1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 112 struct btrfs_fs_info *fs_info) 113 { 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 } 126 127 /* We can free old roots now. */ 128 spin_lock(&trans->dropped_roots_lock); 129 while (!list_empty(&trans->dropped_roots)) { 130 root = list_first_entry(&trans->dropped_roots, 131 struct btrfs_root, root_list); 132 list_del_init(&root->root_list); 133 spin_unlock(&trans->dropped_roots_lock); 134 btrfs_drop_and_free_fs_root(fs_info, root); 135 spin_lock(&trans->dropped_roots_lock); 136 } 137 spin_unlock(&trans->dropped_roots_lock); 138 up_write(&fs_info->commit_root_sem); 139 } 140 141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 142 unsigned int type) 143 { 144 if (type & TRANS_EXTWRITERS) 145 atomic_inc(&trans->num_extwriters); 146 } 147 148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 149 unsigned int type) 150 { 151 if (type & TRANS_EXTWRITERS) 152 atomic_dec(&trans->num_extwriters); 153 } 154 155 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 156 unsigned int type) 157 { 158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 159 } 160 161 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 162 { 163 return atomic_read(&trans->num_extwriters); 164 } 165 166 /* 167 * either allocate a new transaction or hop into the existing one 168 */ 169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 170 { 171 struct btrfs_transaction *cur_trans; 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 174 spin_lock(&fs_info->trans_lock); 175 loop: 176 /* The file system has been taken offline. No new transactions. */ 177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 178 spin_unlock(&fs_info->trans_lock); 179 return -EROFS; 180 } 181 182 cur_trans = fs_info->running_transaction; 183 if (cur_trans) { 184 if (cur_trans->aborted) { 185 spin_unlock(&fs_info->trans_lock); 186 return cur_trans->aborted; 187 } 188 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 189 spin_unlock(&fs_info->trans_lock); 190 return -EBUSY; 191 } 192 atomic_inc(&cur_trans->use_count); 193 atomic_inc(&cur_trans->num_writers); 194 extwriter_counter_inc(cur_trans, type); 195 spin_unlock(&fs_info->trans_lock); 196 return 0; 197 } 198 spin_unlock(&fs_info->trans_lock); 199 200 /* 201 * If we are ATTACH, we just want to catch the current transaction, 202 * and commit it. If there is no transaction, just return ENOENT. 203 */ 204 if (type == TRANS_ATTACH) 205 return -ENOENT; 206 207 /* 208 * JOIN_NOLOCK only happens during the transaction commit, so 209 * it is impossible that ->running_transaction is NULL 210 */ 211 BUG_ON(type == TRANS_JOIN_NOLOCK); 212 213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 214 if (!cur_trans) 215 return -ENOMEM; 216 217 spin_lock(&fs_info->trans_lock); 218 if (fs_info->running_transaction) { 219 /* 220 * someone started a transaction after we unlocked. Make sure 221 * to redo the checks above 222 */ 223 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 224 goto loop; 225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 226 spin_unlock(&fs_info->trans_lock); 227 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 228 return -EROFS; 229 } 230 231 atomic_set(&cur_trans->num_writers, 1); 232 extwriter_counter_init(cur_trans, type); 233 init_waitqueue_head(&cur_trans->writer_wait); 234 init_waitqueue_head(&cur_trans->commit_wait); 235 init_waitqueue_head(&cur_trans->pending_wait); 236 cur_trans->state = TRANS_STATE_RUNNING; 237 /* 238 * One for this trans handle, one so it will live on until we 239 * commit the transaction. 240 */ 241 atomic_set(&cur_trans->use_count, 2); 242 atomic_set(&cur_trans->pending_ordered, 0); 243 cur_trans->flags = 0; 244 cur_trans->start_time = get_seconds(); 245 246 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 247 248 cur_trans->delayed_refs.href_root = RB_ROOT; 249 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 250 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 251 252 /* 253 * although the tree mod log is per file system and not per transaction, 254 * the log must never go across transaction boundaries. 255 */ 256 smp_mb(); 257 if (!list_empty(&fs_info->tree_mod_seq_list)) 258 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 259 "creating a fresh transaction\n"); 260 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 261 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 262 "creating a fresh transaction\n"); 263 atomic64_set(&fs_info->tree_mod_seq, 0); 264 265 spin_lock_init(&cur_trans->delayed_refs.lock); 266 267 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 268 INIT_LIST_HEAD(&cur_trans->pending_chunks); 269 INIT_LIST_HEAD(&cur_trans->switch_commits); 270 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 271 INIT_LIST_HEAD(&cur_trans->io_bgs); 272 INIT_LIST_HEAD(&cur_trans->dropped_roots); 273 mutex_init(&cur_trans->cache_write_mutex); 274 cur_trans->num_dirty_bgs = 0; 275 spin_lock_init(&cur_trans->dirty_bgs_lock); 276 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 277 spin_lock_init(&cur_trans->deleted_bgs_lock); 278 spin_lock_init(&cur_trans->dropped_roots_lock); 279 list_add_tail(&cur_trans->list, &fs_info->trans_list); 280 extent_io_tree_init(&cur_trans->dirty_pages, 281 fs_info->btree_inode->i_mapping); 282 fs_info->generation++; 283 cur_trans->transid = fs_info->generation; 284 fs_info->running_transaction = cur_trans; 285 cur_trans->aborted = 0; 286 spin_unlock(&fs_info->trans_lock); 287 288 return 0; 289 } 290 291 /* 292 * this does all the record keeping required to make sure that a reference 293 * counted root is properly recorded in a given transaction. This is required 294 * to make sure the old root from before we joined the transaction is deleted 295 * when the transaction commits 296 */ 297 static int record_root_in_trans(struct btrfs_trans_handle *trans, 298 struct