xref: /openbmc/linux/fs/btrfs/tree-log.c (revision 07d400a6df4767a90d49a153fdb7f4cfa1e3f23e)
1 /*
2  * Copyright (C) 2008 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include "ctree.h"
21 #include "transaction.h"
22 #include "disk-io.h"
23 #include "locking.h"
24 #include "print-tree.h"
25 #include "compat.h"
26 #include "tree-log.h"
27 
28 /* magic values for the inode_only field in btrfs_log_inode:
29  *
30  * LOG_INODE_ALL means to log everything
31  * LOG_INODE_EXISTS means to log just enough to recreate the inode
32  * during log replay
33  */
34 #define LOG_INODE_ALL 0
35 #define LOG_INODE_EXISTS 1
36 
37 /*
38  * stages for the tree walking.  The first
39  * stage (0) is to only pin down the blocks we find
40  * the second stage (1) is to make sure that all the inodes
41  * we find in the log are created in the subvolume.
42  *
43  * The last stage is to deal with directories and links and extents
44  * and all the other fun semantics
45  */
46 #define LOG_WALK_PIN_ONLY 0
47 #define LOG_WALK_REPLAY_INODES 1
48 #define LOG_WALK_REPLAY_ALL 2
49 
50 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
51 			     struct btrfs_root *root, struct inode *inode,
52 			     int inode_only);
53 static int link_to_fixup_dir(struct btrfs_trans_handle *trans,
54 			     struct btrfs_root *root,
55 			     struct btrfs_path *path, u64 objectid);
56 
57 /*
58  * tree logging is a special write ahead log used to make sure that
59  * fsyncs and O_SYNCs can happen without doing full tree commits.
60  *
61  * Full tree commits are expensive because they require commonly
62  * modified blocks to be recowed, creating many dirty pages in the
63  * extent tree an 4x-6x higher write load than ext3.
64  *
65  * Instead of doing a tree commit on every fsync, we use the
66  * key ranges and transaction ids to find items for a given file or directory
67  * that have changed in this transaction.  Those items are copied into
68  * a special tree (one per subvolume root), that tree is written to disk
69  * and then the fsync is considered complete.
70  *
71  * After a crash, items are copied out of the log-tree back into the
72  * subvolume tree.  Any file data extents found are recorded in the extent
73  * allocation tree, and the log-tree freed.
74  *
75  * The log tree is read three times, once to pin down all the extents it is
76  * using in ram and once, once to create all the inodes logged in the tree
77  * and once to do all the other items.
78  */
79 
80 /*
81  * btrfs_add_log_tree adds a new per-subvolume log tree into the
82  * tree of log tree roots.  This must be called with a tree log transaction
83  * running (see start_log_trans).
84  */
85 static int btrfs_add_log_tree(struct btrfs_trans_handle *trans,
86 		      struct btrfs_root *root)
87 {
88 	struct btrfs_key key;
89 	struct btrfs_root_item root_item;
90 	struct btrfs_inode_item *inode_item;
91 	struct extent_buffer *leaf;
92 	struct btrfs_root *new_root = root;
93 	int ret;
94 	u64 objectid = root->root_key.objectid;
95 
96 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 0,
97 				      BTRFS_TREE_LOG_OBJECTID,
98 				      trans->transid, 0, 0, 0);
99 	if (IS_ERR(leaf)) {
100 		ret = PTR_ERR(leaf);
101 		return ret;
102 	}
103 
104 	btrfs_set_header_nritems(leaf, 0);
105 	btrfs_set_header_level(leaf, 0);
106 	btrfs_set_header_bytenr(leaf, leaf->start);
107 	btrfs_set_header_generation(leaf, trans->transid);
108 	btrfs_set_header_owner(leaf, BTRFS_TREE_LOG_OBJECTID);
109 
110 	write_extent_buffer(leaf, root->fs_info->fsid,
111 			    (unsigned long)btrfs_header_fsid(leaf),
112 			    BTRFS_FSID_SIZE);
113 	btrfs_mark_buffer_dirty(leaf);
114 
115 	inode_item = &root_item.inode;
116 	memset(inode_item, 0, sizeof(*inode_item));
117 	inode_item->generation = cpu_to_le64(1);
118 	inode_item->size = cpu_to_le64(3);
119 	inode_item->nlink = cpu_to_le32(1);
120 	inode_item->nbytes = cpu_to_le64(root->leafsize);
121 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
122 
123 	btrfs_set_root_bytenr(&root_item, leaf->start);
124 	btrfs_set_root_generation(&root_item, trans->transid);
125 	btrfs_set_root_level(&root_item, 0);
126 	btrfs_set_root_refs(&root_item, 0);
127 	btrfs_set_root_used(&root_item, 0);
128 
129 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
130 	root_item.drop_level = 0;
131 
132 	btrfs_tree_unlock(leaf);
133 	free_extent_buffer(leaf);
134 	leaf = NULL;
135 
136 	btrfs_set_root_dirid(&root_item, 0);
137 
138 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
139 	key.offset = objectid;
140 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
141 	ret = btrfs_insert_root(trans, root->fs_info->log_root_tree, &key,
142 				&root_item);
143 	if (ret)
144 		goto fail;
145 
146 	new_root = btrfs_read_fs_root_no_radix(root->fs_info->log_root_tree,
147 					       &key);
148 	BUG_ON(!new_root);
149 
150 	WARN_ON(root->log_root);
151 	root->log_root = new_root;
152 
153 	/*
154 	 * log trees do not get reference counted because they go away
155 	 * before a real commit is actually done.  They do store pointers
156 	 * to file data extents, and those reference counts still get
157 	 * updated (along with back refs to the log tree).
158 	 */
159 	new_root->ref_cows = 0;
160 	new_root->last_trans = trans->transid;
161 fail:
162 	return ret;
163 }
164 
165 /*
166  * start a sub transaction and setup the log tree
167  * this increments the log tree writer count to make the people
168  * syncing the tree wait for us to finish
169  */
170 static int start_log_trans(struct btrfs_trans_handle *trans,
171 			   struct btrfs_root *root)
172 {
173 	int ret;
174 	mutex_lock(&root->fs_info->tree_log_mutex);
175 	if (!root->fs_info->log_root_tree) {
176 		ret = btrfs_init_log_root_tree(trans, root->fs_info);
177 		BUG_ON(ret);
178 	}
179 	if (!root->log_root) {
180 		ret = btrfs_add_log_tree(trans, root);
181 		BUG_ON(ret);
182 	}
183 	atomic_inc(&root->fs_info->tree_log_writers);
184 	root->fs_info->tree_log_batch++;
185 	mutex_unlock(&root->fs_info->tree_log_mutex);
186 	return 0;
187 }
188 
189 /*
190  * returns 0 if there was a log transaction running and we were able
191  * to join, or returns -ENOENT if there were not transactions
192  * in progress
193  */
194 static int join_running_log_trans(struct btrfs_root *root)
195 {
196 	int ret = -ENOENT;
197 
198 	smp_mb();
199 	if (!root->log_root)
200 		return -ENOENT;
201 
202 	mutex_lock(&root->fs_info->tree_log_mutex);
203 	if (root->log_root) {
204 		ret = 0;
205 		atomic_inc(&root->fs_info->tree_log_writers);
206 		root->fs_info->tree_log_batch++;
207 	}
208 	mutex_unlock(&root->fs_info->tree_log_mutex);
209 	return ret;
210 }
211 
212 /*
213  * indicate we're done making changes to the log tree
214  * and wake up anyone waiting to do a sync
215  */
216 static int end_log_trans(struct btrfs_root *root)
217 {
218 	atomic_dec(&root->fs_info->tree_log_writers);
219 	smp_mb();
220 	if (waitqueue_active(&root->fs_info->tree_log_wait))
221 		wake_up(&root->fs_info->tree_log_wait);
222 	return 0;
223 }
224 
225 
226 /*
227  * the walk control struct is used to pass state down the chain when
228  * processing the log tree.  The stage field tells us which part
229  * of the log tree processing we are currently doing.  The others
230  * are state fields used for that specific part
231  */
232 struct walk_control {
233 	/* should we free the extent on disk when done?  This is used
234 	 * at transaction commit time while freeing a log tree
235 	 */
236 	int free;
237 
238 	/* should we write out the extent buffer?  This is used
239 	 * while flushing the log tree to disk during a sync
240 	 */
241 	int write;
242 
243 	/* should we wait for the extent buffer io to finish?  Also used
244 	 * while flushing the log tree to disk for a sync
245 	 */
246 	int wait;
247 
248 	/* pin only walk, we record which extents on disk belong to the
249 	 * log trees
250 	 */
251 	int pin;
252 
253 	/* what stage of the replay code we're currently in */
254 	int stage;
255 
256 	/* the root we are currently replaying */
257 	struct btrfs_root *replay_dest;
258 
259 	/* the trans handle for the current replay */
260 	struct btrfs_trans_handle *trans;
261 
262 	/* the function that gets used to process blocks we find in the
263 	 * tree.  Note the extent_buffer might not be up to date when it is
264 	 * passed in, and it must be checked or read if you need the data
265 	 * inside it
266 	 */
267 	int (*process_func)(struct btrfs_root *log, struct extent_buffer *eb,
268 			    struct walk_control *wc, u64 gen);
269 };
270 
271 /*
272  * process_func used to pin down extents, write them or wait on them
273  */
274 static int process_one_buffer(struct btrfs_root *log,
275 			      struct extent_buffer *eb,
276 			      struct walk_control *wc, u64 gen)
277 {
278 	if (wc->pin) {
279 		mutex_lock(&log->fs_info->pinned_mutex);
280 		btrfs_update_pinned_extents(log->fs_info->extent_root,
281 					    eb->start, eb->len, 1);
282 		mutex_unlock(&log->fs_info->pinned_mutex);
283 	}
284 
285 	if (btrfs_buffer_uptodate(eb, gen)) {
286 		if (wc->write)
287 			btrfs_write_tree_block(eb);
288 		if (wc->wait)
289 			btrfs_wait_tree_block_writeback(eb);
290 	}
291 	return 0;
292 }
293 
294 /*
295  * Item overwrite used by replay and tree logging.  eb, slot and key all refer
296  * to the src data we are copying out.
297  *
298  * root is the tree we are copying into, and path is a scratch
299  * path for use in this function (it should be released on entry and
300  * will be released on exit).
301  *
302  * If the key is already in the destination tree the existing item is
303  * overwritten.  If the existing item isn't big enough, it is extended.
304  * If it is too large, it is truncated.
305  *
306  * If the key isn't in the destination yet, a new item is inserted.
307  */
308 static noinline int overwrite_item(struct btrfs_trans_handle *trans,
309 				   struct btrfs_root *root,
310 				   struct btrfs_path *path,
311 				   struct extent_buffer *eb, int slot,
312 				   struct btrfs_key *key)
313 {
314 	int ret;
315 	u32 item_size;
316 	u64 saved_i_size = 0;
317 	int save_old_i_size = 0;
318 	unsigned long src_ptr;
319 	unsigned long dst_ptr;
320 	int overwrite_root = 0;
321 
322 	if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID)
323 		overwrite_root = 1;
324 
325 	item_size = btrfs_item_size_nr(eb, slot);
326 	src_ptr = btrfs_item_ptr_offset(eb, slot);
327 
328 	/* look for the key in the destination tree */
329 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
330 	if (ret == 0) {
331 		char *src_copy;
332 		char *dst_copy;
333 		u32 dst_size = btrfs_item_size_nr(path->nodes[0],
334 						  path->slots[0]);
335 		if (dst_size != item_size)
336 			goto insert;
337 
338 		if (item_size == 0) {
339 			btrfs_release_path(root, path);
340 			return 0;
341 		}
342 		dst_copy = kmalloc(item_size, GFP_NOFS);
343 		src_copy = kmalloc(item_size, GFP_NOFS);
344 
345 		read_extent_buffer(eb, src_copy, src_ptr, item_size);
346 
347 		dst_ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
348 		read_extent_buffer(path->nodes[0], dst_copy, dst_ptr,
349 				   item_size);
350 		ret = memcmp(dst_copy, src_copy, item_size);
351 
352 		kfree(dst_copy);
353 		kfree(src_copy);
354 		/*
355 		 * they have the same contents, just return, this saves
356 		 * us from cowing blocks in the destination tree and doing
357 		 * extra writes that may not have been done by a previous
358 		 * sync
359 		 */
360 		if (ret == 0) {
361 			btrfs_release_path(root, path);
362 			return 0;
363 		}
364 
365 	}
366 insert:
367 	btrfs_release_path(root, path);
368 	/* try to insert the key into the destination tree */
369 	ret = btrfs_insert_empty_item(trans, root, path,
370 				      key, item_size);
371 
372 	/* make sure any existing item is the correct size */
373 	if (ret == -EEXIST) {
374 		u32 found_size;
375 		found_size = btrfs_item_size_nr(path->nodes[0],
376 						path->slots[0]);
377 		if (found_size > item_size) {
378 			btrfs_truncate_item(trans, root, path, item_size, 1);
379 		} else if (found_size < item_size) {
380 			ret = btrfs_extend_item(trans, root, path,
381 						item_size - found_size);
382 			BUG_ON(ret);
383 		}
384 	} else if (ret) {
385 		BUG();
386 	}
387 	dst_ptr = btrfs_item_ptr_offset(path->nodes[0],
388 					path->slots[0]);
389 
390 	/* don't overwrite an existing inode if the generation number
391 	 * was logged as zero.  This is done when the tree logging code
392 	 * is just logging an inode to make sure it exists after recovery.
