1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 #include <linux/sched.h> 19 #include <linux/bio.h> 20 #include <linux/slab.h> 21 #include <linux/buffer_head.h> 22 #include <linux/blkdev.h> 23 #include <linux/random.h> 24 #include <linux/iocontext.h> 25 #include <linux/capability.h> 26 #include <linux/ratelimit.h> 27 #include <linux/kthread.h> 28 #include <linux/raid/pq.h> 29 #include <linux/semaphore.h> 30 #include <asm/div64.h> 31 #include "ctree.h" 32 #include "extent_map.h" 33 #include "disk-io.h" 34 #include "transaction.h" 35 #include "print-tree.h" 36 #include "volumes.h" 37 #include "raid56.h" 38 #include "async-thread.h" 39 #include "check-integrity.h" 40 #include "rcu-string.h" 41 #include "math.h" 42 #include "dev-replace.h" 43 #include "sysfs.h" 44 45 static int init_first_rw_device(struct btrfs_trans_handle *trans, 46 struct btrfs_root *root, 47 struct btrfs_device *device); 48 static int btrfs_relocate_sys_chunks(struct btrfs_root *root); 49 static void __btrfs_reset_dev_stats(struct btrfs_device *dev); 50 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev); 51 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 52 53 static DEFINE_MUTEX(uuid_mutex); 54 static LIST_HEAD(fs_uuids); 55 56 static void lock_chunks(struct btrfs_root *root) 57 { 58 mutex_lock(&root->fs_info->chunk_mutex); 59 } 60 61 static void unlock_chunks(struct btrfs_root *root) 62 { 63 mutex_unlock(&root->fs_info->chunk_mutex); 64 } 65 66 static struct btrfs_fs_devices *__alloc_fs_devices(void) 67 { 68 struct btrfs_fs_devices *fs_devs; 69 70 fs_devs = kzalloc(sizeof(*fs_devs), GFP_NOFS); 71 if (!fs_devs) 72 return ERR_PTR(-ENOMEM); 73 74 mutex_init(&fs_devs->device_list_mutex); 75 76 INIT_LIST_HEAD(&fs_devs->devices); 77 INIT_LIST_HEAD(&fs_devs->alloc_list); 78 INIT_LIST_HEAD(&fs_devs->list); 79 80 return fs_devs; 81 } 82 83 /** 84 * alloc_fs_devices - allocate struct btrfs_fs_devices 85 * @fsid: a pointer to UUID for this FS. If NULL a new UUID is 86 * generated. 87 * 88 * Return: a pointer to a new &struct btrfs_fs_devices on success; 89 * ERR_PTR() on error. Returned struct is not linked onto any lists and 90 * can be destroyed with kfree() right away. 91 */ 92 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid) 93 { 94 struct btrfs_fs_devices *fs_devs; 95 96 fs_devs = __alloc_fs_devices(); 97 if (IS_ERR(fs_devs)) 98 return fs_devs; 99 100 if (fsid) 101 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 102 else 103 generate_random_uuid(fs_devs->fsid); 104 105 return fs_devs; 106 } 107 108 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 109 { 110 struct btrfs_device *device; 111 WARN_ON(fs_devices->opened); 112 while (!list_empty(&fs_devices->devices)) { 113 device = list_entry(fs_devices->devices.next, 114 struct btrfs_device, dev_list); 115 list_del(&device->dev_list); 116 rcu_string_free(device->name); 117 kfree(device); 118 } 119 kfree(fs_devices); 120 } 121 122 static void btrfs_kobject_uevent(struct block_device *bdev, 123 enum kobject_action action) 124 { 125 int ret; 126 127 ret = kobject_uevent(&disk_to_dev(bdev->bd_disk)->kobj, action); 128 if (ret) 129 pr_warn("BTRFS: Sending event '%d' to kobject: '%s' (%p): failed\n", 130 action, 131 kobject_name(&disk_to_dev(bdev->bd_disk)->kobj), 132 &disk_to_dev(bdev->bd_disk)->kobj); 133 } 134 135 void btrfs_cleanup_fs_uuids(void) 136 { 137 struct btrfs_fs_devices *fs_devices; 138 139 while (!list_empty(&fs_uuids)) { 140 fs_devices = list_entry(fs_uuids.next, 141 struct btrfs_fs_devices, list); 142 list_del(&fs_devices->list); 143 free_fs_devices(fs_devices); 144 } 145 } 146 147 static struct btrfs_device *__alloc_device(void) 148 { 149 struct btrfs_device *dev; 150 151 dev = kzalloc(sizeof(*dev), GFP_NOFS); 152 if (!dev) 153 return ERR_PTR(-ENOMEM); 154 155 INIT_LIST_HEAD(&dev->dev_list); 156 INIT_LIST_HEAD(&dev->dev_alloc_list); 157 158 spin_lock_init(&dev->io_lock); 159 160 spin_lock_init(&dev->reada_lock); 161 atomic_set(&dev->reada_in_flight, 0); 162 INIT_RADIX_TREE(&dev->reada_zones, GFP_NOFS & ~__GFP_WAIT); 163 INIT_RADIX_TREE(&dev->reada_extents, GFP_NOFS & ~__GFP_WAIT); 164 165 return dev; 166 } 167 168 static noinline struct btrfs_device *__find_device(struct list_head *head, 169 u64 devid, u8 *uuid) 170 { 171 struct btrfs_device *dev; 172 173 list_for_each_entry(dev, head, dev_list) { 174 if (dev->devid == devid && 175 (!uuid || !memcmp(dev->uuid, uuid, BTRFS_UUID_SIZE))) { 176 return dev; 177 } 178 } 179 return NULL; 180 } 181 182 static noinline struct btrfs_fs_devices *find_fsid(u8 *fsid) 183 { 184 struct btrfs_fs_devices *fs_devices; 185 186 list_for_each_entry(fs_devices, &fs_uuids, list) { 187 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 188 return fs_devices; 189 } 190 return NULL; 191 } 192 193 static int 194 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 195 int flush, struct block_device **bdev, 196 struct buffer_head **bh) 197 { 198 int ret; 199 200 *bdev = blkdev_get_by_path(device_path, flags, holder); 201 202 if (IS_ERR(*bdev)) { 203 ret = PTR_ERR(*bdev); 204 printk(KERN_INFO "BTRFS: open %s failed\n", device_path); 205 goto error; 206 } 207 208 if (flush) 209 filemap_write_and_wait((*bdev)->bd_inode->i_mapping); 210 ret = set_blocksize(*bdev, 4096); 211 if (ret) { 212 blkdev_put(*bdev, flags); 213 goto error; 214 } 215 invalidate_bdev(*bdev); 216 *bh = btrfs_read_dev_super(*bdev); 217 if (!*bh) { 218 ret = -EINVAL; 219 blkdev_put(*bdev, flags); 220 goto error; 221 } 222 223 return 0; 224 225 error: 226 *bdev = NULL; 227 *bh = NULL; 228 return ret; 229 } 230 231 static void requeue_list(struct btrfs_pending_bios *pending_bios, 232 struct bio *head, struct bio *tail) 233 { 234 235 struct bio *old_head; 236 237 old_head = pending_bios->head; 238 pending_bios->head = head; 239 if (pending_bios->tail) 240 tail->bi_next = old_head; 241 else 242 pending_bios->tail = tail; 243 } 244 245 /* 246 * we try to collect pending bios for a device so we don't get a large 247 * number of procs sending bios down to the same device. This greatly 248 * improves the schedulers ability to collect and merge the bios. 249 * 250 * But, it also turns into a long list of bios to process and that is sure 251 * to eventually make the worker thread block. The solution here is to 252 * make some progress and then put this work struct back at the end of 253 * the list if the block device is congested. This way, multiple devices 254 * can make progress from a single worker thread. 255 */ 256 static noinline void run_scheduled_bios(struct btrfs_device *device) 257 { 258 struct bio *pending; 259 struct backing_dev_info *bdi; 260 struct btrfs_fs_info *fs_info; 261 struct btrfs_pending_bios *pending_bios; 262 struct bio *tail; 263 struct bio *cur; 264 int again = 0; 265 unsigned long num_run; 266 unsigned long batch_run = 0; 267 unsigned long limit; 268 unsigned long last_waited = 0; 269 int force_reg = 0; 270 int sync_pending = 0; 271 struct blk_plug plug; 272 273 /* 274 * this function runs all the bios we've collected for 275 * a particular device. We don't want to wander off to 276 * another device without first sending all of these down. 277 * So, setup a plug here and finish it off before we return 278 */ 279 blk_start_plug(&plug); 280 281 bdi = blk_get_backing_dev_info(device->bdev); 282 fs_info = device->dev_root->fs_info; 283 limit = btrfs_async_submit_limit(fs_info); 284 limit = limit * 2 / 3; 285 286 loop: 287 spin_lock(&device->io_lock); 288 289 loop_lock: 290 num_run = 0; 291 292 /* take all the bios off the list at once and process them 293 * later on (without the lock held). But, remember the 294 * tail and other pointers so the bios can be properly reinserted 295 * into the list if we hit congestion 296 */ 297 if (!force_reg && device->pending_sync_bios.head) { 298 pending_bios = &device->pending_sync_bios; 299 force_reg = 1; 300 } else { 301 pending_bios = &device->pending_bios; 302 force_reg = 0; 303 } 304 305 pending = pending_bios->head; 306 tail = pending_bios->tail; 307 WARN_ON(pending && !tail); 308 309 /* 310 * if pending was null this time around, no bios need processing 311 * at all and we can stop. Otherwise it'll loop back up again 312 * and do an additional check so no bios are missed. 313 * 314 * device->running_pending is used to synchronize with the 315 * schedule_bio code. 316 */ 317 if (device->pending_sync_bios.head == NULL && 318 device->pending_bios.head == NULL) { 319 again = 0; 320 device->running_pending = 0; 321 } else { 322 again = 1; 323 device->running_pending = 1; 324 } 325 326 pending_bios->head = NULL; 327 pending_bios->tail = NULL; 328 329 spin_unlock(&device->io_lock); 330 331 while (pending) { 332 333 rmb(); 334 /* we want to work on both lists, but do more bios on the 335 * sync list than the regular list 336 */ 337 if ((num_run > 32 && 338 pending_bios != &device->pending_sync_bios && 339 device->pending_sync_bios.head) || 340 (num_run > 64 && pending_bios == &device->pending_sync_bios && 341 device->pending_bios.head)) { 342 spin_lock(&device->io_lock); 343 requeue_list(pending_bios, pending, tail); 344 goto loop_lock; 345 } 346 347 cur = pending; 348 pending = pending->bi_next; 349 cur->bi_next = NULL; 350 351 if (atomic_dec_return(&fs_info->nr_async_bios) < limit && 352 waitqueue_active(&fs_info->async_submit_wait)) 353 wake_up(&fs_info->async_submit_wait); 354 355 BUG_ON(atomic_read(&cur->bi_cnt) == 0); 356 357 /* 358 * if we're doing the sync list, record that our 359 * plug has some sync requests on it 360 * 361 * If we're doing the regular list and there are 362 * sync requests sitting around, unplug before 363 * we add more 364 */ 365 if (pending_bios == &device->pending_sync_bios) { 366 sync_pending = 1; 367 } else if (sync_pending) { 368 blk_finish_plug(&plug); 369 blk_start_plug(&plug); 370 sync_pending = 0; 371 } 372 373 btrfsic_submit_bio(cur->bi_rw, cur); 374 num_run++; 375 batch_run++; 376 if (need_resched()) 377 cond_resched(); 378 379 /* 380 * we made progress, there is more work to do and the bdi 381 * is now congested. Back off and let other work structs 382 * run instead 383 */ 384 if (pending && bdi_write_congested(bdi) && batch_run > 8 && 385 fs_info->fs_devices->open_devices > 1) { 386 struct io_context *ioc; 387 388 ioc = current->io_context; 389 390 /* 391 * the main goal here is that we don't want to 392 * block if we're going to be able to submit 393 * more requests without blocking. 394 * 395 * This code does two great things, it pokes into 396 * the elevator code from a filesystem _and_ 397 * it makes assumptions about how batching works. 398 */ 399 if (ioc && ioc->nr_batch_requests > 0 && 400 time_before(jiffies, ioc->last_waited + HZ/50UL) && 401 (last_waited == 0 || 402 ioc->last_waited == last_waited)) { 403 /* 404 * we want to go through our batch of 405 * requests and stop. So, we copy out 406 * the ioc->last_waited time and test 407 * against it before looping 408 */ 409 last_waited = ioc->last_waited; 410 if (need_resched()) 411 cond_resched(); 412 continue; 413 } 414 spin_lock(&device->io_lock); 415 requeue_list(pending_bios, pending, tail); 416 device->running_pending = 1; 417 418 spin_unlock(&device->io_lock); 419 btrfs_queue_work(fs_info->submit_workers, 420 &device->work); 421 goto done; 422 } 423 /* unplug every 64 requests just for good measure */ 424 if (batch_run % 64 == 0) { 425 blk_finish_plug(&plug); 426 blk_start_plug(&plug); 427 sync_pending = 0; 428 } 429 } 430 431 cond_resched(); 432 if (again) 433 goto loop; 434 435 spin_lock(&device->io_lock); 436 if (device->pending_bios.head || device->pending_sync_bios.head) 437 goto loop_lock; 438 spin_unlock(&device->io_lock); 439 440 done: 441 blk_finish_plug(&plug); 442 } 443 444 static void pending_bios_fn(struct btrfs_work *work) 445 { 446 struct btrfs_device *device; 447 448 device = container_of(work, struct btrfs_device, work); 449 run_scheduled_bios(device); 450 } 451 452 /* 453 * Add new device to list of registered devices 454 * 455 * Returns: 456 * 1 - first time device is seen 457 * 0 - device already known 458 * < 0 - error 459 */ 460 static noinline int device_list_add(const char *path, 461 struct btrfs_super_block *disk_super, 462 u64 devid, struct btrfs_fs_devices **fs_devices_ret) 463 { 464 struct btrfs_device *device; 465 struct btrfs_fs_devices *fs_devices; 466 struct rcu_string *name; 467 int ret = 0; 468 u64 found_transid = btrfs_super_generation(disk_super); 469 470 fs_devices = find_fsid(disk_super->fsid); 471 if (!fs_devices) { 472 fs_devices = alloc_fs_devices(disk_super->fsid); 473 if (IS_ERR(fs_devices)) 474 return PTR_ERR(fs_devices); 475 476 list_add(&fs_devices->list, &fs_uuids); 477 fs_devices->latest_devid = devid; 478 fs_devices->latest_trans = found_transid; 479 480 device = NULL; 481 } else { 482 device = __find_device(&fs_devices->devices, devid, 483 disk_super->dev_item.uuid); 484 } 485 if (!device) { 486 if (fs_devices->opened) 487 return -EBUSY; 488 489 device = btrfs_alloc_device(NULL, &devid, 490 disk_super->dev_item.uuid); 491 if (IS_ERR(device)) { 492 /* we can safely leave the fs_devices entry around */ 493 return PTR_ERR(device); 494 } 495 496 name = rcu_string_strdup(path, GFP_NOFS); 497 if (!name) { 498 kfree(device); 499 return -ENOMEM; 500 } 501 rcu_assign_pointer(device->name, name); 502 503 mutex_lock(&fs_devices->device_list_mutex); 504 list_add_rcu(&device->dev_list, &fs_devices->devices); 505 fs_devices->num_devices++; 506 mutex_unlock(&fs_devices->device_list_mutex); 507 508 ret = 1; 509 device->fs_devices = fs_devices; 510 } else if (!device->name || strcmp(device->name->str, path)) { 511 /* 512 * When FS is already mounted. 513 * 1. If you are here and if the device->name is NULL that 514 * means this device was missing at time of FS mount. 515 * 2. If you are here and if the device->name is different 516 * from 'path' that means either 517 * a. The same device disappeared and reappeared with 518 * different name. or 519 * b. The missing-disk-which-was-replaced, has 520 * reappeared now. 521 * 522 * We must allow 1 and 2a above. But 2b would be a spurious 523 * and unintentional. 524 * 525 * Further in case of 1 and 2a above, the disk at 'path' 526 * would have missed some transaction when it was away and 527 * in case of 2a the stale bdev has to be updated as well. 528 * 2b must not be allowed at all time. 529 */ 530 531 /* 532 * For now, we do allow update to btrfs_fs_device through the 533 * btrfs dev scan cli after FS has been mounted. We're still 534 * tracking a problem where systems fail mount by subvolume id 535 * when we reject replacement on a mounted FS. 536 */ 537 if (!fs_devices->opened && found_transid < device->generation) { 538 /* 539 * That is if the FS is _not_ mounted and if you 540 * are here, that means there is more than one 541 * disk with same uuid and devid.We keep the one 542 * with larger generation number or the last-in if 543 * generation are equal. 544 */ 545 return -EEXIST; 546 } 547 548 name = rcu_string_strdup(path, GFP_NOFS); 549 if (!name) 550 return -ENOMEM; 551 rcu_string_free(device->name); 552 rcu_assign_pointer(device->name, name); 553 if (device->missing) { 554 fs_devices->missing_devices--; 555 device->missing = 0; 556 } 557 } 558 559 /* 560 * Unmount does not free the btrfs_device struct but would zero 561 * generation along with most of the other members. So just update 562 * it back. We need it to pick the disk with largest generation 563 * (as above). 564 */ 565 if (!fs_devices->opened) 566 device->generation = found_transid; 567 568 if (found_transid > fs_devices->latest_trans) { 569 fs_devices->latest_devid = devid; 570 fs_devices->latest_trans = found_transid; 571 } 572 *fs_devices_ret = fs_devices; 573 574 return ret; 575 } 576 577 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 578 { 579 struct btrfs_fs_devices *fs_devices; 580 struct btrfs_device *device; 581 struct btrfs_device *orig_dev; 582 583 fs_devices = alloc_fs_devices(orig->fsid); 584 if (IS_ERR(fs_devices)) 585 return fs_devices; 586 587 fs_devices->latest_devid = orig->latest_devid; 588 fs_devices->latest_trans = orig->latest_trans; 589 fs_devices->total_devices = orig->total_devices; 590 591 /* We have held the volume lock, it is safe to get the devices. */ 592 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 593 struct rcu_string *name; 594 595 device = btrfs_alloc_device(NULL, &orig_dev->devid, 596 orig_dev->uuid); 597 if (IS_ERR(device)) 598 goto error; 599 600 /* 601 * This is ok to do without rcu read locked because we hold the 602 * uuid mutex so nothing we touch in here is going to disappear. 603 */ 604 if (orig_dev->name) { 605 name = rcu_string_strdup(orig_dev->name->str, GFP_NOFS); 606 if (!name) { 607 kfree(device); 608 goto error; 609 } 610 rcu_assign_pointer(device->name, name); 611 } 612 613 list_add(&device->dev_list, &fs_devices->devices); 614 device->fs_devices = fs_devices; 615 fs_devices->num_devices++; 616 } 617 return fs_devices; 618 error: 619 free_fs_devices(fs_devices); 620 return ERR_PTR(-ENOMEM); 621 } 622 623 void btrfs_close_extra_devices(struct btrfs_fs_info *fs_info, 624 struct btrfs_fs_devices *fs_devices, int step) 625 { 626 struct btrfs_device *device, *next; 627 628 struct block_device *latest_bdev = NULL; 629 u64 latest_devid = 0; 630 u64 latest_transid = 0; 631 632 mutex_lock(&uuid_mutex); 633 again: 634 /* This is the initialized path, it is safe to release the devices. */ 635 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 636 if (device->in_fs_metadata) { 637 if (!device->is_tgtdev_for_dev_replace && 638 (!latest_transid || 639 device->generation > latest_transid)) { 640 latest_devid = device->devid; 641 latest_transid = device->generation; 642 latest_bdev = device->bdev; 643 } 644 continue; 645 } 646 647 if (device->devid == BTRFS_DEV_REPLACE_DEVID) { 648 /* 649 * In the first step, keep the device which has 650 * the correct fsid and the devid that is used 651 * for the dev_replace procedure. 652 * In the second step, the dev_replace state is 653 * read from the device tree and it is known 654 * whether the procedure is really active or 655 * not, which means whether this device is 656 * used or whether it should be removed. 657 */ 658 if (step == 0 || device->is_tgtdev_for_dev_replace) { 659 continue; 660 } 661 } 662 if (device->bdev) { 663 blkdev_put(device->bdev, device->mode); 664 device->bdev = NULL; 665 fs_devices->open_devices--; 666 } 667 if (device->writeable) { 668 list_del_init(&device->dev_alloc_list); 669 device->writeable = 0; 670 if (!device->is_tgtdev_for_dev_replace) 671 fs_devices->rw_devices--; 672 } 673 list_del_init(&device->dev_list); 674 fs_devices->num_devices--; 675 rcu_string_free(device->name); 676 kfree(device); 677 } 678 679 if (fs_devices->seed) { 680 fs_devices = fs_devices->seed; 681 goto again; 682 } 683 684 fs_devices->latest_bdev = latest_bdev; 685 fs_devices->latest_devid = latest_devid; 686 fs_devices->latest_trans = latest_transid; 687 688 mutex_unlock(&uuid_mutex); 689 } 690 691 static void __free_device(struct work_struct *work) 692 { 693 struct btrfs_device *device; 694 695 device = container_of(work, struct btrfs_device, rcu_work); 696 697 if (device->bdev) 698 blkdev_put(device->bdev, device->mode); 699 700 rcu_string_free(device->name); 701 kfree(device); 702 } 703 704 static void free_device(struct rcu_head *head) 705 { 706 struct btrfs_device *device; 707 708 device = container_of(head, struct btrfs_device, rcu); 709 710 INIT_WORK(&device->rcu_work, __free_device); 711 schedule_work(&device->rcu_work); 712 } 713 714 static int __btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 715 { 716 struct btrfs_device *device; 717 718 if (--fs_devices->opened > 0) 719 return 0; 720 721 mutex_lock(&fs_devices->device_list_mutex); 722 list_for_each_entry(device, &fs_devices->devices, dev_list) { 723 struct btrfs_device *new_device; 724 struct rcu_string *name; 725 726 if (device->bdev) 727 fs_devices->open_devices--; 728 729 if (device->writeable && 730 device->devid != BTRFS_DEV_REPLACE_DEVID) { 731 list_del_init(&device->dev_alloc_list); 732 fs_devices->rw_devices--; 733 } 734 735 if (device->can_discard) 736 fs_devices->num_can_discard--; 737 if (device->missing) 738 fs_devices->missing_devices--; 739 740 new_device = btrfs_alloc_device(NULL, &device->devid, 741 device->uuid); 742 BUG_ON(IS_ERR(new_device)); /* -ENOMEM */ 743 744 /* Safe because we are under uuid_mutex */ 745 if (device->name) { 746 name = rcu_string_strdup(device->name->str, GFP_NOFS); 747 BUG_ON(!name); /* -ENOMEM */ 748 rcu_assign_pointer(new_device->name, name); 749 } 750 751 list_replace_rcu(&device->dev_list, &new_device->dev_list); 752 new_device->fs_devices = device->fs_devices; 753 754 call_rcu(&device->rcu, free_device); 755 } 756 mutex_unlock(&fs_devices->device_list_mutex); 757 758 WARN_ON(fs_devices->open_devices); 759 WARN_ON(fs_devices->rw_devices); 760 fs_devices->opened = 0; 761 fs_devices->seeding = 0; 762 763 return 0; 764 } 765 766 int btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 767 { 768 struct btrfs_fs_devices *seed_devices = NULL; 769 int ret; 770 771 mutex_lock(&uuid_mutex); 772 ret = __btrfs_close_devices(fs_devices); 773 if (!fs_devices->opened) { 774 seed_devices = fs_devices->seed; 775 fs_devices->seed = NULL; 776 } 777 mutex_unlock(&uuid_mutex); 778 779 while (seed_devices) { 780 fs_devices = seed_devices; 781 seed_devices = fs_devices->seed; 782 __btrfs_close_devices(fs_devices); 783 free_fs_devices(fs_devices); 784 } 785 /* 786 * Wait for rcu kworkers under __btrfs_close_devices 787 * to finish all blkdev_puts so device is really 788 * free when umount is done. 789 */ 790 rcu_barrier(); 791 return ret; 792 } 793 794 static int __btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 795 fmode_t flags, void *holder) 796 { 797 struct request_queue *q; 798 struct block_device *bdev; 799 struct list_head *head = &fs_devices->devices; 800 struct btrfs_device *device; 801 struct block_device *latest_bdev = NULL; 802 struct buffer_head *bh; 803 struct btrfs_super_block *disk_super; 804 u64 latest_devid = 0; 805 u64 latest_transid = 0; 806 u64 devid; 807 int seeding = 1; 808 int ret = 0; 809 810 flags |= FMODE_EXCL; 811 812 list_for_each_entry(device, head, dev_list) { 813 if (device->bdev) 814 continue; 815 if (!device->name) 816 continue; 817 818 /* Just open everything we can; ignore failures here */ 819 if (btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 820 &bdev, &bh)) 821 continue; 822 823 disk_super = (struct btrfs_super_block *)bh->b_data; 824 devid = btrfs_stack_device_id(&disk_super->dev_item); 825 if (devid != device->devid) 826 goto error_brelse; 827 828 if (memcmp(device->uuid, disk_super->dev_item.uuid, 829 BTRFS_UUID_SIZE)) 830 goto error_brelse; 831 832 device->generation = btrfs_super_generation(disk_super); 833 if (!latest_transid || device->generation > latest_transid) { 834 latest_devid = devid; 835 latest_transid = device->generation; 836 latest_bdev = bdev; 837 } 838 839 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 840 device->writeable = 0; 841 } else { 842 device->writeable = !bdev_read_only(bdev); 843 seeding = 0; 844 } 845 846 q = bdev_get_queue(bdev); 847 if (blk_queue_discard(q)) { 848 device->can_discard = 1; 849 fs_devices->num_can_discard++; 850 } 851 852 device->bdev = bdev; 853 device->in_fs_metadata = 0; 854 device->mode = flags; 855 856 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 857 fs_devices->rotating = 1; 858 859 fs_devices->open_devices++; 860 if (device->writeable && 861 device->devid != BTRFS_DEV_REPLACE_DEVID) { 862 fs_devices->rw_devices++; 863 list_add(&device->dev_alloc_list, 864 &fs_devices->alloc_list); 865 } 866 brelse(bh); 867 continue; 868 869 error_brelse: 870 brelse(bh); 871 blkdev_put(bdev, flags); 872 continue; 873 } 874 if (fs_devices->open_devices == 0) { 875 ret = -EINVAL; 876 goto out; 877 } 878 fs_devices->seeding = seeding; 879 fs_devices->opened = 1; 880 fs_devices->latest_bdev = latest_bdev; 881 fs_devices->latest_devid = latest_devid; 882 fs_devices->latest_trans = latest_transid; 883 fs_devices->total_rw_bytes = 0; 884 out: 885 return ret; 886 } 887 888 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 889 fmode_t flags, void *holder) 890 { 891 int ret; 892 893 mutex_lock(&uuid_mutex); 894 if (fs_devices->opened) { 895 fs_devices->opened++; 896 ret = 0; 897 } else { 898 ret = __btrfs_open_devices(fs_devices, flags, holder); 899 } 900 mutex_unlock(&uuid_mutex); 901 return ret; 902 } 903 904 /* 905 * Look for a btrfs signature on a device. This may be called out of the mount path 906 * and we are not allowed to call set_blocksize during the scan. The superblock 907 * is read via pagecache 908 */ 909 int btrfs_scan_one_device(const char *path, fmode_t flags, void *holder, 910 struct btrfs_fs_devices **fs_devices_ret) 911 { 912 struct btrfs_super_block *disk_super; 913 struct block_device *bdev; 914 struct page *page; 915 void *p; 916 int ret = -EINVAL; 917 u64 devid; 918 u64 transid; 919 u64 total_devices; 920 u64 bytenr; 921 pgoff_t index; 922 923 /* 924 * we would like to check all the supers, but that would make 925 * a btrfs mount succeed after a mkfs from a different FS. 926 * So, we need to add a special mount option to scan for 927 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 928 */ 929 bytenr = btrfs_sb_offset(0); 930 flags |= FMODE_EXCL; 931 mutex_lock(&uuid_mutex); 932 933 bdev = blkdev_get_by_path(path, flags, holder); 934 935 if (IS_ERR(bdev)) { 936 ret = PTR_ERR(bdev); 937 goto error; 938 } 939 940 /* make sure our super fits in the device */ 941 if (bytenr + PAGE_CACHE_SIZE >= i_size_read(bdev->bd_inode)) 942 goto error_bdev_put; 943 944 /* make sure our super fits in the page */ 945 if (sizeof(*disk_super) > PAGE_CACHE_SIZE) 946 goto error_bdev_put; 947 948 /* make sure our super doesn't straddle pages on disk */ 949 index = bytenr >> PAGE_CACHE_SHIFT; 950 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_CACHE_SHIFT != index) 951 goto error_bdev_put; 952 953 /* pull in the page with our super */ 954 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, 955 index, GFP_NOFS); 956 957 if (IS_ERR_OR_NULL(page)) 958 goto error_bdev_put; 959 960 p = kmap(page); 961 962 /* align our pointer to the offset of the super block */ 963 disk_super = p + (bytenr & ~PAGE_CACHE_MASK); 964 965 if (btrfs_super_bytenr(disk_super) != bytenr || 966 btrfs_super_magic(disk_super) != BTRFS_MAGIC) 967 goto error_unmap; 968 969 devid = btrfs_stack_device_id(&disk_super->dev_item); 970 transid = btrfs_super_generation(disk_super); 971 total_devices = btrfs_super_num_devices(disk_super); 972 973 ret = device_list_add(path, disk_super, devid, fs_devices_ret); 974 if (ret > 0) { 975 if (disk_super->label[0]) { 976 if (disk_super->label[BTRFS_LABEL_SIZE - 1]) 977 disk_super->label[BTRFS_LABEL_SIZE - 1] = '\0'; 978 printk(KERN_INFO "BTRFS: device label %s ", disk_super->label); 979 } else { 980 printk(KERN_INFO "BTRFS: device fsid %pU ", disk_super->fsid); 981 } 982 983 printk(KERN_CONT "devid %llu transid %llu %s\n", devid, transid, path); 984 ret = 0; 985 } 986 if (!ret && fs_devices_ret) 987 (*fs_devices_ret)->total_devices = total_devices; 988 989 error_unmap: 990 kunmap(page); 991 page_cache_release(page); 992 993 error_bdev_put: 994 blkdev_put(bdev, flags); 995 error: 996 mutex_unlock(&uuid_mutex); 997 return ret; 998 } 999 1000 /* helper to account the used device space in the range */ 1001 int btrfs_account_dev_extents_size(struct btrfs_device *device, u64 start, 1002 u64 end, u64 *length) 1003 { 1004 struct btrfs_key key; 1005 struct btrfs_root *root = device->dev_root; 1006 struct btrfs_dev_extent *dev_extent; 1007 struct btrfs_path *path; 1008 u64 extent_end; 1009 int ret; 1010 int slot; 1011 struct extent_buffer *l; 1012 1013 *length = 0; 1014 1015 if (start >= device->total_bytes || device->is_tgtdev_for_dev_replace) 1016 return 0; 1017 1018 path = btrfs_alloc_path(); 1019 if (!path) 1020 return -ENOMEM; 1021 path->reada = 2; 1022 1023 key.objectid = device->devid; 1024 key.offset = start; 1025 key.type = BTRFS_DEV_EXTENT_KEY; 1026 1027 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1028 if (ret < 0) 1029 goto out; 1030 if (ret > 0) { 1031 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1032 if (ret < 0) 1033 goto out; 1034 } 1035 1036 while (1) { 1037 l = path->nodes[0]; 1038 slot = path->slots[0]; 1039 if (slot >= btrfs_header_nritems(l)) { 1040 ret = btrfs_next_leaf(root, path); 1041 if (ret == 0) 1042 continue; 1043 if (ret < 0) 1044 goto out; 1045 1046 break; 1047 } 1048 btrfs_item_key_to_cpu(l, &key, slot); 1049 1050 if (key.objectid < device->devid) 1051 goto next; 1052 1053 if (key.objectid > device->devid) 1054 break; 1055 1056 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 1057 goto next; 1058 1059 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1060 extent_end = key.offset + btrfs_dev_extent_length(l, 1061 dev_extent); 1062 if (key.offset <= start && extent_end > end) { 1063 *length = end - start + 1; 1064 break; 1065 } else if (key.offset <= start && extent_end > start) 1066 *length += extent_end - start; 1067 else if (key.offset > start && extent_end <= end) 1068 *length += extent_end - key.offset; 1069 else if (key.offset > start && key.offset <= end) { 1070 *length += end - key.offset + 1; 1071 break; 1072 } else if (key.offset > end) 1073 break; 1074 1075 next: 1076 path->slots[0]++; 1077 } 1078 ret = 0; 1079 out: 1080 btrfs_free_path(path); 1081 return ret; 1082 } 1083 1084 static int contains_pending_extent(struct btrfs_trans_handle *trans, 1085 struct btrfs_device *device, 1086 u64 *start, u64 len) 1087 { 1088 struct extent_map *em; 1089 int ret = 0; 1090 1091 list_for_each_entry(em, &trans->transaction->pending_chunks, list) { 1092 struct map_lookup *map; 1093 int i; 1094 1095 map = (struct map_lookup *)em->bdev; 1096 for (i = 0; i < map->num_stripes; i++) { 1097 if (map->stripes[i].dev != device) 1098 continue; 1099 if (map->stripes[i].physical >= *start + len || 1100 map->stripes[i].physical + em->orig_block_len <= 1101 *start) 1102 continue; 1103 *start = map->stripes[i].physical + 1104 em->orig_block_len; 1105 ret = 1; 1106 } 1107 } 1108 1109 return ret; 1110 } 1111 1112 1113 /* 1114 * find_free_dev_extent - find free space in the specified device 1115 * @device: the device which we search the free space in 1116 * @num_bytes: the size of the free space that we need 1117 * @start: store the start of the free space. 1118 * @len: the size of the free space. that we find, or the size of the max 1119 * free space if we don't find suitable free space 1120 * 1121 * this uses a pretty simple search, the expectation is that it is 1122 * called very infrequently and that a given device has a small number 1123 * of extents 1124 * 1125 * @start is used to store the start of the free space if we find. But if we 1126 * don't find suitable free space, it will be used to store the start position 1127 * of the max free space. 1128 * 1129 * @len is used to store the size of the free space that we find. 1130 * But if we don't find suitable free space, it is used to store the size of 1131 * the max free space. 1132 */ 1133 int find_free_dev_extent(struct btrfs_trans_handle *trans, 1134 struct btrfs_device *device, u64 num_bytes, 1135 u64 *start, u64 *len) 1136 { 1137 struct btrfs_key key; 1138 struct btrfs_root *root = device->dev_root; 1139 struct btrfs_dev_extent *dev_extent; 1140 struct btrfs_path *path; 1141 u64 hole_size; 1142 u64 max_hole_start; 1143 u64 max_hole_size; 1144 u64 extent_end; 1145 u64 search_start; 1146 u64 search_end = device->total_bytes; 1147 int ret; 1148 int slot; 1149 struct extent_buffer *l; 1150 1151 /* FIXME use last free of some kind */ 1152 1153 /* we don't want to overwrite the superblock on the drive, 1154 * so we make sure to start at an offset of at least 1MB 1155 */ 1156 search_start = max(root->fs_info->alloc_start, 1024ull * 1024); 1157 1158 path = btrfs_alloc_path(); 1159 if (!path) 1160 return -ENOMEM; 1161 again: 1162 max_hole_start = search_start; 1163 max_hole_size = 0; 1164 hole_size = 0; 1165 1166 if (search_start >= search_end || device->is_tgtdev_for_dev_replace) { 1167 ret = -ENOSPC; 1168 goto out; 1169 } 1170 1171 path->reada = 2; 1172 path->search_commit_root = 1; 1173 path->skip_locking = 1; 1174 1175 key.objectid = device->devid; 1176 key.offset = search_start; 1177 key.type = BTRFS_DEV_EXTENT_KEY; 1178 1179 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 1180 if (ret < 0) 1181 goto out; 1182 if (ret > 0) { 1183 ret = btrfs_previous_item(root, path, key.objectid, key.type); 1184 if (ret < 0) 1185 goto out; 1186 } 1187 1188 while (1) { 1189 l = path->nodes[0]; 1190 slot = path->slots[0]; 1191 if (slot >= btrfs_header_nritems(l)) { 1192 ret = btrfs_next_leaf(root, path); 1193 if (ret == 0) 1194 continue; 1195 if (ret < 0) 1196 goto out; 1197 1198 break; 1199 } 1200 btrfs_item_key_to_cpu(l, &key, slot); 1201 1202 if (key.objectid < device->devid) 1203 goto next; 1204 1205 if (key.objectid > device->devid) 1206 break; 1207 1208 if (btrfs_key_type(&key) != BTRFS_DEV_EXTENT_KEY) 1209 goto next; 1210 1211 if (key.offset > search_start) { 1212 hole_size = key.offset - search_start; 1213 1214 /* 1215 * Have to check before we set max_hole_start, otherwise 1216 * we could end up sending back this offset anyway. 1217 */ 1218 if (contains_pending_extent(trans, device, 1219 &search_start, 1220 hole_size)) 1221 hole_size = 0; 1222 1223 if (hole_size > max_hole_size) { 1224 max_hole_start = search_start; 1225 max_hole_size = hole_size; 1226 } 1227 1228 /* 1229 * If this free space is greater than which we need, 1230 * it must be the max free space that we have found 1231 * until now, so max_hole_start must point to the start 1232 * of this free space and the length of this free space 1233 * is stored in max_hole_size. Thus, we return 1234 * max_hole_start and max_hole_size and go back to the 1235 * caller. 1236 */ 1237 if (hole_size >= num_bytes) { 1238 ret = 0; 1239 goto out; 1240 } 1241 } 1242 1243 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1244 extent_end = key.offset + btrfs_dev_extent_length(l, 1245 dev_extent); 1246 if (extent_end > search_start) 1247 search_start = extent_end; 1248 next: 1249 path->slots[0]++; 1250 cond_resched(); 1251 } 1252 1253 /* 1254 * At this point, search_start should be the end of 1255 * allocated dev extents, and when shrinking the device, 1256 * search_end may be smaller than search_start. 1257 */ 1258 if (search_end > search_start) 1259 hole_size = search_end - search_start; 1260 1261 if (hole_size > max_hole_size) { 1262 max_hole_start = search_start; 1263 max_hole_size = hole_size; 1264 } 1265 1266 if (contains_pending_extent(trans, device, &search_start, hole_size)) { 1267 btrfs_release_path(path); 1268 goto again; 1269 } 1270 1271 /* See above. */ 1272 if (hole_size < num_bytes) 1273 ret = -ENOSPC; 1274 else 1275 ret = 0; 1276 1277 out: 1278 btrfs_free_path(path); 1279 *start = max_hole_start; 1280 if (len) 1281 *len = max_hole_size; 1282 return ret; 1283 } 1284 1285 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1286 struct btrfs_device *device, 1287 u64 start) 1288 { 1289 int ret; 1290 struct btrfs_path *path; 1291 struct btrfs_root *root = device->dev_root; 1292 struct btrfs_key key; 1293 struct btrfs_key found_key; 1294 struct extent_buffer *leaf = NULL; 1295 struct btrfs_dev_extent *extent = NULL; 1296 1297 path = btrfs_alloc_path(); 1298 if (!path) 1299 return -ENOMEM; 1300 1301 key.objectid = device->devid; 1302 key.offset = start; 1303 key.type = BTRFS_DEV_EXTENT_KEY; 1304 again: 1305 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1306 if (ret > 0) { 1307 ret = btrfs_previous_item(root, path, key.objectid, 1308 BTRFS_DEV_EXTENT_KEY); 1309 if (ret) 1310 goto out; 1311 leaf = path->nodes[0]; 1312 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1313 extent = btrfs_item_ptr(leaf, path->slots[0], 1314 struct btrfs_dev_extent); 1315 BUG_ON(found_key.offset > start || found_key.offset + 1316 btrfs_dev_extent_length(leaf, extent) < start); 1317 key = found_key; 1318 btrfs_release_path(path); 1319 goto again; 1320 } else if (ret == 0) { 1321 leaf = path->nodes[0]; 1322 extent = btrfs_item_ptr(leaf, path->slots[0], 1323 struct btrfs_dev_extent); 1324 } else { 1325 btrfs_error(root->fs_info, ret, "Slot search failed"); 1326 goto out; 1327 } 1328 1329 if (device->bytes_used > 0) { 1330 u64 len = btrfs_dev_extent_length(leaf, extent); 1331 device->bytes_used -= len; 1332 spin_lock(&root->fs_info->free_chunk_lock); 1333 root->fs_info->free_chunk_space += len; 1334 spin_unlock(&root->fs_info->free_chunk_lock); 1335 } 1336 ret = btrfs_del_item(trans, root, path); 1337 if (ret) { 1338 btrfs_error(root->fs_info, ret, 1339 "Failed to remove dev extent item"); 1340 } 1341 out: 1342 btrfs_free_path(path); 1343 return ret; 1344 } 1345 1346 static int btrfs_alloc_dev_extent(struct btrfs_trans_handle *trans, 1347 struct btrfs_device *device, 1348 u64 chunk_tree, u64 chunk_objectid, 1349 u64 chunk_offset, u64 start, u64 num_bytes) 1350 { 1351 int ret; 1352 struct btrfs_path *path; 1353 struct btrfs_root *root = device->dev_root; 1354 struct btrfs_dev_extent *extent; 1355 struct extent_buffer *leaf; 1356 struct btrfs_key key; 1357 1358 WARN_ON(!device->in_fs_metadata); 1359 WARN_ON(device->is_tgtdev_for_dev_replace); 1360 path = btrfs_alloc_path(); 1361 if (!path) 1362 return -ENOMEM; 1363 1364 key.objectid = device->devid; 1365 key.offset = start; 1366 key.type = BTRFS_DEV_EXTENT_KEY; 1367 ret = btrfs_insert_empty_item(trans, root, path, &key, 1368 sizeof(*extent)); 1369 if (ret) 1370 goto out; 1371 1372 leaf = path->nodes[0]; 1373 extent = btrfs_item_ptr(leaf, path->slots[0], 1374 struct btrfs_dev_extent); 1375 btrfs_set_dev_extent_chunk_tree(leaf, extent, chunk_tree); 1376 btrfs_set_dev_extent_chunk_objectid(leaf, extent, chunk_objectid); 1377 btrfs_set_dev_extent_chunk_offset(leaf, extent, chunk_offset); 1378 1379 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 1380 btrfs_dev_extent_chunk_tree_uuid(extent), BTRFS_UUID_SIZE); 1381 1382 btrfs_set_dev_extent_length(leaf, extent, num_bytes); 1383 btrfs_mark_buffer_dirty(leaf); 1384 out: 1385 btrfs_free_path(path); 1386 return ret; 1387 } 1388 1389 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1390 { 1391 struct extent_map_tree *em_tree; 1392 struct extent_map *em; 1393 struct rb_node *n; 1394 u64 ret = 0; 1395 1396 em_tree = &fs_info->mapping_tree.map_tree; 1397 read_lock(&em_tree->lock); 1398 n = rb_last(&em_tree->map); 1399 if (n) { 1400 em = rb_entry(n, struct extent_map, rb_node); 1401 ret = em->start + em->len; 1402 } 1403 read_unlock(&em_tree->lock); 1404 1405 return ret; 1406 } 1407 1408 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1409 u64 *devid_ret) 1410 { 1411 int ret; 1412 struct btrfs_key key; 1413 struct btrfs_key found_key; 1414 struct btrfs_path *path; 1415 1416 path = btrfs_alloc_path(); 1417 if (!path) 1418 return -ENOMEM; 1419 1420 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1421 key.type = BTRFS_DEV_ITEM_KEY; 1422 key.offset = (u64)-1; 1423 1424 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1425 if (ret < 0) 1426 goto error; 1427 1428 BUG_ON(ret == 0); /* Corruption */ 1429 1430 ret = btrfs_previous_item(fs_info->chunk_root, path, 1431 BTRFS_DEV_ITEMS_OBJECTID, 1432 BTRFS_DEV_ITEM_KEY); 1433 if (ret) { 1434 *devid_ret = 1; 1435 } else { 1436 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1437 path->slots[0]); 1438 *devid_ret = found_key.offset + 1; 1439 } 1440 ret = 0; 1441 error: 1442 btrfs_free_path(path); 1443 return ret; 1444 } 1445 1446 /* 1447 * the device information is stored in the chunk root 1448 * the btrfs_device struct should be fully filled in 1449 */ 1450 static int btrfs_add_device(struct btrfs_trans_handle *trans, 1451 struct btrfs_root *root, 1452 struct btrfs_device *device) 1453 { 1454 int ret; 1455 struct btrfs_path *path; 1456 struct btrfs_dev_item *dev_item; 1457 struct extent_buffer *leaf; 1458 struct btrfs_key key; 1459 unsigned long ptr; 1460 1461 root = root->fs_info->chunk_root; 1462 1463 path = btrfs_alloc_path(); 1464 if (!path) 1465 return -ENOMEM; 1466 1467 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1468 key.type = BTRFS_DEV_ITEM_KEY; 1469 key.offset = device->devid; 1470 1471 ret = btrfs_insert_empty_item(trans, root, path, &key, 1472 sizeof(*dev_item)); 1473 if (ret) 1474 goto out; 1475 1476 leaf = path->nodes[0]; 1477 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1478 1479 btrfs_set_device_id(leaf, dev_item, device->devid); 1480 btrfs_set_device_generation(leaf, dev_item, 0); 1481 btrfs_set_device_type(leaf, dev_item, device->type); 1482 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1483 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1484 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1485 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 1486 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 1487 btrfs_set_device_group(leaf, dev_item, 0); 1488 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1489 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1490 btrfs_set_device_start_offset(leaf, dev_item, 0); 1491 1492 ptr = btrfs_device_uuid(dev_item); 1493 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1494 ptr = btrfs_device_fsid(dev_item); 1495 write_extent_buffer(leaf, root->fs_info->fsid, ptr, BTRFS_UUID_SIZE); 1496 btrfs_mark_buffer_dirty(leaf); 1497 1498 ret = 0; 1499 out: 1500 btrfs_free_path(path); 1501 return ret; 1502 } 1503 1504 /* 1505 * Function to update ctime/mtime for a given device path. 1506 * Mainly used for ctime/mtime based probe like libblkid. 1507 */ 1508 static void update_dev_time(char *path_name) 1509 { 1510 struct file *filp; 1511 1512 filp = filp_open(path_name, O_RDWR, 0); 1513 if (!filp) 1514 return; 1515 file_update_time(filp); 1516 filp_close(filp, NULL); 1517 return; 1518 } 1519 1520 static int btrfs_rm_dev_item(struct btrfs_root *root, 1521 struct btrfs_device *device) 1522 { 1523 int ret; 1524 struct btrfs_path *path; 1525 struct btrfs_key key; 1526 struct btrfs_trans_handle *trans; 1527 1528 root = root->fs_info->chunk_root; 1529 1530 path = btrfs_alloc_path(); 1531 if (!path) 1532 return -ENOMEM; 1533 1534 trans = btrfs_start_transaction(root, 0); 1535 if (IS_ERR(trans)) { 1536 btrfs_free_path(path); 1537 return PTR_ERR(trans); 1538 } 1539 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1540 key.type = BTRFS_DEV_ITEM_KEY; 1541 key.offset = device->devid; 1542 lock_chunks(root); 1543 1544 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1545 if (ret < 0) 1546 goto out; 1547 1548 if (ret > 0) { 1549 ret = -ENOENT; 1550 goto out; 1551 } 1552 1553 ret = btrfs_del_item(trans, root, path); 1554 if (ret) 1555 goto out; 1556 out: 1557 btrfs_free_path(path); 1558 unlock_chunks(root); 1559 btrfs_commit_transaction(trans, root); 1560 return ret; 1561 } 1562 1563 int btrfs_rm_device(struct btrfs_root *root, char *device_path) 1564 { 1565 struct btrfs_device *device; 1566 struct btrfs_device *next_device; 1567 struct block_device *bdev; 1568 struct buffer_head *bh = NULL; 1569 struct btrfs_super_block *disk_super; 1570 struct btrfs_fs_devices *cur_devices; 1571 u64 all_avail; 1572 u64 devid; 1573 u64 num_devices; 1574 u8 *dev_uuid; 1575 unsigned seq; 1576 int ret = 0; 1577 bool clear_super = false; 1578 1579 mutex_lock(&uuid_mutex); 1580 1581 do { 1582 seq = read_seqbegin(&root->fs_info->profiles_lock); 1583 1584 all_avail = root->fs_info->avail_data_alloc_bits | 1585 root->fs_info->avail_system_alloc_bits | 1586 root->fs_info->avail_metadata_alloc_bits; 1587 } while (read_seqretry(&root->fs_info->profiles_lock, seq)); 1588 1589 num_devices = root->fs_info->fs_devices->num_devices; 1590 btrfs_dev_replace_lock(&root->fs_info->dev_replace); 1591 if (btrfs_dev_replace_is_ongoing(&root->fs_info->dev_replace)) { 1592 WARN_ON(num_devices < 1); 1593 num_devices--; 1594 } 1595 btrfs_dev_replace_unlock(&root->fs_info->dev_replace); 1596 1597 if ((all_avail & BTRFS_BLOCK_GROUP_RAID10) && num_devices <= 4) { 1598 ret = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET; 1599 goto out; 1600 } 1601 1602 if ((all_avail & BTRFS_BLOCK_GROUP_RAID1) && num_devices <= 2) { 1603 ret = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET; 1604 goto out; 1605 } 1606 1607 if ((all_avail & BTRFS_BLOCK_GROUP_RAID5) && 1608 root->fs_info->fs_devices->rw_devices <= 2) { 1609 ret = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET; 1610 goto out; 1611 } 1612 if ((all_avail & BTRFS_BLOCK_GROUP_RAID6) && 1613 root->fs_info->fs_devices->rw_devices <= 3) { 1614 ret = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET; 1615 goto out; 1616 } 1617 1618 if (strcmp(device_path, "missing") == 0) { 1619 struct list_head *devices; 1620 struct btrfs_device *tmp; 1621 1622 device = NULL; 1623 devices = &root->fs_info->fs_devices->devices; 1624 /* 1625 * It is safe to read the devices since the volume_mutex 1626 * is held. 1627 */ 1628 list_for_each_entry(tmp, devices, dev_list) { 1629 if (tmp->in_fs_metadata && 1630 !tmp->is_tgtdev_for_dev_replace && 1631 !tmp->bdev) { 1632 device = tmp; 1633 break; 1634 } 1635 } 1636 bdev = NULL; 1637 bh = NULL; 1638 disk_super = NULL; 1639 if (!device) { 1640 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 1641 goto out; 1642 } 1643 } else { 1644 ret = btrfs_get_bdev_and_sb(device_path, 1645 FMODE_WRITE | FMODE_EXCL, 1646 root->fs_info->bdev_holder, 0, 1647 &bdev, &bh); 1648 if (ret) 1649 goto out; 1650 disk_super = (struct btrfs_super_block *)bh->b_data; 1651 devid = btrfs_stack_device_id(&disk_super->dev_item); 1652 dev_uuid = disk_super->dev_item.uuid; 1653 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1654 disk_super->fsid); 1655 if (!device) { 1656 ret = -ENOENT; 1657 goto error_brelse; 1658 } 1659 } 1660 1661 if (device->is_tgtdev_for_dev_replace) { 1662 ret = BTRFS_ERROR_DEV_TGT_REPLACE; 1663 goto error_brelse; 1664 } 1665 1666 if (device->writeable && root->fs_info->fs_devices->rw_devices == 1) { 1667 ret = BTRFS_ERROR_DEV_ONLY_WRITABLE; 1668 goto error_brelse; 1669 } 1670 1671 if (device->writeable) { 1672 lock_chunks(root); 1673 list_del_init(&device->dev_alloc_list); 1674 unlock_chunks(root); 1675 root->fs_info->fs_devices->rw_devices--; 1676 clear_super = true; 1677 } 1678 1679 mutex_unlock(&uuid_mutex); 1680 ret = btrfs_shrink_device(device, 0); 1681 mutex_lock(&uuid_mutex); 1682 if (ret) 1683 goto error_undo; 1684 1685 /* 1686 * TODO: the superblock still includes this device in its num_devices 1687 * counter although write_all_supers() is not locked out. This 1688 * could give a filesystem state which requires a degraded mount. 