btrfs_root *root) 299 { 300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 301 root->last_trans < trans->transid) { 302 WARN_ON(root == root->fs_info->extent_root); 303 WARN_ON(root->commit_root != root->node); 304 305 /* 306 * see below for IN_TRANS_SETUP usage rules 307 * we have the reloc mutex held now, so there 308 * is only one writer in this function 309 */ 310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 311 312 /* make sure readers find IN_TRANS_SETUP before 313 * they find our root->last_trans update 314 */ 315 smp_wmb(); 316 317 spin_lock(&root->fs_info->fs_roots_radix_lock); 318 if (root->last_trans == trans->transid) { 319 spin_unlock(&root->fs_info->fs_roots_radix_lock); 320 return 0; 321 } 322 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 323 (unsigned long)root->root_key.objectid, 324 BTRFS_ROOT_TRANS_TAG); 325 spin_unlock(&root->fs_info->fs_roots_radix_lock); 326 root->last_trans = trans->transid; 327 328 /* this is pretty tricky. We don't want to 329 * take the relocation lock in btrfs_record_root_in_trans 330 * unless we're really doing the first setup for this root in 331 * this transaction. 332 * 333 * Normally we'd use root->last_trans as a flag to decide 334 * if we want to take the expensive mutex. 335 * 336 * But, we have to set root->last_trans before we 337 * init the relocation root, otherwise, we trip over warnings 338 * in ctree.c. The solution used here is to flag ourselves 339 * with root IN_TRANS_SETUP. When this is 1, we're still 340 * fixing up the reloc trees and everyone must wait. 341 * 342 * When this is zero, they can trust root->last_trans and fly 343 * through btrfs_record_root_in_trans without having to take the 344 * lock. smp_wmb() makes sure that all the writes above are 345 * done before we pop in the zero below 346 */ 347 btrfs_init_reloc_root(trans, root); 348 smp_mb__before_atomic(); 349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 350 } 351 return 0; 352 } 353 354 355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_transaction *cur_trans = trans->transaction; 359 360 /* Add ourselves to the transaction dropped list */ 361 spin_lock(&cur_trans->dropped_roots_lock); 362 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 363 spin_unlock(&cur_trans->dropped_roots_lock); 364 365 /* Make sure we don't try to update the root at commit time */ 366 spin_lock(&root->fs_info->fs_roots_radix_lock); 367 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 368 (unsigned long)root->root_key.objectid, 369 BTRFS_ROOT_TRANS_TAG); 370 spin_unlock(&root->fs_info->fs_roots_radix_lock); 371 } 372 373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 374 struct btrfs_root *root) 375 { 376 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 377 return 0; 378 379 /* 380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 381 * and barriers 382 */ 383 smp_rmb(); 384 if (root->last_trans == trans->transid && 385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 386 return 0; 387 388 mutex_lock(&root->fs_info->reloc_mutex); 389 record_root_in_trans(trans, root); 390 mutex_unlock(&root->fs_info->reloc_mutex); 391 392 return 0; 393 } 394 395 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 396 { 397 return (trans->state >= TRANS_STATE_BLOCKED && 398 trans->state < TRANS_STATE_UNBLOCKED && 399 !trans->aborted); 400 } 401 402 /* wait for commit against the current transaction to become unblocked 403 * when this is done, it is safe to start a new transaction, but the current 404 * transaction might not be fully on disk. 405 */ 406 static void wait_current_trans(struct btrfs_root *root) 407 { 408 struct btrfs_transaction *cur_trans; 409 410 spin_lock(&root->fs_info->trans_lock); 411 cur_trans = root->fs_info->running_transaction; 412 if (cur_trans && is_transaction_blocked(cur_trans)) { 413 atomic_inc(&cur_trans->use_count); 414 spin_unlock(&root->fs_info->trans_lock); 415 416 wait_event(root->fs_info->transaction_wait, 417 cur_trans->state >= TRANS_STATE_UNBLOCKED || 418 cur_trans->aborted); 419 btrfs_put_transaction(cur_trans); 420 } else { 421 spin_unlock(&root->fs_info->trans_lock); 422 } 423 } 424 425 static int may_wait_transaction(struct btrfs_root *root, int type) 426 { 427 if (root->fs_info->log_root_recovering) 428 return 0; 429 430 if (type == TRANS_USERSPACE) 431 return 1; 432 433 if (type == TRANS_START && 434 !atomic_read(&root->fs_info->open_ioctl_trans)) 435 return 1; 436 437 return 0; 438 } 439 440 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 441 { 442 if (!root->fs_info->reloc_ctl || 443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 445 root->reloc_root) 446 return false; 447 448 return true; 449 } 450 451 static struct btrfs_trans_handle * 452 start_transaction(struct btrfs_root *root, unsigned int num_items, 453 unsigned int type, enum btrfs_reserve_flush_enum flush) 454 { 455 struct btrfs_trans_handle *h; 456 struct btrfs_transaction *cur_trans; 457 u64 num_bytes = 0; 458 u64 qgroup_reserved = 0; 459 bool reloc_reserved = false; 460 int ret; 461 462 /* Send isn't supposed to start transactions. */ 463 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 464 465 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 466 return ERR_PTR(-EROFS); 467 468 if (current->journal_info) { 469 WARN_ON(type & TRANS_EXTWRITERS); 470 h = current->journal_info; 471 h->use_count++; 472 WARN_ON(h->use_count > 2); 473 h->orig_rsv = h->block_rsv; 474 h->block_rsv = NULL; 475 goto got_it; 476 } 477 478 /* 479 * Do the reservation before we join the transaction so we can do all 480 * the appropriate flushing if need be. 481 */ 482 if (num_items > 0 && root != root->fs_info->chunk_root) { 483 qgroup_reserved = num_items * root->nodesize; 484 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 485 if (ret) 486 return ERR_PTR(ret); 487 488 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 489 /* 490 * Do the reservation for the relocation root creation 491 */ 492 if (need_reserve_reloc_root(root)) { 493 num_bytes += root->nodesize; 494 reloc_reserved = true; 495 } 496 497 ret = btrfs_block_rsv_add(root, 498 &root->fs_info->trans_block_rsv, 499 num_bytes, flush); 500 if (ret) 501 goto reserve_fail; 502 } 503 again: 504 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 505 if (!h) { 506 ret = -ENOMEM; 507 goto alloc_fail; 508 } 509 510 /* 511 * If we are JOIN_NOLOCK we're already committing a transaction and 512 * waiting on this guy, so we don't need to do the sb_start_intwrite 513 * because we're already holding a ref. We need this because we could 514 * have raced in and did an fsync() on a file which can kick a commit 515 * and then we deadlock with somebody doing a freeze. 