393 	 *
394 	 * Also, don't overwrite i_size on directories during replay.
395 	 * log replay inserts and removes directory items based on the
396 	 * state of the tree found in the subvolume, and i_size is modified
397 	 * as it goes
398 	 */
399 	if (key->type == BTRFS_INODE_ITEM_KEY && ret == -EEXIST) {
400 		struct btrfs_inode_item *src_item;
401 		struct btrfs_inode_item *dst_item;
402 
403 		src_item = (struct btrfs_inode_item *)src_ptr;
404 		dst_item = (struct btrfs_inode_item *)dst_ptr;
405 
406 		if (btrfs_inode_generation(eb, src_item) == 0)
407 			goto no_copy;
408 
409 		if (overwrite_root &&
410 		    S_ISDIR(btrfs_inode_mode(eb, src_item)) &&
411 		    S_ISDIR(btrfs_inode_mode(path->nodes[0], dst_item))) {
412 			save_old_i_size = 1;
413 			saved_i_size = btrfs_inode_size(path->nodes[0],
414 							dst_item);
415 		}
416 	}
417 
418 	copy_extent_buffer(path->nodes[0], eb, dst_ptr,
419 			   src_ptr, item_size);
420 
421 	if (save_old_i_size) {
422 		struct btrfs_inode_item *dst_item;
423 		dst_item = (struct btrfs_inode_item *)dst_ptr;
424 		btrfs_set_inode_size(path->nodes[0], dst_item, saved_i_size);
425 	}
426 
427 	/* make sure the generation is filled in */
428 	if (key->type == BTRFS_INODE_ITEM_KEY) {
429 		struct btrfs_inode_item *dst_item;
430 		dst_item = (struct btrfs_inode_item *)dst_ptr;
431 		if (btrfs_inode_generation(path->nodes[0], dst_item) == 0) {
432 			btrfs_set_inode_generation(path->nodes[0], dst_item,
433 						   trans->transid);
434 		}
435 	}
436 no_copy:
437 	btrfs_mark_buffer_dirty(path->nodes[0]);
438 	btrfs_release_path(root, path);
439 	return 0;
440 }
441 
442 /*
443  * simple helper to read an inode off the disk from a given root
444  * This can only be called for subvolume roots and not for the log
445  */
446 static noinline struct inode *read_one_inode(struct btrfs_root *root,
447 					     u64 objectid)
448 {
449 	struct inode *inode;
450 	inode = btrfs_iget_locked(root->fs_info->sb, objectid, root);
451 	if (inode->i_state & I_NEW) {
452 		BTRFS_I(inode)->root = root;
453 		BTRFS_I(inode)->location.objectid = objectid;
454 		BTRFS_I(inode)->location.type = BTRFS_INODE_ITEM_KEY;
455 		BTRFS_I(inode)->location.offset = 0;
456 		btrfs_read_locked_inode(inode);
457 		unlock_new_inode(inode);
458 
459 	}
460 	if (is_bad_inode(inode)) {
461 		iput(inode);
462 		inode = NULL;
463 	}
464 	return inode;
465 }
466 
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468  * subvolume 'root'.  path is released on entry and should be released
469  * on exit.
470  *
471  * extents in the log tree have not been allocated out of the extent
472  * tree yet.  So, this completes the allocation, taking a reference
473  * as required if the extent already exists or creating a new extent
474  * if it isn't in the extent allocation tree yet.
475  *
476  * The extent is inserted into the file, dropping any existing extents
477  * from the file that overlap the new one.
478  */
479 static noinline int replay_one_extent(struct btrfs_trans_handle *trans,
480 				      struct btrfs_root *root,
481 				      struct btrfs_path *path,
482 				      struct extent_buffer *eb, int slot,
483 				      struct btrfs_key *key)
484 {
485 	int found_type;
486 	u64 mask = root->sectorsize - 1;
487 	u64 extent_end;
488 	u64 alloc_hint;
489 	u64 start = key->offset;
490 	u64 saved_nbytes;
491 	struct btrfs_file_extent_item *item;
492 	struct inode *inode = NULL;
493 	unsigned long size;
494 	int ret = 0;
495 
496 	item = btrfs_item_ptr(eb, slot, struct btrfs_file_extent_item);
497 	found_type = btrfs_file_extent_type(eb, item);
498 
499 	if (found_type == BTRFS_FILE_EXTENT_REG ||
500 	    found_type == BTRFS_FILE_EXTENT_PREALLOC)
501 		extent_end = start + btrfs_file_extent_num_bytes(eb, item);
502 	else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
503 		size = btrfs_file_extent_inline_len(eb, item);
504 		extent_end = (start + size + mask) & ~mask;
505 	} else {
506 		ret = 0;
507 		goto out;
508 	}
509 
510 	inode = read_one_inode(root, key->objectid);
511 	if (!inode) {
512 		ret = -EIO;
513 		goto out;
514 	}
515 
516 	/*
517 	 * first check to see if we already have this extent in the
518 	 * file.  This must be done before the btrfs_drop_extents run
519 	 * so we don't try to drop this extent.
520 	 */
521 	ret = btrfs_lookup_file_extent(trans, root, path, inode->i_ino,
522 				       start, 0);
523 
524 	if (ret == 0 &&
525 	    (found_type == BTRFS_FILE_EXTENT_REG ||
526 	     found_type == BTRFS_FILE_EXTENT_PREALLOC)) {
527 		struct btrfs_file_extent_item cmp1;
528 		struct btrfs_file_extent_item cmp2;
529 		struct btrfs_file_extent_item *existing;
530 		struct extent_buffer *leaf;
531 
532 		leaf = path->nodes[0];
533 		existing = btrfs_item_ptr(leaf, path->slots[0],
534 					  struct btrfs_file_extent_item);
535 
536 		read_extent_buffer(eb, &cmp1, (unsigned long)item,
537 				   sizeof(cmp1));
538 		read_extent_buffer(leaf, &cmp2, (unsigned long)existing,
539 				   sizeof(cmp2));
540 
541 		/*
542 		 * we already have a pointer to this exact extent,
543 		 * we don't have to do anything
544 		 */
545 		if (memcmp(&cmp1, &cmp2, sizeof(cmp1)) == 0) {
546 			btrfs_release_path(root, path);
547 			goto out;
548 		}
549 	}
550 	btrfs_release_path(root, path);
551 
552 	saved_nbytes = inode_get_bytes(inode);
553 	/* drop any overlapping extents */
554 	ret = btrfs_drop_extents(trans, root, inode,
555 			 start, extent_end, start, &alloc_hint);
556 	BUG_ON(ret);
557 
558 	if (found_type == BTRFS_FILE_EXTENT_REG ||
559 	    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
560 		unsigned long dest_offset;
561 		struct btrfs_key ins;
562 
563 		ret = btrfs_insert_empty_item(trans, root, path, key,
564 					      sizeof(*item));
565 		BUG_ON(ret);
566 		dest_offset = btrfs_item_ptr_offset(path->nodes[0],
567 						    path->slots[0]);
568 		copy_extent_buffer(path->nodes[0], eb, dest_offset,
569 				(unsigned long)item,  sizeof(*item));
570 
571 		ins.objectid = btrfs_file_extent_disk_bytenr(eb, item);
572 		ins.offset = btrfs_file_extent_disk_num_bytes(eb, item);
573 		ins.type = BTRFS_EXTENT_ITEM_KEY;
574 
575 		if (ins.objectid > 0) {
576 			u64 csum_start;
577 			u64 csum_end;
578 			LIST_HEAD(ordered_sums);
579 			/*
580 			 * is this extent already allocated in the extent
581 			 * allocation tree?  If so, just add a reference
582 			 */
583 			ret = btrfs_lookup_extent(root, ins.objectid,
584 						ins.offset);
585 			if (ret == 0) {
586 				ret = btrfs_inc_extent_ref(trans, root,
587 						ins.objectid, ins.offset,
588 						path->nodes[0]->start,
589 						root->root_key.objectid,
590 						trans->transid, key->objectid);
591 			} else {
592 				/*
593 				 * insert the extent pointer in the extent
594 				 * allocation tree
595 				 */
596 				ret = btrfs_alloc_logged_extent(trans, root,
597 						path->nodes[0]->start,
598 						root->root_key.objectid,
599 						trans->transid, key->objectid,
600 						&ins);
601 				BUG_ON(ret);
602 			}
603 			btrfs_release_path(root, path);
604 
605 			if (btrfs_file_extent_compression(eb, item)) {
606 				csum_start = ins.objectid;
607 				csum_end = csum_start + ins.offset;
608 			} else {
609 				csum_start = ins.objectid +
610 					btrfs_file_extent_offset(eb, item);
611 				csum_end = csum_start +
612 					btrfs_file_extent_num_bytes(eb, item);
613 			}
614 
615 			ret = btrfs_lookup_csums_range(root->log_root,
616 						csum_start, csum_end - 1,
617 						&ordered_sums);
618 			BUG_ON(ret);
619 			while (!list_empty(&ordered_sums)) {
620 				struct btrfs_ordered_sum *sums;
621 				sums = list_entry(ordered_sums.next,
622 						struct btrfs_ordered_sum,
623 						list);
624 				ret = btrfs_csum_file_blocks(trans,
625 						root->fs_info->csum_root,
626 						sums);
627 				BUG_ON(ret);
628 				list_del(&sums->list);
629 				kfree(sums);
630 			}
631 		} else {
632 			btrfs_release_path(root, path);
633 		}
634 	} else if (found_type == BTRFS_FILE_EXTENT_INLINE) {
635 		/* inline extents are easy, we just overwrite them */
636 		ret = overwrite_item(trans, root, path, eb, slot, key);
637 		BUG_ON(ret);
638 	}
639 
640 	inode_set_bytes(inode, saved_nbytes);
641 	btrfs_update_inode(trans, root, inode);
642 out:
643 	if (inode)
644 		iput(inode);
645 	return ret;
646 }
647 
648 /*
649  * when cleaning up conflicts between the directory names in the
650  * subvolume, directory names in the log and directory names in the
651  * inode back references, we may have to unlink inodes from directories.
652  *
653  * This is a helper function to do the unlink of a specific directory
654  * item
655  */
656 static noinline int drop_one_dir_item(struct btrfs_trans_handle *trans,
657 				      struct btrfs_root *root,
658 				      struct btrfs_path *path,
659 				      struct inode *dir,
660 				      struct btrfs_dir_item *di)
661 {
662 	struct inode *inode;
663 	char *name;
664 	int name_len;
665 	struct extent_buffer *leaf;
666 	struct btrfs_key location;
667 	int ret;
668 
669 	leaf = path->nodes[0];
670 
671 	btrfs_dir_item_key_to_cpu(leaf, di, &location);
672 	name_len = btrfs_dir_name_len(leaf, di);
673 	name = kmalloc(name_len, GFP_NOFS);
674 	read_extent_buffer(leaf, name, (unsigned long)(di + 1), name_len);
675 	btrfs_release_path(root, path);
676 
677 	inode = read_one_inode(root, location.objectid);
678 	BUG_ON(!inode);
679 
680 	ret = link_to_fixup_dir(trans, root, path, location.objectid);
681 	BUG_ON(ret);
682 	ret = btrfs_unlink_inode(trans, root, dir, inode, name, name_len);
683 	BUG_ON(ret);
684 	kfree(name);
685 
686 	iput(inode);
687 	return ret;
688 }
689 
690 /*
691  * helper function to see if a given name and sequence number found
692  * in an inode back reference are already in a directory and correctly
693  * point to this inode
694  */
695 static noinline int inode_in_dir(struct btrfs_root *root,
696 				 struct btrfs_path *path,
697 				 u64 dirid, u64 objectid, u64 index,
698 				 const char *name, int name_len)
699 {
700 	struct btrfs_dir_item *di;
701 	struct btrfs_key location;
702 	int match = 0;
703 
704 	di = btrfs_lookup_dir_index_item(NULL, root, path, dirid,
705 					 index, name, name_len, 0);
706 	if (di && !IS_ERR(di)) {
707 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
708 		if (location.objectid != objectid)
709 			goto out;
710 	} else
711 		goto out;
712 	btrfs_release_path(root, path);
713 
714 	di = btrfs_lookup_dir_item(NULL, root, path, dirid, name, name_len, 0);
715 	if (di && !IS_ERR(di)) {
716 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
717 		if (location.objectid != objectid)
718 			goto out;
719 	} else
720 		goto out;
721 	match = 1;
722 out:
723 	btrfs_release_path(root, path);
724 	return match;
725 }
726 
727 /*
728  * helper function to check a log tree for a named back reference in
729  * an inode.  This is used to decide if a back reference that is
730  * found in the subvolume conflicts with what we find in the log.
731  *
732  * inode backreferences may have multiple refs in a single item,
733  * during replay we process one reference at a time, and we don't
734  * want to delete valid links to a file from the subvolume if that
735  * link is also in the log.
