1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/sched.h> 7 #include <linux/sched/mm.h> 8 #include <linux/bio.h> 9 #include <linux/slab.h> 10 #include <linux/blkdev.h> 11 #include <linux/ratelimit.h> 12 #include <linux/kthread.h> 13 #include <linux/raid/pq.h> 14 #include <linux/semaphore.h> 15 #include <linux/uuid.h> 16 #include <linux/list_sort.h> 17 #include <linux/namei.h> 18 #include "misc.h" 19 #include "ctree.h" 20 #include "extent_map.h" 21 #include "disk-io.h" 22 #include "transaction.h" 23 #include "print-tree.h" 24 #include "volumes.h" 25 #include "raid56.h" 26 #include "async-thread.h" 27 #include "check-integrity.h" 28 #include "rcu-string.h" 29 #include "dev-replace.h" 30 #include "sysfs.h" 31 #include "tree-checker.h" 32 #include "space-info.h" 33 #include "block-group.h" 34 #include "discard.h" 35 #include "zoned.h" 36 #include "fs.h" 37 #include "accessors.h" 38 #include "uuid-tree.h" 39 #include "ioctl.h" 40 #include "relocation.h" 41 #include "scrub.h" 42 43 static struct bio_set btrfs_bioset; 44 45 #define BTRFS_BLOCK_GROUP_STRIPE_MASK (BTRFS_BLOCK_GROUP_RAID0 | \ 46 BTRFS_BLOCK_GROUP_RAID10 | \ 47 BTRFS_BLOCK_GROUP_RAID56_MASK) 48 49 const struct btrfs_raid_attr btrfs_raid_array[BTRFS_NR_RAID_TYPES] = { 50 [BTRFS_RAID_RAID10] = { 51 .sub_stripes = 2, 52 .dev_stripes = 1, 53 .devs_max = 0, /* 0 == as many as possible */ 54 .devs_min = 2, 55 .tolerated_failures = 1, 56 .devs_increment = 2, 57 .ncopies = 2, 58 .nparity = 0, 59 .raid_name = "raid10", 60 .bg_flag = BTRFS_BLOCK_GROUP_RAID10, 61 .mindev_error = BTRFS_ERROR_DEV_RAID10_MIN_NOT_MET, 62 }, 63 [BTRFS_RAID_RAID1] = { 64 .sub_stripes = 1, 65 .dev_stripes = 1, 66 .devs_max = 2, 67 .devs_min = 2, 68 .tolerated_failures = 1, 69 .devs_increment = 2, 70 .ncopies = 2, 71 .nparity = 0, 72 .raid_name = "raid1", 73 .bg_flag = BTRFS_BLOCK_GROUP_RAID1, 74 .mindev_error = BTRFS_ERROR_DEV_RAID1_MIN_NOT_MET, 75 }, 76 [BTRFS_RAID_RAID1C3] = { 77 .sub_stripes = 1, 78 .dev_stripes = 1, 79 .devs_max = 3, 80 .devs_min = 3, 81 .tolerated_failures = 2, 82 .devs_increment = 3, 83 .ncopies = 3, 84 .nparity = 0, 85 .raid_name = "raid1c3", 86 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C3, 87 .mindev_error = BTRFS_ERROR_DEV_RAID1C3_MIN_NOT_MET, 88 }, 89 [BTRFS_RAID_RAID1C4] = { 90 .sub_stripes = 1, 91 .dev_stripes = 1, 92 .devs_max = 4, 93 .devs_min = 4, 94 .tolerated_failures = 3, 95 .devs_increment = 4, 96 .ncopies = 4, 97 .nparity = 0, 98 .raid_name = "raid1c4", 99 .bg_flag = BTRFS_BLOCK_GROUP_RAID1C4, 100 .mindev_error = BTRFS_ERROR_DEV_RAID1C4_MIN_NOT_MET, 101 }, 102 [BTRFS_RAID_DUP] = { 103 .sub_stripes = 1, 104 .dev_stripes = 2, 105 .devs_max = 1, 106 .devs_min = 1, 107 .tolerated_failures = 0, 108 .devs_increment = 1, 109 .ncopies = 2, 110 .nparity = 0, 111 .raid_name = "dup", 112 .bg_flag = BTRFS_BLOCK_GROUP_DUP, 113 .mindev_error = 0, 114 }, 115 [BTRFS_RAID_RAID0] = { 116 .sub_stripes = 1, 117 .dev_stripes = 1, 118 .devs_max = 0, 119 .devs_min = 1, 120 .tolerated_failures = 0, 121 .devs_increment = 1, 122 .ncopies = 1, 123 .nparity = 0, 124 .raid_name = "raid0", 125 .bg_flag = BTRFS_BLOCK_GROUP_RAID0, 126 .mindev_error = 0, 127 }, 128 [BTRFS_RAID_SINGLE] = { 129 .sub_stripes = 1, 130 .dev_stripes = 1, 131 .devs_max = 1, 132 .devs_min = 1, 133 .tolerated_failures = 0, 134 .devs_increment = 1, 135 .ncopies = 1, 136 .nparity = 0, 137 .raid_name = "single", 138 .bg_flag = 0, 139 .mindev_error = 0, 140 }, 141 [BTRFS_RAID_RAID5] = { 142 .sub_stripes = 1, 143 .dev_stripes = 1, 144 .devs_max = 0, 145 .devs_min = 2, 146 .tolerated_failures = 1, 147 .devs_increment = 1, 148 .ncopies = 1, 149 .nparity = 1, 150 .raid_name = "raid5", 151 .bg_flag = BTRFS_BLOCK_GROUP_RAID5, 152 .mindev_error = BTRFS_ERROR_DEV_RAID5_MIN_NOT_MET, 153 }, 154 [BTRFS_RAID_RAID6] = { 155 .sub_stripes = 1, 156 .dev_stripes = 1, 157 .devs_max = 0, 158 .devs_min = 3, 159 .tolerated_failures = 2, 160 .devs_increment = 1, 161 .ncopies = 1, 162 .nparity = 2, 163 .raid_name = "raid6", 164 .bg_flag = BTRFS_BLOCK_GROUP_RAID6, 165 .mindev_error = BTRFS_ERROR_DEV_RAID6_MIN_NOT_MET, 166 }, 167 }; 168 169 /* 170 * Convert block group flags (BTRFS_BLOCK_GROUP_*) to btrfs_raid_types, which 171 * can be used as index to access btrfs_raid_array[]. 172 */ 173 enum btrfs_raid_types __attribute_const__ btrfs_bg_flags_to_raid_index(u64 flags) 174 { 175 const u64 profile = (flags & BTRFS_BLOCK_GROUP_PROFILE_MASK); 176 177 if (!profile) 178 return BTRFS_RAID_SINGLE; 179 180 return BTRFS_BG_FLAG_TO_INDEX(profile); 181 } 182 183 const char *btrfs_bg_type_to_raid_name(u64 flags) 184 { 185 const int index = btrfs_bg_flags_to_raid_index(flags); 186 187 if (index >= BTRFS_NR_RAID_TYPES) 188 return NULL; 189 190 return btrfs_raid_array[index].raid_name; 191 } 192 193 int btrfs_nr_parity_stripes(u64 type) 194 { 195 enum btrfs_raid_types index = btrfs_bg_flags_to_raid_index(type); 196 197 return btrfs_raid_array[index].nparity; 198 } 199 200 /* 201 * Fill @buf with textual description of @bg_flags, no more than @size_buf 202 * bytes including terminating null byte. 203 */ 204 void btrfs_describe_block_groups(u64 bg_flags, char *buf, u32 size_buf) 205 { 206 int i; 207 int ret; 208 char *bp = buf; 209 u64 flags = bg_flags; 210 u32 size_bp = size_buf; 211 212 if (!flags) { 213 strcpy(bp, "NONE"); 214 return; 215 } 216 217 #define DESCRIBE_FLAG(flag, desc) \ 218 do { \ 219 if (flags & (flag)) { \ 220 ret = snprintf(bp, size_bp, "%s|", (desc)); \ 221 if (ret < 0 || ret >= size_bp) \ 222 goto out_overflow; \ 223 size_bp -= ret; \ 224 bp += ret; \ 225 flags &= ~(flag); \ 226 } \ 227 } while (0) 228 229 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_DATA, "data"); 230 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_SYSTEM, "system"); 231 DESCRIBE_FLAG(BTRFS_BLOCK_GROUP_METADATA, "metadata"); 232 233 DESCRIBE_FLAG(BTRFS_AVAIL_ALLOC_BIT_SINGLE, "single"); 234 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) 235 DESCRIBE_FLAG(btrfs_raid_array[i].bg_flag, 236 btrfs_raid_array[i].raid_name); 237 #undef DESCRIBE_FLAG 238 239 if (flags) { 240 ret = snprintf(bp, size_bp, "0x%llx|", flags); 241 size_bp -= ret; 242 } 243 244 if (size_bp < size_buf) 245 buf[size_buf - size_bp - 1] = '\0'; /* remove last | */ 246 247 /* 248 * The text is trimmed, it's up to the caller to provide sufficiently 249 * large buffer 250 */ 251 out_overflow:; 252 } 253 254 static int init_first_rw_device(struct btrfs_trans_handle *trans); 255 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info); 256 static void btrfs_dev_stat_print_on_load(struct btrfs_device *device); 257 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 258 enum btrfs_map_op op, u64 logical, u64 *length, 259 struct btrfs_io_context **bioc_ret, 260 struct btrfs_io_stripe *smap, 261 int *mirror_num_ret, int need_raid_map); 262 263 /* 264 * Device locking 265 * ============== 266 * 267 * There are several mutexes that protect manipulation of devices and low-level 268 * structures like chunks but not block groups, extents or files 269 * 270 * uuid_mutex (global lock) 271 * ------------------------ 272 * protects the fs_uuids list that tracks all per-fs fs_devices, resulting from 273 * the SCAN_DEV ioctl registration or from mount either implicitly (the first 274 * device) or requested by the device= mount option 275 * 276 * the mutex can be very coarse and can cover long-running operations 277 * 278 * protects: updates to fs_devices counters like missing devices, rw devices, 279 * seeding, structure cloning, opening/closing devices at mount/umount time 280 * 281 * global::fs_devs - add, remove, updates to the global list 282 * 283 * does not protect: manipulation of the fs_devices::devices list in general 284 * but in mount context it could be used to exclude list modifications by eg. 285 * scan ioctl 286 * 287 * btrfs_device::name - renames (write side), read is RCU 288 * 289 * fs_devices::device_list_mutex (per-fs, with RCU) 290 * ------------------------------------------------ 291 * protects updates to fs_devices::devices, ie. adding and deleting 292 * 293 * simple list traversal with read-only actions can be done with RCU protection 294 * 295 * may be used to exclude some operations from running concurrently without any 296 * modifications to the list (see write_all_supers) 297 * 298 * Is not required at mount and close times, because our device list is 299 * protected by the uuid_mutex at that point. 300 * 301 * balance_mutex 302 * ------------- 303 * protects balance structures (status, state) and context accessed from 304 * several places (internally, ioctl) 305 * 306 * chunk_mutex 307 * ----------- 308 * protects chunks, adding or removing during allocation, trim or when a new 309 * device is added/removed. Additionally it also protects post_commit_list of 310 * individual devices, since they can be added to the transaction's 311 * post_commit_list only with chunk_mutex held. 312 * 313 * cleaner_mutex 314 * ------------- 315 * a big lock that is held by the cleaner thread and prevents running subvolume 316 * cleaning together with relocation or delayed iputs 317 * 318 * 319 * Lock nesting 320 * ============ 321 * 322 * uuid_mutex 323 * device_list_mutex 324 * chunk_mutex 325 * balance_mutex 326 * 327 * 328 * Exclusive operations 329 * ==================== 330 * 331 * Maintains the exclusivity of the following operations that apply to the 332 * whole filesystem and cannot run in parallel. 333 * 334 * - Balance (*) 335 * - Device add 336 * - Device remove 337 * - Device replace (*) 338 * - Resize 339 * 340 * The device operations (as above) can be in one of the following states: 341 * 342 * - Running state 343 * - Paused state 344 * - Completed state 345 * 346 * Only device operations marked with (*) can go into the Paused state for the 347 * following reasons: 348 * 349 * - ioctl (only Balance can be Paused through ioctl) 350 * - filesystem remounted as read-only 351 * - filesystem unmounted and mounted as read-only 352 * - system power-cycle and filesystem mounted as read-only 353 * - filesystem or device errors leading to forced read-only 354 * 355 * The status of exclusive operation is set and cleared atomically. 356 * During the course of Paused state, fs_info::exclusive_operation remains set. 357 * A device operation in Paused or Running state can be canceled or resumed 358 * either by ioctl (Balance only) or when remounted as read-write. 359 * The exclusive status is cleared when the device operation is canceled or 360 * completed. 361 */ 362 363 DEFINE_MUTEX(uuid_mutex); 364 static LIST_HEAD(fs_uuids); 365 struct list_head * __attribute_const__ btrfs_get_fs_uuids(void) 366 { 367 return &fs_uuids; 368 } 369 370 /* 371 * alloc_fs_devices - allocate struct btrfs_fs_devices 372 * @fsid: if not NULL, copy the UUID to fs_devices::fsid 373 * @metadata_fsid: if not NULL, copy the UUID to fs_devices::metadata_fsid 374 * 375 * Return a pointer to a new struct btrfs_fs_devices on success, or ERR_PTR(). 376 * The returned struct is not linked onto any lists and can be destroyed with 377 * kfree() right away. 378 */ 379 static struct btrfs_fs_devices *alloc_fs_devices(const u8 *fsid, 380 const u8 *metadata_fsid) 381 { 382 struct btrfs_fs_devices *fs_devs; 383 384 fs_devs = kzalloc(sizeof(*fs_devs), GFP_KERNEL); 385 if (!fs_devs) 386 return ERR_PTR(-ENOMEM); 387 388 mutex_init(&fs_devs->device_list_mutex); 389 390 INIT_LIST_HEAD(&fs_devs->devices); 391 INIT_LIST_HEAD(&fs_devs->alloc_list); 392 INIT_LIST_HEAD(&fs_devs->fs_list); 393 INIT_LIST_HEAD(&fs_devs->seed_list); 394 if (fsid) 395 memcpy(fs_devs->fsid, fsid, BTRFS_FSID_SIZE); 396 397 if (metadata_fsid) 398 memcpy(fs_devs->metadata_uuid, metadata_fsid, BTRFS_FSID_SIZE); 399 else if (fsid) 400 memcpy(fs_devs->metadata_uuid, fsid, BTRFS_FSID_SIZE); 401 402 return fs_devs; 403 } 404 405 void btrfs_free_device(struct btrfs_device *device) 406 { 407 WARN_ON(!list_empty(&device->post_commit_list)); 408 rcu_string_free(device->name); 409 extent_io_tree_release(&device->alloc_state); 410 btrfs_destroy_dev_zone_info(device); 411 kfree(device); 412 } 413 414 static void free_fs_devices(struct btrfs_fs_devices *fs_devices) 415 { 416 struct btrfs_device *device; 417 WARN_ON(fs_devices->opened); 418 while (!list_empty(&fs_devices->devices)) { 419 device = list_entry(fs_devices->devices.next, 420 struct btrfs_device, dev_list); 421 list_del(&device->dev_list); 422 btrfs_free_device(device); 423 } 424 kfree(fs_devices); 425 } 426 427 void __exit btrfs_cleanup_fs_uuids(void) 428 { 429 struct btrfs_fs_devices *fs_devices; 430 431 while (!list_empty(&fs_uuids)) { 432 fs_devices = list_entry(fs_uuids.next, 433 struct btrfs_fs_devices, fs_list); 434 list_del(&fs_devices->fs_list); 435 free_fs_devices(fs_devices); 436 } 437 } 438 439 static noinline struct btrfs_fs_devices *find_fsid( 440 const u8 *fsid, const u8 *metadata_fsid) 441 { 442 struct btrfs_fs_devices *fs_devices; 443 444 ASSERT(fsid); 445 446 /* Handle non-split brain cases */ 447 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 448 if (metadata_fsid) { 449 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0 450 && memcmp(metadata_fsid, fs_devices->metadata_uuid, 451 BTRFS_FSID_SIZE) == 0) 452 return fs_devices; 453 } else { 454 if (memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE) == 0) 455 return fs_devices; 456 } 457 } 458 return NULL; 459 } 460 461 static struct btrfs_fs_devices *find_fsid_with_metadata_uuid( 462 struct btrfs_super_block *disk_super) 463 { 464 465 struct btrfs_fs_devices *fs_devices; 466 467 /* 468 * Handle scanned device having completed its fsid change but 469 * belonging to a fs_devices that was created by first scanning 470 * a device which didn't have its fsid/metadata_uuid changed 471 * at all and the CHANGING_FSID_V2 flag set. 472 */ 473 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 474 if (fs_devices->fsid_change && 475 memcmp(disk_super->metadata_uuid, fs_devices->fsid, 476 BTRFS_FSID_SIZE) == 0 && 477 memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 478 BTRFS_FSID_SIZE) == 0) { 479 return fs_devices; 480 } 481 } 482 /* 483 * Handle scanned device having completed its fsid change but 484 * belonging to a fs_devices that was created by a device that 485 * has an outdated pair of fsid/metadata_uuid and 486 * CHANGING_FSID_V2 flag set. 487 */ 488 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 489 if (fs_devices->fsid_change && 490 memcmp(fs_devices->metadata_uuid, 491 fs_devices->fsid, BTRFS_FSID_SIZE) != 0 && 492 memcmp(disk_super->metadata_uuid, fs_devices->metadata_uuid, 493 BTRFS_FSID_SIZE) == 0) { 494 return fs_devices; 495 } 496 } 497 498 return find_fsid(disk_super->fsid, disk_super->metadata_uuid); 499 } 500 501 502 static int 503 btrfs_get_bdev_and_sb(const char *device_path, fmode_t flags, void *holder, 504 int flush, struct block_device **bdev, 505 struct btrfs_super_block **disk_super) 506 { 507 int ret; 508 509 *bdev = blkdev_get_by_path(device_path, flags, holder); 510 511 if (IS_ERR(*bdev)) { 512 ret = PTR_ERR(*bdev); 513 goto error; 514 } 515 516 if (flush) 517 sync_blockdev(*bdev); 518 ret = set_blocksize(*bdev, BTRFS_BDEV_BLOCKSIZE); 519 if (ret) { 520 blkdev_put(*bdev, flags); 521 goto error; 522 } 523 invalidate_bdev(*bdev); 524 *disk_super = btrfs_read_dev_super(*bdev); 525 if (IS_ERR(*disk_super)) { 526 ret = PTR_ERR(*disk_super); 527 blkdev_put(*bdev, flags); 528 goto error; 529 } 530 531 return 0; 532 533 error: 534 *bdev = NULL; 535 return ret; 536 } 537 538 /* 539 * Search and remove all stale devices (which are not mounted). When both 540 * inputs are NULL, it will search and release all stale devices. 541 * 542 * @devt: Optional. When provided will it release all unmounted devices 543 * matching this devt only. 544 * @skip_device: Optional. Will skip this device when searching for the stale 545 * devices. 546 * 547 * Return: 0 for success or if @devt is 0. 548 * -EBUSY if @devt is a mounted device. 549 * -ENOENT if @devt does not match any device in the list. 550 */ 551 static int btrfs_free_stale_devices(dev_t devt, struct btrfs_device *skip_device) 552 { 553 struct btrfs_fs_devices *fs_devices, *tmp_fs_devices; 554 struct btrfs_device *device, *tmp_device; 555 int ret = 0; 556 557 lockdep_assert_held(&uuid_mutex); 558 559 if (devt) 560 ret = -ENOENT; 561 562 list_for_each_entry_safe(fs_devices, tmp_fs_devices, &fs_uuids, fs_list) { 563 564 mutex_lock(&fs_devices->device_list_mutex); 565 list_for_each_entry_safe(device, tmp_device, 566 &fs_devices->devices, dev_list) { 567 if (skip_device && skip_device == device) 568 continue; 569 if (devt && devt != device->devt) 570 continue; 571 if (fs_devices->opened) { 572 /* for an already deleted device return 0 */ 573 if (devt && ret != 0) 574 ret = -EBUSY; 575 break; 576 } 577 578 /* delete the stale device */ 579 fs_devices->num_devices--; 580 list_del(&device->dev_list); 581 btrfs_free_device(device); 582 583 ret = 0; 584 } 585 mutex_unlock(&fs_devices->device_list_mutex); 586 587 if (fs_devices->num_devices == 0) { 588 btrfs_sysfs_remove_fsid(fs_devices); 589 list_del(&fs_devices->fs_list); 590 free_fs_devices(fs_devices); 591 } 592 } 593 594 return ret; 595 } 596 597 /* 598 * This is only used on mount, and we are protected from competing things 599 * messing with our fs_devices by the uuid_mutex, thus we do not need the 600 * fs_devices->device_list_mutex here. 601 */ 602 static int btrfs_open_one_device(struct btrfs_fs_devices *fs_devices, 603 struct btrfs_device *device, fmode_t flags, 604 void *holder) 605 { 606 struct block_device *bdev; 607 struct btrfs_super_block *disk_super; 608 u64 devid; 609 int ret; 610 611 if (device->bdev) 612 return -EINVAL; 613 if (!device->name) 614 return -EINVAL; 615 616 ret = btrfs_get_bdev_and_sb(device->name->str, flags, holder, 1, 617 &bdev, &disk_super); 618 if (ret) 619 return ret; 620 621 devid = btrfs_stack_device_id(&disk_super->dev_item); 622 if (devid != device->devid) 623 goto error_free_page; 624 625 if (memcmp(device->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE)) 626 goto error_free_page; 627 628 device->generation = btrfs_super_generation(disk_super); 629 630 if (btrfs_super_flags(disk_super) & BTRFS_SUPER_FLAG_SEEDING) { 631 if (btrfs_super_incompat_flags(disk_super) & 632 BTRFS_FEATURE_INCOMPAT_METADATA_UUID) { 633 pr_err( 634 "BTRFS: Invalid seeding and uuid-changed device detected\n"); 635 goto error_free_page; 636 } 637 638 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 639 fs_devices->seeding = true; 640 } else { 641 if (bdev_read_only(bdev)) 642 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 643 else 644 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 645 } 646 647 if (!bdev_nonrot(bdev)) 648 fs_devices->rotating = true; 649 650 if (bdev_max_discard_sectors(bdev)) 651 fs_devices->discardable = true; 652 653 device->bdev = bdev; 654 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 655 device->mode = flags; 656 657 fs_devices->open_devices++; 658 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 659 device->devid != BTRFS_DEV_REPLACE_DEVID) { 660 fs_devices->rw_devices++; 661 list_add_tail(&device->dev_alloc_list, &fs_devices->alloc_list); 662 } 663 btrfs_release_disk_super(disk_super); 664 665 return 0; 666 667 error_free_page: 668 btrfs_release_disk_super(disk_super); 669 blkdev_put(bdev, flags); 670 671 return -EINVAL; 672 } 673 674 /* 675 * Handle scanned device having its CHANGING_FSID_V2 flag set and the fs_devices 676 * being created with a disk that has already completed its fsid change. Such 677 * disk can belong to an fs which has its FSID changed or to one which doesn't. 678 * Handle both cases here. 679 */ 680 static struct btrfs_fs_devices *find_fsid_inprogress( 681 struct btrfs_super_block *disk_super) 682 { 683 struct btrfs_fs_devices *fs_devices; 684 685 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 686 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 687 BTRFS_FSID_SIZE) != 0 && 688 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 689 BTRFS_FSID_SIZE) == 0 && !fs_devices->fsid_change) { 690 return fs_devices; 691 } 692 } 693 694 return find_fsid(disk_super->fsid, NULL); 695 } 696 697 698 static struct btrfs_fs_devices *find_fsid_changed( 699 struct btrfs_super_block *disk_super) 700 { 701 struct btrfs_fs_devices *fs_devices; 702 703 /* 704 * Handles the case where scanned device is part of an fs that had 705 * multiple successful changes of FSID but currently device didn't 706 * observe it. Meaning our fsid will be different than theirs. We need 707 * to handle two subcases : 708 * 1 - The fs still continues to have different METADATA/FSID uuids. 709 * 2 - The fs is switched back to its original FSID (METADATA/FSID 710 * are equal). 711 */ 712 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 713 /* Changed UUIDs */ 714 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 715 BTRFS_FSID_SIZE) != 0 && 716 memcmp(fs_devices->metadata_uuid, disk_super->metadata_uuid, 717 BTRFS_FSID_SIZE) == 0 && 718 memcmp(fs_devices->fsid, disk_super->fsid, 719 BTRFS_FSID_SIZE) != 0) 720 return fs_devices; 721 722 /* Unchanged UUIDs */ 723 if (memcmp(fs_devices->metadata_uuid, fs_devices->fsid, 724 BTRFS_FSID_SIZE) == 0 && 725 memcmp(fs_devices->fsid, disk_super->metadata_uuid, 726 BTRFS_FSID_SIZE) == 0) 727 return fs_devices; 728 } 729 730 return NULL; 731 } 732 733 static struct btrfs_fs_devices *find_fsid_reverted_metadata( 734 struct btrfs_super_block *disk_super) 735 { 736 struct btrfs_fs_devices *fs_devices; 737 738 /* 739 * Handle the case where the scanned device is part of an fs whose last 740 * metadata UUID change reverted it to the original FSID. At the same 741 * time * fs_devices was first created by another constitutent device 742 * which didn't fully observe the operation. This results in an 743 * btrfs_fs_devices created with metadata/fsid different AND 744 * btrfs_fs_devices::fsid_change set AND the metadata_uuid of the 745 * fs_devices equal to the FSID of the disk. 746 */ 747 list_for_each_entry(fs_devices, &fs_uuids, fs_list) { 748 if (memcmp(fs_devices->fsid, fs_devices->metadata_uuid, 749 BTRFS_FSID_SIZE) != 0 && 750 memcmp(fs_devices->metadata_uuid, disk_super->fsid, 751 BTRFS_FSID_SIZE) == 0 && 752 fs_devices->fsid_change) 753 return fs_devices; 754 } 755 756 return NULL; 757 } 758 /* 759 * Add new device to list of registered devices 760 * 761 * Returns: 762 * device pointer which was just added or updated when successful 763 * error pointer when failed 764 */ 765 static noinline struct btrfs_device *device_list_add(const char *path, 766 struct btrfs_super_block *disk_super, 767 bool *new_device_added) 768 { 769 struct btrfs_device *device; 770 struct btrfs_fs_devices *fs_devices = NULL; 771 struct rcu_string *name; 772 u64 found_transid = btrfs_super_generation(disk_super); 773 u64 devid = btrfs_stack_device_id(&disk_super->dev_item); 774 dev_t path_devt; 775 int error; 776 bool has_metadata_uuid = (btrfs_super_incompat_flags(disk_super) & 777 BTRFS_FEATURE_INCOMPAT_METADATA_UUID); 778 bool fsid_change_in_progress = (btrfs_super_flags(disk_super) & 779 BTRFS_SUPER_FLAG_CHANGING_FSID_V2); 780 781 error = lookup_bdev(path, &path_devt); 782 if (error) 783 return ERR_PTR(error); 784 785 if (fsid_change_in_progress) { 786 if (!has_metadata_uuid) 787 fs_devices = find_fsid_inprogress(disk_super); 788 else 789 fs_devices = find_fsid_changed(disk_super); 790 } else if (has_metadata_uuid) { 791 fs_devices = find_fsid_with_metadata_uuid(disk_super); 792 } else { 793 fs_devices = find_fsid_reverted_metadata(disk_super); 794 if (!fs_devices) 795 fs_devices = find_fsid(disk_super->fsid, NULL); 796 } 797 798 799 if (!fs_devices) { 800 if (has_metadata_uuid) 801 fs_devices = alloc_fs_devices(disk_super->fsid, 802 disk_super->metadata_uuid); 803 else 804 fs_devices = alloc_fs_devices(disk_super->fsid, NULL); 805 806 if (IS_ERR(fs_devices)) 807 return ERR_CAST(fs_devices); 808 809 fs_devices->fsid_change = fsid_change_in_progress; 810 811 mutex_lock(&fs_devices->device_list_mutex); 812 list_add(&fs_devices->fs_list, &fs_uuids); 813 814 device = NULL; 815 } else { 816 struct btrfs_dev_lookup_args args = { 817 .devid = devid, 818 .uuid = disk_super->dev_item.uuid, 819 }; 820 821 mutex_lock(&fs_devices->device_list_mutex); 822 device = btrfs_find_device(fs_devices, &args); 823 824 /* 825 * If this disk has been pulled into an fs devices created by 826 * a device which had the CHANGING_FSID_V2 flag then replace the 827 * metadata_uuid/fsid values of the fs_devices. 828 */ 829 if (fs_devices->fsid_change && 830 found_transid > fs_devices->latest_generation) { 831 memcpy(fs_devices->fsid, disk_super->fsid, 832 BTRFS_FSID_SIZE); 833 834 if (has_metadata_uuid) 835 memcpy(fs_devices->metadata_uuid, 836 disk_super->metadata_uuid, 837 BTRFS_FSID_SIZE); 838 else 839 memcpy(fs_devices->metadata_uuid, 840 disk_super->fsid, BTRFS_FSID_SIZE); 841 842 fs_devices->fsid_change = false; 843 } 844 } 845 846 if (!device) { 847 if (fs_devices->opened) { 848 mutex_unlock(&fs_devices->device_list_mutex); 849 return ERR_PTR(-EBUSY); 850 } 851 852 device = btrfs_alloc_device(NULL, &devid, 853 disk_super->dev_item.uuid); 854 if (IS_ERR(device)) { 855 mutex_unlock(&fs_devices->device_list_mutex); 856 /* we can safely leave the fs_devices entry around */ 857 return device; 858 } 859 860 name = rcu_string_strdup(path, GFP_NOFS); 861 if (!name) { 862 btrfs_free_device(device); 863 mutex_unlock(&fs_devices->device_list_mutex); 864 return ERR_PTR(-ENOMEM); 865 } 866 rcu_assign_pointer(device->name, name); 867 device->devt = path_devt; 868 869 list_add_rcu(&device->dev_list, &fs_devices->devices); 870 fs_devices->num_devices++; 871 872 device->fs_devices = fs_devices; 873 *new_device_added = true; 874 875 if (disk_super->label[0]) 876 pr_info( 877 "BTRFS: device label %s devid %llu transid %llu %s scanned by %s (%d)\n", 878 disk_super->label, devid, found_transid, path, 879 current->comm, task_pid_nr(current)); 880 else 881 pr_info( 882 "BTRFS: device fsid %pU devid %llu transid %llu %s scanned by %s (%d)\n", 883 disk_super->fsid, devid, found_transid, path, 884 current->comm, task_pid_nr(current)); 885 886 } else if (!device->name || strcmp(device->name->str, path)) { 887 /* 888 * When FS is already mounted. 889 * 1. If you are here and if the device->name is NULL that 890 * means this device was missing at time of FS mount. 891 * 2. If you are here and if the device->name is different 892 * from 'path' that means either 893 * a. The same device disappeared and reappeared with 894 * different name. or 895 * b. The missing-disk-which-was-replaced, has 896 * reappeared now. 897 * 898 * We must allow 1 and 2a above. But 2b would be a spurious 899 * and unintentional. 900 * 901 * Further in case of 1 and 2a above, the disk at 'path' 902 * would have missed some transaction when it was away and 903 * in case of 2a the stale bdev has to be updated as well. 904 * 2b must not be allowed at all time. 905 */ 906 907 /* 908 * For now, we do allow update to btrfs_fs_device through the 909 * btrfs dev scan cli after FS has been mounted. We're still 910 * tracking a problem where systems fail mount by subvolume id 911 * when we reject replacement on a mounted FS. 912 */ 913 if (!fs_devices->opened && found_transid < device->generation) { 914 /* 915 * That is if the FS is _not_ mounted and if you 916 * are here, that means there is more than one 917 * disk with same uuid and devid.We keep the one 918 * with larger generation number or the last-in if 919 * generation are equal. 920 */ 921 mutex_unlock(&fs_devices->device_list_mutex); 922 return ERR_PTR(-EEXIST); 923 } 924 925 /* 926 * We are going to replace the device path for a given devid, 927 * make sure it's the same device if the device is mounted 928 * 929 * NOTE: the device->fs_info may not be reliable here so pass 930 * in a NULL to message helpers instead. This avoids a possible 931 * use-after-free when the fs_info and fs_info->sb are already 932 * torn down. 933 */ 934 if (device->bdev) { 935 if (device->devt != path_devt) { 936 mutex_unlock(&fs_devices->device_list_mutex); 937 btrfs_warn_in_rcu(NULL, 938 "duplicate device %s devid %llu generation %llu scanned by %s (%d)", 939 path, devid, found_transid, 940 current->comm, 941 task_pid_nr(current)); 942 return ERR_PTR(-EEXIST); 943 } 944 btrfs_info_in_rcu(NULL, 945 "devid %llu device path %s changed to %s scanned by %s (%d)", 946 devid, rcu_str_deref(device->name), 947 path, current->comm, 948 task_pid_nr(current)); 949 } 950 951 name = rcu_string_strdup(path, GFP_NOFS); 952 if (!name) { 953 mutex_unlock(&fs_devices->device_list_mutex); 954 return ERR_PTR(-ENOMEM); 955 } 956 rcu_string_free(device->name); 957 rcu_assign_pointer(device->name, name); 958 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 959 fs_devices->missing_devices--; 960 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 961 } 962 device->devt = path_devt; 963 } 964 965 /* 966 * Unmount does not free the btrfs_device struct but would zero 967 * generation along with most of the other members. So just update 968 * it back. We need it to pick the disk with largest generation 969 * (as above). 970 */ 971 if (!fs_devices->opened) { 972 device->generation = found_transid; 973 fs_devices->latest_generation = max_t(u64, found_transid, 974 fs_devices->latest_generation); 975 } 976 977 fs_devices->total_devices = btrfs_super_num_devices(disk_super); 978 979 mutex_unlock(&fs_devices->device_list_mutex); 980 return device; 981 } 982 983 static struct btrfs_fs_devices *clone_fs_devices(struct btrfs_fs_devices *orig) 984 { 985 struct btrfs_fs_devices *fs_devices; 986 struct btrfs_device *device; 987 struct btrfs_device *orig_dev; 988 int ret = 0; 989 990 lockdep_assert_held(&uuid_mutex); 991 992 fs_devices = alloc_fs_devices(orig->fsid, NULL); 993 if (IS_ERR(fs_devices)) 994 return fs_devices; 995 996 fs_devices->total_devices = orig->total_devices; 997 998 list_for_each_entry(orig_dev, &orig->devices, dev_list) { 999 struct rcu_string *name; 1000 1001 device = btrfs_alloc_device(NULL, &orig_dev->devid, 1002 orig_dev->uuid); 1003 if (IS_ERR(device)) { 1004 ret = PTR_ERR(device); 1005 goto error; 1006 } 1007 1008 /* 1009 * This is ok to do without rcu read locked because we hold the 1010 * uuid mutex so nothing we touch in here is going to disappear. 1011 */ 1012 if (orig_dev->name) { 1013 name = rcu_string_strdup(orig_dev->name->str, 1014 GFP_KERNEL); 1015 if (!name) { 1016 btrfs_free_device(device); 1017 ret = -ENOMEM; 1018 goto error; 1019 } 1020 rcu_assign_pointer(device->name, name); 1021 } 1022 1023 if (orig_dev->zone_info) { 1024 struct btrfs_zoned_device_info *zone_info; 1025 1026 zone_info = btrfs_clone_dev_zone_info(orig_dev); 1027 if (!zone_info) { 1028 btrfs_free_device(device); 1029 ret = -ENOMEM; 1030 goto error; 1031 } 1032 device->zone_info = zone_info; 1033 } 1034 1035 list_add(&device->dev_list, &fs_devices->devices); 1036 device->fs_devices = fs_devices; 1037 fs_devices->num_devices++; 1038 } 1039 return fs_devices; 1040 error: 1041 free_fs_devices(fs_devices); 1042 return ERR_PTR(ret); 1043 } 1044 1045 static void __btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices, 1046 struct btrfs_device **latest_dev) 1047 { 1048 struct btrfs_device *device, *next; 1049 1050 /* This is the initialized path, it is safe to release the devices. */ 1051 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 1052 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state)) { 1053 if (!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, 1054 &device->dev_state) && 1055 !test_bit(BTRFS_DEV_STATE_MISSING, 1056 &device->dev_state) && 1057 (!*latest_dev || 1058 device->generation > (*latest_dev)->generation)) { 1059 *latest_dev = device; 1060 } 1061 continue; 1062 } 1063 1064 /* 1065 * We have already validated the presence of BTRFS_DEV_REPLACE_DEVID, 1066 * in btrfs_init_dev_replace() so just continue. 