516 * 517 * If we are ATTACH, it means we just want to catch the current 518 * transaction and commit it, so we needn't do sb_start_intwrite(). 519 */ 520 if (type & __TRANS_FREEZABLE) 521 sb_start_intwrite(root->fs_info->sb); 522 523 if (may_wait_transaction(root, type)) 524 wait_current_trans(root); 525 526 do { 527 ret = join_transaction(root, type); 528 if (ret == -EBUSY) { 529 wait_current_trans(root); 530 if (unlikely(type == TRANS_ATTACH)) 531 ret = -ENOENT; 532 } 533 } while (ret == -EBUSY); 534 535 if (ret < 0) { 536 /* We must get the transaction if we are JOIN_NOLOCK. */ 537 BUG_ON(type == TRANS_JOIN_NOLOCK); 538 goto join_fail; 539 } 540 541 cur_trans = root->fs_info->running_transaction; 542 543 h->transid = cur_trans->transid; 544 h->transaction = cur_trans; 545 h->root = root; 546 h->use_count = 1; 547 548 h->type = type; 549 h->can_flush_pending_bgs = true; 550 INIT_LIST_HEAD(&h->qgroup_ref_list); 551 INIT_LIST_HEAD(&h->new_bgs); 552 553 smp_mb(); 554 if (cur_trans->state >= TRANS_STATE_BLOCKED && 555 may_wait_transaction(root, type)) { 556 current->journal_info = h; 557 btrfs_commit_transaction(h, root); 558 goto again; 559 } 560 561 if (num_bytes) { 562 trace_btrfs_space_reservation(root->fs_info, "transaction", 563 h->transid, num_bytes, 1); 564 h->block_rsv = &root->fs_info->trans_block_rsv; 565 h->bytes_reserved = num_bytes; 566 h->reloc_reserved = reloc_reserved; 567 } 568 569 got_it: 570 btrfs_record_root_in_trans(h, root); 571 572 if (!current->journal_info && type != TRANS_USERSPACE) 573 current->journal_info = h; 574 return h; 575 576 join_fail: 577 if (type & __TRANS_FREEZABLE) 578 sb_end_intwrite(root->fs_info->sb); 579 kmem_cache_free(btrfs_trans_handle_cachep, h); 580 alloc_fail: 581 if (num_bytes) 582 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 583 num_bytes); 584 reserve_fail: 585 btrfs_qgroup_free_meta(root, qgroup_reserved); 586 return ERR_PTR(ret); 587 } 588 589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 590 unsigned int num_items) 591 { 592 return start_transaction(root, num_items, TRANS_START, 593 BTRFS_RESERVE_FLUSH_ALL); 594 } 595 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 596 struct btrfs_root *root, 597 unsigned int num_items, 598 int min_factor) 599 { 600 struct btrfs_trans_handle *trans; 601 u64 num_bytes; 602 int ret; 603 604 trans = btrfs_start_transaction(root, num_items); 605 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 606 return trans; 607 608 trans = btrfs_start_transaction(root, 0); 609 if (IS_ERR(trans)) 610 return trans; 611 612 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 613 ret = btrfs_cond_migrate_bytes(root->fs_info, 614 &root->fs_info->trans_block_rsv, 615 num_bytes, 616 min_factor); 617 if (ret) { 618 btrfs_end_transaction(trans, root); 619 return ERR_PTR(ret); 620 } 621 622 trans->block_rsv = &root->fs_info->trans_block_rsv; 623 trans->bytes_reserved = num_bytes; 624 625 return trans; 626 } 627 628 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 629 struct btrfs_root *root, 630 unsigned int num_items) 631 { 632 return start_transaction(root, num_items, TRANS_START, 633 BTRFS_RESERVE_FLUSH_LIMIT); 634 } 635 636 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 637 { 638 return start_transaction(root, 0, TRANS_JOIN, 0); 639 } 640 641 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 642 { 643 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 644 } 645 646 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 647 { 648 return start_transaction(root, 0, TRANS_USERSPACE, 0); 649 } 650 651 /* 652 * btrfs_attach_transaction() - catch the running transaction 653 * 654 * It is used when we want to commit the current the transaction, but 655 * don't want to start a new one. 656 * 657 * Note: If this function return -ENOENT, it just means there is no 658 * running transaction. But it is possible that the inactive transaction 659 * is still in the memory, not fully on disk. If you hope there is no 660 * inactive transaction in the fs when -ENOENT is returned, you should 661 * invoke 662 * btrfs_attach_transaction_barrier() 663 */ 664 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 665 { 666 return start_transaction(root, 0, TRANS_ATTACH, 0); 667 } 668 669 /* 670 * btrfs_attach_transaction_barrier() - catch the running transaction 671 * 672 * It is similar to the above function, the differentia is this one 673 * will wait for all the inactive transactions until they fully 674 * complete. 