular cancel request 4142 * Then ret == -ECANCELED and balance_cancel_req > 0 4143 * 4144 * - Fatal signal to "btrfs" process 4145 * Either the signal caught by wait_reserve_ticket() and callers 4146 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4147 * got -ECANCELED. 4148 * Either way, in this case balance_cancel_req = 0, and 4149 * ret == -EINTR or ret == -ECANCELED. 4150 * 4151 * So here we only check the return value to catch canceled balance. 4152 */ 4153 else if (ret == -ECANCELED || ret == -EINTR) 4154 btrfs_info(fs_info, "balance: canceled"); 4155 else 4156 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4157 4158 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4159 4160 if (bargs) { 4161 memset(bargs, 0, sizeof(*bargs)); 4162 btrfs_update_ioctl_balance_args(fs_info, bargs); 4163 } 4164 4165 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4166 balance_need_close(fs_info)) { 4167 reset_balance_state(fs_info); 4168 btrfs_exclop_finish(fs_info); 4169 } 4170 4171 wake_up(&fs_info->balance_wait_q); 4172 4173 return ret; 4174 out: 4175 if (bctl->flags & BTRFS_BALANCE_RESUME) 4176 reset_balance_state(fs_info); 4177 else 4178 kfree(bctl); 4179 btrfs_exclop_finish(fs_info); 4180 4181 return ret; 4182 } 4183 4184 static int balance_kthread(void *data) 4185 { 4186 struct btrfs_fs_info *fs_info = data; 4187 int ret = 0; 4188 4189 mutex_lock(&fs_info->balance_mutex); 4190 if (fs_info->balance_ctl) 4191 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4192 mutex_unlock(&fs_info->balance_mutex); 4193 4194 return ret; 4195 } 4196 4197 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4198 { 4199 struct task_struct *tsk; 4200 4201 mutex_lock(&fs_info->balance_mutex); 4202 if (!fs_info->balance_ctl) { 4203 mutex_unlock(&fs_info->balance_mutex); 4204 return 0; 4205 } 4206 mutex_unlock(&fs_info->balance_mutex); 4207 4208 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4209 btrfs_info(fs_info, "balance: resume skipped"); 4210 return 0; 4211 } 4212 4213 /* 4214 * A ro->rw remount sequence should continue with the paused balance 4215 * regardless of who pauses it, system or the user as of now, so set 4216 * the resume flag. 4217 */ 4218 spin_lock(&fs_info->balance_lock); 4219 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4220 spin_unlock(&fs_info->balance_lock); 4221 4222 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4223 return PTR_ERR_OR_ZERO(tsk); 4224 } 4225 4226 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4227 { 4228 struct btrfs_balance_control *bctl; 4229 struct btrfs_balance_item *item; 4230 struct btrfs_disk_balance_args disk_bargs; 4231 struct btrfs_path *path; 4232 struct extent_buffer *leaf; 4233 struct btrfs_key key; 4234 int ret; 4235 4236 path = btrfs_alloc_path(); 4237 if (!path) 4238 return -ENOMEM; 4239 4240 key.objectid = BTRFS_BALANCE_OBJECTID; 4241 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4242 key.offset = 0; 4243 4244 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4245 if (ret < 0) 4246 goto out; 4247 if (ret > 0) { /* ret = -ENOENT; */ 4248 ret = 0; 4249 goto out; 4250 } 4251 4252 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4253 if (!bctl) { 4254 ret = -ENOMEM; 4255 goto out; 4256 } 4257 4258 leaf = path->nodes[0]; 4259 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4260 4261 bctl->flags = btrfs_balance_flags(leaf, item); 4262 bctl->flags |= BTRFS_BALANCE_RESUME; 4263 4264 btrfs_balance_data(leaf, item, &disk_bargs); 4265 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4266 btrfs_balance_meta(leaf, item, &disk_bargs); 4267 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4268 btrfs_balance_sys(leaf, item, &disk_bargs); 4269 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4270 4271 /* 4272 * This should never happen, as the paused balance state is recovered 4273 * during mount without any chance of other exclusive ops to collide. 4274 * 4275 * This gives the exclusive op status to balance and keeps in paused 4276 * state until user intervention (cancel or umount). If the ownership 4277 * cannot be assigned, show a message but do not fail. The balance 4278 * is in a paused state and must have fs_info::balance_ctl properly 4279 * set up. 4280 */ 4281 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) 4282 btrfs_warn(fs_info, 4283 "balance: cannot set exclusive op status, resume manually"); 4284 4285 mutex_lock(&fs_info->balance_mutex); 4286 BUG_ON(fs_info->balance_ctl); 4287 spin_lock(&fs_info->balance_lock); 4288 fs_info->balance_ctl = bctl; 4289 spin_unlock(&fs_info->balance_lock); 4290 mutex_unlock(&fs_info->balance_mutex); 4291 out: 4292 btrfs_free_path(path); 4293 return ret; 4294 } 4295 4296 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4297 { 4298 int ret = 0; 4299 4300 mutex_lock(&fs_info->balance_mutex); 4301 if (!fs_info->balance_ctl) { 4302 mutex_unlock(&fs_info->balance_mutex); 4303 return -ENOTCONN; 4304 } 4305 4306 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4307 atomic_inc(&fs_info->balance_pause_req); 4308 mutex_unlock(&fs_info->balance_mutex); 4309 4310 wait_event(fs_info->balance_wait_q, 4311 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4312 4313 mutex_lock(&fs_info->balance_mutex); 4314 /* we are good with balance_ctl ripped off from under us */ 4315 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4316 atomic_dec(&fs_info->balance_pause_req); 4317 } else { 4318 ret = -ENOTCONN; 4319 } 4320 4321 mutex_unlock(&fs_info->balance_mutex); 4322 return ret; 4323 } 4324 4325 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4326 { 4327 mutex_lock(&fs_info->balance_mutex); 4328 if (!fs_info->balance_ctl) { 4329 mutex_unlock(&fs_info->balance_mutex); 4330 return -ENOTCONN; 4331 } 4332 4333 /* 4334 * A paused balance with the item stored on disk can be resumed at 4335 * mount time if the mount is read-write. Otherwise it's still paused 4336 * and we must not allow cancelling as it deletes the item. 4337 */ 4338 if (sb_rdonly(fs_info->sb)) { 4339 mutex_unlock(&fs_info->balance_mutex); 4340 return -EROFS; 4341 } 4342 4343 atomic_inc(&fs_info->balance_cancel_req); 4344 /* 4345 * if we are running just wait and return, balance item is 4346 * deleted in btrfs_balance in this case 4347 */ 4348 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4349 mutex_unlock(&fs_info->balance_mutex); 4350 wait_event(fs_info->balance_wait_q, 4351 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4352 mutex_lock(&fs_info->balance_mutex); 4353 } else { 4354 mutex_unlock(&fs_info->balance_mutex); 4355 /* 4356 * Lock released to allow other waiters to continue, we'll 4357 * reexamine the status again. 4358 */ 4359 mutex_lock(&fs_info->balance_mutex); 4360 4361 if (fs_info->balance_ctl) { 4362 reset_balance_state(fs_info); 4363 btrfs_exclop_finish(fs_info); 4364 btrfs_info(fs_info, "balance: canceled"); 4365 } 4366 } 4367 4368 BUG_ON(fs_info->balance_ctl || 4369 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4370 atomic_dec(&fs_info->balance_cancel_req); 4371 mutex_unlock(&fs_info->balance_mutex); 4372 return 0; 4373 } 4374 4375 int btrfs_uuid_scan_kthread(void *data) 4376 { 4377 struct btrfs_fs_info *fs_info = data; 4378 struct btrfs_root *root = fs_info->tree_root; 4379 struct btrfs_key key; 4380 struct btrfs_path *path = NULL; 4381 int ret = 0; 4382 struct extent_buffer *eb; 4383 int slot; 4384 struct btrfs_root_item root_item; 4385 u32 item_size; 4386 struct btrfs_trans_handle *trans = NULL; 4387 bool closing = false; 4388 4389 path = btrfs_alloc_path(); 4390 if (!path) { 4391 ret = -ENOMEM; 4392 goto out; 4393 } 4394 4395 key.objectid = 0; 4396 key.type = BTRFS_ROOT_ITEM_KEY; 4397 key.offset = 0; 4398 4399 while (1) { 4400 if (btrfs_fs_closing(fs_info)) { 4401 closing = true; 4402 break; 4403 } 4404 ret = btrfs_search_forward(root, &key, path, 4405 BTRFS_OLDEST_GENERATION); 4406 if (ret) { 4407 if (ret > 0) 4408 ret = 0; 4409 break; 4410 } 4411 4412 if (key.type != BTRFS_ROOT_ITEM_KEY || 4413 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4414 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4415 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4416 goto skip; 4417 4418 eb = path->nodes[0]; 4419 slot = path->slots[0]; 4420 item_size = btrfs_item_size_nr(eb, slot); 4421 if (item_size < sizeof(root_item)) 4422 goto skip; 4423 4424 read_extent_buffer(eb, &root_item, 4425 btrfs_item_ptr_offset(eb, slot), 4426 (int)sizeof(root_item)); 4427 if (btrfs_root_refs(&root_item) == 0) 4428 goto skip; 4429 4430 if (!btrfs_is_empty_uuid(root_item.uuid) || 4431 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4432 if (trans) 4433 goto update_tree; 4434 4435 btrfs_release_path(path); 4436 /* 4437 * 1 - subvol uuid item 4438 * 1 - received_subvol uuid item 4439 */ 4440 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4441 if (IS_ERR(trans)) { 4442 ret = PTR_ERR(trans); 4443 break; 4444 } 4445 continue; 4446 } else { 4447 goto skip; 4448 } 4449 update_tree: 4450 btrfs_release_path(path); 4451 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4452 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4453 BTRFS_UUID_KEY_SUBVOL, 4454 key.objectid); 4455 if (ret < 0) { 4456 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4457 ret); 4458 break; 4459 } 4460 } 4461 4462 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4463 ret = btrfs_uuid_tree_add(trans, 4464 root_item.received_uuid, 4465 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4466 key.objectid); 4467 if (ret < 0) { 4468 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4469 ret); 4470 break; 4471 } 4472 } 4473 4474 skip: 4475 btrfs_release_path(path); 4476 if (trans) { 4477 ret = btrfs_end_transaction(trans); 4478 trans = NULL; 4479 if (ret) 4480 break; 4481 } 4482 4483 if (key.offset < (u64)-1) { 4484 key.offset++; 4485 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4486 key.offset = 0; 4487 key.type = BTRFS_ROOT_ITEM_KEY; 4488 } else if (key.objectid < (u64)-1) { 4489 key.offset = 0; 4490 key.type = BTRFS_ROOT_ITEM_KEY; 4491 key.objectid++; 4492 } else { 4493 break; 4494 } 4495 cond_resched(); 4496 } 4497 4498 out: 4499 btrfs_free_path(path); 4500 if (trans && !IS_ERR(trans)) 4501 btrfs_end_transaction(trans); 4502 if (ret) 4503 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4504 else if (!closing) 4505 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4506 up(&fs_info->uuid_tree_rescan_sem); 4507 return 0; 4508 } 4509 4510 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4511 { 4512 struct btrfs_trans_handle *trans; 4513 struct btrfs_root *tree_root = fs_info->tree_root; 4514 struct btrfs_root *uuid_root; 4515 struct task_struct *task; 4516 int ret; 4517 4518 /* 4519 * 1 - root node 4520 * 1 - root item 4521 */ 4522 trans = btrfs_start_transaction(tree_root, 2); 4523 if (IS_ERR(trans)) 4524 return PTR_ERR(trans); 4525 4526 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4527 if (IS_ERR(uuid_root)) { 4528 ret = PTR_ERR(uuid_root); 4529 btrfs_abort_transaction(trans, ret); 4530 btrfs_end_transaction(trans); 4531 return ret; 4532 } 4533 4534 fs_info->uuid_root = uuid_root; 4535 4536 ret = btrfs_commit_transaction(trans); 4537 if (ret) 4538 return ret; 4539 4540 down(&fs_info->uuid_tree_rescan_sem); 4541 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4542 if (IS_ERR(task)) { 4543 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4544 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4545 up(&fs_info->uuid_tree_rescan_sem); 4546 return PTR_ERR(task); 4547 } 4548 4549 return 0; 4550 } 4551 4552 /* 4553 * shrinking a device means finding all of the device extents past 4554 * the new size, and then following the back refs to the chunks. 4555 * The chunk relocation code actually frees the device extent 4556 */ 4557 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4558 { 4559 struct btrfs_fs_info *fs_info = device->fs_info; 4560 struct btrfs_root *root = fs_info->dev_root; 4561 struct btrfs_trans_handle *trans; 4562 struct btrfs_dev_extent *dev_extent = NULL; 4563 struct btrfs_path *path; 4564 u64 length; 4565 u64 chunk_offset; 4566 int ret; 4567 int slot; 4568 int failed = 0; 4569 bool retried = false; 4570 struct extent_buffer *l; 4571 struct btrfs_key key; 4572 struct btrfs_super_block *super_copy = fs_info->super_copy; 4573 u64 old_total = btrfs_super_total_bytes(super_copy); 4574 u64 old_size = btrfs_device_get_total_bytes(device); 4575 u64 diff; 4576 u64 start; 4577 4578 new_size = round_down(new_size, fs_info->sectorsize); 4579 start = new_size; 4580 diff = round_down(old_size - new_size, fs_info->sectorsize); 4581 4582 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4583 return -EINVAL; 4584 4585 path = btrfs_alloc_path(); 4586 if (!path) 4587 return -ENOMEM; 4588 4589 path->reada = READA_BACK; 4590 4591 trans = btrfs_start_transaction(root, 0); 4592 if (IS_ERR(trans)) { 4593 btrfs_free_path(path); 4594 return PTR_ERR(trans); 4595 } 4596 4597 mutex_lock(&fs_info->chunk_mutex); 4598 4599 btrfs_device_set_total_bytes(device, new_size); 4600 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4601 device->fs_devices->total_rw_bytes -= diff; 4602 atomic64_sub(diff, &fs_info->free_chunk_space); 4603 } 4604 4605 /* 4606 * Once the device's size has been set to the new size, ensure all 4607 * in-memory chunks are synced to disk so that the loop below sees them 4608 * and relocates them accordingly. 