736  */
737 static noinline int backref_in_log(struct btrfs_root *log,
738 				   struct btrfs_key *key,
739 				   char *name, int namelen)
740 {
741 	struct btrfs_path *path;
742 	struct btrfs_inode_ref *ref;
743 	unsigned long ptr;
744 	unsigned long ptr_end;
745 	unsigned long name_ptr;
746 	int found_name_len;
747 	int item_size;
748 	int ret;
749 	int match = 0;
750 
751 	path = btrfs_alloc_path();
752 	ret = btrfs_search_slot(NULL, log, key, path, 0, 0);
753 	if (ret != 0)
754 		goto out;
755 
756 	item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
757 	ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
758 	ptr_end = ptr + item_size;
759 	while (ptr < ptr_end) {
760 		ref = (struct btrfs_inode_ref *)ptr;
761 		found_name_len = btrfs_inode_ref_name_len(path->nodes[0], ref);
762 		if (found_name_len == namelen) {
763 			name_ptr = (unsigned long)(ref + 1);
764 			ret = memcmp_extent_buffer(path->nodes[0], name,
765 						   name_ptr, namelen);
766 			if (ret == 0) {
767 				match = 1;
768 				goto out;
769 			}
770 		}
771 		ptr = (unsigned long)(ref + 1) + found_name_len;
772 	}
773 out:
774 	btrfs_free_path(path);
775 	return match;
776 }
777 
778 
779 /*
780  * replay one inode back reference item found in the log tree.
781  * eb, slot and key refer to the buffer and key found in the log tree.
782  * root is the destination we are replaying into, and path is for temp
783  * use by this function.  (it should be released on return).
784  */
785 static noinline int add_inode_ref(struct btrfs_trans_handle *trans,
786 				  struct btrfs_root *root,
787 				  struct btrfs_root *log,
788 				  struct btrfs_path *path,
789 				  struct extent_buffer *eb, int slot,
790 				  struct btrfs_key *key)
791 {
792 	struct inode *dir;
793 	int ret;
794 	struct btrfs_key location;
795 	struct btrfs_inode_ref *ref;
796 	struct btrfs_dir_item *di;
797 	struct inode *inode;
798 	char *name;
799 	int namelen;
800 	unsigned long ref_ptr;
801 	unsigned long ref_end;
802 
803 	location.objectid = key->objectid;
804 	location.type = BTRFS_INODE_ITEM_KEY;
805 	location.offset = 0;
806 
807 	/*
808 	 * it is possible that we didn't log all the parent directories
809 	 * for a given inode.  If we don't find the dir, just don't
810 	 * copy the back ref in.  The link count fixup code will take
811 	 * care of the rest
812 	 */
813 	dir = read_one_inode(root, key->offset);
814 	if (!dir)
815 		return -ENOENT;
816 
817 	inode = read_one_inode(root, key->objectid);
818 	BUG_ON(!dir);
819 
820 	ref_ptr = btrfs_item_ptr_offset(eb, slot);
821 	ref_end = ref_ptr + btrfs_item_size_nr(eb, slot);
822 
823 again:
824 	ref = (struct btrfs_inode_ref *)ref_ptr;
825 
826 	namelen = btrfs_inode_ref_name_len(eb, ref);
827 	name = kmalloc(namelen, GFP_NOFS);
828 	BUG_ON(!name);
829 
830 	read_extent_buffer(eb, name, (unsigned long)(ref + 1), namelen);
831 
832 	/* if we already have a perfect match, we're done */
833 	if (inode_in_dir(root, path, dir->i_ino, inode->i_ino,
834 			 btrfs_inode_ref_index(eb, ref),
835 			 name, namelen)) {
836 		goto out;
837 	}
838 
839 	/*
840 	 * look for a conflicting back reference in the metadata.
841 	 * if we find one we have to unlink that name of the file
842 	 * before we add our new link.  Later on, we overwrite any
843 	 * existing back reference, and we don't want to create
844 	 * dangling pointers in the directory.
845 	 */
846 conflict_again:
847 	ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
848 	if (ret == 0) {
849 		char *victim_name;
850 		int victim_name_len;
851 		struct btrfs_inode_ref *victim_ref;
852 		unsigned long ptr;
853 		unsigned long ptr_end;
854 		struct extent_buffer *leaf = path->nodes[0];
855 
856 		/* are we trying to overwrite a back ref for the root directory
857 		 * if so, just jump out, we're done
858 		 */
859 		if (key->objectid == key->offset)
860 			goto out_nowrite;
861 
862 		/* check all the names in this back reference to see
863 		 * if they are in the log.  if so, we allow them to stay
864 		 * otherwise they must be unlinked as a conflict
865 		 */
866 		ptr = btrfs_item_ptr_offset(leaf, path->slots[0]);
867 		ptr_end = ptr + btrfs_item_size_nr(leaf, path->slots[0]);
868 		while (ptr < ptr_end) {
869 			victim_ref = (struct btrfs_inode_ref *)ptr;
870 			victim_name_len = btrfs_inode_ref_name_len(leaf,
871 								   victim_ref);
872 			victim_name = kmalloc(victim_name_len, GFP_NOFS);
873 			BUG_ON(!victim_name);
874 
875 			read_extent_buffer(leaf, victim_name,
876 					   (unsigned long)(victim_ref + 1),
877 					   victim_name_len);
878 
879 			if (!backref_in_log(log, key, victim_name,
880 					    victim_name_len)) {
881 				btrfs_inc_nlink(inode);
882 				btrfs_release_path(root, path);
883 				ret = btrfs_unlink_inode(trans, root, dir,
884 							 inode, victim_name,
885 							 victim_name_len);
886 				kfree(victim_name);
887 				btrfs_release_path(root, path);
888 				goto conflict_again;
889 			}
890 			kfree(victim_name);
891 			ptr = (unsigned long)(victim_ref + 1) + victim_name_len;
892 		}
893 		BUG_ON(ret);
894 	}
895 	btrfs_release_path(root, path);
896 
897 	/* look for a conflicting sequence number */
898 	di = btrfs_lookup_dir_index_item(trans, root, path, dir->i_ino,
899 					 btrfs_inode_ref_index(eb, ref),
900 					 name, namelen, 0);
901 	if (di && !IS_ERR(di)) {
902 		ret = drop_one_dir_item(trans, root, path, dir, di);
903 		BUG_ON(ret);
904 	}
905 	btrfs_release_path(root, path);
906 
907 
908 	/* look for a conflicting name */
909 	di = btrfs_lookup_dir_item(trans, root, path, dir->i_ino,
910 				   name, namelen, 0);
911 	if (di && !IS_ERR(di)) {
912 		ret = drop_one_dir_item(trans, root, path, dir, di);
913 		BUG_ON(ret);
914 	}
915 	btrfs_release_path(root, path);
916 
917 	/* insert our name */
918 	ret = btrfs_add_link(trans, dir, inode, name, namelen, 0,
919 			     btrfs_inode_ref_index(eb, ref));
920 	BUG_ON(ret);
921 
922 	btrfs_update_inode(trans, root, inode);
923 
924 out:
925 	ref_ptr = (unsigned long)(ref + 1) + namelen;
926 	kfree(name);
927 	if (ref_ptr < ref_end)
928 		goto again;
929 
930 	/* finally write the back reference in the inode */
931 	ret = overwrite_item(trans, root, path, eb, slot, key);
932 	BUG_ON(ret);
933 
934 out_nowrite:
935 	btrfs_release_path(root, path);
936 	iput(dir);
937 	iput(inode);
938 	return 0;
939 }
940 
941 /*
942  * There are a few corners where the link count of the file can't
943  * be properly maintained during replay.  So, instead of adding
944  * lots of complexity to the log code, we just scan the backrefs
945  * for any file that has been through replay.
946  *
947  * The scan will update the link count on the inode to reflect the
948  * number of back refs found.  If it goes down to zero, the iput
949  * will free the inode.
950  */
951 static noinline int fixup_inode_link_count(struct btrfs_trans_handle *trans,
952 					   struct btrfs_root *root,
953 					   struct inode *inode)
954 {
955 	struct btrfs_path *path;
956 	int ret;
957 	struct btrfs_key key;
958 	u64 nlink = 0;
959 	unsigned long ptr;
960 	unsigned long ptr_end;
961 	int name_len;
962 
963 	key.objectid = inode->i_ino;
964 	key.type = BTRFS_INODE_REF_KEY;
965 	key.offset = (u64)-1;
966 
967 	path = btrfs_alloc_path();
968 
969 	while (1) {
970 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
971 		if (ret < 0)
972 			break;
973 		if (ret > 0) {
974 			if (path->slots[0] == 0)
975 				break;
976 			path->slots[0]--;
977 		}
978 		btrfs_item_key_to_cpu(path->nodes[0], &key,
979 				      path->slots[0]);
980 		if (key.objectid != inode->i_ino ||
981 		    key.type != BTRFS_INODE_REF_KEY)
982 			break;
983 		ptr = btrfs_item_ptr_offset(path->nodes[0], path->slots[0]);
984 		ptr_end = ptr + btrfs_item_size_nr(path->nodes[0],
985 						   path->slots[0]);
986 		while (ptr < ptr_end) {
987 			struct btrfs_inode_ref *ref;
988 
989 			ref = (struct btrfs_inode_ref *)ptr;
990 			name_len = btrfs_inode_ref_name_len(path->nodes[0],
991 							    ref);
992 			ptr = (unsigned long)(ref + 1) + name_len;
993 			nlink++;
994 		}
995 
996 		if (key.offset == 0)
997 			break;
998 		key.offset--;
999 		btrfs_release_path(root, path);
1000 	}
1001 	btrfs_free_path(path);
1002 	if (nlink != inode->i_nlink) {
1003 		inode->i_nlink = nlink;
1004 		btrfs_update_inode(trans, root, inode);
1005 	}
1006 	BTRFS_I(inode)->index_cnt = (u64)-1;
1007 
1008 	return 0;
1009 }
1010 
1011 static noinline int fixup_inode_link_counts(struct btrfs_trans_handle *trans,
1012 					    struct btrfs_root *root,
1013 					    struct btrfs_path *path)
1014 {
1015 	int ret;
1016 	struct btrfs_key key;
1017 	struct inode *inode;
1018 
1019 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1020 	key.type = BTRFS_ORPHAN_ITEM_KEY;
1021 	key.offset = (u64)-1;
1022 	while (1) {
1023 		ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1024 		if (ret < 0)
1025 			break;
1026 
1027 		if (ret == 1) {
1028 			if (path->slots[0] == 0)
1029 				break;
1030 			path->slots[0]--;
1031 		}
1032 
1033 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1034 		if (key.objectid != BTRFS_TREE_LOG_FIXUP_OBJECTID ||
1035 		    key.type != BTRFS_ORPHAN_ITEM_KEY)
1036 			break;
1037 
1038 		ret = btrfs_del_item(trans, root, path);
1039 		BUG_ON(ret);
1040 
1041 		btrfs_release_path(root, path);
1042 		inode = read_one_inode(root, key.offset);
1043 		BUG_ON(!inode);
1044 
1045 		ret = fixup_inode_link_count(trans, root, inode);
1046 		BUG_ON(ret);
1047 
1048 		iput(inode);
1049 
1050 		if (key.offset == 0)
1051 			break;
1052 		key.offset--;
1053 	}
1054 	btrfs_release_path(root, path);
1055 	return 0;
1056 }
1057 
1058 
1059 /*
1060  * record a given inode in the fixup dir so we can check its link
1061  * count when replay is done.  The link count is incremented here
1062  * so the inode won't go away until we check it
1063  */
1064 static noinline int link_to_fixup_dir(struct btrfs_trans_handle *trans,
1065 				      struct btrfs_root *root,
1066 				      struct btrfs_path *path,
1067 				      u64 objectid)
1068 {
1069 	struct btrfs_key key;
1070 	int ret = 0;
1071 	struct inode *inode;
1072 
1073 	inode = read_one_inode(root, objectid);
1074 	BUG_ON(!inode);
1075 
1076 	key.objectid = BTRFS_TREE_LOG_FIXUP_OBJECTID;
1077 	btrfs_set_key_type(&key, BTRFS_ORPHAN_ITEM_KEY);
1078 	key.offset = objectid;
1079 
1080 	ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1081 
1082 	btrfs_release_path(root, path);
1083 	if (ret == 0) {
1084 		btrfs_inc_nlink(inode);
1085 		btrfs_update_inode(trans, root, inode);
1086 	} else if (ret == -EEXIST) {
1087 		ret = 0;
1088 	} else {
1089 		BUG();
1090 	}
1091 	iput(inode);
1092 
1093 	return ret;
1094 }
1095 
1096 /*
1097  * when replaying the log for a directory, we only insert names
1098  * for inodes that actually exist.  This means an fsync on a directory
1099  * does not implicitly fsync all the new files in it
1100  */
1101 static noinline int insert_one_name(struct btrfs_trans_handle *trans,
1102 				    struct btrfs_root *root,
1103 				    struct btrfs_path *path,
1104 				    u64 dirid, u64 index,
1105 				    char *name, int name_len, u8 type,
1106 				    struct btrfs_key *location)
1107 {
1108 	struct inode *inode;
1109 	struct inode *dir;
1110 	int ret;
1111 
1112 	inode = read_one_inode(root, location->objectid);
1113 	if (!inode)
1114 		return -ENOENT;
1115 
1116 	dir = read_one_inode(root, dirid);
1117 	if (!dir) {
1118 		iput(inode);
1119 		return -EIO;
1120 	}
1121 	ret = btrfs_add_link(trans, dir, inode, name, name_len, 1, index);
1122 
1123 	/* FIXME, put inode into FIXUP list */
1124 
1125 	iput(inode);
1126 	iput(dir);
1127 	return ret;
1128 }
1129 
1130 /*
1131  * take a single entry in a log directory item and replay it into
1132  * the subvolume.