1067 */ 1068 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1069 continue; 1070 1071 if (device->bdev) { 1072 blkdev_put(device->bdev, device->mode); 1073 device->bdev = NULL; 1074 fs_devices->open_devices--; 1075 } 1076 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1077 list_del_init(&device->dev_alloc_list); 1078 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1079 fs_devices->rw_devices--; 1080 } 1081 list_del_init(&device->dev_list); 1082 fs_devices->num_devices--; 1083 btrfs_free_device(device); 1084 } 1085 1086 } 1087 1088 /* 1089 * After we have read the system tree and know devids belonging to this 1090 * filesystem, remove the device which does not belong there. 1091 */ 1092 void btrfs_free_extra_devids(struct btrfs_fs_devices *fs_devices) 1093 { 1094 struct btrfs_device *latest_dev = NULL; 1095 struct btrfs_fs_devices *seed_dev; 1096 1097 mutex_lock(&uuid_mutex); 1098 __btrfs_free_extra_devids(fs_devices, &latest_dev); 1099 1100 list_for_each_entry(seed_dev, &fs_devices->seed_list, seed_list) 1101 __btrfs_free_extra_devids(seed_dev, &latest_dev); 1102 1103 fs_devices->latest_dev = latest_dev; 1104 1105 mutex_unlock(&uuid_mutex); 1106 } 1107 1108 static void btrfs_close_bdev(struct btrfs_device *device) 1109 { 1110 if (!device->bdev) 1111 return; 1112 1113 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1114 sync_blockdev(device->bdev); 1115 invalidate_bdev(device->bdev); 1116 } 1117 1118 blkdev_put(device->bdev, device->mode); 1119 } 1120 1121 static void btrfs_close_one_device(struct btrfs_device *device) 1122 { 1123 struct btrfs_fs_devices *fs_devices = device->fs_devices; 1124 1125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 1126 device->devid != BTRFS_DEV_REPLACE_DEVID) { 1127 list_del_init(&device->dev_alloc_list); 1128 fs_devices->rw_devices--; 1129 } 1130 1131 if (device->devid == BTRFS_DEV_REPLACE_DEVID) 1132 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 1133 1134 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 1135 clear_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 1136 fs_devices->missing_devices--; 1137 } 1138 1139 btrfs_close_bdev(device); 1140 if (device->bdev) { 1141 fs_devices->open_devices--; 1142 device->bdev = NULL; 1143 } 1144 clear_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 1145 btrfs_destroy_dev_zone_info(device); 1146 1147 device->fs_info = NULL; 1148 atomic_set(&device->dev_stats_ccnt, 0); 1149 extent_io_tree_release(&device->alloc_state); 1150 1151 /* 1152 * Reset the flush error record. We might have a transient flush error 1153 * in this mount, and if so we aborted the current transaction and set 1154 * the fs to an error state, guaranteeing no super blocks can be further 1155 * committed. However that error might be transient and if we unmount the 1156 * filesystem and mount it again, we should allow the mount to succeed 1157 * (btrfs_check_rw_degradable() should not fail) - if after mounting the 1158 * filesystem again we still get flush errors, then we will again abort 1159 * any transaction and set the error state, guaranteeing no commits of 1160 * unsafe super blocks. 1161 */ 1162 device->last_flush_error = 0; 1163 1164 /* Verify the device is back in a pristine state */ 1165 ASSERT(!test_bit(BTRFS_DEV_STATE_FLUSH_SENT, &device->dev_state)); 1166 ASSERT(!test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)); 1167 ASSERT(list_empty(&device->dev_alloc_list)); 1168 ASSERT(list_empty(&device->post_commit_list)); 1169 } 1170 1171 static void close_fs_devices(struct btrfs_fs_devices *fs_devices) 1172 { 1173 struct btrfs_device *device, *tmp; 1174 1175 lockdep_assert_held(&uuid_mutex); 1176 1177 if (--fs_devices->opened > 0) 1178 return; 1179 1180 list_for_each_entry_safe(device, tmp, &fs_devices->devices, dev_list) 1181 btrfs_close_one_device(device); 1182 1183 WARN_ON(fs_devices->open_devices); 1184 WARN_ON(fs_devices->rw_devices); 1185 fs_devices->opened = 0; 1186 fs_devices->seeding = false; 1187 fs_devices->fs_info = NULL; 1188 } 1189 1190 void btrfs_close_devices(struct btrfs_fs_devices *fs_devices) 1191 { 1192 LIST_HEAD(list); 1193 struct btrfs_fs_devices *tmp; 1194 1195 mutex_lock(&uuid_mutex); 1196 close_fs_devices(fs_devices); 1197 if (!fs_devices->opened) 1198 list_splice_init(&fs_devices->seed_list, &list); 1199 1200 list_for_each_entry_safe(fs_devices, tmp, &list, seed_list) { 1201 close_fs_devices(fs_devices); 1202 list_del(&fs_devices->seed_list); 1203 free_fs_devices(fs_devices); 1204 } 1205 mutex_unlock(&uuid_mutex); 1206 } 1207 1208 static int open_fs_devices(struct btrfs_fs_devices *fs_devices, 1209 fmode_t flags, void *holder) 1210 { 1211 struct btrfs_device *device; 1212 struct btrfs_device *latest_dev = NULL; 1213 struct btrfs_device *tmp_device; 1214 1215 flags |= FMODE_EXCL; 1216 1217 list_for_each_entry_safe(device, tmp_device, &fs_devices->devices, 1218 dev_list) { 1219 int ret; 1220 1221 ret = btrfs_open_one_device(fs_devices, device, flags, holder); 1222 if (ret == 0 && 1223 (!latest_dev || device->generation > latest_dev->generation)) { 1224 latest_dev = device; 1225 } else if (ret == -ENODATA) { 1226 fs_devices->num_devices--; 1227 list_del(&device->dev_list); 1228 btrfs_free_device(device); 1229 } 1230 } 1231 if (fs_devices->open_devices == 0) 1232 return -EINVAL; 1233 1234 fs_devices->opened = 1; 1235 fs_devices->latest_dev = latest_dev; 1236 fs_devices->total_rw_bytes = 0; 1237 fs_devices->chunk_alloc_policy = BTRFS_CHUNK_ALLOC_REGULAR; 1238 fs_devices->read_policy = BTRFS_READ_POLICY_PID; 1239 1240 return 0; 1241 } 1242 1243 static int devid_cmp(void *priv, const struct list_head *a, 1244 const struct list_head *b) 1245 { 1246 const struct btrfs_device *dev1, *dev2; 1247 1248 dev1 = list_entry(a, struct btrfs_device, dev_list); 1249 dev2 = list_entry(b, struct btrfs_device, dev_list); 1250 1251 if (dev1->devid < dev2->devid) 1252 return -1; 1253 else if (dev1->devid > dev2->devid) 1254 return 1; 1255 return 0; 1256 } 1257 1258 int btrfs_open_devices(struct btrfs_fs_devices *fs_devices, 1259 fmode_t flags, void *holder) 1260 { 1261 int ret; 1262 1263 lockdep_assert_held(&uuid_mutex); 1264 /* 1265 * The device_list_mutex cannot be taken here in case opening the 1266 * underlying device takes further locks like open_mutex. 1267 * 1268 * We also don't need the lock here as this is called during mount and 1269 * exclusion is provided by uuid_mutex 1270 */ 1271 1272 if (fs_devices->opened) { 1273 fs_devices->opened++; 1274 ret = 0; 1275 } else { 1276 list_sort(NULL, &fs_devices->devices, devid_cmp); 1277 ret = open_fs_devices(fs_devices, flags, holder); 1278 } 1279 1280 return ret; 1281 } 1282 1283 void btrfs_release_disk_super(struct btrfs_super_block *super) 1284 { 1285 struct page *page = virt_to_page(super); 1286 1287 put_page(page); 1288 } 1289 1290 static struct btrfs_super_block *btrfs_read_disk_super(struct block_device *bdev, 1291 u64 bytenr, u64 bytenr_orig) 1292 { 1293 struct btrfs_super_block *disk_super; 1294 struct page *page; 1295 void *p; 1296 pgoff_t index; 1297 1298 /* make sure our super fits in the device */ 1299 if (bytenr + PAGE_SIZE >= bdev_nr_bytes(bdev)) 1300 return ERR_PTR(-EINVAL); 1301 1302 /* make sure our super fits in the page */ 1303 if (sizeof(*disk_super) > PAGE_SIZE) 1304 return ERR_PTR(-EINVAL); 1305 1306 /* make sure our super doesn't straddle pages on disk */ 1307 index = bytenr >> PAGE_SHIFT; 1308 if ((bytenr + sizeof(*disk_super) - 1) >> PAGE_SHIFT != index) 1309 return ERR_PTR(-EINVAL); 1310 1311 /* pull in the page with our super */ 1312 page = read_cache_page_gfp(bdev->bd_inode->i_mapping, index, GFP_KERNEL); 1313 1314 if (IS_ERR(page)) 1315 return ERR_CAST(page); 1316 1317 p = page_address(page); 1318 1319 /* align our pointer to the offset of the super block */ 1320 disk_super = p + offset_in_page(bytenr); 1321 1322 if (btrfs_super_bytenr(disk_super) != bytenr_orig || 1323 btrfs_super_magic(disk_super) != BTRFS_MAGIC) { 1324 btrfs_release_disk_super(p); 1325 return ERR_PTR(-EINVAL); 1326 } 1327 1328 if (disk_super->label[0] && disk_super->label[BTRFS_LABEL_SIZE - 1]) 1329 disk_super->label[BTRFS_LABEL_SIZE - 1] = 0; 1330 1331 return disk_super; 1332 } 1333 1334 int btrfs_forget_devices(dev_t devt) 1335 { 1336 int ret; 1337 1338 mutex_lock(&uuid_mutex); 1339 ret = btrfs_free_stale_devices(devt, NULL); 1340 mutex_unlock(&uuid_mutex); 1341 1342 return ret; 1343 } 1344 1345 /* 1346 * Look for a btrfs signature on a device. This may be called out of the mount path 1347 * and we are not allowed to call set_blocksize during the scan. The superblock 1348 * is read via pagecache 1349 */ 1350 struct btrfs_device *btrfs_scan_one_device(const char *path, fmode_t flags, 1351 void *holder) 1352 { 1353 struct btrfs_super_block *disk_super; 1354 bool new_device_added = false; 1355 struct btrfs_device *device = NULL; 1356 struct block_device *bdev; 1357 u64 bytenr, bytenr_orig; 1358 int ret; 1359 1360 lockdep_assert_held(&uuid_mutex); 1361 1362 /* 1363 * we would like to check all the supers, but that would make 1364 * a btrfs mount succeed after a mkfs from a different FS. 1365 * So, we need to add a special mount option to scan for 1366 * later supers, using BTRFS_SUPER_MIRROR_MAX instead 1367 */ 1368 flags |= FMODE_EXCL; 1369 1370 bdev = blkdev_get_by_path(path, flags, holder); 1371 if (IS_ERR(bdev)) 1372 return ERR_CAST(bdev); 1373 1374 bytenr_orig = btrfs_sb_offset(0); 1375 ret = btrfs_sb_log_location_bdev(bdev, 0, READ, &bytenr); 1376 if (ret) { 1377 device = ERR_PTR(ret); 1378 goto error_bdev_put; 1379 } 1380 1381 disk_super = btrfs_read_disk_super(bdev, bytenr, bytenr_orig); 1382 if (IS_ERR(disk_super)) { 1383 device = ERR_CAST(disk_super); 1384 goto error_bdev_put; 1385 } 1386 1387 device = device_list_add(path, disk_super, &new_device_added); 1388 if (!IS_ERR(device) && new_device_added) 1389 btrfs_free_stale_devices(device->devt, device); 1390 1391 btrfs_release_disk_super(disk_super); 1392 1393 error_bdev_put: 1394 blkdev_put(bdev, flags); 1395 1396 return device; 1397 } 1398 1399 /* 1400 * Try to find a chunk that intersects [start, start + len] range and when one 1401 * such is found, record the end of it in *start 1402 */ 1403 static bool contains_pending_extent(struct btrfs_device *device, u64 *start, 1404 u64 len) 1405 { 1406 u64 physical_start, physical_end; 1407 1408 lockdep_assert_held(&device->fs_info->chunk_mutex); 1409 1410 if (!find_first_extent_bit(&device->alloc_state, *start, 1411 &physical_start, &physical_end, 1412 CHUNK_ALLOCATED, NULL)) { 1413 1414 if (in_range(physical_start, *start, len) || 1415 in_range(*start, physical_start, 1416 physical_end - physical_start)) { 1417 *start = physical_end + 1; 1418 return true; 1419 } 1420 } 1421 return false; 1422 } 1423 1424 static u64 dev_extent_search_start(struct btrfs_device *device, u64 start) 1425 { 1426 switch (device->fs_devices->chunk_alloc_policy) { 1427 case BTRFS_CHUNK_ALLOC_REGULAR: 1428 return max_t(u64, start, BTRFS_DEVICE_RANGE_RESERVED); 1429 case BTRFS_CHUNK_ALLOC_ZONED: 1430 /* 1431 * We don't care about the starting region like regular 1432 * allocator, because we anyway use/reserve the first two zones 1433 * for superblock logging. 1434 */ 1435 return ALIGN(start, device->zone_info->zone_size); 1436 default: 1437 BUG(); 1438 } 1439 } 1440 1441 static bool dev_extent_hole_check_zoned(struct btrfs_device *device, 1442 u64 *hole_start, u64 *hole_size, 1443 u64 num_bytes) 1444 { 1445 u64 zone_size = device->zone_info->zone_size; 1446 u64 pos; 1447 int ret; 1448 bool changed = false; 1449 1450 ASSERT(IS_ALIGNED(*hole_start, zone_size)); 1451 1452 while (*hole_size > 0) { 1453 pos = btrfs_find_allocatable_zones(device, *hole_start, 1454 *hole_start + *hole_size, 1455 num_bytes); 1456 if (pos != *hole_start) { 1457 *hole_size = *hole_start + *hole_size - pos; 1458 *hole_start = pos; 1459 changed = true; 1460 if (*hole_size < num_bytes) 1461 break; 1462 } 1463 1464 ret = btrfs_ensure_empty_zones(device, pos, num_bytes); 1465 1466 /* Range is ensured to be empty */ 1467 if (!ret) 1468 return changed; 1469 1470 /* Given hole range was invalid (outside of device) */ 1471 if (ret == -ERANGE) { 1472 *hole_start += *hole_size; 1473 *hole_size = 0; 1474 return true; 1475 } 1476 1477 *hole_start += zone_size; 1478 *hole_size -= zone_size; 1479 changed = true; 1480 } 1481 1482 return changed; 1483 } 1484 1485 /* 1486 * Check if specified hole is suitable for allocation. 1487 * 1488 * @device: the device which we have the hole 1489 * @hole_start: starting position of the hole 1490 * @hole_size: the size of the hole 1491 * @num_bytes: the size of the free space that we need 1492 * 1493 * This function may modify @hole_start and @hole_size to reflect the suitable 1494 * position for allocation. Returns 1 if hole position is updated, 0 otherwise. 1495 */ 1496 static bool dev_extent_hole_check(struct btrfs_device *device, u64 *hole_start, 1497 u64 *hole_size, u64 num_bytes) 1498 { 1499 bool changed = false; 1500 u64 hole_end = *hole_start + *hole_size; 1501 1502 for (;;) { 1503 /* 1504 * Check before we set max_hole_start, otherwise we could end up 1505 * sending back this offset anyway. 1506 */ 1507 if (contains_pending_extent(device, hole_start, *hole_size)) { 1508 if (hole_end >= *hole_start) 1509 *hole_size = hole_end - *hole_start; 1510 else 1511 *hole_size = 0; 1512 changed = true; 1513 } 1514 1515 switch (device->fs_devices->chunk_alloc_policy) { 1516 case BTRFS_CHUNK_ALLOC_REGULAR: 1517 /* No extra check */ 1518 break; 1519 case BTRFS_CHUNK_ALLOC_ZONED: 1520 if (dev_extent_hole_check_zoned(device, hole_start, 1521 hole_size, num_bytes)) { 1522 changed = true; 1523 /* 1524 * The changed hole can contain pending extent. 1525 * Loop again to check that. 1526 */ 1527 continue; 1528 } 1529 break; 1530 default: 1531 BUG(); 1532 } 1533 1534 break; 1535 } 1536 1537 return changed; 1538 } 1539 1540 /* 1541 * Find free space in the specified device. 1542 * 1543 * @device: the device which we search the free space in 1544 * @num_bytes: the size of the free space that we need 1545 * @search_start: the position from which to begin the search 1546 * @start: store the start of the free space. 1547 * @len: the size of the free space. that we find, or the size 1548 * of the max free space if we don't find suitable free space 1549 * 1550 * This does a pretty simple search, the expectation is that it is called very 1551 * infrequently and that a given device has a small number of extents. 1552 * 1553 * @start is used to store the start of the free space if we find. But if we 1554 * don't find suitable free space, it will be used to store the start position 1555 * of the max free space. 1556 * 1557 * @len is used to store the size of the free space that we find. 1558 * But if we don't find suitable free space, it is used to store the size of 1559 * the max free space. 1560 * 1561 * NOTE: This function will search *commit* root of device tree, and does extra 1562 * check to ensure dev extents are not double allocated. 1563 * This makes the function safe to allocate dev extents but may not report 1564 * correct usable device space, as device extent freed in current transaction 1565 * is not reported as available. 1566 */ 1567 static int find_free_dev_extent_start(struct btrfs_device *device, 1568 u64 num_bytes, u64 search_start, u64 *start, 1569 u64 *len) 1570 { 1571 struct btrfs_fs_info *fs_info = device->fs_info; 1572 struct btrfs_root *root = fs_info->dev_root; 1573 struct btrfs_key key; 1574 struct btrfs_dev_extent *dev_extent; 1575 struct btrfs_path *path; 1576 u64 hole_size; 1577 u64 max_hole_start; 1578 u64 max_hole_size; 1579 u64 extent_end; 1580 u64 search_end = device->total_bytes; 1581 int ret; 1582 int slot; 1583 struct extent_buffer *l; 1584 1585 search_start = dev_extent_search_start(device, search_start); 1586 1587 WARN_ON(device->zone_info && 1588 !IS_ALIGNED(num_bytes, device->zone_info->zone_size)); 1589 1590 path = btrfs_alloc_path(); 1591 if (!path) 1592 return -ENOMEM; 1593 1594 max_hole_start = search_start; 1595 max_hole_size = 0; 1596 1597 again: 1598 if (search_start >= search_end || 1599 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1600 ret = -ENOSPC; 1601 goto out; 1602 } 1603 1604 path->reada = READA_FORWARD; 1605 path->search_commit_root = 1; 1606 path->skip_locking = 1; 1607 1608 key.objectid = device->devid; 1609 key.offset = search_start; 1610 key.type = BTRFS_DEV_EXTENT_KEY; 1611 1612 ret = btrfs_search_backwards(root, &key, path); 1613 if (ret < 0) 1614 goto out; 1615 1616 while (1) { 1617 l = path->nodes[0]; 1618 slot = path->slots[0]; 1619 if (slot >= btrfs_header_nritems(l)) { 1620 ret = btrfs_next_leaf(root, path); 1621 if (ret == 0) 1622 continue; 1623 if (ret < 0) 1624 goto out; 1625 1626 break; 1627 } 1628 btrfs_item_key_to_cpu(l, &key, slot); 1629 1630 if (key.objectid < device->devid) 1631 goto next; 1632 1633 if (key.objectid > device->devid) 1634 break; 1635 1636 if (key.type != BTRFS_DEV_EXTENT_KEY) 1637 goto next; 1638 1639 if (key.offset > search_start) { 1640 hole_size = key.offset - search_start; 1641 dev_extent_hole_check(device, &search_start, &hole_size, 1642 num_bytes); 1643 1644 if (hole_size > max_hole_size) { 1645 max_hole_start = search_start; 1646 max_hole_size = hole_size; 1647 } 1648 1649 /* 1650 * If this free space is greater than which we need, 1651 * it must be the max free space that we have found 1652 * until now, so max_hole_start must point to the start 1653 * of this free space and the length of this free space 1654 * is stored in max_hole_size. Thus, we return 1655 * max_hole_start and max_hole_size and go back to the 1656 * caller. 1657 */ 1658 if (hole_size >= num_bytes) { 1659 ret = 0; 1660 goto out; 1661 } 1662 } 1663 1664 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 1665 extent_end = key.offset + btrfs_dev_extent_length(l, 1666 dev_extent); 1667 if (extent_end > search_start) 1668 search_start = extent_end; 1669 next: 1670 path->slots[0]++; 1671 cond_resched(); 1672 } 1673 1674 /* 1675 * At this point, search_start should be the end of 1676 * allocated dev extents, and when shrinking the device, 1677 * search_end may be smaller than search_start. 1678 */ 1679 if (search_end > search_start) { 1680 hole_size = search_end - search_start; 1681 if (dev_extent_hole_check(device, &search_start, &hole_size, 1682 num_bytes)) { 1683 btrfs_release_path(path); 1684 goto again; 1685 } 1686 1687 if (hole_size > max_hole_size) { 1688 max_hole_start = search_start; 1689 max_hole_size = hole_size; 1690 } 1691 } 1692 1693 /* See above. */ 1694 if (max_hole_size < num_bytes) 1695 ret = -ENOSPC; 1696 else 1697 ret = 0; 1698 1699 out: 1700 btrfs_free_path(path); 1701 *start = max_hole_start; 1702 if (len) 1703 *len = max_hole_size; 1704 return ret; 1705 } 1706 1707 int find_free_dev_extent(struct btrfs_device *device, u64 num_bytes, 1708 u64 *start, u64 *len) 1709 { 1710 /* FIXME use last free of some kind */ 1711 return find_free_dev_extent_start(device, num_bytes, 0, start, len); 1712 } 1713 1714 static int btrfs_free_dev_extent(struct btrfs_trans_handle *trans, 1715 struct btrfs_device *device, 1716 u64 start, u64 *dev_extent_len) 1717 { 1718 struct btrfs_fs_info *fs_info = device->fs_info; 1719 struct btrfs_root *root = fs_info->dev_root; 1720 int ret; 1721 struct btrfs_path *path; 1722 struct btrfs_key key; 1723 struct btrfs_key found_key; 1724 struct extent_buffer *leaf = NULL; 1725 struct btrfs_dev_extent *extent = NULL; 1726 1727 path = btrfs_alloc_path(); 1728 if (!path) 1729 return -ENOMEM; 1730 1731 key.objectid = device->devid; 1732 key.offset = start; 1733 key.type = BTRFS_DEV_EXTENT_KEY; 1734 again: 1735 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1736 if (ret > 0) { 1737 ret = btrfs_previous_item(root, path, key.objectid, 1738 BTRFS_DEV_EXTENT_KEY); 1739 if (ret) 1740 goto out; 1741 leaf = path->nodes[0]; 1742 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 1743 extent = btrfs_item_ptr(leaf, path->slots[0], 1744 struct btrfs_dev_extent); 1745 BUG_ON(found_key.offset > start || found_key.offset + 1746 btrfs_dev_extent_length(leaf, extent) < start); 1747 key = found_key; 1748 btrfs_release_path(path); 1749 goto again; 1750 } else if (ret == 0) { 1751 leaf = path->nodes[0]; 1752 extent = btrfs_item_ptr(leaf, path->slots[0], 1753 struct btrfs_dev_extent); 1754 } else { 1755 goto out; 1756 } 1757 1758 *dev_extent_len = btrfs_dev_extent_length(leaf, extent); 1759 1760 ret = btrfs_del_item(trans, root, path); 1761 if (ret == 0) 1762 set_bit(BTRFS_TRANS_HAVE_FREE_BGS, &trans->transaction->flags); 1763 out: 1764 btrfs_free_path(path); 1765 return ret; 1766 } 1767 1768 static u64 find_next_chunk(struct btrfs_fs_info *fs_info) 1769 { 1770 struct extent_map_tree *em_tree; 1771 struct extent_map *em; 1772 struct rb_node *n; 1773 u64 ret = 0; 1774 1775 em_tree = &fs_info->mapping_tree; 1776 read_lock(&em_tree->lock); 1777 n = rb_last(&em_tree->map.rb_root); 1778 if (n) { 1779 em = rb_entry(n, struct extent_map, rb_node); 1780 ret = em->start + em->len; 1781 } 1782 read_unlock(&em_tree->lock); 1783 1784 return ret; 1785 } 1786 1787 static noinline int find_next_devid(struct btrfs_fs_info *fs_info, 1788 u64 *devid_ret) 1789 { 1790 int ret; 1791 struct btrfs_key key; 1792 struct btrfs_key found_key; 1793 struct btrfs_path *path; 1794 1795 path = btrfs_alloc_path(); 1796 if (!path) 1797 return -ENOMEM; 1798 1799 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1800 key.type = BTRFS_DEV_ITEM_KEY; 1801 key.offset = (u64)-1; 1802 1803 ret = btrfs_search_slot(NULL, fs_info->chunk_root, &key, path, 0, 0); 1804 if (ret < 0) 1805 goto error; 1806 1807 if (ret == 0) { 1808 /* Corruption */ 1809 btrfs_err(fs_info, "corrupted chunk tree devid -1 matched"); 1810 ret = -EUCLEAN; 1811 goto error; 1812 } 1813 1814 ret = btrfs_previous_item(fs_info->chunk_root, path, 1815 BTRFS_DEV_ITEMS_OBJECTID, 1816 BTRFS_DEV_ITEM_KEY); 1817 if (ret) { 1818 *devid_ret = 1; 1819 } else { 1820 btrfs_item_key_to_cpu(path->nodes[0], &found_key, 1821 path->slots[0]); 1822 *devid_ret = found_key.offset + 1; 1823 } 1824 ret = 0; 1825 error: 1826 btrfs_free_path(path); 1827 return ret; 1828 } 1829 1830 /* 1831 * the device information is stored in the chunk root 1832 * the btrfs_device struct should be fully filled in 1833 */ 1834 static int btrfs_add_dev_item(struct btrfs_trans_handle *trans, 1835 struct btrfs_device *device) 1836 { 1837 int ret; 1838 struct btrfs_path *path; 1839 struct btrfs_dev_item *dev_item; 1840 struct extent_buffer *leaf; 1841 struct btrfs_key key; 1842 unsigned long ptr; 1843 1844 path = btrfs_alloc_path(); 1845 if (!path) 1846 return -ENOMEM; 1847 1848 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1849 key.type = BTRFS_DEV_ITEM_KEY; 1850 key.offset = device->devid; 1851 1852 btrfs_reserve_chunk_metadata(trans, true); 1853 ret = btrfs_insert_empty_item(trans, trans->fs_info->chunk_root, path, 1854 &key, sizeof(*dev_item)); 1855 btrfs_trans_release_chunk_metadata(trans); 1856 if (ret) 1857 goto out; 1858 1859 leaf = path->nodes[0]; 1860 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 1861 1862 btrfs_set_device_id(leaf, dev_item, device->devid); 1863 btrfs_set_device_generation(leaf, dev_item, 0); 1864 btrfs_set_device_type(leaf, dev_item, device->type); 1865 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 1866 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 1867 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 1868 btrfs_set_device_total_bytes(leaf, dev_item, 1869 btrfs_device_get_disk_total_bytes(device)); 1870 btrfs_set_device_bytes_used(leaf, dev_item, 1871 btrfs_device_get_bytes_used(device)); 1872 btrfs_set_device_group(leaf, dev_item, 0); 1873 btrfs_set_device_seek_speed(leaf, dev_item, 0); 1874 btrfs_set_device_bandwidth(leaf, dev_item, 0); 1875 btrfs_set_device_start_offset(leaf, dev_item, 0); 1876 1877 ptr = btrfs_device_uuid(dev_item); 1878 write_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 1879 ptr = btrfs_device_fsid(dev_item); 1880 write_extent_buffer(leaf, trans->fs_info->fs_devices->metadata_uuid, 1881 ptr, BTRFS_FSID_SIZE); 1882 btrfs_mark_buffer_dirty(leaf); 1883 1884 ret = 0; 1885 out: 1886 btrfs_free_path(path); 1887 return ret; 1888 } 1889 1890 /* 1891 * Function to update ctime/mtime for a given device path. 1892 * Mainly used for ctime/mtime based probe like libblkid. 1893 * 1894 * We don't care about errors here, this is just to be kind to userspace. 1895 */ 1896 static void update_dev_time(const char *device_path) 1897 { 1898 struct path path; 1899 struct timespec64 now; 1900 int ret; 1901 1902 ret = kern_path(device_path, LOOKUP_FOLLOW, &path); 1903 if (ret) 1904 return; 1905 1906 now = current_time(d_inode(path.dentry)); 1907 inode_update_time(d_inode(path.dentry), &now, S_MTIME | S_CTIME); 1908 path_put(&path); 1909 } 1910 1911 static int btrfs_rm_dev_item(struct btrfs_trans_handle *trans, 1912 struct btrfs_device *device) 1913 { 1914 struct btrfs_root *root = device->fs_info->chunk_root; 1915 int ret; 1916 struct btrfs_path *path; 1917 struct btrfs_key key; 1918 1919 path = btrfs_alloc_path(); 1920 if (!path) 1921 return -ENOMEM; 1922 1923 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 1924 key.type = BTRFS_DEV_ITEM_KEY; 1925 key.offset = device->devid; 1926 1927 btrfs_reserve_chunk_metadata(trans, false); 1928 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 1929 btrfs_trans_release_chunk_metadata(trans); 1930 if (ret) { 1931 if (ret > 0) 1932 ret = -ENOENT; 1933 goto out; 1934 } 1935 1936 ret = btrfs_del_item(trans, root, path); 1937 out: 1938 btrfs_free_path(path); 1939 return ret; 1940 } 1941 1942 /* 1943 * Verify that @num_devices satisfies the RAID profile constraints in the whole 1944 * filesystem. It's up to the caller to adjust that number regarding eg. device 1945 * replace. 1946 */ 1947 static int btrfs_check_raid_min_devices(struct btrfs_fs_info *fs_info, 1948 u64 num_devices) 1949 { 1950 u64 all_avail; 1951 unsigned seq; 1952 int i; 1953 1954 do { 1955 seq = read_seqbegin(&fs_info->profiles_lock); 1956 1957 all_avail = fs_info->avail_data_alloc_bits | 1958 fs_info->avail_system_alloc_bits | 1959 fs_info->avail_metadata_alloc_bits; 1960 } while (read_seqretry(&fs_info->profiles_lock, seq)); 1961 1962 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 1963 if (!(all_avail & btrfs_raid_array[i].bg_flag)) 1964 continue; 1965 1966 if (num_devices < btrfs_raid_array[i].devs_min) 1967 return btrfs_raid_array[i].mindev_error; 1968 } 1969 1970 return 0; 1971 } 1972 1973 static struct btrfs_device * btrfs_find_next_active_device( 1974 struct btrfs_fs_devices *fs_devs, struct btrfs_device *device) 1975 { 1976 struct btrfs_device *next_device; 1977 1978 list_for_each_entry(next_device, &fs_devs->devices, dev_list) { 1979 if (next_device != device && 1980 !test_bit(BTRFS_DEV_STATE_MISSING, &next_device->dev_state) 1981 && next_device->bdev) 1982 return next_device; 1983 } 1984 1985 return NULL; 1986 } 1987 1988 /* 1989 * Helper function to check if the given device is part of s_bdev / latest_dev 1990 * and replace it with the provided or the next active device, in the context 1991 * where this function called, there should be always be another device (or 1992 * this_dev) which is active. 1993 */ 1994 void __cold btrfs_assign_next_active_device(struct btrfs_device *device, 1995 struct btrfs_device *next_device) 1996 { 1997 struct btrfs_fs_info *fs_info = device->fs_info; 1998 1999 if (!next_device) 2000 next_device = btrfs_find_next_active_device(fs_info->fs_devices, 2001 device); 2002 ASSERT(next_device); 2003 2004 if (fs_info->sb->s_bdev && 2005 (fs_info->sb->s_bdev == device->bdev)) 2006 fs_info->sb->s_bdev = next_device->bdev; 2007 2008 if (fs_info->fs_devices->latest_dev->bdev == device->bdev) 2009 fs_info->fs_devices->latest_dev = next_device; 2010 } 2011 2012 /* 2013 * Return btrfs_fs_devices::num_devices excluding the device that's being 2014 * currently replaced. 2015 */ 2016 static u64 btrfs_num_devices(struct btrfs_fs_info *fs_info) 2017 { 2018 u64 num_devices = fs_info->fs_devices->num_devices; 2019 2020 down_read(&fs_info->dev_replace.rwsem); 2021 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace)) { 2022 ASSERT(num_devices > 1); 2023 num_devices--; 2024 } 2025 up_read(&fs_info->dev_replace.rwsem); 2026 2027 return num_devices; 2028 } 2029 2030 void btrfs_scratch_superblocks(struct btrfs_fs_info *fs_info, 2031 struct block_device *bdev, 2032 const char *device_path) 2033 { 2034 struct btrfs_super_block *disk_super; 2035 int copy_num; 2036 2037 if (!bdev) 2038 return; 2039 2040 for (copy_num = 0; copy_num < BTRFS_SUPER_MIRROR_MAX; copy_num++) { 2041 struct page *page; 2042 int ret; 2043 2044 disk_super = btrfs_read_dev_one_super(bdev, copy_num, false); 2045 if (IS_ERR(disk_super)) 2046 continue; 2047 2048 if (bdev_is_zoned(bdev)) { 2049 btrfs_reset_sb_log_zones(bdev, copy_num); 2050 continue; 2051 } 2052 2053 memset(&disk_super->magic, 0, sizeof(disk_super->magic)); 2054 2055 page = virt_to_page(disk_super); 2056 set_page_dirty(page); 2057 lock_page(page); 2058 /* write_on_page() unlocks the page */ 2059 ret = write_one_page(page); 2060 if (ret) 2061 btrfs_warn(fs_info, 2062 "error clearing superblock number %d (%d)", 2063 copy_num, ret); 2064 btrfs_release_disk_super(disk_super); 2065 2066 } 2067 2068 /* Notify udev that device has changed */ 2069 btrfs_kobject_uevent(bdev, KOBJ_CHANGE); 2070 2071 /* Update ctime/mtime for device path for libblkid */ 2072 update_dev_time(device_path); 2073 } 2074 2075 int btrfs_rm_device(struct btrfs_fs_info *fs_info, 2076 struct btrfs_dev_lookup_args *args, 2077 struct block_device **bdev, fmode_t *mode) 2078 { 2079 struct btrfs_trans_handle *trans; 2080 struct btrfs_device *device; 2081 struct btrfs_fs_devices *cur_devices; 2082 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2083 u64 num_devices; 2084 int ret = 0; 2085 2086 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2087 btrfs_err(fs_info, "device remove not supported on extent tree v2 yet"); 2088 return -EINVAL; 2089 } 2090 2091 /* 2092 * The device list in fs_devices is accessed without locks (neither 2093 * uuid_mutex nor device_list_mutex) as it won't change on a mounted 2094 * filesystem and another device rm cannot run. 2095 */ 2096 num_devices = btrfs_num_devices(fs_info); 2097 2098 ret = btrfs_check_raid_min_devices(fs_info, num_devices - 1); 2099 if (ret) 2100 return ret; 2101 2102 device = btrfs_find_device(fs_info->fs_devices, args); 2103 if (!device) { 2104 if (args->missing) 2105 ret = BTRFS_ERROR_DEV_MISSING_NOT_FOUND; 2106 else 2107 ret = -ENOENT; 2108 return ret; 2109 } 2110 2111 if (btrfs_pinned_by_swapfile(fs_info, device)) { 2112 btrfs_warn_in_rcu(fs_info, 2113 "cannot remove device %s (devid %llu) due to active swapfile", 2114 rcu_str_deref(device->name), device->devid); 2115 return -ETXTBSY; 2116 } 2117 2118 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 2119 return BTRFS_ERROR_DEV_TGT_REPLACE; 2120 2121 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 2122 fs_info->fs_devices->rw_devices == 1) 2123 return BTRFS_ERROR_DEV_ONLY_WRITABLE; 2124 2125 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2126 mutex_lock(&fs_info->chunk_mutex); 2127 list_del_init(&device->dev_alloc_list); 2128 device->fs_devices->rw_devices--; 2129 mutex_unlock(&fs_info->chunk_mutex); 2130 } 2131 2132 ret = btrfs_shrink_device(device, 0); 2133 if (ret) 2134 goto error_undo; 2135 2136 trans = btrfs_start_transaction(fs_info->chunk_root, 0); 2137 if (IS_ERR(trans)) { 2138 ret = PTR_ERR(trans); 2139 goto error_undo; 2140 } 2141 2142 ret = btrfs_rm_dev_item(trans, device); 2143 if (ret) { 2144 /* Any error in dev item removal is critical */ 2145 btrfs_crit(fs_info, 2146 "failed to remove device item for devid %llu: %d", 2147 device->devid, ret); 2148 btrfs_abort_transaction(trans, ret); 2149 btrfs_end_transaction(trans); 2150 return ret; 2151 } 2152 2153 clear_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2154 btrfs_scrub_cancel_dev(device); 2155 2156 /* 2157 * the device list mutex makes sure that we don't change 2158 * the device list while someone else is writing out all 2159 * the device supers. Whoever is writing all supers, should 2160 * lock the device list mutex before getting the number of 2161 * devices in the super block (super_copy). Conversely, 2162 * whoever updates the number of devices in the super block 2163 * (super_copy) should hold the device list mutex. 