4609 */ 4610 if (contains_pending_extent(device, &start, diff)) { 4611 mutex_unlock(&fs_info->chunk_mutex); 4612 ret = btrfs_commit_transaction(trans); 4613 if (ret) 4614 goto done; 4615 } else { 4616 mutex_unlock(&fs_info->chunk_mutex); 4617 btrfs_end_transaction(trans); 4618 } 4619 4620 again: 4621 key.objectid = device->devid; 4622 key.offset = (u64)-1; 4623 key.type = BTRFS_DEV_EXTENT_KEY; 4624 4625 do { 4626 mutex_lock(&fs_info->delete_unused_bgs_mutex); 4627 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4628 if (ret < 0) { 4629 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4630 goto done; 4631 } 4632 4633 ret = btrfs_previous_item(root, path, 0, key.type); 4634 if (ret) 4635 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4636 if (ret < 0) 4637 goto done; 4638 if (ret) { 4639 ret = 0; 4640 btrfs_release_path(path); 4641 break; 4642 } 4643 4644 l = path->nodes[0]; 4645 slot = path->slots[0]; 4646 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4647 4648 if (key.objectid != device->devid) { 4649 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4650 btrfs_release_path(path); 4651 break; 4652 } 4653 4654 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4655 length = btrfs_dev_extent_length(l, dev_extent); 4656 4657 if (key.offset + length <= new_size) { 4658 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4659 btrfs_release_path(path); 4660 break; 4661 } 4662 4663 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4664 btrfs_release_path(path); 4665 4666 /* 4667 * We may be relocating the only data chunk we have, 4668 * which could potentially end up with losing data's 4669 * raid profile, so lets allocate an empty one in 4670 * advance. 4671 */ 4672 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4673 if (ret < 0) { 4674 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4675 goto done; 4676 } 4677 4678 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4679 mutex_unlock(&fs_info->delete_unused_bgs_mutex); 4680 if (ret == -ENOSPC) { 4681 failed++; 4682 } else if (ret) { 4683 if (ret == -ETXTBSY) { 4684 btrfs_warn(fs_info, 4685 "could not shrink block group %llu due to active swapfile", 4686 chunk_offset); 4687 } 4688 goto done; 4689 } 4690 } while (key.offset-- > 0); 4691 4692 if (failed && !retried) { 4693 failed = 0; 4694 retried = true; 4695 goto again; 4696 } else if (failed && retried) { 4697 ret = -ENOSPC; 4698 goto done; 4699 } 4700 4701 /* Shrinking succeeded, else we would be at "done". */ 4702 trans = btrfs_start_transaction(root, 0); 4703 if (IS_ERR(trans)) { 4704 ret = PTR_ERR(trans); 4705 goto done; 4706 } 4707 4708 mutex_lock(&fs_info->chunk_mutex); 4709 /* Clear all state bits beyond the shrunk device size */ 4710 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4711 CHUNK_STATE_MASK); 4712 4713 btrfs_device_set_disk_total_bytes(device, new_size); 4714 if (list_empty(&device->post_commit_list)) 4715 list_add_tail(&device->post_commit_list, 4716 &trans->transaction->dev_update_list); 4717 4718 WARN_ON(diff > old_total); 4719 btrfs_set_super_total_bytes(super_copy, 4720 round_down(old_total - diff, fs_info->sectorsize)); 4721 mutex_unlock(&fs_info->chunk_mutex); 4722 4723 /* Now btrfs_update_device() will change the on-disk size. */ 4724 ret = btrfs_update_device(trans, device); 4725 if (ret < 0) { 4726 btrfs_abort_transaction(trans, ret); 4727 btrfs_end_transaction(trans); 4728 } else { 4729 ret = btrfs_commit_transaction(trans); 4730 } 4731 done: 4732 btrfs_free_path(path); 4733 if (ret) { 4734 mutex_lock(&fs_info->chunk_mutex); 4735 btrfs_device_set_total_bytes(device, old_size); 4736 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4737 device->fs_devices->total_rw_bytes += diff; 4738 atomic64_add(diff, &fs_info->free_chunk_space); 4739 mutex_unlock(&fs_info->chunk_mutex); 4740 } 4741 return ret; 4742 } 4743 4744 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 4745 struct btrfs_key *key, 4746 struct btrfs_chunk *chunk, int item_size) 4747 { 4748 struct btrfs_super_block *super_copy = fs_info->super_copy; 4749 struct btrfs_disk_key disk_key; 4750 u32 array_size; 4751 u8 *ptr; 4752 4753 mutex_lock(&fs_info->chunk_mutex); 4754 array_size = btrfs_super_sys_array_size(super_copy); 4755 if (array_size + item_size + sizeof(disk_key) 4756 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) { 4757 mutex_unlock(&fs_info->chunk_mutex); 4758 return -EFBIG; 4759 } 4760 4761 ptr = super_copy->sys_chunk_array + array_size; 4762 btrfs_cpu_key_to_disk(&disk_key, key); 4763 memcpy(ptr, &disk_key, sizeof(disk_key)); 4764 ptr += sizeof(disk_key); 4765 memcpy(ptr, chunk, item_size); 4766 item_size += sizeof(disk_key); 4767 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4768 mutex_unlock(&fs_info->chunk_mutex); 4769 4770 return 0; 4771 } 4772 4773 /* 4774 * sort the devices in descending order by max_avail, total_avail 4775 */ 4776 static int btrfs_cmp_device_info(const void *a, const void *b) 4777 { 4778 const struct btrfs_device_info *di_a = a; 4779 const struct btrfs_device_info *di_b = b; 4780 4781 if (di_a->max_avail > di_b->max_avail) 4782 return -1; 4783 if (di_a->max_avail < di_b->max_avail) 4784 return 1; 4785 if (di_a->total_avail > di_b->total_avail) 4786 return -1; 4787 if (di_a->total_avail < di_b->total_avail) 4788 return 1; 4789 return 0; 4790 } 4791 4792 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4793 { 4794 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 4795 return; 4796 4797 btrfs_set_fs_incompat(info, RAID56); 4798 } 4799 4800 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 4801 { 4802 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 4803 return; 4804 4805 btrfs_set_fs_incompat(info, RAID1C34); 4806 } 4807 4808 /* 4809 * Structure used internally for __btrfs_alloc_chunk() function. 4810 * Wraps needed parameters. 4811 */ 4812 struct alloc_chunk_ctl { 4813 u64 start; 4814 u64 type; 4815 /* Total number of stripes to allocate */ 4816 int num_stripes; 4817 /* sub_stripes info for map */ 4818 int sub_stripes; 4819 /* Stripes per device */ 4820 int dev_stripes; 4821 /* Maximum number of devices to use */ 4822 int devs_max; 4823 /* Minimum number of devices to use */ 4824 int devs_min; 4825 /* ndevs has to be a multiple of this */ 4826 int devs_increment; 4827 /* Number of copies */ 4828 int ncopies; 4829 /* Number of stripes worth of bytes to store parity information */ 4830 int nparity; 4831 u64 max_stripe_size; 4832 u64 max_chunk_size; 4833 u64 dev_extent_min; 4834 u64 stripe_size; 4835 u64 chunk_size; 4836 int ndevs; 4837 }; 4838 4839 static void init_alloc_chunk_ctl_policy_regular( 4840 struct btrfs_fs_devices *fs_devices, 4841 struct alloc_chunk_ctl *ctl) 4842 { 4843 u64 type = ctl->type; 4844 4845 if (type & BTRFS_BLOCK_GROUP_DATA) { 4846 ctl->max_stripe_size = SZ_1G; 4847 ctl->max_chunk_size = BTRFS_MAX_DATA_CHUNK_SIZE; 4848 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4849 /* For larger filesystems, use larger metadata chunks */ 4850 if (fs_devices->total_rw_bytes > 50ULL * SZ_1G) 4851 ctl->max_stripe_size = SZ_1G; 4852 else 4853 ctl->max_stripe_size = SZ_256M; 4854 ctl->max_chunk_size = ctl->max_stripe_size; 4855 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4856 ctl->max_stripe_size = SZ_32M; 4857 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 4858 ctl->devs_max = min_t(int, ctl->devs_max, 4859 BTRFS_MAX_DEVS_SYS_CHUNK); 4860 } else { 4861 BUG(); 4862 } 4863 4864 /* We don't want a chunk larger than 10% of writable space */ 4865 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4866 ctl->max_chunk_size); 4867 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 4868 } 4869 4870 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 4871 struct alloc_chunk_ctl *ctl) 4872 { 4873 int index = btrfs_bg_flags_to_raid_index(ctl->type); 4874 4875 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 4876 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 4877 ctl->devs_max = btrfs_raid_array[index].devs_max; 4878 if (!ctl->devs_max) 4879 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 4880 ctl->devs_min = btrfs_raid_array[index].devs_min; 4881 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 4882 ctl->ncopies = btrfs_raid_array[index].ncopies; 4883 ctl->nparity = btrfs_raid_array[index].nparity; 4884 ctl->ndevs = 0; 4885 4886 switch (fs_devices->chunk_alloc_policy) { 4887 case BTRFS_CHUNK_ALLOC_REGULAR: 4888 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 4889 break; 4890 default: 4891 BUG(); 4892 } 4893 } 4894 4895 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 4896 struct alloc_chunk_ctl *ctl, 4897 struct btrfs_device_info *devices_info) 4898 { 4899 struct btrfs_fs_info *info = fs_devices->fs_info; 4900 struct btrfs_device *device; 4901 u64 total_avail; 4902 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 4903 int ret; 4904 int ndevs = 0; 4905 u64 max_avail; 4906 u64 dev_offset; 4907 4908 /* 4909 * in the first pass through the devices list, we gather information 4910 * about the available holes on each device. 4911 */ 4912 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 4913 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4914 WARN(1, KERN_ERR 4915 "BTRFS: read-only device in alloc_list\n"); 4916 continue; 4917 } 4918 4919 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 4920 &device->dev_state) || 4921 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4922 continue; 4923 4924 if (device->total_bytes > device->bytes_used) 4925 total_avail = device->total_bytes - device->bytes_used; 4926 else 4927 total_avail = 0; 4928 4929 /* If there is no space on this device, skip it. */ 4930 if (total_avail < ctl->dev_extent_min) 4931 continue; 4932 4933 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 4934 &max_avail); 4935 if (ret && ret != -ENOSPC) 4936 return ret; 4937 4938 if (ret == 0) 4939 max_avail = dev_extent_want; 4940 4941 if (max_avail < ctl->dev_extent_min) { 4942 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 4943 btrfs_debug(info, 4944 "%s: devid %llu has no free space, have=%llu want=%llu", 4945 __func__, device->devid, max_avail, 4946 ctl->dev_extent_min); 4947 continue; 4948 } 4949 4950 if (ndevs == fs_devices->rw_devices) { 4951 WARN(1, "%s: found more than %llu devices\n", 4952 __func__, fs_devices->rw_devices); 4953 break; 4954 } 4955 devices_info[ndevs].dev_offset = dev_offset; 4956 devices_info[ndevs].max_avail = max_avail; 4957 devices_info[ndevs].total_avail = total_avail; 4958 devices_info[ndevs].dev = device; 4959 ++ndevs; 4960 } 4961 ctl->ndevs = ndevs; 4962 4963 /* 4964 * now sort the devices by hole size / available space 4965 */ 4966 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4967 btrfs_cmp_device_info, NULL); 4968 4969 return 0; 4970 } 4971 4972 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 4973 struct btrfs_device_info *devices_info) 4974 { 4975 /* Number of stripes that count for block group size */ 4976 int data_stripes; 4977 4978 /* 4979 * The primary goal is to maximize the number of stripes, so use as 4980 * many devices as possible, even if the stripes are not maximum sized. 4981 * 4982 * The DUP profile stores more than one stripe per device, the 4983 * max_avail is the total size so we have to adjust. 4984 */ 4985 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 4986 ctl->dev_stripes); 4987 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 4988 4989 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 4990 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 4991 4992 /* 4993 * Use the number of data stripes to figure out how big this chunk is 4994 * really going to be in terms of logical address space, and compare 4995 * that answer with the max chunk size. If it's higher, we try to 4996 * reduce stripe_size. 4997 */ 4998 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 4999 /* 5000 * Reduce stripe_size, round it up to a 16MB boundary again and 5001 * then use it, unless it ends up being even bigger than the 5002 * previous value we had already. 