1689 */ 1690 ret = btrfs_rm_dev_item(root->fs_info->chunk_root, device); 1691 if (ret) 1692 goto error_undo; 1693 1694 spin_lock(&root->fs_info->free_chunk_lock); 1695 root->fs_info->free_chunk_space = device->total_bytes - 1696 device->bytes_used; 1697 spin_unlock(&root->fs_info->free_chunk_lock); 1698 1699 device->in_fs_metadata = 0; 1700 btrfs_scrub_cancel_dev(root->fs_info, device); 1701 1702 /* 1703 * the device list mutex makes sure that we don't change 1704 * the device list while someone else is writing out all 1705 * the device supers. Whoever is writing all supers, should 1706 * lock the device list mutex before getting the number of 1707 * devices in the super block (super_copy). Conversely, 1708 * whoever updates the number of devices in the super block 1709 * (super_copy) should hold the device list mutex. 1710 */ 1711 1712 cur_devices = device->fs_devices; 1713 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1714 list_del_rcu(&device->dev_list); 1715 1716 device->fs_devices->num_devices--; 1717 device->fs_devices->total_devices--; 1718 1719 if (device->missing) 1720 device->fs_devices->missing_devices--; 1721 1722 next_device = list_entry(root->fs_info->fs_devices->devices.next, 1723 struct btrfs_device, dev_list); 1724 if (device->bdev == root->fs_info->sb->s_bdev) 1725 root->fs_info->sb->s_bdev = next_device->bdev; 1726 if (device->bdev == root->fs_info->fs_devices->latest_bdev) 1727 root->fs_info->fs_devices->latest_bdev = next_device->bdev; 1728 1729 if (device->bdev) { 1730 device->fs_devices->open_devices--; 1731 /* remove sysfs entry */ 1732 btrfs_kobj_rm_device(root->fs_info, device); 1733 } 1734 1735 call_rcu(&device->rcu, free_device); 1736 1737 num_devices = btrfs_super_num_devices(root->fs_info->super_copy) - 1; 1738 btrfs_set_super_num_devices(root->fs_info->super_copy, num_devices); 1739 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 1740 1741 if (cur_devices->open_devices == 0) { 1742 struct btrfs_fs_devices *fs_devices; 1743 fs_devices = root->fs_info->fs_devices; 1744 while (fs_devices) { 1745 if (fs_devices->seed == cur_devices) { 1746 fs_devices->seed = cur_devices->seed; 1747 break; 1748 } 1749 fs_devices = fs_devices->seed; 1750 } 1751 cur_devices->seed = NULL; 1752 lock_chunks(root); 1753 __btrfs_close_devices(cur_devices); 1754 unlock_chunks(root); 1755 free_fs_devices(cur_devices); 1756 } 1757 1758 root->fs_info->num_tolerated_disk_barrier_failures = 1759 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 1760 1761 /* 1762 * at this point, the device is zero sized. We want to 1763 * remove it from the devices list and zero out the old super 1764 */ 1765 if (clear_super && disk_super) { 1766 u64 bytenr; 1767 int i; 1768 1769 /* make sure this device isn't detected as part of 1770 * the FS anymore 1771 */ 1772 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 1773 set_buffer_dirty(bh); 1774 sync_dirty_buffer(bh); 1775 1776 /* clear the mirror copies of super block on the disk 1777 * being removed, 0th copy is been taken care above and 1778 * the below would take of the rest 1779 */ 1780 for (i = 1; i < BTRFS_SUPER_MIRROR_MAX; i++) { 1781 bytenr = btrfs_sb_offset(i); 1782 if (bytenr + BTRFS_SUPER_INFO_SIZE >= 1783 i_size_read(bdev->bd_inode)) 1784 break; 1785 1786 brelse(bh); 1787 bh = __bread(bdev, bytenr / 4096, 1788 BTRFS_SUPER_INFO_SIZE); 1789 if (!bh) 1790 continue; 1791 1792 disk_super = (struct btrfs_super_block *)bh->b_data; 1793 1794 if (btrfs_super_bytenr(disk_super) != bytenr || 1795 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1796 continue; 1797 } 1798 memset(&disk_super->magic, 0, 1799 sizeof(disk_super->magic)); 1800 set_buffer_dirty(bh); 1801 sync_dirty_buffer(bh); 1802 } 1803 } 1804 1805 ret = 0; 1806 1807 if (bdev) { 1808 /* Notify udev that device has changed */ 1809 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 1810 1811 /* Update ctime/mtime for device path for libblkid */ 1812 update_dev_time(device_path); 1813 } 1814 1815 error_brelse: 1816 brelse(bh); 1817 if (bdev) 1818 blkdev_put(bdev, FMODE_READ | FMODE_EXCL); 1819 out: 1820 mutex_unlock(&uuid_mutex); 1821 return ret; 1822 error_undo: 1823 if (device->writeable) { 1824 lock_chunks(root); 1825 list_add(&device->dev_alloc_list, 1826 &root->fs_info->fs_devices->alloc_list); 1827 unlock_chunks(root); 1828 root->fs_info->fs_devices->rw_devices++; 1829 } 1830 goto error_brelse; 1831 } 1832 1833 void btrfs_rm_dev_replace_srcdev(struct btrfs_fs_info *fs_info, 1834 struct btrfs_device *srcdev) 1835 { 1836 WARN_ON(!mutex_is_locked(&fs_info->fs_devices->device_list_mutex)); 1837 1838 list_del_rcu(&srcdev->dev_list); 1839 list_del_rcu(&srcdev->dev_alloc_list); 1840 fs_info->fs_devices->num_devices--; 1841 if (srcdev->missing) { 1842 fs_info->fs_devices->missing_devices--; 1843 fs_info->fs_devices->rw_devices++; 1844 } 1845 if (srcdev->can_discard) 1846 fs_info->fs_devices->num_can_discard--; 1847 if (srcdev->bdev) { 1848 fs_info->fs_devices->open_devices--; 1849 1850 /* 1851 * zero out the old super if it is not writable 1852 * (e.g. seed device) 1853 */ 1854 if (srcdev->writeable) 1855 btrfs_scratch_superblock(srcdev); 1856 } 1857 1858 call_rcu(&srcdev->rcu, free_device); 1859 } 1860 1861 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_fs_info *fs_info, 1862 struct btrfs_device *tgtdev) 1863 { 1864 struct btrfs_device *next_device; 1865 1866 WARN_ON(!tgtdev); 1867 mutex_lock(&fs_info->fs_devices->device_list_mutex); 1868 if (tgtdev->bdev) { 1869 btrfs_scratch_superblock(tgtdev); 1870 fs_info->fs_devices->open_devices--; 1871 } 1872 fs_info->fs_devices->num_devices--; 1873 if (tgtdev->can_discard) 1874 fs_info->fs_devices->num_can_discard++; 1875 1876 next_device = list_entry(fs_info->fs_devices->devices.next, 1877 struct btrfs_device, dev_list); 1878 if (tgtdev->bdev == fs_info->sb->s_bdev) 1879 fs_info->sb->s_bdev = next_device->bdev; 1880 if (tgtdev->bdev == fs_info->fs_devices->latest_bdev) 1881 fs_info->fs_devices->latest_bdev = next_device->bdev; 1882 list_del_rcu(&tgtdev->dev_list); 1883 1884 call_rcu(&tgtdev->rcu, free_device); 1885 1886 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 1887 } 1888 1889 static int btrfs_find_device_by_path(struct btrfs_root *root, char *device_path, 1890 struct btrfs_device **device) 1891 { 1892 int ret = 0; 1893 struct btrfs_super_block *disk_super; 1894 u64 devid; 1895 u8 *dev_uuid; 1896 struct block_device *bdev; 1897 struct buffer_head *bh; 1898 1899 *device = NULL; 1900 ret = btrfs_get_bdev_and_sb(device_path, FMODE_READ, 1901 root->fs_info->bdev_holder, 0, &bdev, &bh); 1902 if (ret) 1903 return ret; 1904 disk_super = (struct btrfs_super_block *)bh->b_data; 1905 devid = btrfs_stack_device_id(&disk_super->dev_item); 1906 dev_uuid = disk_super->dev_item.uuid; 1907 *device = btrfs_find_device(root->fs_info, devid, dev_uuid, 1908 disk_super->fsid); 1909 brelse(bh); 1910 if (!*device) 1911 ret = -ENOENT; 1912 blkdev_put(bdev, FMODE_READ); 1913 return ret; 1914 } 1915 1916 int btrfs_find_device_missing_or_by_path(struct btrfs_root *root, 1917 char *device_path, 1918 struct btrfs_device **device) 1919 { 1920 *device = NULL; 1921 if (strcmp(device_path, "missing") == 0) { 1922 struct list_head *devices; 1923 struct btrfs_device *tmp; 1924 1925 devices = &root->fs_info->fs_devices->devices; 1926 /* 1927 * It is safe to read the devices since the volume_mutex 1928 * is held by the caller. 1929 */ 1930 list_for_each_entry(tmp, devices, dev_list) { 1931 if (tmp->in_fs_metadata && !tmp->bdev) { 1932 *device = tmp; 1933 break; 1934 } 1935 } 1936 1937 if (!*device) { 1938 btrfs_err(root->fs_info, "no missing device found"); 1939 return -ENOENT; 1940 } 1941 1942 return 0; 1943 } else { 1944 return btrfs_find_device_by_path(root, device_path, device); 1945 } 1946 } 1947 1948 /* 1949 * does all the dirty work required for changing file system's UUID. 1950 */ 1951 static int btrfs_prepare_sprout(struct btrfs_root *root) 1952 { 1953 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 1954 struct btrfs_fs_devices *old_devices; 1955 struct btrfs_fs_devices *seed_devices; 1956 struct btrfs_super_block *disk_super = root->fs_info->super_copy; 1957 struct btrfs_device *device; 1958 u64 super_flags; 1959 1960 BUG_ON(!mutex_is_locked(&uuid_mutex)); 1961 if (!fs_devices->seeding) 1962 return -EINVAL; 1963 1964 seed_devices = __alloc_fs_devices(); 1965 if (IS_ERR(seed_devices)) 1966 return PTR_ERR(seed_devices); 1967 1968 old_devices = clone_fs_devices(fs_devices); 1969 if (IS_ERR(old_devices)) { 1970 kfree(seed_devices); 1971 return PTR_ERR(old_devices); 1972 } 1973 1974 list_add(&old_devices->list, &fs_uuids); 1975 1976 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 1977 seed_devices->opened = 1; 1978 INIT_LIST_HEAD(&seed_devices->devices); 1979 INIT_LIST_HEAD(&seed_devices->alloc_list); 1980 mutex_init(&seed_devices->device_list_mutex); 1981 1982 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 1983 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 1984 synchronize_rcu); 1985 1986 list_splice_init(&fs_devices->alloc_list, &seed_devices->alloc_list); 1987 list_for_each_entry(device, &seed_devices->devices, dev_list) { 1988 device->fs_devices = seed_devices; 1989 } 1990 1991 fs_devices->seeding = 0; 1992 fs_devices->num_devices = 0; 1993 fs_devices->open_devices = 0; 1994 fs_devices->missing_devices = 0; 1995 fs_devices->num_can_discard = 0; 1996 fs_devices->rotating = 0; 1997 fs_devices->seed = seed_devices; 1998 1999 generate_random_uuid(fs_devices->fsid); 2000 memcpy(root->fs_info->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2001 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2002 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2003 2004 super_flags = btrfs_super_flags(disk_super) & 2005 ~BTRFS_SUPER_FLAG_SEEDING; 2006 btrfs_set_super_flags(disk_super, super_flags); 2007 2008 return 0; 2009 } 2010 2011 /* 2012 * strore the expected generation for seed devices in device items. 2013 */ 2014 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans, 2015 struct btrfs_root *root) 2016 { 2017 struct btrfs_path *path; 2018 struct extent_buffer *leaf; 2019 struct btrfs_dev_item *dev_item; 2020 struct btrfs_device *device; 2021 struct btrfs_key key; 2022 u8 fs_uuid[BTRFS_UUID_SIZE]; 2023 u8 dev_uuid[BTRFS_UUID_SIZE]; 2024 u64 devid; 2025 int ret; 2026 2027 path = btrfs_alloc_path(); 2028 if (!path) 2029 return -ENOMEM; 2030 2031 root = root->fs_info->chunk_root; 2032 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2033 key.offset = 0; 2034 key.type = BTRFS_DEV_ITEM_KEY; 2035 2036 while (1) { 2037 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2038 if (ret < 0) 2039 goto error; 2040 2041 leaf = path->nodes[0]; 2042 next_slot: 2043 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2044 ret = btrfs_next_leaf(root, path); 2045 if (ret > 0) 2046 break; 2047 if (ret < 0) 2048 goto error; 2049 leaf = path->nodes[0]; 2050 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2051 btrfs_release_path(path); 2052 continue; 2053 } 2054 2055 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2056 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2057 key.type != BTRFS_DEV_ITEM_KEY) 2058 break; 2059 2060 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2061 struct btrfs_dev_item); 2062 devid = btrfs_device_id(leaf, dev_item); 2063 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2064 BTRFS_UUID_SIZE); 2065 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2066 BTRFS_UUID_SIZE); 2067 device = btrfs_find_device(root->fs_info, devid, dev_uuid, 2068 fs_uuid); 2069 BUG_ON(!device); /* Logic error */ 2070 2071 if (device->fs_devices->seeding) { 2072 btrfs_set_device_generation(leaf, dev_item, 2073 device->generation); 2074 btrfs_mark_buffer_dirty(leaf); 2075 } 2076 2077 path->slots[0]++; 2078 goto next_slot; 2079 } 2080 ret = 0; 2081 error: 2082 btrfs_free_path(path); 2083 return ret; 2084 } 2085 2086 int btrfs_init_new_device(struct btrfs_root *root, char *device_path) 2087 { 2088 struct request_queue *q; 2089 struct btrfs_trans_handle *trans; 2090 struct btrfs_device *device; 2091 struct block_device *bdev; 2092 struct list_head *devices; 2093 struct super_block *sb = root->fs_info->sb; 2094 struct rcu_string *name; 2095 u64 total_bytes; 2096 int seeding_dev = 0; 2097 int ret = 0; 2098 2099 if ((sb->s_flags & MS_RDONLY) && !root->fs_info->fs_devices->seeding) 2100 return -EROFS; 2101 2102 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2103 root->fs_info->bdev_holder); 2104 if (IS_ERR(bdev)) 2105 return PTR_ERR(bdev); 2106 2107 if (root->fs_info->fs_devices->seeding) { 2108 seeding_dev = 1; 2109 down_write(&sb->s_umount); 2110 mutex_lock(&uuid_mutex); 2111 } 2112 2113 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2114 2115 devices = &root->fs_info->fs_devices->devices; 2116 2117 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2118 list_for_each_entry(device, devices, dev_list) { 2119 if (device->bdev == bdev) { 2120 ret = -EEXIST; 2121 mutex_unlock( 2122 &root->fs_info->fs_devices->device_list_mutex); 2123 goto error; 2124 } 2125 } 2126 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2127 2128 device = btrfs_alloc_device(root->fs_info, NULL, NULL); 2129 if (IS_ERR(device)) { 2130 /* we can safely leave the fs_devices entry around */ 2131 ret = PTR_ERR(device); 2132 goto error; 2133 } 2134 2135 name = rcu_string_strdup(device_path, GFP_NOFS); 2136 if (!name) { 2137 kfree(device); 2138 ret = -ENOMEM; 2139 goto error; 2140 } 2141 rcu_assign_pointer(device->name, name); 2142 2143 trans = btrfs_start_transaction(root, 0); 2144 if (IS_ERR(trans)) { 2145 rcu_string_free(device->name); 2146 kfree(device); 2147 ret = PTR_ERR(trans); 2148 goto error; 2149 } 2150 2151 lock_chunks(root); 2152 2153 q = bdev_get_queue(bdev); 2154 if (blk_queue_discard(q)) 2155 device->can_discard = 1; 2156 device->writeable = 1; 2157 device->generation = trans->transid; 2158 device->io_width = root->sectorsize; 2159 device->io_align = root->sectorsize; 2160 device->sector_size = root->sectorsize; 2161 device->total_bytes = i_size_read(bdev->bd_inode); 2162 device->disk_total_bytes = device->total_bytes; 2163 device->dev_root = root->fs_info->dev_root; 2164 device->bdev = bdev; 2165 device->in_fs_metadata = 1; 2166 device->is_tgtdev_for_dev_replace = 0; 2167 device->mode = FMODE_EXCL; 2168 device->dev_stats_valid = 1; 2169 set_blocksize(device->bdev, 4096); 2170 2171 if (seeding_dev) { 2172 sb->s_flags &= ~MS_RDONLY; 2173 ret = btrfs_prepare_sprout(root); 2174 BUG_ON(ret); /* -ENOMEM */ 2175 } 2176 2177 device->fs_devices = root->fs_info->fs_devices; 2178 2179 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2180 list_add_rcu(&device->dev_list, &root->fs_info->fs_devices->devices); 2181 list_add(&device->dev_alloc_list, 2182 &root->fs_info->fs_devices->alloc_list); 2183 root->fs_info->fs_devices->num_devices++; 2184 root->fs_info->fs_devices->open_devices++; 2185 root->fs_info->fs_devices->rw_devices++; 2186 root->fs_info->fs_devices->total_devices++; 2187 if (device->can_discard) 2188 root->fs_info->fs_devices->num_can_discard++; 2189 root->fs_info->fs_devices->total_rw_bytes += device->total_bytes; 2190 2191 spin_lock(&root->fs_info->free_chunk_lock); 2192 root->fs_info->free_chunk_space += device->total_bytes; 2193 spin_unlock(&root->fs_info->free_chunk_lock); 2194 2195 if (!blk_queue_nonrot(bdev_get_queue(bdev))) 2196 root->fs_info->fs_devices->rotating = 1; 2197 2198 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy); 2199 btrfs_set_super_total_bytes(root->fs_info->super_copy, 2200 total_bytes + device->total_bytes); 2201 2202 total_bytes = btrfs_super_num_devices(root->fs_info->super_copy); 2203 btrfs_set_super_num_devices(root->fs_info->super_copy, 2204 total_bytes + 1); 2205 2206 /* add sysfs device entry */ 2207 btrfs_kobj_add_device(root->fs_info, device); 2208 2209 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2210 2211 if (seeding_dev) { 2212 char fsid_buf[BTRFS_UUID_UNPARSED_SIZE]; 2213 ret = init_first_rw_device(trans, root, device); 2214 if (ret) { 2215 btrfs_abort_transaction(trans, root, ret); 2216 goto error_trans; 2217 } 2218 ret = btrfs_finish_sprout(trans, root); 2219 if (ret) { 2220 btrfs_abort_transaction(trans, root, ret); 2221 goto error_trans; 2222 } 2223 2224 /* Sprouting would change fsid of the mounted root, 2225 * so rename the fsid on the sysfs 2226 */ 2227 snprintf(fsid_buf, BTRFS_UUID_UNPARSED_SIZE, "%pU", 2228 root->fs_info->fsid); 2229 if (kobject_rename(&root->fs_info->super_kobj, fsid_buf)) 2230 goto error_trans; 2231 } else { 2232 ret = btrfs_add_device(trans, root, device); 2233 if (ret) { 2234 btrfs_abort_transaction(trans, root, ret); 2235 goto error_trans; 2236 } 2237 } 2238 2239 /* 2240 * we've got more storage, clear any full flags on the space 2241 * infos 2242 */ 2243 btrfs_clear_space_info_full(root->fs_info); 2244 2245 unlock_chunks(root); 2246 root->fs_info->num_tolerated_disk_barrier_failures = 2247 btrfs_calc_num_tolerated_disk_barrier_failures(root->fs_info); 2248 ret = btrfs_commit_transaction(trans, root); 2249 2250 if (seeding_dev) { 2251 mutex_unlock(&uuid_mutex); 2252 up_write(&sb->s_umount); 2253 2254 if (ret) /* transaction commit */ 2255 return ret; 2256 2257 ret = btrfs_relocate_sys_chunks(root); 2258 if (ret < 0) 2259 btrfs_error(root->fs_info, ret, 2260 "Failed to relocate sys chunks after " 2261 "device initialization. This can be fixed " 2262 "using the \"btrfs balance\" command."); 2263 trans = btrfs_attach_transaction(root); 2264 if (IS_ERR(trans)) { 2265 if (PTR_ERR(trans) == -ENOENT) 2266 return 0; 2267 return PTR_ERR(trans); 2268 } 2269 ret = btrfs_commit_transaction(trans, root); 2270 } 2271 2272 /* Update ctime/mtime for libblkid */ 2273 update_dev_time(device_path); 2274 return ret; 2275 2276 error_trans: 2277 unlock_chunks(root); 2278 btrfs_end_transaction(trans, root); 2279 rcu_string_free(device->name); 2280 btrfs_kobj_rm_device(root->fs_info, device); 2281 kfree(device); 2282 error: 2283 blkdev_put(bdev, FMODE_EXCL); 2284 if (seeding_dev) { 2285 mutex_unlock(&uuid_mutex); 2286 up_write(&sb->s_umount); 2287 } 2288 return ret; 2289 } 2290 2291 int btrfs_init_dev_replace_tgtdev(struct btrfs_root *root, char *device_path, 2292 struct btrfs_device **device_out) 2293 { 2294 struct request_queue *q; 2295 struct btrfs_device *device; 2296 struct block_device *bdev; 2297 struct btrfs_fs_info *fs_info = root->fs_info; 2298 struct list_head *devices; 2299 struct rcu_string *name; 2300 u64 devid = BTRFS_DEV_REPLACE_DEVID; 2301 int ret = 0; 2302 2303 *device_out = NULL; 2304 if (fs_info->fs_devices->seeding) 2305 return -EINVAL; 2306 2307 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2308 fs_info->bdev_holder); 2309 if (IS_ERR(bdev)) 2310 return PTR_ERR(bdev); 2311 2312 filemap_write_and_wait(bdev->bd_inode->i_mapping); 2313 2314 devices = &fs_info->fs_devices->devices; 2315 list_for_each_entry(device, devices, dev_list) { 2316 if (device->bdev == bdev) { 2317 ret = -EEXIST; 2318 goto error; 2319 } 2320 } 2321 2322 device = btrfs_alloc_device(NULL, &devid, NULL); 2323 if (IS_ERR(device)) { 2324 ret = PTR_ERR(device); 2325 goto error; 2326 } 2327 2328 name = rcu_string_strdup(device_path, GFP_NOFS); 2329 if (!name) { 2330 kfree(device); 2331 ret = -ENOMEM; 2332 goto error; 2333 } 2334 rcu_assign_pointer(device->name, name); 2335 2336 q = bdev_get_queue(bdev); 2337 if (blk_queue_discard(q)) 2338 device->can_discard = 1; 2339 mutex_lock(&root->fs_info->fs_devices->device_list_mutex); 2340 device->writeable = 1; 2341 device->generation = 0; 2342 device->io_width = root->sectorsize; 2343 device->io_align = root->sectorsize; 2344 device->sector_size = root->sectorsize; 2345 device->total_bytes = i_size_read(bdev->bd_inode); 2346 device->disk_total_bytes = device->total_bytes; 2347 device->dev_root = fs_info->dev_root; 2348 device->bdev = bdev; 2349 device->in_fs_metadata = 1; 2350 device->is_tgtdev_for_dev_replace = 1; 2351 device->mode = FMODE_EXCL; 2352 device->dev_stats_valid = 1; 2353 set_blocksize(device->bdev, 4096); 2354 device->fs_devices = fs_info->fs_devices; 2355 list_add(&device->dev_list, &fs_info->fs_devices->devices); 2356 fs_info->fs_devices->num_devices++; 2357 fs_info->fs_devices->open_devices++; 2358 if (device->can_discard) 2359 fs_info->fs_devices->num_can_discard++; 2360 mutex_unlock(&root->fs_info->fs_devices->device_list_mutex); 2361 2362 *device_out = device; 2363 return ret; 2364 2365 error: 2366 blkdev_put(bdev, FMODE_EXCL); 2367 return ret; 2368 } 2369 2370 void btrfs_init_dev_replace_tgtdev_for_resume(struct btrfs_fs_info *fs_info, 2371 struct btrfs_device *tgtdev) 2372 { 2373 WARN_ON(fs_info->fs_devices->rw_devices == 0); 2374 tgtdev->io_width = fs_info->dev_root->sectorsize; 2375 tgtdev->io_align = fs_info->dev_root->sectorsize; 2376 tgtdev->sector_size = fs_info->dev_root->sectorsize; 2377 tgtdev->dev_root = fs_info->dev_root; 2378 tgtdev->in_fs_metadata = 1; 2379 } 2380 2381 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2382 struct btrfs_device *device) 2383 { 2384 int ret; 2385 struct btrfs_path *path; 2386 struct btrfs_root *root; 2387 struct btrfs_dev_item *dev_item; 2388 struct extent_buffer *leaf; 2389 struct btrfs_key key; 2390 2391 root = device->dev_root->fs_info->chunk_root; 2392 2393 path = btrfs_alloc_path(); 2394 if (!path) 2395 return -ENOMEM; 2396 2397 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2398 key.type = BTRFS_DEV_ITEM_KEY; 2399 key.offset = device->devid; 2400 2401 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2402 if (ret < 0) 2403 goto out; 2404 2405 if (ret > 0) { 2406 ret = -ENOENT; 2407 goto out; 2408 } 2409 2410 leaf = path->nodes[0]; 2411 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2412 2413 btrfs_set_device_id(leaf, dev_item, device->devid); 2414 btrfs_set_device_type(leaf, dev_item, device->type); 2415 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2416 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2417 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2418 btrfs_set_device_total_bytes(leaf, dev_item, device->disk_total_bytes); 2419 btrfs_set_device_bytes_used(leaf, dev_item, device->bytes_used); 2420 btrfs_mark_buffer_dirty(leaf); 2421 2422 out: 2423 btrfs_free_path(path); 2424 return ret; 2425 } 2426 2427 static int __btrfs_grow_device(struct btrfs_trans_handle *trans, 2428 struct btrfs_device *device, u64 new_size) 2429 { 2430 struct btrfs_super_block *super_copy = 2431 device->dev_root->fs_info->super_copy; 2432 u64 old_total = btrfs_super_total_bytes(super_copy); 2433 u64 diff = new_size - device->total_bytes; 2434 2435 if (!device->writeable) 2436 return -EACCES; 2437 if (new_size <= device->total_bytes || 2438 device->is_tgtdev_for_dev_replace) 2439 return -EINVAL; 2440 2441 btrfs_set_super_total_bytes(super_copy, old_total + diff); 2442 device->fs_devices->total_rw_bytes += diff; 2443 2444 device->total_bytes = new_size; 2445 device->disk_total_bytes = new_size; 2446 btrfs_clear_space_info_full(device->dev_root->fs_info); 2447 2448 return btrfs_update_device(trans, device); 2449 } 2450 2451 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2452 struct btrfs_device *device, u64 new_size) 2453 { 2454 int ret; 2455 lock_chunks(device->dev_root); 2456 ret = __btrfs_grow_device(trans, device, new_size); 2457 unlock_chunks(device->dev_root); 2458 return ret; 2459 } 2460 2461 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, 2462 struct btrfs_root *root, 2463 u64 chunk_tree, u64 chunk_objectid, 2464 u64 chunk_offset) 2465 { 2466 int ret; 2467 struct btrfs_path *path; 2468 struct btrfs_key key; 2469 2470 root = root->fs_info->chunk_root; 