2164 */ 2165 2166 /* 2167 * In normal cases the cur_devices == fs_devices. But in case 2168 * of deleting a seed device, the cur_devices should point to 2169 * its own fs_devices listed under the fs_devices->seed_list. 2170 */ 2171 cur_devices = device->fs_devices; 2172 mutex_lock(&fs_devices->device_list_mutex); 2173 list_del_rcu(&device->dev_list); 2174 2175 cur_devices->num_devices--; 2176 cur_devices->total_devices--; 2177 /* Update total_devices of the parent fs_devices if it's seed */ 2178 if (cur_devices != fs_devices) 2179 fs_devices->total_devices--; 2180 2181 if (test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) 2182 cur_devices->missing_devices--; 2183 2184 btrfs_assign_next_active_device(device, NULL); 2185 2186 if (device->bdev) { 2187 cur_devices->open_devices--; 2188 /* remove sysfs entry */ 2189 btrfs_sysfs_remove_device(device); 2190 } 2191 2192 num_devices = btrfs_super_num_devices(fs_info->super_copy) - 1; 2193 btrfs_set_super_num_devices(fs_info->super_copy, num_devices); 2194 mutex_unlock(&fs_devices->device_list_mutex); 2195 2196 /* 2197 * At this point, the device is zero sized and detached from the 2198 * devices list. All that's left is to zero out the old supers and 2199 * free the device. 2200 * 2201 * We cannot call btrfs_close_bdev() here because we're holding the sb 2202 * write lock, and blkdev_put() will pull in the ->open_mutex on the 2203 * block device and it's dependencies. Instead just flush the device 2204 * and let the caller do the final blkdev_put. 2205 */ 2206 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2207 btrfs_scratch_superblocks(fs_info, device->bdev, 2208 device->name->str); 2209 if (device->bdev) { 2210 sync_blockdev(device->bdev); 2211 invalidate_bdev(device->bdev); 2212 } 2213 } 2214 2215 *bdev = device->bdev; 2216 *mode = device->mode; 2217 synchronize_rcu(); 2218 btrfs_free_device(device); 2219 2220 /* 2221 * This can happen if cur_devices is the private seed devices list. We 2222 * cannot call close_fs_devices() here because it expects the uuid_mutex 2223 * to be held, but in fact we don't need that for the private 2224 * seed_devices, we can simply decrement cur_devices->opened and then 2225 * remove it from our list and free the fs_devices. 2226 */ 2227 if (cur_devices->num_devices == 0) { 2228 list_del_init(&cur_devices->seed_list); 2229 ASSERT(cur_devices->opened == 1); 2230 cur_devices->opened--; 2231 free_fs_devices(cur_devices); 2232 } 2233 2234 ret = btrfs_commit_transaction(trans); 2235 2236 return ret; 2237 2238 error_undo: 2239 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 2240 mutex_lock(&fs_info->chunk_mutex); 2241 list_add(&device->dev_alloc_list, 2242 &fs_devices->alloc_list); 2243 device->fs_devices->rw_devices++; 2244 mutex_unlock(&fs_info->chunk_mutex); 2245 } 2246 return ret; 2247 } 2248 2249 void btrfs_rm_dev_replace_remove_srcdev(struct btrfs_device *srcdev) 2250 { 2251 struct btrfs_fs_devices *fs_devices; 2252 2253 lockdep_assert_held(&srcdev->fs_info->fs_devices->device_list_mutex); 2254 2255 /* 2256 * in case of fs with no seed, srcdev->fs_devices will point 2257 * to fs_devices of fs_info. However when the dev being replaced is 2258 * a seed dev it will point to the seed's local fs_devices. In short 2259 * srcdev will have its correct fs_devices in both the cases. 2260 */ 2261 fs_devices = srcdev->fs_devices; 2262 2263 list_del_rcu(&srcdev->dev_list); 2264 list_del(&srcdev->dev_alloc_list); 2265 fs_devices->num_devices--; 2266 if (test_bit(BTRFS_DEV_STATE_MISSING, &srcdev->dev_state)) 2267 fs_devices->missing_devices--; 2268 2269 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &srcdev->dev_state)) 2270 fs_devices->rw_devices--; 2271 2272 if (srcdev->bdev) 2273 fs_devices->open_devices--; 2274 } 2275 2276 void btrfs_rm_dev_replace_free_srcdev(struct btrfs_device *srcdev) 2277 { 2278 struct btrfs_fs_devices *fs_devices = srcdev->fs_devices; 2279 2280 mutex_lock(&uuid_mutex); 2281 2282 btrfs_close_bdev(srcdev); 2283 synchronize_rcu(); 2284 btrfs_free_device(srcdev); 2285 2286 /* if this is no devs we rather delete the fs_devices */ 2287 if (!fs_devices->num_devices) { 2288 /* 2289 * On a mounted FS, num_devices can't be zero unless it's a 2290 * seed. In case of a seed device being replaced, the replace 2291 * target added to the sprout FS, so there will be no more 2292 * device left under the seed FS. 2293 */ 2294 ASSERT(fs_devices->seeding); 2295 2296 list_del_init(&fs_devices->seed_list); 2297 close_fs_devices(fs_devices); 2298 free_fs_devices(fs_devices); 2299 } 2300 mutex_unlock(&uuid_mutex); 2301 } 2302 2303 void btrfs_destroy_dev_replace_tgtdev(struct btrfs_device *tgtdev) 2304 { 2305 struct btrfs_fs_devices *fs_devices = tgtdev->fs_info->fs_devices; 2306 2307 mutex_lock(&fs_devices->device_list_mutex); 2308 2309 btrfs_sysfs_remove_device(tgtdev); 2310 2311 if (tgtdev->bdev) 2312 fs_devices->open_devices--; 2313 2314 fs_devices->num_devices--; 2315 2316 btrfs_assign_next_active_device(tgtdev, NULL); 2317 2318 list_del_rcu(&tgtdev->dev_list); 2319 2320 mutex_unlock(&fs_devices->device_list_mutex); 2321 2322 btrfs_scratch_superblocks(tgtdev->fs_info, tgtdev->bdev, 2323 tgtdev->name->str); 2324 2325 btrfs_close_bdev(tgtdev); 2326 synchronize_rcu(); 2327 btrfs_free_device(tgtdev); 2328 } 2329 2330 /* 2331 * Populate args from device at path. 2332 * 2333 * @fs_info: the filesystem 2334 * @args: the args to populate 2335 * @path: the path to the device 2336 * 2337 * This will read the super block of the device at @path and populate @args with 2338 * the devid, fsid, and uuid. This is meant to be used for ioctls that need to 2339 * lookup a device to operate on, but need to do it before we take any locks. 2340 * This properly handles the special case of "missing" that a user may pass in, 2341 * and does some basic sanity checks. The caller must make sure that @path is 2342 * properly NUL terminated before calling in, and must call 2343 * btrfs_put_dev_args_from_path() in order to free up the temporary fsid and 2344 * uuid buffers. 2345 * 2346 * Return: 0 for success, -errno for failure 2347 */ 2348 int btrfs_get_dev_args_from_path(struct btrfs_fs_info *fs_info, 2349 struct btrfs_dev_lookup_args *args, 2350 const char *path) 2351 { 2352 struct btrfs_super_block *disk_super; 2353 struct block_device *bdev; 2354 int ret; 2355 2356 if (!path || !path[0]) 2357 return -EINVAL; 2358 if (!strcmp(path, "missing")) { 2359 args->missing = true; 2360 return 0; 2361 } 2362 2363 args->uuid = kzalloc(BTRFS_UUID_SIZE, GFP_KERNEL); 2364 args->fsid = kzalloc(BTRFS_FSID_SIZE, GFP_KERNEL); 2365 if (!args->uuid || !args->fsid) { 2366 btrfs_put_dev_args_from_path(args); 2367 return -ENOMEM; 2368 } 2369 2370 ret = btrfs_get_bdev_and_sb(path, FMODE_READ, fs_info->bdev_holder, 0, 2371 &bdev, &disk_super); 2372 if (ret) { 2373 btrfs_put_dev_args_from_path(args); 2374 return ret; 2375 } 2376 2377 args->devid = btrfs_stack_device_id(&disk_super->dev_item); 2378 memcpy(args->uuid, disk_super->dev_item.uuid, BTRFS_UUID_SIZE); 2379 if (btrfs_fs_incompat(fs_info, METADATA_UUID)) 2380 memcpy(args->fsid, disk_super->metadata_uuid, BTRFS_FSID_SIZE); 2381 else 2382 memcpy(args->fsid, disk_super->fsid, BTRFS_FSID_SIZE); 2383 btrfs_release_disk_super(disk_super); 2384 blkdev_put(bdev, FMODE_READ); 2385 return 0; 2386 } 2387 2388 /* 2389 * Only use this jointly with btrfs_get_dev_args_from_path() because we will 2390 * allocate our ->uuid and ->fsid pointers, everybody else uses local variables 2391 * that don't need to be freed. 2392 */ 2393 void btrfs_put_dev_args_from_path(struct btrfs_dev_lookup_args *args) 2394 { 2395 kfree(args->uuid); 2396 kfree(args->fsid); 2397 args->uuid = NULL; 2398 args->fsid = NULL; 2399 } 2400 2401 struct btrfs_device *btrfs_find_device_by_devspec( 2402 struct btrfs_fs_info *fs_info, u64 devid, 2403 const char *device_path) 2404 { 2405 BTRFS_DEV_LOOKUP_ARGS(args); 2406 struct btrfs_device *device; 2407 int ret; 2408 2409 if (devid) { 2410 args.devid = devid; 2411 device = btrfs_find_device(fs_info->fs_devices, &args); 2412 if (!device) 2413 return ERR_PTR(-ENOENT); 2414 return device; 2415 } 2416 2417 ret = btrfs_get_dev_args_from_path(fs_info, &args, device_path); 2418 if (ret) 2419 return ERR_PTR(ret); 2420 device = btrfs_find_device(fs_info->fs_devices, &args); 2421 btrfs_put_dev_args_from_path(&args); 2422 if (!device) 2423 return ERR_PTR(-ENOENT); 2424 return device; 2425 } 2426 2427 static struct btrfs_fs_devices *btrfs_init_sprout(struct btrfs_fs_info *fs_info) 2428 { 2429 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2430 struct btrfs_fs_devices *old_devices; 2431 struct btrfs_fs_devices *seed_devices; 2432 2433 lockdep_assert_held(&uuid_mutex); 2434 if (!fs_devices->seeding) 2435 return ERR_PTR(-EINVAL); 2436 2437 /* 2438 * Private copy of the seed devices, anchored at 2439 * fs_info->fs_devices->seed_list 2440 */ 2441 seed_devices = alloc_fs_devices(NULL, NULL); 2442 if (IS_ERR(seed_devices)) 2443 return seed_devices; 2444 2445 /* 2446 * It's necessary to retain a copy of the original seed fs_devices in 2447 * fs_uuids so that filesystems which have been seeded can successfully 2448 * reference the seed device from open_seed_devices. This also supports 2449 * multiple fs seed. 2450 */ 2451 old_devices = clone_fs_devices(fs_devices); 2452 if (IS_ERR(old_devices)) { 2453 kfree(seed_devices); 2454 return old_devices; 2455 } 2456 2457 list_add(&old_devices->fs_list, &fs_uuids); 2458 2459 memcpy(seed_devices, fs_devices, sizeof(*seed_devices)); 2460 seed_devices->opened = 1; 2461 INIT_LIST_HEAD(&seed_devices->devices); 2462 INIT_LIST_HEAD(&seed_devices->alloc_list); 2463 mutex_init(&seed_devices->device_list_mutex); 2464 2465 return seed_devices; 2466 } 2467 2468 /* 2469 * Splice seed devices into the sprout fs_devices. 2470 * Generate a new fsid for the sprouted read-write filesystem. 2471 */ 2472 static void btrfs_setup_sprout(struct btrfs_fs_info *fs_info, 2473 struct btrfs_fs_devices *seed_devices) 2474 { 2475 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2476 struct btrfs_super_block *disk_super = fs_info->super_copy; 2477 struct btrfs_device *device; 2478 u64 super_flags; 2479 2480 /* 2481 * We are updating the fsid, the thread leading to device_list_add() 2482 * could race, so uuid_mutex is needed. 2483 */ 2484 lockdep_assert_held(&uuid_mutex); 2485 2486 /* 2487 * The threads listed below may traverse dev_list but can do that without 2488 * device_list_mutex: 2489 * - All device ops and balance - as we are in btrfs_exclop_start. 2490 * - Various dev_list readers - are using RCU. 2491 * - btrfs_ioctl_fitrim() - is using RCU. 2492 * 2493 * For-read threads as below are using device_list_mutex: 2494 * - Readonly scrub btrfs_scrub_dev() 2495 * - Readonly scrub btrfs_scrub_progress() 2496 * - btrfs_get_dev_stats() 2497 */ 2498 lockdep_assert_held(&fs_devices->device_list_mutex); 2499 2500 list_splice_init_rcu(&fs_devices->devices, &seed_devices->devices, 2501 synchronize_rcu); 2502 list_for_each_entry(device, &seed_devices->devices, dev_list) 2503 device->fs_devices = seed_devices; 2504 2505 fs_devices->seeding = false; 2506 fs_devices->num_devices = 0; 2507 fs_devices->open_devices = 0; 2508 fs_devices->missing_devices = 0; 2509 fs_devices->rotating = false; 2510 list_add(&seed_devices->seed_list, &fs_devices->seed_list); 2511 2512 generate_random_uuid(fs_devices->fsid); 2513 memcpy(fs_devices->metadata_uuid, fs_devices->fsid, BTRFS_FSID_SIZE); 2514 memcpy(disk_super->fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 2515 2516 super_flags = btrfs_super_flags(disk_super) & 2517 ~BTRFS_SUPER_FLAG_SEEDING; 2518 btrfs_set_super_flags(disk_super, super_flags); 2519 } 2520 2521 /* 2522 * Store the expected generation for seed devices in device items. 2523 */ 2524 static int btrfs_finish_sprout(struct btrfs_trans_handle *trans) 2525 { 2526 BTRFS_DEV_LOOKUP_ARGS(args); 2527 struct btrfs_fs_info *fs_info = trans->fs_info; 2528 struct btrfs_root *root = fs_info->chunk_root; 2529 struct btrfs_path *path; 2530 struct extent_buffer *leaf; 2531 struct btrfs_dev_item *dev_item; 2532 struct btrfs_device *device; 2533 struct btrfs_key key; 2534 u8 fs_uuid[BTRFS_FSID_SIZE]; 2535 u8 dev_uuid[BTRFS_UUID_SIZE]; 2536 int ret; 2537 2538 path = btrfs_alloc_path(); 2539 if (!path) 2540 return -ENOMEM; 2541 2542 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2543 key.offset = 0; 2544 key.type = BTRFS_DEV_ITEM_KEY; 2545 2546 while (1) { 2547 btrfs_reserve_chunk_metadata(trans, false); 2548 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2549 btrfs_trans_release_chunk_metadata(trans); 2550 if (ret < 0) 2551 goto error; 2552 2553 leaf = path->nodes[0]; 2554 next_slot: 2555 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 2556 ret = btrfs_next_leaf(root, path); 2557 if (ret > 0) 2558 break; 2559 if (ret < 0) 2560 goto error; 2561 leaf = path->nodes[0]; 2562 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2563 btrfs_release_path(path); 2564 continue; 2565 } 2566 2567 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 2568 if (key.objectid != BTRFS_DEV_ITEMS_OBJECTID || 2569 key.type != BTRFS_DEV_ITEM_KEY) 2570 break; 2571 2572 dev_item = btrfs_item_ptr(leaf, path->slots[0], 2573 struct btrfs_dev_item); 2574 args.devid = btrfs_device_id(leaf, dev_item); 2575 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 2576 BTRFS_UUID_SIZE); 2577 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 2578 BTRFS_FSID_SIZE); 2579 args.uuid = dev_uuid; 2580 args.fsid = fs_uuid; 2581 device = btrfs_find_device(fs_info->fs_devices, &args); 2582 BUG_ON(!device); /* Logic error */ 2583 2584 if (device->fs_devices->seeding) { 2585 btrfs_set_device_generation(leaf, dev_item, 2586 device->generation); 2587 btrfs_mark_buffer_dirty(leaf); 2588 } 2589 2590 path->slots[0]++; 2591 goto next_slot; 2592 } 2593 ret = 0; 2594 error: 2595 btrfs_free_path(path); 2596 return ret; 2597 } 2598 2599 int btrfs_init_new_device(struct btrfs_fs_info *fs_info, const char *device_path) 2600 { 2601 struct btrfs_root *root = fs_info->dev_root; 2602 struct btrfs_trans_handle *trans; 2603 struct btrfs_device *device; 2604 struct block_device *bdev; 2605 struct super_block *sb = fs_info->sb; 2606 struct rcu_string *name; 2607 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2608 struct btrfs_fs_devices *seed_devices; 2609 u64 orig_super_total_bytes; 2610 u64 orig_super_num_devices; 2611 int ret = 0; 2612 bool seeding_dev = false; 2613 bool locked = false; 2614 2615 if (sb_rdonly(sb) && !fs_devices->seeding) 2616 return -EROFS; 2617 2618 bdev = blkdev_get_by_path(device_path, FMODE_WRITE | FMODE_EXCL, 2619 fs_info->bdev_holder); 2620 if (IS_ERR(bdev)) 2621 return PTR_ERR(bdev); 2622 2623 if (!btrfs_check_device_zone_type(fs_info, bdev)) { 2624 ret = -EINVAL; 2625 goto error; 2626 } 2627 2628 if (fs_devices->seeding) { 2629 seeding_dev = true; 2630 down_write(&sb->s_umount); 2631 mutex_lock(&uuid_mutex); 2632 locked = true; 2633 } 2634 2635 sync_blockdev(bdev); 2636 2637 rcu_read_lock(); 2638 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2639 if (device->bdev == bdev) { 2640 ret = -EEXIST; 2641 rcu_read_unlock(); 2642 goto error; 2643 } 2644 } 2645 rcu_read_unlock(); 2646 2647 device = btrfs_alloc_device(fs_info, NULL, NULL); 2648 if (IS_ERR(device)) { 2649 /* we can safely leave the fs_devices entry around */ 2650 ret = PTR_ERR(device); 2651 goto error; 2652 } 2653 2654 name = rcu_string_strdup(device_path, GFP_KERNEL); 2655 if (!name) { 2656 ret = -ENOMEM; 2657 goto error_free_device; 2658 } 2659 rcu_assign_pointer(device->name, name); 2660 2661 device->fs_info = fs_info; 2662 device->bdev = bdev; 2663 ret = lookup_bdev(device_path, &device->devt); 2664 if (ret) 2665 goto error_free_device; 2666 2667 ret = btrfs_get_dev_zone_info(device, false); 2668 if (ret) 2669 goto error_free_device; 2670 2671 trans = btrfs_start_transaction(root, 0); 2672 if (IS_ERR(trans)) { 2673 ret = PTR_ERR(trans); 2674 goto error_free_zone; 2675 } 2676 2677 set_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state); 2678 device->generation = trans->transid; 2679 device->io_width = fs_info->sectorsize; 2680 device->io_align = fs_info->sectorsize; 2681 device->sector_size = fs_info->sectorsize; 2682 device->total_bytes = 2683 round_down(bdev_nr_bytes(bdev), fs_info->sectorsize); 2684 device->disk_total_bytes = device->total_bytes; 2685 device->commit_total_bytes = device->total_bytes; 2686 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 2687 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 2688 device->mode = FMODE_EXCL; 2689 device->dev_stats_valid = 1; 2690 set_blocksize(device->bdev, BTRFS_BDEV_BLOCKSIZE); 2691 2692 if (seeding_dev) { 2693 btrfs_clear_sb_rdonly(sb); 2694 2695 /* GFP_KERNEL allocation must not be under device_list_mutex */ 2696 seed_devices = btrfs_init_sprout(fs_info); 2697 if (IS_ERR(seed_devices)) { 2698 ret = PTR_ERR(seed_devices); 2699 btrfs_abort_transaction(trans, ret); 2700 goto error_trans; 2701 } 2702 } 2703 2704 mutex_lock(&fs_devices->device_list_mutex); 2705 if (seeding_dev) { 2706 btrfs_setup_sprout(fs_info, seed_devices); 2707 btrfs_assign_next_active_device(fs_info->fs_devices->latest_dev, 2708 device); 2709 } 2710 2711 device->fs_devices = fs_devices; 2712 2713 mutex_lock(&fs_info->chunk_mutex); 2714 list_add_rcu(&device->dev_list, &fs_devices->devices); 2715 list_add(&device->dev_alloc_list, &fs_devices->alloc_list); 2716 fs_devices->num_devices++; 2717 fs_devices->open_devices++; 2718 fs_devices->rw_devices++; 2719 fs_devices->total_devices++; 2720 fs_devices->total_rw_bytes += device->total_bytes; 2721 2722 atomic64_add(device->total_bytes, &fs_info->free_chunk_space); 2723 2724 if (!bdev_nonrot(bdev)) 2725 fs_devices->rotating = true; 2726 2727 orig_super_total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 2728 btrfs_set_super_total_bytes(fs_info->super_copy, 2729 round_down(orig_super_total_bytes + device->total_bytes, 2730 fs_info->sectorsize)); 2731 2732 orig_super_num_devices = btrfs_super_num_devices(fs_info->super_copy); 2733 btrfs_set_super_num_devices(fs_info->super_copy, 2734 orig_super_num_devices + 1); 2735 2736 /* 2737 * we've got more storage, clear any full flags on the space 2738 * infos 2739 */ 2740 btrfs_clear_space_info_full(fs_info); 2741 2742 mutex_unlock(&fs_info->chunk_mutex); 2743 2744 /* Add sysfs device entry */ 2745 btrfs_sysfs_add_device(device); 2746 2747 mutex_unlock(&fs_devices->device_list_mutex); 2748 2749 if (seeding_dev) { 2750 mutex_lock(&fs_info->chunk_mutex); 2751 ret = init_first_rw_device(trans); 2752 mutex_unlock(&fs_info->chunk_mutex); 2753 if (ret) { 2754 btrfs_abort_transaction(trans, ret); 2755 goto error_sysfs; 2756 } 2757 } 2758 2759 ret = btrfs_add_dev_item(trans, device); 2760 if (ret) { 2761 btrfs_abort_transaction(trans, ret); 2762 goto error_sysfs; 2763 } 2764 2765 if (seeding_dev) { 2766 ret = btrfs_finish_sprout(trans); 2767 if (ret) { 2768 btrfs_abort_transaction(trans, ret); 2769 goto error_sysfs; 2770 } 2771 2772 /* 2773 * fs_devices now represents the newly sprouted filesystem and 2774 * its fsid has been changed by btrfs_sprout_splice(). 2775 */ 2776 btrfs_sysfs_update_sprout_fsid(fs_devices); 2777 } 2778 2779 ret = btrfs_commit_transaction(trans); 2780 2781 if (seeding_dev) { 2782 mutex_unlock(&uuid_mutex); 2783 up_write(&sb->s_umount); 2784 locked = false; 2785 2786 if (ret) /* transaction commit */ 2787 return ret; 2788 2789 ret = btrfs_relocate_sys_chunks(fs_info); 2790 if (ret < 0) 2791 btrfs_handle_fs_error(fs_info, ret, 2792 "Failed to relocate sys chunks after device initialization. This can be fixed using the \"btrfs balance\" command."); 2793 trans = btrfs_attach_transaction(root); 2794 if (IS_ERR(trans)) { 2795 if (PTR_ERR(trans) == -ENOENT) 2796 return 0; 2797 ret = PTR_ERR(trans); 2798 trans = NULL; 2799 goto error_sysfs; 2800 } 2801 ret = btrfs_commit_transaction(trans); 2802 } 2803 2804 /* 2805 * Now that we have written a new super block to this device, check all 2806 * other fs_devices list if device_path alienates any other scanned 2807 * device. 2808 * We can ignore the return value as it typically returns -EINVAL and 2809 * only succeeds if the device was an alien. 2810 */ 2811 btrfs_forget_devices(device->devt); 2812 2813 /* Update ctime/mtime for blkid or udev */ 2814 update_dev_time(device_path); 2815 2816 return ret; 2817 2818 error_sysfs: 2819 btrfs_sysfs_remove_device(device); 2820 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2821 mutex_lock(&fs_info->chunk_mutex); 2822 list_del_rcu(&device->dev_list); 2823 list_del(&device->dev_alloc_list); 2824 fs_info->fs_devices->num_devices--; 2825 fs_info->fs_devices->open_devices--; 2826 fs_info->fs_devices->rw_devices--; 2827 fs_info->fs_devices->total_devices--; 2828 fs_info->fs_devices->total_rw_bytes -= device->total_bytes; 2829 atomic64_sub(device->total_bytes, &fs_info->free_chunk_space); 2830 btrfs_set_super_total_bytes(fs_info->super_copy, 2831 orig_super_total_bytes); 2832 btrfs_set_super_num_devices(fs_info->super_copy, 2833 orig_super_num_devices); 2834 mutex_unlock(&fs_info->chunk_mutex); 2835 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2836 error_trans: 2837 if (seeding_dev) 2838 btrfs_set_sb_rdonly(sb); 2839 if (trans) 2840 btrfs_end_transaction(trans); 2841 error_free_zone: 2842 btrfs_destroy_dev_zone_info(device); 2843 error_free_device: 2844 btrfs_free_device(device); 2845 error: 2846 blkdev_put(bdev, FMODE_EXCL); 2847 if (locked) { 2848 mutex_unlock(&uuid_mutex); 2849 up_write(&sb->s_umount); 2850 } 2851 return ret; 2852 } 2853 2854 static noinline int btrfs_update_device(struct btrfs_trans_handle *trans, 2855 struct btrfs_device *device) 2856 { 2857 int ret; 2858 struct btrfs_path *path; 2859 struct btrfs_root *root = device->fs_info->chunk_root; 2860 struct btrfs_dev_item *dev_item; 2861 struct extent_buffer *leaf; 2862 struct btrfs_key key; 2863 2864 path = btrfs_alloc_path(); 2865 if (!path) 2866 return -ENOMEM; 2867 2868 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 2869 key.type = BTRFS_DEV_ITEM_KEY; 2870 key.offset = device->devid; 2871 2872 ret = btrfs_search_slot(trans, root, &key, path, 0, 1); 2873 if (ret < 0) 2874 goto out; 2875 2876 if (ret > 0) { 2877 ret = -ENOENT; 2878 goto out; 2879 } 2880 2881 leaf = path->nodes[0]; 2882 dev_item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_dev_item); 2883 2884 btrfs_set_device_id(leaf, dev_item, device->devid); 2885 btrfs_set_device_type(leaf, dev_item, device->type); 2886 btrfs_set_device_io_align(leaf, dev_item, device->io_align); 2887 btrfs_set_device_io_width(leaf, dev_item, device->io_width); 2888 btrfs_set_device_sector_size(leaf, dev_item, device->sector_size); 2889 btrfs_set_device_total_bytes(leaf, dev_item, 2890 btrfs_device_get_disk_total_bytes(device)); 2891 btrfs_set_device_bytes_used(leaf, dev_item, 2892 btrfs_device_get_bytes_used(device)); 2893 btrfs_mark_buffer_dirty(leaf); 2894 2895 out: 2896 btrfs_free_path(path); 2897 return ret; 2898 } 2899 2900 int btrfs_grow_device(struct btrfs_trans_handle *trans, 2901 struct btrfs_device *device, u64 new_size) 2902 { 2903 struct btrfs_fs_info *fs_info = device->fs_info; 2904 struct btrfs_super_block *super_copy = fs_info->super_copy; 2905 u64 old_total; 2906 u64 diff; 2907 int ret; 2908 2909 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 2910 return -EACCES; 2911 2912 new_size = round_down(new_size, fs_info->sectorsize); 2913 2914 mutex_lock(&fs_info->chunk_mutex); 2915 old_total = btrfs_super_total_bytes(super_copy); 2916 diff = round_down(new_size - device->total_bytes, fs_info->sectorsize); 2917 2918 if (new_size <= device->total_bytes || 2919 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 2920 mutex_unlock(&fs_info->chunk_mutex); 2921 return -EINVAL; 2922 } 2923 2924 btrfs_set_super_total_bytes(super_copy, 2925 round_down(old_total + diff, fs_info->sectorsize)); 2926 device->fs_devices->total_rw_bytes += diff; 2927 2928 btrfs_device_set_total_bytes(device, new_size); 2929 btrfs_device_set_disk_total_bytes(device, new_size); 2930 btrfs_clear_space_info_full(device->fs_info); 2931 if (list_empty(&device->post_commit_list)) 2932 list_add_tail(&device->post_commit_list, 2933 &trans->transaction->dev_update_list); 2934 mutex_unlock(&fs_info->chunk_mutex); 2935 2936 btrfs_reserve_chunk_metadata(trans, false); 2937 ret = btrfs_update_device(trans, device); 2938 btrfs_trans_release_chunk_metadata(trans); 2939 2940 return ret; 2941 } 2942 2943 static int btrfs_free_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 2944 { 2945 struct btrfs_fs_info *fs_info = trans->fs_info; 2946 struct btrfs_root *root = fs_info->chunk_root; 2947 int ret; 2948 struct btrfs_path *path; 2949 struct btrfs_key key; 2950 2951 path = btrfs_alloc_path(); 2952 if (!path) 2953 return -ENOMEM; 2954 2955 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 2956 key.offset = chunk_offset; 2957 key.type = BTRFS_CHUNK_ITEM_KEY; 2958 2959 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 2960 if (ret < 0) 2961 goto out; 2962 else if (ret > 0) { /* Logic error or corruption */ 2963 btrfs_handle_fs_error(fs_info, -ENOENT, 2964 "Failed lookup while freeing chunk."); 2965 ret = -ENOENT; 2966 goto out; 2967 } 2968 2969 ret = btrfs_del_item(trans, root, path); 2970 if (ret < 0) 2971 btrfs_handle_fs_error(fs_info, ret, 2972 "Failed to delete chunk item."); 2973 out: 2974 btrfs_free_path(path); 2975 return ret; 2976 } 2977 2978 static int btrfs_del_sys_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 2979 { 2980 struct btrfs_super_block *super_copy = fs_info->super_copy; 2981 struct btrfs_disk_key *disk_key; 2982 struct btrfs_chunk *chunk; 2983 u8 *ptr; 2984 int ret = 0; 2985 u32 num_stripes; 2986 u32 array_size; 2987 u32 len = 0; 2988 u32 cur; 2989 struct btrfs_key key; 2990 2991 lockdep_assert_held(&fs_info->chunk_mutex); 2992 array_size = btrfs_super_sys_array_size(super_copy); 2993 2994 ptr = super_copy->sys_chunk_array; 2995 cur = 0; 2996 2997 while (cur < array_size) { 2998 disk_key = (struct btrfs_disk_key *)ptr; 2999 btrfs_disk_key_to_cpu(&key, disk_key); 3000 3001 len = sizeof(*disk_key); 3002 3003 if (key.type == BTRFS_CHUNK_ITEM_KEY) { 3004 chunk = (struct btrfs_chunk *)(ptr + len); 3005 num_stripes = btrfs_stack_chunk_num_stripes(chunk); 3006 len += btrfs_chunk_item_size(num_stripes); 3007 } else { 3008 ret = -EIO; 3009 break; 3010 } 3011 if (key.objectid == BTRFS_FIRST_CHUNK_TREE_OBJECTID && 3012 key.offset == chunk_offset) { 3013 memmove(ptr, ptr + len, array_size - (cur + len)); 3014 array_size -= len; 3015 btrfs_set_super_sys_array_size(super_copy, array_size); 3016 } else { 3017 ptr += len; 3018 cur += len; 3019 } 3020 } 3021 return ret; 3022 } 3023 3024 /* 3025 * btrfs_get_chunk_map() - Find the mapping containing the given logical extent. 3026 * @logical: Logical block offset in bytes. 3027 * @length: Length of extent in bytes. 3028 * 3029 * Return: Chunk mapping or ERR_PTR. 3030 */ 3031 struct extent_map *btrfs_get_chunk_map(struct btrfs_fs_info *fs_info, 3032 u64 logical, u64 length) 3033 { 3034 struct extent_map_tree *em_tree; 3035 struct extent_map *em; 3036 3037 em_tree = &fs_info->mapping_tree; 3038 read_lock(&em_tree->lock); 3039 em = lookup_extent_mapping(em_tree, logical, length); 3040 read_unlock(&em_tree->lock); 3041 3042 if (!em) { 3043 btrfs_crit(fs_info, "unable to find logical %llu length %llu", 3044 logical, length); 3045 return ERR_PTR(-EINVAL); 3046 } 3047 3048 if (em->start > logical || em->start + em->len < logical) { 3049 btrfs_crit(fs_info, 3050 "found a bad mapping, wanted %llu-%llu, found %llu-%llu", 3051 logical, length, em->start, em->start + em->len); 3052 free_extent_map(em); 3053 return ERR_PTR(-EINVAL); 3054 } 3055 3056 /* callers are responsible for dropping em's ref. */ 3057 return em; 3058 } 3059 3060 static int remove_chunk_item(struct btrfs_trans_handle *trans, 3061 struct map_lookup *map, u64 chunk_offset) 3062 { 3063 int i; 3064 3065 /* 3066 * Removing chunk items and updating the device items in the chunks btree 3067 * requires holding the chunk_mutex. 3068 * See the comment at btrfs_chunk_alloc() for the details. 3069 */ 3070 lockdep_assert_held(&trans->fs_info->chunk_mutex); 3071 3072 for (i = 0; i < map->num_stripes; i++) { 3073 int ret; 3074 3075 ret = btrfs_update_device(trans, map->stripes[i].dev); 3076 if (ret) 3077 return ret; 3078 } 3079 3080 return btrfs_free_chunk(trans, chunk_offset); 3081 } 3082 3083 int btrfs_remove_chunk(struct btrfs_trans_handle *trans, u64 chunk_offset) 3084 { 3085 struct btrfs_fs_info *fs_info = trans->fs_info; 3086 struct extent_map *em; 3087 struct map_lookup *map; 3088 u64 dev_extent_len = 0; 3089 int i, ret = 0; 3090 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3091 3092 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 3093 if (IS_ERR(em)) { 3094 /* 3095 * This is a logic error, but we don't want to just rely on the 3096 * user having built with ASSERT enabled, so if ASSERT doesn't 3097 * do anything we still error out. 3098 */ 3099 ASSERT(0); 3100 return PTR_ERR(em); 3101 } 3102 map = em->map_lookup; 3103 3104 /* 3105 * First delete the device extent items from the devices btree. 3106 * We take the device_list_mutex to avoid racing with the finishing phase 3107 * of a device replace operation. See the comment below before acquiring 3108 * fs_info->chunk_mutex. Note that here we do not acquire the chunk_mutex 3109 * because that can result in a deadlock when deleting the device extent 3110 * items from the devices btree - COWing an extent buffer from the btree 3111 * may result in allocating a new metadata chunk, which would attempt to 3112 * lock again fs_info->chunk_mutex. 3113 */ 3114 mutex_lock(&fs_devices->device_list_mutex); 3115 for (i = 0; i < map->num_stripes; i++) { 3116 struct btrfs_device *device = map->stripes[i].dev; 3117 ret = btrfs_free_dev_extent(trans, device, 3118 map->stripes[i].physical, 3119 &dev_extent_len); 3120 if (ret) { 3121 mutex_unlock(&fs_devices->device_list_mutex); 3122 btrfs_abort_transaction(trans, ret); 3123 goto out; 3124 } 3125 3126 if (device->bytes_used > 0) { 3127 mutex_lock(&fs_info->chunk_mutex); 3128 btrfs_device_set_bytes_used(device, 3129 device->bytes_used - dev_extent_len); 3130 atomic64_add(dev_extent_len, &fs_info->free_chunk_space); 3131 btrfs_clear_space_info_full(fs_info); 3132 mutex_unlock(&fs_info->chunk_mutex); 3133 } 3134 } 3135 mutex_unlock(&fs_devices->device_list_mutex); 3136 3137 /* 3138 * We acquire fs_info->chunk_mutex for 2 reasons: 3139 * 3140 * 1) Just like with the first phase of the chunk allocation, we must 3141 * reserve system space, do all chunk btree updates and deletions, and 3142 * update the system chunk array in the superblock while holding this 3143 * mutex. This is for similar reasons as explained on the comment at 3144 * the top of btrfs_chunk_alloc(); 3145 * 3146 * 2) Prevent races with the final phase of a device replace operation 3147 * that replaces the device object associated with the map's stripes, 3148 * because the device object's id can change at any time during that 3149 * final phase of the device replace operation 3150 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 3151 * replaced device and then see it with an ID of 3152 * BTRFS_DEV_REPLACE_DEVID, which would cause a failure when updating 3153 * the device item, which does not exists on the chunk btree. 3154 * The finishing phase of device replace acquires both the 3155 * device_list_mutex and the chunk_mutex, in that order, so we are 3156 * safe by just acquiring the chunk_mutex. 3157 */ 3158 trans->removing_chunk = true; 3159 mutex_lock(&fs_info->chunk_mutex); 3160 3161 check_system_chunk(trans, map->type); 3162 3163 ret = remove_chunk_item(trans, map, chunk_offset); 3164 /* 3165 * Normally we should not get -ENOSPC since we reserved space before 3166 * through the call to check_system_chunk(). 3167 * 3168 * Despite our system space_info having enough free space, we may not 3169 * be able to allocate extents from its block groups, because all have 3170 * an incompatible profile, which will force us to allocate a new system 3171 * block group with the right profile, or right after we called 3172 * check_system_space() above, a scrub turned the only system block group 3173 * with enough free space into RO mode. 3174 * This is explained with more detail at do_chunk_alloc(). 