5003 */ 5004 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5005 data_stripes), SZ_16M), 5006 ctl->stripe_size); 5007 } 5008 5009 /* Align to BTRFS_STRIPE_LEN */ 5010 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5011 ctl->chunk_size = ctl->stripe_size * data_stripes; 5012 5013 return 0; 5014 } 5015 5016 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5017 struct alloc_chunk_ctl *ctl, 5018 struct btrfs_device_info *devices_info) 5019 { 5020 struct btrfs_fs_info *info = fs_devices->fs_info; 5021 5022 /* 5023 * Round down to number of usable stripes, devs_increment can be any 5024 * number so we can't use round_down() that requires power of 2, while 5025 * rounddown is safe. 5026 */ 5027 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5028 5029 if (ctl->ndevs < ctl->devs_min) { 5030 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5031 btrfs_debug(info, 5032 "%s: not enough devices with free space: have=%d minimum required=%d", 5033 __func__, ctl->ndevs, ctl->devs_min); 5034 } 5035 return -ENOSPC; 5036 } 5037 5038 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5039 5040 switch (fs_devices->chunk_alloc_policy) { 5041 case BTRFS_CHUNK_ALLOC_REGULAR: 5042 return decide_stripe_size_regular(ctl, devices_info); 5043 default: 5044 BUG(); 5045 } 5046 } 5047 5048 static int create_chunk(struct btrfs_trans_handle *trans, 5049 struct alloc_chunk_ctl *ctl, 5050 struct btrfs_device_info *devices_info) 5051 { 5052 struct btrfs_fs_info *info = trans->fs_info; 5053 struct map_lookup *map = NULL; 5054 struct extent_map_tree *em_tree; 5055 struct extent_map *em; 5056 u64 start = ctl->start; 5057 u64 type = ctl->type; 5058 int ret; 5059 int i; 5060 int j; 5061 5062 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5063 if (!map) 5064 return -ENOMEM; 5065 map->num_stripes = ctl->num_stripes; 5066 5067 for (i = 0; i < ctl->ndevs; ++i) { 5068 for (j = 0; j < ctl->dev_stripes; ++j) { 5069 int s = i * ctl->dev_stripes + j; 5070 map->stripes[s].dev = devices_info[i].dev; 5071 map->stripes[s].physical = devices_info[i].dev_offset + 5072 j * ctl->stripe_size; 5073 } 5074 } 5075 map->stripe_len = BTRFS_STRIPE_LEN; 5076 map->io_align = BTRFS_STRIPE_LEN; 5077 map->io_width = BTRFS_STRIPE_LEN; 5078 map->type = type; 5079 map->sub_stripes = ctl->sub_stripes; 5080 5081 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5082 5083 em = alloc_extent_map(); 5084 if (!em) { 5085 kfree(map); 5086 return -ENOMEM; 5087 } 5088 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5089 em->map_lookup = map; 5090 em->start = start; 5091 em->len = ctl->chunk_size; 5092 em->block_start = 0; 5093 em->block_len = em->len; 5094 em->orig_block_len = ctl->stripe_size; 5095 5096 em_tree = &info->mapping_tree; 5097 write_lock(&em_tree->lock); 5098 ret = add_extent_mapping(em_tree, em, 0); 5099 if (ret) { 5100 write_unlock(&em_tree->lock); 5101 free_extent_map(em); 5102 return ret; 5103 } 5104 write_unlock(&em_tree->lock); 5105 5106 ret = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5107 if (ret) 5108 goto error_del_extent; 5109 5110 for (i = 0; i < map->num_stripes; i++) { 5111 struct btrfs_device *dev = map->stripes[i].dev; 5112 5113 btrfs_device_set_bytes_used(dev, 5114 dev->bytes_used + ctl->stripe_size); 5115 if (list_empty(&dev->post_commit_list)) 5116 list_add_tail(&dev->post_commit_list, 5117 &trans->transaction->dev_update_list); 5118 } 5119 5120 atomic64_sub(ctl->stripe_size * map->num_stripes, 5121 &info->free_chunk_space); 5122 5123 free_extent_map(em); 5124 check_raid56_incompat_flag(info, type); 5125 check_raid1c34_incompat_flag(info, type); 5126 5127 return 0; 5128 5129 error_del_extent: 5130 write_lock(&em_tree->lock); 5131 remove_extent_mapping(em_tree, em); 5132 write_unlock(&em_tree->lock); 5133 5134 /* One for our allocation */ 5135 free_extent_map(em); 5136 /* One for the tree reference */ 5137 free_extent_map(em); 5138 5139 return ret; 5140 } 5141 5142 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, u64 type) 5143 { 5144 struct btrfs_fs_info *info = trans->fs_info; 5145 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5146 struct btrfs_device_info *devices_info = NULL; 5147 struct alloc_chunk_ctl ctl; 5148 int ret; 5149 5150 lockdep_assert_held(&info->chunk_mutex); 5151 5152 if (!alloc_profile_is_valid(type, 0)) { 5153 ASSERT(0); 5154 return -EINVAL; 5155 } 5156 5157 if (list_empty(&fs_devices->alloc_list)) { 5158 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5159 btrfs_debug(info, "%s: no writable device", __func__); 5160 return -ENOSPC; 5161 } 5162 5163 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5164 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5165 ASSERT(0); 5166 return -EINVAL; 5167 } 5168 5169 ctl.start = find_next_chunk(info); 5170 ctl.type = type; 5171 init_alloc_chunk_ctl(fs_devices, &ctl); 5172 5173 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5174 GFP_NOFS); 5175 if (!devices_info) 5176 return -ENOMEM; 5177 5178 ret = gather_device_info(fs_devices, &ctl, devices_info); 5179 if (ret < 0) 5180 goto out; 5181 5182 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5183 if (ret < 0) 5184 goto out; 5185 5186 ret = create_chunk(trans, &ctl, devices_info); 5187 5188 out: 5189 kfree(devices_info); 5190 return ret; 5191 } 5192 5193 /* 5194 * Chunk allocation falls into two parts. The first part does work 5195 * that makes the new allocated chunk usable, but does not do any operation 5196 * that modifies the chunk tree. The second part does the work that 5197 * requires modifying the chunk tree. This division is important for the 5198 * bootstrap process of adding storage to a seed btrfs. 5199 */ 5200 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 5201 u64 chunk_offset, u64 chunk_size) 5202 { 5203 struct btrfs_fs_info *fs_info = trans->fs_info; 5204 struct btrfs_root *extent_root = fs_info->extent_root; 5205 struct btrfs_root *chunk_root = fs_info->chunk_root; 5206 struct btrfs_key key; 5207 struct btrfs_device *device; 5208 struct btrfs_chunk *chunk; 5209 struct btrfs_stripe *stripe; 5210 struct extent_map *em; 5211 struct map_lookup *map; 5212 size_t item_size; 5213 u64 dev_offset; 5214 u64 stripe_size; 5215 int i = 0; 5216 int ret = 0; 5217 5218 em = btrfs_get_chunk_map(fs_info, chunk_offset, chunk_size); 5219 if (IS_ERR(em)) 5220 return PTR_ERR(em); 5221 5222 map = em->map_lookup; 5223 item_size = btrfs_chunk_item_size(map->num_stripes); 5224 stripe_size = em->orig_block_len; 5225 5226 chunk = kzalloc(item_size, GFP_NOFS); 5227 if (!chunk) { 5228 ret = -ENOMEM; 5229 goto out; 5230 } 5231 5232 /* 5233 * Take the device list mutex to prevent races with the final phase of 5234 * a device replace operation that replaces the device object associated 5235 * with the map's stripes, because the device object's id can change 5236 * at any time during that final phase of the device replace operation 5237 * (dev-replace.c:btrfs_dev_replace_finishing()). 5238 */ 5239 mutex_lock(&fs_info->fs_devices->device_list_mutex); 5240 for (i = 0; i < map->num_stripes; i++) { 5241 device = map->stripes[i].dev; 5242 dev_offset = map->stripes[i].physical; 5243 5244 ret = btrfs_update_device(trans, device); 5245 if (ret) 5246 break; 5247 ret = btrfs_alloc_dev_extent(trans, device, chunk_offset, 5248 dev_offset, stripe_size); 5249 if (ret) 5250 break; 5251 } 5252 if (ret) { 5253 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5254 goto out; 5255 } 5256 5257 stripe = &chunk->stripe; 5258 for (i = 0; i < map->num_stripes; i++) { 5259 device = map->stripes[i].dev; 5260 dev_offset = map->stripes[i].physical; 5261 5262 btrfs_set_stack_stripe_devid(stripe, device->devid); 5263 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5264 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5265 stripe++; 5266 } 5267 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 5268 5269 btrfs_set_stack_chunk_length(chunk, chunk_size); 5270 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 5271 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5272 btrfs_set_stack_chunk_type(chunk, map->type); 5273 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5274 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5275 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5276 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5277 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5278 5279 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5280 key.type = BTRFS_CHUNK_ITEM_KEY; 5281 key.offset = chunk_offset; 5282 5283 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5284 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5285 /* 5286 * TODO: Cleanup of inserted chunk root in case of 5287 * failure. 5288 */ 5289 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5290 } 5291 5292 out: 5293 kfree(chunk); 5294 free_extent_map(em); 5295 return ret; 5296 } 5297 5298 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5299 { 5300 struct btrfs_fs_info *fs_info = trans->fs_info; 5301 u64 alloc_profile; 5302 int ret; 5303 5304 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5305 ret = btrfs_alloc_chunk(trans, alloc_profile); 5306 if (ret) 5307 return ret; 5308 5309 alloc_profile = btrfs_system_alloc_profile(fs_info); 5310 ret = btrfs_alloc_chunk(trans, alloc_profile); 5311 return ret; 5312 } 5313 5314 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5315 { 5316 const int index = btrfs_bg_flags_to_raid_index(map->type); 5317 5318 return btrfs_raid_array[index].tolerated_failures; 5319 } 5320 5321 int btrfs_chunk_readonly(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5322 { 5323 struct extent_map *em; 5324 struct map_lookup *map; 5325 int readonly = 0; 5326 int miss_ndevs = 0; 5327 int i; 5328 5329 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5330 if (IS_ERR(em)) 5331 return 1; 5332 5333 map = em->map_lookup; 5334 for (i = 0; i < map->num_stripes; i++) { 5335 if (test_bit(BTRFS_DEV_STATE_MISSING, 5336 &map->stripes[i].dev->dev_state)) { 5337 miss_ndevs++; 5338 continue; 5339 } 5340 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5341 &map->stripes[i].dev->dev_state)) { 5342 readonly = 1; 5343 goto end; 5344 } 5345 } 5346 5347 /* 5348 * If the number of missing devices is larger than max errors, 5349 * we can not write the data into that chunk successfully, so 5350 * set it readonly. 5351 */ 5352 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5353 readonly = 1; 5354 end: 5355 free_extent_map(em); 5356 return readonly; 5357 } 5358 5359 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5360 { 5361 struct extent_map *em; 5362 5363 while (1) { 5364 write_lock(&tree->lock); 5365 em = lookup_extent_mapping(tree, 0, (u64)-1); 5366 if (em) 5367 remove_extent_mapping(tree, em); 5368 write_unlock(&tree->lock); 5369 if (!em) 5370 break; 5371 /* once for us */ 5372 free_extent_map(em); 5373 /* once for the tree */ 5374 free_extent_map(em); 5375 } 5376 } 5377 5378 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5379 { 5380 struct extent_map *em; 5381 struct map_lookup *map; 5382 int ret; 5383 5384 em = btrfs_get_chunk_map(fs_info, logical, len); 5385 if (IS_ERR(em)) 5386 /* 5387 * We could return errors for these cases, but that could get 5388 * ugly and we'd probably do the same thing which is just not do 5389 * anything else and exit, so return 1 so the callers don't try 5390 * to use other copies. 5391 */ 5392 return 1; 5393 5394 map = em->map_lookup; 5395 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1_MASK)) 5396 ret = map->num_stripes; 5397 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5398 ret = map->sub_stripes; 5399 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5400 ret = 2; 5401 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5402 /* 5403 * There could be two corrupted data stripes, we need 5404 * to loop retry in order to rebuild the correct data. 5405 * 5406 * Fail a stripe at a time on every retry except the 5407 * stripe under reconstruction. 5408 */ 5409 ret = map->num_stripes; 5410 else 5411 ret = 1; 5412 free_extent_map(em); 5413 5414 down_read(&fs_info->dev_replace.rwsem); 5415 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5416 fs_info->dev_replace.tgtdev) 5417 ret++; 5418 up_read(&fs_info->dev_replace.rwsem); 5419 5420 return ret; 5421 } 5422 5423 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5424 u64 logical) 5425 { 5426 struct extent_map *em; 5427 struct map_lookup *map; 5428 unsigned long len = fs_info->sectorsize; 5429 5430 em = btrfs_get_chunk_map(fs_info, logical, len); 5431 5432 if (!WARN_ON(IS_ERR(em))) { 5433 map = em->map_lookup; 5434 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5435 len = map->stripe_len * nr_data_stripes(map); 5436 free_extent_map(em); 5437 } 5438 return len; 5439 } 5440 5441 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5442 { 5443 struct extent_map *em; 5444 struct map_lookup *map; 5445 int ret = 0; 5446 5447 em = btrfs_get_chunk_map(fs_info, logical, len); 5448 5449 if(!WARN_ON(IS_ERR(em))) { 5450 map = em->map_lookup; 5451 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5452 ret = 1; 5453 free_extent_map(em); 5454 } 5455 return ret; 5456 } 5457 5458 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5459 struct map_lookup *map, int first, 5460 int dev_replace_is_ongoing) 5461 { 5462 int i; 5463 int num_stripes; 5464 int preferred_mirror; 5465 int tolerance; 5466 struct btrfs_device *srcdev; 5467 5468 ASSERT((map->type & 5469 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5470 5471 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5472 num_stripes = map->sub_stripes; 5473 else 5474 num_stripes = map->num_stripes; 5475 5476 preferred_mirror = first + current->pid % num_stripes; 5477 5478 if (dev_replace_is_ongoing && 5479 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5480 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5481 srcdev = fs_info->dev_replace.srcdev; 5482 else 5483 srcdev = NULL; 5484 5485 /* 5486 * try to avoid the drive that is the source drive for a 5487 * dev-replace procedure, only choose it if no other non-missing 5488 * mirror is available 5489 */ 5490 for (tolerance = 0; tolerance < 2; tolerance++) { 5491 if (map->stripes[preferred_mirror].dev->bdev && 5492 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5493 return preferred_mirror; 5494 for (i = first; i < first + num_stripes; i++) { 5495 if (map->stripes[i].dev->bdev && 5496 (tolerance || map->stripes[i].dev != srcdev)) 5497 return i; 5498 } 5499 } 5500 5501 /* we couldn't find one that doesn't fail. Just return something 5502 * and the io error handling code will clean up eventually 5503 */ 5504 return preferred_mirror; 5505 } 5506 5507 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5508 static void sort_parity_stripes(struct btrfs_bio *bbio, int num_stripes) 5509 { 5510 int i; 5511 int again = 1; 5512 5513 while (again) { 5514 again = 0; 5515 for (i = 0; i < num_stripes - 1; i++) { 5516 /* Swap if parity is on a smaller index */ 5517 if (bbio->raid_map[i] > bbio->raid_map[i + 1]) { 5518 swap(bbio->stripes[i], bbio->stripes[i + 1]); 5519 swap(bbio->raid_map[i], bbio->raid_map[i + 1]); 5520 again = 1; 5521 } 5522 } 5523 } 5524 } 5525 5526 static struct btrfs_bio *alloc_btrfs_bio(int total_stripes, int real_stripes) 5527 { 5528 struct btrfs_bio *bbio = kzalloc( 5529 /* the size of the btrfs_bio */ 5530 sizeof(struct btrfs_bio) + 5531 /* plus the variable array for the stripes */ 5532 sizeof(struct btrfs_bio_stripe) * (total_stripes) + 5533 /* plus the variable array for the tgt dev */ 5534 sizeof(int) * (real_stripes) + 5535 /* 5536 * plus the raid_map, which includes both the tgt dev 5537 * and the stripes 5538 */ 5539 sizeof(u64) * (total_stripes), 5540 GFP_NOFS|__GFP_NOFAIL); 5541 5542 atomic_set(&bbio->error, 0); 5543 refcount_set(&bbio->refs, 1); 5544 5545 bbio->tgtdev_map = (int *)(bbio->stripes + total_stripes); 5546 bbio->raid_map = (u64 *)(bbio->tgtdev_map + real_stripes); 5547 5548 return bbio; 5549 } 5550 5551 void btrfs_get_bbio(struct btrfs_bio *bbio) 5552 { 5553 WARN_ON(!refcount_read(&bbio->refs)); 5554 refcount_inc(&bbio->refs); 5555 } 5556 5557 void btrfs_put_bbio(struct btrfs_bio *bbio) 5558 { 5559 if (!bbio) 5560 return; 5561 if (refcount_dec_and_test(&bbio->refs)) 5562 kfree(bbio); 5563 } 5564 5565 /* can REQ_OP_DISCARD be sent with other REQ like REQ_OP_WRITE? */ 5566 /* 5567 * Please note that, discard won't be sent to target device of device 5568 * replace. 