675 */ 676 struct btrfs_trans_handle * 677 btrfs_attach_transaction_barrier(struct btrfs_root *root) 678 { 679 struct btrfs_trans_handle *trans; 680 681 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 682 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 683 btrfs_wait_for_commit(root, 0); 684 685 return trans; 686 } 687 688 /* wait for a transaction commit to be fully complete */ 689 static noinline void wait_for_commit(struct btrfs_root *root, 690 struct btrfs_transaction *commit) 691 { 692 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 693 } 694 695 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 696 { 697 struct btrfs_transaction *cur_trans = NULL, *t; 698 int ret = 0; 699 700 if (transid) { 701 if (transid <= root->fs_info->last_trans_committed) 702 goto out; 703 704 /* find specified transaction */ 705 spin_lock(&root->fs_info->trans_lock); 706 list_for_each_entry(t, &root->fs_info->trans_list, list) { 707 if (t->transid == transid) { 708 cur_trans = t; 709 atomic_inc(&cur_trans->use_count); 710 ret = 0; 711 break; 712 } 713 if (t->transid > transid) { 714 ret = 0; 715 break; 716 } 717 } 718 spin_unlock(&root->fs_info->trans_lock); 719 720 /* 721 * The specified transaction doesn't exist, or we 722 * raced with btrfs_commit_transaction 723 */ 724 if (!cur_trans) { 725 if (transid > root->fs_info->last_trans_committed) 726 ret = -EINVAL; 727 goto out; 728 } 729 } else { 730 /* find newest transaction that is committing | committed */ 731 spin_lock(&root->fs_info->trans_lock); 732 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 733 list) { 734 if (t->state >= TRANS_STATE_COMMIT_START) { 735 if (t->state == TRANS_STATE_COMPLETED) 736 break; 737 cur_trans = t; 738 atomic_inc(&cur_trans->use_count); 739 break; 740 } 741 } 742 spin_unlock(&root->fs_info->trans_lock); 743 if (!cur_trans) 744 goto out; /* nothing committing|committed */ 745 } 746 747 wait_for_commit(root, cur_trans); 748 btrfs_put_transaction(cur_trans); 749 out: 750 return ret; 751 } 752 753 void btrfs_throttle(struct btrfs_root *root) 754 { 755 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 756 wait_current_trans(root); 757 } 758 759 static int should_end_transaction(struct btrfs_trans_handle *trans, 760 struct btrfs_root *root) 761 { 762 if (root->fs_info->global_block_rsv.space_info->full && 763 btrfs_check_space_for_delayed_refs(trans, root)) 764 return 1; 765 766 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 767 } 768 769 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 770 struct btrfs_root *root) 771 { 772 struct btrfs_transaction *cur_trans = trans->transaction; 773 int updates; 774 int err; 775 776 smp_mb(); 777 if (cur_trans->state >= TRANS_STATE_BLOCKED || 778 cur_trans->delayed_refs.flushing) 779 return 1; 780 781 updates = trans->delayed_ref_updates; 782 trans->delayed_ref_updates = 0; 783 if (updates) { 784 err = btrfs_run_delayed_refs(trans, root, updates * 2); 785 if (err) /* Error code will also eval true */ 786 return err; 787 } 788 789 return should_end_transaction(trans, root); 790 } 791 792 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 793 struct btrfs_root *root, int throttle) 794 { 795 struct btrfs_transaction *cur_trans = trans->transaction; 796 struct btrfs_fs_info *info = root->fs_info; 797 unsigned long cur = trans->delayed_ref_updates; 798 int lock = (trans->type != TRANS_JOIN_NOLOCK); 799 int err = 0; 800 int must_run_delayed_refs = 0; 801 802 if (trans->use_count > 1) { 803 trans->use_count--; 804 trans->block_rsv = trans->orig_rsv; 805 return 0; 806 } 807 808 btrfs_trans_release_metadata(trans, root); 809 trans->block_rsv = NULL; 810 811 if (!list_empty(&trans->new_bgs)) 812 btrfs_create_pending_block_groups(trans, root); 813 814 trans->delayed_ref_updates = 0; 815 if (!trans->sync) { 816 must_run_delayed_refs = 817 btrfs_should_throttle_delayed_refs(trans, root); 818 cur = max_t(unsigned long, cur, 32); 819 820 /* 821 * don't make the caller wait if they are from a NOLOCK 822 * or ATTACH transaction, it will deadlock with commit 823 */ 824 if (must_run_delayed_refs == 1 && 825 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 826 must_run_delayed_refs = 2; 827 } 828 829 btrfs_trans_release_metadata(trans, root); 830 trans->block_rsv = NULL; 831 832 if (!list_empty(&trans->new_bgs)) 833 btrfs_create_pending_block_groups(trans, root); 834 835 btrfs_trans_release_chunk_metadata(trans); 836 837 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 838 should_end_transaction(trans, root) && 839 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 840 spin_lock(&info->trans_lock); 841 if (cur_trans->state == TRANS_STATE_RUNNING) 842 cur_trans->state = TRANS_STATE_BLOCKED; 843 spin_unlock(&info->trans_lock); 844 } 845 846 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 847 if (throttle) 848 return btrfs_commit_transaction(trans, root); 849 else 850 wake_up_process(info->transaction_kthread); 851 } 852 853 if (trans->type & __TRANS_FREEZABLE) 854 sb_end_intwrite(root->fs_info->sb); 855 856 WARN_ON(cur_trans != info->running_transaction); 857 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 858 atomic_dec(&cur_trans->num_writers); 859 extwriter_counter_dec(cur_trans, trans->type); 860 861 /* 862 * Make sure counter is updated before we wake up waiters. 863 */ 864 smp_mb(); 865 if (waitqueue_active(&cur_trans->writer_wait)) 866 wake_up(&cur_trans->writer_wait); 867 btrfs_put_transaction(cur_trans); 868 869 if (current->journal_info == trans) 870 current->journal_info = NULL; 871 872 if (throttle) 873 btrfs_run_delayed_iputs(root); 874 875 if (trans->aborted || 876 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 877 wake_up_process(info->transaction_kthread); 878 err = -EIO; 879 } 880 assert_qgroups_uptodate(trans); 881 882 kmem_cache_free(btrfs_trans_handle_cachep, trans); 883 if (must_run_delayed_refs) { 884 btrfs_async_run_delayed_refs(root, cur, 885 must_run_delayed_refs == 1); 886 } 887 return err; 888 } 889 890 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 891 struct btrfs_root *root) 892 { 893 return __btrfs_end_transaction(trans, root, 0); 894 } 895 896 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 897 struct btrfs_root *root) 898 { 899 return __btrfs_end_transaction(trans, root, 1); 900 } 901 902 /* 903 * when btree blocks are allocated, they have some corresponding bits set for 904 * them in one of two extent_io trees. This