3175 * 3176 * So if we get -ENOSPC, allocate a new system chunk and retry once. 3177 */ 3178 if (ret == -ENOSPC) { 3179 const u64 sys_flags = btrfs_system_alloc_profile(fs_info); 3180 struct btrfs_block_group *sys_bg; 3181 3182 sys_bg = btrfs_create_chunk(trans, sys_flags); 3183 if (IS_ERR(sys_bg)) { 3184 ret = PTR_ERR(sys_bg); 3185 btrfs_abort_transaction(trans, ret); 3186 goto out; 3187 } 3188 3189 ret = btrfs_chunk_alloc_add_chunk_item(trans, sys_bg); 3190 if (ret) { 3191 btrfs_abort_transaction(trans, ret); 3192 goto out; 3193 } 3194 3195 ret = remove_chunk_item(trans, map, chunk_offset); 3196 if (ret) { 3197 btrfs_abort_transaction(trans, ret); 3198 goto out; 3199 } 3200 } else if (ret) { 3201 btrfs_abort_transaction(trans, ret); 3202 goto out; 3203 } 3204 3205 trace_btrfs_chunk_free(fs_info, map, chunk_offset, em->len); 3206 3207 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 3208 ret = btrfs_del_sys_chunk(fs_info, chunk_offset); 3209 if (ret) { 3210 btrfs_abort_transaction(trans, ret); 3211 goto out; 3212 } 3213 } 3214 3215 mutex_unlock(&fs_info->chunk_mutex); 3216 trans->removing_chunk = false; 3217 3218 /* 3219 * We are done with chunk btree updates and deletions, so release the 3220 * system space we previously reserved (with check_system_chunk()). 3221 */ 3222 btrfs_trans_release_chunk_metadata(trans); 3223 3224 ret = btrfs_remove_block_group(trans, chunk_offset, em); 3225 if (ret) { 3226 btrfs_abort_transaction(trans, ret); 3227 goto out; 3228 } 3229 3230 out: 3231 if (trans->removing_chunk) { 3232 mutex_unlock(&fs_info->chunk_mutex); 3233 trans->removing_chunk = false; 3234 } 3235 /* once for us */ 3236 free_extent_map(em); 3237 return ret; 3238 } 3239 3240 int btrfs_relocate_chunk(struct btrfs_fs_info *fs_info, u64 chunk_offset) 3241 { 3242 struct btrfs_root *root = fs_info->chunk_root; 3243 struct btrfs_trans_handle *trans; 3244 struct btrfs_block_group *block_group; 3245 u64 length; 3246 int ret; 3247 3248 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3249 btrfs_err(fs_info, 3250 "relocate: not supported on extent tree v2 yet"); 3251 return -EINVAL; 3252 } 3253 3254 /* 3255 * Prevent races with automatic removal of unused block groups. 3256 * After we relocate and before we remove the chunk with offset 3257 * chunk_offset, automatic removal of the block group can kick in, 3258 * resulting in a failure when calling btrfs_remove_chunk() below. 3259 * 3260 * Make sure to acquire this mutex before doing a tree search (dev 3261 * or chunk trees) to find chunks. Otherwise the cleaner kthread might 3262 * call btrfs_remove_chunk() (through btrfs_delete_unused_bgs()) after 3263 * we release the path used to search the chunk/dev tree and before 3264 * the current task acquires this mutex and calls us. 3265 */ 3266 lockdep_assert_held(&fs_info->reclaim_bgs_lock); 3267 3268 /* step one, relocate all the extents inside this chunk */ 3269 btrfs_scrub_pause(fs_info); 3270 ret = btrfs_relocate_block_group(fs_info, chunk_offset); 3271 btrfs_scrub_continue(fs_info); 3272 if (ret) 3273 return ret; 3274 3275 block_group = btrfs_lookup_block_group(fs_info, chunk_offset); 3276 if (!block_group) 3277 return -ENOENT; 3278 btrfs_discard_cancel_work(&fs_info->discard_ctl, block_group); 3279 length = block_group->length; 3280 btrfs_put_block_group(block_group); 3281 3282 /* 3283 * On a zoned file system, discard the whole block group, this will 3284 * trigger a REQ_OP_ZONE_RESET operation on the device zone. If 3285 * resetting the zone fails, don't treat it as a fatal problem from the 3286 * filesystem's point of view. 3287 */ 3288 if (btrfs_is_zoned(fs_info)) { 3289 ret = btrfs_discard_extent(fs_info, chunk_offset, length, NULL); 3290 if (ret) 3291 btrfs_info(fs_info, 3292 "failed to reset zone %llu after relocation", 3293 chunk_offset); 3294 } 3295 3296 trans = btrfs_start_trans_remove_block_group(root->fs_info, 3297 chunk_offset); 3298 if (IS_ERR(trans)) { 3299 ret = PTR_ERR(trans); 3300 btrfs_handle_fs_error(root->fs_info, ret, NULL); 3301 return ret; 3302 } 3303 3304 /* 3305 * step two, delete the device extents and the 3306 * chunk tree entries 3307 */ 3308 ret = btrfs_remove_chunk(trans, chunk_offset); 3309 btrfs_end_transaction(trans); 3310 return ret; 3311 } 3312 3313 static int btrfs_relocate_sys_chunks(struct btrfs_fs_info *fs_info) 3314 { 3315 struct btrfs_root *chunk_root = fs_info->chunk_root; 3316 struct btrfs_path *path; 3317 struct extent_buffer *leaf; 3318 struct btrfs_chunk *chunk; 3319 struct btrfs_key key; 3320 struct btrfs_key found_key; 3321 u64 chunk_type; 3322 bool retried = false; 3323 int failed = 0; 3324 int ret; 3325 3326 path = btrfs_alloc_path(); 3327 if (!path) 3328 return -ENOMEM; 3329 3330 again: 3331 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3332 key.offset = (u64)-1; 3333 key.type = BTRFS_CHUNK_ITEM_KEY; 3334 3335 while (1) { 3336 mutex_lock(&fs_info->reclaim_bgs_lock); 3337 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3338 if (ret < 0) { 3339 mutex_unlock(&fs_info->reclaim_bgs_lock); 3340 goto error; 3341 } 3342 BUG_ON(ret == 0); /* Corruption */ 3343 3344 ret = btrfs_previous_item(chunk_root, path, key.objectid, 3345 key.type); 3346 if (ret) 3347 mutex_unlock(&fs_info->reclaim_bgs_lock); 3348 if (ret < 0) 3349 goto error; 3350 if (ret > 0) 3351 break; 3352 3353 leaf = path->nodes[0]; 3354 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]); 3355 3356 chunk = btrfs_item_ptr(leaf, path->slots[0], 3357 struct btrfs_chunk); 3358 chunk_type = btrfs_chunk_type(leaf, chunk); 3359 btrfs_release_path(path); 3360 3361 if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) { 3362 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 3363 if (ret == -ENOSPC) 3364 failed++; 3365 else 3366 BUG_ON(ret); 3367 } 3368 mutex_unlock(&fs_info->reclaim_bgs_lock); 3369 3370 if (found_key.offset == 0) 3371 break; 3372 key.offset = found_key.offset - 1; 3373 } 3374 ret = 0; 3375 if (failed && !retried) { 3376 failed = 0; 3377 retried = true; 3378 goto again; 3379 } else if (WARN_ON(failed && retried)) { 3380 ret = -ENOSPC; 3381 } 3382 error: 3383 btrfs_free_path(path); 3384 return ret; 3385 } 3386 3387 /* 3388 * return 1 : allocate a data chunk successfully, 3389 * return <0: errors during allocating a data chunk, 3390 * return 0 : no need to allocate a data chunk. 3391 */ 3392 static int btrfs_may_alloc_data_chunk(struct btrfs_fs_info *fs_info, 3393 u64 chunk_offset) 3394 { 3395 struct btrfs_block_group *cache; 3396 u64 bytes_used; 3397 u64 chunk_type; 3398 3399 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3400 ASSERT(cache); 3401 chunk_type = cache->flags; 3402 btrfs_put_block_group(cache); 3403 3404 if (!(chunk_type & BTRFS_BLOCK_GROUP_DATA)) 3405 return 0; 3406 3407 spin_lock(&fs_info->data_sinfo->lock); 3408 bytes_used = fs_info->data_sinfo->bytes_used; 3409 spin_unlock(&fs_info->data_sinfo->lock); 3410 3411 if (!bytes_used) { 3412 struct btrfs_trans_handle *trans; 3413 int ret; 3414 3415 trans = btrfs_join_transaction(fs_info->tree_root); 3416 if (IS_ERR(trans)) 3417 return PTR_ERR(trans); 3418 3419 ret = btrfs_force_chunk_alloc(trans, BTRFS_BLOCK_GROUP_DATA); 3420 btrfs_end_transaction(trans); 3421 if (ret < 0) 3422 return ret; 3423 return 1; 3424 } 3425 3426 return 0; 3427 } 3428 3429 static int insert_balance_item(struct btrfs_fs_info *fs_info, 3430 struct btrfs_balance_control *bctl) 3431 { 3432 struct btrfs_root *root = fs_info->tree_root; 3433 struct btrfs_trans_handle *trans; 3434 struct btrfs_balance_item *item; 3435 struct btrfs_disk_balance_args disk_bargs; 3436 struct btrfs_path *path; 3437 struct extent_buffer *leaf; 3438 struct btrfs_key key; 3439 int ret, err; 3440 3441 path = btrfs_alloc_path(); 3442 if (!path) 3443 return -ENOMEM; 3444 3445 trans = btrfs_start_transaction(root, 0); 3446 if (IS_ERR(trans)) { 3447 btrfs_free_path(path); 3448 return PTR_ERR(trans); 3449 } 3450 3451 key.objectid = BTRFS_BALANCE_OBJECTID; 3452 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3453 key.offset = 0; 3454 3455 ret = btrfs_insert_empty_item(trans, root, path, &key, 3456 sizeof(*item)); 3457 if (ret) 3458 goto out; 3459 3460 leaf = path->nodes[0]; 3461 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 3462 3463 memzero_extent_buffer(leaf, (unsigned long)item, sizeof(*item)); 3464 3465 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->data); 3466 btrfs_set_balance_data(leaf, item, &disk_bargs); 3467 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->meta); 3468 btrfs_set_balance_meta(leaf, item, &disk_bargs); 3469 btrfs_cpu_balance_args_to_disk(&disk_bargs, &bctl->sys); 3470 btrfs_set_balance_sys(leaf, item, &disk_bargs); 3471 3472 btrfs_set_balance_flags(leaf, item, bctl->flags); 3473 3474 btrfs_mark_buffer_dirty(leaf); 3475 out: 3476 btrfs_free_path(path); 3477 err = btrfs_commit_transaction(trans); 3478 if (err && !ret) 3479 ret = err; 3480 return ret; 3481 } 3482 3483 static int del_balance_item(struct btrfs_fs_info *fs_info) 3484 { 3485 struct btrfs_root *root = fs_info->tree_root; 3486 struct btrfs_trans_handle *trans; 3487 struct btrfs_path *path; 3488 struct btrfs_key key; 3489 int ret, err; 3490 3491 path = btrfs_alloc_path(); 3492 if (!path) 3493 return -ENOMEM; 3494 3495 trans = btrfs_start_transaction_fallback_global_rsv(root, 0); 3496 if (IS_ERR(trans)) { 3497 btrfs_free_path(path); 3498 return PTR_ERR(trans); 3499 } 3500 3501 key.objectid = BTRFS_BALANCE_OBJECTID; 3502 key.type = BTRFS_TEMPORARY_ITEM_KEY; 3503 key.offset = 0; 3504 3505 ret = btrfs_search_slot(trans, root, &key, path, -1, 1); 3506 if (ret < 0) 3507 goto out; 3508 if (ret > 0) { 3509 ret = -ENOENT; 3510 goto out; 3511 } 3512 3513 ret = btrfs_del_item(trans, root, path); 3514 out: 3515 btrfs_free_path(path); 3516 err = btrfs_commit_transaction(trans); 3517 if (err && !ret) 3518 ret = err; 3519 return ret; 3520 } 3521 3522 /* 3523 * This is a heuristic used to reduce the number of chunks balanced on 3524 * resume after balance was interrupted. 3525 */ 3526 static void update_balance_args(struct btrfs_balance_control *bctl) 3527 { 3528 /* 3529 * Turn on soft mode for chunk types that were being converted. 3530 */ 3531 if (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) 3532 bctl->data.flags |= BTRFS_BALANCE_ARGS_SOFT; 3533 if (bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) 3534 bctl->sys.flags |= BTRFS_BALANCE_ARGS_SOFT; 3535 if (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) 3536 bctl->meta.flags |= BTRFS_BALANCE_ARGS_SOFT; 3537 3538 /* 3539 * Turn on usage filter if is not already used. The idea is 3540 * that chunks that we have already balanced should be 3541 * reasonably full. Don't do it for chunks that are being 3542 * converted - that will keep us from relocating unconverted 3543 * (albeit full) chunks. 3544 */ 3545 if (!(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE) && 3546 !(bctl->data.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3547 !(bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3548 bctl->data.flags |= BTRFS_BALANCE_ARGS_USAGE; 3549 bctl->data.usage = 90; 3550 } 3551 if (!(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE) && 3552 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3553 !(bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3554 bctl->sys.flags |= BTRFS_BALANCE_ARGS_USAGE; 3555 bctl->sys.usage = 90; 3556 } 3557 if (!(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE) && 3558 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3559 !(bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT)) { 3560 bctl->meta.flags |= BTRFS_BALANCE_ARGS_USAGE; 3561 bctl->meta.usage = 90; 3562 } 3563 } 3564 3565 /* 3566 * Clear the balance status in fs_info and delete the balance item from disk. 3567 */ 3568 static void reset_balance_state(struct btrfs_fs_info *fs_info) 3569 { 3570 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3571 int ret; 3572 3573 BUG_ON(!fs_info->balance_ctl); 3574 3575 spin_lock(&fs_info->balance_lock); 3576 fs_info->balance_ctl = NULL; 3577 spin_unlock(&fs_info->balance_lock); 3578 3579 kfree(bctl); 3580 ret = del_balance_item(fs_info); 3581 if (ret) 3582 btrfs_handle_fs_error(fs_info, ret, NULL); 3583 } 3584 3585 /* 3586 * Balance filters. Return 1 if chunk should be filtered out 3587 * (should not be balanced). 3588 */ 3589 static int chunk_profiles_filter(u64 chunk_type, 3590 struct btrfs_balance_args *bargs) 3591 { 3592 chunk_type = chunk_to_extended(chunk_type) & 3593 BTRFS_EXTENDED_PROFILE_MASK; 3594 3595 if (bargs->profiles & chunk_type) 3596 return 0; 3597 3598 return 1; 3599 } 3600 3601 static int chunk_usage_range_filter(struct btrfs_fs_info *fs_info, u64 chunk_offset, 3602 struct btrfs_balance_args *bargs) 3603 { 3604 struct btrfs_block_group *cache; 3605 u64 chunk_used; 3606 u64 user_thresh_min; 3607 u64 user_thresh_max; 3608 int ret = 1; 3609 3610 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3611 chunk_used = cache->used; 3612 3613 if (bargs->usage_min == 0) 3614 user_thresh_min = 0; 3615 else 3616 user_thresh_min = div_factor_fine(cache->length, 3617 bargs->usage_min); 3618 3619 if (bargs->usage_max == 0) 3620 user_thresh_max = 1; 3621 else if (bargs->usage_max > 100) 3622 user_thresh_max = cache->length; 3623 else 3624 user_thresh_max = div_factor_fine(cache->length, 3625 bargs->usage_max); 3626 3627 if (user_thresh_min <= chunk_used && chunk_used < user_thresh_max) 3628 ret = 0; 3629 3630 btrfs_put_block_group(cache); 3631 return ret; 3632 } 3633 3634 static int chunk_usage_filter(struct btrfs_fs_info *fs_info, 3635 u64 chunk_offset, struct btrfs_balance_args *bargs) 3636 { 3637 struct btrfs_block_group *cache; 3638 u64 chunk_used, user_thresh; 3639 int ret = 1; 3640 3641 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3642 chunk_used = cache->used; 3643 3644 if (bargs->usage_min == 0) 3645 user_thresh = 1; 3646 else if (bargs->usage > 100) 3647 user_thresh = cache->length; 3648 else 3649 user_thresh = div_factor_fine(cache->length, bargs->usage); 3650 3651 if (chunk_used < user_thresh) 3652 ret = 0; 3653 3654 btrfs_put_block_group(cache); 3655 return ret; 3656 } 3657 3658 static int chunk_devid_filter(struct extent_buffer *leaf, 3659 struct btrfs_chunk *chunk, 3660 struct btrfs_balance_args *bargs) 3661 { 3662 struct btrfs_stripe *stripe; 3663 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3664 int i; 3665 3666 for (i = 0; i < num_stripes; i++) { 3667 stripe = btrfs_stripe_nr(chunk, i); 3668 if (btrfs_stripe_devid(leaf, stripe) == bargs->devid) 3669 return 0; 3670 } 3671 3672 return 1; 3673 } 3674 3675 static u64 calc_data_stripes(u64 type, int num_stripes) 3676 { 3677 const int index = btrfs_bg_flags_to_raid_index(type); 3678 const int ncopies = btrfs_raid_array[index].ncopies; 3679 const int nparity = btrfs_raid_array[index].nparity; 3680 3681 return (num_stripes - nparity) / ncopies; 3682 } 3683 3684 /* [pstart, pend) */ 3685 static int chunk_drange_filter(struct extent_buffer *leaf, 3686 struct btrfs_chunk *chunk, 3687 struct btrfs_balance_args *bargs) 3688 { 3689 struct btrfs_stripe *stripe; 3690 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3691 u64 stripe_offset; 3692 u64 stripe_length; 3693 u64 type; 3694 int factor; 3695 int i; 3696 3697 if (!(bargs->flags & BTRFS_BALANCE_ARGS_DEVID)) 3698 return 0; 3699 3700 type = btrfs_chunk_type(leaf, chunk); 3701 factor = calc_data_stripes(type, num_stripes); 3702 3703 for (i = 0; i < num_stripes; i++) { 3704 stripe = btrfs_stripe_nr(chunk, i); 3705 if (btrfs_stripe_devid(leaf, stripe) != bargs->devid) 3706 continue; 3707 3708 stripe_offset = btrfs_stripe_offset(leaf, stripe); 3709 stripe_length = btrfs_chunk_length(leaf, chunk); 3710 stripe_length = div_u64(stripe_length, factor); 3711 3712 if (stripe_offset < bargs->pend && 3713 stripe_offset + stripe_length > bargs->pstart) 3714 return 0; 3715 } 3716 3717 return 1; 3718 } 3719 3720 /* [vstart, vend) */ 3721 static int chunk_vrange_filter(struct extent_buffer *leaf, 3722 struct btrfs_chunk *chunk, 3723 u64 chunk_offset, 3724 struct btrfs_balance_args *bargs) 3725 { 3726 if (chunk_offset < bargs->vend && 3727 chunk_offset + btrfs_chunk_length(leaf, chunk) > bargs->vstart) 3728 /* at least part of the chunk is inside this vrange */ 3729 return 0; 3730 3731 return 1; 3732 } 3733 3734 static int chunk_stripes_range_filter(struct extent_buffer *leaf, 3735 struct btrfs_chunk *chunk, 3736 struct btrfs_balance_args *bargs) 3737 { 3738 int num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 3739 3740 if (bargs->stripes_min <= num_stripes 3741 && num_stripes <= bargs->stripes_max) 3742 return 0; 3743 3744 return 1; 3745 } 3746 3747 static int chunk_soft_convert_filter(u64 chunk_type, 3748 struct btrfs_balance_args *bargs) 3749 { 3750 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 3751 return 0; 3752 3753 chunk_type = chunk_to_extended(chunk_type) & 3754 BTRFS_EXTENDED_PROFILE_MASK; 3755 3756 if (bargs->target == chunk_type) 3757 return 1; 3758 3759 return 0; 3760 } 3761 3762 static int should_balance_chunk(struct extent_buffer *leaf, 3763 struct btrfs_chunk *chunk, u64 chunk_offset) 3764 { 3765 struct btrfs_fs_info *fs_info = leaf->fs_info; 3766 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3767 struct btrfs_balance_args *bargs = NULL; 3768 u64 chunk_type = btrfs_chunk_type(leaf, chunk); 3769 3770 /* type filter */ 3771 if (!((chunk_type & BTRFS_BLOCK_GROUP_TYPE_MASK) & 3772 (bctl->flags & BTRFS_BALANCE_TYPE_MASK))) { 3773 return 0; 3774 } 3775 3776 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3777 bargs = &bctl->data; 3778 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3779 bargs = &bctl->sys; 3780 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3781 bargs = &bctl->meta; 3782 3783 /* profiles filter */ 3784 if ((bargs->flags & BTRFS_BALANCE_ARGS_PROFILES) && 3785 chunk_profiles_filter(chunk_type, bargs)) { 3786 return 0; 3787 } 3788 3789 /* usage filter */ 3790 if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE) && 3791 chunk_usage_filter(fs_info, chunk_offset, bargs)) { 3792 return 0; 3793 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) && 3794 chunk_usage_range_filter(fs_info, chunk_offset, bargs)) { 3795 return 0; 3796 } 3797 3798 /* devid filter */ 3799 if ((bargs->flags & BTRFS_BALANCE_ARGS_DEVID) && 3800 chunk_devid_filter(leaf, chunk, bargs)) { 3801 return 0; 3802 } 3803 3804 /* drange filter, makes sense only with devid filter */ 3805 if ((bargs->flags & BTRFS_BALANCE_ARGS_DRANGE) && 3806 chunk_drange_filter(leaf, chunk, bargs)) { 3807 return 0; 3808 } 3809 3810 /* vrange filter */ 3811 if ((bargs->flags & BTRFS_BALANCE_ARGS_VRANGE) && 3812 chunk_vrange_filter(leaf, chunk, chunk_offset, bargs)) { 3813 return 0; 3814 } 3815 3816 /* stripes filter */ 3817 if ((bargs->flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) && 3818 chunk_stripes_range_filter(leaf, chunk, bargs)) { 3819 return 0; 3820 } 3821 3822 /* soft profile changing mode */ 3823 if ((bargs->flags & BTRFS_BALANCE_ARGS_SOFT) && 3824 chunk_soft_convert_filter(chunk_type, bargs)) { 3825 return 0; 3826 } 3827 3828 /* 3829 * limited by count, must be the last filter 3830 */ 3831 if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT)) { 3832 if (bargs->limit == 0) 3833 return 0; 3834 else 3835 bargs->limit--; 3836 } else if ((bargs->flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE)) { 3837 /* 3838 * Same logic as the 'limit' filter; the minimum cannot be 3839 * determined here because we do not have the global information 3840 * about the count of all chunks that satisfy the filters. 3841 */ 3842 if (bargs->limit_max == 0) 3843 return 0; 3844 else 3845 bargs->limit_max--; 3846 } 3847 3848 return 1; 3849 } 3850 3851 static int __btrfs_balance(struct btrfs_fs_info *fs_info) 3852 { 3853 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3854 struct btrfs_root *chunk_root = fs_info->chunk_root; 3855 u64 chunk_type; 3856 struct btrfs_chunk *chunk; 3857 struct btrfs_path *path = NULL; 3858 struct btrfs_key key; 3859 struct btrfs_key found_key; 3860 struct extent_buffer *leaf; 3861 int slot; 3862 int ret; 3863 int enospc_errors = 0; 3864 bool counting = true; 3865 /* The single value limit and min/max limits use the same bytes in the */ 3866 u64 limit_data = bctl->data.limit; 3867 u64 limit_meta = bctl->meta.limit; 3868 u64 limit_sys = bctl->sys.limit; 3869 u32 count_data = 0; 3870 u32 count_meta = 0; 3871 u32 count_sys = 0; 3872 int chunk_reserved = 0; 3873 3874 path = btrfs_alloc_path(); 3875 if (!path) { 3876 ret = -ENOMEM; 3877 goto error; 3878 } 3879 3880 /* zero out stat counters */ 3881 spin_lock(&fs_info->balance_lock); 3882 memset(&bctl->stat, 0, sizeof(bctl->stat)); 3883 spin_unlock(&fs_info->balance_lock); 3884 again: 3885 if (!counting) { 3886 /* 3887 * The single value limit and min/max limits use the same bytes 3888 * in the 3889 */ 3890 bctl->data.limit = limit_data; 3891 bctl->meta.limit = limit_meta; 3892 bctl->sys.limit = limit_sys; 3893 } 3894 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 3895 key.offset = (u64)-1; 3896 key.type = BTRFS_CHUNK_ITEM_KEY; 3897 3898 while (1) { 3899 if ((!counting && atomic_read(&fs_info->balance_pause_req)) || 3900 atomic_read(&fs_info->balance_cancel_req)) { 3901 ret = -ECANCELED; 3902 goto error; 3903 } 3904 3905 mutex_lock(&fs_info->reclaim_bgs_lock); 3906 ret = btrfs_search_slot(NULL, chunk_root, &key, path, 0, 0); 3907 if (ret < 0) { 3908 mutex_unlock(&fs_info->reclaim_bgs_lock); 3909 goto error; 3910 } 3911 3912 /* 3913 * this shouldn't happen, it means the last relocate 3914 * failed 3915 */ 3916 if (ret == 0) 3917 BUG(); /* FIXME break ? */ 3918 3919 ret = btrfs_previous_item(chunk_root, path, 0, 3920 BTRFS_CHUNK_ITEM_KEY); 3921 if (ret) { 3922 mutex_unlock(&fs_info->reclaim_bgs_lock); 3923 ret = 0; 3924 break; 3925 } 3926 3927 leaf = path->nodes[0]; 3928 slot = path->slots[0]; 3929 btrfs_item_key_to_cpu(leaf, &found_key, slot); 3930 3931 if (found_key.objectid != key.objectid) { 3932 mutex_unlock(&fs_info->reclaim_bgs_lock); 3933 break; 3934 } 3935 3936 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 3937 chunk_type = btrfs_chunk_type(leaf, chunk); 3938 3939 if (!counting) { 3940 spin_lock(&fs_info->balance_lock); 3941 bctl->stat.considered++; 3942 spin_unlock(&fs_info->balance_lock); 3943 } 3944 3945 ret = should_balance_chunk(leaf, chunk, found_key.offset); 3946 3947 btrfs_release_path(path); 3948 if (!ret) { 3949 mutex_unlock(&fs_info->reclaim_bgs_lock); 3950 goto loop; 3951 } 3952 3953 if (counting) { 3954 mutex_unlock(&fs_info->reclaim_bgs_lock); 3955 spin_lock(&fs_info->balance_lock); 3956 bctl->stat.expected++; 3957 spin_unlock(&fs_info->balance_lock); 3958 3959 if (chunk_type & BTRFS_BLOCK_GROUP_DATA) 3960 count_data++; 3961 else if (chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) 3962 count_sys++; 3963 else if (chunk_type & BTRFS_BLOCK_GROUP_METADATA) 3964 count_meta++; 3965 3966 goto loop; 3967 } 3968 3969 /* 3970 * Apply limit_min filter, no need to check if the LIMITS 3971 * filter is used, limit_min is 0 by default 3972 */ 3973 if (((chunk_type & BTRFS_BLOCK_GROUP_DATA) && 3974 count_data < bctl->data.limit_min) 3975 || ((chunk_type & BTRFS_BLOCK_GROUP_METADATA) && 3976 count_meta < bctl->meta.limit_min) 3977 || ((chunk_type & BTRFS_BLOCK_GROUP_SYSTEM) && 3978 count_sys < bctl->sys.limit_min)) { 3979 mutex_unlock(&fs_info->reclaim_bgs_lock); 3980 goto loop; 3981 } 3982 3983 if (!chunk_reserved) { 3984 /* 3985 * We may be relocating the only data chunk we have, 3986 * which could potentially end up with losing data's 3987 * raid profile, so lets allocate an empty one in 3988 * advance. 3989 */ 3990 ret = btrfs_may_alloc_data_chunk(fs_info, 3991 found_key.offset); 3992 if (ret < 0) { 3993 mutex_unlock(&fs_info->reclaim_bgs_lock); 3994 goto error; 3995 } else if (ret == 1) { 3996 chunk_reserved = 1; 3997 } 3998 } 3999 4000 ret = btrfs_relocate_chunk(fs_info, found_key.offset); 4001 mutex_unlock(&fs_info->reclaim_bgs_lock); 4002 if (ret == -ENOSPC) { 4003 enospc_errors++; 4004 } else if (ret == -ETXTBSY) { 4005 btrfs_info(fs_info, 4006 "skipping relocation of block group %llu due to active swapfile", 4007 found_key.offset); 4008 ret = 0; 4009 } else if (ret) { 4010 goto error; 4011 } else { 4012 spin_lock(&fs_info->balance_lock); 4013 bctl->stat.completed++; 4014 spin_unlock(&fs_info->balance_lock); 4015 } 4016 loop: 4017 if (found_key.offset == 0) 4018 break; 4019 key.offset = found_key.offset - 1; 4020 } 4021 4022 if (counting) { 4023 btrfs_release_path(path); 4024 counting = false; 4025 goto again; 4026 } 4027 error: 4028 btrfs_free_path(path); 4029 if (enospc_errors) { 4030 btrfs_info(fs_info, "%d enospc errors during balance", 4031 enospc_errors); 4032 if (!ret) 4033 ret = -ENOSPC; 4034 } 4035 4036 return ret; 4037 } 4038 4039 /* 4040 * See if a given profile is valid and reduced. 4041 * 4042 * @flags: profile to validate 4043 * @extended: if true @flags is treated as an extended profile 4044 */ 4045 static int alloc_profile_is_valid(u64 flags, int extended) 4046 { 4047 u64 mask = (extended ? BTRFS_EXTENDED_PROFILE_MASK : 4048 BTRFS_BLOCK_GROUP_PROFILE_MASK); 4049 4050 flags &= ~BTRFS_BLOCK_GROUP_TYPE_MASK; 4051 4052 /* 1) check that all other bits are zeroed */ 4053 if (flags & ~mask) 4054 return 0; 4055 4056 /* 2) see if profile is reduced */ 4057 if (flags == 0) 4058 return !extended; /* "0" is valid for usual profiles */ 4059 4060 return has_single_bit_set(flags); 4061 } 4062 4063 static inline int balance_need_close(struct btrfs_fs_info *fs_info) 4064 { 4065 /* cancel requested || normal exit path */ 4066 return atomic_read(&fs_info->balance_cancel_req) || 4067 (atomic_read(&fs_info->balance_pause_req) == 0 && 4068 atomic_read(&fs_info->balance_cancel_req) == 0); 4069 } 4070 4071 /* 4072 * Validate target profile against allowed profiles and return true if it's OK. 4073 * Otherwise print the error message and return false. 4074 */ 4075 static inline int validate_convert_profile(struct btrfs_fs_info *fs_info, 4076 const struct btrfs_balance_args *bargs, 4077 u64 allowed, const char *type) 4078 { 4079 if (!(bargs->flags & BTRFS_BALANCE_ARGS_CONVERT)) 4080 return true; 4081 4082 /* Profile is valid and does not have bits outside of the allowed set */ 4083 if (alloc_profile_is_valid(bargs->target, 1) && 4084 (bargs->target & ~allowed) == 0) 4085 return true; 4086 4087 btrfs_err(fs_info, "balance: invalid convert %s profile %s", 4088 type, btrfs_bg_type_to_raid_name(bargs->target)); 4089 return false; 4090 } 4091 4092 /* 4093 * Fill @buf with textual description of balance filter flags @bargs, up to 4094 * @size_buf including the terminating null. The output may be trimmed if it 4095 * does not fit into the provided buffer. 4096 */ 4097 static void describe_balance_args(struct btrfs_balance_args *bargs, char *buf, 4098 u32 size_buf) 4099 { 4100 int ret; 4101 u32 size_bp = size_buf; 4102 char *bp = buf; 4103 u64 flags = bargs->flags; 4104 char tmp_buf[128] = {'\0'}; 4105 4106 if (!flags) 4107 return; 4108 4109 #define CHECK_APPEND_NOARG(a) \ 4110 do { \ 4111 ret = snprintf(bp, size_bp, (a)); \ 4112 if (ret < 0 || ret >= size_bp) \ 4113 goto out_overflow; \ 4114 size_bp -= ret; \ 4115 bp += ret; \ 4116 } while (0) 4117 4118 #define CHECK_APPEND_1ARG(a, v1) \ 4119 do { \ 4120 ret = snprintf(bp, size_bp, (a), (v1)); \ 4121 if (ret < 0 || ret >= size_bp) \ 4122 goto out_overflow; \ 4123 size_bp -= ret; \ 4124 bp += ret; \ 4125 } while (0) 4126 4127 #define CHECK_APPEND_2ARG(a, v1, v2) \ 4128 do { \ 4129 ret = snprintf(bp, size_bp, (a), (v1), (v2)); \ 4130 if (ret < 0 || ret >= size_bp) \ 4131 goto out_overflow; \ 4132 size_bp -= ret; \ 4133 bp += ret; \ 4134 } while (0) 4135 4136 if (flags & BTRFS_BALANCE_ARGS_CONVERT) 4137 CHECK_APPEND_1ARG("convert=%s,", 4138 btrfs_bg_type_to_raid_name(bargs->target)); 4139 4140 if (flags & BTRFS_BALANCE_ARGS_SOFT) 4141 CHECK_APPEND_NOARG("soft,"); 4142 4143 if (flags & BTRFS_BALANCE_ARGS_PROFILES) { 4144 btrfs_describe_block_groups(bargs->profiles, tmp_buf, 4145 sizeof(tmp_buf)); 4146 CHECK_APPEND_1ARG("profiles=%s,", tmp_buf); 4147 } 4148 4149 if (flags & BTRFS_BALANCE_ARGS_USAGE) 4150 CHECK_APPEND_1ARG("usage=%llu,", bargs->usage); 4151 4152 if (flags & BTRFS_BALANCE_ARGS_USAGE_RANGE) 4153 CHECK_APPEND_2ARG("usage=%u..%u,", 4154 bargs->usage_min, bargs->usage_max); 4155 4156 if (flags & BTRFS_BALANCE_ARGS_DEVID) 4157 CHECK_APPEND_1ARG("devid=%llu,", bargs->devid); 4158 4159 if (flags & BTRFS_BALANCE_ARGS_DRANGE) 4160 CHECK_APPEND_2ARG("drange=%llu..%llu,", 4161 bargs->pstart, bargs->pend); 4162 4163 if (flags & BTRFS_BALANCE_ARGS_VRANGE) 4164 CHECK_APPEND_2ARG("vrange=%llu..%llu,", 4165 bargs->vstart, bargs->vend); 4166 4167 if (flags & BTRFS_BALANCE_ARGS_LIMIT) 4168 CHECK_APPEND_1ARG("limit=%llu,", bargs->limit); 4169 4170 if (flags & BTRFS_BALANCE_ARGS_LIMIT_RANGE) 4171 CHECK_APPEND_2ARG("limit=%u..%u,", 4172 bargs->limit_min, bargs->limit_max); 4173 4174 if (flags & BTRFS_BALANCE_ARGS_STRIPES_RANGE) 4175 CHECK_APPEND_2ARG("stripes=%u..%u,", 4176 bargs->stripes_min, bargs->stripes_max); 4177 4178 #undef CHECK_APPEND_2ARG 4179 #undef CHECK_APPEND_1ARG 4180 #undef CHECK_APPEND_NOARG 4181 4182 out_overflow: 4183 4184 if (size_bp < size_buf) 4185 buf[size_buf - size_bp - 1] = '\0'; /* remove last , */ 4186 else 4187 buf[0] = '\0'; 4188 } 4189 4190 static void describe_balance_start_or_resume(struct btrfs_fs_info *fs_info) 4191 { 4192 u32 size_buf = 1024; 4193 char tmp_buf[192] = {'\0'}; 4194 char *buf; 4195 char *bp; 4196 u32 size_bp = size_buf; 4197 int ret; 4198 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4199 4200 buf = kzalloc(size_buf, GFP_KERNEL); 4201 if (!buf) 4202 return; 4203 4204 bp = buf; 4205 4206 #define CHECK_APPEND_1ARG(a, v1) \ 4207 do { \ 4208 ret = snprintf(bp, size_bp, (a), (v1)); \ 4209 if (ret < 0 || ret >= size_bp) \ 4210 goto out_overflow; \ 4211 size_bp -= ret; \ 4212 bp += ret; \ 4213 } while (0) 4214 4215 if (bctl->flags & BTRFS_BALANCE_FORCE) 4216 CHECK_APPEND_1ARG("%s", "-f "); 4217 4218 if (bctl->flags & BTRFS_BALANCE_DATA) { 4219 describe_balance_args(&bctl->data, tmp_buf, sizeof(tmp_buf)); 4220 CHECK_APPEND_1ARG("-d%s ", tmp_buf); 4221 } 4222 4223 if (bctl->flags & BTRFS_BALANCE_METADATA) { 4224 describe_balance_args(&bctl->meta, tmp_buf, sizeof(tmp_buf)); 4225 CHECK_APPEND_1ARG("-m%s ", tmp_buf); 4226 } 4227 4228 if (bctl->flags & BTRFS_BALANCE_SYSTEM) { 4229 describe_balance_args(&bctl->sys, tmp_buf, sizeof(tmp_buf)); 4230 CHECK_APPEND_1ARG("-s%s ", tmp_buf); 4231 } 4232 4233 #undef CHECK_APPEND_1ARG 4234 4235 out_overflow: 4236 4237 if (size_bp < size_buf) 4238 buf[size_buf - size_bp - 1] = '\0'; /* remove last " " */ 4239 btrfs_info(fs_info, "balance: %s %s", 4240 (bctl->flags & BTRFS_BALANCE_RESUME) ? 4241 "resume" : "start", buf); 4242 4243 kfree(buf); 4244 } 4245 4246 /* 4247 * Should be called with balance mutexe held 4248 */ 4249 int btrfs_balance(struct btrfs_fs_info *fs_info, 4250 struct btrfs_balance_control *bctl, 4251 struct btrfs_ioctl_balance_args *bargs) 4252 { 4253 u64 meta_target, data_target; 4254 u64 allowed; 4255 int mixed = 0; 4256 int ret; 4257 u64 num_devices; 4258 unsigned seq; 4259 bool reducing_redundancy; 4260 int i; 4261 4262 if (btrfs_fs_closing(fs_info) || 4263 atomic_read(&fs_info->balance_pause_req) || 4264 btrfs_should_cancel_balance(fs_info)) { 4265 ret = -EINVAL; 4266 goto out; 4267 } 4268 4269 allowed = btrfs_super_incompat_flags(fs_info->super_copy); 4270 if (allowed & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS) 4271 mixed = 1; 4272 4273 /* 4274 * In case of mixed groups both data and meta should be picked, 4275 * and identical options should be given for both of them. 4276 */ 4277 allowed = BTRFS_BALANCE_DATA | BTRFS_BALANCE_METADATA; 4278 if (mixed && (bctl->flags & allowed)) { 4279 if (!(bctl->flags & BTRFS_BALANCE_DATA) || 4280 !