5569 */ 5570 static int __btrfs_map_block_for_discard(struct btrfs_fs_info *fs_info, 5571 u64 logical, u64 *length_ret, 5572 struct btrfs_bio **bbio_ret) 5573 { 5574 struct extent_map *em; 5575 struct map_lookup *map; 5576 struct btrfs_bio *bbio; 5577 u64 length = *length_ret; 5578 u64 offset; 5579 u64 stripe_nr; 5580 u64 stripe_nr_end; 5581 u64 stripe_end_offset; 5582 u64 stripe_cnt; 5583 u64 stripe_len; 5584 u64 stripe_offset; 5585 u64 num_stripes; 5586 u32 stripe_index; 5587 u32 factor = 0; 5588 u32 sub_stripes = 0; 5589 u64 stripes_per_dev = 0; 5590 u32 remaining_stripes = 0; 5591 u32 last_stripe = 0; 5592 int ret = 0; 5593 int i; 5594 5595 /* discard always return a bbio */ 5596 ASSERT(bbio_ret); 5597 5598 em = btrfs_get_chunk_map(fs_info, logical, length); 5599 if (IS_ERR(em)) 5600 return PTR_ERR(em); 5601 5602 map = em->map_lookup; 5603 /* we don't discard raid56 yet */ 5604 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5605 ret = -EOPNOTSUPP; 5606 goto out; 5607 } 5608 5609 offset = logical - em->start; 5610 length = min_t(u64, em->start + em->len - logical, length); 5611 *length_ret = length; 5612 5613 stripe_len = map->stripe_len; 5614 /* 5615 * stripe_nr counts the total number of stripes we have to stride 5616 * to get to this block 5617 */ 5618 stripe_nr = div64_u64(offset, stripe_len); 5619 5620 /* stripe_offset is the offset of this block in its stripe */ 5621 stripe_offset = offset - stripe_nr * stripe_len; 5622 5623 stripe_nr_end = round_up(offset + length, map->stripe_len); 5624 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 5625 stripe_cnt = stripe_nr_end - stripe_nr; 5626 stripe_end_offset = stripe_nr_end * map->stripe_len - 5627 (offset + length); 5628 /* 5629 * after this, stripe_nr is the number of stripes on this 5630 * device we have to walk to find the data, and stripe_index is 5631 * the number of our device in the stripe array 5632 */ 5633 num_stripes = 1; 5634 stripe_index = 0; 5635 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5636 BTRFS_BLOCK_GROUP_RAID10)) { 5637 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5638 sub_stripes = 1; 5639 else 5640 sub_stripes = map->sub_stripes; 5641 5642 factor = map->num_stripes / sub_stripes; 5643 num_stripes = min_t(u64, map->num_stripes, 5644 sub_stripes * stripe_cnt); 5645 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 5646 stripe_index *= sub_stripes; 5647 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 5648 &remaining_stripes); 5649 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5650 last_stripe *= sub_stripes; 5651 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 5652 BTRFS_BLOCK_GROUP_DUP)) { 5653 num_stripes = map->num_stripes; 5654 } else { 5655 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 5656 &stripe_index); 5657 } 5658 5659 bbio = alloc_btrfs_bio(num_stripes, 0); 5660 if (!bbio) { 5661 ret = -ENOMEM; 5662 goto out; 5663 } 5664 5665 for (i = 0; i < num_stripes; i++) { 5666 bbio->stripes[i].physical = 5667 map->stripes[stripe_index].physical + 5668 stripe_offset + stripe_nr * map->stripe_len; 5669 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5670 5671 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5672 BTRFS_BLOCK_GROUP_RAID10)) { 5673 bbio->stripes[i].length = stripes_per_dev * 5674 map->stripe_len; 5675 5676 if (i / sub_stripes < remaining_stripes) 5677 bbio->stripes[i].length += 5678 map->stripe_len; 5679 5680 /* 5681 * Special for the first stripe and 5682 * the last stripe: 5683 * 5684 * |-------|...|-------| 5685 * |----------| 5686 * off end_off 5687 */ 5688 if (i < sub_stripes) 5689 bbio->stripes[i].length -= 5690 stripe_offset; 5691 5692 if (stripe_index >= last_stripe && 5693 stripe_index <= (last_stripe + 5694 sub_stripes - 1)) 5695 bbio->stripes[i].length -= 5696 stripe_end_offset; 5697 5698 if (i == sub_stripes - 1) 5699 stripe_offset = 0; 5700 } else { 5701 bbio->stripes[i].length = length; 5702 } 5703 5704 stripe_index++; 5705 if (stripe_index == map->num_stripes) { 5706 stripe_index = 0; 5707 stripe_nr++; 5708 } 5709 } 5710 5711 *bbio_ret = bbio; 5712 bbio->map_type = map->type; 5713 bbio->num_stripes = num_stripes; 5714 out: 5715 free_extent_map(em); 5716 return ret; 5717 } 5718 5719 /* 5720 * In dev-replace case, for repair case (that's the only case where the mirror 5721 * is selected explicitly when calling btrfs_map_block), blocks left of the 5722 * left cursor can also be read from the target drive. 5723 * 5724 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 5725 * array of stripes. 5726 * For READ, it also needs to be supported using the same mirror number. 5727 * 5728 * If the requested block is not left of the left cursor, EIO is returned. This 5729 * can happen because btrfs_num_copies() returns one more in the dev-replace 5730 * case. 5731 */ 5732 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 5733 u64 logical, u64 length, 5734 u64 srcdev_devid, int *mirror_num, 5735 u64 *physical) 5736 { 5737 struct btrfs_bio *bbio = NULL; 5738 int num_stripes; 5739 int index_srcdev = 0; 5740 int found = 0; 5741 u64 physical_of_found = 0; 5742 int i; 5743 int ret = 0; 5744 5745 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 5746 logical, &length, &bbio, 0, 0); 5747 if (ret) { 5748 ASSERT(bbio == NULL); 5749 return ret; 5750 } 5751 5752 num_stripes = bbio->num_stripes; 5753 if (*mirror_num > num_stripes) { 5754 /* 5755 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 5756 * that means that the requested area is not left of the left 5757 * cursor 5758 */ 5759 btrfs_put_bbio(bbio); 5760 return -EIO; 5761 } 5762 5763 /* 5764 * process the rest of the function using the mirror_num of the source 5765 * drive. Therefore look it up first. At the end, patch the device 5766 * pointer to the one of the target drive. 5767 */ 5768 for (i = 0; i < num_stripes; i++) { 5769 if (bbio->stripes[i].dev->devid != srcdev_devid) 5770 continue; 5771 5772 /* 5773 * In case of DUP, in order to keep it simple, only add the 5774 * mirror with the lowest physical address 5775 */ 5776 if (found && 5777 physical_of_found <= bbio->stripes[i].physical) 5778 continue; 5779 5780 index_srcdev = i; 5781 found = 1; 5782 physical_of_found = bbio->stripes[i].physical; 5783 } 5784 5785 btrfs_put_bbio(bbio); 5786 5787 ASSERT(found); 5788 if (!found) 5789 return -EIO; 5790 5791 *mirror_num = index_srcdev + 1; 5792 *physical = physical_of_found; 5793 return ret; 5794 } 5795 5796 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 5797 struct btrfs_bio **bbio_ret, 5798 struct btrfs_dev_replace *dev_replace, 5799 int *num_stripes_ret, int *max_errors_ret) 5800 { 5801 struct btrfs_bio *bbio = *bbio_ret; 5802 u64 srcdev_devid = dev_replace->srcdev->devid; 5803 int tgtdev_indexes = 0; 5804 int num_stripes = *num_stripes_ret; 5805 int max_errors = *max_errors_ret; 5806 int i; 5807 5808 if (op == BTRFS_MAP_WRITE) { 5809 int index_where_to_add; 5810 5811 /* 5812 * duplicate the write operations while the dev replace 5813 * procedure is running. Since the copying of the old disk to 5814 * the new disk takes place at run time while the filesystem is 5815 * mounted writable, the regular write operations to the old 5816 * disk have to be duplicated to go to the new disk as well. 5817 * 5818 * Note that device->missing is handled by the caller, and that 5819 * the write to the old disk is already set up in the stripes 5820 * array. 5821 */ 5822 index_where_to_add = num_stripes; 5823 for (i = 0; i < num_stripes; i++) { 5824 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5825 /* write to new disk, too */ 5826 struct btrfs_bio_stripe *new = 5827 bbio->stripes + index_where_to_add; 5828 struct btrfs_bio_stripe *old = 5829 bbio->stripes + i; 5830 5831 new->physical = old->physical; 5832 new->length = old->length; 5833 new->dev = dev_replace->tgtdev; 5834 bbio->tgtdev_map[i] = index_where_to_add; 5835 index_where_to_add++; 5836 max_errors++; 5837 tgtdev_indexes++; 5838 } 5839 } 5840 num_stripes = index_where_to_add; 5841 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 5842 int index_srcdev = 0; 5843 int found = 0; 5844 u64 physical_of_found = 0; 5845 5846 /* 5847 * During the dev-replace procedure, the target drive can also 5848 * be used to read data in case it is needed to repair a corrupt 5849 * block elsewhere. This is possible if the requested area is 5850 * left of the left cursor. In this area, the target drive is a 5851 * full copy of the source drive. 5852 */ 5853 for (i = 0; i < num_stripes; i++) { 5854 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5855 /* 5856 * In case of DUP, in order to keep it simple, 5857 * only add the mirror with the lowest physical 5858 * address 5859 */ 5860 if (found && 5861 physical_of_found <= 5862 bbio->stripes[i].physical) 5863 continue; 5864 index_srcdev = i; 5865 found = 1; 5866 physical_of_found = bbio->stripes[i].physical; 5867 } 5868 } 5869 if (found) { 5870 struct btrfs_bio_stripe *tgtdev_stripe = 5871 bbio->stripes + num_stripes; 5872 5873 tgtdev_stripe->physical = physical_of_found; 5874 tgtdev_stripe->length = 5875 bbio->stripes[index_srcdev].length; 5876 tgtdev_stripe->dev = dev_replace->tgtdev; 5877 bbio->tgtdev_map[index_srcdev] = num_stripes; 5878 5879 tgtdev_indexes++; 5880 num_stripes++; 5881 } 5882 } 5883 5884 *num_stripes_ret = num_stripes; 5885 *max_errors_ret = max_errors; 5886 bbio->num_tgtdevs = tgtdev_indexes; 5887 *bbio_ret = bbio; 5888 } 5889 5890 static bool need_full_stripe(enum btrfs_map_op op) 5891 { 5892 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 5893 } 5894 5895 /* 5896 * btrfs_get_io_geometry - calculates the geomery of a particular (address, len) 5897 * tuple. This information is used to calculate how big a 5898 * particular bio can get before it straddles a stripe. 5899 * 5900 * @fs_info - the filesystem 5901 * @logical - address that we want to figure out the geometry of 5902 * @len - the length of IO we are going to perform, starting at @logical 5903 * @op - type of operation - write or read 5904 * @io_geom - pointer used to return values 5905 * 5906 * Returns < 0 in case a chunk for the given logical address cannot be found, 5907 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 5908 */ 5909 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 5910 u64 logical, u64 len, struct btrfs_io_geometry *io_geom) 5911 { 5912 struct extent_map *em; 5913 struct map_lookup *map; 5914 u64 offset; 5915 u64 stripe_offset; 5916 u64 stripe_nr; 5917 u64 stripe_len; 5918 u64 raid56_full_stripe_start = (u64)-1; 5919 int data_stripes; 5920 int ret = 0; 5921 5922 ASSERT(op != BTRFS_MAP_DISCARD); 5923 5924 em = btrfs_get_chunk_map(fs_info, logical, len); 5925 if (IS_ERR(em)) 5926 return PTR_ERR(em); 5927 5928 map = em->map_lookup; 5929 /* Offset of this logical address in the chunk */ 5930 offset = logical - em->start; 5931 /* Len of a stripe in a chunk */ 5932 stripe_len = map->stripe_len; 5933 /* Stripe wher this block falls in */ 5934 stripe_nr = div64_u64(offset, stripe_len); 5935 /* Offset of stripe in the chunk */ 5936 stripe_offset = stripe_nr * stripe_len; 5937 if (offset < stripe_offset) { 5938 btrfs_crit(fs_info, 5939 "stripe math has gone wrong, stripe_offset=%llu offset=%llu start=%llu logical=%llu stripe_len=%llu", 5940 stripe_offset, offset, em->start, logical, stripe_len); 5941 ret = -EINVAL; 5942 goto out; 5943 } 5944 5945 /* stripe_offset is the offset of this block in its stripe */ 5946 stripe_offset = offset - stripe_offset; 5947 data_stripes = nr_data_stripes(map); 5948 5949 if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 5950 u64 max_len = stripe_len - stripe_offset; 5951 5952 /* 5953 * In case of raid56, we need to know the stripe aligned start 5954 */ 5955 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5956 unsigned long full_stripe_len = stripe_len * data_stripes; 5957 raid56_full_stripe_start = offset; 5958 5959 /* 5960 * Allow a write of a full stripe, but make sure we 5961 * don't allow straddling of stripes 5962 */ 5963 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 5964 full_stripe_len); 5965 raid56_full_stripe_start *= full_stripe_len; 5966 5967 /* 5968 * For writes to RAID[56], allow a full stripeset across 5969 * all disks. For other RAID types and for RAID[56] 5970 * reads, just allow a single stripe (on a single disk). 