is used to make sure all of 905 * those extents are sent to disk but does not wait on them 906 */ 907 int btrfs_write_marked_extents(struct btrfs_root *root, 908 struct extent_io_tree *dirty_pages, int mark) 909 { 910 int err = 0; 911 int werr = 0; 912 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 913 struct extent_state *cached_state = NULL; 914 u64 start = 0; 915 u64 end; 916 917 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 918 mark, &cached_state)) { 919 bool wait_writeback = false; 920 921 err = convert_extent_bit(dirty_pages, start, end, 922 EXTENT_NEED_WAIT, 923 mark, &cached_state, GFP_NOFS); 924 /* 925 * convert_extent_bit can return -ENOMEM, which is most of the 926 * time a temporary error. So when it happens, ignore the error 927 * and wait for writeback of this range to finish - because we 928 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 929 * to btrfs_wait_marked_extents() would not know that writeback 930 * for this range started and therefore wouldn't wait for it to 931 * finish - we don't want to commit a superblock that points to 932 * btree nodes/leafs for which writeback hasn't finished yet 933 * (and without errors). 934 * We cleanup any entries left in the io tree when committing 935 * the transaction (through clear_btree_io_tree()). 936 */ 937 if (err == -ENOMEM) { 938 err = 0; 939 wait_writeback = true; 940 } 941 if (!err) 942 err = filemap_fdatawrite_range(mapping, start, end); 943 if (err) 944 werr = err; 945 else if (wait_writeback) 946 werr = filemap_fdatawait_range(mapping, start, end); 947 free_extent_state(cached_state); 948 cached_state = NULL; 949 cond_resched(); 950 start = end + 1; 951 } 952 return werr; 953 } 954 955 /* 956 * when btree blocks are allocated, they have some corresponding bits set for 957 * them in one of two extent_io trees. This is used to make sure all of 958 * those extents are on disk for transaction or log commit. We wait 959 * on all the pages and clear them from the dirty pages state tree 960 */ 961 int btrfs_wait_marked_extents(struct btrfs_root *root, 962 struct extent_io_tree *dirty_pages, int mark) 963 { 964 int err = 0; 965 int werr = 0; 966 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 967 struct extent_state *cached_state = NULL; 968 u64 start = 0; 969 u64 end; 970 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 971 bool errors = false; 972 973 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 974 EXTENT_NEED_WAIT, &cached_state)) { 975 /* 976 * Ignore -ENOMEM errors returned by clear_extent_bit(). 977 * When committing the transaction, we'll remove any entries 978 * left in the io tree. For a log commit, we don't remove them 979 * after committing the log because the tree can be accessed 980 * concurrently - we do it only at transaction commit time when 981 * it's safe to do it (through clear_btree_io_tree()). 982 */ 983 err = clear_extent_bit(dirty_pages, start, end, 984 EXTENT_NEED_WAIT, 985 0, 0, &cached_state, GFP_NOFS); 986 if (err == -ENOMEM) 987 err = 0; 988 if (!err) 989 err = filemap_fdatawait_range(mapping, start, end); 990 if (err) 991 werr = err; 992 free_extent_state(cached_state); 993 cached_state = NULL; 994 cond_resched(); 995 start = end + 1; 996 } 997 if (err) 998 werr = err; 999 1000 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1001 if ((mark & EXTENT_DIRTY) && 1002 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 1003 &btree_ino->runtime_flags)) 1004 errors = true; 1005 1006 if ((mark & EXTENT_NEW) && 1007 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 1008 &btree_ino->runtime_flags)) 1009 errors = true; 1010 } else { 1011 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 1012 &btree_ino->runtime_flags)) 1013 errors = true; 1014 } 1015 1016 if (errors && !werr) 1017 werr = -EIO; 1018 1019 return werr; 1020 } 1021 1022 /* 1023 * when btree blocks are allocated, they have some corresponding bits set for 1024 * them in one of two extent_io trees. This is used to make sure all of 1025 * those extents are on disk for transaction or log commit 1026 */ 1027 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1028 struct extent_io_tree *dirty_pages, int mark) 1029 { 1030 int ret; 1031 int ret2; 1032 struct blk_plug plug; 1033 1034 blk_start_plug(&plug); 1035 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1036 blk_finish_plug(&plug); 1037 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1038 1039 if (ret) 1040 return ret; 1041 if (ret2) 1042 return ret2; 1043 return 0; 1044 } 1045 1046 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1047 struct btrfs_root *root) 1048 { 1049 int ret; 1050 1051 ret = btrfs_write_and_wait_marked_extents(root, 1052 &trans->transaction->dirty_pages, 1053 EXTENT_DIRTY); 1054 clear_btree_io_tree(&trans->transaction->dirty_pages); 1055 1056 return ret; 1057 } 1058 1059 /* 1060 * this is used to update the root pointer in the tree of tree roots. 1061 * 1062 * But, in the case of the extent allocation tree, updating the root 1063 * pointer may allocate blocks which may change the root of the extent 1064 * allocation tree. 1065 * 1066 * So, this loops and repeats and makes sure the cowonly root didn't 1067 * change while the root pointer was being updated in the metadata. 