(bctl->flags & BTRFS_BALANCE_METADATA) || 4281 memcmp(&bctl->data, &bctl->meta, sizeof(bctl->data))) { 4282 btrfs_err(fs_info, 4283 "balance: mixed groups data and metadata options must be the same"); 4284 ret = -EINVAL; 4285 goto out; 4286 } 4287 } 4288 4289 /* 4290 * rw_devices will not change at the moment, device add/delete/replace 4291 * are exclusive 4292 */ 4293 num_devices = fs_info->fs_devices->rw_devices; 4294 4295 /* 4296 * SINGLE profile on-disk has no profile bit, but in-memory we have a 4297 * special bit for it, to make it easier to distinguish. Thus we need 4298 * to set it manually, or balance would refuse the profile. 4299 */ 4300 allowed = BTRFS_AVAIL_ALLOC_BIT_SINGLE; 4301 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) 4302 if (num_devices >= btrfs_raid_array[i].devs_min) 4303 allowed |= btrfs_raid_array[i].bg_flag; 4304 4305 if (!validate_convert_profile(fs_info, &bctl->data, allowed, "data") || 4306 !validate_convert_profile(fs_info, &bctl->meta, allowed, "metadata") || 4307 !validate_convert_profile(fs_info, &bctl->sys, allowed, "system")) { 4308 ret = -EINVAL; 4309 goto out; 4310 } 4311 4312 /* 4313 * Allow to reduce metadata or system integrity only if force set for 4314 * profiles with redundancy (copies, parity) 4315 */ 4316 allowed = 0; 4317 for (i = 0; i < ARRAY_SIZE(btrfs_raid_array); i++) { 4318 if (btrfs_raid_array[i].ncopies >= 2 || 4319 btrfs_raid_array[i].tolerated_failures >= 1) 4320 allowed |= btrfs_raid_array[i].bg_flag; 4321 } 4322 do { 4323 seq = read_seqbegin(&fs_info->profiles_lock); 4324 4325 if (((bctl->sys.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4326 (fs_info->avail_system_alloc_bits & allowed) && 4327 !(bctl->sys.target & allowed)) || 4328 ((bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) && 4329 (fs_info->avail_metadata_alloc_bits & allowed) && 4330 !(bctl->meta.target & allowed))) 4331 reducing_redundancy = true; 4332 else 4333 reducing_redundancy = false; 4334 4335 /* if we're not converting, the target field is uninitialized */ 4336 meta_target = (bctl->meta.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4337 bctl->meta.target : fs_info->avail_metadata_alloc_bits; 4338 data_target = (bctl->data.flags & BTRFS_BALANCE_ARGS_CONVERT) ? 4339 bctl->data.target : fs_info->avail_data_alloc_bits; 4340 } while (read_seqretry(&fs_info->profiles_lock, seq)); 4341 4342 if (reducing_redundancy) { 4343 if (bctl->flags & BTRFS_BALANCE_FORCE) { 4344 btrfs_info(fs_info, 4345 "balance: force reducing metadata redundancy"); 4346 } else { 4347 btrfs_err(fs_info, 4348 "balance: reduces metadata redundancy, use --force if you want this"); 4349 ret = -EINVAL; 4350 goto out; 4351 } 4352 } 4353 4354 if (btrfs_get_num_tolerated_disk_barrier_failures(meta_target) < 4355 btrfs_get_num_tolerated_disk_barrier_failures(data_target)) { 4356 btrfs_warn(fs_info, 4357 "balance: metadata profile %s has lower redundancy than data profile %s", 4358 btrfs_bg_type_to_raid_name(meta_target), 4359 btrfs_bg_type_to_raid_name(data_target)); 4360 } 4361 4362 ret = insert_balance_item(fs_info, bctl); 4363 if (ret && ret != -EEXIST) 4364 goto out; 4365 4366 if (!(bctl->flags & BTRFS_BALANCE_RESUME)) { 4367 BUG_ON(ret == -EEXIST); 4368 BUG_ON(fs_info->balance_ctl); 4369 spin_lock(&fs_info->balance_lock); 4370 fs_info->balance_ctl = bctl; 4371 spin_unlock(&fs_info->balance_lock); 4372 } else { 4373 BUG_ON(ret != -EEXIST); 4374 spin_lock(&fs_info->balance_lock); 4375 update_balance_args(bctl); 4376 spin_unlock(&fs_info->balance_lock); 4377 } 4378 4379 ASSERT(!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4380 set_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4381 describe_balance_start_or_resume(fs_info); 4382 mutex_unlock(&fs_info->balance_mutex); 4383 4384 ret = __btrfs_balance(fs_info); 4385 4386 mutex_lock(&fs_info->balance_mutex); 4387 if (ret == -ECANCELED && atomic_read(&fs_info->balance_pause_req)) { 4388 btrfs_info(fs_info, "balance: paused"); 4389 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 4390 } 4391 /* 4392 * Balance can be canceled by: 4393 * 4394 * - Regular cancel request 4395 * Then ret == -ECANCELED and balance_cancel_req > 0 4396 * 4397 * - Fatal signal to "btrfs" process 4398 * Either the signal caught by wait_reserve_ticket() and callers 4399 * got -EINTR, or caught by btrfs_should_cancel_balance() and 4400 * got -ECANCELED. 4401 * Either way, in this case balance_cancel_req = 0, and 4402 * ret == -EINTR or ret == -ECANCELED. 4403 * 4404 * So here we only check the return value to catch canceled balance. 4405 */ 4406 else if (ret == -ECANCELED || ret == -EINTR) 4407 btrfs_info(fs_info, "balance: canceled"); 4408 else 4409 btrfs_info(fs_info, "balance: ended with status: %d", ret); 4410 4411 clear_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags); 4412 4413 if (bargs) { 4414 memset(bargs, 0, sizeof(*bargs)); 4415 btrfs_update_ioctl_balance_args(fs_info, bargs); 4416 } 4417 4418 if ((ret && ret != -ECANCELED && ret != -ENOSPC) || 4419 balance_need_close(fs_info)) { 4420 reset_balance_state(fs_info); 4421 btrfs_exclop_finish(fs_info); 4422 } 4423 4424 wake_up(&fs_info->balance_wait_q); 4425 4426 return ret; 4427 out: 4428 if (bctl->flags & BTRFS_BALANCE_RESUME) 4429 reset_balance_state(fs_info); 4430 else 4431 kfree(bctl); 4432 btrfs_exclop_finish(fs_info); 4433 4434 return ret; 4435 } 4436 4437 static int balance_kthread(void *data) 4438 { 4439 struct btrfs_fs_info *fs_info = data; 4440 int ret = 0; 4441 4442 sb_start_write(fs_info->sb); 4443 mutex_lock(&fs_info->balance_mutex); 4444 if (fs_info->balance_ctl) 4445 ret = btrfs_balance(fs_info, fs_info->balance_ctl, NULL); 4446 mutex_unlock(&fs_info->balance_mutex); 4447 sb_end_write(fs_info->sb); 4448 4449 return ret; 4450 } 4451 4452 int btrfs_resume_balance_async(struct btrfs_fs_info *fs_info) 4453 { 4454 struct task_struct *tsk; 4455 4456 mutex_lock(&fs_info->balance_mutex); 4457 if (!fs_info->balance_ctl) { 4458 mutex_unlock(&fs_info->balance_mutex); 4459 return 0; 4460 } 4461 mutex_unlock(&fs_info->balance_mutex); 4462 4463 if (btrfs_test_opt(fs_info, SKIP_BALANCE)) { 4464 btrfs_info(fs_info, "balance: resume skipped"); 4465 return 0; 4466 } 4467 4468 spin_lock(&fs_info->super_lock); 4469 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 4470 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 4471 spin_unlock(&fs_info->super_lock); 4472 /* 4473 * A ro->rw remount sequence should continue with the paused balance 4474 * regardless of who pauses it, system or the user as of now, so set 4475 * the resume flag. 4476 */ 4477 spin_lock(&fs_info->balance_lock); 4478 fs_info->balance_ctl->flags |= BTRFS_BALANCE_RESUME; 4479 spin_unlock(&fs_info->balance_lock); 4480 4481 tsk = kthread_run(balance_kthread, fs_info, "btrfs-balance"); 4482 return PTR_ERR_OR_ZERO(tsk); 4483 } 4484 4485 int btrfs_recover_balance(struct btrfs_fs_info *fs_info) 4486 { 4487 struct btrfs_balance_control *bctl; 4488 struct btrfs_balance_item *item; 4489 struct btrfs_disk_balance_args disk_bargs; 4490 struct btrfs_path *path; 4491 struct extent_buffer *leaf; 4492 struct btrfs_key key; 4493 int ret; 4494 4495 path = btrfs_alloc_path(); 4496 if (!path) 4497 return -ENOMEM; 4498 4499 key.objectid = BTRFS_BALANCE_OBJECTID; 4500 key.type = BTRFS_TEMPORARY_ITEM_KEY; 4501 key.offset = 0; 4502 4503 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 4504 if (ret < 0) 4505 goto out; 4506 if (ret > 0) { /* ret = -ENOENT; */ 4507 ret = 0; 4508 goto out; 4509 } 4510 4511 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4512 if (!bctl) { 4513 ret = -ENOMEM; 4514 goto out; 4515 } 4516 4517 leaf = path->nodes[0]; 4518 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_balance_item); 4519 4520 bctl->flags = btrfs_balance_flags(leaf, item); 4521 bctl->flags |= BTRFS_BALANCE_RESUME; 4522 4523 btrfs_balance_data(leaf, item, &disk_bargs); 4524 btrfs_disk_balance_args_to_cpu(&bctl->data, &disk_bargs); 4525 btrfs_balance_meta(leaf, item, &disk_bargs); 4526 btrfs_disk_balance_args_to_cpu(&bctl->meta, &disk_bargs); 4527 btrfs_balance_sys(leaf, item, &disk_bargs); 4528 btrfs_disk_balance_args_to_cpu(&bctl->sys, &disk_bargs); 4529 4530 /* 4531 * This should never happen, as the paused balance state is recovered 4532 * during mount without any chance of other exclusive ops to collide. 4533 * 4534 * This gives the exclusive op status to balance and keeps in paused 4535 * state until user intervention (cancel or umount). If the ownership 4536 * cannot be assigned, show a message but do not fail. The balance 4537 * is in a paused state and must have fs_info::balance_ctl properly 4538 * set up. 4539 */ 4540 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED)) 4541 btrfs_warn(fs_info, 4542 "balance: cannot set exclusive op status, resume manually"); 4543 4544 btrfs_release_path(path); 4545 4546 mutex_lock(&fs_info->balance_mutex); 4547 BUG_ON(fs_info->balance_ctl); 4548 spin_lock(&fs_info->balance_lock); 4549 fs_info->balance_ctl = bctl; 4550 spin_unlock(&fs_info->balance_lock); 4551 mutex_unlock(&fs_info->balance_mutex); 4552 out: 4553 btrfs_free_path(path); 4554 return ret; 4555 } 4556 4557 int btrfs_pause_balance(struct btrfs_fs_info *fs_info) 4558 { 4559 int ret = 0; 4560 4561 mutex_lock(&fs_info->balance_mutex); 4562 if (!fs_info->balance_ctl) { 4563 mutex_unlock(&fs_info->balance_mutex); 4564 return -ENOTCONN; 4565 } 4566 4567 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4568 atomic_inc(&fs_info->balance_pause_req); 4569 mutex_unlock(&fs_info->balance_mutex); 4570 4571 wait_event(fs_info->balance_wait_q, 4572 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4573 4574 mutex_lock(&fs_info->balance_mutex); 4575 /* we are good with balance_ctl ripped off from under us */ 4576 BUG_ON(test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4577 atomic_dec(&fs_info->balance_pause_req); 4578 } else { 4579 ret = -ENOTCONN; 4580 } 4581 4582 mutex_unlock(&fs_info->balance_mutex); 4583 return ret; 4584 } 4585 4586 int btrfs_cancel_balance(struct btrfs_fs_info *fs_info) 4587 { 4588 mutex_lock(&fs_info->balance_mutex); 4589 if (!fs_info->balance_ctl) { 4590 mutex_unlock(&fs_info->balance_mutex); 4591 return -ENOTCONN; 4592 } 4593 4594 /* 4595 * A paused balance with the item stored on disk can be resumed at 4596 * mount time if the mount is read-write. Otherwise it's still paused 4597 * and we must not allow cancelling as it deletes the item. 4598 */ 4599 if (sb_rdonly(fs_info->sb)) { 4600 mutex_unlock(&fs_info->balance_mutex); 4601 return -EROFS; 4602 } 4603 4604 atomic_inc(&fs_info->balance_cancel_req); 4605 /* 4606 * if we are running just wait and return, balance item is 4607 * deleted in btrfs_balance in this case 4608 */ 4609 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4610 mutex_unlock(&fs_info->balance_mutex); 4611 wait_event(fs_info->balance_wait_q, 4612 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4613 mutex_lock(&fs_info->balance_mutex); 4614 } else { 4615 mutex_unlock(&fs_info->balance_mutex); 4616 /* 4617 * Lock released to allow other waiters to continue, we'll 4618 * reexamine the status again. 4619 */ 4620 mutex_lock(&fs_info->balance_mutex); 4621 4622 if (fs_info->balance_ctl) { 4623 reset_balance_state(fs_info); 4624 btrfs_exclop_finish(fs_info); 4625 btrfs_info(fs_info, "balance: canceled"); 4626 } 4627 } 4628 4629 BUG_ON(fs_info->balance_ctl || 4630 test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)); 4631 atomic_dec(&fs_info->balance_cancel_req); 4632 mutex_unlock(&fs_info->balance_mutex); 4633 return 0; 4634 } 4635 4636 int btrfs_uuid_scan_kthread(void *data) 4637 { 4638 struct btrfs_fs_info *fs_info = data; 4639 struct btrfs_root *root = fs_info->tree_root; 4640 struct btrfs_key key; 4641 struct btrfs_path *path = NULL; 4642 int ret = 0; 4643 struct extent_buffer *eb; 4644 int slot; 4645 struct btrfs_root_item root_item; 4646 u32 item_size; 4647 struct btrfs_trans_handle *trans = NULL; 4648 bool closing = false; 4649 4650 path = btrfs_alloc_path(); 4651 if (!path) { 4652 ret = -ENOMEM; 4653 goto out; 4654 } 4655 4656 key.objectid = 0; 4657 key.type = BTRFS_ROOT_ITEM_KEY; 4658 key.offset = 0; 4659 4660 while (1) { 4661 if (btrfs_fs_closing(fs_info)) { 4662 closing = true; 4663 break; 4664 } 4665 ret = btrfs_search_forward(root, &key, path, 4666 BTRFS_OLDEST_GENERATION); 4667 if (ret) { 4668 if (ret > 0) 4669 ret = 0; 4670 break; 4671 } 4672 4673 if (key.type != BTRFS_ROOT_ITEM_KEY || 4674 (key.objectid < BTRFS_FIRST_FREE_OBJECTID && 4675 key.objectid != BTRFS_FS_TREE_OBJECTID) || 4676 key.objectid > BTRFS_LAST_FREE_OBJECTID) 4677 goto skip; 4678 4679 eb = path->nodes[0]; 4680 slot = path->slots[0]; 4681 item_size = btrfs_item_size(eb, slot); 4682 if (item_size < sizeof(root_item)) 4683 goto skip; 4684 4685 read_extent_buffer(eb, &root_item, 4686 btrfs_item_ptr_offset(eb, slot), 4687 (int)sizeof(root_item)); 4688 if (btrfs_root_refs(&root_item) == 0) 4689 goto skip; 4690 4691 if (!btrfs_is_empty_uuid(root_item.uuid) || 4692 !btrfs_is_empty_uuid(root_item.received_uuid)) { 4693 if (trans) 4694 goto update_tree; 4695 4696 btrfs_release_path(path); 4697 /* 4698 * 1 - subvol uuid item 4699 * 1 - received_subvol uuid item 4700 */ 4701 trans = btrfs_start_transaction(fs_info->uuid_root, 2); 4702 if (IS_ERR(trans)) { 4703 ret = PTR_ERR(trans); 4704 break; 4705 } 4706 continue; 4707 } else { 4708 goto skip; 4709 } 4710 update_tree: 4711 btrfs_release_path(path); 4712 if (!btrfs_is_empty_uuid(root_item.uuid)) { 4713 ret = btrfs_uuid_tree_add(trans, root_item.uuid, 4714 BTRFS_UUID_KEY_SUBVOL, 4715 key.objectid); 4716 if (ret < 0) { 4717 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4718 ret); 4719 break; 4720 } 4721 } 4722 4723 if (!btrfs_is_empty_uuid(root_item.received_uuid)) { 4724 ret = btrfs_uuid_tree_add(trans, 4725 root_item.received_uuid, 4726 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4727 key.objectid); 4728 if (ret < 0) { 4729 btrfs_warn(fs_info, "uuid_tree_add failed %d", 4730 ret); 4731 break; 4732 } 4733 } 4734 4735 skip: 4736 btrfs_release_path(path); 4737 if (trans) { 4738 ret = btrfs_end_transaction(trans); 4739 trans = NULL; 4740 if (ret) 4741 break; 4742 } 4743 4744 if (key.offset < (u64)-1) { 4745 key.offset++; 4746 } else if (key.type < BTRFS_ROOT_ITEM_KEY) { 4747 key.offset = 0; 4748 key.type = BTRFS_ROOT_ITEM_KEY; 4749 } else if (key.objectid < (u64)-1) { 4750 key.offset = 0; 4751 key.type = BTRFS_ROOT_ITEM_KEY; 4752 key.objectid++; 4753 } else { 4754 break; 4755 } 4756 cond_resched(); 4757 } 4758 4759 out: 4760 btrfs_free_path(path); 4761 if (trans && !IS_ERR(trans)) 4762 btrfs_end_transaction(trans); 4763 if (ret) 4764 btrfs_warn(fs_info, "btrfs_uuid_scan_kthread failed %d", ret); 4765 else if (!closing) 4766 set_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags); 4767 up(&fs_info->uuid_tree_rescan_sem); 4768 return 0; 4769 } 4770 4771 int btrfs_create_uuid_tree(struct btrfs_fs_info *fs_info) 4772 { 4773 struct btrfs_trans_handle *trans; 4774 struct btrfs_root *tree_root = fs_info->tree_root; 4775 struct btrfs_root *uuid_root; 4776 struct task_struct *task; 4777 int ret; 4778 4779 /* 4780 * 1 - root node 4781 * 1 - root item 4782 */ 4783 trans = btrfs_start_transaction(tree_root, 2); 4784 if (IS_ERR(trans)) 4785 return PTR_ERR(trans); 4786 4787 uuid_root = btrfs_create_tree(trans, BTRFS_UUID_TREE_OBJECTID); 4788 if (IS_ERR(uuid_root)) { 4789 ret = PTR_ERR(uuid_root); 4790 btrfs_abort_transaction(trans, ret); 4791 btrfs_end_transaction(trans); 4792 return ret; 4793 } 4794 4795 fs_info->uuid_root = uuid_root; 4796 4797 ret = btrfs_commit_transaction(trans); 4798 if (ret) 4799 return ret; 4800 4801 down(&fs_info->uuid_tree_rescan_sem); 4802 task = kthread_run(btrfs_uuid_scan_kthread, fs_info, "btrfs-uuid"); 4803 if (IS_ERR(task)) { 4804 /* fs_info->update_uuid_tree_gen remains 0 in all error case */ 4805 btrfs_warn(fs_info, "failed to start uuid_scan task"); 4806 up(&fs_info->uuid_tree_rescan_sem); 4807 return PTR_ERR(task); 4808 } 4809 4810 return 0; 4811 } 4812 4813 /* 4814 * shrinking a device means finding all of the device extents past 4815 * the new size, and then following the back refs to the chunks. 4816 * The chunk relocation code actually frees the device extent 4817 */ 4818 int btrfs_shrink_device(struct btrfs_device *device, u64 new_size) 4819 { 4820 struct btrfs_fs_info *fs_info = device->fs_info; 4821 struct btrfs_root *root = fs_info->dev_root; 4822 struct btrfs_trans_handle *trans; 4823 struct btrfs_dev_extent *dev_extent = NULL; 4824 struct btrfs_path *path; 4825 u64 length; 4826 u64 chunk_offset; 4827 int ret; 4828 int slot; 4829 int failed = 0; 4830 bool retried = false; 4831 struct extent_buffer *l; 4832 struct btrfs_key key; 4833 struct btrfs_super_block *super_copy = fs_info->super_copy; 4834 u64 old_total = btrfs_super_total_bytes(super_copy); 4835 u64 old_size = btrfs_device_get_total_bytes(device); 4836 u64 diff; 4837 u64 start; 4838 4839 new_size = round_down(new_size, fs_info->sectorsize); 4840 start = new_size; 4841 diff = round_down(old_size - new_size, fs_info->sectorsize); 4842 4843 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 4844 return -EINVAL; 4845 4846 path = btrfs_alloc_path(); 4847 if (!path) 4848 return -ENOMEM; 4849 4850 path->reada = READA_BACK; 4851 4852 trans = btrfs_start_transaction(root, 0); 4853 if (IS_ERR(trans)) { 4854 btrfs_free_path(path); 4855 return PTR_ERR(trans); 4856 } 4857 4858 mutex_lock(&fs_info->chunk_mutex); 4859 4860 btrfs_device_set_total_bytes(device, new_size); 4861 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 4862 device->fs_devices->total_rw_bytes -= diff; 4863 atomic64_sub(diff, &fs_info->free_chunk_space); 4864 } 4865 4866 /* 4867 * Once the device's size has been set to the new size, ensure all 4868 * in-memory chunks are synced to disk so that the loop below sees them 4869 * and relocates them accordingly. 4870 */ 4871 if (contains_pending_extent(device, &start, diff)) { 4872 mutex_unlock(&fs_info->chunk_mutex); 4873 ret = btrfs_commit_transaction(trans); 4874 if (ret) 4875 goto done; 4876 } else { 4877 mutex_unlock(&fs_info->chunk_mutex); 4878 btrfs_end_transaction(trans); 4879 } 4880 4881 again: 4882 key.objectid = device->devid; 4883 key.offset = (u64)-1; 4884 key.type = BTRFS_DEV_EXTENT_KEY; 4885 4886 do { 4887 mutex_lock(&fs_info->reclaim_bgs_lock); 4888 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 4889 if (ret < 0) { 4890 mutex_unlock(&fs_info->reclaim_bgs_lock); 4891 goto done; 4892 } 4893 4894 ret = btrfs_previous_item(root, path, 0, key.type); 4895 if (ret) { 4896 mutex_unlock(&fs_info->reclaim_bgs_lock); 4897 if (ret < 0) 4898 goto done; 4899 ret = 0; 4900 btrfs_release_path(path); 4901 break; 4902 } 4903 4904 l = path->nodes[0]; 4905 slot = path->slots[0]; 4906 btrfs_item_key_to_cpu(l, &key, path->slots[0]); 4907 4908 if (key.objectid != device->devid) { 4909 mutex_unlock(&fs_info->reclaim_bgs_lock); 4910 btrfs_release_path(path); 4911 break; 4912 } 4913 4914 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 4915 length = btrfs_dev_extent_length(l, dev_extent); 4916 4917 if (key.offset + length <= new_size) { 4918 mutex_unlock(&fs_info->reclaim_bgs_lock); 4919 btrfs_release_path(path); 4920 break; 4921 } 4922 4923 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 4924 btrfs_release_path(path); 4925 4926 /* 4927 * We may be relocating the only data chunk we have, 4928 * which could potentially end up with losing data's 4929 * raid profile, so lets allocate an empty one in 4930 * advance. 4931 */ 4932 ret = btrfs_may_alloc_data_chunk(fs_info, chunk_offset); 4933 if (ret < 0) { 4934 mutex_unlock(&fs_info->reclaim_bgs_lock); 4935 goto done; 4936 } 4937 4938 ret = btrfs_relocate_chunk(fs_info, chunk_offset); 4939 mutex_unlock(&fs_info->reclaim_bgs_lock); 4940 if (ret == -ENOSPC) { 4941 failed++; 4942 } else if (ret) { 4943 if (ret == -ETXTBSY) { 4944 btrfs_warn(fs_info, 4945 "could not shrink block group %llu due to active swapfile", 4946 chunk_offset); 4947 } 4948 goto done; 4949 } 4950 } while (key.offset-- > 0); 4951 4952 if (failed && !retried) { 4953 failed = 0; 4954 retried = true; 4955 goto again; 4956 } else if (failed && retried) { 4957 ret = -ENOSPC; 4958 goto done; 4959 } 4960 4961 /* Shrinking succeeded, else we would be at "done". */ 4962 trans = btrfs_start_transaction(root, 0); 4963 if (IS_ERR(trans)) { 4964 ret = PTR_ERR(trans); 4965 goto done; 4966 } 4967 4968 mutex_lock(&fs_info->chunk_mutex); 4969 /* Clear all state bits beyond the shrunk device size */ 4970 clear_extent_bits(&device->alloc_state, new_size, (u64)-1, 4971 CHUNK_STATE_MASK); 4972 4973 btrfs_device_set_disk_total_bytes(device, new_size); 4974 if (list_empty(&device->post_commit_list)) 4975 list_add_tail(&device->post_commit_list, 4976 &trans->transaction->dev_update_list); 4977 4978 WARN_ON(diff > old_total); 4979 btrfs_set_super_total_bytes(super_copy, 4980 round_down(old_total - diff, fs_info->sectorsize)); 4981 mutex_unlock(&fs_info->chunk_mutex); 4982 4983 btrfs_reserve_chunk_metadata(trans, false); 4984 /* Now btrfs_update_device() will change the on-disk size. */ 4985 ret = btrfs_update_device(trans, device); 4986 btrfs_trans_release_chunk_metadata(trans); 4987 if (ret < 0) { 4988 btrfs_abort_transaction(trans, ret); 4989 btrfs_end_transaction(trans); 4990 } else { 4991 ret = btrfs_commit_transaction(trans); 4992 } 4993 done: 4994 btrfs_free_path(path); 4995 if (ret) { 4996 mutex_lock(&fs_info->chunk_mutex); 4997 btrfs_device_set_total_bytes(device, old_size); 4998 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) 4999 device->fs_devices->total_rw_bytes += diff; 5000 atomic64_add(diff, &fs_info->free_chunk_space); 5001 mutex_unlock(&fs_info->chunk_mutex); 5002 } 5003 return ret; 5004 } 5005 5006 static int btrfs_add_system_chunk(struct btrfs_fs_info *fs_info, 5007 struct btrfs_key *key, 5008 struct btrfs_chunk *chunk, int item_size) 5009 { 5010 struct btrfs_super_block *super_copy = fs_info->super_copy; 5011 struct btrfs_disk_key disk_key; 5012 u32 array_size; 5013 u8 *ptr; 5014 5015 lockdep_assert_held(&fs_info->chunk_mutex); 5016 5017 array_size = btrfs_super_sys_array_size(super_copy); 5018 if (array_size + item_size + sizeof(disk_key) 5019 > BTRFS_SYSTEM_CHUNK_ARRAY_SIZE) 5020 return -EFBIG; 5021 5022 ptr = super_copy->sys_chunk_array + array_size; 5023 btrfs_cpu_key_to_disk(&disk_key, key); 5024 memcpy(ptr, &disk_key, sizeof(disk_key)); 5025 ptr += sizeof(disk_key); 5026 memcpy(ptr, chunk, item_size); 5027 item_size += sizeof(disk_key); 5028 btrfs_set_super_sys_array_size(super_copy, array_size + item_size); 5029 5030 return 0; 5031 } 5032 5033 /* 5034 * sort the devices in descending order by max_avail, total_avail 5035 */ 5036 static int btrfs_cmp_device_info(const void *a, const void *b) 5037 { 5038 const struct btrfs_device_info *di_a = a; 5039 const struct btrfs_device_info *di_b = b; 5040 5041 if (di_a->max_avail > di_b->max_avail) 5042 return -1; 5043 if (di_a->max_avail < di_b->max_avail) 5044 return 1; 5045 if (di_a->total_avail > di_b->total_avail) 5046 return -1; 5047 if (di_a->total_avail < di_b->total_avail) 5048 return 1; 5049 return 0; 5050 } 5051 5052 static void check_raid56_incompat_flag(struct btrfs_fs_info *info, u64 type) 5053 { 5054 if (!(type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5055 return; 5056 5057 btrfs_set_fs_incompat(info, RAID56); 5058 } 5059 5060 static void check_raid1c34_incompat_flag(struct btrfs_fs_info *info, u64 type) 5061 { 5062 if (!(type & (BTRFS_BLOCK_GROUP_RAID1C3 | BTRFS_BLOCK_GROUP_RAID1C4))) 5063 return; 5064 5065 btrfs_set_fs_incompat(info, RAID1C34); 5066 } 5067 5068 /* 5069 * Structure used internally for btrfs_create_chunk() function. 5070 * Wraps needed parameters. 5071 */ 5072 struct alloc_chunk_ctl { 5073 u64 start; 5074 u64 type; 5075 /* Total number of stripes to allocate */ 5076 int num_stripes; 5077 /* sub_stripes info for map */ 5078 int sub_stripes; 5079 /* Stripes per device */ 5080 int dev_stripes; 5081 /* Maximum number of devices to use */ 5082 int devs_max; 5083 /* Minimum number of devices to use */ 5084 int devs_min; 5085 /* ndevs has to be a multiple of this */ 5086 int devs_increment; 5087 /* Number of copies */ 5088 int ncopies; 5089 /* Number of stripes worth of bytes to store parity information */ 5090 int nparity; 5091 u64 max_stripe_size; 5092 u64 max_chunk_size; 5093 u64 dev_extent_min; 5094 u64 stripe_size; 5095 u64 chunk_size; 5096 int ndevs; 5097 }; 5098 5099 static void init_alloc_chunk_ctl_policy_regular( 5100 struct btrfs_fs_devices *fs_devices, 5101 struct alloc_chunk_ctl *ctl) 5102 { 5103 struct btrfs_space_info *space_info; 5104 5105 space_info = btrfs_find_space_info(fs_devices->fs_info, ctl->type); 5106 ASSERT(space_info); 5107 5108 ctl->max_chunk_size = READ_ONCE(space_info->chunk_size); 5109 ctl->max_stripe_size = ctl->max_chunk_size; 5110 5111 if (ctl->type & BTRFS_BLOCK_GROUP_SYSTEM) 5112 ctl->devs_max = min_t(int, ctl->devs_max, BTRFS_MAX_DEVS_SYS_CHUNK); 5113 5114 /* We don't want a chunk larger than 10% of writable space */ 5115 ctl->max_chunk_size = min(div_factor(fs_devices->total_rw_bytes, 1), 5116 ctl->max_chunk_size); 5117 ctl->dev_extent_min = BTRFS_STRIPE_LEN * ctl->dev_stripes; 5118 } 5119 5120 static void init_alloc_chunk_ctl_policy_zoned( 5121 struct btrfs_fs_devices *fs_devices, 5122 struct alloc_chunk_ctl *ctl) 5123 { 5124 u64 zone_size = fs_devices->fs_info->zone_size; 5125 u64 limit; 5126 int min_num_stripes = ctl->devs_min * ctl->dev_stripes; 5127 int min_data_stripes = (min_num_stripes - ctl->nparity) / ctl->ncopies; 5128 u64 min_chunk_size = min_data_stripes * zone_size; 5129 u64 type = ctl->type; 5130 5131 ctl->max_stripe_size = zone_size; 5132 if (type & BTRFS_BLOCK_GROUP_DATA) { 5133 ctl->max_chunk_size = round_down(BTRFS_MAX_DATA_CHUNK_SIZE, 5134 zone_size); 5135 } else if (type & BTRFS_BLOCK_GROUP_METADATA) { 5136 ctl->max_chunk_size = ctl->max_stripe_size; 5137 } else if (type & BTRFS_BLOCK_GROUP_SYSTEM) { 5138 ctl->max_chunk_size = 2 * ctl->max_stripe_size; 5139 ctl->devs_max = min_t(int, ctl->devs_max, 5140 BTRFS_MAX_DEVS_SYS_CHUNK); 5141 } else { 5142 BUG(); 5143 } 5144 5145 /* We don't want a chunk larger than 10% of writable space */ 5146 limit = max(round_down(div_factor(fs_devices->total_rw_bytes, 1), 5147 zone_size), 5148 min_chunk_size); 5149 ctl->max_chunk_size = min(limit, ctl->max_chunk_size); 5150 ctl->dev_extent_min = zone_size * ctl->dev_stripes; 5151 } 5152 5153 static void init_alloc_chunk_ctl(struct btrfs_fs_devices *fs_devices, 5154 struct alloc_chunk_ctl *ctl) 5155 { 5156 int index = btrfs_bg_flags_to_raid_index(ctl->type); 5157 5158 ctl->sub_stripes = btrfs_raid_array[index].sub_stripes; 5159 ctl->dev_stripes = btrfs_raid_array[index].dev_stripes; 5160 ctl->devs_max = btrfs_raid_array[index].devs_max; 5161 if (!ctl->devs_max) 5162 ctl->devs_max = BTRFS_MAX_DEVS(fs_devices->fs_info); 5163 ctl->devs_min = btrfs_raid_array[index].devs_min; 5164 ctl->devs_increment = btrfs_raid_array[index].devs_increment; 5165 ctl->ncopies = btrfs_raid_array[index].ncopies; 5166 ctl->nparity = btrfs_raid_array[index].nparity; 5167 ctl->ndevs = 0; 5168 5169 switch (fs_devices->chunk_alloc_policy) { 5170 case BTRFS_CHUNK_ALLOC_REGULAR: 5171 init_alloc_chunk_ctl_policy_regular(fs_devices, ctl); 5172 break; 5173 case BTRFS_CHUNK_ALLOC_ZONED: 5174 init_alloc_chunk_ctl_policy_zoned(fs_devices, ctl); 5175 break; 5176 default: 5177 BUG(); 5178 } 5179 } 5180 5181 static int gather_device_info(struct btrfs_fs_devices *fs_devices, 5182 struct alloc_chunk_ctl *ctl, 5183 struct btrfs_device_info *devices_info) 5184 { 5185 struct btrfs_fs_info *info = fs_devices->fs_info; 5186 struct btrfs_device *device; 5187 u64 total_avail; 5188 u64 dev_extent_want = ctl->max_stripe_size * ctl->dev_stripes; 5189 int ret; 5190 int ndevs = 0; 5191 u64 max_avail; 5192 u64 dev_offset; 5193 5194 /* 5195 * in the first pass through the devices list, we gather information 5196 * about the available holes on each device. 5197 */ 5198 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) { 5199 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 5200 WARN(1, KERN_ERR 5201 "BTRFS: read-only device in alloc_list\n"); 5202 continue; 5203 } 5204 5205 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 5206 &device->dev_state) || 5207 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 5208 continue; 5209 5210 if (device->total_bytes > device->bytes_used) 5211 total_avail = device->total_bytes - device->bytes_used; 5212 else 5213 total_avail = 0; 5214 5215 /* If there is no space on this device, skip it. */ 5216 if (total_avail < ctl->dev_extent_min) 5217 continue; 5218 5219 ret = find_free_dev_extent(device, dev_extent_want, &dev_offset, 5220 &max_avail); 5221 if (ret && ret != -ENOSPC) 5222 return ret; 5223 5224 if (ret == 0) 5225 max_avail = dev_extent_want; 5226 5227 if (max_avail < ctl->dev_extent_min) { 5228 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5229 btrfs_debug(info, 5230 "%s: devid %llu has no free space, have=%llu want=%llu", 5231 __func__, device->devid, max_avail, 5232 ctl->dev_extent_min); 5233 continue; 5234 } 5235 5236 if (ndevs == fs_devices->rw_devices) { 5237 WARN(1, "%s: found more than %llu devices\n", 5238 __func__, fs_devices->rw_devices); 5239 break; 5240 } 5241 devices_info[ndevs].dev_offset = dev_offset; 5242 devices_info[ndevs].max_avail = max_avail; 5243 devices_info[ndevs].total_avail = total_avail; 5244 devices_info[ndevs].dev = device; 5245 ++ndevs; 5246 } 5247 ctl->ndevs = ndevs; 5248 5249 /* 5250 * now sort the devices by hole size / available space 5251 */ 5252 sort(devices_info, ndevs, sizeof(struct btrfs_device_info), 5253 btrfs_cmp_device_info, NULL); 5254 5255 return 0; 5256 } 5257 5258 static int decide_stripe_size_regular(struct alloc_chunk_ctl *ctl, 5259 struct btrfs_device_info *devices_info) 5260 { 5261 /* Number of stripes that count for block group size */ 5262 int data_stripes; 5263 5264 /* 5265 * The primary goal is to maximize the number of stripes, so use as 5266 * many devices as possible, even if the stripes are not maximum sized. 5267 * 5268 * The DUP profile stores more than one stripe per device, the 5269 * max_avail is the total size so we have to adjust. 5270 */ 5271 ctl->stripe_size = div_u64(devices_info[ctl->ndevs - 1].max_avail, 5272 ctl->dev_stripes); 5273 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5274 5275 /* This will have to be fixed for RAID1 and RAID10 over more drives */ 5276 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5277 5278 /* 5279 * Use the number of data stripes to figure out how big this chunk is 5280 * really going to be in terms of logical address space, and compare 5281 * that answer with the max chunk size. If it's higher, we try to 5282 * reduce stripe_size. 5283 */ 5284 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5285 /* 5286 * Reduce stripe_size, round it up to a 16MB boundary again and 5287 * then use it, unless it ends up being even bigger than the 5288 * previous value we had already. 