1133  *
1134  * if a conflicting item exists in the subdirectory already,
1135  * the inode it points to is unlinked and put into the link count
1136  * fix up tree.
1137  *
1138  * If a name from the log points to a file or directory that does
1139  * not exist in the FS, it is skipped.  fsyncs on directories
1140  * do not force down inodes inside that directory, just changes to the
1141  * names or unlinks in a directory.
1142  */
1143 static noinline int replay_one_name(struct btrfs_trans_handle *trans,
1144 				    struct btrfs_root *root,
1145 				    struct btrfs_path *path,
1146 				    struct extent_buffer *eb,
1147 				    struct btrfs_dir_item *di,
1148 				    struct btrfs_key *key)
1149 {
1150 	char *name;
1151 	int name_len;
1152 	struct btrfs_dir_item *dst_di;
1153 	struct btrfs_key found_key;
1154 	struct btrfs_key log_key;
1155 	struct inode *dir;
1156 	u8 log_type;
1157 	int exists;
1158 	int ret;
1159 
1160 	dir = read_one_inode(root, key->objectid);
1161 	BUG_ON(!dir);
1162 
1163 	name_len = btrfs_dir_name_len(eb, di);
1164 	name = kmalloc(name_len, GFP_NOFS);
1165 	log_type = btrfs_dir_type(eb, di);
1166 	read_extent_buffer(eb, name, (unsigned long)(di + 1),
1167 		   name_len);
1168 
1169 	btrfs_dir_item_key_to_cpu(eb, di, &log_key);
1170 	exists = btrfs_lookup_inode(trans, root, path, &log_key, 0);
1171 	if (exists == 0)
1172 		exists = 1;
1173 	else
1174 		exists = 0;
1175 	btrfs_release_path(root, path);
1176 
1177 	if (key->type == BTRFS_DIR_ITEM_KEY) {
1178 		dst_di = btrfs_lookup_dir_item(trans, root, path, key->objectid,
1179 				       name, name_len, 1);
1180 	} else if (key->type == BTRFS_DIR_INDEX_KEY) {
1181 		dst_di = btrfs_lookup_dir_index_item(trans, root, path,
1182 						     key->objectid,
1183 						     key->offset, name,
1184 						     name_len, 1);
1185 	} else {
1186 		BUG();
1187 	}
1188 	if (!dst_di || IS_ERR(dst_di)) {
1189 		/* we need a sequence number to insert, so we only
1190 		 * do inserts for the BTRFS_DIR_INDEX_KEY types
1191 		 */
1192 		if (key->type != BTRFS_DIR_INDEX_KEY)
1193 			goto out;
1194 		goto insert;
1195 	}
1196 
1197 	btrfs_dir_item_key_to_cpu(path->nodes[0], dst_di, &found_key);
1198 	/* the existing item matches the logged item */
1199 	if (found_key.objectid == log_key.objectid &&
1200 	    found_key.type == log_key.type &&
1201 	    found_key.offset == log_key.offset &&
1202 	    btrfs_dir_type(path->nodes[0], dst_di) == log_type) {
1203 		goto out;
1204 	}
1205 
1206 	/*
1207 	 * don't drop the conflicting directory entry if the inode
1208 	 * for the new entry doesn't exist
1209 	 */
1210 	if (!exists)
1211 		goto out;
1212 
1213 	ret = drop_one_dir_item(trans, root, path, dir, dst_di);
1214 	BUG_ON(ret);
1215 
1216 	if (key->type == BTRFS_DIR_INDEX_KEY)
1217 		goto insert;
1218 out:
1219 	btrfs_release_path(root, path);
1220 	kfree(name);
1221 	iput(dir);
1222 	return 0;
1223 
1224 insert:
1225 	btrfs_release_path(root, path);
1226 	ret = insert_one_name(trans, root, path, key->objectid, key->offset,
1227 			      name, name_len, log_type, &log_key);
1228 
1229 	if (ret && ret != -ENOENT)
1230 		BUG();
1231 	goto out;
1232 }
1233 
1234 /*
1235  * find all the names in a directory item and reconcile them into
1236  * the subvolume.  Only BTRFS_DIR_ITEM_KEY types will have more than
1237  * one name in a directory item, but the same code gets used for
1238  * both directory index types
1239  */
1240 static noinline int replay_one_dir_item(struct btrfs_trans_handle *trans,
1241 					struct btrfs_root *root,
1242 					struct btrfs_path *path,
1243 					struct extent_buffer *eb, int slot,
1244 					struct btrfs_key *key)
1245 {
1246 	int ret;
1247 	u32 item_size = btrfs_item_size_nr(eb, slot);
1248 	struct btrfs_dir_item *di;
1249 	int name_len;
1250 	unsigned long ptr;
1251 	unsigned long ptr_end;
1252 
1253 	ptr = btrfs_item_ptr_offset(eb, slot);
1254 	ptr_end = ptr + item_size;
1255 	while (ptr < ptr_end) {
1256 		di = (struct btrfs_dir_item *)ptr;
1257 		name_len = btrfs_dir_name_len(eb, di);
1258 		ret = replay_one_name(trans, root, path, eb, di, key);
1259 		BUG_ON(ret);
1260 		ptr = (unsigned long)(di + 1);
1261 		ptr += name_len;
1262 	}
1263 	return 0;
1264 }
1265 
1266 /*
1267  * directory replay has two parts.  There are the standard directory
1268  * items in the log copied from the subvolume, and range items
1269  * created in the log while the subvolume was logged.
1270  *
1271  * The range items tell us which parts of the key space the log
1272  * is authoritative for.  During replay, if a key in the subvolume
1273  * directory is in a logged range item, but not actually in the log
1274  * that means it was deleted from the directory before the fsync
1275  * and should be removed.
1276  */
1277 static noinline int find_dir_range(struct btrfs_root *root,
1278 				   struct btrfs_path *path,
1279 				   u64 dirid, int key_type,
1280 				   u64 *start_ret, u64 *end_ret)
1281 {
1282 	struct btrfs_key key;
1283 	u64 found_end;
1284 	struct btrfs_dir_log_item *item;
1285 	int ret;
1286 	int nritems;
1287 
1288 	if (*start_ret == (u64)-1)
1289 		return 1;
1290 
1291 	key.objectid = dirid;
1292 	key.type = key_type;
1293 	key.offset = *start_ret;
1294 
1295 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1296 	if (ret < 0)
1297 		goto out;
1298 	if (ret > 0) {
1299 		if (path->slots[0] == 0)
1300 			goto out;
1301 		path->slots[0]--;
1302 	}
1303 	if (ret != 0)
1304 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1305 
1306 	if (key.type != key_type || key.objectid != dirid) {
1307 		ret = 1;
1308 		goto next;
1309 	}
1310 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1311 			      struct btrfs_dir_log_item);
1312 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1313 
1314 	if (*start_ret >= key.offset && *start_ret <= found_end) {
1315 		ret = 0;
1316 		*start_ret = key.offset;
1317 		*end_ret = found_end;
1318 		goto out;
1319 	}
1320 	ret = 1;
1321 next:
1322 	/* check the next slot in the tree to see if it is a valid item */
1323 	nritems = btrfs_header_nritems(path->nodes[0]);
1324 	if (path->slots[0] >= nritems) {
1325 		ret = btrfs_next_leaf(root, path);
1326 		if (ret)
1327 			goto out;
1328 	} else {
1329 		path->slots[0]++;
1330 	}
1331 
1332 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1333 
1334 	if (key.type != key_type || key.objectid != dirid) {
1335 		ret = 1;
1336 		goto out;
1337 	}
1338 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
1339 			      struct btrfs_dir_log_item);
1340 	found_end = btrfs_dir_log_end(path->nodes[0], item);
1341 	*start_ret = key.offset;
1342 	*end_ret = found_end;
1343 	ret = 0;
1344 out:
1345 	btrfs_release_path(root, path);
1346 	return ret;
1347 }
1348 
1349 /*
1350  * this looks for a given directory item in the log.  If the directory
1351  * item is not in the log, the item is removed and the inode it points
1352  * to is unlinked
1353  */
1354 static noinline int check_item_in_log(struct btrfs_trans_handle *trans,
1355 				      struct btrfs_root *root,
1356 				      struct btrfs_root *log,
1357 				      struct btrfs_path *path,
1358 				      struct btrfs_path *log_path,
1359 				      struct inode *dir,
1360 				      struct btrfs_key *dir_key)
1361 {
1362 	int ret;
1363 	struct extent_buffer *eb;
1364 	int slot;
1365 	u32 item_size;
1366 	struct btrfs_dir_item *di;
1367 	struct btrfs_dir_item *log_di;
1368 	int name_len;
1369 	unsigned long ptr;
1370 	unsigned long ptr_end;
1371 	char *name;
1372 	struct inode *inode;
1373 	struct btrfs_key location;
1374 
1375 again:
1376 	eb = path->nodes[0];
1377 	slot = path->slots[0];
1378 	item_size = btrfs_item_size_nr(eb, slot);
1379 	ptr = btrfs_item_ptr_offset(eb, slot);
1380 	ptr_end = ptr + item_size;
1381 	while (ptr < ptr_end) {
1382 		di = (struct btrfs_dir_item *)ptr;
1383 		name_len = btrfs_dir_name_len(eb, di);
1384 		name = kmalloc(name_len, GFP_NOFS);
1385 		if (!name) {
1386 			ret = -ENOMEM;
1387 			goto out;
1388 		}
1389 		read_extent_buffer(eb, name, (unsigned long)(di + 1),
1390 				  name_len);
1391 		log_di = NULL;
1392 		if (dir_key->type == BTRFS_DIR_ITEM_KEY) {
1393 			log_di = btrfs_lookup_dir_item(trans, log, log_path,
1394 						       dir_key->objectid,
1395 						       name, name_len, 0);
1396 		} else if (dir_key->type == BTRFS_DIR_INDEX_KEY) {
1397 			log_di = btrfs_lookup_dir_index_item(trans, log,
1398 						     log_path,
1399 						     dir_key->objectid,
1400 						     dir_key->offset,
1401 						     name, name_len, 0);
1402 		}
1403 		if (!log_di || IS_ERR(log_di)) {
1404 			btrfs_dir_item_key_to_cpu(eb, di, &location);
1405 			btrfs_release_path(root, path);
1406 			btrfs_release_path(log, log_path);
1407 			inode = read_one_inode(root, location.objectid);
1408 			BUG_ON(!inode);
1409 
1410 			ret = link_to_fixup_dir(trans, root,
1411 						path, location.objectid);
1412 			BUG_ON(ret);
1413 			btrfs_inc_nlink(inode);
1414 			ret = btrfs_unlink_inode(trans, root, dir, inode,
1415 						 name, name_len);
1416 			BUG_ON(ret);
1417 			kfree(name);
1418 			iput(inode);
1419 
1420 			/* there might still be more names under this key
1421 			 * check and repeat if required
1422 			 */
1423 			ret = btrfs_search_slot(NULL, root, dir_key, path,
1424 						0, 0);
1425 			if (ret == 0)
1426 				goto again;
1427 			ret = 0;
1428 			goto out;
1429 		}
1430 		btrfs_release_path(log, log_path);
1431 		kfree(name);
1432 
1433 		ptr = (unsigned long)(di + 1);
1434 		ptr += name_len;
1435 	}
1436 	ret = 0;
1437 out:
1438 	btrfs_release_path(root, path);
1439 	btrfs_release_path(log, log_path);
1440 	return ret;
1441 }
1442 
1443 /*
1444  * deletion replay happens before we copy any new directory items
1445  * out of the log or out of backreferences from inodes.  It
1446  * scans the log to find ranges of keys that log is authoritative for,
1447  * and then scans the directory to find items in those ranges that are
1448  * not present in the log.
1449  *
1450  * Anything we don't find in the log is unlinked and removed from the
1451  * directory.