1068 */ 1069 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1070 struct btrfs_root *root) 1071 { 1072 int ret; 1073 u64 old_root_bytenr; 1074 u64 old_root_used; 1075 struct btrfs_root *tree_root = root->fs_info->tree_root; 1076 1077 old_root_used = btrfs_root_used(&root->root_item); 1078 1079 while (1) { 1080 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1081 if (old_root_bytenr == root->node->start && 1082 old_root_used == btrfs_root_used(&root->root_item)) 1083 break; 1084 1085 btrfs_set_root_node(&root->root_item, root->node); 1086 ret = btrfs_update_root(trans, tree_root, 1087 &root->root_key, 1088 &root->root_item); 1089 if (ret) 1090 return ret; 1091 1092 old_root_used = btrfs_root_used(&root->root_item); 1093 } 1094 1095 return 0; 1096 } 1097 1098 /* 1099 * update all the cowonly tree roots on disk 1100 * 1101 * The error handling in this function may not be obvious. Any of the 1102 * failures will cause the file system to go offline. We still need 1103 * to clean up the delayed refs. 1104 */ 1105 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root) 1107 { 1108 struct btrfs_fs_info *fs_info = root->fs_info; 1109 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1110 struct list_head *io_bgs = &trans->transaction->io_bgs; 1111 struct list_head *next; 1112 struct extent_buffer *eb; 1113 int ret; 1114 1115 eb = btrfs_lock_root_node(fs_info->tree_root); 1116 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1117 0, &eb); 1118 btrfs_tree_unlock(eb); 1119 free_extent_buffer(eb); 1120 1121 if (ret) 1122 return ret; 1123 1124 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1125 if (ret) 1126 return ret; 1127 1128 ret = btrfs_run_dev_stats(trans, root->fs_info); 1129 if (ret) 1130 return ret; 1131 ret = btrfs_run_dev_replace(trans, root->fs_info); 1132 if (ret) 1133 return ret; 1134 ret = btrfs_run_qgroups(trans, root->fs_info); 1135 if (ret) 1136 return ret; 1137 1138 ret = btrfs_setup_space_cache(trans, root); 1139 if (ret) 1140 return ret; 1141 1142 /* run_qgroups might have added some more refs */ 1143 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1144 if (ret) 1145 return ret; 1146 again: 1147 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1148 next = fs_info->dirty_cowonly_roots.next; 1149 list_del_init(next); 1150 root = list_entry(next, struct btrfs_root, dirty_list); 1151 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1152 1153 if (root != fs_info->extent_root) 1154 list_add_tail(&root->dirty_list, 1155 &trans->transaction->switch_commits); 1156 ret = update_cowonly_root(trans, root); 1157 if (ret) 1158 return ret; 1159 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1160 if (ret) 1161 return ret; 1162 } 1163 1164 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1165 ret = btrfs_write_dirty_block_groups(trans, root); 1166 if (ret) 1167 return ret; 1168 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1169 if (ret) 1170 return ret; 1171 } 1172 1173 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1174 goto again; 1175 1176 list_add_tail(&fs_info->extent_root->dirty_list, 1177 &trans->transaction->switch_commits); 1178 btrfs_after_dev_replace_commit(fs_info); 1179 1180 return 0; 1181 } 1182 1183 /* 1184 * dead roots are old snapshots that need to be deleted. This allocates 1185 * a dirty root struct and adds it into the list of dead roots that need to 1186 * be deleted 1187 */ 1188 void btrfs_add_dead_root(struct btrfs_root *root) 1189 { 1190 spin_lock(&root->fs_info->trans_lock); 1191 if (list_empty(&root->root_list)) 1192 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1193 spin_unlock(&root->fs_info->trans_lock); 1194 } 1195 1196 /* 1197 * update all the cowonly tree roots on disk 1198 */ 1199 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1200 struct btrfs_root *root) 1201 { 1202 struct btrfs_root *gang[8]; 1203 struct btrfs_fs_info *fs_info = root->fs_info; 1204 int i; 1205 int ret; 1206 int err = 0; 1207 1208 spin_lock(&fs_info->fs_roots_radix_lock); 1209 while (1) { 1210 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1211 (void **)gang, 0, 1212 ARRAY_SIZE(gang), 1213 BTRFS_ROOT_TRANS_TAG); 1214 if (ret == 0) 1215 break; 1216 for (i = 0; i < ret; i++) { 1217 root = gang[i]; 1218 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1219 (unsigned long)root->root_key.objectid, 1220 BTRFS_ROOT_TRANS_TAG); 1221 spin_unlock(&fs_info->fs_roots_radix_lock); 1222 1223 btrfs_free_log(trans, root); 1224 btrfs_update_reloc_root(trans, root); 1225 btrfs_orphan_commit_root(trans, root); 1226 1227 btrfs_save_ino_cache(root, trans); 1228 1229 /* see comments in should_cow_block() */ 1230 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1231 smp_mb__after_atomic(); 1232 1233 if (root->commit_root != root->node) { 1234 list_add_tail(&root->dirty_list, 1235 &trans->transaction->switch_commits); 1236 btrfs_set_root_node(&root->root_item, 1237 root->node); 1238 } 1239 1240 err = btrfs_update_root(trans, fs_info->tree_root, 1241 &root->root_key, 1242 &root->root_item); 1243 spin_lock(&fs_info->fs_roots_radix_lock); 1244 if (err) 1245 break; 1246 btrfs_qgroup_free_meta_all(root); 1247 } 1248 } 1249 spin_unlock(&fs_info->fs_roots_radix_lock); 1250 return err; 1251 } 1252 1253 /* 1254 * defrag a given btree. 1255 * Every leaf in the btree is read and defragged. 1256 */ 1257 int btrfs_defrag_root(struct btrfs_root *root) 1258 { 1259 struct btrfs_fs_info *info = root->fs_info; 1260 struct btrfs_trans_handle *trans; 1261 int ret; 1262 1263 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1264 return 0; 1265 1266 while (1) { 1267 trans = btrfs_start_transaction(root, 0); 1268 if (IS_ERR(trans)) 1269 return PTR_ERR(trans); 1270 1271 ret = btrfs_defrag_leaves(trans, root); 1272 1273 btrfs_end_transaction(trans, root); 1274 btrfs_btree_balance_dirty(info->tree_root); 1275 cond_resched(); 1276 1277 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1278 break; 1279 1280 if (btrfs_defrag_cancelled(root->fs_info)) { 1281 pr_debug("BTRFS: defrag_root cancelled\n"); 1282 ret = -EAGAIN; 1283 break; 1284 } 1285 } 1286 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1287 return ret; 1288 } 1289 1290 /* 1291 * new snapshots need to be created at a very specific time in the 1292 * transaction commit. This does the actual creation. 1293 * 1294 * Note: 1295 * If the error which may affect the commitment of the current transaction 1296 * happens, we should return the error number. If the error which just affect 1297 * the creation of the pending snapshots, just return 0. 