5289 */ 5290 ctl->stripe_size = min(round_up(div_u64(ctl->max_chunk_size, 5291 data_stripes), SZ_16M), 5292 ctl->stripe_size); 5293 } 5294 5295 /* Stripe size should not go beyond 1G. */ 5296 ctl->stripe_size = min_t(u64, ctl->stripe_size, SZ_1G); 5297 5298 /* Align to BTRFS_STRIPE_LEN */ 5299 ctl->stripe_size = round_down(ctl->stripe_size, BTRFS_STRIPE_LEN); 5300 ctl->chunk_size = ctl->stripe_size * data_stripes; 5301 5302 return 0; 5303 } 5304 5305 static int decide_stripe_size_zoned(struct alloc_chunk_ctl *ctl, 5306 struct btrfs_device_info *devices_info) 5307 { 5308 u64 zone_size = devices_info[0].dev->zone_info->zone_size; 5309 /* Number of stripes that count for block group size */ 5310 int data_stripes; 5311 5312 /* 5313 * It should hold because: 5314 * dev_extent_min == dev_extent_want == zone_size * dev_stripes 5315 */ 5316 ASSERT(devices_info[ctl->ndevs - 1].max_avail == ctl->dev_extent_min); 5317 5318 ctl->stripe_size = zone_size; 5319 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5320 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5321 5322 /* stripe_size is fixed in zoned filesysmte. Reduce ndevs instead. */ 5323 if (ctl->stripe_size * data_stripes > ctl->max_chunk_size) { 5324 ctl->ndevs = div_u64(div_u64(ctl->max_chunk_size * ctl->ncopies, 5325 ctl->stripe_size) + ctl->nparity, 5326 ctl->dev_stripes); 5327 ctl->num_stripes = ctl->ndevs * ctl->dev_stripes; 5328 data_stripes = (ctl->num_stripes - ctl->nparity) / ctl->ncopies; 5329 ASSERT(ctl->stripe_size * data_stripes <= ctl->max_chunk_size); 5330 } 5331 5332 ctl->chunk_size = ctl->stripe_size * data_stripes; 5333 5334 return 0; 5335 } 5336 5337 static int decide_stripe_size(struct btrfs_fs_devices *fs_devices, 5338 struct alloc_chunk_ctl *ctl, 5339 struct btrfs_device_info *devices_info) 5340 { 5341 struct btrfs_fs_info *info = fs_devices->fs_info; 5342 5343 /* 5344 * Round down to number of usable stripes, devs_increment can be any 5345 * number so we can't use round_down() that requires power of 2, while 5346 * rounddown is safe. 5347 */ 5348 ctl->ndevs = rounddown(ctl->ndevs, ctl->devs_increment); 5349 5350 if (ctl->ndevs < ctl->devs_min) { 5351 if (btrfs_test_opt(info, ENOSPC_DEBUG)) { 5352 btrfs_debug(info, 5353 "%s: not enough devices with free space: have=%d minimum required=%d", 5354 __func__, ctl->ndevs, ctl->devs_min); 5355 } 5356 return -ENOSPC; 5357 } 5358 5359 ctl->ndevs = min(ctl->ndevs, ctl->devs_max); 5360 5361 switch (fs_devices->chunk_alloc_policy) { 5362 case BTRFS_CHUNK_ALLOC_REGULAR: 5363 return decide_stripe_size_regular(ctl, devices_info); 5364 case BTRFS_CHUNK_ALLOC_ZONED: 5365 return decide_stripe_size_zoned(ctl, devices_info); 5366 default: 5367 BUG(); 5368 } 5369 } 5370 5371 static struct btrfs_block_group *create_chunk(struct btrfs_trans_handle *trans, 5372 struct alloc_chunk_ctl *ctl, 5373 struct btrfs_device_info *devices_info) 5374 { 5375 struct btrfs_fs_info *info = trans->fs_info; 5376 struct map_lookup *map = NULL; 5377 struct extent_map_tree *em_tree; 5378 struct btrfs_block_group *block_group; 5379 struct extent_map *em; 5380 u64 start = ctl->start; 5381 u64 type = ctl->type; 5382 int ret; 5383 int i; 5384 int j; 5385 5386 map = kmalloc(map_lookup_size(ctl->num_stripes), GFP_NOFS); 5387 if (!map) 5388 return ERR_PTR(-ENOMEM); 5389 map->num_stripes = ctl->num_stripes; 5390 5391 for (i = 0; i < ctl->ndevs; ++i) { 5392 for (j = 0; j < ctl->dev_stripes; ++j) { 5393 int s = i * ctl->dev_stripes + j; 5394 map->stripes[s].dev = devices_info[i].dev; 5395 map->stripes[s].physical = devices_info[i].dev_offset + 5396 j * ctl->stripe_size; 5397 } 5398 } 5399 map->stripe_len = BTRFS_STRIPE_LEN; 5400 map->io_align = BTRFS_STRIPE_LEN; 5401 map->io_width = BTRFS_STRIPE_LEN; 5402 map->type = type; 5403 map->sub_stripes = ctl->sub_stripes; 5404 5405 trace_btrfs_chunk_alloc(info, map, start, ctl->chunk_size); 5406 5407 em = alloc_extent_map(); 5408 if (!em) { 5409 kfree(map); 5410 return ERR_PTR(-ENOMEM); 5411 } 5412 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 5413 em->map_lookup = map; 5414 em->start = start; 5415 em->len = ctl->chunk_size; 5416 em->block_start = 0; 5417 em->block_len = em->len; 5418 em->orig_block_len = ctl->stripe_size; 5419 5420 em_tree = &info->mapping_tree; 5421 write_lock(&em_tree->lock); 5422 ret = add_extent_mapping(em_tree, em, 0); 5423 if (ret) { 5424 write_unlock(&em_tree->lock); 5425 free_extent_map(em); 5426 return ERR_PTR(ret); 5427 } 5428 write_unlock(&em_tree->lock); 5429 5430 block_group = btrfs_make_block_group(trans, 0, type, start, ctl->chunk_size); 5431 if (IS_ERR(block_group)) 5432 goto error_del_extent; 5433 5434 for (i = 0; i < map->num_stripes; i++) { 5435 struct btrfs_device *dev = map->stripes[i].dev; 5436 5437 btrfs_device_set_bytes_used(dev, 5438 dev->bytes_used + ctl->stripe_size); 5439 if (list_empty(&dev->post_commit_list)) 5440 list_add_tail(&dev->post_commit_list, 5441 &trans->transaction->dev_update_list); 5442 } 5443 5444 atomic64_sub(ctl->stripe_size * map->num_stripes, 5445 &info->free_chunk_space); 5446 5447 free_extent_map(em); 5448 check_raid56_incompat_flag(info, type); 5449 check_raid1c34_incompat_flag(info, type); 5450 5451 return block_group; 5452 5453 error_del_extent: 5454 write_lock(&em_tree->lock); 5455 remove_extent_mapping(em_tree, em); 5456 write_unlock(&em_tree->lock); 5457 5458 /* One for our allocation */ 5459 free_extent_map(em); 5460 /* One for the tree reference */ 5461 free_extent_map(em); 5462 5463 return block_group; 5464 } 5465 5466 struct btrfs_block_group *btrfs_create_chunk(struct btrfs_trans_handle *trans, 5467 u64 type) 5468 { 5469 struct btrfs_fs_info *info = trans->fs_info; 5470 struct btrfs_fs_devices *fs_devices = info->fs_devices; 5471 struct btrfs_device_info *devices_info = NULL; 5472 struct alloc_chunk_ctl ctl; 5473 struct btrfs_block_group *block_group; 5474 int ret; 5475 5476 lockdep_assert_held(&info->chunk_mutex); 5477 5478 if (!alloc_profile_is_valid(type, 0)) { 5479 ASSERT(0); 5480 return ERR_PTR(-EINVAL); 5481 } 5482 5483 if (list_empty(&fs_devices->alloc_list)) { 5484 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 5485 btrfs_debug(info, "%s: no writable device", __func__); 5486 return ERR_PTR(-ENOSPC); 5487 } 5488 5489 if (!(type & BTRFS_BLOCK_GROUP_TYPE_MASK)) { 5490 btrfs_err(info, "invalid chunk type 0x%llx requested", type); 5491 ASSERT(0); 5492 return ERR_PTR(-EINVAL); 5493 } 5494 5495 ctl.start = find_next_chunk(info); 5496 ctl.type = type; 5497 init_alloc_chunk_ctl(fs_devices, &ctl); 5498 5499 devices_info = kcalloc(fs_devices->rw_devices, sizeof(*devices_info), 5500 GFP_NOFS); 5501 if (!devices_info) 5502 return ERR_PTR(-ENOMEM); 5503 5504 ret = gather_device_info(fs_devices, &ctl, devices_info); 5505 if (ret < 0) { 5506 block_group = ERR_PTR(ret); 5507 goto out; 5508 } 5509 5510 ret = decide_stripe_size(fs_devices, &ctl, devices_info); 5511 if (ret < 0) { 5512 block_group = ERR_PTR(ret); 5513 goto out; 5514 } 5515 5516 block_group = create_chunk(trans, &ctl, devices_info); 5517 5518 out: 5519 kfree(devices_info); 5520 return block_group; 5521 } 5522 5523 /* 5524 * This function, btrfs_chunk_alloc_add_chunk_item(), typically belongs to the 5525 * phase 1 of chunk allocation. It belongs to phase 2 only when allocating system 5526 * chunks. 5527 * 5528 * See the comment at btrfs_chunk_alloc() for details about the chunk allocation 5529 * phases. 5530 */ 5531 int btrfs_chunk_alloc_add_chunk_item(struct btrfs_trans_handle *trans, 5532 struct btrfs_block_group *bg) 5533 { 5534 struct btrfs_fs_info *fs_info = trans->fs_info; 5535 struct btrfs_root *chunk_root = fs_info->chunk_root; 5536 struct btrfs_key key; 5537 struct btrfs_chunk *chunk; 5538 struct btrfs_stripe *stripe; 5539 struct extent_map *em; 5540 struct map_lookup *map; 5541 size_t item_size; 5542 int i; 5543 int ret; 5544 5545 /* 5546 * We take the chunk_mutex for 2 reasons: 5547 * 5548 * 1) Updates and insertions in the chunk btree must be done while holding 5549 * the chunk_mutex, as well as updating the system chunk array in the 5550 * superblock. See the comment on top of btrfs_chunk_alloc() for the 5551 * details; 5552 * 5553 * 2) To prevent races with the final phase of a device replace operation 5554 * that replaces the device object associated with the map's stripes, 5555 * because the device object's id can change at any time during that 5556 * final phase of the device replace operation 5557 * (dev-replace.c:btrfs_dev_replace_finishing()), so we could grab the 5558 * replaced device and then see it with an ID of BTRFS_DEV_REPLACE_DEVID, 5559 * which would cause a failure when updating the device item, which does 5560 * not exists, or persisting a stripe of the chunk item with such ID. 5561 * Here we can't use the device_list_mutex because our caller already 5562 * has locked the chunk_mutex, and the final phase of device replace 5563 * acquires both mutexes - first the device_list_mutex and then the 5564 * chunk_mutex. Using any of those two mutexes protects us from a 5565 * concurrent device replace. 5566 */ 5567 lockdep_assert_held(&fs_info->chunk_mutex); 5568 5569 em = btrfs_get_chunk_map(fs_info, bg->start, bg->length); 5570 if (IS_ERR(em)) { 5571 ret = PTR_ERR(em); 5572 btrfs_abort_transaction(trans, ret); 5573 return ret; 5574 } 5575 5576 map = em->map_lookup; 5577 item_size = btrfs_chunk_item_size(map->num_stripes); 5578 5579 chunk = kzalloc(item_size, GFP_NOFS); 5580 if (!chunk) { 5581 ret = -ENOMEM; 5582 btrfs_abort_transaction(trans, ret); 5583 goto out; 5584 } 5585 5586 for (i = 0; i < map->num_stripes; i++) { 5587 struct btrfs_device *device = map->stripes[i].dev; 5588 5589 ret = btrfs_update_device(trans, device); 5590 if (ret) 5591 goto out; 5592 } 5593 5594 stripe = &chunk->stripe; 5595 for (i = 0; i < map->num_stripes; i++) { 5596 struct btrfs_device *device = map->stripes[i].dev; 5597 const u64 dev_offset = map->stripes[i].physical; 5598 5599 btrfs_set_stack_stripe_devid(stripe, device->devid); 5600 btrfs_set_stack_stripe_offset(stripe, dev_offset); 5601 memcpy(stripe->dev_uuid, device->uuid, BTRFS_UUID_SIZE); 5602 stripe++; 5603 } 5604 5605 btrfs_set_stack_chunk_length(chunk, bg->length); 5606 btrfs_set_stack_chunk_owner(chunk, BTRFS_EXTENT_TREE_OBJECTID); 5607 btrfs_set_stack_chunk_stripe_len(chunk, map->stripe_len); 5608 btrfs_set_stack_chunk_type(chunk, map->type); 5609 btrfs_set_stack_chunk_num_stripes(chunk, map->num_stripes); 5610 btrfs_set_stack_chunk_io_align(chunk, map->stripe_len); 5611 btrfs_set_stack_chunk_io_width(chunk, map->stripe_len); 5612 btrfs_set_stack_chunk_sector_size(chunk, fs_info->sectorsize); 5613 btrfs_set_stack_chunk_sub_stripes(chunk, map->sub_stripes); 5614 5615 key.objectid = BTRFS_FIRST_CHUNK_TREE_OBJECTID; 5616 key.type = BTRFS_CHUNK_ITEM_KEY; 5617 key.offset = bg->start; 5618 5619 ret = btrfs_insert_item(trans, chunk_root, &key, chunk, item_size); 5620 if (ret) 5621 goto out; 5622 5623 set_bit(BLOCK_GROUP_FLAG_CHUNK_ITEM_INSERTED, &bg->runtime_flags); 5624 5625 if (map->type & BTRFS_BLOCK_GROUP_SYSTEM) { 5626 ret = btrfs_add_system_chunk(fs_info, &key, chunk, item_size); 5627 if (ret) 5628 goto out; 5629 } 5630 5631 out: 5632 kfree(chunk); 5633 free_extent_map(em); 5634 return ret; 5635 } 5636 5637 static noinline int init_first_rw_device(struct btrfs_trans_handle *trans) 5638 { 5639 struct btrfs_fs_info *fs_info = trans->fs_info; 5640 u64 alloc_profile; 5641 struct btrfs_block_group *meta_bg; 5642 struct btrfs_block_group *sys_bg; 5643 5644 /* 5645 * When adding a new device for sprouting, the seed device is read-only 5646 * so we must first allocate a metadata and a system chunk. But before 5647 * adding the block group items to the extent, device and chunk btrees, 5648 * we must first: 5649 * 5650 * 1) Create both chunks without doing any changes to the btrees, as 5651 * otherwise we would get -ENOSPC since the block groups from the 5652 * seed device are read-only; 5653 * 5654 * 2) Add the device item for the new sprout device - finishing the setup 5655 * of a new block group requires updating the device item in the chunk 5656 * btree, so it must exist when we attempt to do it. The previous step 5657 * ensures this does not fail with -ENOSPC. 5658 * 5659 * After that we can add the block group items to their btrees: 5660 * update existing device item in the chunk btree, add a new block group 5661 * item to the extent btree, add a new chunk item to the chunk btree and 5662 * finally add the new device extent items to the devices btree. 5663 */ 5664 5665 alloc_profile = btrfs_metadata_alloc_profile(fs_info); 5666 meta_bg = btrfs_create_chunk(trans, alloc_profile); 5667 if (IS_ERR(meta_bg)) 5668 return PTR_ERR(meta_bg); 5669 5670 alloc_profile = btrfs_system_alloc_profile(fs_info); 5671 sys_bg = btrfs_create_chunk(trans, alloc_profile); 5672 if (IS_ERR(sys_bg)) 5673 return PTR_ERR(sys_bg); 5674 5675 return 0; 5676 } 5677 5678 static inline int btrfs_chunk_max_errors(struct map_lookup *map) 5679 { 5680 const int index = btrfs_bg_flags_to_raid_index(map->type); 5681 5682 return btrfs_raid_array[index].tolerated_failures; 5683 } 5684 5685 bool btrfs_chunk_writeable(struct btrfs_fs_info *fs_info, u64 chunk_offset) 5686 { 5687 struct extent_map *em; 5688 struct map_lookup *map; 5689 int miss_ndevs = 0; 5690 int i; 5691 bool ret = true; 5692 5693 em = btrfs_get_chunk_map(fs_info, chunk_offset, 1); 5694 if (IS_ERR(em)) 5695 return false; 5696 5697 map = em->map_lookup; 5698 for (i = 0; i < map->num_stripes; i++) { 5699 if (test_bit(BTRFS_DEV_STATE_MISSING, 5700 &map->stripes[i].dev->dev_state)) { 5701 miss_ndevs++; 5702 continue; 5703 } 5704 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, 5705 &map->stripes[i].dev->dev_state)) { 5706 ret = false; 5707 goto end; 5708 } 5709 } 5710 5711 /* 5712 * If the number of missing devices is larger than max errors, we can 5713 * not write the data into that chunk successfully. 5714 */ 5715 if (miss_ndevs > btrfs_chunk_max_errors(map)) 5716 ret = false; 5717 end: 5718 free_extent_map(em); 5719 return ret; 5720 } 5721 5722 void btrfs_mapping_tree_free(struct extent_map_tree *tree) 5723 { 5724 struct extent_map *em; 5725 5726 while (1) { 5727 write_lock(&tree->lock); 5728 em = lookup_extent_mapping(tree, 0, (u64)-1); 5729 if (em) 5730 remove_extent_mapping(tree, em); 5731 write_unlock(&tree->lock); 5732 if (!em) 5733 break; 5734 /* once for us */ 5735 free_extent_map(em); 5736 /* once for the tree */ 5737 free_extent_map(em); 5738 } 5739 } 5740 5741 int btrfs_num_copies(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5742 { 5743 struct extent_map *em; 5744 struct map_lookup *map; 5745 enum btrfs_raid_types index; 5746 int ret = 1; 5747 5748 em = btrfs_get_chunk_map(fs_info, logical, len); 5749 if (IS_ERR(em)) 5750 /* 5751 * We could return errors for these cases, but that could get 5752 * ugly and we'd probably do the same thing which is just not do 5753 * anything else and exit, so return 1 so the callers don't try 5754 * to use other copies. 5755 */ 5756 return 1; 5757 5758 map = em->map_lookup; 5759 index = btrfs_bg_flags_to_raid_index(map->type); 5760 5761 /* Non-RAID56, use their ncopies from btrfs_raid_array. */ 5762 if (!(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)) 5763 ret = btrfs_raid_array[index].ncopies; 5764 else if (map->type & BTRFS_BLOCK_GROUP_RAID5) 5765 ret = 2; 5766 else if (map->type & BTRFS_BLOCK_GROUP_RAID6) 5767 /* 5768 * There could be two corrupted data stripes, we need 5769 * to loop retry in order to rebuild the correct data. 5770 * 5771 * Fail a stripe at a time on every retry except the 5772 * stripe under reconstruction. 5773 */ 5774 ret = map->num_stripes; 5775 free_extent_map(em); 5776 5777 down_read(&fs_info->dev_replace.rwsem); 5778 if (btrfs_dev_replace_is_ongoing(&fs_info->dev_replace) && 5779 fs_info->dev_replace.tgtdev) 5780 ret++; 5781 up_read(&fs_info->dev_replace.rwsem); 5782 5783 return ret; 5784 } 5785 5786 unsigned long btrfs_full_stripe_len(struct btrfs_fs_info *fs_info, 5787 u64 logical) 5788 { 5789 struct extent_map *em; 5790 struct map_lookup *map; 5791 unsigned long len = fs_info->sectorsize; 5792 5793 if (!btrfs_fs_incompat(fs_info, RAID56)) 5794 return len; 5795 5796 em = btrfs_get_chunk_map(fs_info, logical, len); 5797 5798 if (!WARN_ON(IS_ERR(em))) { 5799 map = em->map_lookup; 5800 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5801 len = map->stripe_len * nr_data_stripes(map); 5802 free_extent_map(em); 5803 } 5804 return len; 5805 } 5806 5807 int btrfs_is_parity_mirror(struct btrfs_fs_info *fs_info, u64 logical, u64 len) 5808 { 5809 struct extent_map *em; 5810 struct map_lookup *map; 5811 int ret = 0; 5812 5813 if (!btrfs_fs_incompat(fs_info, RAID56)) 5814 return 0; 5815 5816 em = btrfs_get_chunk_map(fs_info, logical, len); 5817 5818 if(!WARN_ON(IS_ERR(em))) { 5819 map = em->map_lookup; 5820 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 5821 ret = 1; 5822 free_extent_map(em); 5823 } 5824 return ret; 5825 } 5826 5827 static int find_live_mirror(struct btrfs_fs_info *fs_info, 5828 struct map_lookup *map, int first, 5829 int dev_replace_is_ongoing) 5830 { 5831 int i; 5832 int num_stripes; 5833 int preferred_mirror; 5834 int tolerance; 5835 struct btrfs_device *srcdev; 5836 5837 ASSERT((map->type & 5838 (BTRFS_BLOCK_GROUP_RAID1_MASK | BTRFS_BLOCK_GROUP_RAID10))); 5839 5840 if (map->type & BTRFS_BLOCK_GROUP_RAID10) 5841 num_stripes = map->sub_stripes; 5842 else 5843 num_stripes = map->num_stripes; 5844 5845 switch (fs_info->fs_devices->read_policy) { 5846 default: 5847 /* Shouldn't happen, just warn and use pid instead of failing */ 5848 btrfs_warn_rl(fs_info, 5849 "unknown read_policy type %u, reset to pid", 5850 fs_info->fs_devices->read_policy); 5851 fs_info->fs_devices->read_policy = BTRFS_READ_POLICY_PID; 5852 fallthrough; 5853 case BTRFS_READ_POLICY_PID: 5854 preferred_mirror = first + (current->pid % num_stripes); 5855 break; 5856 } 5857 5858 if (dev_replace_is_ongoing && 5859 fs_info->dev_replace.cont_reading_from_srcdev_mode == 5860 BTRFS_DEV_REPLACE_ITEM_CONT_READING_FROM_SRCDEV_MODE_AVOID) 5861 srcdev = fs_info->dev_replace.srcdev; 5862 else 5863 srcdev = NULL; 5864 5865 /* 5866 * try to avoid the drive that is the source drive for a 5867 * dev-replace procedure, only choose it if no other non-missing 5868 * mirror is available 5869 */ 5870 for (tolerance = 0; tolerance < 2; tolerance++) { 5871 if (map->stripes[preferred_mirror].dev->bdev && 5872 (tolerance || map->stripes[preferred_mirror].dev != srcdev)) 5873 return preferred_mirror; 5874 for (i = first; i < first + num_stripes; i++) { 5875 if (map->stripes[i].dev->bdev && 5876 (tolerance || map->stripes[i].dev != srcdev)) 5877 return i; 5878 } 5879 } 5880 5881 /* we couldn't find one that doesn't fail. Just return something 5882 * and the io error handling code will clean up eventually 5883 */ 5884 return preferred_mirror; 5885 } 5886 5887 /* Bubble-sort the stripe set to put the parity/syndrome stripes last */ 5888 static void sort_parity_stripes(struct btrfs_io_context *bioc, int num_stripes) 5889 { 5890 int i; 5891 int again = 1; 5892 5893 while (again) { 5894 again = 0; 5895 for (i = 0; i < num_stripes - 1; i++) { 5896 /* Swap if parity is on a smaller index */ 5897 if (bioc->raid_map[i] > bioc->raid_map[i + 1]) { 5898 swap(bioc->stripes[i], bioc->stripes[i + 1]); 5899 swap(bioc->raid_map[i], bioc->raid_map[i + 1]); 5900 again = 1; 5901 } 5902 } 5903 } 5904 } 5905 5906 static struct btrfs_io_context *alloc_btrfs_io_context(struct btrfs_fs_info *fs_info, 5907 int total_stripes, 5908 int real_stripes) 5909 { 5910 struct btrfs_io_context *bioc = kzalloc( 5911 /* The size of btrfs_io_context */ 5912 sizeof(struct btrfs_io_context) + 5913 /* Plus the variable array for the stripes */ 5914 sizeof(struct btrfs_io_stripe) * (total_stripes) + 5915 /* Plus the variable array for the tgt dev */ 5916 sizeof(int) * (real_stripes) + 5917 /* 5918 * Plus the raid_map, which includes both the tgt dev 5919 * and the stripes. 5920 */ 5921 sizeof(u64) * (total_stripes), 5922 GFP_NOFS|__GFP_NOFAIL); 5923 5924 refcount_set(&bioc->refs, 1); 5925 5926 bioc->fs_info = fs_info; 5927 bioc->tgtdev_map = (int *)(bioc->stripes + total_stripes); 5928 bioc->raid_map = (u64 *)(bioc->tgtdev_map + real_stripes); 5929 5930 return bioc; 5931 } 5932 5933 void btrfs_get_bioc(struct btrfs_io_context *bioc) 5934 { 5935 WARN_ON(!refcount_read(&bioc->refs)); 5936 refcount_inc(&bioc->refs); 5937 } 5938 5939 void btrfs_put_bioc(struct btrfs_io_context *bioc) 5940 { 5941 if (!bioc) 5942 return; 5943 if (refcount_dec_and_test(&bioc->refs)) 5944 kfree(bioc); 5945 } 5946 5947 /* 5948 * Please note that, discard won't be sent to target device of device 5949 * replace. 5950 */ 5951 struct btrfs_discard_stripe *btrfs_map_discard(struct btrfs_fs_info *fs_info, 5952 u64 logical, u64 *length_ret, 5953 u32 *num_stripes) 5954 { 5955 struct extent_map *em; 5956 struct map_lookup *map; 5957 struct btrfs_discard_stripe *stripes; 5958 u64 length = *length_ret; 5959 u64 offset; 5960 u64 stripe_nr; 5961 u64 stripe_nr_end; 5962 u64 stripe_end_offset; 5963 u64 stripe_cnt; 5964 u64 stripe_len; 5965 u64 stripe_offset; 5966 u32 stripe_index; 5967 u32 factor = 0; 5968 u32 sub_stripes = 0; 5969 u64 stripes_per_dev = 0; 5970 u32 remaining_stripes = 0; 5971 u32 last_stripe = 0; 5972 int ret; 5973 int i; 5974 5975 em = btrfs_get_chunk_map(fs_info, logical, length); 5976 if (IS_ERR(em)) 5977 return ERR_CAST(em); 5978 5979 map = em->map_lookup; 5980 5981 /* we don't discard raid56 yet */ 5982 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 5983 ret = -EOPNOTSUPP; 5984 goto out_free_map; 5985 } 5986 5987 offset = logical - em->start; 5988 length = min_t(u64, em->start + em->len - logical, length); 5989 *length_ret = length; 5990 5991 stripe_len = map->stripe_len; 5992 /* 5993 * stripe_nr counts the total number of stripes we have to stride 5994 * to get to this block 5995 */ 5996 stripe_nr = div64_u64(offset, stripe_len); 5997 5998 /* stripe_offset is the offset of this block in its stripe */ 5999 stripe_offset = offset - stripe_nr * stripe_len; 6000 6001 stripe_nr_end = round_up(offset + length, map->stripe_len); 6002 stripe_nr_end = div64_u64(stripe_nr_end, map->stripe_len); 6003 stripe_cnt = stripe_nr_end - stripe_nr; 6004 stripe_end_offset = stripe_nr_end * map->stripe_len - 6005 (offset + length); 6006 /* 6007 * after this, stripe_nr is the number of stripes on this 6008 * device we have to walk to find the data, and stripe_index is 6009 * the number of our device in the stripe array 6010 */ 6011 *num_stripes = 1; 6012 stripe_index = 0; 6013 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6014 BTRFS_BLOCK_GROUP_RAID10)) { 6015 if (map->type & BTRFS_BLOCK_GROUP_RAID0) 6016 sub_stripes = 1; 6017 else 6018 sub_stripes = map->sub_stripes; 6019 6020 factor = map->num_stripes / sub_stripes; 6021 *num_stripes = min_t(u64, map->num_stripes, 6022 sub_stripes * stripe_cnt); 6023 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6024 stripe_index *= sub_stripes; 6025 stripes_per_dev = div_u64_rem(stripe_cnt, factor, 6026 &remaining_stripes); 6027 div_u64_rem(stripe_nr_end - 1, factor, &last_stripe); 6028 last_stripe *= sub_stripes; 6029 } else if (map->type & (BTRFS_BLOCK_GROUP_RAID1_MASK | 6030 BTRFS_BLOCK_GROUP_DUP)) { 6031 *num_stripes = map->num_stripes; 6032 } else { 6033 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6034 &stripe_index); 6035 } 6036 6037 stripes = kcalloc(*num_stripes, sizeof(*stripes), GFP_NOFS); 6038 if (!stripes) { 6039 ret = -ENOMEM; 6040 goto out_free_map; 6041 } 6042 6043 for (i = 0; i < *num_stripes; i++) { 6044 stripes[i].physical = 6045 map->stripes[stripe_index].physical + 6046 stripe_offset + stripe_nr * map->stripe_len; 6047 stripes[i].dev = map->stripes[stripe_index].dev; 6048 6049 if (map->type & (BTRFS_BLOCK_GROUP_RAID0 | 6050 BTRFS_BLOCK_GROUP_RAID10)) { 6051 stripes[i].length = stripes_per_dev * map->stripe_len; 6052 6053 if (i / sub_stripes < remaining_stripes) 6054 stripes[i].length += map->stripe_len; 6055 6056 /* 6057 * Special for the first stripe and 6058 * the last stripe: 6059 * 6060 * |-------|...|-------| 6061 * |----------| 6062 * off end_off 6063 */ 6064 if (i < sub_stripes) 6065 stripes[i].length -= stripe_offset; 6066 6067 if (stripe_index >= last_stripe && 6068 stripe_index <= (last_stripe + 6069 sub_stripes - 1)) 6070 stripes[i].length -= stripe_end_offset; 6071 6072 if (i == sub_stripes - 1) 6073 stripe_offset = 0; 6074 } else { 6075 stripes[i].length = length; 6076 } 6077 6078 stripe_index++; 6079 if (stripe_index == map->num_stripes) { 6080 stripe_index = 0; 6081 stripe_nr++; 6082 } 6083 } 6084 6085 free_extent_map(em); 6086 return stripes; 6087 out_free_map: 6088 free_extent_map(em); 6089 return ERR_PTR(ret); 6090 } 6091 6092 /* 6093 * In dev-replace case, for repair case (that's the only case where the mirror 6094 * is selected explicitly when calling btrfs_map_block), blocks left of the 6095 * left cursor can also be read from the target drive. 6096 * 6097 * For REQ_GET_READ_MIRRORS, the target drive is added as the last one to the 6098 * array of stripes. 6099 * For READ, it also needs to be supported using the same mirror number. 6100 * 6101 * If the requested block is not left of the left cursor, EIO is returned. This 6102 * can happen because btrfs_num_copies() returns one more in the dev-replace 6103 * case. 6104 */ 6105 static int get_extra_mirror_from_replace(struct btrfs_fs_info *fs_info, 6106 u64 logical, u64 length, 6107 u64 srcdev_devid, int *mirror_num, 6108 u64 *physical) 6109 { 6110 struct btrfs_io_context *bioc = NULL; 6111 int num_stripes; 6112 int index_srcdev = 0; 6113 int found = 0; 6114 u64 physical_of_found = 0; 6115 int i; 6116 int ret = 0; 6117 6118 ret = __btrfs_map_block(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 6119 logical, &length, &bioc, NULL, NULL, 0); 6120 if (ret) { 6121 ASSERT(bioc == NULL); 6122 return ret; 6123 } 6124 6125 num_stripes = bioc->num_stripes; 6126 if (*mirror_num > num_stripes) { 6127 /* 6128 * BTRFS_MAP_GET_READ_MIRRORS does not contain this mirror, 6129 * that means that the requested area is not left of the left 6130 * cursor 6131 */ 6132 btrfs_put_bioc(bioc); 6133 return -EIO; 6134 } 6135 6136 /* 6137 * process the rest of the function using the mirror_num of the source 6138 * drive. Therefore look it up first. At the end, patch the device 6139 * pointer to the one of the target drive. 6140 */ 6141 for (i = 0; i < num_stripes; i++) { 6142 if (bioc->stripes[i].dev->devid != srcdev_devid) 6143 continue; 6144 6145 /* 6146 * In case of DUP, in order to keep it simple, only add the 6147 * mirror with the lowest physical address 6148 */ 6149 if (found && 6150 physical_of_found <= bioc->stripes[i].physical) 6151 continue; 6152 6153 index_srcdev = i; 6154 found = 1; 6155 physical_of_found = bioc->stripes[i].physical; 6156 } 6157 6158 btrfs_put_bioc(bioc); 6159 6160 ASSERT(found); 6161 if (!found) 6162 return -EIO; 6163 6164 *mirror_num = index_srcdev + 1; 6165 *physical = physical_of_found; 6166 return ret; 6167 } 6168 6169 static bool is_block_group_to_copy(struct btrfs_fs_info *fs_info, u64 logical) 6170 { 6171 struct btrfs_block_group *cache; 6172 bool ret; 6173 6174 /* Non zoned filesystem does not use "to_copy" flag */ 6175 if (!btrfs_is_zoned(fs_info)) 6176 return false; 6177 6178 cache = btrfs_lookup_block_group(fs_info, logical); 6179 6180 ret = test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags); 6181 6182 btrfs_put_block_group(cache); 6183 return ret; 6184 } 6185 6186 static void handle_ops_on_dev_replace(enum btrfs_map_op op, 6187 struct btrfs_io_context **bioc_ret, 6188 struct btrfs_dev_replace *dev_replace, 6189 u64 logical, 6190 int *num_stripes_ret, int *max_errors_ret) 6191 { 6192 struct btrfs_io_context *bioc = *bioc_ret; 6193 u64 srcdev_devid = dev_replace->srcdev->devid; 6194 int tgtdev_indexes = 0; 6195 int num_stripes = *num_stripes_ret; 6196 int max_errors = *max_errors_ret; 6197 int i; 6198 6199 if (op == BTRFS_MAP_WRITE) { 6200 int index_where_to_add; 6201 6202 /* 6203 * A block group which have "to_copy" set will eventually 6204 * copied by dev-replace process. We can avoid cloning IO here. 6205 */ 6206 if (is_block_group_to_copy(dev_replace->srcdev->fs_info, logical)) 6207 return; 6208 6209 /* 6210 * duplicate the write operations while the dev replace 6211 * procedure is running. Since the copying of the old disk to 6212 * the new disk takes place at run time while the filesystem is 6213 * mounted writable, the regular write operations to the old 6214 * disk have to be duplicated to go to the new disk as well. 6215 * 6216 * Note that device->missing is handled by the caller, and that 6217 * the write to the old disk is already set up in the stripes 6218 * array. 6219 */ 6220 index_where_to_add = num_stripes; 6221 for (i = 0; i < num_stripes; i++) { 6222 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6223 /* write to new disk, too */ 6224 struct btrfs_io_stripe *new = 6225 bioc->stripes + index_where_to_add; 6226 struct btrfs_io_stripe *old = 6227 bioc->stripes + i; 6228 6229 new->physical = old->physical; 6230 new->dev = dev_replace->tgtdev; 6231 bioc->tgtdev_map[i] = index_where_to_add; 6232 index_where_to_add++; 6233 max_errors++; 6234 tgtdev_indexes++; 6235 } 6236 } 6237 num_stripes = index_where_to_add; 6238 } else if (op == BTRFS_MAP_GET_READ_MIRRORS) { 6239 int index_srcdev = 0; 6240 int found = 0; 6241 u64 physical_of_found = 0; 6242 6243 /* 6244 * During the dev-replace procedure, the target drive can also 6245 * be used to read data in case it is needed to repair a corrupt 6246 * block elsewhere. This is possible if the requested area is 6247 * left of the left cursor. In this area, the target drive is a 6248 * full copy of the source drive. 6249 */ 6250 for (i = 0; i < num_stripes; i++) { 6251 if (bioc->stripes[i].dev->devid == srcdev_devid) { 6252 /* 6253 * In case of DUP, in order to keep it simple, 6254 * only add the mirror with the lowest physical 6255 * address 6256 */ 6257 if (found && 6258 physical_of_found <= bioc->stripes[i].physical) 6259 continue; 6260 index_srcdev = i; 6261 found = 1; 6262 physical_of_found = bioc->stripes[i].physical; 6263 } 6264 } 6265 if (found) { 6266 struct btrfs_io_stripe *tgtdev_stripe = 6267 bioc->stripes + num_stripes; 6268 6269 tgtdev_stripe->physical = physical_of_found; 6270 tgtdev_stripe->dev = dev_replace->tgtdev; 6271 bioc->tgtdev_map[index_srcdev] = num_stripes; 6272 6273 tgtdev_indexes++; 6274 num_stripes++; 6275 } 6276 } 6277 6278 *num_stripes_ret = num_stripes; 6279 *max_errors_ret = max_errors; 6280 bioc->num_tgtdevs = tgtdev_indexes; 6281 *bioc_ret = bioc; 6282 } 6283 6284 static bool need_full_stripe(enum btrfs_map_op op) 6285 { 6286 return (op == BTRFS_MAP_WRITE || op == BTRFS_MAP_GET_READ_MIRRORS); 6287 } 6288 6289 /* 6290 * Calculate the geometry of a particular (address, len) tuple. This 6291 * information is used to calculate how big a particular bio can get before it 6292 * straddles a stripe. 6293 * 6294 * @fs_info: the filesystem 6295 * @em: mapping containing the logical extent 6296 * @op: type of operation - write or read 6297 * @logical: address that we want to figure out the geometry of 6298 * @io_geom: pointer used to return values 6299 * 6300 * Returns < 0 in case a chunk for the given logical address cannot be found, 6301 * usually shouldn't happen unless @logical is corrupted, 0 otherwise. 6302 */ 6303 int btrfs_get_io_geometry(struct btrfs_fs_info *fs_info, struct extent_map *em, 6304 enum btrfs_map_op op, u64 logical, 6305 struct btrfs_io_geometry *io_geom) 6306 { 6307 struct map_lookup *map; 6308 u64 len; 6309 u64 offset; 6310 u64 stripe_offset; 6311 u64 stripe_nr; 6312 u32 stripe_len; 6313 u64 raid56_full_stripe_start = (u64)-1; 6314 int data_stripes; 6315 6316 ASSERT(op != BTRFS_MAP_DISCARD); 6317 6318 map = em->map_lookup; 6319 /* Offset of this logical address in the chunk */ 6320 offset = logical - em->start; 6321 /* Len of a stripe in a chunk */ 6322 stripe_len = map->stripe_len; 6323 /* 6324 * Stripe_nr is where this block falls in 6325 * stripe_offset is the offset of this block in its stripe. 6326 */ 6327 stripe_nr = div64_u64_rem(offset, stripe_len, &stripe_offset); 6328 ASSERT(stripe_offset < U32_MAX); 6329 6330 data_stripes = nr_data_stripes(map); 6331 6332 /* Only stripe based profiles needs to check against stripe length. */ 6333 if (map->type & BTRFS_BLOCK_GROUP_STRIPE_MASK) { 6334 u64 max_len = stripe_len - stripe_offset; 6335 6336 /* 6337 * In case of raid56, we need to know the stripe aligned start 6338 */ 6339 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6340 unsigned long full_stripe_len = stripe_len * data_stripes; 6341 raid56_full_stripe_start = offset; 6342 6343 /* 6344 * Allow a write of a full stripe, but make sure we 6345 * don't allow straddling of stripes 6346 */ 6347 raid56_full_stripe_start = div64_u64(raid56_full_stripe_start, 6348 full_stripe_len); 6349 raid56_full_stripe_start *= full_stripe_len; 6350 6351 /* 6352 * For writes to RAID[56], allow a full stripeset across 6353 * all disks. For other RAID types and for RAID[56] 6354 * reads, just allow a single stripe (on a single disk). 