1452  */
1453 static noinline int replay_dir_deletes(struct btrfs_trans_handle *trans,
1454 				       struct btrfs_root *root,
1455 				       struct btrfs_root *log,
1456 				       struct btrfs_path *path,
1457 				       u64 dirid)
1458 {
1459 	u64 range_start;
1460 	u64 range_end;
1461 	int key_type = BTRFS_DIR_LOG_ITEM_KEY;
1462 	int ret = 0;
1463 	struct btrfs_key dir_key;
1464 	struct btrfs_key found_key;
1465 	struct btrfs_path *log_path;
1466 	struct inode *dir;
1467 
1468 	dir_key.objectid = dirid;
1469 	dir_key.type = BTRFS_DIR_ITEM_KEY;
1470 	log_path = btrfs_alloc_path();
1471 	if (!log_path)
1472 		return -ENOMEM;
1473 
1474 	dir = read_one_inode(root, dirid);
1475 	/* it isn't an error if the inode isn't there, that can happen
1476 	 * because we replay the deletes before we copy in the inode item
1477 	 * from the log
1478 	 */
1479 	if (!dir) {
1480 		btrfs_free_path(log_path);
1481 		return 0;
1482 	}
1483 again:
1484 	range_start = 0;
1485 	range_end = 0;
1486 	while (1) {
1487 		ret = find_dir_range(log, path, dirid, key_type,
1488 				     &range_start, &range_end);
1489 		if (ret != 0)
1490 			break;
1491 
1492 		dir_key.offset = range_start;
1493 		while (1) {
1494 			int nritems;
1495 			ret = btrfs_search_slot(NULL, root, &dir_key, path,
1496 						0, 0);
1497 			if (ret < 0)
1498 				goto out;
1499 
1500 			nritems = btrfs_header_nritems(path->nodes[0]);
1501 			if (path->slots[0] >= nritems) {
1502 				ret = btrfs_next_leaf(root, path);
1503 				if (ret)
1504 					break;
1505 			}
1506 			btrfs_item_key_to_cpu(path->nodes[0], &found_key,
1507 					      path->slots[0]);
1508 			if (found_key.objectid != dirid ||
1509 			    found_key.type != dir_key.type)
1510 				goto next_type;
1511 
1512 			if (found_key.offset > range_end)
1513 				break;
1514 
1515 			ret = check_item_in_log(trans, root, log, path,
1516 						log_path, dir, &found_key);
1517 			BUG_ON(ret);
1518 			if (found_key.offset == (u64)-1)
1519 				break;
1520 			dir_key.offset = found_key.offset + 1;
1521 		}
1522 		btrfs_release_path(root, path);
1523 		if (range_end == (u64)-1)
1524 			break;
1525 		range_start = range_end + 1;
1526 	}
1527 
1528 next_type:
1529 	ret = 0;
1530 	if (key_type == BTRFS_DIR_LOG_ITEM_KEY) {
1531 		key_type = BTRFS_DIR_LOG_INDEX_KEY;
1532 		dir_key.type = BTRFS_DIR_INDEX_KEY;
1533 		btrfs_release_path(root, path);
1534 		goto again;
1535 	}
1536 out:
1537 	btrfs_release_path(root, path);
1538 	btrfs_free_path(log_path);
1539 	iput(dir);
1540 	return ret;
1541 }
1542 
1543 /*
1544  * the process_func used to replay items from the log tree.  This
1545  * gets called in two different stages.  The first stage just looks
1546  * for inodes and makes sure they are all copied into the subvolume.
1547  *
1548  * The second stage copies all the other item types from the log into
1549  * the subvolume.  The two stage approach is slower, but gets rid of
1550  * lots of complexity around inodes referencing other inodes that exist
1551  * only in the log (references come from either directory items or inode
1552  * back refs).
1553  */
1554 static int replay_one_buffer(struct btrfs_root *log, struct extent_buffer *eb,
1555 			     struct walk_control *wc, u64 gen)
1556 {
1557 	int nritems;
1558 	struct btrfs_path *path;
1559 	struct btrfs_root *root = wc->replay_dest;
1560 	struct btrfs_key key;
1561 	u32 item_size;
1562 	int level;
1563 	int i;
1564 	int ret;
1565 
1566 	btrfs_read_buffer(eb, gen);
1567 
1568 	level = btrfs_header_level(eb);
1569 
1570 	if (level != 0)
1571 		return 0;
1572 
1573 	path = btrfs_alloc_path();
1574 	BUG_ON(!path);
1575 
1576 	nritems = btrfs_header_nritems(eb);
1577 	for (i = 0; i < nritems; i++) {
1578 		btrfs_item_key_to_cpu(eb, &key, i);
1579 		item_size = btrfs_item_size_nr(eb, i);
1580 
1581 		/* inode keys are done during the first stage */
1582 		if (key.type == BTRFS_INODE_ITEM_KEY &&
1583 		    wc->stage == LOG_WALK_REPLAY_INODES) {
1584 			struct inode *inode;
1585 			struct btrfs_inode_item *inode_item;
1586 			u32 mode;
1587 
1588 			inode_item = btrfs_item_ptr(eb, i,
1589 					    struct btrfs_inode_item);
1590 			mode = btrfs_inode_mode(eb, inode_item);
1591 			if (S_ISDIR(mode)) {
1592 				ret = replay_dir_deletes(wc->trans,
1593 					 root, log, path, key.objectid);
1594 				BUG_ON(ret);
1595 			}
1596 			ret = overwrite_item(wc->trans, root, path,
1597 					     eb, i, &key);
1598 			BUG_ON(ret);
1599 
1600 			/* for regular files, truncate away
1601 			 * extents past the new EOF
1602 			 */
1603 			if (S_ISREG(mode)) {
1604 				inode = read_one_inode(root,
1605 						       key.objectid);
1606 				BUG_ON(!inode);
1607 
1608 				ret = btrfs_truncate_inode_items(wc->trans,
1609 					root, inode, inode->i_size,
1610 					BTRFS_EXTENT_DATA_KEY);
1611 				BUG_ON(ret);
1612 				iput(inode);
1613 			}
1614 			ret = link_to_fixup_dir(wc->trans, root,
1615 						path, key.objectid);
1616 			BUG_ON(ret);
1617 		}
1618 		if (wc->stage < LOG_WALK_REPLAY_ALL)
1619 			continue;
1620 
1621 		/* these keys are simply copied */
1622 		if (key.type == BTRFS_XATTR_ITEM_KEY) {
1623 			ret = overwrite_item(wc->trans, root, path,
1624 					     eb, i, &key);
1625 			BUG_ON(ret);
1626 		} else if (key.type == BTRFS_INODE_REF_KEY) {
1627 			ret = add_inode_ref(wc->trans, root, log, path,
1628 					    eb, i, &key);
1629 			BUG_ON(ret && ret != -ENOENT);
1630 		} else if (key.type == BTRFS_EXTENT_DATA_KEY) {
1631 			ret = replay_one_extent(wc->trans, root, path,
1632 						eb, i, &key);
1633 			BUG_ON(ret);
1634 		} else if (key.type == BTRFS_DIR_ITEM_KEY ||
1635 			   key.type == BTRFS_DIR_INDEX_KEY) {
1636 			ret = replay_one_dir_item(wc->trans, root, path,
1637 						  eb, i, &key);
1638 			BUG_ON(ret);
1639 		}
1640 	}
1641 	btrfs_free_path(path);
1642 	return 0;
1643 }
1644 
1645 static noinline int walk_down_log_tree(struct btrfs_trans_handle *trans,
1646 				   struct btrfs_root *root,
1647 				   struct btrfs_path *path, int *level,
1648 				   struct walk_control *wc)
1649 {
1650 	u64 root_owner;
1651 	u64 root_gen;
1652 	u64 bytenr;
1653 	u64 ptr_gen;
1654 	struct extent_buffer *next;
1655 	struct extent_buffer *cur;
1656 	struct extent_buffer *parent;
1657 	u32 blocksize;
1658 	int ret = 0;
1659 
1660 	WARN_ON(*level < 0);
1661 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1662 
1663 	while (*level > 0) {
1664 		WARN_ON(*level < 0);
1665 		WARN_ON(*level >= BTRFS_MAX_LEVEL);
1666 		cur = path->nodes[*level];
1667 
1668 		if (btrfs_header_level(cur) != *level)
1669 			WARN_ON(1);
1670 
1671 		if (path->slots[*level] >=
1672 		    btrfs_header_nritems(cur))
1673 			break;
1674 
1675 		bytenr = btrfs_node_blockptr(cur, path->slots[*level]);
1676 		ptr_gen = btrfs_node_ptr_generation(cur, path->slots[*level]);
1677 		blocksize = btrfs_level_size(root, *level - 1);
1678 
1679 		parent = path->nodes[*level];
1680 		root_owner = btrfs_header_owner(parent);
1681 		root_gen = btrfs_header_generation(parent);
1682 
1683 		next = btrfs_find_create_tree_block(root, bytenr, blocksize);
1684 
1685 		wc->process_func(root, next, wc, ptr_gen);
1686 
1687 		if (*level == 1) {
1688 			path->slots[*level]++;
1689 			if (wc->free) {
1690 				btrfs_read_buffer(next, ptr_gen);
1691 
1692 				btrfs_tree_lock(next);
1693 				clean_tree_block(trans, root, next);
1694 				btrfs_wait_tree_block_writeback(next);
1695 				btrfs_tree_unlock(next);
1696 
1697 				ret = btrfs_drop_leaf_ref(trans, root, next);
1698 				BUG_ON(ret);
1699 
1700 				WARN_ON(root_owner !=
1701 					BTRFS_TREE_LOG_OBJECTID);
1702 				ret = btrfs_free_reserved_extent(root,
1703 							 bytenr, blocksize);
1704 				BUG_ON(ret);
1705 			}
1706 			free_extent_buffer(next);
1707 			continue;
1708 		}
1709 		btrfs_read_buffer(next, ptr_gen);
1710 
1711 		WARN_ON(*level <= 0);
1712 		if (path->nodes[*level-1])
1713 			free_extent_buffer(path->nodes[*level-1]);
1714 		path->nodes[*level-1] = next;
1715 		*level = btrfs_header_level(next);
1716 		path->slots[*level] = 0;
1717 		cond_resched();
1718 	}
1719 	WARN_ON(*level < 0);
1720 	WARN_ON(*level >= BTRFS_MAX_LEVEL);
1721 
1722 	if (path->nodes[*level] == root->node)
1723 		parent = path->nodes[*level];
1724 	else
1725 		parent = path->nodes[*level + 1];
1726 
1727 	bytenr = path->nodes[*level]->start;
1728 
1729 	blocksize = btrfs_level_size(root, *level);
1730 	root_owner = btrfs_header_owner(parent);
1731 	root_gen = btrfs_header_generation(parent);
1732 
1733 	wc->process_func(root, path->nodes[*level], wc,
1734 			 btrfs_header_generation(path->nodes[*level]));
1735 
1736 	if (wc->free) {
1737 		next = path->nodes[*level];
1738 		btrfs_tree_lock(next);
1739 		clean_tree_block(trans, root, next);
1740 		btrfs_wait_tree_block_writeback(next);
1741 		btrfs_tree_unlock(next);
1742 
1743 		if (*level == 0) {
1744 			ret = btrfs_drop_leaf_ref(trans, root, next);
1745 			BUG_ON(ret);
1746 		}
1747 		WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1748 		ret = btrfs_free_reserved_extent(root, bytenr, blocksize);
1749 		BUG_ON(ret);
1750 	}
1751 	free_extent_buffer(path->nodes[*level]);
1752 	path->nodes[*level] = NULL;
1753 	*level += 1;
1754 
1755 	cond_resched();
1756 	return 0;
1757 }
1758 
1759 static noinline int walk_up_log_tree(struct btrfs_trans_handle *trans,
1760 				 struct btrfs_root *root,
1761 				 struct btrfs_path *path, int *level,
1762 				 struct walk_control *wc)
1763 {
1764 	u64 root_owner;
1765 	u64 root_gen;
1766 	int i;
1767 	int slot;
1768 	int ret;
1769 
1770 	for (i = *level; i < BTRFS_MAX_LEVEL - 1 && path->nodes[i]; i++) {
1771 		slot = path->slots[i];
1772 		if (slot < btrfs_header_nritems(path->nodes[i]) - 1) {
1773 			struct extent_buffer *node;
1774 			node = path->nodes[i];
1775 			path->slots[i]++;
1776 			*level = i;
1777 			WARN_ON(*level == 0);
1778 			return 0;
1779 		} else {
1780 			struct extent_buffer *parent;
1781 			if (path->nodes[*level] == root->node)
1782 				parent = path->nodes[*level];
1783 			else
1784 				parent = path->nodes[*level + 1];
1785 
1786 			root_owner = btrfs_header_owner(parent);
1787 			root_gen = btrfs_header_generation(parent);
1788 			wc->process_func(root, path->nodes[*level], wc,
1789 				 btrfs_header_generation(path->nodes[*level]));
1790 			if (wc->free) {
1791 				struct extent_buffer *next;
1792 
1793 				next = path->nodes[*level];
1794 
1795 				btrfs_tree_lock(next);
1796 				clean_tree_block(trans, root, next);
1797 				btrfs_wait_tree_block_writeback(next);
1798 				btrfs_tree_unlock(next);
1799 
1800 				if (*level == 0) {
1801 					ret = btrfs_drop_leaf_ref(trans, root,
1802 								  next);
1803 					BUG_ON(ret);
1804 				}
1805 
1806 				WARN_ON(root_owner != BTRFS_TREE_LOG_OBJECTID);
1807 				ret = btrfs_free_reserved_extent(root,
1808 						path->nodes[*level]->start,
1809 						path->nodes[*level]->len);
1810 				BUG_ON(ret);
1811 			}
1812 			free_extent_buffer(path->nodes[*level]);
1813 			path->nodes[*level] = NULL;
1814 			*level = i + 1;
1815 		}
1816 	}
1817 	return 1;
1818 }
1819 
1820 /*
1821  * drop the reference count on the tree rooted at 'snap'.  This traverses
1822  * the tree freeing any blocks that have a ref count of zero after being
1823  * decremented.