5971 */ 5972 if (op == BTRFS_MAP_WRITE) { 5973 max_len = stripe_len * data_stripes - 5974 (offset - raid56_full_stripe_start); 5975 } 5976 } 5977 len = min_t(u64, em->len - offset, max_len); 5978 } else { 5979 len = em->len - offset; 5980 } 5981 5982 io_geom->len = len; 5983 io_geom->offset = offset; 5984 io_geom->stripe_len = stripe_len; 5985 io_geom->stripe_nr = stripe_nr; 5986 io_geom->stripe_offset = stripe_offset; 5987 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 5988 5989 out: 5990 /* once for us */ 5991 free_extent_map(em); 5992 return ret; 5993 } 5994 5995 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 5996 enum btrfs_map_op op, 5997 u64 logical, u64 *length, 5998 struct btrfs_bio **bbio_ret, 5999 int mirror_num, int need_raid_map) 6000 { 6001 struct extent_map *em; 6002 struct map_lookup *map; 6003 u64 stripe_offset; 6004 u64 stripe_nr; 6005 u64 stripe_len; 6006 u32 stripe_index; 6007 int data_stripes; 6008 int i; 6009 int ret = 0; 6010 int num_stripes; 6011 int max_errors = 0; 6012 int tgtdev_indexes = 0; 6013 struct btrfs_bio *bbio = NULL; 6014 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6015 int dev_replace_is_ongoing = 0; 6016 int num_alloc_stripes; 6017 int patch_the_first_stripe_for_dev_replace = 0; 6018 u64 physical_to_patch_in_first_stripe = 0; 6019 u64 raid56_full_stripe_start = (u64)-1; 6020 struct btrfs_io_geometry geom; 6021 6022 ASSERT(bbio_ret); 6023 ASSERT(op != BTRFS_MAP_DISCARD); 6024 6025 ret = btrfs_get_io_geometry(fs_info, op, logical, *length, &geom); 6026 if (ret < 0) 6027 return ret; 6028 6029 em = btrfs_get_chunk_map(fs_info, logical, *length); 6030 ASSERT(!IS_ERR(em)); 6031 map = em->map_lookup; 6032 6033 *length = geom.len; 6034 stripe_len = geom.stripe_len; 6035 stripe_nr = geom.stripe_nr; 6036 stripe_offset = geom.stripe_offset; 6037 raid56_full_stripe_start = geom.raid56_stripe_offset; 6038 data_stripes = nr_data_stripes(map); 6039 6040 down_read(&dev_replace->rwsem); 6041 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6042 /* 6043 * Hold the semaphore for read during the whole operation, write is 6044 * requested at commit time but must wait. 6045 */ 6046 if (!dev_replace_is_ongoing) 6047 up_read(&dev_replace->rwsem); 6048 6049 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6050 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6051 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6052 dev_replace->srcdev->devid, 6053 &mirror_num, 6054 &physical_to_patch_in_first_stripe); 6055 if (ret) 6056 goto out; 6057 else 6058 patch_the_first_stripe_for_dev_replace = 1; 6059 } else if (mirror_num > map->num_stripes) { 6060 mirror_num = 0; 6061 } 6062 6063 num_stripes = 1; 6064 stripe_index = 0; 6065 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6066 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6067 &stripe_index); 6068 if (!need_full_stripe(op)) 6069 mirror_num = 1; 6070 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6071 if (need_full_stripe(op)) 6072 num_stripes = map->num_stripes; 6073 else if (mirror_num) 6074 stripe_index = mirror_num - 1; 6075 else { 6076 stripe_index = find_live_mirror(fs_info, map, 0, 6077 dev_replace_is_ongoing); 6078 mirror_num = stripe_index + 1; 6079 } 6080 6081 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6082 if (need_full_stripe(op)) { 6083 num_stripes = map->num_stripes; 6084 } else if (mirror_num) { 6085 stripe_index = mirror_num - 1; 6086 } else { 6087 mirror_num = 1; 6088 } 6089 6090 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6091 u32 factor = map->num_stripes / map->sub_stripes; 6092 6093 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6094 stripe_index *= map->sub_stripes; 6095 6096 if (need_full_stripe(op)) 6097 num_stripes = map->sub_stripes; 6098 else if (mirror_num) 6099 stripe_index += mirror_num - 1; 6100 else { 6101 int old_stripe_index = stripe_index; 6102 stripe_index = find_live_mirror(fs_info, map, 6103 stripe_index, 6104 dev_replace_is_ongoing); 6105 mirror_num = stripe_index - old_stripe_index + 1; 6106 } 6107 6108 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6109 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6110 /* push stripe_nr back to the start of the full stripe */ 6111 stripe_nr = div64_u64(raid56_full_stripe_start, 6112 stripe_len * data_stripes); 6113 6114 /* RAID[56] write or recovery. Return all stripes */ 6115 num_stripes = map->num_stripes; 6116 max_errors = nr_parity_stripes(map); 6117 6118 *length = map->stripe_len; 6119 stripe_index = 0; 6120 stripe_offset = 0; 6121 } else { 6122 /* 6123 * Mirror #0 or #1 means the original data block. 6124 * Mirror #2 is RAID5 parity block. 6125 * Mirror #3 is RAID6 Q block. 6126 */ 6127 stripe_nr = div_u64_rem(stripe_nr, 6128 data_stripes, &stripe_index); 6129 if (mirror_num > 1) 6130 stripe_index = data_stripes + mirror_num - 2; 6131 6132 /* We distribute the parity blocks across stripes */ 6133 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6134 &stripe_index); 6135 if (!need_full_stripe(op) && mirror_num <= 1) 6136 mirror_num = 1; 6137 } 6138 } else { 6139 /* 6140 * after this, stripe_nr is the number of stripes on this 6141 * device we have to walk to find the data, and stripe_index is 6142 * the number of our device in the stripe array 6143 */ 6144 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6145 &stripe_index); 6146 mirror_num = stripe_index + 1; 6147 } 6148 if (stripe_index >= map->num_stripes) { 6149 btrfs_crit(fs_info, 6150 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6151 stripe_index, map->num_stripes); 6152 ret = -EINVAL; 6153 goto out; 6154 } 6155 6156 num_alloc_stripes = num_stripes; 6157 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6158 if (op == BTRFS_MAP_WRITE) 6159 num_alloc_stripes <<= 1; 6160 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6161 num_alloc_stripes++; 6162 tgtdev_indexes = num_stripes; 6163 } 6164 6165 bbio = alloc_btrfs_bio(num_alloc_stripes, tgtdev_indexes); 6166 if (!bbio) { 6167 ret = -ENOMEM; 6168 goto out; 6169 } 6170 6171 for (i = 0; i < num_stripes; i++) { 6172 bbio->stripes[i].physical = map->stripes[stripe_index].physical + 6173 stripe_offset + stripe_nr * map->stripe_len; 6174 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 6175 stripe_index++; 6176 } 6177 6178 /* build raid_map */ 6179 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6180 (need_full_stripe(op) || mirror_num > 1)) { 6181 u64 tmp; 6182 unsigned rot; 6183 6184 /* Work out the disk rotation on this stripe-set */ 6185 div_u64_rem(stripe_nr, num_stripes, &rot); 6186 6187 /* Fill in the logical address of each stripe */ 6188 tmp = stripe_nr * data_stripes; 6189 for (i = 0; i < data_stripes; i++) 6190 bbio->raid_map[(i+rot) % num_stripes] = 6191 em->start + (tmp + i) * map->stripe_len; 6192 6193 bbio->raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 6194 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6195 bbio->raid_map[(i+rot+1) % num_stripes] = 6196 RAID6_Q_STRIPE; 6197 6198 sort_parity_stripes(bbio, num_stripes); 6199 } 6200 6201 if (need_full_stripe(op)) 6202 max_errors = btrfs_chunk_max_errors(map); 6203 6204 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6205 need_full_stripe(op)) { 6206 handle_ops_on_dev_replace(op, &bbio, dev_replace, &num_stripes, 6207 &max_errors); 6208 } 6209 6210 *bbio_ret = bbio; 6211 bbio->map_type = map->type; 6212 bbio->num_stripes = num_stripes; 6213 bbio->max_errors = max_errors; 6214 bbio->mirror_num = mirror_num; 6215 6216 /* 6217 * this is the case that REQ_READ && dev_replace_is_ongoing && 6218 * mirror_num == num_stripes + 1 && dev_replace target drive is 6219 * available as a mirror 6220 */ 6221 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6222 WARN_ON(num_stripes > 1); 6223 bbio->stripes[0].dev = dev_replace->tgtdev; 6224 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 6225 bbio->mirror_num = map->num_stripes + 1; 6226 } 6227 out: 6228 if (dev_replace_is_ongoing) { 6229 lockdep_assert_held(&dev_replace->rwsem); 6230 /* Unlock and let waiting writers proceed */ 6231 up_read(&dev_replace->rwsem); 6232 } 6233 free_extent_map(em); 6234 return ret; 6235 } 6236 6237 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6238 u64 logical, u64 *length, 6239 struct btrfs_bio **bbio_ret, int mirror_num) 6240 { 6241 if (op == BTRFS_MAP_DISCARD) 6242 return __btrfs_map_block_for_discard(fs_info, logical, 6243 length, bbio_ret); 6244 6245 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 6246 mirror_num, 0); 6247 } 6248 6249 /* For Scrub/replace */ 6250 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6251 u64 logical, u64 *length, 6252 struct btrfs_bio **bbio_ret) 6253 { 6254 return __btrfs_map_block(fs_info, op, logical, length, bbio_ret, 0, 1); 6255 } 6256 6257 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio) 6258 { 6259 bio->bi_private = bbio->private; 6260 bio->bi_end_io = bbio->end_io; 6261 bio_endio(bio); 6262 6263 btrfs_put_bbio(bbio); 6264 } 6265 6266 static void btrfs_end_bio(struct bio *bio) 6267 { 6268 struct btrfs_bio *bbio = bio->bi_private; 6269 int is_orig_bio = 0; 6270 6271 if (bio->bi_status) { 6272 atomic_inc(&bbio->error); 6273 if (bio->bi_status == BLK_STS_IOERR || 6274 bio->bi_status == BLK_STS_TARGET) { 6275 struct btrfs_device *dev = btrfs_io_bio(bio)->device; 6276 6277 ASSERT(dev->bdev); 6278 if (bio_op(bio) == REQ_OP_WRITE) 6279 btrfs_dev_stat_inc_and_print(dev, 6280 BTRFS_DEV_STAT_WRITE_ERRS); 6281 else if (!(bio->bi_opf & REQ_RAHEAD)) 6282 btrfs_dev_stat_inc_and_print(dev, 6283 BTRFS_DEV_STAT_READ_ERRS); 6284 if (bio->bi_opf & REQ_PREFLUSH) 6285 btrfs_dev_stat_inc_and_print(dev, 6286 BTRFS_DEV_STAT_FLUSH_ERRS); 6287 } 6288 } 6289 6290 if (bio == bbio->orig_bio) 6291 is_orig_bio = 1; 6292 6293 btrfs_bio_counter_dec(bbio->fs_info); 6294 6295 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6296 if (!is_orig_bio) { 6297 bio_put(bio); 6298 bio = bbio->orig_bio; 6299 } 6300 6301 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6302 /* only send an error to the higher layers if it is 6303 * beyond the tolerance of the btrfs bio 6304 */ 6305 if (atomic_read(&bbio->error) > bbio->max_errors) { 6306 bio->bi_status = BLK_STS_IOERR; 6307 } else { 6308 /* 6309 * this bio is actually up to date, we didn't 6310 * go over the max number of errors 6311 */ 6312 bio->bi_status = BLK_STS_OK; 6313 } 6314 6315 btrfs_end_bbio(bbio, bio); 6316 } else if (!is_orig_bio) { 6317 bio_put(bio); 6318 } 6319 } 6320 6321 static void submit_stripe_bio(struct btrfs_bio *bbio, struct bio *bio, 6322 u64 physical, struct btrfs_device *dev) 6323 { 6324 struct btrfs_fs_info *fs_info = bbio->fs_info; 6325 6326 bio->bi_private = bbio; 6327 btrfs_io_bio(bio)->device = dev; 6328 bio->bi_end_io = btrfs_end_bio; 6329 bio->bi_iter.bi_sector = physical >> 9; 6330 btrfs_debug_in_rcu(fs_info, 6331 "btrfs_map_bio: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6332 bio_op(bio), bio->bi_opf, (u64)bio->bi_iter.bi_sector, 6333 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6334 dev->devid, bio->bi_iter.bi_size); 6335 bio_set_dev(bio, dev->bdev); 6336 6337 btrfs_bio_counter_inc_noblocked(fs_info); 6338 6339 btrfsic_submit_bio(bio); 6340 } 6341 6342 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 6343 { 6344 atomic_inc(&bbio->error); 6345 if (atomic_dec_and_test(&bbio->stripes_pending)) { 6346 /* Should be the original bio. */ 6347 WARN_ON(bio != bbio->orig_bio); 6348 6349 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 6350 bio->bi_iter.bi_sector = logical >> 9; 6351 if (atomic_read(&bbio->error) > bbio->max_errors) 6352 bio->bi_status = BLK_STS_IOERR; 6353 else 6354 bio->bi_status = BLK_STS_OK; 6355 btrfs_end_bbio(bbio, bio); 6356 } 6357 } 6358 6359 blk_status_t btrfs_map_bio(struct btrfs_fs_info *fs_info, struct bio *bio, 6360 int mirror_num) 6361 { 6362 struct btrfs_device *dev; 6363 struct bio *first_bio = bio; 6364 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 6365 u64 length = 0; 6366 u64 map_length; 6367 int ret; 6368 int dev_nr; 6369 int total_devs; 6370 struct btrfs_bio *bbio = NULL; 6371 6372 length = bio->bi_iter.bi_size; 6373 map_length = length; 6374 6375 btrfs_bio_counter_inc_blocked(fs_info); 6376 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, 6377 &map_length, &bbio, mirror_num, 1); 6378 if (ret) { 6379 btrfs_bio_counter_dec(fs_info); 6380 return errno_to_blk_status(ret); 6381 } 6382 6383 total_devs = bbio->num_stripes; 6384 bbio->orig_bio = first_bio; 6385 bbio->private = first_bio->bi_private; 6386 bbio->end_io = first_bio->bi_end_io; 6387 bbio->fs_info = fs_info; 6388 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 6389 6390 if ((bbio->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) && 6391 ((bio_op(bio) == REQ_OP_WRITE) || (mirror_num > 1))) { 6392 /* In this case, map_length has been set to the length of 6393 a single stripe; not the whole write */ 6394 if (bio_op(bio) == REQ_OP_WRITE) { 6395 ret = raid56_parity_write(fs_info, bio, bbio, 6396 map_length); 6397 } else { 6398 ret = raid56_parity_recover(fs_info, bio, bbio, 6399 map_length, mirror_num, 1); 6400 } 6401 6402 btrfs_bio_counter_dec(fs_info); 6403 return errno_to_blk_status(ret); 6404 } 6405 6406 if (map_length < length) { 6407 btrfs_crit(fs_info, 6408 "mapping failed logical %llu bio len %llu len %llu", 6409 logical, length, map_length); 6410 BUG(); 6411 } 6412 6413 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) { 6414 dev = bbio->stripes[dev_nr].dev; 6415 if (!dev || !dev->bdev || test_bit(BTRFS_DEV_STATE_MISSING, 6416 &dev->dev_state) || 6417 (bio_op(first_bio) == REQ_OP_WRITE && 6418 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6419 bbio_error(bbio, first_bio, logical); 6420 continue; 6421 } 6422 6423 if (dev_nr < total_devs - 1) 6424 bio = btrfs_bio_clone(first_bio); 6425 else 6426 bio = first_bio; 6427 6428 submit_stripe_bio(bbio, bio, bbio->stripes[dev_nr].physical, dev); 6429 } 6430 btrfs_bio_counter_dec(fs_info); 6431 return BLK_STS_OK; 6432 } 6433 6434 /* 6435 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6436 * return NULL. 6437 * 6438 * If devid and uuid are both specified, the match must be exact, otherwise 6439 * only devid is used. 6440 * 6441 * If @seed is true, traverse through the seed devices. 