2471 path = btrfs_alloc_path(); 2472 if (!path) 2473 return -ENOMEM; 2474 2475 key.objectid = chunk_objectid; 2476 key.offset = chunk_offset; 2477 key.type = BTRFS_CHUNK_ITEM_KEY; 2478 2479 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2480 if (ret < 0) 2481 goto out; 2482 else if (ret > 0) { /* Logic error or corruption */ 2483 btrfs_error(root->fs_info, -ENOENT, 2484 "Failed lookup while freeing chunk."); 2485 ret = -ENOENT; 2486 goto out; 2487 } 2488 2489 ret = btrfs_del_item(trans, root, path); 2490 if (ret < 0) 2491 btrfs_error(root->fs_info, ret, 2492 "Failed to delete chunk item."); 2493 out: 2494 btrfs_free_path(path); 2495 return ret; 2496 } 2497 2498 static int btrfs_del_sys_chunk(struct btrfs_root *root, u64 chunk_objectid, u64 2499 chunk_offset) 2500 { 2501 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 2502 struct btrfs_disk_key *disk_key; 2503 struct btrfs_chunk *chunk; 2504 u8 *ptr; 2505 int ret = 0; 2506 u32 num_stripes; 2507 u32 array_size; 2508 u32 len = 0; 2509 u32 cur; 2510 struct btrfs_key key; 2511 2512 array_size = btrfs_super_sys_array_size(super_copy); 2513 2514 ptr = super_copy->sys_chunk_array; 2515 cur = 0; 2516 2517 while (cur < array_size) { 2518 disk_key = (struct btrfs_disk_key *)ptr; 2519 btrfs_disk_key_to_cpu(&key, disk_key); 2520 2521 len = sizeof(*disk_key); 2522 2523 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 2524 chunk = (struct btrfs_chunk *)(ptr + len); 2525 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 2526 len += btrfs_chunk_item_size(num_stripes); 2527 } else { 2528 ret = -EIO; 2529 break; 2530 } 2531 if (key.objectid == chunk_objectid && 2532 key.offset == chunk_offset) { 2533 memmove(ptr, ptr + len, array_size - (cur + len)); 2534 array_size -= len; 2535 btrfs_set_super_sys_array_size(super_copy, array_size); 2536 } else { 2537 ptr += len; 2538 cur += len; 2539 } 2540 } 2541 return ret; 2542 } 2543 2544 static int btrfs_relocate_chunk(struct btrfs_root *root, 2545 u64 chunk_tree, u64 chunk_objectid, 2546 u64 chunk_offset) 2547 { 2548 struct extent_map_tree *em_tree; 2549 struct btrfs_root *extent_root; 2550 struct btrfs_trans_handle *trans; 2551 struct extent_map *em; 2552 struct map_lookup *map; 2553 int ret; 2554 int i; 2555 2556 root = root->fs_info->chunk_root; 2557 extent_root = root->fs_info->extent_root; 2558 em_tree = &root->fs_info->mapping_tree.map_tree; 2559 2560 ret = btrfs_can_relocate(extent_root, chunk_offset); 2561 if (ret) 2562 return -ENOSPC; 2563 2564 /* step one, relocate all the extents inside this chunk */ 2565 ret = btrfs_relocate_block_group(extent_root, chunk_offset); 2566 if (ret) 2567 return ret; 2568 2569 trans = btrfs_start_transaction(root, 0); 2570 if (IS_ERR(trans)) { 2571 ret = PTR_ERR(trans); 2572 btrfs_std_error(root->fs_info, ret); 2573 return ret; 2574 } 2575 2576 lock_chunks(root); 2577 2578 /* 2579 * step two, delete the device extents and the 2580 * chunk tree entries 2581 */ 2582 read_lock(&em_tree->lock); 2583 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 2584 read_unlock(&em_tree->lock); 2585 2586 BUG_ON(!em || em->start > chunk_offset || 2587 em->start + em->len < chunk_offset); 2588 map = (struct map_lookup *)em->bdev; 2589 2590 for (i = 0; i < map->num_stripes; i++) { 2591 ret = btrfs_free_dev_extent(trans, map->stripes[i].dev, 2592 map->stripes[i].physical); 2593 BUG_ON(ret); 2594 2595 if (map->stripes[i].dev) { 2596 ret = btrfs_update_device(trans, map->stripes[i].dev); 2597 BUG_ON(ret); 2598 } 2599 } 2600 ret = btrfs_free_chunk(trans, root, chunk_tree, chunk_objectid, 2601 chunk_offset); 2602 2603 BUG_ON(ret); 2604 2605 trace_btrfs_chunk_free(root, map, chunk_offset, em->len); 2606 2607 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 2608 ret = btrfs_del_sys_chunk(root, chunk_objectid, chunk_offset); 2609 BUG_ON(ret); 2610 } 2611 2612 ret = btrfs_remove_block_group(trans, extent_root, chunk_offset); 2613 BUG_ON(ret); 2614 2615 write_lock(&em_tree->lock); 2616 remove_extent_mapping(em_tree, em); 2617 write_unlock(&em_tree->lock); 2618 2619 /* once for the tree */ 2620 free_extent_map(em); 2621 /* once for us */ 2622 free_extent_map(em); 2623 2624 unlock_chunks(root); 2625 btrfs_end_transaction(trans, root); 2626 return 0; 2627 } 2628 2629 static int btrfs_relocate_sys_chunks(struct btrfs_root *root) 2630 { 2631 struct btrfs_root *chunk_root = root->fs_info->chunk_root; 2632 struct btrfs_path *path; 2633 struct extent_buffer *leaf; 2634 struct btrfs_chunk *chunk; 2635 struct btrfs_key key; 2636 struct btrfs_key found_key; 2637 u64 chunk_tree = chunk_root->root_key.objectid; 2638 u64 chunk_type; 2639 bool retried = false; 2640 int failed = 0; 2641 int ret; 2642 2643 path = btrfs_alloc_path(); 2644 if (!path) 2645 return -ENOMEM; 2646 2647 again: 2648 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2649 key.offset = (u64)-1; 2650 key.type = BTRFS_CHUNK_ITEM_KEY; 2651 2652 while (1) { 2653 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 2654 if (ret < 0) 2655 goto error; 2656 BUG_ON(ret == 0); /* Corruption */ 2657 2658 ret = btrfs_previous_item(chunk_root, path, key.objectid, 2659 key.type); 2660 if (ret < 0) 2661 goto error; 2662 if (ret > 0) 2663 break; 2664 2665 leaf = path->nodes[0]; 2666 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 2667 2668 chunk = btrfs_item_ptr(leaf, path->slots[0], 2669 struct btrfs_chunk); 2670 chunk_type = btrfs_chunk_type(leaf, chunk); 2671 btrfs_release_path(path); 2672 2673 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 2674 ret = btrfs_relocate_chunk(chunk_root, chunk_tree, 2675 found_key.objectid, 2676 found_key.offset); 2677 if (ret == -ENOSPC) 2678 failed++; 2679 else if (ret) 2680 BUG(); 2681 } 2682 2683 if (found_key.offset == 0) 2684 break; 2685 key.offset = found_key.offset - 1; 2686 } 2687 ret = 0; 2688 if (failed && !retried) { 2689 failed = 0; 2690 retried = true; 2691 goto again; 2692 } else if (WARN_ON(failed && retried)) { 2693 ret = -ENOSPC; 2694 } 2695 error: 2696 btrfs_free_path(path); 2697 return ret; 2698 } 2699 2700 static int insert_balance_item(struct btrfs_root *root, 2701 struct btrfs_balance_control *bctl) 2702 { 2703 struct btrfs_trans_handle *trans; 2704 struct btrfs_balance_item *item; 2705 struct btrfs_disk_balance_args disk_bargs; 2706 struct btrfs_path *path; 2707 struct extent_buffer *leaf; 2708 struct btrfs_key key; 2709 int ret, err; 2710 2711 path = btrfs_alloc_path(); 2712 if (!path) 2713 return -ENOMEM; 2714 2715 trans = btrfs_start_transaction(root, 0); 2716 if (IS_ERR(trans)) { 2717 btrfs_free_path(path); 2718 return PTR_ERR(trans); 2719 } 2720 2721 key.objectid = BTRFS_BALANCE_OBJECTID; 2722 key.type = BTRFS_BALANCE_ITEM_KEY; 2723 key.offset = 0; 2724 2725 ret = btrfs_insert_empty_item(trans, root, path, &key, 2726 sizeof(*item)); 2727 if (ret) 2728 goto out; 2729 2730 leaf = path->nodes[0]; 2731 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 2732 2733 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 2734 2735 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 2736 btrfs_set_balance_data(leaf, item, &disk_bargs); 2737 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 2738 btrfs_set_balance_meta(leaf, item, &disk_bargs); 2739 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 2740 btrfs_set_balance_sys(leaf, item, &disk_bargs); 2741 2742 btrfs_set_balance_flags(leaf, item, bctl->flags); 2743 2744 btrfs_mark_buffer_dirty(leaf); 2745 out: 2746 btrfs_free_path(path); 2747 err = btrfs_commit_transaction(trans, root); 2748 if (err && !ret) 2749 ret = err; 2750 return ret; 2751 } 2752 2753 static int del_balance_item(struct btrfs_root *root) 2754 { 2755 struct btrfs_trans_handle *trans; 2756 struct btrfs_path *path; 2757 struct btrfs_key key; 2758 int ret, err; 2759 2760 path = btrfs_alloc_path(); 2761 if (!path) 2762 return -ENOMEM; 2763 2764 trans = btrfs_start_transaction(root, 0); 2765 if (IS_ERR(trans)) { 2766 btrfs_free_path(path); 2767 return PTR_ERR(trans); 2768 } 2769 2770 key.objectid = BTRFS_BALANCE_OBJECTID; 2771 key.type = BTRFS_BALANCE_ITEM_KEY; 2772 key.offset = 0; 2773 2774 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2775 if (ret < 0) 2776 goto out; 2777 if (ret > 0) { 2778 ret = -ENOENT; 2779 goto out; 2780 } 2781 2782 ret = btrfs_del_item(trans, root, path); 2783 out: 2784 btrfs_free_path(path); 2785 err = btrfs_commit_transaction(trans, root); 2786 if (err && !ret) 2787 ret = err; 2788 return ret; 2789 } 2790 2791 /* 2792 * This is a heuristic used to reduce the number of chunks balanced on 2793 * resume after balance was interrupted. 2794 */ 2795 static void update_balance_args(struct btrfs_balance_control *bctl) 2796 { 2797 /* 2798 * Turn on soft mode for chunk types that were being converted. 2799 */ 2800 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 2801 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 2802 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 2803 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 2804 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 2805 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 2806 2807 /* 2808 * Turn on usage filter if is not already used. The idea is 2809 * that chunks that we have already balanced should be 2810 * reasonably full. Don't do it for chunks that are being 2811 * converted - that will keep us from relocating unconverted 2812 * (albeit full) chunks. 2813 */ 2814 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 2815 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2816 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 2817 bctl->data.usage = 90; 2818 } 2819 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 2820 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2821 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 2822 bctl->sys.usage = 90; 2823 } 2824 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 2825 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 2826 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 2827 bctl->meta.usage = 90; 2828 } 2829 } 2830 2831 /* 2832 * Should be called with both balance and volume mutexes held to 2833 * serialize other volume operations (add_dev/rm_dev/resize) with 2834 * restriper. Same goes for unset_balance_control. 2835 */ 2836 static void set_balance_control(struct btrfs_balance_control *bctl) 2837 { 2838 struct btrfs_fs_info *fs_info = bctl->fs_info; 2839 2840 BUG_ON(fs_info->balance_ctl); 2841 2842 spin_lock(&fs_info->balance_lock); 2843 fs_info->balance_ctl = bctl; 2844 spin_unlock(&fs_info->balance_lock); 2845 } 2846 2847 static void unset_balance_control(struct btrfs_fs_info *fs_info) 2848 { 2849 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 2850 2851 BUG_ON(!fs_info->balance_ctl); 2852 2853 spin_lock(&fs_info->balance_lock); 2854 fs_info->balance_ctl = NULL; 2855 spin_unlock(&fs_info->balance_lock); 2856 2857 kfree(bctl); 2858 } 2859 2860 /* 2861 * Balance filters. Return 1 if chunk should be filtered out 2862 * (should not be balanced). 2863 */ 2864 static int chunk_profiles_filter(u64 chunk_type, 2865 struct btrfs_balance_args *bargs) 2866 { 2867 chunk_type = chunk_to_extended(chunk_type) & 2868 BTRFS_EXTENDED_PROFILE_MASK; 2869 2870 if (bargs->profiles & chunk_type) 2871 return 0; 2872 2873 return 1; 2874 } 2875 2876 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 2877 struct btrfs_balance_args *bargs) 2878 { 2879 struct btrfs_block_group_cache *cache; 2880 u64 chunk_used, user_thresh; 2881 int ret = 1; 2882 2883 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 2884 chunk_used = btrfs_block_group_used(&cache->item); 2885 2886 if (bargs->usage == 0) 2887 user_thresh = 1; 2888 else if (bargs->usage > 100) 2889 user_thresh = cache->key.offset; 2890 else 2891 user_thresh = div_factor_fine(cache->key.offset, 2892 bargs->usage); 2893 2894 if (chunk_used < user_thresh) 2895 ret = 0; 2896 2897 btrfs_put_block_group(cache); 2898 return ret; 2899 } 2900 2901 static int chunk_devid_filter(struct extent_buffer *leaf, 2902 struct btrfs_chunk *chunk, 2903 struct btrfs_balance_args *bargs) 2904 { 2905 struct btrfs_stripe *stripe; 2906 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2907 int i; 2908 2909 for (i = 0; i < num_stripes; i++) { 2910 stripe = btrfs_stripe_nr(chunk, i); 2911 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 2912 return 0; 2913 } 2914 2915 return 1; 2916 } 2917 2918 /* [pstart, pend) */ 2919 static int chunk_drange_filter(struct extent_buffer *leaf, 2920 struct btrfs_chunk *chunk, 2921 u64 chunk_offset, 2922 struct btrfs_balance_args *bargs) 2923 { 2924 struct btrfs_stripe *stripe; 2925 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 2926 u64 stripe_offset; 2927 u64 stripe_length; 2928 int factor; 2929 int i; 2930 2931 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 2932 return 0; 2933 2934 if (btrfs_chunk_type(leaf, chunk) & (BTRFS_BLOCK_GROUP_DUP | 2935 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10)) { 2936 factor = num_stripes / 2; 2937 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID5) { 2938 factor = num_stripes - 1; 2939 } else if (btrfs_chunk_type(leaf, chunk) & BTRFS_BLOCK_GROUP_RAID6) { 2940 factor = num_stripes - 2; 2941 } else { 2942 factor = num_stripes; 2943 } 2944 2945 for (i = 0; i < num_stripes; i++) { 2946 stripe = btrfs_stripe_nr(chunk, i); 2947 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 2948 continue; 2949 2950 stripe_offset = btrfs_stripe_offset(leaf, stripe); 2951 stripe_length = btrfs_chunk_length(leaf, chunk); 2952 do_div(stripe_length, factor); 2953 2954 if (stripe_offset < bargs->pend && 2955 stripe_offset + stripe_length > bargs->pstart) 2956 return 0; 2957 } 2958 2959 return 1; 2960 } 2961 2962 /* [vstart, vend) */ 2963 static int chunk_vrange_filter(struct extent_buffer *leaf, 2964 struct btrfs_chunk *chunk, 2965 u64 chunk_offset, 2966 struct btrfs_balance_args *bargs) 2967 { 2968 if (chunk_offset < bargs->vend && 2969 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 2970 /* at least part of the chunk is inside this vrange */ 2971 return 0; 2972 2973 return 1; 2974 } 2975 2976 static int chunk_soft_convert_filter(u64 chunk_type, 2977 struct btrfs_balance_args *bargs) 2978 { 2979 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 2980 return 0; 2981 2982 chunk_type = chunk_to_extended(chunk_type) & 2983 BTRFS_EXTENDED_PROFILE_MASK; 2984 2985 if (bargs->target == chunk_type) 2986 return 1; 2987 2988 return 0; 2989 } 2990 2991 static int should_balance_chunk(struct btrfs_root *root, 2992 struct extent_buffer *leaf, 2993 struct btrfs_chunk *chunk, u64 chunk_offset) 2994 { 2995 struct btrfs_balance_control *bctl = root->fs_info->balance_ctl; 2996 struct btrfs_balance_args *bargs = NULL; 2997 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 2998 2999 /* type filter */ 3000 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3001 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3002 return 0; 3003 } 3004 3005 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3006 bargs = &bctl->data; 3007 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3008 bargs = &bctl->sys; 3009 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3010 bargs = &bctl->meta; 3011 3012 /* profiles filter */ 3013 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3014 chunk_profiles_filter(chunk_type, bargs)) { 3015 return 0; 3016 } 3017 3018 /* usage filter */ 3019 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3020 chunk_usage_filter(bctl->fs_info, chunk_offset, bargs)) { 3021 return 0; 3022 } 3023 3024 /* devid filter */ 3025 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3026 chunk_devid_filter(leaf, chunk, bargs)) { 3027 return 0; 3028 } 3029 3030 /* drange filter, makes sense only with devid filter */ 3031 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3032 chunk_drange_filter(leaf, chunk, chunk_offset, bargs)) { 3033 return 0; 3034 } 3035 3036 /* vrange filter */ 3037 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3038 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3039 return 0; 3040 } 3041 3042 /* soft profile changing mode */ 3043 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3044 chunk_soft_convert_filter(chunk_type, bargs)) { 3045 return 0; 3046 } 3047 3048 /* 3049 * limited by count, must be the last filter 3050 */ 3051 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3052 if (bargs->limit == 0) 3053 return 0; 3054 else 3055 bargs->limit--; 3056 } 3057 3058 return 1; 3059 } 3060 3061 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3062 { 3063 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3064 struct btrfs_root *chunk_root = fs_info->chunk_root; 3065 struct btrfs_root *dev_root = fs_info->dev_root; 3066 struct list_head *devices; 3067 struct btrfs_device *device; 3068 u64 old_size; 3069 u64 size_to_free; 3070 struct btrfs_chunk *chunk; 3071 struct btrfs_path *path; 3072 struct btrfs_key key; 3073 struct btrfs_key found_key; 3074 struct btrfs_trans_handle *trans; 3075 struct extent_buffer *leaf; 3076 int slot; 3077 int ret; 3078 int enospc_errors = 0; 3079 bool counting = true; 3080 u64 limit_data = bctl->data.limit; 3081 u64 limit_meta = bctl->meta.limit; 3082 u64 limit_sys = bctl->sys.limit; 3083 3084 /* step one make some room on all the devices */ 3085 devices = &fs_info->fs_devices->devices; 3086 list_for_each_entry(device, devices, dev_list) { 3087 old_size = device->total_bytes; 3088 size_to_free = div_factor(old_size, 1); 3089 size_to_free = min(size_to_free, (u64)1 * 1024 * 1024); 3090 if (!device->writeable || 3091 device->total_bytes - device->bytes_used > size_to_free || 3092 device->is_tgtdev_for_dev_replace) 3093 continue; 3094 3095 ret = btrfs_shrink_device(device, old_size - size_to_free); 3096 if (ret == -ENOSPC) 3097 break; 3098 BUG_ON(ret); 3099 3100 trans = btrfs_start_transaction(dev_root, 0); 3101 BUG_ON(IS_ERR(trans)); 3102 3103 ret = btrfs_grow_device(trans, device, old_size); 3104 BUG_ON(ret); 3105 3106 btrfs_end_transaction(trans, dev_root); 3107 } 3108 3109 /* step two, relocate all the chunks */ 3110 path = btrfs_alloc_path(); 3111 if (!path) { 3112 ret = -ENOMEM; 3113 goto error; 3114 } 3115 3116 /* zero out stat counters */ 3117 spin_lock(&fs_info->balance_lock); 3118 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3119 spin_unlock(&fs_info->balance_lock); 3120 again: 3121 if (!counting) { 3122 bctl->data.limit = limit_data; 3123 bctl->meta.limit = limit_meta; 3124 bctl->sys.limit = limit_sys; 3125 } 3126 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3127 key.offset = (u64)-1; 3128 key.type = BTRFS_CHUNK_ITEM_KEY; 3129 3130 while (1) { 3131 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3132 atomic_read(&fs_info->balance_cancel_req)) { 3133 ret = -ECANCELED; 3134 goto error; 3135 } 3136 3137 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3138 if (ret < 0) 3139 goto error; 3140 3141 /* 3142 * this shouldn't happen, it means the last relocate 3143 * failed 3144 */ 3145 if (ret == 0) 3146 BUG(); /* FIXME break ? */ 3147 3148 ret = btrfs_previous_item(chunk_root, path, 0, 3149 BTRFS_CHUNK_ITEM_KEY); 3150 if (ret) { 3151 ret = 0; 3152 break; 3153 } 3154 3155 leaf = path->nodes[0]; 3156 slot = path->slots[0]; 3157 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3158 3159 if (found_key.objectid != key.objectid) 3160 break; 3161 3162 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3163 3164 if (!counting) { 3165 spin_lock(&fs_info->balance_lock); 3166 bctl->stat.considered++; 3167 spin_unlock(&fs_info->balance_lock); 3168 } 3169 3170 ret = should_balance_chunk(chunk_root, leaf, chunk, 3171 found_key.offset); 3172 btrfs_release_path(path); 3173 if (!ret) 3174 goto loop; 3175 3176 if (counting) { 3177 spin_lock(&fs_info->balance_lock); 3178 bctl->stat.expected++; 3179 spin_unlock(&fs_info->balance_lock); 3180 goto loop; 3181 } 3182 3183 ret = btrfs_relocate_chunk(chunk_root, 3184 chunk_root->root_key.objectid, 3185 found_key.objectid, 3186 found_key.offset); 3187 if (ret && ret != -ENOSPC) 3188 goto error; 3189 if (ret == -ENOSPC) { 3190 enospc_errors++; 3191 } else { 3192 spin_lock(&fs_info->balance_lock); 3193 bctl->stat.completed++; 3194 spin_unlock(&fs_info->balance_lock); 3195 } 3196 loop: 3197 if (found_key.offset == 0) 3198 break; 3199 key.offset = found_key.offset - 1; 3200 } 3201 3202 if (counting) { 3203 btrfs_release_path(path); 3204 counting = false; 3205 goto again; 3206 } 3207 error: 3208 btrfs_free_path(path); 3209 if (enospc_errors) { 3210 btrfs_info(fs_info, "%d enospc errors during balance", 3211 enospc_errors); 3212 if (!ret) 3213 ret = -ENOSPC; 3214 } 3215 3216 return ret; 3217 } 3218 3219 /** 3220 * alloc_profile_is_valid - see if a given profile is valid and reduced 3221 * @flags: profile to validate 3222 * @extended: if true @flags is treated as an extended profile 3223 */ 3224 static int alloc_profile_is_valid(u64 flags, int extended) 3225 { 3226 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 3227 BTRFS_BLOCK_GROUP_PROFILE_MASK); 3228 3229 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 3230 3231 /* 1) check that all other bits are zeroed */ 3232 if (flags & ~mask) 3233 return 0; 3234 3235 /* 2) see if profile is reduced */ 3236 if (flags == 0) 3237 return !extended; /* "0" is valid for usual profiles */ 3238 3239 /* true if exactly one bit set */ 3240 return (flags & (flags - 1)) == 0; 3241 } 3242 3243 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 3244 { 3245 /* cancel requested || normal exit path */ 3246 return atomic_read(&fs_info->balance_cancel_req) || 3247 (atomic_read(&fs_info->balance_pause_req) == 0 && 3248 atomic_read(&fs_info->balance_cancel_req) == 0); 3249 } 3250 3251 static void __cancel_balance(struct btrfs_fs_info *fs_info) 3252 { 3253 int ret; 3254 3255 unset_balance_control(fs_info); 3256 ret = del_balance_item(fs_info->tree_root); 3257 if (ret) 3258 btrfs_std_error(fs_info, ret); 3259 3260 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3261 } 3262 3263 /* 3264 * Should be called with both balance and volume mutexes held 3265 */ 3266 int btrfs_balance(struct btrfs_balance_control *bctl, 3267 struct btrfs_ioctl_balance_args *bargs) 3268 { 3269 struct btrfs_fs_info *fs_info = bctl->fs_info; 3270 u64 allowed; 3271 int mixed = 0; 3272 int ret; 3273 u64 num_devices; 3274 unsigned seq; 3275 3276 if (btrfs_fs_closing(fs_info) || 3277 atomic_read(&fs_info->balance_pause_req) || 3278 atomic_read(&fs_info->balance_cancel_req)) { 3279 ret = -EINVAL; 3280 goto out; 3281 } 3282 3283 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 3284 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 3285 mixed = 1; 3286 3287 /* 3288 * In case of mixed groups both data and meta should be picked, 3289 * and identical options should be given for both of them. 3290 */ 3291 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 3292 if (mixed && (bctl->flags & allowed)) { 3293 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 3294 !