6355 */ 6356 if (op == BTRFS_MAP_WRITE) { 6357 max_len = stripe_len * data_stripes - 6358 (offset - raid56_full_stripe_start); 6359 } 6360 } 6361 len = min_t(u64, em->len - offset, max_len); 6362 } else { 6363 len = em->len - offset; 6364 } 6365 6366 io_geom->len = len; 6367 io_geom->offset = offset; 6368 io_geom->stripe_len = stripe_len; 6369 io_geom->stripe_nr = stripe_nr; 6370 io_geom->stripe_offset = stripe_offset; 6371 io_geom->raid56_stripe_offset = raid56_full_stripe_start; 6372 6373 return 0; 6374 } 6375 6376 static void set_io_stripe(struct btrfs_io_stripe *dst, const struct map_lookup *map, 6377 u32 stripe_index, u64 stripe_offset, u64 stripe_nr) 6378 { 6379 dst->dev = map->stripes[stripe_index].dev; 6380 dst->physical = map->stripes[stripe_index].physical + 6381 stripe_offset + stripe_nr * map->stripe_len; 6382 } 6383 6384 static int __btrfs_map_block(struct btrfs_fs_info *fs_info, 6385 enum btrfs_map_op op, u64 logical, u64 *length, 6386 struct btrfs_io_context **bioc_ret, 6387 struct btrfs_io_stripe *smap, 6388 int *mirror_num_ret, int need_raid_map) 6389 { 6390 struct extent_map *em; 6391 struct map_lookup *map; 6392 u64 stripe_offset; 6393 u64 stripe_nr; 6394 u64 stripe_len; 6395 u32 stripe_index; 6396 int data_stripes; 6397 int i; 6398 int ret = 0; 6399 int mirror_num = (mirror_num_ret ? *mirror_num_ret : 0); 6400 int num_stripes; 6401 int max_errors = 0; 6402 int tgtdev_indexes = 0; 6403 struct btrfs_io_context *bioc = NULL; 6404 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 6405 int dev_replace_is_ongoing = 0; 6406 int num_alloc_stripes; 6407 int patch_the_first_stripe_for_dev_replace = 0; 6408 u64 physical_to_patch_in_first_stripe = 0; 6409 u64 raid56_full_stripe_start = (u64)-1; 6410 struct btrfs_io_geometry geom; 6411 6412 ASSERT(bioc_ret); 6413 ASSERT(op != BTRFS_MAP_DISCARD); 6414 6415 em = btrfs_get_chunk_map(fs_info, logical, *length); 6416 ASSERT(!IS_ERR(em)); 6417 6418 ret = btrfs_get_io_geometry(fs_info, em, op, logical, &geom); 6419 if (ret < 0) 6420 return ret; 6421 6422 map = em->map_lookup; 6423 6424 *length = geom.len; 6425 stripe_len = geom.stripe_len; 6426 stripe_nr = geom.stripe_nr; 6427 stripe_offset = geom.stripe_offset; 6428 raid56_full_stripe_start = geom.raid56_stripe_offset; 6429 data_stripes = nr_data_stripes(map); 6430 6431 down_read(&dev_replace->rwsem); 6432 dev_replace_is_ongoing = btrfs_dev_replace_is_ongoing(dev_replace); 6433 /* 6434 * Hold the semaphore for read during the whole operation, write is 6435 * requested at commit time but must wait. 6436 */ 6437 if (!dev_replace_is_ongoing) 6438 up_read(&dev_replace->rwsem); 6439 6440 if (dev_replace_is_ongoing && mirror_num == map->num_stripes + 1 && 6441 !need_full_stripe(op) && dev_replace->tgtdev != NULL) { 6442 ret = get_extra_mirror_from_replace(fs_info, logical, *length, 6443 dev_replace->srcdev->devid, 6444 &mirror_num, 6445 &physical_to_patch_in_first_stripe); 6446 if (ret) 6447 goto out; 6448 else 6449 patch_the_first_stripe_for_dev_replace = 1; 6450 } else if (mirror_num > map->num_stripes) { 6451 mirror_num = 0; 6452 } 6453 6454 num_stripes = 1; 6455 stripe_index = 0; 6456 if (map->type & BTRFS_BLOCK_GROUP_RAID0) { 6457 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6458 &stripe_index); 6459 if (!need_full_stripe(op)) 6460 mirror_num = 1; 6461 } else if (map->type & BTRFS_BLOCK_GROUP_RAID1_MASK) { 6462 if (need_full_stripe(op)) 6463 num_stripes = map->num_stripes; 6464 else if (mirror_num) 6465 stripe_index = mirror_num - 1; 6466 else { 6467 stripe_index = find_live_mirror(fs_info, map, 0, 6468 dev_replace_is_ongoing); 6469 mirror_num = stripe_index + 1; 6470 } 6471 6472 } else if (map->type & BTRFS_BLOCK_GROUP_DUP) { 6473 if (need_full_stripe(op)) { 6474 num_stripes = map->num_stripes; 6475 } else if (mirror_num) { 6476 stripe_index = mirror_num - 1; 6477 } else { 6478 mirror_num = 1; 6479 } 6480 6481 } else if (map->type & BTRFS_BLOCK_GROUP_RAID10) { 6482 u32 factor = map->num_stripes / map->sub_stripes; 6483 6484 stripe_nr = div_u64_rem(stripe_nr, factor, &stripe_index); 6485 stripe_index *= map->sub_stripes; 6486 6487 if (need_full_stripe(op)) 6488 num_stripes = map->sub_stripes; 6489 else if (mirror_num) 6490 stripe_index += mirror_num - 1; 6491 else { 6492 int old_stripe_index = stripe_index; 6493 stripe_index = find_live_mirror(fs_info, map, 6494 stripe_index, 6495 dev_replace_is_ongoing); 6496 mirror_num = stripe_index - old_stripe_index + 1; 6497 } 6498 6499 } else if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6500 ASSERT(map->stripe_len == BTRFS_STRIPE_LEN); 6501 if (need_raid_map && (need_full_stripe(op) || mirror_num > 1)) { 6502 /* push stripe_nr back to the start of the full stripe */ 6503 stripe_nr = div64_u64(raid56_full_stripe_start, 6504 stripe_len * data_stripes); 6505 6506 /* RAID[56] write or recovery. Return all stripes */ 6507 num_stripes = map->num_stripes; 6508 max_errors = btrfs_chunk_max_errors(map); 6509 6510 /* Return the length to the full stripe end */ 6511 *length = min(logical + *length, 6512 raid56_full_stripe_start + em->start + 6513 data_stripes * stripe_len) - logical; 6514 stripe_index = 0; 6515 stripe_offset = 0; 6516 } else { 6517 /* 6518 * Mirror #0 or #1 means the original data block. 6519 * Mirror #2 is RAID5 parity block. 6520 * Mirror #3 is RAID6 Q block. 6521 */ 6522 stripe_nr = div_u64_rem(stripe_nr, 6523 data_stripes, &stripe_index); 6524 if (mirror_num > 1) 6525 stripe_index = data_stripes + mirror_num - 2; 6526 6527 /* We distribute the parity blocks across stripes */ 6528 div_u64_rem(stripe_nr + stripe_index, map->num_stripes, 6529 &stripe_index); 6530 if (!need_full_stripe(op) && mirror_num <= 1) 6531 mirror_num = 1; 6532 } 6533 } else { 6534 /* 6535 * after this, stripe_nr is the number of stripes on this 6536 * device we have to walk to find the data, and stripe_index is 6537 * the number of our device in the stripe array 6538 */ 6539 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, 6540 &stripe_index); 6541 mirror_num = stripe_index + 1; 6542 } 6543 if (stripe_index >= map->num_stripes) { 6544 btrfs_crit(fs_info, 6545 "stripe index math went horribly wrong, got stripe_index=%u, num_stripes=%u", 6546 stripe_index, map->num_stripes); 6547 ret = -EINVAL; 6548 goto out; 6549 } 6550 6551 num_alloc_stripes = num_stripes; 6552 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL) { 6553 if (op == BTRFS_MAP_WRITE) 6554 num_alloc_stripes <<= 1; 6555 if (op == BTRFS_MAP_GET_READ_MIRRORS) 6556 num_alloc_stripes++; 6557 tgtdev_indexes = num_stripes; 6558 } 6559 6560 /* 6561 * If this I/O maps to a single device, try to return the device and 6562 * physical block information on the stack instead of allocating an 6563 * I/O context structure. 6564 */ 6565 if (smap && num_alloc_stripes == 1 && 6566 !((map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) && mirror_num > 1) && 6567 (!need_full_stripe(op) || !dev_replace_is_ongoing || 6568 !dev_replace->tgtdev)) { 6569 if (patch_the_first_stripe_for_dev_replace) { 6570 smap->dev = dev_replace->tgtdev; 6571 smap->physical = physical_to_patch_in_first_stripe; 6572 *mirror_num_ret = map->num_stripes + 1; 6573 } else { 6574 set_io_stripe(smap, map, stripe_index, stripe_offset, 6575 stripe_nr); 6576 *mirror_num_ret = mirror_num; 6577 } 6578 *bioc_ret = NULL; 6579 ret = 0; 6580 goto out; 6581 } 6582 6583 bioc = alloc_btrfs_io_context(fs_info, num_alloc_stripes, tgtdev_indexes); 6584 if (!bioc) { 6585 ret = -ENOMEM; 6586 goto out; 6587 } 6588 6589 for (i = 0; i < num_stripes; i++) { 6590 set_io_stripe(&bioc->stripes[i], map, stripe_index, stripe_offset, 6591 stripe_nr); 6592 stripe_index++; 6593 } 6594 6595 /* Build raid_map */ 6596 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK && need_raid_map && 6597 (need_full_stripe(op) || mirror_num > 1)) { 6598 u64 tmp; 6599 unsigned rot; 6600 6601 /* Work out the disk rotation on this stripe-set */ 6602 div_u64_rem(stripe_nr, num_stripes, &rot); 6603 6604 /* Fill in the logical address of each stripe */ 6605 tmp = stripe_nr * data_stripes; 6606 for (i = 0; i < data_stripes; i++) 6607 bioc->raid_map[(i + rot) % num_stripes] = 6608 em->start + (tmp + i) * map->stripe_len; 6609 6610 bioc->raid_map[(i + rot) % map->num_stripes] = RAID5_P_STRIPE; 6611 if (map->type & BTRFS_BLOCK_GROUP_RAID6) 6612 bioc->raid_map[(i + rot + 1) % num_stripes] = 6613 RAID6_Q_STRIPE; 6614 6615 sort_parity_stripes(bioc, num_stripes); 6616 } 6617 6618 if (need_full_stripe(op)) 6619 max_errors = btrfs_chunk_max_errors(map); 6620 6621 if (dev_replace_is_ongoing && dev_replace->tgtdev != NULL && 6622 need_full_stripe(op)) { 6623 handle_ops_on_dev_replace(op, &bioc, dev_replace, logical, 6624 &num_stripes, &max_errors); 6625 } 6626 6627 *bioc_ret = bioc; 6628 bioc->map_type = map->type; 6629 bioc->num_stripes = num_stripes; 6630 bioc->max_errors = max_errors; 6631 bioc->mirror_num = mirror_num; 6632 6633 /* 6634 * this is the case that REQ_READ && dev_replace_is_ongoing && 6635 * mirror_num == num_stripes + 1 && dev_replace target drive is 6636 * available as a mirror 6637 */ 6638 if (patch_the_first_stripe_for_dev_replace && num_stripes > 0) { 6639 WARN_ON(num_stripes > 1); 6640 bioc->stripes[0].dev = dev_replace->tgtdev; 6641 bioc->stripes[0].physical = physical_to_patch_in_first_stripe; 6642 bioc->mirror_num = map->num_stripes + 1; 6643 } 6644 out: 6645 if (dev_replace_is_ongoing) { 6646 lockdep_assert_held(&dev_replace->rwsem); 6647 /* Unlock and let waiting writers proceed */ 6648 up_read(&dev_replace->rwsem); 6649 } 6650 free_extent_map(em); 6651 return ret; 6652 } 6653 6654 int btrfs_map_block(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6655 u64 logical, u64 *length, 6656 struct btrfs_io_context **bioc_ret, int mirror_num) 6657 { 6658 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6659 NULL, &mirror_num, 0); 6660 } 6661 6662 /* For Scrub/replace */ 6663 int btrfs_map_sblock(struct btrfs_fs_info *fs_info, enum btrfs_map_op op, 6664 u64 logical, u64 *length, 6665 struct btrfs_io_context **bioc_ret) 6666 { 6667 return __btrfs_map_block(fs_info, op, logical, length, bioc_ret, 6668 NULL, NULL, 1); 6669 } 6670 6671 /* 6672 * Initialize a btrfs_bio structure. This skips the embedded bio itself as it 6673 * is already initialized by the block layer. 6674 */ 6675 static inline void btrfs_bio_init(struct btrfs_bio *bbio, 6676 btrfs_bio_end_io_t end_io, void *private) 6677 { 6678 memset(bbio, 0, offsetof(struct btrfs_bio, bio)); 6679 bbio->end_io = end_io; 6680 bbio->private = private; 6681 } 6682 6683 /* 6684 * Allocate a btrfs_bio structure. The btrfs_bio is the main I/O container for 6685 * btrfs, and is used for all I/O submitted through btrfs_submit_bio. 6686 * 6687 * Just like the underlying bio_alloc_bioset it will not fail as it is backed by 6688 * a mempool. 6689 */ 6690 struct bio *btrfs_bio_alloc(unsigned int nr_vecs, blk_opf_t opf, 6691 btrfs_bio_end_io_t end_io, void *private) 6692 { 6693 struct bio *bio; 6694 6695 bio = bio_alloc_bioset(NULL, nr_vecs, opf, GFP_NOFS, &btrfs_bioset); 6696 btrfs_bio_init(btrfs_bio(bio), end_io, private); 6697 return bio; 6698 } 6699 6700 struct bio *btrfs_bio_clone_partial(struct bio *orig, u64 offset, u64 size, 6701 btrfs_bio_end_io_t end_io, void *private) 6702 { 6703 struct bio *bio; 6704 struct btrfs_bio *bbio; 6705 6706 ASSERT(offset <= UINT_MAX && size <= UINT_MAX); 6707 6708 bio = bio_alloc_clone(orig->bi_bdev, orig, GFP_NOFS, &btrfs_bioset); 6709 bbio = btrfs_bio(bio); 6710 btrfs_bio_init(bbio, end_io, private); 6711 6712 bio_trim(bio, offset >> 9, size >> 9); 6713 bbio->iter = bio->bi_iter; 6714 return bio; 6715 } 6716 6717 static void btrfs_log_dev_io_error(struct bio *bio, struct btrfs_device *dev) 6718 { 6719 if (!dev || !dev->bdev) 6720 return; 6721 if (bio->bi_status != BLK_STS_IOERR && bio->bi_status != BLK_STS_TARGET) 6722 return; 6723 6724 if (btrfs_op(bio) == BTRFS_MAP_WRITE) 6725 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 6726 if (!(bio->bi_opf & REQ_RAHEAD)) 6727 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 6728 if (bio->bi_opf & REQ_PREFLUSH) 6729 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_FLUSH_ERRS); 6730 } 6731 6732 static struct workqueue_struct *btrfs_end_io_wq(struct btrfs_fs_info *fs_info, 6733 struct bio *bio) 6734 { 6735 if (bio->bi_opf & REQ_META) 6736 return fs_info->endio_meta_workers; 6737 return fs_info->endio_workers; 6738 } 6739 6740 static void btrfs_end_bio_work(struct work_struct *work) 6741 { 6742 struct btrfs_bio *bbio = 6743 container_of(work, struct btrfs_bio, end_io_work); 6744 6745 bbio->end_io(bbio); 6746 } 6747 6748 static void btrfs_simple_end_io(struct bio *bio) 6749 { 6750 struct btrfs_fs_info *fs_info = bio->bi_private; 6751 struct btrfs_bio *bbio = btrfs_bio(bio); 6752 6753 btrfs_bio_counter_dec(fs_info); 6754 6755 if (bio->bi_status) 6756 btrfs_log_dev_io_error(bio, bbio->device); 6757 6758 if (bio_op(bio) == REQ_OP_READ) { 6759 INIT_WORK(&bbio->end_io_work, btrfs_end_bio_work); 6760 queue_work(btrfs_end_io_wq(fs_info, bio), &bbio->end_io_work); 6761 } else { 6762 bbio->end_io(bbio); 6763 } 6764 } 6765 6766 static void btrfs_raid56_end_io(struct bio *bio) 6767 { 6768 struct btrfs_io_context *bioc = bio->bi_private; 6769 struct btrfs_bio *bbio = btrfs_bio(bio); 6770 6771 btrfs_bio_counter_dec(bioc->fs_info); 6772 bbio->mirror_num = bioc->mirror_num; 6773 bbio->end_io(bbio); 6774 6775 btrfs_put_bioc(bioc); 6776 } 6777 6778 static void btrfs_orig_write_end_io(struct bio *bio) 6779 { 6780 struct btrfs_io_stripe *stripe = bio->bi_private; 6781 struct btrfs_io_context *bioc = stripe->bioc; 6782 struct btrfs_bio *bbio = btrfs_bio(bio); 6783 6784 btrfs_bio_counter_dec(bioc->fs_info); 6785 6786 if (bio->bi_status) { 6787 atomic_inc(&bioc->error); 6788 btrfs_log_dev_io_error(bio, stripe->dev); 6789 } 6790 6791 /* 6792 * Only send an error to the higher layers if it is beyond the tolerance 6793 * threshold. 6794 */ 6795 if (atomic_read(&bioc->error) > bioc->max_errors) 6796 bio->bi_status = BLK_STS_IOERR; 6797 else 6798 bio->bi_status = BLK_STS_OK; 6799 6800 bbio->end_io(bbio); 6801 btrfs_put_bioc(bioc); 6802 } 6803 6804 static void btrfs_clone_write_end_io(struct bio *bio) 6805 { 6806 struct btrfs_io_stripe *stripe = bio->bi_private; 6807 6808 if (bio->bi_status) { 6809 atomic_inc(&stripe->bioc->error); 6810 btrfs_log_dev_io_error(bio, stripe->dev); 6811 } 6812 6813 /* Pass on control to the original bio this one was cloned from */ 6814 bio_endio(stripe->bioc->orig_bio); 6815 bio_put(bio); 6816 } 6817 6818 static void btrfs_submit_dev_bio(struct btrfs_device *dev, struct bio *bio) 6819 { 6820 if (!dev || !dev->bdev || 6821 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 6822 (btrfs_op(bio) == BTRFS_MAP_WRITE && 6823 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state))) { 6824 bio_io_error(bio); 6825 return; 6826 } 6827 6828 bio_set_dev(bio, dev->bdev); 6829 6830 /* 6831 * For zone append writing, bi_sector must point the beginning of the 6832 * zone 6833 */ 6834 if (bio_op(bio) == REQ_OP_ZONE_APPEND) { 6835 u64 physical = bio->bi_iter.bi_sector << SECTOR_SHIFT; 6836 6837 if (btrfs_dev_is_sequential(dev, physical)) { 6838 u64 zone_start = round_down(physical, 6839 dev->fs_info->zone_size); 6840 6841 bio->bi_iter.bi_sector = zone_start >> SECTOR_SHIFT; 6842 } else { 6843 bio->bi_opf &= ~REQ_OP_ZONE_APPEND; 6844 bio->bi_opf |= REQ_OP_WRITE; 6845 } 6846 } 6847 btrfs_debug_in_rcu(dev->fs_info, 6848 "%s: rw %d 0x%x, sector=%llu, dev=%lu (%s id %llu), size=%u", 6849 __func__, bio_op(bio), bio->bi_opf, bio->bi_iter.bi_sector, 6850 (unsigned long)dev->bdev->bd_dev, rcu_str_deref(dev->name), 6851 dev->devid, bio->bi_iter.bi_size); 6852 6853 btrfsic_check_bio(bio); 6854 submit_bio(bio); 6855 } 6856 6857 static void btrfs_submit_mirrored_bio(struct btrfs_io_context *bioc, int dev_nr) 6858 { 6859 struct bio *orig_bio = bioc->orig_bio, *bio; 6860 6861 ASSERT(bio_op(orig_bio) != REQ_OP_READ); 6862 6863 /* Reuse the bio embedded into the btrfs_bio for the last mirror */ 6864 if (dev_nr == bioc->num_stripes - 1) { 6865 bio = orig_bio; 6866 bio->bi_end_io = btrfs_orig_write_end_io; 6867 } else { 6868 bio = bio_alloc_clone(NULL, orig_bio, GFP_NOFS, &fs_bio_set); 6869 bio_inc_remaining(orig_bio); 6870 bio->bi_end_io = btrfs_clone_write_end_io; 6871 } 6872 6873 bio->bi_private = &bioc->stripes[dev_nr]; 6874 bio->bi_iter.bi_sector = bioc->stripes[dev_nr].physical >> SECTOR_SHIFT; 6875 bioc->stripes[dev_nr].bioc = bioc; 6876 btrfs_submit_dev_bio(bioc->stripes[dev_nr].dev, bio); 6877 } 6878 6879 void btrfs_submit_bio(struct btrfs_fs_info *fs_info, struct bio *bio, int mirror_num) 6880 { 6881 u64 logical = bio->bi_iter.bi_sector << 9; 6882 u64 length = bio->bi_iter.bi_size; 6883 u64 map_length = length; 6884 struct btrfs_io_context *bioc = NULL; 6885 struct btrfs_io_stripe smap; 6886 int ret; 6887 6888 btrfs_bio_counter_inc_blocked(fs_info); 6889 ret = __btrfs_map_block(fs_info, btrfs_op(bio), logical, &map_length, 6890 &bioc, &smap, &mirror_num, 1); 6891 if (ret) { 6892 btrfs_bio_counter_dec(fs_info); 6893 btrfs_bio_end_io(btrfs_bio(bio), errno_to_blk_status(ret)); 6894 return; 6895 } 6896 6897 if (map_length < length) { 6898 btrfs_crit(fs_info, 6899 "mapping failed logical %llu bio len %llu len %llu", 6900 logical, length, map_length); 6901 BUG(); 6902 } 6903 6904 if (!bioc) { 6905 /* Single mirror read/write fast path */ 6906 btrfs_bio(bio)->mirror_num = mirror_num; 6907 btrfs_bio(bio)->device = smap.dev; 6908 bio->bi_iter.bi_sector = smap.physical >> SECTOR_SHIFT; 6909 bio->bi_private = fs_info; 6910 bio->bi_end_io = btrfs_simple_end_io; 6911 btrfs_submit_dev_bio(smap.dev, bio); 6912 } else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 6913 /* Parity RAID write or read recovery */ 6914 bio->bi_private = bioc; 6915 bio->bi_end_io = btrfs_raid56_end_io; 6916 if (bio_op(bio) == REQ_OP_READ) 6917 raid56_parity_recover(bio, bioc, mirror_num); 6918 else 6919 raid56_parity_write(bio, bioc); 6920 } else { 6921 /* Write to multiple mirrors */ 6922 int total_devs = bioc->num_stripes; 6923 int dev_nr; 6924 6925 bioc->orig_bio = bio; 6926 for (dev_nr = 0; dev_nr < total_devs; dev_nr++) 6927 btrfs_submit_mirrored_bio(bioc, dev_nr); 6928 } 6929 } 6930 6931 static bool dev_args_match_fs_devices(const struct btrfs_dev_lookup_args *args, 6932 const struct btrfs_fs_devices *fs_devices) 6933 { 6934 if (args->fsid == NULL) 6935 return true; 6936 if (memcmp(fs_devices->metadata_uuid, args->fsid, BTRFS_FSID_SIZE) == 0) 6937 return true; 6938 return false; 6939 } 6940 6941 static bool dev_args_match_device(const struct btrfs_dev_lookup_args *args, 6942 const struct btrfs_device *device) 6943 { 6944 if (args->missing) { 6945 if (test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state) && 6946 !device->bdev) 6947 return true; 6948 return false; 6949 } 6950 6951 if (device->devid != args->devid) 6952 return false; 6953 if (args->uuid && memcmp(device->uuid, args->uuid, BTRFS_UUID_SIZE) != 0) 6954 return false; 6955 return true; 6956 } 6957 6958 /* 6959 * Find a device specified by @devid or @uuid in the list of @fs_devices, or 6960 * return NULL. 6961 * 6962 * If devid and uuid are both specified, the match must be exact, otherwise 6963 * only devid is used. 6964 */ 6965 struct btrfs_device *btrfs_find_device(const struct btrfs_fs_devices *fs_devices, 6966 const struct btrfs_dev_lookup_args *args) 6967 { 6968 struct btrfs_device *device; 6969 struct btrfs_fs_devices *seed_devs; 6970 6971 if (dev_args_match_fs_devices(args, fs_devices)) { 6972 list_for_each_entry(device, &fs_devices->devices, dev_list) { 6973 if (dev_args_match_device(args, device)) 6974 return device; 6975 } 6976 } 6977 6978 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 6979 if (!dev_args_match_fs_devices(args, seed_devs)) 6980 continue; 6981 list_for_each_entry(device, &seed_devs->devices, dev_list) { 6982 if (dev_args_match_device(args, device)) 6983 return device; 6984 } 6985 } 6986 6987 return NULL; 6988 } 6989 6990 static struct btrfs_device *add_missing_dev(struct btrfs_fs_devices *fs_devices, 6991 u64 devid, u8 *dev_uuid) 6992 { 6993 struct btrfs_device *device; 6994 unsigned int nofs_flag; 6995 6996 /* 6997 * We call this under the chunk_mutex, so we want to use NOFS for this 6998 * allocation, however we don't want to change btrfs_alloc_device() to 6999 * always do NOFS because we use it in a lot of other GFP_KERNEL safe 7000 * places. 7001 */ 7002 nofs_flag = memalloc_nofs_save(); 7003 device = btrfs_alloc_device(NULL, &devid, dev_uuid); 7004 memalloc_nofs_restore(nofs_flag); 7005 if (IS_ERR(device)) 7006 return device; 7007 7008 list_add(&device->dev_list, &fs_devices->devices); 7009 device->fs_devices = fs_devices; 7010 fs_devices->num_devices++; 7011 7012 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7013 fs_devices->missing_devices++; 7014 7015 return device; 7016 } 7017 7018 /* 7019 * Allocate new device struct, set up devid and UUID. 7020 * 7021 * @fs_info: used only for generating a new devid, can be NULL if 7022 * devid is provided (i.e. @devid != NULL). 7023 * @devid: a pointer to devid for this device. If NULL a new devid 7024 * is generated. 7025 * @uuid: a pointer to UUID for this device. If NULL a new UUID 7026 * is generated. 7027 * 7028 * Return: a pointer to a new &struct btrfs_device on success; ERR_PTR() 7029 * on error. Returned struct is not linked onto any lists and must be 7030 * destroyed with btrfs_free_device. 7031 */ 7032 struct btrfs_device *btrfs_alloc_device(struct btrfs_fs_info *fs_info, 7033 const u64 *devid, 7034 const u8 *uuid) 7035 { 7036 struct btrfs_device *dev; 7037 u64 tmp; 7038 7039 if (WARN_ON(!devid && !fs_info)) 7040 return ERR_PTR(-EINVAL); 7041 7042 dev = kzalloc(sizeof(*dev), GFP_KERNEL); 7043 if (!dev) 7044 return ERR_PTR(-ENOMEM); 7045 7046 INIT_LIST_HEAD(&dev->dev_list); 7047 INIT_LIST_HEAD(&dev->dev_alloc_list); 7048 INIT_LIST_HEAD(&dev->post_commit_list); 7049 7050 atomic_set(&dev->dev_stats_ccnt, 0); 7051 btrfs_device_data_ordered_init(dev); 7052 extent_io_tree_init(fs_info, &dev->alloc_state, 7053 IO_TREE_DEVICE_ALLOC_STATE, NULL); 7054 7055 if (devid) 7056 tmp = *devid; 7057 else { 7058 int ret; 7059 7060 ret = find_next_devid(fs_info, &tmp); 7061 if (ret) { 7062 btrfs_free_device(dev); 7063 return ERR_PTR(ret); 7064 } 7065 } 7066 dev->devid = tmp; 7067 7068 if (uuid) 7069 memcpy(dev->uuid, uuid, BTRFS_UUID_SIZE); 7070 else 7071 generate_random_uuid(dev->uuid); 7072 7073 return dev; 7074 } 7075 7076 static void btrfs_report_missing_device(struct btrfs_fs_info *fs_info, 7077 u64 devid, u8 *uuid, bool error) 7078 { 7079 if (error) 7080 btrfs_err_rl(fs_info, "devid %llu uuid %pU is missing", 7081 devid, uuid); 7082 else 7083 btrfs_warn_rl(fs_info, "devid %llu uuid %pU is missing", 7084 devid, uuid); 7085 } 7086 7087 u64 btrfs_calc_stripe_length(const struct extent_map *em) 7088 { 7089 const struct map_lookup *map = em->map_lookup; 7090 const int data_stripes = calc_data_stripes(map->type, map->num_stripes); 7091 7092 return div_u64(em->len, data_stripes); 7093 } 7094 7095 #if BITS_PER_LONG == 32 7096 /* 7097 * Due to page cache limit, metadata beyond BTRFS_32BIT_MAX_FILE_SIZE 7098 * can't be accessed on 32bit systems. 7099 * 7100 * This function do mount time check to reject the fs if it already has 7101 * metadata chunk beyond that limit. 7102 */ 7103 static int check_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7104 u64 logical, u64 length, u64 type) 7105 { 7106 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7107 return 0; 7108 7109 if (logical + length < MAX_LFS_FILESIZE) 7110 return 0; 7111 7112 btrfs_err_32bit_limit(fs_info); 7113 return -EOVERFLOW; 7114 } 7115 7116 /* 7117 * This is to give early warning for any metadata chunk reaching 7118 * BTRFS_32BIT_EARLY_WARN_THRESHOLD. 7119 * Although we can still access the metadata, it's not going to be possible 7120 * once the limit is reached. 7121 */ 7122 static void warn_32bit_meta_chunk(struct btrfs_fs_info *fs_info, 7123 u64 logical, u64 length, u64 type) 7124 { 7125 if (!(type & BTRFS_BLOCK_GROUP_METADATA)) 7126 return; 7127 7128 if (logical + length < BTRFS_32BIT_EARLY_WARN_THRESHOLD) 7129 return; 7130 7131 btrfs_warn_32bit_limit(fs_info); 7132 } 7133 #endif 7134 7135 static struct btrfs_device *handle_missing_device(struct btrfs_fs_info *fs_info, 7136 u64 devid, u8 *uuid) 7137 { 7138 struct btrfs_device *dev; 7139 7140 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7141 btrfs_report_missing_device(fs_info, devid, uuid, true); 7142 return ERR_PTR(-ENOENT); 7143 } 7144 7145 dev = add_missing_dev(fs_info->fs_devices, devid, uuid); 7146 if (IS_ERR(dev)) { 7147 btrfs_err(fs_info, "failed to init missing device %llu: %ld", 7148 devid, PTR_ERR(dev)); 7149 return dev; 7150 } 7151 btrfs_report_missing_device(fs_info, devid, uuid, false); 7152 7153 return dev; 7154 } 7155 7156 static int read_one_chunk(struct btrfs_key *key, struct extent_buffer *leaf, 7157 struct btrfs_chunk *chunk) 7158 { 7159 BTRFS_DEV_LOOKUP_ARGS(args); 7160 struct btrfs_fs_info *fs_info = leaf->fs_info; 7161 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7162 struct map_lookup *map; 7163 struct extent_map *em; 7164 u64 logical; 7165 u64 length; 7166 u64 devid; 7167 u64 type; 7168 u8 uuid[BTRFS_UUID_SIZE]; 7169 int index; 7170 int num_stripes; 7171 int ret; 7172 int i; 7173 7174 logical = key->offset; 7175 length = btrfs_chunk_length(leaf, chunk); 7176 type = btrfs_chunk_type(leaf, chunk); 7177 index = btrfs_bg_flags_to_raid_index(type); 7178 num_stripes = btrfs_chunk_num_stripes(leaf, chunk); 7179 7180 #if BITS_PER_LONG == 32 7181 ret = check_32bit_meta_chunk(fs_info, logical, length, type); 7182 if (ret < 0) 7183 return ret; 7184 warn_32bit_meta_chunk(fs_info, logical, length, type); 7185 #endif 7186 7187 /* 7188 * Only need to verify chunk item if we're reading from sys chunk array, 7189 * as chunk item in tree block is already verified by tree-checker. 7190 */ 7191 if (leaf->start == BTRFS_SUPER_INFO_OFFSET) { 7192 ret = btrfs_check_chunk_valid(leaf, chunk, logical); 7193 if (ret) 7194 return ret; 7195 } 7196 7197 read_lock(&map_tree->lock); 7198 em = lookup_extent_mapping(map_tree, logical, 1); 7199 read_unlock(&map_tree->lock); 7200 7201 /* already mapped? */ 7202 if (em && em->start <= logical && em->start + em->len > logical) { 7203 free_extent_map(em); 7204 return 0; 7205 } else if (em) { 7206 free_extent_map(em); 7207 } 7208 7209 em = alloc_extent_map(); 7210 if (!em) 7211 return -ENOMEM; 7212 map = kmalloc(map_lookup_size(num_stripes), GFP_NOFS); 7213 if (!map) { 7214 free_extent_map(em); 7215 return -ENOMEM; 7216 } 7217 7218 set_bit(EXTENT_FLAG_FS_MAPPING, &em->flags); 7219 em->map_lookup = map; 7220 em->start = logical; 7221 em->len = length; 7222 em->orig_start = 0; 7223 em->block_start = 0; 7224 em->block_len = em->len; 7225 7226 map->num_stripes = num_stripes; 7227 map->io_width = btrfs_chunk_io_width(leaf, chunk); 7228 map->io_align = btrfs_chunk_io_align(leaf, chunk); 7229 map->stripe_len = btrfs_chunk_stripe_len(leaf, chunk); 7230 map->type = type; 7231 /* 7232 * We can't use the sub_stripes value, as for profiles other than 7233 * RAID10, they may have 0 as sub_stripes for filesystems created by 7234 * older mkfs (<v5.4). 7235 * In that case, it can cause divide-by-zero errors later. 7236 * Since currently sub_stripes is fixed for each profile, let's 7237 * use the trusted value instead. 7238 */ 7239 map->sub_stripes = btrfs_raid_array[index].sub_stripes; 7240 map->verified_stripes = 0; 7241 em->orig_block_len = btrfs_calc_stripe_length(em); 7242 for (i = 0; i < num_stripes; i++) { 7243 map->stripes[i].physical = 7244 btrfs_stripe_offset_nr(leaf, chunk, i); 7245 devid = btrfs_stripe_devid_nr(leaf, chunk, i); 7246 args.devid = devid; 7247 read_extent_buffer(leaf, uuid, (unsigned long) 7248 btrfs_stripe_dev_uuid_nr(chunk, i), 7249 BTRFS_UUID_SIZE); 7250 args.uuid = uuid; 7251 map->stripes[i].dev = btrfs_find_device(fs_info->fs_devices, &args); 7252 if (!map->stripes[i].dev) { 7253 map->stripes[i].dev = handle_missing_device(fs_info, 7254 devid, uuid); 7255 if (IS_ERR(map->stripes[i].dev)) { 7256 free_extent_map(em); 7257 return PTR_ERR(map->stripes[i].dev); 7258 } 7259 } 7260 7261 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 7262 &(map->stripes[i].dev->dev_state)); 7263 } 7264 7265 write_lock(&map_tree->lock); 7266 ret = add_extent_mapping(map_tree, em, 0); 7267 write_unlock(&map_tree->lock); 7268 if (ret < 0) { 7269 btrfs_err(fs_info, 7270 "failed to add chunk map, start=%llu len=%llu: %d", 7271 em->start, em->len, ret); 7272 } 7273 free_extent_map(em); 7274 7275 return ret; 7276 } 7277 7278 static void fill_device_from_item(struct extent_buffer *leaf, 7279 struct btrfs_dev_item *dev_item, 7280 struct btrfs_device *device) 7281 { 7282 unsigned long ptr; 7283 7284 device->devid = btrfs_device_id(leaf, dev_item); 7285 device->disk_total_bytes = btrfs_device_total_bytes(leaf, dev_item); 7286 device->total_bytes = device->disk_total_bytes; 7287 device->commit_total_bytes = device->disk_total_bytes; 7288 device->bytes_used = btrfs_device_bytes_used(leaf, dev_item); 7289 device->commit_bytes_used = device->bytes_used; 7290 device->type = btrfs_device_type(leaf, dev_item); 7291 device->io_align = btrfs_device_io_align(leaf, dev_item); 7292 device->io_width = btrfs_device_io_width(leaf, dev_item); 7293 device->sector_size = btrfs_device_sector_size(leaf, dev_item); 7294 WARN_ON(device->devid == BTRFS_DEV_REPLACE_DEVID); 7295 clear_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state); 7296 7297 ptr = btrfs_device_uuid(dev_item); 7298 read_extent_buffer(leaf, device->uuid, ptr, BTRFS_UUID_SIZE); 7299 } 7300 7301 static struct btrfs_fs_devices *open_seed_devices(struct btrfs_fs_info *fs_info, 7302 u8 *fsid) 7303 { 7304 struct btrfs_fs_devices *fs_devices; 7305 int ret; 7306 7307 lockdep_assert_held(&uuid_mutex); 7308 ASSERT(fsid); 7309 7310 /* This will match only for multi-device seed fs */ 7311 list_for_each_entry(fs_devices, &fs_info->fs_devices->seed_list, seed_list) 7312 if (!memcmp(fs_devices->fsid, fsid, BTRFS_FSID_SIZE)) 7313 return fs_devices; 7314 7315 7316 fs_devices = find_fsid(fsid, NULL); 7317 if (!fs_devices) { 7318 if (!btrfs_test_opt(fs_info, DEGRADED)) 7319 return ERR_PTR(-ENOENT); 7320 7321 fs_devices = alloc_fs_devices(fsid, NULL); 7322 if (IS_ERR(fs_devices)) 7323 return fs_devices; 7324 7325 fs_devices->seeding = true; 7326 fs_devices->opened = 1; 7327 return fs_devices; 7328 } 7329 7330 /* 7331 * Upon first call for a seed fs fsid, just create a private copy of the 7332 * respective fs_devices and anchor it at fs_info->fs_devices->seed_list 7333 */ 7334 fs_devices = clone_fs_devices(fs_devices); 7335 if (IS_ERR(fs_devices)) 7336 return fs_devices; 7337 7338 ret = open_fs_devices(fs_devices, FMODE_READ, fs_info->bdev_holder); 7339 if (ret) { 7340 free_fs_devices(fs_devices); 7341 return ERR_PTR(ret); 7342 } 7343 7344 if (!fs_devices->seeding) { 7345 close_fs_devices(fs_devices); 7346 free_fs_devices(fs_devices); 7347 return ERR_PTR(-EINVAL); 7348 } 7349 7350 list_add(&fs_devices->seed_list, &fs_info->fs_devices->seed_list); 7351 7352 return fs_devices; 7353 } 7354 7355 static int read_one_dev(struct extent_buffer *leaf, 7356 struct btrfs_dev_item *dev_item) 7357 { 7358 BTRFS_DEV_LOOKUP_ARGS(args); 7359 struct btrfs_fs_info *fs_info = leaf->fs_info; 7360 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7361 struct btrfs_device *device; 7362 u64 devid; 7363 int ret; 7364 u8 fs_uuid[BTRFS_FSID_SIZE]; 7365 u8 dev_uuid[BTRFS_UUID_SIZE]; 7366 7367 devid = btrfs_device_id(leaf, dev_item); 7368 args.devid = devid; 7369 read_extent_buffer(leaf, dev_uuid, btrfs_device_uuid(dev_item), 7370 BTRFS_UUID_SIZE); 7371 read_extent_buffer(leaf, fs_uuid, btrfs_device_fsid(dev_item), 7372 BTRFS_FSID_SIZE); 7373 args.uuid = dev_uuid; 7374 args.fsid = fs_uuid; 7375 7376 if (memcmp(fs_uuid, fs_devices->metadata_uuid, BTRFS_FSID_SIZE)) { 7377 fs_devices = open_seed_devices(fs_info, fs_uuid); 7378 if (IS_ERR(fs_devices)) 7379 return PTR_ERR(fs_devices); 7380 } 7381 7382 device = btrfs_find_device(fs_info->fs_devices, &args); 7383 if (!device) { 7384 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7385 btrfs_report_missing_device(fs_info, devid, 7386 dev_uuid, true); 7387 return -ENOENT; 7388 } 7389 7390 device = add_missing_dev(fs_devices, devid, dev_uuid); 7391 if (IS_ERR(device)) { 7392 btrfs_err(fs_info, 7393 "failed to add missing dev %llu: %ld", 7394 devid, PTR_ERR(device)); 7395 return PTR_ERR(device); 7396 } 7397 btrfs_report_missing_device(fs_info, devid, dev_uuid, false); 7398 } else { 7399 if (!device->bdev) { 7400 if (!btrfs_test_opt(fs_info, DEGRADED)) { 7401 btrfs_report_missing_device(fs_info, 7402 devid, dev_uuid, true); 7403 return -ENOENT; 7404 } 7405 btrfs_report_missing_device(fs_info, devid, 7406 dev_uuid, false); 7407 } 7408 7409 if (!device->bdev && 7410 !test_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state)) { 7411 /* 7412 * this happens when a device that was properly setup 7413 * in the device info lists suddenly goes bad. 7414 * device->bdev is NULL, and so we have to set 7415 * device->missing to one here 7416 */ 7417 device->fs_devices->missing_devices++; 7418 set_bit(BTRFS_DEV_STATE_MISSING, &device->dev_state); 7419 } 7420 7421 /* Move the device to its own fs_devices */ 7422 if (device->fs_devices != fs_devices) { 7423 ASSERT(test_bit(BTRFS_DEV_STATE_MISSING, 7424 &device->dev_state)); 7425 7426 list_move(&device->dev_list, &fs_devices->devices); 7427 device->fs_devices->num_devices--; 7428 fs_devices->num_devices++; 7429 7430 device->fs_devices->missing_devices--; 7431 fs_devices->missing_devices++; 7432 7433 device->fs_devices = fs_devices; 7434 } 7435 } 7436 7437 if (device->fs_devices != fs_info->fs_devices) { 7438 BUG_ON(test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)); 7439 if (device->generation != 7440 btrfs_device_generation(leaf, dev_item)) 7441 return -EINVAL; 7442 } 7443 7444 fill_device_from_item(leaf, dev_item, device); 7445 if (device->bdev) { 7446 u64 max_total_bytes = bdev_nr_bytes(device->bdev); 7447 7448 if (device->total_bytes > max_total_bytes) { 7449 btrfs_err(fs_info, 7450 "device total_bytes should be at most %llu but found %llu", 7451 max_total_bytes, device->total_bytes); 7452 return -EINVAL; 7453 } 7454 } 7455 set_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &device->dev_state); 7456 if (test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state) && 7457 !test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 7458 device->fs_devices->total_rw_bytes += device->total_bytes; 7459 atomic64_add(device->total_bytes - device->bytes_used, 7460 &fs_info->free_chunk_space); 7461 } 7462 ret = 0; 7463 return ret; 7464 } 7465 7466 int btrfs_read_sys_array(struct btrfs_fs_info *fs_info) 7467 { 7468 struct btrfs_super_block *super_copy = fs_info->super_copy; 7469 struct extent_buffer *sb; 7470 struct btrfs_disk_key *disk_key; 7471 struct btrfs_chunk *chunk; 7472 u8 *array_ptr; 7473 unsigned long sb_array_offset; 7474 int ret = 0; 7475 u32 num_stripes; 7476 u32 array_size; 7477 u32 len = 0; 7478 u32 cur_offset; 7479 u64 type; 7480 struct btrfs_key key; 7481 7482 ASSERT(BTRFS_SUPER_INFO_SIZE <= fs_info->nodesize); 7483 7484 /* 7485 * We allocated a dummy extent, just to use extent buffer accessors. 