6442 */ 6443 struct btrfs_device *btrfs_find_device(struct btrfs_fs_devices *fs_devices, 6444 u64 devid, u8 *uuid, u8 *fsid, 6445 bool seed) 6446 { 6447 struct btrfs_device *device; 6448 struct btrfs_fs_devices *seed_devs; 6449 6450 if (!fsid || !memcmp(fs_devices->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6451 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6452 if (device->devid == devid && 6453 (!uuid || memcmp(device->uuid, uuid, 6454 BTRFS_UUID_SIZE) == 0)) 6455 return device; 6456 } 6457 } 6458 6459 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6460 if (!fsid || 6461 !memcmp(seed_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE)) { 6462 list_for_each_entry(device, &seed_devs->devices, 6463 dev_list) { 6464 if (device->devid == devid && 6465 (!uuid || memcmp(device->uuid, uuid, 6466 BTRFS_UUID_SIZE) == 0)) 6467 return device; 6468 } 6469 } 6470 } 6471 6472 return NULL; 6473 } 6474 6475 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6476 u64 devid, u8 *dev_uuid) 6477 { 6478 struct btrfs_device *device; 6479 unsigned int nofs_flag; 6480 6481 /* 6482 * We call this under the chunk_mutex, so we want to use NOFS for this 6483 * allocation, however we don't want to change btrfs_alloc_device() to 6484 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 6485 * places. 6486 */ 6487 nofs_flag = memalloc_nofs_save(); 6488 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 6489 memalloc_nofs_restore(nofs_flag); 6490 if (IS_ERR(device)) 6491 return device; 6492 6493 list_add(&device->dev_list, &fs_devices->devices); 6494 device->fs_devices = fs_devices; 6495 fs_devices->num_devices++; 6496 6497 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6498 fs_devices->missing_devices++; 6499 6500 return device; 6501 } 6502 6503 /** 6504 * btrfs_alloc_device - allocate struct btrfs_device 6505 * @fs_info: used only for generating a new devid, can be NULL if 6506 * devid is provided (i.e. @devid != NULL). 6507 * @devid: a pointer to devid for this device. If NULL a new devid 6508 * is generated. 6509 * @uuid: a pointer to UUID for this device. If NULL a new UUID 6510 * is generated. 6511 * 6512 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 6513 * on error. Returned struct is not linked onto any lists and must be 6514 * destroyed with btrfs_free_device. 6515 */ 6516 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 6517 const u64 *devid, 6518 const u8 *uuid) 6519 { 6520 struct btrfs_device *dev; 6521 u64 tmp; 6522 6523 if (WARN_ON(!devid && !fs_info)) 6524 return ERR_PTR(-EINVAL); 6525 6526 dev = __alloc_device(fs_info); 6527 if (IS_ERR(dev)) 6528 return dev; 6529 6530 if (devid) 6531 tmp = *devid; 6532 else { 6533 int ret; 6534 6535 ret = find_next_devid(fs_info, &tmp); 6536 if (ret) { 6537 btrfs_free_device(dev); 6538 return ERR_PTR(ret); 6539 } 6540 } 6541 dev->devid = tmp; 6542 6543 if (uuid) 6544 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 6545 else 6546 generate_random_uuid(dev->uuid); 6547 6548 return dev; 6549 } 6550 6551 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 6552 u64 devid, u8 *uuid, bool error) 6553 { 6554 if (error) 6555 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 6556 devid, uuid); 6557 else 6558 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 6559 devid, uuid); 6560 } 6561 6562 static u64 calc_stripe_length(u64 type, u64 chunk_len, int num_stripes) 6563 { 6564 int index = btrfs_bg_flags_to_raid_index(type); 6565 int ncopies = btrfs_raid_array[index].ncopies; 6566 const int nparity = btrfs_raid_array[index].nparity; 6567 int data_stripes; 6568 6569 if (nparity) 6570 data_stripes = num_stripes - nparity; 6571 else 6572 data_stripes = num_stripes / ncopies; 6573 6574 return div_u64(chunk_len, data_stripes); 6575 } 6576 6577 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 6578 struct btrfs_chunk *chunk) 6579 { 6580 struct btrfs_fs_info *fs_info = leaf->fs_info; 6581 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6582 struct map_lookup *map; 6583 struct extent_map *em; 6584 u64 logical; 6585 u64 length; 6586 u64 devid; 6587 u8 uuid[BTRFS_UUID_SIZE]; 6588 int num_stripes; 6589 int ret; 6590 int i; 6591 6592 logical = key->offset; 6593 length = btrfs_chunk_length(leaf, chunk); 6594 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 6595 6596 /* 6597 * Only need to verify chunk item if we're reading from sys chunk array, 6598 * as chunk item in tree block is already verified by tree-checker. 6599 */ 6600 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 6601 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 6602 if (ret) 6603 return ret; 6604 } 6605 6606 read_lock(&map_tree->lock); 6607 em = lookup_extent_mapping(map_tree, logical, 1); 6608 read_unlock(&map_tree->lock); 6609 6610 /* already mapped? */ 6611 if (em && em->start <= logical && em->start + em->len > logical) { 6612 free_extent_map(em); 6613 return 0; 6614 } else if (em) { 6615 free_extent_map(em); 6616 } 6617 6618 em = alloc_extent_map(); 6619 if (!em) 6620 return -ENOMEM; 6621 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 6622 if (!map) { 6623 free_extent_map(em); 6624 return -ENOMEM; 6625 } 6626 6627 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 6628 em->map_lookup = map; 6629 em->start = logical; 6630 em->len = length; 6631 em->orig_start = 0; 6632 em->block_start = 0; 6633 em->block_len = em->len; 6634 6635 map->num_stripes = num_stripes; 6636 map->io_width = btrfs_chunk_io_width(leaf, chunk); 6637 map->io_align = btrfs_chunk_io_align(leaf, chunk); 6638 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 6639 map->type = btrfs_chunk_type(leaf, chunk); 6640 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 6641 map->verified_stripes = 0; 6642 em->orig_block_len = calc_stripe_length(map->type, em->len, 6643 map->num_stripes); 6644 for (i = 0; i < num_stripes; i++) { 6645 map->stripes[i].physical = 6646 btrfs_stripe_offset_nr(leaf, chunk, i); 6647 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 6648 read_extent_buffer(leaf, uuid, (unsigned long) 6649 btrfs_stripe_dev_uuid_nr(chunk, i), 6650 BTRFS_UUID_SIZE); 6651 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, 6652 devid, uuid, NULL, true); 6653 if (!map->stripes[i].dev && 6654 !btrfs_test_opt(fs_info, DEGRADED)) { 6655 free_extent_map(em); 6656 btrfs_report_missing_device(fs_info, devid, uuid, true); 6657 return -ENOENT; 6658 } 6659 if (!map->stripes[i].dev) { 6660 map->stripes[i].dev = 6661 add_missing_dev(fs_info->fs_devices, devid, 6662 uuid); 6663 if (IS_ERR(map->stripes[i].dev)) { 6664 free_extent_map(em); 6665 btrfs_err(fs_info, 6666 "failed to init missing dev %llu: %ld", 6667 devid, PTR_ERR(map->stripes[i].dev)); 6668 return PTR_ERR(map->stripes[i].dev); 6669 } 6670 btrfs_report_missing_device(fs_info, devid, uuid, false); 6671 } 6672 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 6673 &(map->stripes[i].dev->dev_state)); 6674 6675 } 6676 6677 write_lock(&map_tree->lock); 6678 ret = add_extent_mapping(map_tree, em, 0); 6679 write_unlock(&map_tree->lock); 6680 if (ret < 0) { 6681 btrfs_err(fs_info, 6682 "failed to add chunk map, start=%llu len=%llu: %d", 6683 em->start, em->len, ret); 6684 } 6685 free_extent_map(em); 6686 6687 return ret; 6688 } 6689 6690 static void fill_device_from_item(struct extent_buffer *leaf, 6691 struct btrfs_dev_item *dev_item, 6692 struct btrfs_device *device) 6693 { 6694 unsigned long ptr; 6695 6696 device->devid = btrfs_device_id(leaf, dev_item); 6697 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 6698 device->total_bytes = device->disk_total_bytes; 6699 device->commit_total_bytes = device->disk_total_bytes; 6700 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 6701 device->commit_bytes_used = device->bytes_used; 6702 device->type = btrfs_device_type(leaf, dev_item); 6703 device->io_align = btrfs_device_io_align(leaf, dev_item); 6704 device->io_width = btrfs_device_io_width(leaf, dev_item); 6705 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 6706 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 6707 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 6708 6709 ptr = btrfs_device_uuid(dev_item); 6710 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 6711 } 6712 6713 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 6714 u8 *fsid) 6715 { 6716 struct btrfs_fs_devices *fs_devices; 6717 int ret; 6718 6719 lockdep_assert_held(&uuid_mutex); 6720 ASSERT(fsid); 6721 6722 /* This will match only for multi-device seed fs */ 6723 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 6724 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 6725 return fs_devices; 6726 6727 6728 fs_devices = find_fsid(fsid, NULL); 6729 if (!fs_devices) { 6730 if (!btrfs_test_opt(fs_info, DEGRADED)) 6731 return ERR_PTR(-ENOENT); 6732 6733 fs_devices = alloc_fs_devices(fsid, NULL); 6734 if (IS_ERR(fs_devices)) 6735 return fs_devices; 6736 6737 fs_devices->seeding = true; 6738 fs_devices->opened = 1; 6739 return fs_devices; 6740 } 6741 6742 /* 6743 * Upon first call for a seed fs fsid, just create a private copy of the 6744 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 6745 */ 6746 fs_devices = clone_fs_devices(fs_devices); 6747 if (IS_ERR(fs_devices)) 6748 return fs_devices; 6749 6750 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 6751 if (ret) { 6752 free_fs_devices(fs_devices); 6753 return ERR_PTR(ret); 6754 } 6755 6756 if (!fs_devices->seeding) { 6757 close_fs_devices(fs_devices); 6758 free_fs_devices(fs_devices); 6759 return ERR_PTR(-EINVAL); 6760 } 6761 6762 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 6763 6764 return fs_devices; 6765 } 6766 6767 static int read_one_dev(struct extent_buffer *leaf, 6768 struct btrfs_dev_item *dev_item) 6769 { 6770 struct btrfs_fs_info *fs_info = leaf->fs_info; 6771 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6772 struct btrfs_device *device; 6773 u64 devid; 6774 int ret; 6775 u8 fs_uuid[BTRFS_FSID_SIZE]; 6776 u8 dev_uuid[BTRFS_UUID_SIZE]; 6777 6778 devid = btrfs_device_id(leaf, dev_item); 6779 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6780 BTRFS_UUID_SIZE); 6781 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6782 BTRFS_FSID_SIZE); 6783 6784 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 6785 fs_devices = open_seed_devices(fs_info, fs_uuid); 6786 if (IS_ERR(fs_devices)) 6787 return PTR_ERR(fs_devices); 6788 } 6789 6790 device = btrfs_find_device(fs_info->fs_devices, devid, dev_uuid, 6791 fs_uuid, true); 6792 if (!device) { 6793 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6794 btrfs_report_missing_device(fs_info, devid, 6795 dev_uuid, true); 6796 return -ENOENT; 6797 } 6798 6799 device = add_missing_dev(fs_devices, devid, dev_uuid); 6800 if (IS_ERR(device)) { 6801 btrfs_err(fs_info, 6802 "failed to add missing dev %llu: %ld", 6803 devid, PTR_ERR(device)); 6804 return PTR_ERR(device); 6805 } 6806 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 6807 } else { 6808 if (!device->bdev) { 6809 if (!btrfs_test_opt(fs_info, DEGRADED)) { 6810 btrfs_report_missing_device(fs_info, 6811 devid, dev_uuid, true); 6812 return -ENOENT; 6813 } 6814 btrfs_report_missing_device(fs_info, devid, 6815 dev_uuid, false); 6816 } 6817 6818 if (!device->bdev && 6819 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 6820 /* 6821 * this happens when a device that was properly setup 6822 * in the device info lists suddenly goes bad. 6823 * device->bdev is NULL, and so we have to set 6824 * device->missing to one here 6825 */ 6826 device->fs_devices->missing_devices++; 6827 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 6828 } 6829 6830 /* Move the device to its own fs_devices */ 6831 if (device->fs_devices != fs_devices) { 6832 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 6833 &device->dev_state)); 6834 6835 list_move(&device->dev_list, &fs_devices->devices); 6836 device->fs_devices->num_devices--; 6837 fs_devices->num_devices++; 6838 6839 device->fs_devices->missing_devices--; 6840 fs_devices->missing_devices++; 6841 6842 device->fs_devices = fs_devices; 6843 } 6844 } 6845 6846 if (device->fs_devices != fs_info->fs_devices) { 6847 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 6848 if (device->generation != 6849 btrfs_device_generation(leaf, dev_item)) 6850 return -EINVAL; 6851 } 6852 6853 fill_device_from_item(leaf, dev_item, device); 6854 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 6855 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 6856 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 6857 device->fs_devices->total_rw_bytes += device->total_bytes; 6858 atomic64_add(device->total_bytes - device->bytes_used, 6859 &fs_info->free_chunk_space); 6860 } 6861 ret = 0; 6862 return ret; 6863 } 6864 6865 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 6866 { 6867 struct btrfs_root *root = fs_info->tree_root; 6868 struct btrfs_super_block *super_copy = fs_info->super_copy; 6869 struct extent_buffer *sb; 6870 struct btrfs_disk_key *disk_key; 6871 struct btrfs_chunk *chunk; 6872 u8 *array_ptr; 6873 unsigned long sb_array_offset; 6874 int ret = 0; 6875 u32 num_stripes; 6876 u32 array_size; 6877 u32 len = 0; 6878 u32 cur_offset; 6879 u64 type; 6880 struct btrfs_key key; 6881 6882 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 6883 /* 6884 * This will create extent buffer of nodesize, superblock size is 6885 * fixed to BTRFS_SUPER_INFO_SIZE. If nodesize > sb size, this will 6886 * overallocate but we can keep it as-is, only the first page is used. 6887 */ 6888 sb = btrfs_find_create_tree_block(fs_info, BTRFS_SUPER_INFO_OFFSET); 6889 if (IS_ERR(sb)) 6890 return PTR_ERR(sb); 6891 set_extent_buffer_uptodate(sb); 6892 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6893 /* 6894 * The sb extent buffer is artificial and just used to read the system array. 