1824  */
1825 static int walk_log_tree(struct btrfs_trans_handle *trans,
1826 			 struct btrfs_root *log, struct walk_control *wc)
1827 {
1828 	int ret = 0;
1829 	int wret;
1830 	int level;
1831 	struct btrfs_path *path;
1832 	int i;
1833 	int orig_level;
1834 
1835 	path = btrfs_alloc_path();
1836 	BUG_ON(!path);
1837 
1838 	level = btrfs_header_level(log->node);
1839 	orig_level = level;
1840 	path->nodes[level] = log->node;
1841 	extent_buffer_get(log->node);
1842 	path->slots[level] = 0;
1843 
1844 	while (1) {
1845 		wret = walk_down_log_tree(trans, log, path, &level, wc);
1846 		if (wret > 0)
1847 			break;
1848 		if (wret < 0)
1849 			ret = wret;
1850 
1851 		wret = walk_up_log_tree(trans, log, path, &level, wc);
1852 		if (wret > 0)
1853 			break;
1854 		if (wret < 0)
1855 			ret = wret;
1856 	}
1857 
1858 	/* was the root node processed? if not, catch it here */
1859 	if (path->nodes[orig_level]) {
1860 		wc->process_func(log, path->nodes[orig_level], wc,
1861 			 btrfs_header_generation(path->nodes[orig_level]));
1862 		if (wc->free) {
1863 			struct extent_buffer *next;
1864 
1865 			next = path->nodes[orig_level];
1866 
1867 			btrfs_tree_lock(next);
1868 			clean_tree_block(trans, log, next);
1869 			btrfs_wait_tree_block_writeback(next);
1870 			btrfs_tree_unlock(next);
1871 
1872 			if (orig_level == 0) {
1873 				ret = btrfs_drop_leaf_ref(trans, log,
1874 							  next);
1875 				BUG_ON(ret);
1876 			}
1877 			WARN_ON(log->root_key.objectid !=
1878 				BTRFS_TREE_LOG_OBJECTID);
1879 			ret = btrfs_free_reserved_extent(log, next->start,
1880 							 next->len);
1881 			BUG_ON(ret);
1882 		}
1883 	}
1884 
1885 	for (i = 0; i <= orig_level; i++) {
1886 		if (path->nodes[i]) {
1887 			free_extent_buffer(path->nodes[i]);
1888 			path->nodes[i] = NULL;
1889 		}
1890 	}
1891 	btrfs_free_path(path);
1892 	if (wc->free)
1893 		free_extent_buffer(log->node);
1894 	return ret;
1895 }
1896 
1897 static int wait_log_commit(struct btrfs_root *log)
1898 {
1899 	DEFINE_WAIT(wait);
1900 	u64 transid = log->fs_info->tree_log_transid;
1901 
1902 	do {
1903 		prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1904 				TASK_UNINTERRUPTIBLE);
1905 		mutex_unlock(&log->fs_info->tree_log_mutex);
1906 		if (atomic_read(&log->fs_info->tree_log_commit))
1907 			schedule();
1908 		finish_wait(&log->fs_info->tree_log_wait, &wait);
1909 		mutex_lock(&log->fs_info->tree_log_mutex);
1910 	} while (transid == log->fs_info->tree_log_transid &&
1911 		atomic_read(&log->fs_info->tree_log_commit));
1912 	return 0;
1913 }
1914 
1915 /*
1916  * btrfs_sync_log does sends a given tree log down to the disk and
1917  * updates the super blocks to record it.  When this call is done,
1918  * you know that any inodes previously logged are safely on disk
1919  */
1920 int btrfs_sync_log(struct btrfs_trans_handle *trans,
1921 		   struct btrfs_root *root)
1922 {
1923 	int ret;
1924 	unsigned long batch;
1925 	struct btrfs_root *log = root->log_root;
1926 
1927 	mutex_lock(&log->fs_info->tree_log_mutex);
1928 	if (atomic_read(&log->fs_info->tree_log_commit)) {
1929 		wait_log_commit(log);
1930 		goto out;
1931 	}
1932 	atomic_set(&log->fs_info->tree_log_commit, 1);
1933 
1934 	while (1) {
1935 		batch = log->fs_info->tree_log_batch;
1936 		mutex_unlock(&log->fs_info->tree_log_mutex);
1937 		schedule_timeout_uninterruptible(1);
1938 		mutex_lock(&log->fs_info->tree_log_mutex);
1939 
1940 		while (atomic_read(&log->fs_info->tree_log_writers)) {
1941 			DEFINE_WAIT(wait);
1942 			prepare_to_wait(&log->fs_info->tree_log_wait, &wait,
1943 					TASK_UNINTERRUPTIBLE);
1944 			mutex_unlock(&log->fs_info->tree_log_mutex);
1945 			if (atomic_read(&log->fs_info->tree_log_writers))
1946 				schedule();
1947 			mutex_lock(&log->fs_info->tree_log_mutex);
1948 			finish_wait(&log->fs_info->tree_log_wait, &wait);
1949 		}
1950 		if (batch == log->fs_info->tree_log_batch)
1951 			break;
1952 	}
1953 
1954 	ret = btrfs_write_and_wait_marked_extents(log, &log->dirty_log_pages);
1955 	BUG_ON(ret);
1956 	ret = btrfs_write_and_wait_marked_extents(root->fs_info->log_root_tree,
1957 			       &root->fs_info->log_root_tree->dirty_log_pages);
1958 	BUG_ON(ret);
1959 
1960 	btrfs_set_super_log_root(&root->fs_info->super_for_commit,
1961 				 log->fs_info->log_root_tree->node->start);
1962 	btrfs_set_super_log_root_level(&root->fs_info->super_for_commit,
1963 		       btrfs_header_level(log->fs_info->log_root_tree->node));
1964 
1965 	write_ctree_super(trans, log->fs_info->tree_root, 2);
1966 	log->fs_info->tree_log_transid++;
1967 	log->fs_info->tree_log_batch = 0;
1968 	atomic_set(&log->fs_info->tree_log_commit, 0);
1969 	smp_mb();
1970 	if (waitqueue_active(&log->fs_info->tree_log_wait))
1971 		wake_up(&log->fs_info->tree_log_wait);
1972 out:
1973 	mutex_unlock(&log->fs_info->tree_log_mutex);
1974 	return 0;
1975 }
1976 
1977 /* * free all the extents used by the tree log.  This should be called
1978  * at commit time of the full transaction
1979  */
1980 int btrfs_free_log(struct btrfs_trans_handle *trans, struct btrfs_root *root)
1981 {
1982 	int ret;
1983 	struct btrfs_root *log;
1984 	struct key;
1985 	u64 start;
1986 	u64 end;
1987 	struct walk_control wc = {
1988 		.free = 1,
1989 		.process_func = process_one_buffer
1990 	};
1991 
1992 	if (!root->log_root || root->fs_info->log_root_recovering)
1993 		return 0;
1994 
1995 	log = root->log_root;
1996 	ret = walk_log_tree(trans, log, &wc);
1997 	BUG_ON(ret);
1998 
1999 	while (1) {
2000 		ret = find_first_extent_bit(&log->dirty_log_pages,
2001 				    0, &start, &end, EXTENT_DIRTY);
2002 		if (ret)
2003 			break;
2004 
2005 		clear_extent_dirty(&log->dirty_log_pages,
2006 				   start, end, GFP_NOFS);
2007 	}
2008 
2009 	log = root->log_root;
2010 	ret = btrfs_del_root(trans, root->fs_info->log_root_tree,
2011 			     &log->root_key);
2012 	BUG_ON(ret);
2013 	root->log_root = NULL;
2014 	kfree(root->log_root);
2015 	return 0;
2016 }
2017 
2018 /*
2019  * helper function to update the item for a given subvolumes log root
2020  * in the tree of log roots
2021  */
2022 static int update_log_root(struct btrfs_trans_handle *trans,
2023 			   struct btrfs_root *log)
2024 {
2025 	u64 bytenr = btrfs_root_bytenr(&log->root_item);
2026 	int ret;
2027 
2028 	if (log->node->start == bytenr)
2029 		return 0;
2030 
2031 	btrfs_set_root_bytenr(&log->root_item, log->node->start);
2032 	btrfs_set_root_generation(&log->root_item, trans->transid);
2033 	btrfs_set_root_level(&log->root_item, btrfs_header_level(log->node));
2034 	ret = btrfs_update_root(trans, log->fs_info->log_root_tree,
2035 				&log->root_key, &log->root_item);
2036 	BUG_ON(ret);
2037 	return ret;
2038 }
2039 
2040 /*
2041  * If both a file and directory are logged, and unlinks or renames are
2042  * mixed in, we have a few interesting corners:
2043  *
2044  * create file X in dir Y
2045  * link file X to X.link in dir Y
2046  * fsync file X
2047  * unlink file X but leave X.link
2048  * fsync dir Y
2049  *
2050  * After a crash we would expect only X.link to exist.  But file X
2051  * didn't get fsync'd again so the log has back refs for X and X.link.
2052  *
2053  * We solve this by removing directory entries and inode backrefs from the
2054  * log when a file that was logged in the current transaction is
2055  * unlinked.  Any later fsync will include the updated log entries, and
2056  * we'll be able to reconstruct the proper directory items from backrefs.
2057  *
2058  * This optimizations allows us to avoid relogging the entire inode
2059  * or the entire directory.
2060  */
2061 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle *trans,
2062 				 struct btrfs_root *root,
2063 				 const char *name, int name_len,
2064 				 struct inode *dir, u64 index)
2065 {
2066 	struct btrfs_root *log;
2067 	struct btrfs_dir_item *di;
2068 	struct btrfs_path *path;
2069 	int ret;
2070 	int bytes_del = 0;
2071 
2072 	if (BTRFS_I(dir)->logged_trans < trans->transid)
2073 		return 0;
2074 
2075 	ret = join_running_log_trans(root);
2076 	if (ret)
2077 		return 0;
2078 
2079 	mutex_lock(&BTRFS_I(dir)->log_mutex);
2080 
2081 	log = root->log_root;
2082 	path = btrfs_alloc_path();
2083 	di = btrfs_lookup_dir_item(trans, log, path, dir->i_ino,
2084 				   name, name_len, -1);
2085 	if (di && !IS_ERR(di)) {
2086 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2087 		bytes_del += name_len;
2088 		BUG_ON(ret);
2089 	}
2090 	btrfs_release_path(log, path);
2091 	di = btrfs_lookup_dir_index_item(trans, log, path, dir->i_ino,
2092 					 index, name, name_len, -1);
2093 	if (di && !IS_ERR(di)) {
2094 		ret = btrfs_delete_one_dir_name(trans, log, path, di);
2095 		bytes_del += name_len;
2096 		BUG_ON(ret);
2097 	}
2098 
2099 	/* update the directory size in the log to reflect the names
2100 	 * we have removed
2101 	 */
2102 	if (bytes_del) {
2103 		struct btrfs_key key;
2104 
2105 		key.objectid = dir->i_ino;
2106 		key.offset = 0;
2107 		key.type = BTRFS_INODE_ITEM_KEY;
2108 		btrfs_release_path(log, path);
2109 
2110 		ret = btrfs_search_slot(trans, log, &key, path, 0, 1);
2111 		if (ret == 0) {
2112 			struct btrfs_inode_item *item;
2113 			u64 i_size;
2114 
2115 			item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2116 					      struct btrfs_inode_item);
2117 			i_size = btrfs_inode_size(path->nodes[0], item);
2118 			if (i_size > bytes_del)
2119 				i_size -= bytes_del;
2120 			else
2121 				i_size = 0;
2122 			btrfs_set_inode_size(path->nodes[0], item, i_size);
2123 			btrfs_mark_buffer_dirty(path->nodes[0]);
2124 		} else
2125 			ret = 0;
2126 		btrfs_release_path(log, path);
2127 	}
2128 
2129 	btrfs_free_path(path);
2130 	mutex_unlock(&BTRFS_I(dir)->log_mutex);
2131 	end_log_trans(root);
2132 
2133 	return 0;
2134 }
2135 
2136 /* see comments for btrfs_del_dir_entries_in_log */
2137 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle *trans,
2138 			       struct btrfs_root *root,
2139 			       const char *name, int name_len,
2140 			       struct inode *inode, u64 dirid)
2141 {
2142 	struct btrfs_root *log;
2143 	u64 index;
2144 	int ret;
2145 
2146 	if (BTRFS_I(inode)->logged_trans < trans->transid)
2147 		return 0;
2148 
2149 	ret = join_running_log_trans(root);
2150 	if (ret)
2151 		return 0;
2152 	log = root->log_root;
2153 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2154 
2155 	ret = btrfs_del_inode_ref(trans, log, name, name_len, inode->i_ino,
2156 				  dirid, &index);
2157 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2158 	end_log_trans(root);
2159 
2160 	return ret;
2161 }
2162 
2163 /*
2164  * creates a range item in the log for 'dirid'.  first_offset and
2165  * last_offset tell us which parts of the key space the log should
2166  * be considered authoritative for.