(bctl->flags & BTRFS_BALANCE_METADATA) || 3295 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 3296 btrfs_err(fs_info, "with mixed groups data and " 3297 "metadata balance options must be the same"); 3298 ret = -EINVAL; 3299 goto out; 3300 } 3301 } 3302 3303 num_devices = fs_info->fs_devices->num_devices; 3304 btrfs_dev_replace_lock(&fs_info->dev_replace); 3305 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 3306 BUG_ON(num_devices < 1); 3307 num_devices--; 3308 } 3309 btrfs_dev_replace_unlock(&fs_info->dev_replace); 3310 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 3311 if (num_devices == 1) 3312 allowed |= BTRFS_BLOCK_GROUP_DUP; 3313 else if (num_devices > 1) 3314 allowed |= (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID1); 3315 if (num_devices > 2) 3316 allowed |= BTRFS_BLOCK_GROUP_RAID5; 3317 if (num_devices > 3) 3318 allowed |= (BTRFS_BLOCK_GROUP_RAID10 | 3319 BTRFS_BLOCK_GROUP_RAID6); 3320 if ((bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3321 (!alloc_profile_is_valid(bctl->data.target, 1) || 3322 (bctl->data.target & ~allowed))) { 3323 btrfs_err(fs_info, "unable to start balance with target " 3324 "data profile %llu", 3325 bctl->data.target); 3326 ret = -EINVAL; 3327 goto out; 3328 } 3329 if ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3330 (!alloc_profile_is_valid(bctl->meta.target, 1) || 3331 (bctl->meta.target & ~allowed))) { 3332 btrfs_err(fs_info, 3333 "unable to start balance with target metadata profile %llu", 3334 bctl->meta.target); 3335 ret = -EINVAL; 3336 goto out; 3337 } 3338 if ((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3339 (!alloc_profile_is_valid(bctl->sys.target, 1) || 3340 (bctl->sys.target & ~allowed))) { 3341 btrfs_err(fs_info, 3342 "unable to start balance with target system profile %llu", 3343 bctl->sys.target); 3344 ret = -EINVAL; 3345 goto out; 3346 } 3347 3348 /* allow dup'ed data chunks only in mixed mode */ 3349 if (!mixed && (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3350 (bctl->data.target & BTRFS_BLOCK_GROUP_DUP)) { 3351 btrfs_err(fs_info, "dup for data is not allowed"); 3352 ret = -EINVAL; 3353 goto out; 3354 } 3355 3356 /* allow to reduce meta or sys integrity only if force set */ 3357 allowed = BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 | 3358 BTRFS_BLOCK_GROUP_RAID10 | 3359 BTRFS_BLOCK_GROUP_RAID5 | 3360 BTRFS_BLOCK_GROUP_RAID6; 3361 do { 3362 seq = read_seqbegin(&fs_info->profiles_lock); 3363 3364 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3365 (fs_info->avail_system_alloc_bits & allowed) && 3366 !(bctl->sys.target & allowed)) || 3367 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 3368 (fs_info->avail_metadata_alloc_bits & allowed) && 3369 !(bctl->meta.target & allowed))) { 3370 if (bctl->flags & BTRFS_BALANCE_FORCE) { 3371 btrfs_info(fs_info, "force reducing metadata integrity"); 3372 } else { 3373 btrfs_err(fs_info, "balance will reduce metadata " 3374 "integrity, use force if you want this"); 3375 ret = -EINVAL; 3376 goto out; 3377 } 3378 } 3379 } while (read_seqretry(&fs_info->profiles_lock, seq)); 3380 3381 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3382 int num_tolerated_disk_barrier_failures; 3383 u64 target = bctl->sys.target; 3384 3385 num_tolerated_disk_barrier_failures = 3386 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3387 if (num_tolerated_disk_barrier_failures > 0 && 3388 (target & 3389 (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID0 | 3390 BTRFS_AVAIL_ALLOC_BIT_SINGLE))) 3391 num_tolerated_disk_barrier_failures = 0; 3392 else if (num_tolerated_disk_barrier_failures > 1 && 3393 (target & 3394 (BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10))) 3395 num_tolerated_disk_barrier_failures = 1; 3396 3397 fs_info->num_tolerated_disk_barrier_failures = 3398 num_tolerated_disk_barrier_failures; 3399 } 3400 3401 ret = insert_balance_item(fs_info->tree_root, bctl); 3402 if (ret && ret != -EEXIST) 3403 goto out; 3404 3405 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 3406 BUG_ON(ret == -EEXIST); 3407 set_balance_control(bctl); 3408 } else { 3409 BUG_ON(ret != -EEXIST); 3410 spin_lock(&fs_info->balance_lock); 3411 update_balance_args(bctl); 3412 spin_unlock(&fs_info->balance_lock); 3413 } 3414 3415 atomic_inc(&fs_info->balance_running); 3416 mutex_unlock(&fs_info->balance_mutex); 3417 3418 ret = __btrfs_balance(fs_info); 3419 3420 mutex_lock(&fs_info->balance_mutex); 3421 atomic_dec(&fs_info->balance_running); 3422 3423 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) { 3424 fs_info->num_tolerated_disk_barrier_failures = 3425 btrfs_calc_num_tolerated_disk_barrier_failures(fs_info); 3426 } 3427 3428 if (bargs) { 3429 memset(bargs, 0, sizeof(*bargs)); 3430 update_ioctl_balance_args(fs_info, 0, bargs); 3431 } 3432 3433 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 3434 balance_need_close(fs_info)) { 3435 __cancel_balance(fs_info); 3436 } 3437 3438 wake_up(&fs_info->balance_wait_q); 3439 3440 return ret; 3441 out: 3442 if (bctl->flags & BTRFS_BALANCE_RESUME) 3443 __cancel_balance(fs_info); 3444 else { 3445 kfree(bctl); 3446 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 3447 } 3448 return ret; 3449 } 3450 3451 static int balance_kthread(void *data) 3452 { 3453 struct btrfs_fs_info *fs_info = data; 3454 int ret = 0; 3455 3456 mutex_lock(&fs_info->volume_mutex); 3457 mutex_lock(&fs_info->balance_mutex); 3458 3459 if (fs_info->balance_ctl) { 3460 btrfs_info(fs_info, "continuing balance"); 3461 ret = btrfs_balance(fs_info->balance_ctl, NULL); 3462 } 3463 3464 mutex_unlock(&fs_info->balance_mutex); 3465 mutex_unlock(&fs_info->volume_mutex); 3466 3467 return ret; 3468 } 3469 3470 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 3471 { 3472 struct task_struct *tsk; 3473 3474 spin_lock(&fs_info->balance_lock); 3475 if (!fs_info->balance_ctl) { 3476 spin_unlock(&fs_info->balance_lock); 3477 return 0; 3478 } 3479 spin_unlock(&fs_info->balance_lock); 3480 3481 if (btrfs_test_opt(fs_info->tree_root, SKIP_BALANCE)) { 3482 btrfs_info(fs_info, "force skipping balance"); 3483 return 0; 3484 } 3485 3486 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 3487 return PTR_ERR_OR_ZERO(tsk); 3488 } 3489 3490 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 3491 { 3492 struct btrfs_balance_control *bctl; 3493 struct btrfs_balance_item *item; 3494 struct btrfs_disk_balance_args disk_bargs; 3495 struct btrfs_path *path; 3496 struct extent_buffer *leaf; 3497 struct btrfs_key key; 3498 int ret; 3499 3500 path = btrfs_alloc_path(); 3501 if (!path) 3502 return -ENOMEM; 3503 3504 key.objectid = BTRFS_BALANCE_OBJECTID; 3505 key.type = BTRFS_BALANCE_ITEM_KEY; 3506 key.offset = 0; 3507 3508 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 3509 if (ret < 0) 3510 goto out; 3511 if (ret > 0) { /* ret = -ENOENT; */ 3512 ret = 0; 3513 goto out; 3514 } 3515 3516 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 3517 if (!bctl) { 3518 ret = -ENOMEM; 3519 goto out; 3520 } 3521 3522 leaf = path->nodes[0]; 3523 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3524 3525 bctl->fs_info = fs_info; 3526 bctl->flags = btrfs_balance_flags(leaf, item); 3527 bctl->flags |= BTRFS_BALANCE_RESUME; 3528 3529 btrfs_balance_data(leaf, item, &disk_bargs); 3530 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 3531 btrfs_balance_meta(leaf, item, &disk_bargs); 3532 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 3533 btrfs_balance_sys(leaf, item, &disk_bargs); 3534 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 3535 3536 WARN_ON(atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)); 3537 3538 mutex_lock(&fs_info->volume_mutex); 3539 mutex_lock(&fs_info->balance_mutex); 3540 3541 set_balance_control(bctl); 3542 3543 mutex_unlock(&fs_info->balance_mutex); 3544 mutex_unlock(&fs_info->volume_mutex); 3545 out: 3546 btrfs_free_path(path); 3547 return ret; 3548 } 3549 3550 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 3551 { 3552 int ret = 0; 3553 3554 mutex_lock(&fs_info->balance_mutex); 3555 if (!fs_info->balance_ctl) { 3556 mutex_unlock(&fs_info->balance_mutex); 3557 return -ENOTCONN; 3558 } 3559 3560 if (atomic_read(&fs_info->balance_running)) { 3561 atomic_inc(&fs_info->balance_pause_req); 3562 mutex_unlock(&fs_info->balance_mutex); 3563 3564 wait_event(fs_info->balance_wait_q, 3565 atomic_read(&fs_info->balance_running) == 0); 3566 3567 mutex_lock(&fs_info->balance_mutex); 3568 /* we are good with balance_ctl ripped off from under us */ 3569 BUG_ON(atomic_read(&fs_info->balance_running)); 3570 atomic_dec(&fs_info->balance_pause_req); 3571 } else { 3572 ret = -ENOTCONN; 3573 } 3574 3575 mutex_unlock(&fs_info->balance_mutex); 3576 return ret; 3577 } 3578 3579 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 3580 { 3581 if (fs_info->sb->s_flags & MS_RDONLY) 3582 return -EROFS; 3583 3584 mutex_lock(&fs_info->balance_mutex); 3585 if (!fs_info->balance_ctl) { 3586 mutex_unlock(&fs_info->balance_mutex); 3587 return -ENOTCONN; 3588 } 3589 3590 atomic_inc(&fs_info->balance_cancel_req); 3591 /* 3592 * if we are running just wait and return, balance item is 3593 * deleted in btrfs_balance in this case 3594 */ 3595 if (atomic_read(&fs_info->balance_running)) { 3596 mutex_unlock(&fs_info->balance_mutex); 3597 wait_event(fs_info->balance_wait_q, 3598 atomic_read(&fs_info->balance_running) == 0); 3599 mutex_lock(&fs_info->balance_mutex); 3600 } else { 3601 /* __cancel_balance needs volume_mutex */ 3602 mutex_unlock(&fs_info->balance_mutex); 3603 mutex_lock(&fs_info->volume_mutex); 3604 mutex_lock(&fs_info->balance_mutex); 3605 3606 if (fs_info->balance_ctl) 3607 __cancel_balance(fs_info); 3608 3609 mutex_unlock(&fs_info->volume_mutex); 3610 } 3611 3612 BUG_ON(fs_info->balance_ctl || atomic_read(&fs_info->balance_running)); 3613 atomic_dec(&fs_info->balance_cancel_req); 3614 mutex_unlock(&fs_info->balance_mutex); 3615 return 0; 3616 } 3617 3618 static int btrfs_uuid_scan_kthread(void *data) 3619 { 3620 struct btrfs_fs_info *fs_info = data; 3621 struct btrfs_root *root = fs_info->tree_root; 3622 struct btrfs_key key; 3623 struct btrfs_key max_key; 3624 struct btrfs_path *path = NULL; 3625 int ret = 0; 3626 struct extent_buffer *eb; 3627 int slot; 3628 struct btrfs_root_item root_item; 3629 u32 item_size; 3630 struct btrfs_trans_handle *trans = NULL; 3631 3632 path = btrfs_alloc_path(); 3633 if (!path) { 3634 ret = -ENOMEM; 3635 goto out; 3636 } 3637 3638 key.objectid = 0; 3639 key.type = BTRFS_ROOT_ITEM_KEY; 3640 key.offset = 0; 3641 3642 max_key.objectid = (u64)-1; 3643 max_key.type = BTRFS_ROOT_ITEM_KEY; 3644 max_key.offset = (u64)-1; 3645 3646 path->keep_locks = 1; 3647 3648 while (1) { 3649 ret = btrfs_search_forward(root, &key, path, 0); 3650 if (ret) { 3651 if (ret > 0) 3652 ret = 0; 3653 break; 3654 } 3655 3656 if (key.type != BTRFS_ROOT_ITEM_KEY || 3657 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 3658 key.objectid != BTRFS_FS_TREE_OBJECTID) || 3659 key.objectid > BTRFS_LAST_FREE_OBJECTID) 3660 goto skip; 3661 3662 eb = path->nodes[0]; 3663 slot = path->slots[0]; 3664 item_size = btrfs_item_size_nr(eb, slot); 3665 if (item_size < sizeof(root_item)) 3666 goto skip; 3667 3668 read_extent_buffer(eb, &root_item, 3669 btrfs_item_ptr_offset(eb, slot), 3670 (int)sizeof(root_item)); 3671 if (btrfs_root_refs(&root_item) == 0) 3672 goto skip; 3673 3674 if (!btrfs_is_empty_uuid(root_item.uuid) || 3675 !btrfs_is_empty_uuid(root_item.received_uuid)) { 3676 if (trans) 3677 goto update_tree; 3678 3679 btrfs_release_path(path); 3680 /* 3681 * 1 - subvol uuid item 3682 * 1 - received_subvol uuid item 3683 */ 3684 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 3685 if (IS_ERR(trans)) { 3686 ret = PTR_ERR(trans); 3687 break; 3688 } 3689 continue; 3690 } else { 3691 goto skip; 3692 } 3693 update_tree: 3694 if (!btrfs_is_empty_uuid(root_item.uuid)) { 3695 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3696 root_item.uuid, 3697 BTRFS_UUID_KEY_SUBVOL, 3698 key.objectid); 3699 if (ret < 0) { 3700 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3701 ret); 3702 break; 3703 } 3704 } 3705 3706 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 3707 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 3708 root_item.received_uuid, 3709 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3710 key.objectid); 3711 if (ret < 0) { 3712 btrfs_warn(fs_info, "uuid_tree_add failed %d", 3713 ret); 3714 break; 3715 } 3716 } 3717 3718 skip: 3719 if (trans) { 3720 ret = btrfs_end_transaction(trans, fs_info->uuid_root); 3721 trans = NULL; 3722 if (ret) 3723 break; 3724 } 3725 3726 btrfs_release_path(path); 3727 if (key.offset < (u64)-1) { 3728 key.offset++; 3729 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 3730 key.offset = 0; 3731 key.type = BTRFS_ROOT_ITEM_KEY; 3732 } else if (key.objectid < (u64)-1) { 3733 key.offset = 0; 3734 key.type = BTRFS_ROOT_ITEM_KEY; 3735 key.objectid++; 3736 } else { 3737 break; 3738 } 3739 cond_resched(); 3740 } 3741 3742 out: 3743 btrfs_free_path(path); 3744 if (trans && !IS_ERR(trans)) 3745 btrfs_end_transaction(trans, fs_info->uuid_root); 3746 if (ret) 3747 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 3748 else 3749 fs_info->update_uuid_tree_gen = 1; 3750 up(&fs_info->uuid_tree_rescan_sem); 3751 return 0; 3752 } 3753 3754 /* 3755 * Callback for btrfs_uuid_tree_iterate(). 3756 * returns: 3757 * 0 check succeeded, the entry is not outdated. 3758 * < 0 if an error occured. 3759 * > 0 if the check failed, which means the caller shall remove the entry. 3760 */ 3761 static int btrfs_check_uuid_tree_entry(struct btrfs_fs_info *fs_info, 3762 u8 *uuid, u8 type, u64 subid) 3763 { 3764 struct btrfs_key key; 3765 int ret = 0; 3766 struct btrfs_root *subvol_root; 3767 3768 if (type != BTRFS_UUID_KEY_SUBVOL && 3769 type != BTRFS_UUID_KEY_RECEIVED_SUBVOL) 3770 goto out; 3771 3772 key.objectid = subid; 3773 key.type = BTRFS_ROOT_ITEM_KEY; 3774 key.offset = (u64)-1; 3775 subvol_root = btrfs_read_fs_root_no_name(fs_info, &key); 3776 if (IS_ERR(subvol_root)) { 3777 ret = PTR_ERR(subvol_root); 3778 if (ret == -ENOENT) 3779 ret = 1; 3780 goto out; 3781 } 3782 3783 switch (type) { 3784 case BTRFS_UUID_KEY_SUBVOL: 3785 if (memcmp(uuid, subvol_root->root_item.uuid, BTRFS_UUID_SIZE)) 3786 ret = 1; 3787 break; 3788 case BTRFS_UUID_KEY_RECEIVED_SUBVOL: 3789 if (memcmp(uuid, subvol_root->root_item.received_uuid, 3790 BTRFS_UUID_SIZE)) 3791 ret = 1; 3792 break; 3793 } 3794 3795 out: 3796 return ret; 3797 } 3798 3799 static int btrfs_uuid_rescan_kthread(void *data) 3800 { 3801 struct btrfs_fs_info *fs_info = (struct btrfs_fs_info *)data; 3802 int ret; 3803 3804 /* 3805 * 1st step is to iterate through the existing UUID tree and 3806 * to delete all entries that contain outdated data. 3807 * 2nd step is to add all missing entries to the UUID tree. 3808 */ 3809 ret = btrfs_uuid_tree_iterate(fs_info, btrfs_check_uuid_tree_entry); 3810 if (ret < 0) { 3811 btrfs_warn(fs_info, "iterating uuid_tree failed %d", ret); 3812 up(&fs_info->uuid_tree_rescan_sem); 3813 return ret; 3814 } 3815 return btrfs_uuid_scan_kthread(data); 3816 } 3817 3818 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 3819 { 3820 struct btrfs_trans_handle *trans; 3821 struct btrfs_root *tree_root = fs_info->tree_root; 3822 struct btrfs_root *uuid_root; 3823 struct task_struct *task; 3824 int ret; 3825 3826 /* 3827 * 1 - root node 3828 * 1 - root item 3829 */ 3830 trans = btrfs_start_transaction(tree_root, 2); 3831 if (IS_ERR(trans)) 3832 return PTR_ERR(trans); 3833 3834 uuid_root = btrfs_create_tree(trans, fs_info, 3835 BTRFS_UUID_TREE_OBJECTID); 3836 if (IS_ERR(uuid_root)) { 3837 btrfs_abort_transaction(trans, tree_root, 3838 PTR_ERR(uuid_root)); 3839 return PTR_ERR(uuid_root); 3840 } 3841 3842 fs_info->uuid_root = uuid_root; 3843 3844 ret = btrfs_commit_transaction(trans, tree_root); 3845 if (ret) 3846 return ret; 3847 3848 down(&fs_info->uuid_tree_rescan_sem); 3849 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 3850 if (IS_ERR(task)) { 3851 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3852 btrfs_warn(fs_info, "failed to start uuid_scan task"); 3853 up(&fs_info->uuid_tree_rescan_sem); 3854 return PTR_ERR(task); 3855 } 3856 3857 return 0; 3858 } 3859 3860 int btrfs_check_uuid_tree(struct btrfs_fs_info *fs_info) 3861 { 3862 struct task_struct *task; 3863 3864 down(&fs_info->uuid_tree_rescan_sem); 3865 task = kthread_run(btrfs_uuid_rescan_kthread, fs_info, "btrfs-uuid"); 3866 if (IS_ERR(task)) { 3867 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 3868 btrfs_warn(fs_info, "failed to start uuid_rescan task"); 3869 up(&fs_info->uuid_tree_rescan_sem); 3870 return PTR_ERR(task); 3871 } 3872 3873 return 0; 3874 } 3875 3876 /* 3877 * shrinking a device means finding all of the device extents past 3878 * the new size, and then following the back refs to the chunks. 3879 * The chunk relocation code actually frees the device extent 3880 */ 3881 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 3882 { 3883 struct btrfs_trans_handle *trans; 3884 struct btrfs_root *root = device->dev_root; 3885 struct btrfs_dev_extent *dev_extent = NULL; 3886 struct btrfs_path *path; 3887 u64 length; 3888 u64 chunk_tree; 3889 u64 chunk_objectid; 3890 u64 chunk_offset; 3891 int ret; 3892 int slot; 3893 int failed = 0; 3894 bool retried = false; 3895 struct extent_buffer *l; 3896 struct btrfs_key key; 3897 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 3898 u64 old_total = btrfs_super_total_bytes(super_copy); 3899 u64 old_size = device->total_bytes; 3900 u64 diff = device->total_bytes - new_size; 3901 3902 if (device->is_tgtdev_for_dev_replace) 3903 return -EINVAL; 3904 3905 path = btrfs_alloc_path(); 3906 if (!path) 3907 return -ENOMEM; 3908 3909 path->reada = 2; 3910 3911 lock_chunks(root); 3912 3913 device->total_bytes = new_size; 3914 if (device->writeable) { 3915 device->fs_devices->total_rw_bytes -= diff; 3916 spin_lock(&root->fs_info->free_chunk_lock); 3917 root->fs_info->free_chunk_space -= diff; 3918 spin_unlock(&root->fs_info->free_chunk_lock); 3919 } 3920 unlock_chunks(root); 3921 3922 again: 3923 key.objectid = device->devid; 3924 key.offset = (u64)-1; 3925 key.type = BTRFS_DEV_EXTENT_KEY; 3926 3927 do { 3928 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3929 if (ret < 0) 3930 goto done; 3931 3932 ret = btrfs_previous_item(root, path, 0, key.type); 3933 if (ret < 0) 3934 goto done; 3935 if (ret) { 3936 ret = 0; 3937 btrfs_release_path(path); 3938 break; 3939 } 3940 3941 l = path->nodes[0]; 3942 slot = path->slots[0]; 3943 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 3944 3945 if (key.objectid != device->devid) { 3946 btrfs_release_path(path); 3947 break; 3948 } 3949 3950 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3951 length = btrfs_dev_extent_length(l, dev_extent); 3952 3953 if (key.offset + length <= new_size) { 3954 btrfs_release_path(path); 3955 break; 3956 } 3957 3958 chunk_tree = btrfs_dev_extent_chunk_tree(l, dev_extent); 3959 chunk_objectid = btrfs_dev_extent_chunk_objectid(l, dev_extent); 3960 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3961 btrfs_release_path(path); 3962 3963 ret = btrfs_relocate_chunk(root, chunk_tree, chunk_objectid, 3964 chunk_offset); 3965 if (ret && ret != -ENOSPC) 3966 goto done; 3967 if (ret == -ENOSPC) 3968 failed++; 3969 } while (key.offset-- > 0); 3970 3971 if (failed && !retried) { 3972 failed = 0; 3973 retried = true; 3974 goto again; 3975 } else if (failed && retried) { 3976 ret = -ENOSPC; 3977 lock_chunks(root); 3978 3979 device->total_bytes = old_size; 3980 if (device->writeable) 3981 device->fs_devices->total_rw_bytes += diff; 3982 spin_lock(&root->fs_info->free_chunk_lock); 3983 root->fs_info->free_chunk_space += diff; 3984 spin_unlock(&root->fs_info->free_chunk_lock); 3985 unlock_chunks(root); 3986 goto done; 3987 } 3988 3989 /* Shrinking succeeded, else we would be at "done". */ 3990 trans = btrfs_start_transaction(root, 0); 3991 if (IS_ERR(trans)) { 3992 ret = PTR_ERR(trans); 3993 goto done; 3994 } 3995 3996 lock_chunks(root); 3997 3998 device->disk_total_bytes = new_size; 3999 /* Now btrfs_update_device() will change the on-disk size. */ 4000 ret = btrfs_update_device(trans, device); 4001 if (ret) { 4002 unlock_chunks(root); 4003 btrfs_end_transaction(trans, root); 4004 goto done; 4005 } 4006 WARN_ON(diff > old_total); 4007 btrfs_set_super_total_bytes(super_copy, old_total - diff); 4008 unlock_chunks(root); 4009 btrfs_end_transaction(trans, root); 4010 done: 4011 btrfs_free_path(path); 4012 return ret; 4013 } 4014 4015 static int btrfs_add_system_chunk(struct btrfs_root *root, 4016 struct btrfs_key *key, 4017 struct btrfs_chunk *chunk, int item_size) 4018 { 4019 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 4020 struct btrfs_disk_key disk_key; 4021 u32 array_size; 4022 u8 *ptr; 4023 4024 array_size = btrfs_super_sys_array_size(super_copy); 4025 if (array_size + item_size + sizeof(disk_key) 4026 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 4027 return -EFBIG; 4028 4029 ptr = super_copy->sys_chunk_array + array_size; 4030 btrfs_cpu_key_to_disk(&disk_key, key); 4031 memcpy(ptr, &disk_key, sizeof(disk_key)); 4032 ptr += sizeof(disk_key); 4033 memcpy(ptr, chunk, item_size); 4034 item_size += sizeof(disk_key); 4035 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 4036 return 0; 4037 } 4038 4039 /* 4040 * sort the devices in descending order by max_avail, total_avail 4041 */ 4042 static int btrfs_cmp_device_info(const void *a, const void *b) 4043 { 4044 const struct btrfs_device_info *di_a = a; 4045 const struct btrfs_device_info *di_b = b; 4046 4047 if (di_a->max_avail > di_b->max_avail) 4048 return -1; 4049 if (di_a->max_avail < di_b->max_avail) 4050 return 1; 4051 if (di_a->total_avail > di_b->total_avail) 4052 return -1; 4053 if (di_a->total_avail < di_b->total_avail) 4054 return 1; 4055 return 0; 4056 } 4057 4058 static struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 4059 [BTRFS_RAID_RAID10] = { 4060 .sub_stripes = 2, 4061 .dev_stripes = 1, 4062 .devs_max = 0, /* 0 == as many as possible */ 4063 .devs_min = 4, 4064 .devs_increment = 2, 4065 .ncopies = 2, 4066 }, 4067 [BTRFS_RAID_RAID1] = { 4068 .sub_stripes = 1, 4069 .dev_stripes = 1, 4070 .devs_max = 2, 4071 .devs_min = 2, 4072 .devs_increment = 2, 4073 .ncopies = 2, 4074 }, 4075 [BTRFS_RAID_DUP] = { 4076 .sub_stripes = 1, 4077 .dev_stripes = 2, 4078 .devs_max = 1, 4079 .devs_min = 1, 4080 .devs_increment = 1, 4081 .ncopies = 2, 4082 }, 4083 [BTRFS_RAID_RAID0] = { 4084 .sub_stripes = 1, 4085 .dev_stripes = 1, 4086 .devs_max = 0, 4087 .devs_min = 2, 4088 .devs_increment = 1, 4089 .ncopies = 1, 4090 }, 4091 [BTRFS_RAID_SINGLE] = { 4092 .sub_stripes = 1, 4093 .dev_stripes = 1, 4094 .devs_max = 1, 4095 .devs_min = 1, 4096 .devs_increment = 1, 4097 .ncopies = 1, 4098 }, 4099 [BTRFS_RAID_RAID5] = { 4100 .sub_stripes = 1, 4101 .dev_stripes = 1, 4102 .devs_max = 0, 4103 .devs_min = 2, 4104 .devs_increment = 1, 4105 .ncopies = 2, 4106 }, 4107 [BTRFS_RAID_RAID6] = { 4108 .sub_stripes = 1, 4109 .dev_stripes = 1, 4110 .devs_max = 0, 4111 .devs_min = 3, 4112 .devs_increment = 1, 4113 .ncopies = 3, 4114 }, 4115 }; 4116 4117 static u32 find_raid56_stripe_len(u32 data_devices, u32 dev_stripe_target) 4118 { 4119 /* TODO allow them to set a preferred stripe size */ 4120 return 64 * 1024; 4121 } 4122 4123 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 4124 { 4125 if (!