6895 * set_extent_buffer_uptodate() call does not properly mark all it's 6896 * pages up-to-date when the page is larger: extent does not cover the 6897 * whole page and consequently check_page_uptodate does not find all 6898 * the page's extents up-to-date (the hole beyond sb), 6899 * write_extent_buffer then triggers a WARN_ON. 6900 * 6901 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6902 * but sb spans only this function. Add an explicit SetPageUptodate call 6903 * to silence the warning eg. on PowerPC 64. 6904 */ 6905 if (PAGE_SIZE > BTRFS_SUPER_INFO_SIZE) 6906 SetPageUptodate(sb->pages[0]); 6907 6908 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6909 array_size = btrfs_super_sys_array_size(super_copy); 6910 6911 array_ptr = super_copy->sys_chunk_array; 6912 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 6913 cur_offset = 0; 6914 6915 while (cur_offset < array_size) { 6916 disk_key = (struct btrfs_disk_key *)array_ptr; 6917 len = sizeof(*disk_key); 6918 if (cur_offset + len > array_size) 6919 goto out_short_read; 6920 6921 btrfs_disk_key_to_cpu(&key, disk_key); 6922 6923 array_ptr += len; 6924 sb_array_offset += len; 6925 cur_offset += len; 6926 6927 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 6928 btrfs_err(fs_info, 6929 "unexpected item type %u in sys_array at offset %u", 6930 (u32)key.type, cur_offset); 6931 ret = -EIO; 6932 break; 6933 } 6934 6935 chunk = (struct btrfs_chunk *)sb_array_offset; 6936 /* 6937 * At least one btrfs_chunk with one stripe must be present, 6938 * exact stripe count check comes afterwards 6939 */ 6940 len = btrfs_chunk_item_size(1); 6941 if (cur_offset + len > array_size) 6942 goto out_short_read; 6943 6944 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6945 if (!num_stripes) { 6946 btrfs_err(fs_info, 6947 "invalid number of stripes %u in sys_array at offset %u", 6948 num_stripes, cur_offset); 6949 ret = -EIO; 6950 break; 6951 } 6952 6953 type = btrfs_chunk_type(sb, chunk); 6954 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 6955 btrfs_err(fs_info, 6956 "invalid chunk type %llu in sys_array at offset %u", 6957 type, cur_offset); 6958 ret = -EIO; 6959 break; 6960 } 6961 6962 len = btrfs_chunk_item_size(num_stripes); 6963 if (cur_offset + len > array_size) 6964 goto out_short_read; 6965 6966 ret = read_one_chunk(&key, sb, chunk); 6967 if (ret) 6968 break; 6969 6970 array_ptr += len; 6971 sb_array_offset += len; 6972 cur_offset += len; 6973 } 6974 clear_extent_buffer_uptodate(sb); 6975 free_extent_buffer_stale(sb); 6976 return ret; 6977 6978 out_short_read: 6979 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 6980 len, cur_offset); 6981 clear_extent_buffer_uptodate(sb); 6982 free_extent_buffer_stale(sb); 6983 return -EIO; 6984 } 6985 6986 /* 6987 * Check if all chunks in the fs are OK for read-write degraded mount 6988 * 6989 * If the @failing_dev is specified, it's accounted as missing. 6990 * 6991 * Return true if all chunks meet the minimal RW mount requirements. 6992 * Return false if any chunk doesn't meet the minimal RW mount requirements. 6993 */ 6994 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 6995 struct btrfs_device *failing_dev) 6996 { 6997 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 6998 struct extent_map *em; 6999 u64 next_start = 0; 7000 bool ret = true; 7001 7002 read_lock(&map_tree->lock); 7003 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7004 read_unlock(&map_tree->lock); 7005 /* No chunk at all? Return false anyway */ 7006 if (!em) { 7007 ret = false; 7008 goto out; 7009 } 7010 while (em) { 7011 struct map_lookup *map; 7012 int missing = 0; 7013 int max_tolerated; 7014 int i; 7015 7016 map = em->map_lookup; 7017 max_tolerated = 7018 btrfs_get_num_tolerated_disk_barrier_failures( 7019 map->type); 7020 for (i = 0; i < map->num_stripes; i++) { 7021 struct btrfs_device *dev = map->stripes[i].dev; 7022 7023 if (!dev || !dev->bdev || 7024 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7025 dev->last_flush_error) 7026 missing++; 7027 else if (failing_dev && failing_dev == dev) 7028 missing++; 7029 } 7030 if (missing > max_tolerated) { 7031 if (!failing_dev) 7032 btrfs_warn(fs_info, 7033 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7034 em->start, missing, max_tolerated); 7035 free_extent_map(em); 7036 ret = false; 7037 goto out; 7038 } 7039 next_start = extent_map_end(em); 7040 free_extent_map(em); 7041 7042 read_lock(&map_tree->lock); 7043 em = lookup_extent_mapping(map_tree, next_start, 7044 (u64)(-1) - next_start); 7045 read_unlock(&map_tree->lock); 7046 } 7047 out: 7048 return ret; 7049 } 7050 7051 static void readahead_tree_node_children(struct extent_buffer *node) 7052 { 7053 int i; 7054 const int nr_items = btrfs_header_nritems(node); 7055 7056 for (i = 0; i < nr_items; i++) { 7057 u64 start; 7058 7059 start = btrfs_node_blockptr(node, i); 7060 readahead_tree_block(node->fs_info, start); 7061 } 7062 } 7063 7064 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7065 { 7066 struct btrfs_root *root = fs_info->chunk_root; 7067 struct btrfs_path *path; 7068 struct extent_buffer *leaf; 7069 struct btrfs_key key; 7070 struct btrfs_key found_key; 7071 int ret; 7072 int slot; 7073 u64 total_dev = 0; 7074 u64 last_ra_node = 0; 7075 7076 path = btrfs_alloc_path(); 7077 if (!path) 7078 return -ENOMEM; 7079 7080 /* 7081 * uuid_mutex is needed only if we are mounting a sprout FS 7082 * otherwise we don't need it. 7083 */ 7084 mutex_lock(&uuid_mutex); 7085 7086 /* 7087 * It is possible for mount and umount to race in such a way that 7088 * we execute this code path, but open_fs_devices failed to clear 7089 * total_rw_bytes. We certainly want it cleared before reading the 7090 * device items, so clear it here. 7091 */ 7092 fs_info->fs_devices->total_rw_bytes = 0; 7093 7094 /* 7095 * Read all device items, and then all the chunk items. All 7096 * device items are found before any chunk item (their object id 7097 * is smaller than the lowest possible object id for a chunk 7098 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7099 */ 7100 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7101 key.offset = 0; 7102 key.type = 0; 7103 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7104 if (ret < 0) 7105 goto error; 7106 while (1) { 7107 struct extent_buffer *node; 7108 7109 leaf = path->nodes[0]; 7110 slot = path->slots[0]; 7111 if (slot >= btrfs_header_nritems(leaf)) { 7112 ret = btrfs_next_leaf(root, path); 7113 if (ret == 0) 7114 continue; 7115 if (ret < 0) 7116 goto error; 7117 break; 7118 } 7119 /* 7120 * The nodes on level 1 are not locked but we don't need to do 7121 * that during mount time as nothing else can access the tree 7122 */ 7123 node = path->nodes[1]; 7124 if (node) { 7125 if (last_ra_node != node->start) { 7126 readahead_tree_node_children(node); 7127 last_ra_node = node->start; 7128 } 7129 } 7130 btrfs_item_key_to_cpu(leaf, &found_key, slot); 7131 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7132 struct btrfs_dev_item *dev_item; 7133 dev_item = btrfs_item_ptr(leaf, slot, 7134 struct btrfs_dev_item); 7135 ret = read_one_dev(leaf, dev_item); 7136 if (ret) 7137 goto error; 7138 total_dev++; 7139 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7140 struct btrfs_chunk *chunk; 7141 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7142 mutex_lock(&fs_info->chunk_mutex); 7143 ret = read_one_chunk(&found_key, leaf, chunk); 7144 mutex_unlock(&fs_info->chunk_mutex); 7145 if (ret) 7146 goto error; 7147 } 7148 path->slots[0]++; 7149 } 7150 7151 /* 7152 * After loading chunk tree, we've got all device information, 7153 * do another round of validation checks. 7154 */ 7155 if (total_dev != fs_info->fs_devices->total_devices) { 7156 btrfs_err(fs_info, 7157 "super_num_devices %llu mismatch with num_devices %llu found here", 7158 btrfs_super_num_devices(fs_info->super_copy), 7159 total_dev); 7160 ret = -EINVAL; 7161 goto error; 7162 } 7163 if (btrfs_super_total_bytes(fs_info->super_copy) < 7164 fs_info->fs_devices->total_rw_bytes) { 7165 btrfs_err(fs_info, 7166 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7167 btrfs_super_total_bytes(fs_info->super_copy), 7168 fs_info->fs_devices->total_rw_bytes); 7169 ret = -EINVAL; 7170 goto error; 7171 } 7172 ret = 0; 7173 error: 7174 mutex_unlock(&uuid_mutex); 7175 7176 btrfs_free_path(path); 7177 return ret; 7178 } 7179 7180 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7181 { 7182 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7183 struct btrfs_device *device; 7184 7185 fs_devices->fs_info = fs_info; 7186 7187 mutex_lock(&fs_devices->device_list_mutex); 7188 list_for_each_entry(device, &fs_devices->devices, dev_list) 7189 device->fs_info = fs_info; 7190 7191 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7192 list_for_each_entry(device, &seed_devs->devices, dev_list) 7193 device->fs_info = fs_info; 7194 7195 seed_devs->fs_info = fs_info; 7196 } 7197 mutex_unlock(&fs_devices->device_list_mutex); 7198 } 7199 7200 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7201 const struct btrfs_dev_stats_item *ptr, 7202 int index) 7203 { 7204 u64 val; 7205 7206 read_extent_buffer(eb, &val, 7207 offsetof(struct btrfs_dev_stats_item, values) + 7208 ((unsigned long)ptr) + (index * sizeof(u64)), 7209 sizeof(val)); 7210 return val; 7211 } 7212 7213 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7214 struct btrfs_dev_stats_item *ptr, 7215 int index, u64 val) 7216 { 7217 write_extent_buffer(eb, &val, 7218 offsetof(struct btrfs_dev_stats_item, values) + 7219 ((unsigned long)ptr) + (index * sizeof(u64)), 7220 sizeof(val)); 7221 } 7222 7223 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7224 struct btrfs_path *path) 7225 { 7226 struct btrfs_dev_stats_item *ptr; 7227 struct extent_buffer *eb; 7228 struct btrfs_key key; 7229 int item_size; 7230 int i, ret, slot; 7231 7232 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7233 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7234 key.offset = device->devid; 7235 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7236 if (ret) { 7237 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7238 btrfs_dev_stat_set(device, i, 0); 7239 device->dev_stats_valid = 1; 7240 btrfs_release_path(path); 7241 return ret < 0 ? ret : 0; 7242 } 7243 slot = path->slots[0]; 7244 eb = path->nodes[0]; 7245 item_size = btrfs_item_size_nr(eb, slot); 7246 7247 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7248 7249 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7250 if (item_size >= (1 + i) * sizeof(__le64)) 7251 btrfs_dev_stat_set(device, i, 7252 btrfs_dev_stats_value(eb, ptr, i)); 7253 else 7254 btrfs_dev_stat_set(device, i, 0); 7255 } 7256 7257 device->dev_stats_valid = 1; 7258 btrfs_dev_stat_print_on_load(device); 7259 btrfs_release_path(path); 7260 7261 return 0; 7262 } 7263 7264 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7265 { 7266 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7267 struct btrfs_device *device; 7268 struct btrfs_path *path = NULL; 7269 int ret = 0; 7270 7271 path = btrfs_alloc_path(); 7272 if (!path) 7273 return -ENOMEM; 7274 7275 mutex_lock(&fs_devices->device_list_mutex); 7276 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7277 ret = btrfs_device_init_dev_stats(device, path); 7278 if (ret) 7279 goto out; 7280 } 7281 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7282 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7283 ret = btrfs_device_init_dev_stats(device, path); 7284 if (ret) 7285 goto out; 7286 } 7287 } 7288 out: 7289 mutex_unlock(&fs_devices->device_list_mutex); 7290 7291 btrfs_free_path(path); 7292 return ret; 7293 } 7294 7295 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7296 struct btrfs_device *device) 7297 { 7298 struct btrfs_fs_info *fs_info = trans->fs_info; 7299 struct btrfs_root *dev_root = fs_info->dev_root; 7300 struct btrfs_path *path; 7301 struct btrfs_key key; 7302 struct extent_buffer *eb; 