2167  */
2168 static noinline int insert_dir_log_key(struct btrfs_trans_handle *trans,
2169 				       struct btrfs_root *log,
2170 				       struct btrfs_path *path,
2171 				       int key_type, u64 dirid,
2172 				       u64 first_offset, u64 last_offset)
2173 {
2174 	int ret;
2175 	struct btrfs_key key;
2176 	struct btrfs_dir_log_item *item;
2177 
2178 	key.objectid = dirid;
2179 	key.offset = first_offset;
2180 	if (key_type == BTRFS_DIR_ITEM_KEY)
2181 		key.type = BTRFS_DIR_LOG_ITEM_KEY;
2182 	else
2183 		key.type = BTRFS_DIR_LOG_INDEX_KEY;
2184 	ret = btrfs_insert_empty_item(trans, log, path, &key, sizeof(*item));
2185 	BUG_ON(ret);
2186 
2187 	item = btrfs_item_ptr(path->nodes[0], path->slots[0],
2188 			      struct btrfs_dir_log_item);
2189 	btrfs_set_dir_log_end(path->nodes[0], item, last_offset);
2190 	btrfs_mark_buffer_dirty(path->nodes[0]);
2191 	btrfs_release_path(log, path);
2192 	return 0;
2193 }
2194 
2195 /*
2196  * log all the items included in the current transaction for a given
2197  * directory.  This also creates the range items in the log tree required
2198  * to replay anything deleted before the fsync
2199  */
2200 static noinline int log_dir_items(struct btrfs_trans_handle *trans,
2201 			  struct btrfs_root *root, struct inode *inode,
2202 			  struct btrfs_path *path,
2203 			  struct btrfs_path *dst_path, int key_type,
2204 			  u64 min_offset, u64 *last_offset_ret)
2205 {
2206 	struct btrfs_key min_key;
2207 	struct btrfs_key max_key;
2208 	struct btrfs_root *log = root->log_root;
2209 	struct extent_buffer *src;
2210 	int ret;
2211 	int i;
2212 	int nritems;
2213 	u64 first_offset = min_offset;
2214 	u64 last_offset = (u64)-1;
2215 
2216 	log = root->log_root;
2217 	max_key.objectid = inode->i_ino;
2218 	max_key.offset = (u64)-1;
2219 	max_key.type = key_type;
2220 
2221 	min_key.objectid = inode->i_ino;
2222 	min_key.type = key_type;
2223 	min_key.offset = min_offset;
2224 
2225 	path->keep_locks = 1;
2226 
2227 	ret = btrfs_search_forward(root, &min_key, &max_key,
2228 				   path, 0, trans->transid);
2229 
2230 	/*
2231 	 * we didn't find anything from this transaction, see if there
2232 	 * is anything at all
2233 	 */
2234 	if (ret != 0 || min_key.objectid != inode->i_ino ||
2235 	    min_key.type != key_type) {
2236 		min_key.objectid = inode->i_ino;
2237 		min_key.type = key_type;
2238 		min_key.offset = (u64)-1;
2239 		btrfs_release_path(root, path);
2240 		ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2241 		if (ret < 0) {
2242 			btrfs_release_path(root, path);
2243 			return ret;
2244 		}
2245 		ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2246 
2247 		/* if ret == 0 there are items for this type,
2248 		 * create a range to tell us the last key of this type.
2249 		 * otherwise, there are no items in this directory after
2250 		 * *min_offset, and we create a range to indicate that.
2251 		 */
2252 		if (ret == 0) {
2253 			struct btrfs_key tmp;
2254 			btrfs_item_key_to_cpu(path->nodes[0], &tmp,
2255 					      path->slots[0]);
2256 			if (key_type == tmp.type)
2257 				first_offset = max(min_offset, tmp.offset) + 1;
2258 		}
2259 		goto done;
2260 	}
2261 
2262 	/* go backward to find any previous key */
2263 	ret = btrfs_previous_item(root, path, inode->i_ino, key_type);
2264 	if (ret == 0) {
2265 		struct btrfs_key tmp;
2266 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2267 		if (key_type == tmp.type) {
2268 			first_offset = tmp.offset;
2269 			ret = overwrite_item(trans, log, dst_path,
2270 					     path->nodes[0], path->slots[0],
2271 					     &tmp);
2272 		}
2273 	}
2274 	btrfs_release_path(root, path);
2275 
2276 	/* find the first key from this transaction again */
2277 	ret = btrfs_search_slot(NULL, root, &min_key, path, 0, 0);
2278 	if (ret != 0) {
2279 		WARN_ON(1);
2280 		goto done;
2281 	}
2282 
2283 	/*
2284 	 * we have a block from this transaction, log every item in it
2285 	 * from our directory
2286 	 */
2287 	while (1) {
2288 		struct btrfs_key tmp;
2289 		src = path->nodes[0];
2290 		nritems = btrfs_header_nritems(src);
2291 		for (i = path->slots[0]; i < nritems; i++) {
2292 			btrfs_item_key_to_cpu(src, &min_key, i);
2293 
2294 			if (min_key.objectid != inode->i_ino ||
2295 			    min_key.type != key_type)
2296 				goto done;
2297 			ret = overwrite_item(trans, log, dst_path, src, i,
2298 					     &min_key);
2299 			BUG_ON(ret);
2300 		}
2301 		path->slots[0] = nritems;
2302 
2303 		/*
2304 		 * look ahead to the next item and see if it is also
2305 		 * from this directory and from this transaction
2306 		 */
2307 		ret = btrfs_next_leaf(root, path);
2308 		if (ret == 1) {
2309 			last_offset = (u64)-1;
2310 			goto done;
2311 		}
2312 		btrfs_item_key_to_cpu(path->nodes[0], &tmp, path->slots[0]);
2313 		if (tmp.objectid != inode->i_ino || tmp.type != key_type) {
2314 			last_offset = (u64)-1;
2315 			goto done;
2316 		}
2317 		if (btrfs_header_generation(path->nodes[0]) != trans->transid) {
2318 			ret = overwrite_item(trans, log, dst_path,
2319 					     path->nodes[0], path->slots[0],
2320 					     &tmp);
2321 
2322 			BUG_ON(ret);
2323 			last_offset = tmp.offset;
2324 			goto done;
2325 		}
2326 	}
2327 done:
2328 	*last_offset_ret = last_offset;
2329 	btrfs_release_path(root, path);
2330 	btrfs_release_path(log, dst_path);
2331 
2332 	/* insert the log range keys to indicate where the log is valid */
2333 	ret = insert_dir_log_key(trans, log, path, key_type, inode->i_ino,
2334 				 first_offset, last_offset);
2335 	BUG_ON(ret);
2336 	return 0;
2337 }
2338 
2339 /*
2340  * logging directories is very similar to logging inodes, We find all the items
2341  * from the current transaction and write them to the log.
2342  *
2343  * The recovery code scans the directory in the subvolume, and if it finds a
2344  * key in the range logged that is not present in the log tree, then it means
2345  * that dir entry was unlinked during the transaction.
2346  *
2347  * In order for that scan to work, we must include one key smaller than
2348  * the smallest logged by this transaction and one key larger than the largest
2349  * key logged by this transaction.
2350  */
2351 static noinline int log_directory_changes(struct btrfs_trans_handle *trans,
2352 			  struct btrfs_root *root, struct inode *inode,
2353 			  struct btrfs_path *path,
2354 			  struct btrfs_path *dst_path)
2355 {
2356 	u64 min_key;
2357 	u64 max_key;
2358 	int ret;
2359 	int key_type = BTRFS_DIR_ITEM_KEY;
2360 
2361 again:
2362 	min_key = 0;
2363 	max_key = 0;
2364 	while (1) {
2365 		ret = log_dir_items(trans, root, inode, path,
2366 				    dst_path, key_type, min_key,
2367 				    &max_key);
2368 		BUG_ON(ret);
2369 		if (max_key == (u64)-1)
2370 			break;
2371 		min_key = max_key + 1;
2372 	}
2373 
2374 	if (key_type == BTRFS_DIR_ITEM_KEY) {
2375 		key_type = BTRFS_DIR_INDEX_KEY;
2376 		goto again;
2377 	}
2378 	return 0;
2379 }
2380 
2381 /*
2382  * a helper function to drop items from the log before we relog an
2383  * inode.  max_key_type indicates the highest item type to remove.
2384  * This cannot be run for file data extents because it does not
2385  * free the extents they point to.
2386  */
2387 static int drop_objectid_items(struct btrfs_trans_handle *trans,
2388 				  struct btrfs_root *log,
2389 				  struct btrfs_path *path,
2390 				  u64 objectid, int max_key_type)
2391 {
2392 	int ret;
2393 	struct btrfs_key key;
2394 	struct btrfs_key found_key;
2395 
2396 	key.objectid = objectid;
2397 	key.type = max_key_type;
2398 	key.offset = (u64)-1;
2399 
2400 	while (1) {
2401 		ret = btrfs_search_slot(trans, log, &key, path, -1, 1);
2402 
2403 		if (ret != 1)
2404 			break;
2405 
2406 		if (path->slots[0] == 0)
2407 			break;
2408 
2409 		path->slots[0]--;
2410 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2411 				      path->slots[0]);
2412 
2413 		if (found_key.objectid != objectid)
2414 			break;
2415 
2416 		ret = btrfs_del_item(trans, log, path);
2417 		BUG_ON(ret);
2418 		btrfs_release_path(log, path);
2419 	}
2420 	btrfs_release_path(log, path);
2421 	return 0;
2422 }
2423 
2424 static noinline int copy_items(struct btrfs_trans_handle *trans,
2425 			       struct btrfs_root *log,
2426 			       struct btrfs_path *dst_path,
2427 			       struct extent_buffer *src,
2428 			       int start_slot, int nr, int inode_only)
2429 {
2430 	unsigned long src_offset;
2431 	unsigned long dst_offset;
2432 	struct btrfs_file_extent_item *extent;
2433 	struct btrfs_inode_item *inode_item;
2434 	int ret;
2435 	struct btrfs_key *ins_keys;
2436 	u32 *ins_sizes;
2437 	char *ins_data;
2438 	int i;
2439 	struct list_head ordered_sums;
2440 
2441 	INIT_LIST_HEAD(&ordered_sums);
2442 
2443 	ins_data = kmalloc(nr * sizeof(struct btrfs_key) +
2444 			   nr * sizeof(u32), GFP_NOFS);
2445 	ins_sizes = (u32 *)ins_data;
2446 	ins_keys = (struct btrfs_key *)(ins_data + nr * sizeof(u32));
2447 
2448 	for (i = 0; i < nr; i++) {
2449 		ins_sizes[i] = btrfs_item_size_nr(src, i + start_slot);
2450 		btrfs_item_key_to_cpu(src, ins_keys + i, i + start_slot);
2451 	}
2452 	ret = btrfs_insert_empty_items(trans, log, dst_path,
2453 				       ins_keys, ins_sizes, nr);
2454 	BUG_ON(ret);
2455 
2456 	for (i = 0; i < nr; i++) {
2457 		dst_offset = btrfs_item_ptr_offset(dst_path->nodes[0],
2458 						   dst_path->slots[0]);
2459 
2460 		src_offset = btrfs_item_ptr_offset(src, start_slot + i);
2461 
2462 		copy_extent_buffer(dst_path->nodes[0], src, dst_offset,
2463 				   src_offset, ins_sizes[i]);
2464 
2465 		if (inode_only == LOG_INODE_EXISTS &&
2466 		    ins_keys[i].type == BTRFS_INODE_ITEM_KEY) {
2467 			inode_item = btrfs_item_ptr(dst_path->nodes[0],
2468 						    dst_path->slots[0],
2469 						    struct btrfs_inode_item);
2470 			btrfs_set_inode_size(dst_path->nodes[0], inode_item, 0);
2471 
2472 			/* set the generation to zero so the recover code
2473 			 * can tell the difference between an logging
2474 			 * just to say 'this inode exists' and a logging
2475 			 * to say 'update this inode with these values'
2476 			 */
2477 			btrfs_set_inode_generation(dst_path->nodes[0],
2478 						   inode_item, 0);
2479 		}
2480 		/* take a reference on file data extents so that truncates
2481 		 * or deletes of this inode don't have to relog the inode
2482 		 * again
2483 		 */
2484 		if (btrfs_key_type(ins_keys + i) == BTRFS_EXTENT_DATA_KEY) {
2485 			int found_type;
2486 			extent = btrfs_item_ptr(src, start_slot + i,
2487 						struct btrfs_file_extent_item);
2488 
2489 			found_type = btrfs_file_extent_type(src, extent);
2490 			if (found_type == BTRFS_FILE_EXTENT_REG ||
2491 			    found_type == BTRFS_FILE_EXTENT_PREALLOC) {
2492 				u64 ds = btrfs_file_extent_disk_bytenr(src,
2493 								   extent);
2494 				u64 dl = btrfs_file_extent_disk_num_bytes(src,
2495 								      extent);
2496 				u64 cs = btrfs_file_extent_offset(src, extent);
2497 				u64 cl = btrfs_file_extent_num_bytes(src,
2498 								     extent);;
2499 				if (btrfs_file_extent_compression(src,
2500 								  extent)) {
2501 					cs = 0;
2502 					cl = dl;
2503 				}
2504 				/* ds == 0 is a hole */
2505 				if (ds != 0) {
2506 					ret = btrfs_inc_extent_ref(trans, log,
2507 						   ds, dl,
2508 						   dst_path->nodes[0]->start,
2509 						   BTRFS_TREE_LOG_OBJECTID,
2510 						   trans->transid,
2511 						   ins_keys[i].objectid);
2512 					BUG_ON(ret);
2513 					ret = btrfs_lookup_csums_range(
2514 						   log->fs_info->csum_root,
2515 						   ds + cs, ds + cs + cl - 1,
2516 						   &ordered_sums);
2517 					BUG_ON(ret);
2518 				}
2519 			}
2520 		}
2521 		dst_path->slots[0]++;
2522 	}
2523 
2524 	btrfs_mark_buffer_dirty(dst_path->nodes[0]);
2525 	btrfs_release_path(log, dst_path);
2526 	kfree(ins_data);
2527 
2528 	/*
2529 	 * we have to do this after the loop above to avoid changing the
2530 	 * log tree while trying to change the log tree.
2531 	 */
2532 	while (!list_empty(&ordered_sums)) {
2533 		struct btrfs_ordered_sum *sums = list_entry(ordered_sums.next,
2534 						   struct btrfs_ordered_sum,
2535 						   list);
2536 		ret = btrfs_csum_file_blocks(trans, log, sums);
2537 		BUG_ON(ret);
2538 		list_del(&sums->list);
2539 		kfree(sums);
2540 	}
2541 	return 0;
2542 }
2543 
2544 /* log a single inode in the tree log.