7486 * There will be unused space after BTRFS_SUPER_INFO_SIZE, but 7487 * that's fine, we will not go beyond system chunk array anyway. 7488 */ 7489 sb = alloc_dummy_extent_buffer(fs_info, BTRFS_SUPER_INFO_OFFSET); 7490 if (!sb) 7491 return -ENOMEM; 7492 set_extent_buffer_uptodate(sb); 7493 7494 write_extent_buffer(sb, super_copy, 0, BTRFS_SUPER_INFO_SIZE); 7495 array_size = btrfs_super_sys_array_size(super_copy); 7496 7497 array_ptr = super_copy->sys_chunk_array; 7498 sb_array_offset = offsetof(struct btrfs_super_block, sys_chunk_array); 7499 cur_offset = 0; 7500 7501 while (cur_offset < array_size) { 7502 disk_key = (struct btrfs_disk_key *)array_ptr; 7503 len = sizeof(*disk_key); 7504 if (cur_offset + len > array_size) 7505 goto out_short_read; 7506 7507 btrfs_disk_key_to_cpu(&key, disk_key); 7508 7509 array_ptr += len; 7510 sb_array_offset += len; 7511 cur_offset += len; 7512 7513 if (key.type != BTRFS_CHUNK_ITEM_KEY) { 7514 btrfs_err(fs_info, 7515 "unexpected item type %u in sys_array at offset %u", 7516 (u32)key.type, cur_offset); 7517 ret = -EIO; 7518 break; 7519 } 7520 7521 chunk = (struct btrfs_chunk *)sb_array_offset; 7522 /* 7523 * At least one btrfs_chunk with one stripe must be present, 7524 * exact stripe count check comes afterwards 7525 */ 7526 len = btrfs_chunk_item_size(1); 7527 if (cur_offset + len > array_size) 7528 goto out_short_read; 7529 7530 num_stripes = btrfs_chunk_num_stripes(sb, chunk); 7531 if (!num_stripes) { 7532 btrfs_err(fs_info, 7533 "invalid number of stripes %u in sys_array at offset %u", 7534 num_stripes, cur_offset); 7535 ret = -EIO; 7536 break; 7537 } 7538 7539 type = btrfs_chunk_type(sb, chunk); 7540 if ((type & BTRFS_BLOCK_GROUP_SYSTEM) == 0) { 7541 btrfs_err(fs_info, 7542 "invalid chunk type %llu in sys_array at offset %u", 7543 type, cur_offset); 7544 ret = -EIO; 7545 break; 7546 } 7547 7548 len = btrfs_chunk_item_size(num_stripes); 7549 if (cur_offset + len > array_size) 7550 goto out_short_read; 7551 7552 ret = read_one_chunk(&key, sb, chunk); 7553 if (ret) 7554 break; 7555 7556 array_ptr += len; 7557 sb_array_offset += len; 7558 cur_offset += len; 7559 } 7560 clear_extent_buffer_uptodate(sb); 7561 free_extent_buffer_stale(sb); 7562 return ret; 7563 7564 out_short_read: 7565 btrfs_err(fs_info, "sys_array too short to read %u bytes at offset %u", 7566 len, cur_offset); 7567 clear_extent_buffer_uptodate(sb); 7568 free_extent_buffer_stale(sb); 7569 return -EIO; 7570 } 7571 7572 /* 7573 * Check if all chunks in the fs are OK for read-write degraded mount 7574 * 7575 * If the @failing_dev is specified, it's accounted as missing. 7576 * 7577 * Return true if all chunks meet the minimal RW mount requirements. 7578 * Return false if any chunk doesn't meet the minimal RW mount requirements. 7579 */ 7580 bool btrfs_check_rw_degradable(struct btrfs_fs_info *fs_info, 7581 struct btrfs_device *failing_dev) 7582 { 7583 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 7584 struct extent_map *em; 7585 u64 next_start = 0; 7586 bool ret = true; 7587 7588 read_lock(&map_tree->lock); 7589 em = lookup_extent_mapping(map_tree, 0, (u64)-1); 7590 read_unlock(&map_tree->lock); 7591 /* No chunk at all? Return false anyway */ 7592 if (!em) { 7593 ret = false; 7594 goto out; 7595 } 7596 while (em) { 7597 struct map_lookup *map; 7598 int missing = 0; 7599 int max_tolerated; 7600 int i; 7601 7602 map = em->map_lookup; 7603 max_tolerated = 7604 btrfs_get_num_tolerated_disk_barrier_failures( 7605 map->type); 7606 for (i = 0; i < map->num_stripes; i++) { 7607 struct btrfs_device *dev = map->stripes[i].dev; 7608 7609 if (!dev || !dev->bdev || 7610 test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) || 7611 dev->last_flush_error) 7612 missing++; 7613 else if (failing_dev && failing_dev == dev) 7614 missing++; 7615 } 7616 if (missing > max_tolerated) { 7617 if (!failing_dev) 7618 btrfs_warn(fs_info, 7619 "chunk %llu missing %d devices, max tolerance is %d for writable mount", 7620 em->start, missing, max_tolerated); 7621 free_extent_map(em); 7622 ret = false; 7623 goto out; 7624 } 7625 next_start = extent_map_end(em); 7626 free_extent_map(em); 7627 7628 read_lock(&map_tree->lock); 7629 em = lookup_extent_mapping(map_tree, next_start, 7630 (u64)(-1) - next_start); 7631 read_unlock(&map_tree->lock); 7632 } 7633 out: 7634 return ret; 7635 } 7636 7637 static void readahead_tree_node_children(struct extent_buffer *node) 7638 { 7639 int i; 7640 const int nr_items = btrfs_header_nritems(node); 7641 7642 for (i = 0; i < nr_items; i++) 7643 btrfs_readahead_node_child(node, i); 7644 } 7645 7646 int btrfs_read_chunk_tree(struct btrfs_fs_info *fs_info) 7647 { 7648 struct btrfs_root *root = fs_info->chunk_root; 7649 struct btrfs_path *path; 7650 struct extent_buffer *leaf; 7651 struct btrfs_key key; 7652 struct btrfs_key found_key; 7653 int ret; 7654 int slot; 7655 int iter_ret = 0; 7656 u64 total_dev = 0; 7657 u64 last_ra_node = 0; 7658 7659 path = btrfs_alloc_path(); 7660 if (!path) 7661 return -ENOMEM; 7662 7663 /* 7664 * uuid_mutex is needed only if we are mounting a sprout FS 7665 * otherwise we don't need it. 7666 */ 7667 mutex_lock(&uuid_mutex); 7668 7669 /* 7670 * It is possible for mount and umount to race in such a way that 7671 * we execute this code path, but open_fs_devices failed to clear 7672 * total_rw_bytes. We certainly want it cleared before reading the 7673 * device items, so clear it here. 7674 */ 7675 fs_info->fs_devices->total_rw_bytes = 0; 7676 7677 /* 7678 * Lockdep complains about possible circular locking dependency between 7679 * a disk's open_mutex (struct gendisk.open_mutex), the rw semaphores 7680 * used for freeze procection of a fs (struct super_block.s_writers), 7681 * which we take when starting a transaction, and extent buffers of the 7682 * chunk tree if we call read_one_dev() while holding a lock on an 7683 * extent buffer of the chunk tree. Since we are mounting the filesystem 7684 * and at this point there can't be any concurrent task modifying the 7685 * chunk tree, to keep it simple, just skip locking on the chunk tree. 7686 */ 7687 ASSERT(!test_bit(BTRFS_FS_OPEN, &fs_info->flags)); 7688 path->skip_locking = 1; 7689 7690 /* 7691 * Read all device items, and then all the chunk items. All 7692 * device items are found before any chunk item (their object id 7693 * is smaller than the lowest possible object id for a chunk 7694 * item - BTRFS_FIRST_CHUNK_TREE_OBJECTID). 7695 */ 7696 key.objectid = BTRFS_DEV_ITEMS_OBJECTID; 7697 key.offset = 0; 7698 key.type = 0; 7699 btrfs_for_each_slot(root, &key, &found_key, path, iter_ret) { 7700 struct extent_buffer *node = path->nodes[1]; 7701 7702 leaf = path->nodes[0]; 7703 slot = path->slots[0]; 7704 7705 if (node) { 7706 if (last_ra_node != node->start) { 7707 readahead_tree_node_children(node); 7708 last_ra_node = node->start; 7709 } 7710 } 7711 if (found_key.type == BTRFS_DEV_ITEM_KEY) { 7712 struct btrfs_dev_item *dev_item; 7713 dev_item = btrfs_item_ptr(leaf, slot, 7714 struct btrfs_dev_item); 7715 ret = read_one_dev(leaf, dev_item); 7716 if (ret) 7717 goto error; 7718 total_dev++; 7719 } else if (found_key.type == BTRFS_CHUNK_ITEM_KEY) { 7720 struct btrfs_chunk *chunk; 7721 7722 /* 7723 * We are only called at mount time, so no need to take 7724 * fs_info->chunk_mutex. Plus, to avoid lockdep warnings, 7725 * we always lock first fs_info->chunk_mutex before 7726 * acquiring any locks on the chunk tree. This is a 7727 * requirement for chunk allocation, see the comment on 7728 * top of btrfs_chunk_alloc() for details. 7729 */ 7730 chunk = btrfs_item_ptr(leaf, slot, struct btrfs_chunk); 7731 ret = read_one_chunk(&found_key, leaf, chunk); 7732 if (ret) 7733 goto error; 7734 } 7735 } 7736 /* Catch error found during iteration */ 7737 if (iter_ret < 0) { 7738 ret = iter_ret; 7739 goto error; 7740 } 7741 7742 /* 7743 * After loading chunk tree, we've got all device information, 7744 * do another round of validation checks. 7745 */ 7746 if (total_dev != fs_info->fs_devices->total_devices) { 7747 btrfs_warn(fs_info, 7748 "super block num_devices %llu mismatch with DEV_ITEM count %llu, will be repaired on next transaction commit", 7749 btrfs_super_num_devices(fs_info->super_copy), 7750 total_dev); 7751 fs_info->fs_devices->total_devices = total_dev; 7752 btrfs_set_super_num_devices(fs_info->super_copy, total_dev); 7753 } 7754 if (btrfs_super_total_bytes(fs_info->super_copy) < 7755 fs_info->fs_devices->total_rw_bytes) { 7756 btrfs_err(fs_info, 7757 "super_total_bytes %llu mismatch with fs_devices total_rw_bytes %llu", 7758 btrfs_super_total_bytes(fs_info->super_copy), 7759 fs_info->fs_devices->total_rw_bytes); 7760 ret = -EINVAL; 7761 goto error; 7762 } 7763 ret = 0; 7764 error: 7765 mutex_unlock(&uuid_mutex); 7766 7767 btrfs_free_path(path); 7768 return ret; 7769 } 7770 7771 int btrfs_init_devices_late(struct btrfs_fs_info *fs_info) 7772 { 7773 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7774 struct btrfs_device *device; 7775 int ret = 0; 7776 7777 fs_devices->fs_info = fs_info; 7778 7779 mutex_lock(&fs_devices->device_list_mutex); 7780 list_for_each_entry(device, &fs_devices->devices, dev_list) 7781 device->fs_info = fs_info; 7782 7783 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7784 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7785 device->fs_info = fs_info; 7786 ret = btrfs_get_dev_zone_info(device, false); 7787 if (ret) 7788 break; 7789 } 7790 7791 seed_devs->fs_info = fs_info; 7792 } 7793 mutex_unlock(&fs_devices->device_list_mutex); 7794 7795 return ret; 7796 } 7797 7798 static u64 btrfs_dev_stats_value(const struct extent_buffer *eb, 7799 const struct btrfs_dev_stats_item *ptr, 7800 int index) 7801 { 7802 u64 val; 7803 7804 read_extent_buffer(eb, &val, 7805 offsetof(struct btrfs_dev_stats_item, values) + 7806 ((unsigned long)ptr) + (index * sizeof(u64)), 7807 sizeof(val)); 7808 return val; 7809 } 7810 7811 static void btrfs_set_dev_stats_value(struct extent_buffer *eb, 7812 struct btrfs_dev_stats_item *ptr, 7813 int index, u64 val) 7814 { 7815 write_extent_buffer(eb, &val, 7816 offsetof(struct btrfs_dev_stats_item, values) + 7817 ((unsigned long)ptr) + (index * sizeof(u64)), 7818 sizeof(val)); 7819 } 7820 7821 static int btrfs_device_init_dev_stats(struct btrfs_device *device, 7822 struct btrfs_path *path) 7823 { 7824 struct btrfs_dev_stats_item *ptr; 7825 struct extent_buffer *eb; 7826 struct btrfs_key key; 7827 int item_size; 7828 int i, ret, slot; 7829 7830 if (!device->fs_info->dev_root) 7831 return 0; 7832 7833 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7834 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7835 key.offset = device->devid; 7836 ret = btrfs_search_slot(NULL, device->fs_info->dev_root, &key, path, 0, 0); 7837 if (ret) { 7838 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7839 btrfs_dev_stat_set(device, i, 0); 7840 device->dev_stats_valid = 1; 7841 btrfs_release_path(path); 7842 return ret < 0 ? ret : 0; 7843 } 7844 slot = path->slots[0]; 7845 eb = path->nodes[0]; 7846 item_size = btrfs_item_size(eb, slot); 7847 7848 ptr = btrfs_item_ptr(eb, slot, struct btrfs_dev_stats_item); 7849 7850 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 7851 if (item_size >= (1 + i) * sizeof(__le64)) 7852 btrfs_dev_stat_set(device, i, 7853 btrfs_dev_stats_value(eb, ptr, i)); 7854 else 7855 btrfs_dev_stat_set(device, i, 0); 7856 } 7857 7858 device->dev_stats_valid = 1; 7859 btrfs_dev_stat_print_on_load(device); 7860 btrfs_release_path(path); 7861 7862 return 0; 7863 } 7864 7865 int btrfs_init_dev_stats(struct btrfs_fs_info *fs_info) 7866 { 7867 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices, *seed_devs; 7868 struct btrfs_device *device; 7869 struct btrfs_path *path = NULL; 7870 int ret = 0; 7871 7872 path = btrfs_alloc_path(); 7873 if (!path) 7874 return -ENOMEM; 7875 7876 mutex_lock(&fs_devices->device_list_mutex); 7877 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7878 ret = btrfs_device_init_dev_stats(device, path); 7879 if (ret) 7880 goto out; 7881 } 7882 list_for_each_entry(seed_devs, &fs_devices->seed_list, seed_list) { 7883 list_for_each_entry(device, &seed_devs->devices, dev_list) { 7884 ret = btrfs_device_init_dev_stats(device, path); 7885 if (ret) 7886 goto out; 7887 } 7888 } 7889 out: 7890 mutex_unlock(&fs_devices->device_list_mutex); 7891 7892 btrfs_free_path(path); 7893 return ret; 7894 } 7895 7896 static int update_dev_stat_item(struct btrfs_trans_handle *trans, 7897 struct btrfs_device *device) 7898 { 7899 struct btrfs_fs_info *fs_info = trans->fs_info; 7900 struct btrfs_root *dev_root = fs_info->dev_root; 7901 struct btrfs_path *path; 7902 struct btrfs_key key; 7903 struct extent_buffer *eb; 7904 struct btrfs_dev_stats_item *ptr; 7905 int ret; 7906 int i; 7907 7908 key.objectid = BTRFS_DEV_STATS_OBJECTID; 7909 key.type = BTRFS_PERSISTENT_ITEM_KEY; 7910 key.offset = device->devid; 7911 7912 path = btrfs_alloc_path(); 7913 if (!path) 7914 return -ENOMEM; 7915 ret = btrfs_search_slot(trans, dev_root, &key, path, -1, 1); 7916 if (ret < 0) { 7917 btrfs_warn_in_rcu(fs_info, 7918 "error %d while searching for dev_stats item for device %s", 7919 ret, rcu_str_deref(device->name)); 7920 goto out; 7921 } 7922 7923 if (ret == 0 && 7924 btrfs_item_size(path->nodes[0], path->slots[0]) < sizeof(*ptr)) { 7925 /* need to delete old one and insert a new one */ 7926 ret = btrfs_del_item(trans, dev_root, path); 7927 if (ret != 0) { 7928 btrfs_warn_in_rcu(fs_info, 7929 "delete too small dev_stats item for device %s failed %d", 7930 rcu_str_deref(device->name), ret); 7931 goto out; 7932 } 7933 ret = 1; 7934 } 7935 7936 if (ret == 1) { 7937 /* need to insert a new item */ 7938 btrfs_release_path(path); 7939 ret = btrfs_insert_empty_item(trans, dev_root, path, 7940 &key, sizeof(*ptr)); 7941 if (ret < 0) { 7942 btrfs_warn_in_rcu(fs_info, 7943 "insert dev_stats item for device %s failed %d", 7944 rcu_str_deref(device->name), ret); 7945 goto out; 7946 } 7947 } 7948 7949 eb = path->nodes[0]; 7950 ptr = btrfs_item_ptr(eb, path->slots[0], struct btrfs_dev_stats_item); 7951 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 7952 btrfs_set_dev_stats_value(eb, ptr, i, 7953 btrfs_dev_stat_read(device, i)); 7954 btrfs_mark_buffer_dirty(eb); 7955 7956 out: 7957 btrfs_free_path(path); 7958 return ret; 7959 } 7960 7961 /* 7962 * called from commit_transaction. Writes all changed device stats to disk. 7963 */ 7964 int btrfs_run_dev_stats(struct btrfs_trans_handle *trans) 7965 { 7966 struct btrfs_fs_info *fs_info = trans->fs_info; 7967 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 7968 struct btrfs_device *device; 7969 int stats_cnt; 7970 int ret = 0; 7971 7972 mutex_lock(&fs_devices->device_list_mutex); 7973 list_for_each_entry(device, &fs_devices->devices, dev_list) { 7974 stats_cnt = atomic_read(&device->dev_stats_ccnt); 7975 if (!device->dev_stats_valid || stats_cnt == 0) 7976 continue; 7977 7978 7979 /* 7980 * There is a LOAD-LOAD control dependency between the value of 7981 * dev_stats_ccnt and updating the on-disk values which requires 7982 * reading the in-memory counters. Such control dependencies 7983 * require explicit read memory barriers. 7984 * 7985 * This memory barriers pairs with smp_mb__before_atomic in 7986 * btrfs_dev_stat_inc/btrfs_dev_stat_set and with the full 7987 * barrier implied by atomic_xchg in 7988 * btrfs_dev_stats_read_and_reset 7989 */ 7990 smp_rmb(); 7991 7992 ret = update_dev_stat_item(trans, device); 7993 if (!ret) 7994 atomic_sub(stats_cnt, &device->dev_stats_ccnt); 7995 } 7996 mutex_unlock(&fs_devices->device_list_mutex); 7997 7998 return ret; 7999 } 8000 8001 void btrfs_dev_stat_inc_and_print(struct btrfs_device *dev, int index) 8002 { 8003 btrfs_dev_stat_inc(dev, index); 8004 8005 if (!dev->dev_stats_valid) 8006 return; 8007 btrfs_err_rl_in_rcu(dev->fs_info, 8008 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 8009 rcu_str_deref(dev->name), 8010 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 8011 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 8012 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 8013 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 8014 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 8015 } 8016 8017 static void btrfs_dev_stat_print_on_load(struct btrfs_device *dev) 8018 { 8019 int i; 8020 8021 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 8022 if (btrfs_dev_stat_read(dev, i) != 0) 8023 break; 8024 if (i == BTRFS_DEV_STAT_VALUES_MAX) 8025 return; /* all values == 0, suppress message */ 8026 8027 btrfs_info_in_rcu(dev->fs_info, 8028 "bdev %s errs: wr %u, rd %u, flush %u, corrupt %u, gen %u", 8029 rcu_str_deref(dev->name), 8030 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_WRITE_ERRS), 8031 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_READ_ERRS), 8032 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_FLUSH_ERRS), 8033 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS), 8034 btrfs_dev_stat_read(dev, BTRFS_DEV_STAT_GENERATION_ERRS)); 8035 } 8036 8037 int btrfs_get_dev_stats(struct btrfs_fs_info *fs_info, 8038 struct btrfs_ioctl_get_dev_stats *stats) 8039 { 8040 BTRFS_DEV_LOOKUP_ARGS(args); 8041 struct btrfs_device *dev; 8042 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 8043 int i; 8044 8045 mutex_lock(&fs_devices->device_list_mutex); 8046 args.devid = stats->devid; 8047 dev = btrfs_find_device(fs_info->fs_devices, &args); 8048 mutex_unlock(&fs_devices->device_list_mutex); 8049 8050 if (!dev) { 8051 btrfs_warn(fs_info, "get dev_stats failed, device not found"); 8052 return -ENODEV; 8053 } else if (!dev->dev_stats_valid) { 8054 btrfs_warn(fs_info, "get dev_stats failed, not yet valid"); 8055 return -ENODEV; 8056 } else if (stats->flags & BTRFS_DEV_STATS_RESET) { 8057 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) { 8058 if (stats->nr_items > i) 8059 stats->values[i] = 8060 btrfs_dev_stat_read_and_reset(dev, i); 8061 else 8062 btrfs_dev_stat_set(dev, i, 0); 8063 } 8064 btrfs_info(fs_info, "device stats zeroed by %s (%d)", 8065 current->comm, task_pid_nr(current)); 8066 } else { 8067 for (i = 0; i < BTRFS_DEV_STAT_VALUES_MAX; i++) 8068 if (stats->nr_items > i) 8069 stats->values[i] = btrfs_dev_stat_read(dev, i); 8070 } 8071 if (stats->nr_items > BTRFS_DEV_STAT_VALUES_MAX) 8072 stats->nr_items = BTRFS_DEV_STAT_VALUES_MAX; 8073 return 0; 8074 } 8075 8076 /* 8077 * Update the size and bytes used for each device where it changed. This is 8078 * delayed since we would otherwise get errors while writing out the 8079 * superblocks. 8080 * 8081 * Must be invoked during transaction commit. 8082 */ 8083 void btrfs_commit_device_sizes(struct btrfs_transaction *trans) 8084 { 8085 struct btrfs_device *curr, *next; 8086 8087 ASSERT(trans->state == TRANS_STATE_COMMIT_DOING); 8088 8089 if (list_empty(&trans->dev_update_list)) 8090 return; 8091 8092 /* 8093 * We don't need the device_list_mutex here. This list is owned by the 8094 * transaction and the transaction must complete before the device is 8095 * released. 8096 */ 8097 mutex_lock(&trans->fs_info->chunk_mutex); 8098 list_for_each_entry_safe(curr, next, &trans->dev_update_list, 8099 post_commit_list) { 8100 list_del_init(&curr->post_commit_list); 8101 curr->commit_total_bytes = curr->disk_total_bytes; 8102 curr->commit_bytes_used = curr->bytes_used; 8103 } 8104 mutex_unlock(&trans->fs_info->chunk_mutex); 8105 } 8106 8107 /* 8108 * Multiplicity factor for simple profiles: DUP, RAID1-like and RAID10. 8109 */ 8110 int btrfs_bg_type_to_factor(u64 flags) 8111 { 8112 const int index = btrfs_bg_flags_to_raid_index(flags); 8113 8114 return btrfs_raid_array[index].ncopies; 8115 } 8116 8117 8118 8119 static int verify_one_dev_extent(struct btrfs_fs_info *fs_info, 8120 u64 chunk_offset, u64 devid, 8121 u64 physical_offset, u64 physical_len) 8122 { 8123 struct btrfs_dev_lookup_args args = { .devid = devid }; 8124 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8125 struct extent_map *em; 8126 struct map_lookup *map; 8127 struct btrfs_device *dev; 8128 u64 stripe_len; 8129 bool found = false; 8130 int ret = 0; 8131 int i; 8132 8133 read_lock(&em_tree->lock); 8134 em = lookup_extent_mapping(em_tree, chunk_offset, 1); 8135 read_unlock(&em_tree->lock); 8136 8137 if (!em) { 8138 btrfs_err(fs_info, 8139 "dev extent physical offset %llu on devid %llu doesn't have corresponding chunk", 8140 physical_offset, devid); 8141 ret = -EUCLEAN; 8142 goto out; 8143 } 8144 8145 map = em->map_lookup; 8146 stripe_len = btrfs_calc_stripe_length(em); 8147 if (physical_len != stripe_len) { 8148 btrfs_err(fs_info, 8149 "dev extent physical offset %llu on devid %llu length doesn't match chunk %llu, have %llu expect %llu", 8150 physical_offset, devid, em->start, physical_len, 8151 stripe_len); 8152 ret = -EUCLEAN; 8153 goto out; 8154 } 8155 8156 /* 8157 * Very old mkfs.btrfs (before v4.1) will not respect the reserved 8158 * space. Although kernel can handle it without problem, better to warn 8159 * the users. 8160 */ 8161 if (physical_offset < BTRFS_DEVICE_RANGE_RESERVED) 8162 btrfs_warn(fs_info, 8163 "devid %llu physical %llu len %llu inside the reserved space", 8164 devid, physical_offset, physical_len); 8165 8166 for (i = 0; i < map->num_stripes; i++) { 8167 if (map->stripes[i].dev->devid == devid && 8168 map->stripes[i].physical == physical_offset) { 8169 found = true; 8170 if (map->verified_stripes >= map->num_stripes) { 8171 btrfs_err(fs_info, 8172 "too many dev extents for chunk %llu found", 8173 em->start); 8174 ret = -EUCLEAN; 8175 goto out; 8176 } 8177 map->verified_stripes++; 8178 break; 8179 } 8180 } 8181 if (!found) { 8182 btrfs_err(fs_info, 8183 "dev extent physical offset %llu devid %llu has no corresponding chunk", 8184 physical_offset, devid); 8185 ret = -EUCLEAN; 8186 } 8187 8188 /* Make sure no dev extent is beyond device boundary */ 8189 dev = btrfs_find_device(fs_info->fs_devices, &args); 8190 if (!dev) { 8191 btrfs_err(fs_info, "failed to find devid %llu", devid); 8192 ret = -EUCLEAN; 8193 goto out; 8194 } 8195 8196 if (physical_offset + physical_len > dev->disk_total_bytes) { 8197 btrfs_err(fs_info, 8198 "dev extent devid %llu physical offset %llu len %llu is beyond device boundary %llu", 8199 devid, physical_offset, physical_len, 8200 dev->disk_total_bytes); 8201 ret = -EUCLEAN; 8202 goto out; 8203 } 8204 8205 if (dev->zone_info) { 8206 u64 zone_size = dev->zone_info->zone_size; 8207 8208 if (!IS_ALIGNED(physical_offset, zone_size) || 8209 !IS_ALIGNED(physical_len, zone_size)) { 8210 btrfs_err(fs_info, 8211 "zoned: dev extent devid %llu physical offset %llu len %llu is not aligned to device zone", 8212 devid, physical_offset, physical_len); 8213 ret = -EUCLEAN; 8214 goto out; 8215 } 8216 } 8217 8218 out: 8219 free_extent_map(em); 8220 return ret; 8221 } 8222 8223 static int verify_chunk_dev_extent_mapping(struct btrfs_fs_info *fs_info) 8224 { 8225 struct extent_map_tree *em_tree = &fs_info->mapping_tree; 8226 struct extent_map *em; 8227 struct rb_node *node; 8228 int ret = 0; 8229 8230 read_lock(&em_tree->lock); 8231 for (node = rb_first_cached(&em_tree->map); node; node = rb_next(node)) { 8232 em = rb_entry(node, struct extent_map, rb_node); 8233 if (em->map_lookup->num_stripes != 8234 em->map_lookup->verified_stripes) { 8235 btrfs_err(fs_info, 8236 "chunk %llu has missing dev extent, have %d expect %d", 8237 em->start, em->map_lookup->verified_stripes, 8238 em->map_lookup->num_stripes); 8239 ret = -EUCLEAN; 8240 goto out; 8241 } 8242 } 8243 out: 8244 read_unlock(&em_tree->lock); 8245 return ret; 8246 } 8247 8248 /* 8249 * Ensure that all dev extents are mapped to correct chunk, otherwise 8250 * later chunk allocation/free would cause unexpected behavior. 8251 * 8252 * NOTE: This will iterate through the whole device tree, which should be of 8253 * the same size level as the chunk tree. This slightly increases mount time. 8254 */ 8255 int btrfs_verify_dev_extents(struct btrfs_fs_info *fs_info) 8256 { 8257 struct btrfs_path *path; 8258 struct btrfs_root *root = fs_info->dev_root; 8259 struct btrfs_key key; 8260 u64 prev_devid = 0; 8261 u64 prev_dev_ext_end = 0; 8262 int ret = 0; 8263 8264 /* 8265 * We don't have a dev_root because we mounted with ignorebadroots and 8266 * failed to load the root, so we want to skip the verification in this 8267 * case for sure. 8268 * 8269 * However if the dev root is fine, but the tree itself is corrupted 8270 * we'd still fail to mount. This verification is only to make sure 8271 * writes can happen safely, so instead just bypass this check 8272 * completely in the case of IGNOREBADROOTS. 8273 */ 8274 if (btrfs_test_opt(fs_info, IGNOREBADROOTS)) 8275 return 0; 8276 8277 key.objectid = 1; 8278 key.type = BTRFS_DEV_EXTENT_KEY; 8279 key.offset = 0; 8280 8281 path = btrfs_alloc_path(); 8282 if (!path) 8283 return -ENOMEM; 8284 8285 path->reada = READA_FORWARD; 8286 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 8287 if (ret < 0) 8288 goto out; 8289 8290 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 8291 ret = btrfs_next_leaf(root, path); 8292 if (ret < 0) 8293 goto out; 8294 /* No dev extents at all? Not good */ 8295 if (ret > 0) { 8296 ret = -EUCLEAN; 8297 goto out; 8298 } 8299 } 8300 while (1) { 8301 struct extent_buffer *leaf = path->nodes[0]; 8302 struct btrfs_dev_extent *dext; 8303 int slot = path->slots[0]; 8304 u64 chunk_offset; 8305 u64 physical_offset; 8306 u64 physical_len; 8307 u64 devid; 8308 8309 btrfs_item_key_to_cpu(leaf, &key, slot); 8310 if (key.type != BTRFS_DEV_EXTENT_KEY) 8311 break; 8312 devid = key.objectid; 8313 physical_offset = key.offset; 8314 8315 dext = btrfs_item_ptr(leaf, slot, struct btrfs_dev_extent); 8316 chunk_offset = btrfs_dev_extent_chunk_offset(leaf, dext); 8317 physical_len = btrfs_dev_extent_length(leaf, dext); 8318 8319 /* Check if this dev extent overlaps with the previous one */ 8320 if (devid == prev_devid && physical_offset < prev_dev_ext_end) { 8321 btrfs_err(fs_info, 8322 "dev extent devid %llu physical offset %llu overlap with previous dev extent end %llu", 8323 devid, physical_offset, prev_dev_ext_end); 8324 ret = -EUCLEAN; 8325 goto out; 8326 } 8327 8328 ret = verify_one_dev_extent(fs_info, chunk_offset, devid, 8329 physical_offset, physical_len); 8330 if (ret < 0) 8331 goto out; 8332 prev_devid = devid; 8333 prev_dev_ext_end = physical_offset + physical_len; 8334 8335 ret = btrfs_next_item(root, path); 8336 if (ret < 0) 8337 goto out; 8338 if (ret > 0) { 8339 ret = 0; 8340 break; 8341 } 8342 } 8343 8344 /* Ensure all chunks have corresponding dev extents */ 8345 ret = verify_chunk_dev_extent_mapping(fs_info); 8346 out: 8347 btrfs_free_path(path); 8348 return ret; 8349 } 8350 8351 /* 8352 * Check whether the given block group or device is pinned by any inode being 8353 * used as a swapfile. 8354 */ 8355 bool btrfs_pinned_by_swapfile(struct btrfs_fs_info *fs_info, void *ptr) 8356 { 8357 struct btrfs_swapfile_pin *sp; 8358 struct rb_node *node; 8359 8360 spin_lock(&fs_info->swapfile_pins_lock); 8361 node = fs_info->swapfile_pins.rb_node; 8362 while (node) { 8363 sp = rb_entry(node, struct btrfs_swapfile_pin, node); 8364 if (ptr < sp->ptr) 8365 node = node->rb_left; 8366 else if (ptr > sp->ptr) 8367 node = node->rb_right; 8368 else 8369 break; 8370 } 8371 spin_unlock(&fs_info->swapfile_pins_lock); 8372 return node != NULL; 8373 } 8374 8375 static int relocating_repair_kthread(void *data) 8376 { 8377 struct btrfs_block_group *cache = data; 8378 struct btrfs_fs_info *fs_info = cache->fs_info; 8379 u64 target; 8380 int ret = 0; 8381 8382 target = cache->start; 8383 btrfs_put_block_group(cache); 8384 8385 sb_start_write(fs_info->sb); 8386 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 8387 btrfs_info(fs_info, 8388 "zoned: skip relocating block group %llu to repair: EBUSY", 8389 target); 8390 sb_end_write(fs_info->sb); 8391 return -EBUSY; 8392 } 8393 8394 mutex_lock(&fs_info->reclaim_bgs_lock); 8395 8396 /* Ensure block group still exists */ 8397 cache = btrfs_lookup_block_group(fs_info, target); 8398 if (!cache) 8399 goto out; 8400 8401 if (!test_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) 8402 goto out; 8403 8404 ret = btrfs_may_alloc_data_chunk(fs_info, target); 8405 if (ret < 0) 8406 goto out; 8407 8408 btrfs_info(fs_info, 8409 "zoned: relocating block group %llu to repair IO failure", 8410 target); 8411 ret = btrfs_relocate_chunk(fs_info, target); 8412 8413 out: 8414 if (cache) 8415 btrfs_put_block_group(cache); 8416 mutex_unlock(&fs_info->reclaim_bgs_lock); 8417 btrfs_exclop_finish(fs_info); 8418 sb_end_write(fs_info->sb); 8419 8420 return ret; 8421 } 8422 8423 bool btrfs_repair_one_zone(struct btrfs_fs_info *fs_info, u64 logical) 8424 { 8425 struct btrfs_block_group *cache; 8426 8427 if (!btrfs_is_zoned(fs_info)) 8428 return false; 8429 8430 /* Do not attempt to repair in degraded state */ 8431 if (btrfs_test_opt(fs_info, DEGRADED)) 8432 return true; 8433 8434 cache = btrfs_lookup_block_group(fs_info, logical); 8435 if (!cache) 8436 return true; 8437 8438 if (test_and_set_bit(BLOCK_GROUP_FLAG_RELOCATING_REPAIR, &cache->runtime_flags)) { 8439 btrfs_put_block_group(cache); 8440 return true; 8441 } 8442 8443 kthread_run(relocating_repair_kthread, cache, 8444 "btrfs-relocating-repair"); 8445 8446 return true; 8447 } 8448 8449 int __init btrfs_bioset_init(void) 8450 { 8451 if (bioset_init(&btrfs_bioset, BIO_POOL_SIZE, 8452 offsetof(struct btrfs_bio, bio), 8453 BIOSET_NEED_BVECS)) 8454 return -ENOMEM; 8455 return 0; 8456 } 8457 8458 void __cold btrfs_bioset_exit(void) 8459 { 8460 bioset_exit(&btrfs_bioset); 8461 } 8462