(type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6))) 4126 return; 4127 4128 btrfs_set_fs_incompat(info, RAID56); 4129 } 4130 4131 #define BTRFS_MAX_DEVS(r) ((BTRFS_LEAF_DATA_SIZE(r) \ 4132 - sizeof(struct btrfs_item) \ 4133 - sizeof(struct btrfs_chunk)) \ 4134 / sizeof(struct btrfs_stripe) + 1) 4135 4136 #define BTRFS_MAX_DEVS_SYS_CHUNK ((BTRFS_SYSTEM_CHUNK_ARRAY_SIZE \ 4137 - 2 * sizeof(struct btrfs_disk_key) \ 4138 - 2 * sizeof(struct btrfs_chunk)) \ 4139 / sizeof(struct btrfs_stripe) + 1) 4140 4141 static int __btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4142 struct btrfs_root *extent_root, u64 start, 4143 u64 type) 4144 { 4145 struct btrfs_fs_info *info = extent_root->fs_info; 4146 struct btrfs_fs_devices *fs_devices = info->fs_devices; 4147 struct list_head *cur; 4148 struct map_lookup *map = NULL; 4149 struct extent_map_tree *em_tree; 4150 struct extent_map *em; 4151 struct btrfs_device_info *devices_info = NULL; 4152 u64 total_avail; 4153 int num_stripes; /* total number of stripes to allocate */ 4154 int data_stripes; /* number of stripes that count for 4155 block group size */ 4156 int sub_stripes; /* sub_stripes info for map */ 4157 int dev_stripes; /* stripes per dev */ 4158 int devs_max; /* max devs to use */ 4159 int devs_min; /* min devs needed */ 4160 int devs_increment; /* ndevs has to be a multiple of this */ 4161 int ncopies; /* how many copies to data has */ 4162 int ret; 4163 u64 max_stripe_size; 4164 u64 max_chunk_size; 4165 u64 stripe_size; 4166 u64 num_bytes; 4167 u64 raid_stripe_len = BTRFS_STRIPE_LEN; 4168 int ndevs; 4169 int i; 4170 int j; 4171 int index; 4172 4173 BUG_ON(!alloc_profile_is_valid(type, 0)); 4174 4175 if (list_empty(&fs_devices->alloc_list)) 4176 return -ENOSPC; 4177 4178 index = __get_raid_index(type); 4179 4180 sub_stripes = btrfs_raid_array[index].sub_stripes; 4181 dev_stripes = btrfs_raid_array[index].dev_stripes; 4182 devs_max = btrfs_raid_array[index].devs_max; 4183 devs_min = btrfs_raid_array[index].devs_min; 4184 devs_increment = btrfs_raid_array[index].devs_increment; 4185 ncopies = btrfs_raid_array[index].ncopies; 4186 4187 if (type & BTRFS_BLOCK_GROUP_DATA) { 4188 max_stripe_size = 1024 * 1024 * 1024; 4189 max_chunk_size = 10 * max_stripe_size; 4190 if (!devs_max) 4191 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4192 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 4193 /* for larger filesystems, use larger metadata chunks */ 4194 if (fs_devices->total_rw_bytes > 50ULL * 1024 * 1024 * 1024) 4195 max_stripe_size = 1024 * 1024 * 1024; 4196 else 4197 max_stripe_size = 256 * 1024 * 1024; 4198 max_chunk_size = max_stripe_size; 4199 if (!devs_max) 4200 devs_max = BTRFS_MAX_DEVS(info->chunk_root); 4201 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 4202 max_stripe_size = 32 * 1024 * 1024; 4203 max_chunk_size = 2 * max_stripe_size; 4204 if (!devs_max) 4205 devs_max = BTRFS_MAX_DEVS_SYS_CHUNK; 4206 } else { 4207 btrfs_err(info, "invalid chunk type 0x%llx requested", 4208 type); 4209 BUG_ON(1); 4210 } 4211 4212 /* we don't want a chunk larger than 10% of writeable space */ 4213 max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 4214 max_chunk_size); 4215 4216 devices_info = kzalloc(sizeof(*devices_info) * fs_devices->rw_devices, 4217 GFP_NOFS); 4218 if (!devices_info) 4219 return -ENOMEM; 4220 4221 cur = fs_devices->alloc_list.next; 4222 4223 /* 4224 * in the first pass through the devices list, we gather information 4225 * about the available holes on each device. 4226 */ 4227 ndevs = 0; 4228 while (cur != &fs_devices->alloc_list) { 4229 struct btrfs_device *device; 4230 u64 max_avail; 4231 u64 dev_offset; 4232 4233 device = list_entry(cur, struct btrfs_device, dev_alloc_list); 4234 4235 cur = cur->next; 4236 4237 if (!device->writeable) { 4238 WARN(1, KERN_ERR 4239 "BTRFS: read-only device in alloc_list\n"); 4240 continue; 4241 } 4242 4243 if (!device->in_fs_metadata || 4244 device->is_tgtdev_for_dev_replace) 4245 continue; 4246 4247 if (device->total_bytes > device->bytes_used) 4248 total_avail = device->total_bytes - device->bytes_used; 4249 else 4250 total_avail = 0; 4251 4252 /* If there is no space on this device, skip it. */ 4253 if (total_avail == 0) 4254 continue; 4255 4256 ret = find_free_dev_extent(trans, device, 4257 max_stripe_size * dev_stripes, 4258 &dev_offset, &max_avail); 4259 if (ret && ret != -ENOSPC) 4260 goto error; 4261 4262 if (ret == 0) 4263 max_avail = max_stripe_size * dev_stripes; 4264 4265 if (max_avail < BTRFS_STRIPE_LEN * dev_stripes) 4266 continue; 4267 4268 if (ndevs == fs_devices->rw_devices) { 4269 WARN(1, "%s: found more than %llu devices\n", 4270 __func__, fs_devices->rw_devices); 4271 break; 4272 } 4273 devices_info[ndevs].dev_offset = dev_offset; 4274 devices_info[ndevs].max_avail = max_avail; 4275 devices_info[ndevs].total_avail = total_avail; 4276 devices_info[ndevs].dev = device; 4277 ++ndevs; 4278 } 4279 4280 /* 4281 * now sort the devices by hole size / available space 4282 */ 4283 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 4284 btrfs_cmp_device_info, NULL); 4285 4286 /* round down to number of usable stripes */ 4287 ndevs -= ndevs % devs_increment; 4288 4289 if (ndevs < devs_increment * sub_stripes || ndevs < devs_min) { 4290 ret = -ENOSPC; 4291 goto error; 4292 } 4293 4294 if (devs_max && ndevs > devs_max) 4295 ndevs = devs_max; 4296 /* 4297 * the primary goal is to maximize the number of stripes, so use as many 4298 * devices as possible, even if the stripes are not maximum sized. 4299 */ 4300 stripe_size = devices_info[ndevs-1].max_avail; 4301 num_stripes = ndevs * dev_stripes; 4302 4303 /* 4304 * this will have to be fixed for RAID1 and RAID10 over 4305 * more drives 4306 */ 4307 data_stripes = num_stripes / ncopies; 4308 4309 if (type & BTRFS_BLOCK_GROUP_RAID5) { 4310 raid_stripe_len = find_raid56_stripe_len(ndevs - 1, 4311 btrfs_super_stripesize(info->super_copy)); 4312 data_stripes = num_stripes - 1; 4313 } 4314 if (type & BTRFS_BLOCK_GROUP_RAID6) { 4315 raid_stripe_len = find_raid56_stripe_len(ndevs - 2, 4316 btrfs_super_stripesize(info->super_copy)); 4317 data_stripes = num_stripes - 2; 4318 } 4319 4320 /* 4321 * Use the number of data stripes to figure out how big this chunk 4322 * is really going to be in terms of logical address space, 4323 * and compare that answer with the max chunk size 4324 */ 4325 if (stripe_size * data_stripes > max_chunk_size) { 4326 u64 mask = (1ULL << 24) - 1; 4327 stripe_size = max_chunk_size; 4328 do_div(stripe_size, data_stripes); 4329 4330 /* bump the answer up to a 16MB boundary */ 4331 stripe_size = (stripe_size + mask) & ~mask; 4332 4333 /* but don't go higher than the limits we found 4334 * while searching for free extents 4335 */ 4336 if (stripe_size > devices_info[ndevs-1].max_avail) 4337 stripe_size = devices_info[ndevs-1].max_avail; 4338 } 4339 4340 do_div(stripe_size, dev_stripes); 4341 4342 /* align to BTRFS_STRIPE_LEN */ 4343 do_div(stripe_size, raid_stripe_len); 4344 stripe_size *= raid_stripe_len; 4345 4346 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 4347 if (!map) { 4348 ret = -ENOMEM; 4349 goto error; 4350 } 4351 map->num_stripes = num_stripes; 4352 4353 for (i = 0; i < ndevs; ++i) { 4354 for (j = 0; j < dev_stripes; ++j) { 4355 int s = i * dev_stripes + j; 4356 map->stripes[s].dev = devices_info[i].dev; 4357 map->stripes[s].physical = devices_info[i].dev_offset + 4358 j * stripe_size; 4359 } 4360 } 4361 map->sector_size = extent_root->sectorsize; 4362 map->stripe_len = raid_stripe_len; 4363 map->io_align = raid_stripe_len; 4364 map->io_width = raid_stripe_len; 4365 map->type = type; 4366 map->sub_stripes = sub_stripes; 4367 4368 num_bytes = stripe_size * data_stripes; 4369 4370 trace_btrfs_chunk_alloc(info->chunk_root, map, start, num_bytes); 4371 4372 em = alloc_extent_map(); 4373 if (!em) { 4374 kfree(map); 4375 ret = -ENOMEM; 4376 goto error; 4377 } 4378 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 4379 em->bdev = (struct block_device *)map; 4380 em->start = start; 4381 em->len = num_bytes; 4382 em->block_start = 0; 4383 em->block_len = em->len; 4384 em->orig_block_len = stripe_size; 4385 4386 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4387 write_lock(&em_tree->lock); 4388 ret = add_extent_mapping(em_tree, em, 0); 4389 if (!ret) { 4390 list_add_tail(&em->list, &trans->transaction->pending_chunks); 4391 atomic_inc(&em->refs); 4392 } 4393 write_unlock(&em_tree->lock); 4394 if (ret) { 4395 free_extent_map(em); 4396 goto error; 4397 } 4398 4399 ret = btrfs_make_block_group(trans, extent_root, 0, type, 4400 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4401 start, num_bytes); 4402 if (ret) 4403 goto error_del_extent; 4404 4405 free_extent_map(em); 4406 check_raid56_incompat_flag(extent_root->fs_info, type); 4407 4408 kfree(devices_info); 4409 return 0; 4410 4411 error_del_extent: 4412 write_lock(&em_tree->lock); 4413 remove_extent_mapping(em_tree, em); 4414 write_unlock(&em_tree->lock); 4415 4416 /* One for our allocation */ 4417 free_extent_map(em); 4418 /* One for the tree reference */ 4419 free_extent_map(em); 4420 error: 4421 kfree(devices_info); 4422 return ret; 4423 } 4424 4425 int btrfs_finish_chunk_alloc(struct btrfs_trans_handle *trans, 4426 struct btrfs_root *extent_root, 4427 u64 chunk_offset, u64 chunk_size) 4428 { 4429 struct btrfs_key key; 4430 struct btrfs_root *chunk_root = extent_root->fs_info->chunk_root; 4431 struct btrfs_device *device; 4432 struct btrfs_chunk *chunk; 4433 struct btrfs_stripe *stripe; 4434 struct extent_map_tree *em_tree; 4435 struct extent_map *em; 4436 struct map_lookup *map; 4437 size_t item_size; 4438 u64 dev_offset; 4439 u64 stripe_size; 4440 int i = 0; 4441 int ret; 4442 4443 em_tree = &extent_root->fs_info->mapping_tree.map_tree; 4444 read_lock(&em_tree->lock); 4445 em = lookup_extent_mapping(em_tree, chunk_offset, chunk_size); 4446 read_unlock(&em_tree->lock); 4447 4448 if (!em) { 4449 btrfs_crit(extent_root->fs_info, "unable to find logical " 4450 "%Lu len %Lu", chunk_offset, chunk_size); 4451 return -EINVAL; 4452 } 4453 4454 if (em->start != chunk_offset || em->len != chunk_size) { 4455 btrfs_crit(extent_root->fs_info, "found a bad mapping, wanted" 4456 " %Lu-%Lu, found %Lu-%Lu", chunk_offset, 4457 chunk_size, em->start, em->len); 4458 free_extent_map(em); 4459 return -EINVAL; 4460 } 4461 4462 map = (struct map_lookup *)em->bdev; 4463 item_size = btrfs_chunk_item_size(map->num_stripes); 4464 stripe_size = em->orig_block_len; 4465 4466 chunk = kzalloc(item_size, GFP_NOFS); 4467 if (!chunk) { 4468 ret = -ENOMEM; 4469 goto out; 4470 } 4471 4472 for (i = 0; i < map->num_stripes; i++) { 4473 device = map->stripes[i].dev; 4474 dev_offset = map->stripes[i].physical; 4475 4476 device->bytes_used += stripe_size; 4477 ret = btrfs_update_device(trans, device); 4478 if (ret) 4479 goto out; 4480 ret = btrfs_alloc_dev_extent(trans, device, 4481 chunk_root->root_key.objectid, 4482 BTRFS_FIRST_CHUNK_TREE_OBJECTID, 4483 chunk_offset, dev_offset, 4484 stripe_size); 4485 if (ret) 4486 goto out; 4487 } 4488 4489 spin_lock(&extent_root->fs_info->free_chunk_lock); 4490 extent_root->fs_info->free_chunk_space -= (stripe_size * 4491 map->num_stripes); 4492 spin_unlock(&extent_root->fs_info->free_chunk_lock); 4493 4494 stripe = &chunk->stripe; 4495 for (i = 0; i < map->num_stripes; i++) { 4496 device = map->stripes[i].dev; 4497 dev_offset = map->stripes[i].physical; 4498 4499 btrfs_set_stack_stripe_devid(stripe, device->devid); 4500 btrfs_set_stack_stripe_offset(stripe, dev_offset); 4501 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 4502 stripe++; 4503 } 4504 4505 btrfs_set_stack_chunk_length(chunk, chunk_size); 4506 btrfs_set_stack_chunk_owner(chunk, extent_root->root_key.objectid); 4507 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 4508 btrfs_set_stack_chunk_type(chunk, map->type); 4509 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 4510 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 4511 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 4512 btrfs_set_stack_chunk_sector_size(chunk, extent_root->sectorsize); 4513 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 4514 4515 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 4516 key.type = BTRFS_CHUNK_ITEM_KEY; 4517 key.offset = chunk_offset; 4518 4519 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 4520 if (ret == 0 && map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 4521 /* 4522 * TODO: Cleanup of inserted chunk root in case of 4523 * failure. 4524 */ 4525 ret = btrfs_add_system_chunk(chunk_root, &key, chunk, 4526 item_size); 4527 } 4528 4529 out: 4530 kfree(chunk); 4531 free_extent_map(em); 4532 return ret; 4533 } 4534 4535 /* 4536 * Chunk allocation falls into two parts. The first part does works 4537 * that make the new allocated chunk useable, but not do any operation 4538 * that modifies the chunk tree. The second part does the works that 4539 * require modifying the chunk tree. This division is important for the 4540 * bootstrap process of adding storage to a seed btrfs. 4541 */ 4542 int btrfs_alloc_chunk(struct btrfs_trans_handle *trans, 4543 struct btrfs_root *extent_root, u64 type) 4544 { 4545 u64 chunk_offset; 4546 4547 chunk_offset = find_next_chunk(extent_root->fs_info); 4548 return __btrfs_alloc_chunk(trans, extent_root, chunk_offset, type); 4549 } 4550 4551 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans, 4552 struct btrfs_root *root, 4553 struct btrfs_device *device) 4554 { 4555 u64 chunk_offset; 4556 u64 sys_chunk_offset; 4557 u64 alloc_profile; 4558 struct btrfs_fs_info *fs_info = root->fs_info; 4559 struct btrfs_root *extent_root = fs_info->extent_root; 4560 int ret; 4561 4562 chunk_offset = find_next_chunk(fs_info); 4563 alloc_profile = btrfs_get_alloc_profile(extent_root, 0); 4564 ret = __btrfs_alloc_chunk(trans, extent_root, chunk_offset, 4565 alloc_profile); 4566 if (ret) 4567 return ret; 4568 4569 sys_chunk_offset = find_next_chunk(root->fs_info); 4570 alloc_profile = btrfs_get_alloc_profile(fs_info->chunk_root, 0); 4571 ret = __btrfs_alloc_chunk(trans, extent_root, sys_chunk_offset, 4572 alloc_profile); 4573 if (ret) { 4574 btrfs_abort_transaction(trans, root, ret); 4575 goto out; 4576 } 4577 4578 ret = btrfs_add_device(trans, fs_info->chunk_root, device); 4579 if (ret) 4580 btrfs_abort_transaction(trans, root, ret); 4581 out: 4582 return ret; 4583 } 4584 4585 int btrfs_chunk_readonly(struct btrfs_root *root, u64 chunk_offset) 4586 { 4587 struct extent_map *em; 4588 struct map_lookup *map; 4589 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 4590 int readonly = 0; 4591 int i; 4592 4593 read_lock(&map_tree->map_tree.lock); 4594 em = lookup_extent_mapping(&map_tree->map_tree, chunk_offset, 1); 4595 read_unlock(&map_tree->map_tree.lock); 4596 if (!em) 4597 return 1; 4598 4599 if (btrfs_test_opt(root, DEGRADED)) { 4600 free_extent_map(em); 4601 return 0; 4602 } 4603 4604 map = (struct map_lookup *)em->bdev; 4605 for (i = 0; i < map->num_stripes; i++) { 4606 if (!map->stripes[i].dev->writeable) { 4607 readonly = 1; 4608 break; 4609 } 4610 } 4611 free_extent_map(em); 4612 return readonly; 4613 } 4614 4615 void btrfs_mapping_init(struct btrfs_mapping_tree *tree) 4616 { 4617 extent_map_tree_init(&tree->map_tree); 4618 } 4619 4620 void btrfs_mapping_tree_free(struct btrfs_mapping_tree *tree) 4621 { 4622 struct extent_map *em; 4623 4624 while (1) { 4625 write_lock(&tree->map_tree.lock); 4626 em = lookup_extent_mapping(&tree->map_tree, 0, (u64)-1); 4627 if (em) 4628 remove_extent_mapping(&tree->map_tree, em); 4629 write_unlock(&tree->map_tree.lock); 4630 if (!em) 4631 break; 4632 /* once for us */ 4633 free_extent_map(em); 4634 /* once for the tree */ 4635 free_extent_map(em); 4636 } 4637 } 4638 4639 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 4640 { 4641 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4642 struct extent_map *em; 4643 struct map_lookup *map; 4644 struct extent_map_tree *em_tree = &map_tree->map_tree; 4645 int ret; 4646 4647 read_lock(&em_tree->lock); 4648 em = lookup_extent_mapping(em_tree, logical, len); 4649 read_unlock(&em_tree->lock); 4650 4651 /* 4652 * We could return errors for these cases, but that could get ugly and 4653 * we'd probably do the same thing which is just not do anything else 4654 * and exit, so return 1 so the callers don't try to use other copies. 4655 */ 4656 if (!em) { 4657 btrfs_crit(fs_info, "No mapping for %Lu-%Lu", logical, 4658 logical+len); 4659 return 1; 4660 } 4661 4662 if (em->start > logical || em->start + em->len < logical) { 4663 btrfs_crit(fs_info, "Invalid mapping for %Lu-%Lu, got " 4664 "%Lu-%Lu", logical, logical+len, em->start, 4665 em->start + em->len); 4666 free_extent_map(em); 4667 return 1; 4668 } 4669 4670 map = (struct map_lookup *)em->bdev; 4671 if (map->type & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1)) 4672 ret = map->num_stripes; 4673 else if (map->type & BTRFS_BLOCK_GROUP_RAID10) 4674 ret = map->sub_stripes; 4675 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 4676 ret = 2; 4677 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 4678 ret = 3; 4679 else 4680 ret = 1; 4681 free_extent_map(em); 4682 4683 btrfs_dev_replace_lock(&fs_info->dev_replace); 4684 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) 4685 ret++; 4686 btrfs_dev_replace_unlock(&fs_info->dev_replace); 4687 4688 return ret; 4689 } 4690 4691 unsigned long btrfs_full_stripe_len(struct btrfs_root *root, 4692 struct btrfs_mapping_tree *map_tree, 4693 u64 logical) 4694 { 4695 struct extent_map *em; 4696 struct map_lookup *map; 4697 struct extent_map_tree *em_tree = &map_tree->map_tree; 4698 unsigned long len = root->sectorsize; 4699 4700 read_lock(&em_tree->lock); 4701 em = lookup_extent_mapping(em_tree, logical, len); 4702 read_unlock(&em_tree->lock); 4703 BUG_ON(!em); 4704 4705 BUG_ON(em->start > logical || em->start + em->len < logical); 4706 map = (struct map_lookup *)em->bdev; 4707 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4708 BTRFS_BLOCK_GROUP_RAID6)) { 4709 len = map->stripe_len * nr_data_stripes(map); 4710 } 4711 free_extent_map(em); 4712 return len; 4713 } 4714 4715 int btrfs_is_parity_mirror(struct btrfs_mapping_tree *map_tree, 4716 u64 logical, u64 len, int mirror_num) 4717 { 4718 struct extent_map *em; 4719 struct map_lookup *map; 4720 struct extent_map_tree *em_tree = &map_tree->map_tree; 4721 int ret = 0; 4722 4723 read_lock(&em_tree->lock); 4724 em = lookup_extent_mapping(em_tree, logical, len); 4725 read_unlock(&em_tree->lock); 4726 BUG_ON(!em); 4727 4728 BUG_ON(em->start > logical || em->start + em->len < logical); 4729 map = (struct map_lookup *)em->bdev; 4730 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 4731 BTRFS_BLOCK_GROUP_RAID6)) 4732 ret = 1; 4733 free_extent_map(em); 4734 return ret; 4735 } 4736 4737 static int find_live_mirror(struct btrfs_fs_info *fs_info, 4738 struct map_lookup *map, int first, int num, 4739 int optimal, int dev_replace_is_ongoing) 4740 { 4741 int i; 4742 int tolerance; 4743 struct btrfs_device *srcdev; 4744 4745 if (dev_replace_is_ongoing && 4746 fs_info->dev_replace.cont_reading_from_srcdev_mode == 4747 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 4748 srcdev = fs_info->dev_replace.srcdev; 4749 else 4750 srcdev = NULL; 4751 4752 /* 4753 * try to avoid the drive that is the source drive for a 4754 * dev-replace procedure, only choose it if no other non-missing 4755 * mirror is available 4756 */ 4757 for (tolerance = 0; tolerance < 2; tolerance++) { 4758 if (map->stripes[optimal].dev->bdev && 4759 (tolerance || map->stripes[optimal].dev != srcdev)) 4760 return optimal; 4761 for (i = first; i < first + num; i++) { 4762 if (map->stripes[i].dev->bdev && 4763 (tolerance || map->stripes[i].dev != srcdev)) 4764 return i; 4765 } 4766 } 4767 4768 /* we couldn't find one that doesn't fail. Just return something 4769 * and the io error handling code will clean up eventually 4770 */ 4771 return optimal; 4772 } 4773 4774 static inline int parity_smaller(u64 a, u64 b) 4775 { 4776 return a > b; 4777 } 4778 4779 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 4780 static void sort_parity_stripes(struct btrfs_bio *bbio, u64 *raid_map) 4781 { 4782 struct btrfs_bio_stripe s; 4783 int i; 4784 u64 l; 4785 int again = 1; 4786 4787 while (again) { 4788 again = 0; 4789 for (i = 0; i < bbio->num_stripes - 1; i++) { 4790 if (parity_smaller(raid_map[i], raid_map[i+1])) { 4791 s = bbio->stripes[i]; 4792 l = raid_map[i]; 4793 bbio->stripes[i] = bbio->stripes[i+1]; 4794 raid_map[i] = raid_map[i+1]; 4795 bbio->stripes[i+1] = s; 4796 raid_map[i+1] = l; 4797 again = 1; 4798 } 4799 } 4800 } 4801 } 4802 4803 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 4804 u64 logical, u64 *length, 4805 struct btrfs_bio **bbio_ret, 4806 int mirror_num, u64 **raid_map_ret) 4807 { 4808 struct extent_map *em; 4809 struct map_lookup *map; 4810 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 4811 struct extent_map_tree *em_tree = &map_tree->map_tree; 4812 u64 offset; 4813 u64 stripe_offset; 4814 u64 stripe_end_offset; 4815 u64 stripe_nr; 4816 u64 stripe_nr_orig; 4817 u64 stripe_nr_end; 4818 u64 stripe_len; 4819 u64 *raid_map = NULL; 4820 int stripe_index; 4821 int i; 4822 int ret = 0; 4823 int num_stripes; 4824 int max_errors = 0; 4825 struct btrfs_bio *bbio = NULL; 4826 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 4827 int dev_replace_is_ongoing = 0; 4828 int num_alloc_stripes; 4829 int patch_the_first_stripe_for_dev_replace = 0; 4830 u64 physical_to_patch_in_first_stripe = 0; 4831 u64 raid56_full_stripe_start = (u64)-1; 4832 4833 read_lock(&em_tree->lock); 4834 em = lookup_extent_mapping(em_tree, logical, *length); 4835 read_unlock(&em_tree->lock); 4836 4837 if (!em) { 4838 btrfs_crit(fs_info, "unable to find logical %llu len %llu", 4839 logical, *length); 4840 return -EINVAL; 4841 } 4842 4843 if (em->start > logical || em->start + em->len < logical) { 4844 btrfs_crit(fs_info, "found a bad mapping, wanted %Lu, " 4845 "found %Lu-%Lu", logical, em->start, 4846 em->start + em->len); 4847 free_extent_map(em); 4848 return -EINVAL; 4849 } 4850 4851 map = (struct map_lookup *)em->bdev; 4852 offset = logical - em->start; 4853 4854 stripe_len = map->stripe_len; 4855 stripe_nr = offset; 4856 /* 4857 * stripe_nr counts the total number of stripes we have to stride 4858 * to get to this block 4859 */ 4860 do_div(stripe_nr, stripe_len); 4861 4862 stripe_offset = stripe_nr * stripe_len; 4863 BUG_ON(offset < stripe_offset); 4864 4865 /* stripe_offset is the offset of this block in its stripe*/ 4866 stripe_offset = offset - stripe_offset; 4867 4868 /* if we're here for raid56, we need to know the stripe aligned start */ 4869 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4870 unsigned long full_stripe_len = stripe_len * nr_data_stripes(map); 4871 raid56_full_stripe_start = offset; 4872 4873 /* allow a write of a full stripe, but make sure we don't 4874 * allow straddling of stripes 4875 */ 4876 do_div(raid56_full_stripe_start, full_stripe_len); 4877 raid56_full_stripe_start *= full_stripe_len; 4878 } 4879 4880 if (rw & REQ_DISCARD) { 4881 /* we don't discard raid56 yet */ 4882 if (map->type & 4883 (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6)) { 4884 ret = -EOPNOTSUPP; 4885 goto out; 4886 } 4887 *length = min_t(u64, em->len - offset, *length); 4888 } else if (map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK) { 4889 u64 max_len; 4890 /* For writes to RAID[56], allow a full stripeset across all disks. 4891 For other RAID types and for RAID[56] reads, just allow a single 4892 stripe (on a single disk). */ 4893 if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | BTRFS_BLOCK_GROUP_RAID6) && 4894 (rw & REQ_WRITE)) { 4895 max_len = stripe_len * nr_data_stripes(map) - 4896 (offset - raid56_full_stripe_start); 4897 } else { 4898 /* we limit the length of each bio to what fits in a stripe */ 4899 max_len = stripe_len - stripe_offset; 4900 } 4901 *length = min_t(u64, em->len - offset, max_len); 4902 } else { 4903 *length = em->len - offset; 4904 } 4905 4906 /* This is for when we're called from btrfs_merge_bio_hook() and all 4907 it cares about is the length */ 4908 if (!bbio_ret) 4909 goto out; 4910 4911 btrfs_dev_replace_lock(dev_replace); 4912 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 4913 if (!dev_replace_is_ongoing) 4914 btrfs_dev_replace_unlock(dev_replace); 4915 4916 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 4917 !(rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) && 4918 dev_replace->tgtdev != NULL) { 4919 /* 4920 * in dev-replace case, for repair case (that's the only 4921 * case where the mirror is selected explicitly when 4922 * calling btrfs_map_block), blocks left of the left cursor 4923 * can also be read from the target drive. 4924 * For REQ_GET_READ_MIRRORS, the target drive is added as 4925 * the last one to the array of stripes. For READ, it also 4926 * needs to be supported using the same mirror number. 4927 * If the requested block is not left of the left cursor, 4928 * EIO is returned. This can happen because btrfs_num_copies() 4929 * returns one more in the dev-replace case. 4930 */ 4931 u64 tmp_length = *length; 4932 struct btrfs_bio *tmp_bbio = NULL; 4933 int tmp_num_stripes; 4934 u64 srcdev_devid = dev_replace->srcdev->devid; 4935 int index_srcdev = 0; 4936 int found = 0; 4937 u64 physical_of_found = 0; 4938 4939 ret = __btrfs_map_block(fs_info, REQ_GET_READ_MIRRORS, 4940 logical, &tmp_length, &tmp_bbio, 0, NULL); 4941 if (ret) { 4942 WARN_ON(tmp_bbio != NULL); 4943 goto out; 4944 } 4945 4946 tmp_num_stripes = tmp_bbio->num_stripes; 4947 if (mirror_num > tmp_num_stripes) { 4948 /* 4949 * REQ_GET_READ_MIRRORS does not contain this 4950 * mirror, that means that the requested area 4951 * is not left of the left cursor 4952 */ 4953 ret = -EIO; 4954 kfree(tmp_bbio); 4955 goto out; 4956 } 4957 4958 /* 4959 * process the rest of the function using the mirror_num 4960 * of the source drive. Therefore look it up first. 4961 * At the end, patch the device pointer to the one of the 4962 * target drive. 4963 */ 4964 for (i = 0; i < tmp_num_stripes; i++) { 4965 if (tmp_bbio->stripes[i].dev->devid == srcdev_devid) { 4966 /* 4967 * In case of DUP, in order to keep it 4968 * simple, only add the mirror with the 4969 * lowest physical address 4970 */ 4971 if (found && 4972 physical_of_found <= 4973 tmp_bbio->stripes[i].physical) 4974 continue; 4975 index_srcdev = i; 4976 found = 1; 4977 physical_of_found = 4978 tmp_bbio->stripes[i].physical; 4979 } 4980 } 4981 4982 if (found) { 4983 mirror_num = index_srcdev + 1; 4984 patch_the_first_stripe_for_dev_replace = 1; 4985 physical_to_patch_in_first_stripe = physical_of_found; 4986 } else { 4987 WARN_ON(1); 4988 ret = -EIO; 4989 kfree(tmp_bbio); 4990 goto out; 4991 } 4992 4993 kfree(tmp_bbio); 4994 } else if (mirror_num > map->num_stripes) { 4995 mirror_num = 0; 4996 } 4997 4998 num_stripes = 1; 4999 stripe_index = 0; 5000 stripe_nr_orig = stripe_nr; 5001 stripe_nr_end = ALIGN(offset + *length, map->stripe_len); 5002 do_div(stripe_nr_end, map->stripe_len); 5003 stripe_end_offset = stripe_nr_end * map->stripe_len - 5004 (offset + *length); 5005 5006 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5007 if (rw & REQ_DISCARD) 5008 num_stripes = min_t(u64, map->num_stripes, 5009 stripe_nr_end - stripe_nr_orig); 5010 stripe_index = do_div(stripe_nr, map->num_stripes); 5011 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1) { 5012 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) 5013 num_stripes = map->num_stripes; 5014 else if (mirror_num) 5015 stripe_index = mirror_num - 1; 5016 else { 5017 stripe_index = find_live_mirror(fs_info, map, 0, 5018 map->num_stripes, 5019 current->pid % map->num_stripes, 5020 dev_replace_is_ongoing); 5021 mirror_num = stripe_index + 1; 5022 } 5023 5024 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 5025 if (rw & (REQ_WRITE | REQ_DISCARD | REQ_GET_READ_MIRRORS)) { 5026 num_stripes = map->num_stripes; 5027 } else if (mirror_num) { 5028 stripe_index = mirror_num - 1; 5029 } else { 5030 mirror_num = 1; 5031 } 5032 5033 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5034 int factor = map->num_stripes / map->sub_stripes; 5035 5036 stripe_index = do_div(stripe_nr, factor); 5037 stripe_index *= map->sub_stripes; 5038 5039 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) 5040 num_stripes = map->sub_stripes; 5041 else if (rw & REQ_DISCARD) 5042 num_stripes = min_t(u64, map->sub_stripes * 5043 (stripe_nr_end - stripe_nr_orig), 5044 map->num_stripes); 5045 else if (mirror_num) 5046 stripe_index += mirror_num - 1; 5047 else { 5048 int old_stripe_index = stripe_index; 5049 stripe_index = find_live_mirror(fs_info, map, 5050 stripe_index, 5051 map->sub_stripes, stripe_index + 5052 current->pid % map->sub_stripes, 5053 dev_replace_is_ongoing); 5054 mirror_num = stripe_index - old_stripe_index + 1; 5055 } 5056 5057 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5058 BTRFS_BLOCK_GROUP_RAID6)) { 5059 u64 tmp; 5060 5061 if (bbio_ret && ((rw & REQ_WRITE) || mirror_num > 1) 5062 && raid_map_ret) { 5063 int i, rot; 5064 5065 /* push stripe_nr back to the start of the full stripe */ 5066 stripe_nr = raid56_full_stripe_start; 5067 do_div(stripe_nr, stripe_len); 5068 5069 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 5070 5071 /* RAID[56] write or recovery. Return all stripes */ 5072 num_stripes = map->num_stripes; 5073 max_errors = nr_parity_stripes(map); 5074 5075 raid_map = kmalloc_array(num_stripes, sizeof(u64), 5076 GFP_NOFS); 5077 if (!raid_map) { 5078 ret = -ENOMEM; 5079 goto out; 5080 } 5081 5082 /* Work out the disk rotation on this stripe-set */ 5083 tmp = stripe_nr; 5084 rot = do_div(tmp, num_stripes); 5085 5086 /* Fill in the logical address of each stripe */ 5087 tmp = stripe_nr * nr_data_stripes(map); 5088 for (i = 0; i < nr_data_stripes(map); i++) 5089 raid_map[(i+rot) % num_stripes] = 5090 em->start + (tmp + i) * map->stripe_len; 5091 5092 raid_map[(i+rot) % map->num_stripes] = RAID5_P_STRIPE; 5093 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5094 raid_map[(i+rot+1) % num_stripes] = 5095 RAID6_Q_STRIPE; 5096 5097 *length = map->stripe_len; 5098 stripe_index = 0; 5099 stripe_offset = 0; 5100 } else { 5101 /* 5102 * Mirror #0 or #1 means the original data block. 5103 * Mirror #2 is RAID5 parity block. 5104 * Mirror #3 is RAID6 Q block. 5105 */ 5106 stripe_index = do_div(stripe_nr, nr_data_stripes(map)); 5107 if (mirror_num > 1) 5108 stripe_index = nr_data_stripes(map) + 5109 mirror_num - 2; 5110 5111 /* We distribute the parity blocks across stripes */ 5112 tmp = stripe_nr + stripe_index; 5113 stripe_index = do_div(tmp, map->num_stripes); 5114 } 5115 } else { 5116 /* 5117 * after this do_div call, stripe_nr is the number of stripes 5118 * on this device we have to walk to find the data, and 5119 * stripe_index is the number of our device in the stripe array 5120 */ 5121 stripe_index = do_div(stripe_nr, map->num_stripes); 5122 mirror_num = stripe_index + 1; 5123 } 5124 BUG_ON(stripe_index >= map->num_stripes); 5125 5126 num_alloc_stripes = num_stripes; 5127 if (dev_replace_is_ongoing) { 5128 if (rw & (REQ_WRITE | REQ_DISCARD)) 5129 num_alloc_stripes <<= 1; 5130 if (rw & REQ_GET_READ_MIRRORS) 5131 num_alloc_stripes++; 5132 } 5133 bbio = kzalloc(btrfs_bio_size(num_alloc_stripes), GFP_NOFS); 5134 if (!bbio) { 5135 kfree(raid_map); 5136 ret = -ENOMEM; 5137 goto out; 5138 } 5139 atomic_set(&bbio->error, 0); 5140 5141 if (rw & REQ_DISCARD) { 5142 int factor = 0; 5143 int sub_stripes = 0; 5144 u64 stripes_per_dev = 0; 5145 u32 remaining_stripes = 0; 5146 u32 last_stripe = 0; 5147 5148 if (map->type & 5149 (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 5150 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5151 sub_stripes = 1; 5152 else 5153 sub_stripes = map->sub_stripes; 5154 5155 factor = map->num_stripes / sub_stripes; 5156 stripes_per_dev = div_u64_rem(stripe_nr_end - 5157 stripe_nr_orig, 5158 factor, 5159 &remaining_stripes); 5160 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 5161 last_stripe *= sub_stripes; 5162 } 5163 5164 for (i = 0; i < num_stripes; i++) { 5165 bbio->stripes[i].physical = 5166 map->stripes[stripe_index].physical + 5167 stripe_offset + stripe_nr * map->stripe_len; 5168 bbio->stripes[i].dev = map->stripes[stripe_index].dev; 5169 5170 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 5171 BTRFS_BLOCK_GROUP_RAID10)) { 5172 bbio->stripes[i].length = stripes_per_dev * 5173 map->stripe_len; 5174 5175 if (i / sub_stripes < remaining_stripes) 5176 bbio->stripes[i].length += 5177 map->stripe_len; 5178 5179 /* 5180 * Special for the first stripe and 5181 * the last stripe: 5182 * 5183 * |-------|...|-------| 5184 * |----------| 5185 * off end_off 5186 */ 5187 if (i < sub_stripes) 5188 bbio->stripes[i].length -= 5189 stripe_offset; 5190 5191 if (stripe_index >= last_stripe && 5192 stripe_index <= (last_stripe + 5193 sub_stripes - 1)) 5194 bbio->stripes[i].length -= 5195 stripe_end_offset; 5196 5197 if (i == sub_stripes - 1) 5198 stripe_offset = 0; 5199 } else 5200 bbio->stripes[i].length = *length; 5201 5202 stripe_index++; 5203 if (stripe_index == map->num_stripes) { 5204 /* This could only happen for RAID0/10 */ 5205 stripe_index = 0; 5206 stripe_nr++; 5207 } 5208 } 5209 } else { 5210 for (i = 0; i < num_stripes; i++) { 5211 bbio->stripes[i].physical = 5212 map->stripes[stripe_index].physical + 5213 stripe_offset + 5214 stripe_nr * map->stripe_len; 5215 bbio->stripes[i].dev = 5216 map->stripes[stripe_index].dev; 5217 stripe_index++; 5218 } 5219 } 5220 5221 if (rw & (REQ_WRITE | REQ_GET_READ_MIRRORS)) { 5222 if (map->type & (BTRFS_BLOCK_GROUP_RAID1 | 5223 BTRFS_BLOCK_GROUP_RAID10 | 5224 BTRFS_BLOCK_GROUP_RAID5 | 5225 BTRFS_BLOCK_GROUP_DUP)) { 5226 max_errors = 1; 5227 } else if (map->type & BTRFS_BLOCK_GROUP_RAID6) { 5228 max_errors = 2; 5229 } 5230 } 5231 5232 if (dev_replace_is_ongoing && (rw & (REQ_WRITE | REQ_DISCARD)) && 5233 dev_replace->tgtdev != NULL) { 5234 int index_where_to_add; 5235 u64 srcdev_devid = dev_replace->srcdev->devid; 5236 5237 /* 5238 * duplicate the write operations while the dev replace 5239 * procedure is running. Since the copying of the old disk 5240 * to the new disk takes place at run time while the 5241 * filesystem is mounted writable, the regular write 5242 * operations to the old disk have to be duplicated to go 5243 * to the new disk as well. 5244 * Note that device->missing is handled by the caller, and 5245 * that the write to the old disk is already set up in the 5246 * stripes array. 5247 */ 5248 index_where_to_add = num_stripes; 5249 for (i = 0; i < num_stripes; i++) { 5250 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5251 /* write to new disk, too */ 5252 struct btrfs_bio_stripe *new = 5253 bbio->stripes + index_where_to_add; 5254 struct btrfs_bio_stripe *old = 5255 bbio->stripes + i; 5256 5257 new->physical = old->physical; 5258 new->length = old->length; 5259 new->dev = dev_replace->tgtdev; 5260 index_where_to_add++; 5261 max_errors++; 5262 } 5263 } 5264 num_stripes = index_where_to_add; 5265 } else if (dev_replace_is_ongoing && (rw & REQ_GET_READ_MIRRORS) && 5266 dev_replace->tgtdev != NULL) { 5267 u64 srcdev_devid = dev_replace->srcdev->devid; 5268 int index_srcdev = 0; 5269 int found = 0; 5270 u64 physical_of_found = 0; 5271 5272 /* 5273 * During the dev-replace procedure, the target drive can 5274 * also be used to read data in case it is needed to repair 5275 * a corrupt block elsewhere. This is possible if the 5276 * requested area is left of the left cursor. In this area, 5277 * the target drive is a full copy of the source drive. 5278 */ 5279 for (i = 0; i < num_stripes; i++) { 5280 if (bbio->stripes[i].dev->devid == srcdev_devid) { 5281 /* 5282 * In case of DUP, in order to keep it 5283 * simple, only add the mirror with the 5284 * lowest physical address 5285 */ 5286 if (found && 5287 physical_of_found <= 5288 bbio->stripes[i].physical) 5289 continue; 5290 index_srcdev = i; 5291 found = 1; 5292 physical_of_found = bbio->stripes[i].physical; 5293 } 5294 } 5295 if (found) { 5296 u64 length = map->stripe_len; 5297 5298 if (physical_of_found + length <= 5299 dev_replace->cursor_left) { 5300 struct btrfs_bio_stripe *tgtdev_stripe = 5301 bbio->stripes + num_stripes; 5302 5303 tgtdev_stripe->physical = physical_of_found; 5304 tgtdev_stripe->length = 5305 bbio->stripes[index_srcdev].length; 5306 tgtdev_stripe->dev = dev_replace->tgtdev; 5307 5308 num_stripes++; 5309 } 5310 } 5311 } 5312 5313 *bbio_ret = bbio; 5314 bbio->num_stripes = num_stripes; 5315 bbio->max_errors = max_errors; 5316 bbio->mirror_num = mirror_num; 5317 5318 /* 5319 * this is the case that REQ_READ && dev_replace_is_ongoing && 5320 * mirror_num == num_stripes + 1 && dev_replace target drive is 5321 * available as a mirror 5322 */ 5323 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 5324 WARN_ON(num_stripes > 1); 5325 bbio->stripes[0].dev = dev_replace->tgtdev; 5326 bbio->stripes[0].physical = physical_to_patch_in_first_stripe; 5327 bbio->mirror_num = map->num_stripes + 1; 5328 } 5329 if (raid_map) { 5330 sort_parity_stripes(bbio, raid_map); 5331 *raid_map_ret = raid_map; 5332 } 5333 out: 5334 if (dev_replace_is_ongoing) 5335 btrfs_dev_replace_unlock(dev_replace); 5336 free_extent_map(em); 5337 return ret; 5338 } 5339 5340 int btrfs_map_block(struct btrfs_fs_info *fs_info, int rw, 5341 u64 logical, u64 *length, 5342 struct btrfs_bio **bbio_ret, int mirror_num) 5343 { 5344 return __btrfs_map_block(fs_info, rw, logical, length, bbio_ret, 5345 mirror_num, NULL); 5346 } 5347 5348 int btrfs_rmap_block(struct btrfs_mapping_tree *map_tree, 5349 u64 chunk_start, u64 physical, u64 devid, 5350 u64 **logical, int *naddrs, int *stripe_len) 5351 { 5352 struct extent_map_tree *em_tree = &map_tree->map_tree; 5353 struct extent_map *em; 5354 struct map_lookup *map; 5355 u64 *buf; 5356 u64 bytenr; 5357 u64 length; 5358 u64 stripe_nr; 5359 u64 rmap_len; 5360 int i, j, nr = 0; 5361 5362 read_lock(&em_tree->lock); 5363 em = lookup_extent_mapping(em_tree, chunk_start, 1); 5364 read_unlock(&em_tree->lock); 5365 5366 if (!em) { 5367 printk(KERN_ERR "BTRFS: couldn't find em for chunk %Lu\n", 5368 chunk_start); 5369 return -EIO; 5370 } 5371 5372 if (em->start != chunk_start) { 5373 printk(KERN_ERR "BTRFS: bad chunk start, em=%Lu, wanted=%Lu\n", 5374 em->start, chunk_start); 5375 free_extent_map(em); 5376 return -EIO; 5377 } 5378 map = (struct map_lookup *)em->bdev; 5379 5380 length = em->len; 5381 rmap_len = map->stripe_len; 5382 5383 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5384 do_div(length, map->num_stripes / map->sub_stripes); 5385 else if (map->type & BTRFS_BLOCK_GROUP_RAID0) 5386 do_div(length, map->num_stripes); 5387 else if (map->type & (BTRFS_BLOCK_GROUP_RAID5 | 5388 BTRFS_BLOCK_GROUP_RAID6)) { 5389 do_div(length, nr_data_stripes(map)); 5390 rmap_len = map->stripe_len * nr_data_stripes(map); 5391 } 5392 5393 buf = kzalloc(sizeof(u64) * map->num_stripes, GFP_NOFS); 5394 BUG_ON(!buf); /* -ENOMEM */ 5395 5396 for (i = 0; i < map->num_stripes; i++) { 5397 if (devid && map->stripes[i].dev->devid != devid) 5398 continue; 5399 if (map->stripes[i].physical > physical || 5400 map->stripes[i].physical + length <= physical) 5401 continue; 5402 5403 stripe_nr = physical - map->stripes[i].physical; 5404 do_div(stripe_nr, map->stripe_len); 5405 5406 if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 5407 stripe_nr = stripe_nr * map->num_stripes + i; 5408 do_div(stripe_nr, map->sub_stripes); 5409 } else if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 5410 stripe_nr = stripe_nr * map->num_stripes + i; 5411 } /* else if RAID[56], multiply by nr_data_stripes(). 5412 * Alternatively, just use rmap_len below instead of 5413 * map->stripe_len */ 5414 5415 bytenr = chunk_start + stripe_nr * rmap_len; 5416 WARN_ON(nr >= map->num_stripes); 5417 for (j = 0; j < nr; j++) { 5418 if (buf[j] == bytenr) 5419 break; 5420 } 5421 if (j == nr) { 5422 WARN_ON(nr >= map->num_stripes); 5423 buf[nr++] = bytenr; 5424 } 5425 } 5426 5427 *logical = buf; 5428 *naddrs = nr; 5429 *stripe_len = rmap_len; 5430 5431 free_extent_map(em); 5432 return 0; 5433 } 5434 5435 static inline void btrfs_end_bbio(struct btrfs_bio *bbio, struct bio *bio, int err) 5436 { 5437 if (likely(bbio->flags & BTRFS_BIO_ORIG_BIO_SUBMITTED)) 5438 bio_endio_nodec(bio, err); 5439 else 5440 bio_endio(bio, err); 5441 kfree(bbio); 5442 } 5443 5444 static void btrfs_end_bio(struct bio *bio, int err) 5445 { 5446 struct btrfs_bio *bbio = bio->bi_private; 5447 struct btrfs_device *dev = bbio->stripes[0].dev; 5448 int is_orig_bio = 0; 5449 5450 if (err) { 5451 atomic_inc(&bbio->error); 5452 if (err == -EIO || err == -EREMOTEIO) { 5453 unsigned int stripe_index = 5454 btrfs_io_bio(bio)->stripe_index; 5455 5456 BUG_ON(stripe_index >= bbio->num_stripes); 5457 dev = bbio->stripes[stripe_index].dev; 5458 if (dev->bdev) { 5459 if (bio->bi_rw & WRITE) 5460 btrfs_dev_stat_inc(dev, 5461 BTRFS_DEV_STAT_WRITE_ERRS); 5462 else 5463 btrfs_dev_stat_inc(dev, 5464 BTRFS_DEV_STAT_READ_ERRS); 5465 if ((bio->bi_rw & WRITE_FLUSH) == WRITE_FLUSH) 5466 btrfs_dev_stat_inc(dev, 5467 BTRFS_DEV_STAT_FLUSH_ERRS); 5468 btrfs_dev_stat_print_on_error(dev); 5469 } 5470 } 5471 } 5472 5473 if (bio == bbio->orig_bio) 5474 is_orig_bio = 1; 5475 5476 btrfs_bio_counter_dec(bbio->fs_info); 5477 5478 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5479 if (!is_orig_bio) { 5480 bio_put(bio); 5481 bio = bbio->orig_bio; 5482 } 5483 5484 bio->bi_private = bbio->private; 5485 bio->bi_end_io = bbio->end_io; 5486 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5487 /* only send an error to the higher layers if it is 5488 * beyond the tolerance of the btrfs bio 5489 */ 5490 if (atomic_read(&bbio->error) > bbio->max_errors) { 5491 err = -EIO; 5492 } else { 5493 /* 5494 * this bio is actually up to date, we didn't 5495 * go over the max number of errors 5496 */ 5497 set_bit(BIO_UPTODATE, &bio->bi_flags); 5498 err = 0; 5499 } 5500 5501 btrfs_end_bbio(bbio, bio, err); 5502 } else if (!is_orig_bio) { 5503 bio_put(bio); 5504 } 5505 } 5506 5507 /* 5508 * see run_scheduled_bios for a description of why bios are collected for 5509 * async submit. 5510 * 5511 * This will add one bio to the pending list for a device and make sure 5512 * the work struct is scheduled. 5513 */ 5514 static noinline void btrfs_schedule_bio(struct btrfs_root *root, 5515 struct btrfs_device *device, 5516 int rw, struct bio *bio) 5517 { 5518 int should_queue = 1; 5519 struct btrfs_pending_bios *pending_bios; 5520 5521 if (device->missing || !device->bdev) { 5522 bio_endio(bio, -EIO); 5523 return; 5524 } 5525 5526 /* don't bother with additional async steps for reads, right now */ 5527 if (!(rw & REQ_WRITE)) { 5528 bio_get(bio); 5529 btrfsic_submit_bio(rw, bio); 5530 bio_put(bio); 5531 return; 5532 } 5533 5534 /* 5535 * nr_async_bios allows us to reliably return congestion to the 5536 * higher layers. Otherwise, the async bio makes it appear we have 5537 * made progress against dirty pages when we've really just put it 5538 * on a queue for later 5539 */ 5540 atomic_inc(&root->fs_info->nr_async_bios); 5541 WARN_ON(bio->bi_next); 5542 bio->bi_next = NULL; 5543 bio->bi_rw |= rw; 5544 5545 spin_lock(&device->io_lock); 5546 if (bio->bi_rw & REQ_SYNC) 5547 pending_bios = &device->pending_sync_bios; 5548 else 5549 pending_bios = &device->pending_bios; 5550 5551 if (pending_bios->tail) 5552 pending_bios->tail->bi_next = bio; 5553 5554 pending_bios->tail = bio; 5555 if (!pending_bios->head) 5556 pending_bios->head = bio; 5557 if (device->running_pending) 5558 should_queue = 0; 5559 5560 spin_unlock(&device->io_lock); 5561 5562 if (should_queue) 5563 btrfs_queue_work(root->fs_info->submit_workers, 5564 &device->work); 5565 } 5566 5567 static int bio_size_ok(struct block_device *bdev, struct bio *bio, 5568 sector_t sector) 5569 { 5570 struct bio_vec *prev; 5571 struct request_queue *q = bdev_get_queue(bdev); 5572 unsigned int max_sectors = queue_max_sectors(q); 5573 struct bvec_merge_data bvm = { 5574 .bi_bdev = bdev, 5575 .bi_sector = sector, 5576 .bi_rw = bio->bi_rw, 5577 }; 5578 5579 if (WARN_ON(bio->bi_vcnt == 0)) 5580 return 1; 5581 5582 prev = &bio->bi_io_vec[bio->bi_vcnt - 1]; 5583 if (bio_sectors(bio) > max_sectors) 5584 return 0; 5585 5586 if (!q->merge_bvec_fn) 5587 return 1; 5588 5589 bvm.bi_size = bio->bi_iter.bi_size - prev->bv_len; 5590 if (q->merge_bvec_fn(q, &bvm, prev) < prev->bv_len) 5591 return 0; 5592 return 1; 5593 } 5594 5595 static void submit_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5596 struct bio *bio, u64 physical, int dev_nr, 5597 int rw, int async) 5598 { 5599 struct btrfs_device *dev = bbio->stripes[dev_nr].dev; 5600 5601 bio->bi_private = bbio; 5602 btrfs_io_bio(bio)->stripe_index = dev_nr; 5603 bio->bi_end_io = btrfs_end_bio; 5604 bio->bi_iter.bi_sector = physical >> 9; 5605 #ifdef DEBUG 5606 { 5607 struct rcu_string *name; 5608 5609 rcu_read_lock(); 5610 name = rcu_dereference(dev->name); 5611 pr_debug("btrfs_map_bio: rw %d, sector=%llu, dev=%lu " 5612 "(%s id %llu), size=%u\n", rw, 5613 (u64)bio->bi_sector, (u_long)dev->bdev->bd_dev, 5614 name->str, dev->devid, bio->bi_size); 5615 rcu_read_unlock(); 5616 } 5617 #endif 5618 bio->bi_bdev = dev->bdev; 5619 5620 btrfs_bio_counter_inc_noblocked(root->fs_info); 5621 5622 if (async) 5623 btrfs_schedule_bio(root, dev, rw, bio); 5624 else 5625 btrfsic_submit_bio(rw, bio); 5626 } 5627 5628 static int breakup_stripe_bio(struct btrfs_root *root, struct btrfs_bio *bbio, 5629 struct bio *first_bio, struct btrfs_device *dev, 5630 int dev_nr, int rw, int async) 5631 { 5632 struct bio_vec *bvec = first_bio->bi_io_vec; 5633 struct bio *bio; 5634 int nr_vecs = bio_get_nr_vecs(dev->bdev); 5635 u64 physical = bbio->stripes[dev_nr].physical; 5636 5637 again: 5638 bio = btrfs_bio_alloc(dev->bdev, physical >> 9, nr_vecs, GFP_NOFS); 5639 if (!bio) 5640 return -ENOMEM; 5641 5642 while (bvec <= (first_bio->bi_io_vec + first_bio->bi_vcnt - 1)) { 5643 if (bio_add_page(bio, bvec->bv_page, bvec->bv_len, 5644 bvec->bv_offset) < bvec->bv_len) { 5645 u64 len = bio->bi_iter.bi_size; 5646 5647 atomic_inc(&bbio->stripes_pending); 5648 submit_stripe_bio(root, bbio, bio, physical, dev_nr, 5649 rw, async); 5650 physical += len; 5651 goto again; 5652 } 5653 bvec++; 5654 } 5655 5656 submit_stripe_bio(root, bbio, bio, physical, dev_nr, rw, async); 5657 return 0; 5658 } 5659 5660 static void bbio_error(struct btrfs_bio *bbio, struct bio *bio, u64 logical) 5661 { 5662 atomic_inc(&bbio->error); 5663 if (atomic_dec_and_test(&bbio->stripes_pending)) { 5664 /* Shoud be the original bio. */ 5665 WARN_ON(bio != bbio->orig_bio); 5666 5667 bio->bi_private = bbio->private; 5668 bio->bi_end_io = bbio->end_io; 5669 btrfs_io_bio(bio)->mirror_num = bbio->mirror_num; 5670 bio->bi_iter.bi_sector = logical >> 9; 5671 5672 btrfs_end_bbio(bbio, bio, -EIO); 5673 } 5674 } 5675 5676 int btrfs_map_bio(struct btrfs_root *root, int rw, struct bio *bio, 5677 int mirror_num, int async_submit) 5678 { 5679 struct btrfs_device *dev; 5680 struct bio *first_bio = bio; 5681 u64 logical = (u64)bio->bi_iter.bi_sector << 9; 5682 u64 length = 0; 5683 u64 map_length; 5684 u64 *raid_map = NULL; 5685 int ret; 5686 int dev_nr = 0; 5687 int total_devs = 1; 5688 struct btrfs_bio *bbio = NULL; 5689 5690 length = bio->bi_iter.bi_size; 5691 map_length = length; 5692 5693 btrfs_bio_counter_inc_blocked(root->fs_info); 5694 ret = __btrfs_map_block(root->fs_info, rw, logical, &map_length, &bbio, 5695 mirror_num, &raid_map); 5696 if (ret) { 5697 btrfs_bio_counter_dec(root->fs_info); 5698 return ret; 5699 } 5700 5701 total_devs = bbio->num_stripes; 5702 bbio->orig_bio = first_bio; 5703 bbio->private = first_bio->bi_private; 5704 bbio->end_io = first_bio->bi_end_io; 5705 bbio->fs_info = root->fs_info; 5706 atomic_set(&bbio->stripes_pending, bbio->num_stripes); 5707 5708 if (raid_map) { 5709 /* In this case, map_length has been set to the length of 5710 a single stripe; not the whole write */ 5711 if (rw & WRITE) { 5712 ret = raid56_parity_write(root, bio, bbio, 5713 raid_map, map_length); 5714 } else { 5715 ret = raid56_parity_recover(root, bio, bbio, 5716 raid_map, map_length, 5717 mirror_num); 5718 } 5719 /* 5720 * FIXME, replace dosen't support raid56 yet, please fix 5721 * it in the future. 