2545  * At least one parent directory for this inode must exist in the tree
2546  * or be logged already.
2547  *
2548  * Any items from this inode changed by the current transaction are copied
2549  * to the log tree.  An extra reference is taken on any extents in this
2550  * file, allowing us to avoid a whole pile of corner cases around logging
2551  * blocks that have been removed from the tree.
2552  *
2553  * See LOG_INODE_ALL and related defines for a description of what inode_only
2554  * does.
2555  *
2556  * This handles both files and directories.
2557  */
2558 static int __btrfs_log_inode(struct btrfs_trans_handle *trans,
2559 			     struct btrfs_root *root, struct inode *inode,
2560 			     int inode_only)
2561 {
2562 	struct btrfs_path *path;
2563 	struct btrfs_path *dst_path;
2564 	struct btrfs_key min_key;
2565 	struct btrfs_key max_key;
2566 	struct btrfs_root *log = root->log_root;
2567 	struct extent_buffer *src = NULL;
2568 	u32 size;
2569 	int ret;
2570 	int nritems;
2571 	int ins_start_slot = 0;
2572 	int ins_nr;
2573 
2574 	log = root->log_root;
2575 
2576 	path = btrfs_alloc_path();
2577 	dst_path = btrfs_alloc_path();
2578 
2579 	min_key.objectid = inode->i_ino;
2580 	min_key.type = BTRFS_INODE_ITEM_KEY;
2581 	min_key.offset = 0;
2582 
2583 	max_key.objectid = inode->i_ino;
2584 	if (inode_only == LOG_INODE_EXISTS || S_ISDIR(inode->i_mode))
2585 		max_key.type = BTRFS_XATTR_ITEM_KEY;
2586 	else
2587 		max_key.type = (u8)-1;
2588 	max_key.offset = (u64)-1;
2589 
2590 	/*
2591 	 * if this inode has already been logged and we're in inode_only
2592 	 * mode, we don't want to delete the things that have already
2593 	 * been written to the log.
2594 	 *
2595 	 * But, if the inode has been through an inode_only log,
2596 	 * the logged_trans field is not set.  This allows us to catch
2597 	 * any new names for this inode in the backrefs by logging it
2598 	 * again
2599 	 */
2600 	if (inode_only == LOG_INODE_EXISTS &&
2601 	    BTRFS_I(inode)->logged_trans == trans->transid) {
2602 		btrfs_free_path(path);
2603 		btrfs_free_path(dst_path);
2604 		goto out;
2605 	}
2606 	mutex_lock(&BTRFS_I(inode)->log_mutex);
2607 
2608 	/*
2609 	 * a brute force approach to making sure we get the most uptodate
2610 	 * copies of everything.
2611 	 */
2612 	if (S_ISDIR(inode->i_mode)) {
2613 		int max_key_type = BTRFS_DIR_LOG_INDEX_KEY;
2614 
2615 		if (inode_only == LOG_INODE_EXISTS)
2616 			max_key_type = BTRFS_XATTR_ITEM_KEY;
2617 		ret = drop_objectid_items(trans, log, path,
2618 					  inode->i_ino, max_key_type);
2619 	} else {
2620 		ret = btrfs_truncate_inode_items(trans, log, inode, 0, 0);
2621 	}
2622 	BUG_ON(ret);
2623 	path->keep_locks = 1;
2624 
2625 	while (1) {
2626 		ins_nr = 0;
2627 		ret = btrfs_search_forward(root, &min_key, &max_key,
2628 					   path, 0, trans->transid);
2629 		if (ret != 0)
2630 			break;
2631 again:
2632 		/* note, ins_nr might be > 0 here, cleanup outside the loop */
2633 		if (min_key.objectid != inode->i_ino)
2634 			break;
2635 		if (min_key.type > max_key.type)
2636 			break;
2637 
2638 		src = path->nodes[0];
2639 		size = btrfs_item_size_nr(src, path->slots[0]);
2640 		if (ins_nr && ins_start_slot + ins_nr == path->slots[0]) {
2641 			ins_nr++;
2642 			goto next_slot;
2643 		} else if (!ins_nr) {
2644 			ins_start_slot = path->slots[0];
2645 			ins_nr = 1;
2646 			goto next_slot;
2647 		}
2648 
2649 		ret = copy_items(trans, log, dst_path, src, ins_start_slot,
2650 				 ins_nr, inode_only);
2651 		BUG_ON(ret);
2652 		ins_nr = 1;
2653 		ins_start_slot = path->slots[0];
2654 next_slot:
2655 
2656 		nritems = btrfs_header_nritems(path->nodes[0]);
2657 		path->slots[0]++;
2658 		if (path->slots[0] < nritems) {
2659 			btrfs_item_key_to_cpu(path->nodes[0], &min_key,
2660 					      path->slots[0]);
2661 			goto again;
2662 		}
2663 		if (ins_nr) {
2664 			ret = copy_items(trans, log, dst_path, src,
2665 					 ins_start_slot,
2666 					 ins_nr, inode_only);
2667 			BUG_ON(ret);
2668 			ins_nr = 0;
2669 		}
2670 		btrfs_release_path(root, path);
2671 
2672 		if (min_key.offset < (u64)-1)
2673 			min_key.offset++;
2674 		else if (min_key.type < (u8)-1)
2675 			min_key.type++;
2676 		else if (min_key.objectid < (u64)-1)
2677 			min_key.objectid++;
2678 		else
2679 			break;
2680 	}
2681 	if (ins_nr) {
2682 		ret = copy_items(trans, log, dst_path, src,
2683 				 ins_start_slot,
2684 				 ins_nr, inode_only);
2685 		BUG_ON(ret);
2686 		ins_nr = 0;
2687 	}
2688 	WARN_ON(ins_nr);
2689 	if (inode_only == LOG_INODE_ALL && S_ISDIR(inode->i_mode)) {
2690 		btrfs_release_path(root, path);
2691 		btrfs_release_path(log, dst_path);
2692 		BTRFS_I(inode)->log_dirty_trans = 0;
2693 		ret = log_directory_changes(trans, root, inode, path, dst_path);
2694 		BUG_ON(ret);
2695 	}
2696 	BTRFS_I(inode)->logged_trans = trans->transid;
2697 	mutex_unlock(&BTRFS_I(inode)->log_mutex);
2698 
2699 	btrfs_free_path(path);
2700 	btrfs_free_path(dst_path);
2701 
2702 	mutex_lock(&root->fs_info->tree_log_mutex);
2703 	ret = update_log_root(trans, log);
2704 	BUG_ON(ret);
2705 	mutex_unlock(&root->fs_info->tree_log_mutex);
2706 out:
2707 	return 0;
2708 }
2709 
2710 int btrfs_log_inode(struct btrfs_trans_handle *trans,
2711 		    struct btrfs_root *root, struct inode *inode,
2712 		    int inode_only)
2713 {
2714 	int ret;
2715 
2716 	start_log_trans(trans, root);
2717 	ret = __btrfs_log_inode(trans, root, inode, inode_only);
2718 	end_log_trans(root);
2719 	return ret;
2720 }
2721 
2722 /*
2723  * helper function around btrfs_log_inode to make sure newly created
2724  * parent directories also end up in the log.  A minimal inode and backref
2725  * only logging is done of any parent directories that are older than
2726  * the last committed transaction
2727  */
2728 int btrfs_log_dentry(struct btrfs_trans_handle *trans,
2729 		    struct btrfs_root *root, struct dentry *dentry)
2730 {
2731 	int inode_only = LOG_INODE_ALL;
2732 	struct super_block *sb;
2733 	int ret;
2734 
2735 	start_log_trans(trans, root);
2736 	sb = dentry->d_inode->i_sb;
2737 	while (1) {
2738 		ret = __btrfs_log_inode(trans, root, dentry->d_inode,
2739 					inode_only);
2740 		BUG_ON(ret);
2741 		inode_only = LOG_INODE_EXISTS;
2742 
2743 		dentry = dentry->d_parent;
2744 		if (!dentry || !dentry->d_inode || sb != dentry->d_inode->i_sb)
2745 			break;
2746 
2747 		if (BTRFS_I(dentry->d_inode)->generation <=
2748 		    root->fs_info->last_trans_committed)
2749 			break;
2750 	}
2751 	end_log_trans(root);
2752 	return 0;
2753 }
2754 
2755 /*
2756  * it is not safe to log dentry if the chunk root has added new
2757  * chunks.  This returns 0 if the dentry was logged, and 1 otherwise.
2758  * If this returns 1, you must commit the transaction to safely get your
2759  * data on disk.
2760  */
2761 int btrfs_log_dentry_safe(struct btrfs_trans_handle *trans,
2762 			  struct btrfs_root *root, struct dentry *dentry)
2763 {
2764 	u64 gen;
2765 	gen = root->fs_info->last_trans_new_blockgroup;
2766 	if (gen > root->fs_info->last_trans_committed)
2767 		return 1;
2768 	else
2769 		return btrfs_log_dentry(trans, root, dentry);
2770 }
2771 
2772 /*
2773  * should be called during mount to recover any replay any log trees
2774  * from the FS
2775  */
2776 int btrfs_recover_log_trees(struct btrfs_root *log_root_tree)
2777 {
2778 	int ret;
2779 	struct btrfs_path *path;
2780 	struct btrfs_trans_handle *trans;
2781 	struct btrfs_key key;
2782 	struct btrfs_key found_key;
2783 	struct btrfs_key tmp_key;
2784 	struct btrfs_root *log;
2785 	struct btrfs_fs_info *fs_info = log_root_tree->fs_info;
2786 	u64 highest_inode;
2787 	struct walk_control wc = {
2788 		.process_func = process_one_buffer,
2789 		.stage = 0,
2790 	};
2791 
2792 	fs_info->log_root_recovering = 1;
2793 	path = btrfs_alloc_path();
2794 	BUG_ON(!path);
2795 
2796 	trans = btrfs_start_transaction(fs_info->tree_root, 1);
2797 
2798 	wc.trans = trans;
2799 	wc.pin = 1;
2800 
2801 	walk_log_tree(trans, log_root_tree, &wc);
2802 
2803 again:
2804 	key.objectid = BTRFS_TREE_LOG_OBJECTID;
2805 	key.offset = (u64)-1;
2806 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
2807 
2808 	while (1) {
2809 		ret = btrfs_search_slot(NULL, log_root_tree, &key, path, 0, 0);
2810 		if (ret < 0)
2811 			break;
2812 		if (ret > 0) {
2813 			if (path->slots[0] == 0)
2814 				break;
2815 			path->slots[0]--;
2816 		}
2817 		btrfs_item_key_to_cpu(path->nodes[0], &found_key,
2818 				      path->slots[0]);
2819 		btrfs_release_path(log_root_tree, path);
2820 		if (found_key.objectid != BTRFS_TREE_LOG_OBJECTID)
2821 			break;
2822 
2823 		log = btrfs_read_fs_root_no_radix(log_root_tree,
2824 						  &found_key);
2825 		BUG_ON(!log);
2826 
2827 
2828 		tmp_key.objectid = found_key.offset;
2829 		tmp_key.type = BTRFS_ROOT_ITEM_KEY;
2830 		tmp_key.offset = (u64)-1;
2831 
2832 		wc.replay_dest = btrfs_read_fs_root_no_name(fs_info, &tmp_key);
2833 		BUG_ON(!wc.replay_dest);
2834 
2835 		wc.replay_dest->log_root = log;
2836 		btrfs_record_root_in_trans(wc.replay_dest);
2837 		ret = walk_log_tree(trans, log, &wc);
2838 		BUG_ON(ret);
2839 
2840 		if (wc.stage == LOG_WALK_REPLAY_ALL) {
2841 			ret = fixup_inode_link_counts(trans, wc.replay_dest,
2842 						      path);
2843 			BUG_ON(ret);
2844 		}
2845 		ret = btrfs_find_highest_inode(wc.replay_dest, &highest_inode);
2846 		if (ret == 0) {
2847 			wc.replay_dest->highest_inode = highest_inode;
2848 			wc.replay_dest->last_inode_alloc = highest_inode;
2849 		}
2850 
2851 		key.offset = found_key.offset - 1;
2852 		wc.replay_dest->log_root = NULL;
2853 		free_extent_buffer(log->node);
2854 		kfree(log);
2855 
2856 		if (found_key.offset == 0)
2857 			break;
2858 	}
2859 	btrfs_release_path(log_root_tree, path);
2860 
2861 	/* step one is to pin it all, step two is to replay just inodes */
2862 	if (wc.pin) {
2863 		wc.pin = 0;
2864 		wc.process_func = replay_one_buffer;
2865 		wc.stage = LOG_WALK_REPLAY_INODES;
2866 		goto again;
2867 	}
2868 	/* step three is to replay everything */
2869 	if (wc.stage < LOG_WALK_REPLAY_ALL) {
2870 		wc.stage++;
2871 		goto again;
2872 	}
2873 
2874 	btrfs_free_path(path);
2875 
2876 	free_extent_buffer(log_root_tree->node);
2877 	log_root_tree->log_root = NULL;
2878 	fs_info->log_root_recovering = 0;
2879 
2880 	/* step 4: commit the transaction, which also unpins the blocks */
2881 	btrfs_commit_transaction(trans, fs_info->tree_root);
2882 
2883 	kfree(log_root_tree);
2884 	return 0;
2885 }
2886