7303 struct btrfs_dev_stats_item *ptr; 7304 int ret; 7305 int i; 7306 7307 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7308 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7309 key.offset = device->devid; 7310 7311 path = btrfs_alloc_path(); 7312 if (!path) 7313 return -ENOMEM; 7314 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7315 if (ret < 0) { 7316 btrfs_warn_in_rcu(fs_info, 7317 "error %d while searching for dev_stats item for device %s", 7318 ret, rcu_str_deref(device->name)); 7319 goto out; 7320 } 7321 7322 if (ret == 0 && 7323 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7324 /* need to delete old one and insert a new one */ 7325 ret = btrfs_del_item(trans, dev_root, path); 7326 if (ret != 0) { 7327 btrfs_warn_in_rcu(fs_info, 7328 "delete too small dev_stats item for device %s failed %d", 7329 rcu_str_deref(device->name), ret); 7330 goto out; 7331 } 7332 ret = 1; 7333 } 7334 7335 if (ret == 1) { 7336 /* need to insert a new item */ 7337 btrfs_release_path(path); 7338 ret = btrfs_insert_empty_item(trans, dev_root, path, 7339 &key, sizeof(*ptr)); 7340 if (ret < 0) { 7341 btrfs_warn_in_rcu(fs_info, 7342 "insert dev_stats item for device %s failed %d", 7343 rcu_str_deref(device->name), ret); 7344 goto out; 7345 } 7346 } 7347 7348 eb = path->nodes[0]; 7349 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7350 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7351 btrfs_set_dev_stats_value(eb, ptr, i, 7352 btrfs_dev_stat_read(device, i)); 7353 btrfs_mark_buffer_dirty(eb); 7354 7355 out: 7356 btrfs_free_path(path); 7357 return ret; 7358 } 7359 7360 /* 7361 * called from commit_transaction. Writes all changed device stats to disk. 7362 */ 7363 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7364 { 7365 struct btrfs_fs_info *fs_info = trans->fs_info; 7366 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7367 struct btrfs_device *device; 7368 int stats_cnt; 7369 int ret = 0; 7370 7371 mutex_lock(&fs_devices->device_list_mutex); 7372 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7373 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7374 if (!device->dev_stats_valid || stats_cnt == 0) 7375 continue; 7376 7377 7378 /* 7379 * There is a LOAD-LOAD control dependency between the value of 7380 * dev_stats_ccnt and updating the on-disk values which requires 7381 * reading the in-memory counters. Such control dependencies 7382 * require explicit read memory barriers. 7383 * 7384 * This memory barriers pairs with smp_mb__before_atomic in 7385 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7386 * barrier implied by atomic_xchg in 7387 * btrfs_dev_stats_read_and_reset 7388 */ 7389 smp_rmb(); 7390 7391 ret = update_dev_stat_item(trans, device); 7392 if (!ret) 7393 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7394 } 7395 mutex_unlock(&fs_devices->device_list_mutex); 7396 7397 return ret; 7398 } 7399 7400 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 7401 { 7402 btrfs_dev_stat_inc(dev, index); 7403 btrfs_dev_stat_print_on_error(dev); 7404 } 7405 7406 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 7407 { 7408 if (!dev->dev_stats_valid) 7409 return; 7410 btrfs_err_rl_in_rcu(dev->fs_info, 7411 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7412 rcu_str_deref(dev->name), 7413 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7414 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7415 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7416 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7417 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7418 } 7419 7420 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 7421 { 7422 int i; 7423 7424 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7425 if (btrfs_dev_stat_read(dev, i) != 0) 7426 break; 7427 if (i == BTRFS_DEV_STAT_VALUES_MAX) 7428 return; /* all values == 0, suppress message */ 7429 7430 btrfs_info_in_rcu(dev->fs_info, 7431 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 7432 rcu_str_deref(dev->name), 7433 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 7434 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 7435 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 7436 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 7437 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 7438 } 7439 7440 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 7441 struct btrfs_ioctl_get_dev_stats *stats) 7442 { 7443 struct btrfs_device *dev; 7444 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7445 int i; 7446 7447 mutex_lock(&fs_devices->device_list_mutex); 7448 dev = btrfs_find_device(fs_info->fs_devices, stats->devid, NULL, NULL, 7449 true); 7450 mutex_unlock(&fs_devices->device_list_mutex); 7451 7452 if (!dev) { 7453 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 7454 return -ENODEV; 7455 } else if (!dev->dev_stats_valid) { 7456 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 7457 return -ENODEV; 7458 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 7459 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7460 if (stats->nr_items > i) 7461 stats->values[i] = 7462 btrfs_dev_stat_read_and_reset(dev, i); 7463 else 7464 btrfs_dev_stat_set(dev, i, 0); 7465 } 7466 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 7467 current->comm, task_pid_nr(current)); 7468 } else { 7469 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7470 if (stats->nr_items > i) 7471 stats->values[i] = btrfs_dev_stat_read(dev, i); 7472 } 7473 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 7474 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 7475 return 0; 7476 } 7477 7478 /* 7479 * Update the size and bytes used for each device where it changed. This is 7480 * delayed since we would otherwise get errors while writing out the 7481 * superblocks. 7482 * 7483 * Must be invoked during transaction commit. 7484 */ 7485 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 7486 { 7487 struct btrfs_device *curr, *next; 7488 7489 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 7490 7491 if (list_empty(&trans->dev_update_list)) 7492 return; 7493 7494 /* 7495 * We don't need the device_list_mutex here. This list is owned by the 7496 * transaction and the transaction must complete before the device is 7497 * released. 7498 */ 7499 mutex_lock(&trans->fs_info->chunk_mutex); 7500 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 7501 post_commit_list) { 7502 list_del_init(&curr->post_commit_list); 7503 curr->commit_total_bytes = curr->disk_total_bytes; 7504 curr->commit_bytes_used = curr->bytes_used; 7505 } 7506 mutex_unlock(&trans->fs_info->chunk_mutex); 7507 } 7508 7509 /* 7510 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 7511 */ 7512 int btrfs_bg_type_to_factor(u64 flags) 7513 { 7514 const int index = btrfs_bg_flags_to_raid_index(flags); 7515 7516 return btrfs_raid_array[index].ncopies; 7517 } 7518 7519 7520 7521 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 7522 u64 chunk_offset, u64 devid, 7523 u64 physical_offset, u64 physical_len) 7524 { 7525 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7526 struct extent_map *em; 7527 struct map_lookup *map; 7528 struct btrfs_device *dev; 7529 u64 stripe_len; 7530 bool found = false; 7531 int ret = 0; 7532 int i; 7533 7534 read_lock(&em_tree->lock); 7535 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 7536 read_unlock(&em_tree->lock); 7537 7538 if (!em) { 7539 btrfs_err(fs_info, 7540 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 7541 physical_offset, devid); 7542 ret = -EUCLEAN; 7543 goto out; 7544 } 7545 7546 map = em->map_lookup; 7547 stripe_len = calc_stripe_length(map->type, em->len, map->num_stripes); 7548 if (physical_len != stripe_len) { 7549 btrfs_err(fs_info, 7550 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 7551 physical_offset, devid, em->start, physical_len, 7552 stripe_len); 7553 ret = -EUCLEAN; 7554 goto out; 7555 } 7556 7557 for (i = 0; i < map->num_stripes; i++) { 7558 if (map->stripes[i].dev->devid == devid && 7559 map->stripes[i].physical == physical_offset) { 7560 found = true; 7561 if (map->verified_stripes >= map->num_stripes) { 7562 btrfs_err(fs_info, 7563 "too many dev extents for chunk %llu found", 7564 em->start); 7565 ret = -EUCLEAN; 7566 goto out; 7567 } 7568 map->verified_stripes++; 7569 break; 7570 } 7571 } 7572 if (!found) { 7573 btrfs_err(fs_info, 7574 "dev extent physical offset %llu devid %llu has no corresponding chunk", 7575 physical_offset, devid); 7576 ret = -EUCLEAN; 7577 } 7578 7579 /* Make sure no dev extent is beyond device bondary */ 7580 dev = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL, true); 7581 if (!dev) { 7582 btrfs_err(fs_info, "failed to find devid %llu", devid); 7583 ret = -EUCLEAN; 7584 goto out; 7585 } 7586 7587 /* It's possible this device is a dummy for seed device */ 7588 if (dev->disk_total_bytes == 0) { 7589 struct btrfs_fs_devices *devs; 7590 7591 devs = list_first_entry(&fs_info->fs_devices->seed_list, 7592 struct btrfs_fs_devices, seed_list); 7593 dev = btrfs_find_device(devs, devid, NULL, NULL, false); 7594 if (!dev) { 7595 btrfs_err(fs_info, "failed to find seed devid %llu", 7596 devid); 7597 ret = -EUCLEAN; 7598 goto out; 7599 } 7600 } 7601 7602 if (physical_offset + physical_len > dev->disk_total_bytes) { 7603 btrfs_err(fs_info, 7604 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 7605 devid, physical_offset, physical_len, 7606 dev->disk_total_bytes); 7607 ret = -EUCLEAN; 7608 goto out; 7609 } 7610 out: 7611 free_extent_map(em); 7612 return ret; 7613 } 7614 7615 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 7616 { 7617 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 7618 struct extent_map *em; 7619 struct rb_node *node; 7620 int ret = 0; 7621 7622 read_lock(&em_tree->lock); 7623 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 7624 em = rb_entry(node, struct extent_map, rb_node); 7625 if (em->map_lookup->num_stripes != 7626 em->map_lookup->verified_stripes) { 7627 btrfs_err(fs_info, 7628 "chunk %llu has missing dev extent, have %d expect %d", 7629 em->start, em->map_lookup->verified_stripes, 7630 em->map_lookup->num_stripes); 7631 ret = -EUCLEAN; 7632 goto out; 7633 } 7634 } 7635 out: 7636 read_unlock(&em_tree->lock); 7637 return ret; 7638 } 7639 7640 /* 7641 * Ensure that all dev extents are mapped to correct chunk, otherwise 7642 * later chunk allocation/free would cause unexpected behavior. 7643 * 7644 * NOTE: This will iterate through the whole device tree, which should be of 7645 * the same size level as the chunk tree. This slightly increases mount time. 7646 */ 7647 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 7648 { 7649 struct btrfs_path *path; 7650 struct btrfs_root *root = fs_info->dev_root; 7651 struct btrfs_key key; 7652 u64 prev_devid = 0; 7653 u64 prev_dev_ext_end = 0; 7654 int ret = 0; 7655 7656 key.objectid = 1; 7657 key.type = BTRFS_DEV_EXTENT_KEY; 7658 key.offset = 0; 7659 7660 path = btrfs_alloc_path(); 7661 if (!path) 7662 return -ENOMEM; 7663 7664 path->reada = READA_FORWARD; 7665 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 7666 if (ret < 0) 7667 goto out; 7668 7669 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 7670 ret = btrfs_next_item(root, path); 7671 if (ret < 0) 7672 goto out; 7673 /* No dev extents at all? Not good */ 7674 if (ret > 0) { 7675 ret = -EUCLEAN; 7676 goto out; 7677 } 7678 } 7679 while (1) { 7680 struct extent_buffer *leaf = path->nodes[0]; 7681 struct btrfs_dev_extent *dext; 7682 int slot = path->slots[0]; 7683 u64 chunk_offset; 7684 u64 physical_offset; 7685 u64 physical_len; 7686 u64 devid; 7687 7688 btrfs_item_key_to_cpu(leaf, &key, slot); 7689 if (key.type != BTRFS_DEV_EXTENT_KEY) 7690 break; 7691 devid = key.objectid; 7692 physical_offset = key.offset; 7693 7694 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 7695 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 7696 physical_len = btrfs_dev_extent_length(leaf, dext); 7697 7698 /* Check if this dev extent overlaps with the previous one */ 7699 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 7700 btrfs_err(fs_info, 7701 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 7702 devid, physical_offset, prev_dev_ext_end); 7703 ret = -EUCLEAN; 7704 goto out; 7705 } 7706 7707 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 7708 physical_offset, physical_len); 7709 if (ret < 0) 7710 goto out; 7711 prev_devid = devid; 7712 prev_dev_ext_end = physical_offset + physical_len; 7713 7714 ret = btrfs_next_item(root, path); 7715 if (ret < 0) 7716 goto out; 7717 if (ret > 0) { 7718 ret = 0; 7719 break; 7720 } 7721 } 7722 7723 /* Ensure all chunks have corresponding dev extents */ 7724 ret = verify_chunk_dev_extent_mapping(fs_info); 7725 out: 7726 btrfs_free_path(path); 7727 return ret; 7728 } 7729 7730 /* 7731 * Check whether the given block group or device is pinned by any inode being 7732 * used as a swapfile. 7733 */ 7734 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 7735 { 7736 struct btrfs_swapfile_pin *sp; 7737 struct rb_node *node; 7738 7739 spin_lock(&fs_info->swapfile_pins_lock); 7740 node = fs_info->swapfile_pins.rb_node; 7741 while (node) { 7742 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 7743 if (ptr < sp->ptr) 7744 node = node->rb_left; 7745 else if (ptr > sp->ptr) 7746 node = node->rb_right; 7747 else 7748 break; 7749 } 7750 spin_unlock(&fs_info->swapfile_pins_lock); 7751 return node != NULL; 7752 } 7753