5722 */ 5723 btrfs_bio_counter_dec(root->fs_info); 5724 return ret; 5725 } 5726 5727 if (map_length < length) { 5728 btrfs_crit(root->fs_info, "mapping failed logical %llu bio len %llu len %llu", 5729 logical, length, map_length); 5730 BUG(); 5731 } 5732 5733 while (dev_nr < total_devs) { 5734 dev = bbio->stripes[dev_nr].dev; 5735 if (!dev || !dev->bdev || (rw & WRITE && !dev->writeable)) { 5736 bbio_error(bbio, first_bio, logical); 5737 dev_nr++; 5738 continue; 5739 } 5740 5741 /* 5742 * Check and see if we're ok with this bio based on it's size 5743 * and offset with the given device. 5744 */ 5745 if (!bio_size_ok(dev->bdev, first_bio, 5746 bbio->stripes[dev_nr].physical >> 9)) { 5747 ret = breakup_stripe_bio(root, bbio, first_bio, dev, 5748 dev_nr, rw, async_submit); 5749 BUG_ON(ret); 5750 dev_nr++; 5751 continue; 5752 } 5753 5754 if (dev_nr < total_devs - 1) { 5755 bio = btrfs_bio_clone(first_bio, GFP_NOFS); 5756 BUG_ON(!bio); /* -ENOMEM */ 5757 } else { 5758 bio = first_bio; 5759 bbio->flags |= BTRFS_BIO_ORIG_BIO_SUBMITTED; 5760 } 5761 5762 submit_stripe_bio(root, bbio, bio, 5763 bbio->stripes[dev_nr].physical, dev_nr, rw, 5764 async_submit); 5765 dev_nr++; 5766 } 5767 btrfs_bio_counter_dec(root->fs_info); 5768 return 0; 5769 } 5770 5771 struct btrfs_device *btrfs_find_device(struct btrfs_fs_info *fs_info, u64 devid, 5772 u8 *uuid, u8 *fsid) 5773 { 5774 struct btrfs_device *device; 5775 struct btrfs_fs_devices *cur_devices; 5776 5777 cur_devices = fs_info->fs_devices; 5778 while (cur_devices) { 5779 if (!fsid || 5780 !memcmp(cur_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5781 device = __find_device(&cur_devices->devices, 5782 devid, uuid); 5783 if (device) 5784 return device; 5785 } 5786 cur_devices = cur_devices->seed; 5787 } 5788 return NULL; 5789 } 5790 5791 static struct btrfs_device *add_missing_dev(struct btrfs_root *root, 5792 u64 devid, u8 *dev_uuid) 5793 { 5794 struct btrfs_device *device; 5795 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 5796 5797 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 5798 if (IS_ERR(device)) 5799 return NULL; 5800 5801 list_add(&device->dev_list, &fs_devices->devices); 5802 device->fs_devices = fs_devices; 5803 fs_devices->num_devices++; 5804 5805 device->missing = 1; 5806 fs_devices->missing_devices++; 5807 5808 return device; 5809 } 5810 5811 /** 5812 * btrfs_alloc_device - allocate struct btrfs_device 5813 * @fs_info: used only for generating a new devid, can be NULL if 5814 * devid is provided (i.e. @devid != NULL). 5815 * @devid: a pointer to devid for this device. If NULL a new devid 5816 * is generated. 5817 * @uuid: a pointer to UUID for this device. If NULL a new UUID 5818 * is generated. 5819 * 5820 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 5821 * on error. Returned struct is not linked onto any lists and can be 5822 * destroyed with kfree() right away. 5823 */ 5824 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 5825 const u64 *devid, 5826 const u8 *uuid) 5827 { 5828 struct btrfs_device *dev; 5829 u64 tmp; 5830 5831 if (WARN_ON(!devid && !fs_info)) 5832 return ERR_PTR(-EINVAL); 5833 5834 dev = __alloc_device(); 5835 if (IS_ERR(dev)) 5836 return dev; 5837 5838 if (devid) 5839 tmp = *devid; 5840 else { 5841 int ret; 5842 5843 ret = find_next_devid(fs_info, &tmp); 5844 if (ret) { 5845 kfree(dev); 5846 return ERR_PTR(ret); 5847 } 5848 } 5849 dev->devid = tmp; 5850 5851 if (uuid) 5852 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 5853 else 5854 generate_random_uuid(dev->uuid); 5855 5856 btrfs_init_work(&dev->work, btrfs_submit_helper, 5857 pending_bios_fn, NULL, NULL); 5858 5859 return dev; 5860 } 5861 5862 static int read_one_chunk(struct btrfs_root *root, struct btrfs_key *key, 5863 struct extent_buffer *leaf, 5864 struct btrfs_chunk *chunk) 5865 { 5866 struct btrfs_mapping_tree *map_tree = &root->fs_info->mapping_tree; 5867 struct map_lookup *map; 5868 struct extent_map *em; 5869 u64 logical; 5870 u64 length; 5871 u64 devid; 5872 u8 uuid[BTRFS_UUID_SIZE]; 5873 int num_stripes; 5874 int ret; 5875 int i; 5876 5877 logical = key->offset; 5878 length = btrfs_chunk_length(leaf, chunk); 5879 5880 read_lock(&map_tree->map_tree.lock); 5881 em = lookup_extent_mapping(&map_tree->map_tree, logical, 1); 5882 read_unlock(&map_tree->map_tree.lock); 5883 5884 /* already mapped? */ 5885 if (em && em->start <= logical && em->start + em->len > logical) { 5886 free_extent_map(em); 5887 return 0; 5888 } else if (em) { 5889 free_extent_map(em); 5890 } 5891 5892 em = alloc_extent_map(); 5893 if (!em) 5894 return -ENOMEM; 5895 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 5896 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 5897 if (!map) { 5898 free_extent_map(em); 5899 return -ENOMEM; 5900 } 5901 5902 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5903 em->bdev = (struct block_device *)map; 5904 em->start = logical; 5905 em->len = length; 5906 em->orig_start = 0; 5907 em->block_start = 0; 5908 em->block_len = em->len; 5909 5910 map->num_stripes = num_stripes; 5911 map->io_width = btrfs_chunk_io_width(leaf, chunk); 5912 map->io_align = btrfs_chunk_io_align(leaf, chunk); 5913 map->sector_size = btrfs_chunk_sector_size(leaf, chunk); 5914 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 5915 map->type = btrfs_chunk_type(leaf, chunk); 5916 map->sub_stripes = btrfs_chunk_sub_stripes(leaf, chunk); 5917 for (i = 0; i < num_stripes; i++) { 5918 map->stripes[i].physical = 5919 btrfs_stripe_offset_nr(leaf, chunk, i); 5920 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 5921 read_extent_buffer(leaf, uuid, (unsigned long) 5922 btrfs_stripe_dev_uuid_nr(chunk, i), 5923 BTRFS_UUID_SIZE); 5924 map->stripes[i].dev = btrfs_find_device(root->fs_info, devid, 5925 uuid, NULL); 5926 if (!map->stripes[i].dev && !btrfs_test_opt(root, DEGRADED)) { 5927 free_extent_map(em); 5928 return -EIO; 5929 } 5930 if (!map->stripes[i].dev) { 5931 map->stripes[i].dev = 5932 add_missing_dev(root, devid, uuid); 5933 if (!map->stripes[i].dev) { 5934 free_extent_map(em); 5935 return -EIO; 5936 } 5937 } 5938 map->stripes[i].dev->in_fs_metadata = 1; 5939 } 5940 5941 write_lock(&map_tree->map_tree.lock); 5942 ret = add_extent_mapping(&map_tree->map_tree, em, 0); 5943 write_unlock(&map_tree->map_tree.lock); 5944 BUG_ON(ret); /* Tree corruption */ 5945 free_extent_map(em); 5946 5947 return 0; 5948 } 5949 5950 static void fill_device_from_item(struct extent_buffer *leaf, 5951 struct btrfs_dev_item *dev_item, 5952 struct btrfs_device *device) 5953 { 5954 unsigned long ptr; 5955 5956 device->devid = btrfs_device_id(leaf, dev_item); 5957 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 5958 device->total_bytes = device->disk_total_bytes; 5959 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 5960 device->type = btrfs_device_type(leaf, dev_item); 5961 device->io_align = btrfs_device_io_align(leaf, dev_item); 5962 device->io_width = btrfs_device_io_width(leaf, dev_item); 5963 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 5964 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 5965 device->is_tgtdev_for_dev_replace = 0; 5966 5967 ptr = btrfs_device_uuid(dev_item); 5968 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 5969 } 5970 5971 static int open_seed_devices(struct btrfs_root *root, u8 *fsid) 5972 { 5973 struct btrfs_fs_devices *fs_devices; 5974 int ret; 5975 5976 BUG_ON(!mutex_is_locked(&uuid_mutex)); 5977 5978 fs_devices = root->fs_info->fs_devices->seed; 5979 while (fs_devices) { 5980 if (!memcmp(fs_devices->fsid, fsid, BTRFS_UUID_SIZE)) { 5981 ret = 0; 5982 goto out; 5983 } 5984 fs_devices = fs_devices->seed; 5985 } 5986 5987 fs_devices = find_fsid(fsid); 5988 if (!fs_devices) { 5989 ret = -ENOENT; 5990 goto out; 5991 } 5992 5993 fs_devices = clone_fs_devices(fs_devices); 5994 if (IS_ERR(fs_devices)) { 5995 ret = PTR_ERR(fs_devices); 5996 goto out; 5997 } 5998 5999 ret = __btrfs_open_devices(fs_devices, FMODE_READ, 6000 root->fs_info->bdev_holder); 6001 if (ret) { 6002 free_fs_devices(fs_devices); 6003 goto out; 6004 } 6005 6006 if (!fs_devices->seeding) { 6007 __btrfs_close_devices(fs_devices); 6008 free_fs_devices(fs_devices); 6009 ret = -EINVAL; 6010 goto out; 6011 } 6012 6013 fs_devices->seed = root->fs_info->fs_devices->seed; 6014 root->fs_info->fs_devices->seed = fs_devices; 6015 out: 6016 return ret; 6017 } 6018 6019 static int read_one_dev(struct btrfs_root *root, 6020 struct extent_buffer *leaf, 6021 struct btrfs_dev_item *dev_item) 6022 { 6023 struct btrfs_device *device; 6024 u64 devid; 6025 int ret; 6026 u8 fs_uuid[BTRFS_UUID_SIZE]; 6027 u8 dev_uuid[BTRFS_UUID_SIZE]; 6028 6029 devid = btrfs_device_id(leaf, dev_item); 6030 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 6031 BTRFS_UUID_SIZE); 6032 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 6033 BTRFS_UUID_SIZE); 6034 6035 if (memcmp(fs_uuid, root->fs_info->fsid, BTRFS_UUID_SIZE)) { 6036 ret = open_seed_devices(root, fs_uuid); 6037 if (ret && !btrfs_test_opt(root, DEGRADED)) 6038 return ret; 6039 } 6040 6041 device = btrfs_find_device(root->fs_info, devid, dev_uuid, fs_uuid); 6042 if (!device || !device->bdev) { 6043 if (!btrfs_test_opt(root, DEGRADED)) 6044 return -EIO; 6045 6046 if (!device) { 6047 btrfs_warn(root->fs_info, "devid %llu missing", devid); 6048 device = add_missing_dev(root, devid, dev_uuid); 6049 if (!device) 6050 return -ENOMEM; 6051 } else if (!device->missing) { 6052 /* 6053 * this happens when a device that was properly setup 6054 * in the device info lists suddenly goes bad. 6055 * device->bdev is NULL, and so we have to set 6056 * device->missing to one here 6057 */ 6058 root->fs_info->fs_devices->missing_devices++; 6059 device->missing = 1; 6060 } 6061 } 6062 6063 if (device->fs_devices != root->fs_info->fs_devices) { 6064 BUG_ON(device->writeable); 6065 if (device->generation != 6066 btrfs_device_generation(leaf, dev_item)) 6067 return -EINVAL; 6068 } 6069 6070 fill_device_from_item(leaf, dev_item, device); 6071 device->in_fs_metadata = 1; 6072 if (device->writeable && !device->is_tgtdev_for_dev_replace) { 6073 device->fs_devices->total_rw_bytes += device->total_bytes; 6074 spin_lock(&root->fs_info->free_chunk_lock); 6075 root->fs_info->free_chunk_space += device->total_bytes - 6076 device->bytes_used; 6077 spin_unlock(&root->fs_info->free_chunk_lock); 6078 } 6079 ret = 0; 6080 return ret; 6081 } 6082 6083 int btrfs_read_sys_array(struct btrfs_root *root) 6084 { 6085 struct btrfs_super_block *super_copy = root->fs_info->super_copy; 6086 struct extent_buffer *sb; 6087 struct btrfs_disk_key *disk_key; 6088 struct btrfs_chunk *chunk; 6089 u8 *ptr; 6090 unsigned long sb_ptr; 6091 int ret = 0; 6092 u32 num_stripes; 6093 u32 array_size; 6094 u32 len = 0; 6095 u32 cur; 6096 struct btrfs_key key; 6097 6098 sb = btrfs_find_create_tree_block(root, BTRFS_SUPER_INFO_OFFSET, 6099 BTRFS_SUPER_INFO_SIZE); 6100 if (!sb) 6101 return -ENOMEM; 6102 btrfs_set_buffer_uptodate(sb); 6103 btrfs_set_buffer_lockdep_class(root->root_key.objectid, sb, 0); 6104 /* 6105 * The sb extent buffer is artifical and just used to read the system array. 6106 * btrfs_set_buffer_uptodate() call does not properly mark all it's 6107 * pages up-to-date when the page is larger: extent does not cover the 6108 * whole page and consequently check_page_uptodate does not find all 6109 * the page's extents up-to-date (the hole beyond sb), 6110 * write_extent_buffer then triggers a WARN_ON. 6111 * 6112 * Regular short extents go through mark_extent_buffer_dirty/writeback cycle, 6113 * but sb spans only this function. Add an explicit SetPageUptodate call 6114 * to silence the warning eg. on PowerPC 64. 6115 */ 6116 if (PAGE_CACHE_SIZE > BTRFS_SUPER_INFO_SIZE) 6117 SetPageUptodate(sb->pages[0]); 6118 6119 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 6120 array_size = btrfs_super_sys_array_size(super_copy); 6121 6122 ptr = super_copy->sys_chunk_array; 6123 sb_ptr = offsetof(struct btrfs_super_block, sys_chunk_array); 6124 cur = 0; 6125 6126 while (cur < array_size) { 6127 disk_key = (struct btrfs_disk_key *)ptr; 6128 btrfs_disk_key_to_cpu(&key, disk_key); 6129 6130 len = sizeof(*disk_key); ptr += len; 6131 sb_ptr += len; 6132 cur += len; 6133 6134 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 6135 chunk = (struct btrfs_chunk *)sb_ptr; 6136 ret = read_one_chunk(root, &key, sb, chunk); 6137 if (ret) 6138 break; 6139 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 6140 len = btrfs_chunk_item_size(num_stripes); 6141 } else { 6142 ret = -EIO; 6143 break; 6144 } 6145 ptr += len; 6146 sb_ptr += len; 6147 cur += len; 6148 } 6149 free_extent_buffer(sb); 6150 return ret; 6151 } 6152 6153 int btrfs_read_chunk_tree(struct btrfs_root *root) 6154 { 6155 struct btrfs_path *path; 6156 struct extent_buffer *leaf; 6157 struct btrfs_key key; 6158 struct btrfs_key found_key; 6159 int ret; 6160 int slot; 6161 6162 root = root->fs_info->chunk_root; 6163 6164 path = btrfs_alloc_path(); 6165 if (!path) 6166 return -ENOMEM; 6167 6168 mutex_lock(&uuid_mutex); 6169 lock_chunks(root); 6170 6171 /* 6172 * Read all device items, and then all the chunk items. All 6173 * device items are found before any chunk item (their object id 6174 * is smaller than the lowest possible object id for a chunk 6175 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 6176 */ 6177 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 6178 key.offset = 0; 6179 key.type = 0; 6180 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 6181 if (ret < 0) 6182 goto error; 6183 while (1) { 6184 leaf = path->nodes[0]; 6185 slot = path->slots[0]; 6186 if (slot >= btrfs_header_nritems(leaf)) { 6187 ret = btrfs_next_leaf(root, path); 6188 if (ret == 0) 6189 continue; 6190 if (ret < 0) 6191 goto error; 6192 break; 6193 } 6194 btrfs_item_key_to_cpu(leaf, &found_key, slot); 6195 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 6196 struct btrfs_dev_item *dev_item; 6197 dev_item = btrfs_item_ptr(leaf, slot, 6198 struct btrfs_dev_item); 6199 ret = read_one_dev(root, leaf, dev_item); 6200 if (ret) 6201 goto error; 6202 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 6203 struct btrfs_chunk *chunk; 6204 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 6205 ret = read_one_chunk(root, &found_key, leaf, chunk); 6206 if (ret) 6207 goto error; 6208 } 6209 path->slots[0]++; 6210 } 6211 ret = 0; 6212 error: 6213 unlock_chunks(root); 6214 mutex_unlock(&uuid_mutex); 6215 6216 btrfs_free_path(path); 6217 return ret; 6218 } 6219 6220 void btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 6221 { 6222 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6223 struct btrfs_device *device; 6224 6225 while (fs_devices) { 6226 mutex_lock(&fs_devices->device_list_mutex); 6227 list_for_each_entry(device, &fs_devices->devices, dev_list) 6228 device->dev_root = fs_info->dev_root; 6229 mutex_unlock(&fs_devices->device_list_mutex); 6230 6231 fs_devices = fs_devices->seed; 6232 } 6233 } 6234 6235 static void __btrfs_reset_dev_stats(struct btrfs_device *dev) 6236 { 6237 int i; 6238 6239 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6240 btrfs_dev_stat_reset(dev, i); 6241 } 6242 6243 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 6244 { 6245 struct btrfs_key key; 6246 struct btrfs_key found_key; 6247 struct btrfs_root *dev_root = fs_info->dev_root; 6248 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6249 struct extent_buffer *eb; 6250 int slot; 6251 int ret = 0; 6252 struct btrfs_device *device; 6253 struct btrfs_path *path = NULL; 6254 int i; 6255 6256 path = btrfs_alloc_path(); 6257 if (!path) { 6258 ret = -ENOMEM; 6259 goto out; 6260 } 6261 6262 mutex_lock(&fs_devices->device_list_mutex); 6263 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6264 int item_size; 6265 struct btrfs_dev_stats_item *ptr; 6266 6267 key.objectid = 0; 6268 key.type = BTRFS_DEV_STATS_KEY; 6269 key.offset = device->devid; 6270 ret = btrfs_search_slot(NULL, dev_root, &key, path, 0, 0); 6271 if (ret) { 6272 __btrfs_reset_dev_stats(device); 6273 device->dev_stats_valid = 1; 6274 btrfs_release_path(path); 6275 continue; 6276 } 6277 slot = path->slots[0]; 6278 eb = path->nodes[0]; 6279 btrfs_item_key_to_cpu(eb, &found_key, slot); 6280 item_size = btrfs_item_size_nr(eb, slot); 6281 6282 ptr = btrfs_item_ptr(eb, slot, 6283 struct btrfs_dev_stats_item); 6284 6285 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6286 if (item_size >= (1 + i) * sizeof(__le64)) 6287 btrfs_dev_stat_set(device, i, 6288 btrfs_dev_stats_value(eb, ptr, i)); 6289 else 6290 btrfs_dev_stat_reset(device, i); 6291 } 6292 6293 device->dev_stats_valid = 1; 6294 btrfs_dev_stat_print_on_load(device); 6295 btrfs_release_path(path); 6296 } 6297 mutex_unlock(&fs_devices->device_list_mutex); 6298 6299 out: 6300 btrfs_free_path(path); 6301 return ret < 0 ? ret : 0; 6302 } 6303 6304 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 6305 struct btrfs_root *dev_root, 6306 struct btrfs_device *device) 6307 { 6308 struct btrfs_path *path; 6309 struct btrfs_key key; 6310 struct extent_buffer *eb; 6311 struct btrfs_dev_stats_item *ptr; 6312 int ret; 6313 int i; 6314 6315 key.objectid = 0; 6316 key.type = BTRFS_DEV_STATS_KEY; 6317 key.offset = device->devid; 6318 6319 path = btrfs_alloc_path(); 6320 BUG_ON(!path); 6321 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 6322 if (ret < 0) { 6323 printk_in_rcu(KERN_WARNING "BTRFS: " 6324 "error %d while searching for dev_stats item for device %s!\n", 6325 ret, rcu_str_deref(device->name)); 6326 goto out; 6327 } 6328 6329 if (ret == 0 && 6330 btrfs_item_size_nr(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 6331 /* need to delete old one and insert a new one */ 6332 ret = btrfs_del_item(trans, dev_root, path); 6333 if (ret != 0) { 6334 printk_in_rcu(KERN_WARNING "BTRFS: " 6335 "delete too small dev_stats item for device %s failed %d!\n", 6336 rcu_str_deref(device->name), ret); 6337 goto out; 6338 } 6339 ret = 1; 6340 } 6341 6342 if (ret == 1) { 6343 /* need to insert a new item */ 6344 btrfs_release_path(path); 6345 ret = btrfs_insert_empty_item(trans, dev_root, path, 6346 &key, sizeof(*ptr)); 6347 if (ret < 0) { 6348 printk_in_rcu(KERN_WARNING "BTRFS: " 6349 "insert dev_stats item for device %s failed %d!\n", 6350 rcu_str_deref(device->name), ret); 6351 goto out; 6352 } 6353 } 6354 6355 eb = path->nodes[0]; 6356 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 6357 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6358 btrfs_set_dev_stats_value(eb, ptr, i, 6359 btrfs_dev_stat_read(device, i)); 6360 btrfs_mark_buffer_dirty(eb); 6361 6362 out: 6363 btrfs_free_path(path); 6364 return ret; 6365 } 6366 6367 /* 6368 * called from commit_transaction. Writes all changed device stats to disk. 6369 */ 6370 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans, 6371 struct btrfs_fs_info *fs_info) 6372 { 6373 struct btrfs_root *dev_root = fs_info->dev_root; 6374 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 6375 struct btrfs_device *device; 6376 int ret = 0; 6377 6378 mutex_lock(&fs_devices->device_list_mutex); 6379 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6380 if (!device->dev_stats_valid || !device->dev_stats_dirty) 6381 continue; 6382 6383 ret = update_dev_stat_item(trans, dev_root, device); 6384 if (!ret) 6385 device->dev_stats_dirty = 0; 6386 } 6387 mutex_unlock(&fs_devices->device_list_mutex); 6388 6389 return ret; 6390 } 6391 6392 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 6393 { 6394 btrfs_dev_stat_inc(dev, index); 6395 btrfs_dev_stat_print_on_error(dev); 6396 } 6397 6398 static void btrfs_dev_stat_print_on_error(struct btrfs_device *dev) 6399 { 6400 if (!dev->dev_stats_valid) 6401 return; 6402 printk_ratelimited_in_rcu(KERN_ERR "BTRFS: " 6403 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6404 rcu_str_deref(dev->name), 6405 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6406 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6407 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6408 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6409 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6410 } 6411 6412 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 6413 { 6414 int i; 6415 6416 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6417 if (btrfs_dev_stat_read(dev, i) != 0) 6418 break; 6419 if (i == BTRFS_DEV_STAT_VALUES_MAX) 6420 return; /* all values == 0, suppress message */ 6421 6422 printk_in_rcu(KERN_INFO "BTRFS: " 6423 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u\n", 6424 rcu_str_deref(dev->name), 6425 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 6426 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 6427 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 6428 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 6429 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 6430 } 6431 6432 int btrfs_get_dev_stats(struct btrfs_root *root, 6433 struct btrfs_ioctl_get_dev_stats *stats) 6434 { 6435 struct btrfs_device *dev; 6436 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 6437 int i; 6438 6439 mutex_lock(&fs_devices->device_list_mutex); 6440 dev = btrfs_find_device(root->fs_info, stats->devid, NULL, NULL); 6441 mutex_unlock(&fs_devices->device_list_mutex); 6442 6443 if (!dev) { 6444 btrfs_warn(root->fs_info, "get dev_stats failed, device not found"); 6445 return -ENODEV; 6446 } else if (!dev->dev_stats_valid) { 6447 btrfs_warn(root->fs_info, "get dev_stats failed, not yet valid"); 6448 return -ENODEV; 6449 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 6450 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 6451 if (stats->nr_items > i) 6452 stats->values[i] = 6453 btrfs_dev_stat_read_and_reset(dev, i); 6454 else 6455 btrfs_dev_stat_reset(dev, i); 6456 } 6457 } else { 6458 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 6459 if (stats->nr_items > i) 6460 stats->values[i] = btrfs_dev_stat_read(dev, i); 6461 } 6462 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 6463 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 6464 return 0; 6465 } 6466 6467 int btrfs_scratch_superblock(struct btrfs_device *device) 6468 { 6469 struct buffer_head *bh; 6470 struct btrfs_super_block *disk_super; 6471 6472 bh = btrfs_read_dev_super(device->bdev); 6473 if (!bh) 6474 return -EINVAL; 6475 disk_super = (struct btrfs_super_block *)bh->b_data; 6476 6477 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 6478 set_buffer_dirty(bh); 6479 sync_dirty_buffer(bh); 6480 brelse(bh); 6481 6482 return 0; 6483 } 6484