1298 */ 1299 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1300 struct btrfs_fs_info *fs_info, 1301 struct btrfs_pending_snapshot *pending) 1302 { 1303 struct btrfs_key key; 1304 struct btrfs_root_item *new_root_item; 1305 struct btrfs_root *tree_root = fs_info->tree_root; 1306 struct btrfs_root *root = pending->root; 1307 struct btrfs_root *parent_root; 1308 struct btrfs_block_rsv *rsv; 1309 struct inode *parent_inode; 1310 struct btrfs_path *path; 1311 struct btrfs_dir_item *dir_item; 1312 struct dentry *dentry; 1313 struct extent_buffer *tmp; 1314 struct extent_buffer *old; 1315 struct timespec cur_time = CURRENT_TIME; 1316 int ret = 0; 1317 u64 to_reserve = 0; 1318 u64 index = 0; 1319 u64 objectid; 1320 u64 root_flags; 1321 uuid_le new_uuid; 1322 1323 path = btrfs_alloc_path(); 1324 if (!path) { 1325 pending->error = -ENOMEM; 1326 return 0; 1327 } 1328 1329 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1330 if (!new_root_item) { 1331 pending->error = -ENOMEM; 1332 goto root_item_alloc_fail; 1333 } 1334 1335 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1336 if (pending->error) 1337 goto no_free_objectid; 1338 1339 /* 1340 * Make qgroup to skip current new snapshot's qgroupid, as it is 1341 * accounted by later btrfs_qgroup_inherit(). 1342 */ 1343 btrfs_set_skip_qgroup(trans, objectid); 1344 1345 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1346 1347 if (to_reserve > 0) { 1348 pending->error = btrfs_block_rsv_add(root, 1349 &pending->block_rsv, 1350 to_reserve, 1351 BTRFS_RESERVE_NO_FLUSH); 1352 if (pending->error) 1353 goto clear_skip_qgroup; 1354 } 1355 1356 key.objectid = objectid; 1357 key.offset = (u64)-1; 1358 key.type = BTRFS_ROOT_ITEM_KEY; 1359 1360 rsv = trans->block_rsv; 1361 trans->block_rsv = &pending->block_rsv; 1362 trans->bytes_reserved = trans->block_rsv->reserved; 1363 1364 dentry = pending->dentry; 1365 parent_inode = pending->dir; 1366 parent_root = BTRFS_I(parent_inode)->root; 1367 record_root_in_trans(trans, parent_root); 1368 1369 /* 1370 * insert the directory item 1371 */ 1372 ret = btrfs_set_inode_index(parent_inode, &index); 1373 BUG_ON(ret); /* -ENOMEM */ 1374 1375 /* check if there is a file/dir which has the same name. */ 1376 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1377 btrfs_ino(parent_inode), 1378 dentry->d_name.name, 1379 dentry->d_name.len, 0); 1380 if (dir_item != NULL && !IS_ERR(dir_item)) { 1381 pending->error = -EEXIST; 1382 goto dir_item_existed; 1383 } else if (IS_ERR(dir_item)) { 1384 ret = PTR_ERR(dir_item); 1385 btrfs_abort_transaction(trans, root, ret); 1386 goto fail; 1387 } 1388 btrfs_release_path(path); 1389 1390 /* 1391 * pull in the delayed directory update 1392 * and the delayed inode item 1393 * otherwise we corrupt the FS during 1394 * snapshot 1395 */ 1396 ret = btrfs_run_delayed_items(trans, root); 1397 if (ret) { /* Transaction aborted */ 1398 btrfs_abort_transaction(trans, root, ret); 1399 goto fail; 1400 } 1401 1402 record_root_in_trans(trans, root); 1403 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1404 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1405 btrfs_check_and_init_root_item(new_root_item); 1406 1407 root_flags = btrfs_root_flags(new_root_item); 1408 if (pending->readonly) 1409 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1410 else 1411 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1412 btrfs_set_root_flags(new_root_item, root_flags); 1413 1414 btrfs_set_root_generation_v2(new_root_item, 1415 trans->transid); 1416 uuid_le_gen(&new_uuid); 1417 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1418 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1419 BTRFS_UUID_SIZE); 1420 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1421 memset(new_root_item->received_uuid, 0, 1422 sizeof(new_root_item->received_uuid)); 1423 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1424 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1425 btrfs_set_root_stransid(new_root_item, 0); 1426 btrfs_set_root_rtransid(new_root_item, 0); 1427 } 1428 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1429 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1430 btrfs_set_root_otransid(new_root_item, trans->transid); 1431 1432 old = btrfs_lock_root_node(root); 1433 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1434 if (ret) { 1435 btrfs_tree_unlock(old); 1436 free_extent_buffer(old); 1437 btrfs_abort_transaction(trans, root, ret); 1438 goto fail; 1439 } 1440 1441 btrfs_set_lock_blocking(old); 1442 1443 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1444 /* clean up in any case */ 1445 btrfs_tree_unlock(old); 1446 free_extent_buffer(old); 1447 if (ret) { 1448 btrfs_abort_transaction(trans, root, ret); 1449 goto fail; 1450 } 1451 /* see comments in should_cow_block() */ 1452 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1453 smp_wmb(); 1454 1455 btrfs_set_root_node(new_root_item, tmp); 1456 /* record when the snapshot was created in key.offset */ 1457 key.offset = trans->transid; 1458 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1459 btrfs_tree_unlock(tmp); 1460 free_extent_buffer(tmp); 1461 if (ret) { 1462 btrfs_abort_transaction(trans, root, ret); 1463 goto fail; 1464 } 1465 1466 /* 1467 * insert root back/forward references 1468 */ 1469 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1470 parent_root->root_key.objectid, 1471 btrfs_ino(parent_inode), index, 1472 dentry->d_name.name, dentry->d_name.len); 1473 if (ret) { 1474 btrfs_abort_transaction(trans, root, ret); 1475 goto fail; 1476 } 1477 1478 key.offset = (u64)-1; 1479 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1480 if (IS_ERR(pending->snap)) { 1481 ret = PTR_ERR(pending->snap); 1482 btrfs_abort_transaction(trans, root, ret); 1483 goto fail; 1484 } 1485 1486 ret = btrfs_reloc_post_snapshot(trans, pending); 1487 if (ret) { 1488 btrfs_abort_transaction(trans, root, ret); 1489 goto fail; 1490 } 1491 1492 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1493 if (ret) { 1494 btrfs_abort_transaction(trans, root, ret); 1495 goto fail; 1496 } 1497 1498 ret = btrfs_insert_dir_item(trans, parent_root, 1499 dentry->d_name.name, dentry->d_name.len, 1500 parent_inode, &key, 1501 BTRFS_FT_DIR, index); 1502 /* We have check then name at the beginning, so it is impossible. */ 1503 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1504 if (ret) { 1505 btrfs_abort_transaction(trans, root, ret); 1506 goto fail; 1507 } 1508 1509 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1510 dentry->d_name.len * 2); 1511 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1512 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1513 if (ret) { 1514 btrfs_abort_transaction(trans, root, ret); 1515 goto fail; 1516 } 1517 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1518 BTRFS_UUID_KEY_SUBVOL, objectid); 1519 if (ret) { 1520 btrfs_abort_transaction(trans, root, ret); 1521 goto fail; 1522 } 1523 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1524 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1525 new_root_item->received_uuid, 1526 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1527 objectid); 1528 if (ret && ret != -EEXIST) { 1529 btrfs_abort_transaction(trans, root, ret); 1530 goto fail; 1531 } 1532 } 1533 1534 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1535 if (ret) { 1536 btrfs_abort_transaction(trans, root, ret); 1537 goto fail; 1538 } 1539 1540 /* 1541 * account qgroup counters before qgroup_inherit() 1542 */ 1543 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1544 if (ret) 1545 goto fail; 1546 ret = btrfs_qgroup_account_extents(trans, fs_info); 1547 if (ret) 1548 goto fail; 1549 ret = btrfs_qgroup_inherit(trans, fs_info, 1550 root->root_key.objectid, 1551 objectid, pending->inherit); 1552 if (ret) { 1553 btrfs_abort_transaction(trans, root, ret); 1554 goto fail; 1555 } 1556 1557 fail: 1558 pending->error = ret; 1559 dir_item_existed: 1560 trans->block_rsv = rsv; 1561 trans->bytes_reserved = 0; 1562 clear_skip_qgroup: 1563 btrfs_clear_skip_qgroup(trans); 1564 no_free_objectid: 1565 kfree(new_root_item); 1566 root_item_alloc_fail: 1567 btrfs_free_path(path); 1568 return ret; 1569 } 1570 1571 /* 1572 * create all the snapshots we've scheduled for creation 1573 */ 1574 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1575 struct btrfs_fs_info *fs_info) 1576 { 1577 struct btrfs_pending_snapshot *pending, *next; 1578 struct list_head *head = &trans->transaction->pending_snapshots; 1579 int ret = 0; 1580 1581 list_for_each_entry_safe(pending, next, head, list) { 1582 list_del(&pending->list); 1583 ret = create_pending_snapshot(trans, fs_info, pending); 1584 if (ret) 1585 break; 1586 } 1587 return ret; 1588 } 1589 1590 static void update_super_roots(struct btrfs_root *root) 1591 { 1592 struct btrfs_root_item *root_item; 1593 struct btrfs_super_block *super; 1594 1595 super = root->fs_info->super_copy; 1596 1597 root_item = &root->fs_info->chunk_root->root_item; 1598 super->chunk_root = root_item->bytenr; 1599 super->chunk_root_generation = root_item->generation; 1600 super->chunk_root_level = root_item->level; 1601 1602 root_item = &root->fs_info->tree_root->root_item; 1603 super->root = root_item->bytenr; 1604 super->generation = root_item->generation; 1605 super->root_level = root_item->level; 1606 if (btrfs_test_opt(root, SPACE_CACHE)) 1607 super->cache_generation = root_item->generation; 1608 if (root->fs_info->update_uuid_tree_gen) 1609 super->uuid_tree_generation = root_item->generation; 1610 } 1611 1612 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1613 { 1614 struct btrfs_transaction *trans; 1615 int ret = 0; 1616 1617 spin_lock(&info->trans_lock); 1618 trans = info->running_transaction; 1619 if (trans) 1620 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1621 spin_unlock(&info->trans_lock); 1622 return ret; 1623 } 1624 1625 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1626 { 1627 struct btrfs_transaction *trans; 1628 int ret = 0; 1629 1630 spin_lock(&info->trans_lock); 1631 trans = info->running_transaction; 1632 if (trans) 1633 ret = is_transaction_blocked(trans); 1634 spin_unlock(&info->trans_lock); 1635 return ret; 1636 } 1637 1638 /* 1639 * wait for the current transaction commit to start and block subsequent 1640 * transaction joins 1641 */ 1642 static void wait_current_trans_commit_start(struct btrfs_root *root, 1643 struct btrfs_transaction *trans) 1644 { 1645 wait_event(root->fs_info->transaction_blocked_wait, 1646 trans->state >= TRANS_STATE_COMMIT_START || 1647 trans->aborted); 1648 } 1649 1650 /* 1651 * wait for the current transaction to start and then become unblocked. 1652 * caller holds ref. 1653 */ 1654 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1655 struct btrfs_transaction *trans) 1656 { 1657 wait_event(root->fs_info->transaction_wait, 1658 trans->state >= TRANS_STATE_UNBLOCKED || 1659 trans->aborted); 1660 } 1661 1662 /* 1663 * commit transactions asynchronously. once btrfs_commit_transaction_async 1664 * returns, any subsequent transaction will not be allowed to join. 1665 */ 1666 struct btrfs_async_commit { 1667 struct btrfs_trans_handle *newtrans; 1668 struct btrfs_root *root; 1669 struct work_struct work; 1670 }; 1671 1672 static void do_async_commit(struct work_struct *work) 1673 { 1674 struct btrfs_async_commit *ac = 1675 container_of(work, struct btrfs_async_commit, work); 1676 1677 /* 1678 * We've got freeze protection passed with the transaction. 1679 * Tell lockdep about it. 1680 */ 1681 if (ac->newtrans->type & __TRANS_FREEZABLE) 1682 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1683 1684 current->journal_info = ac->newtrans; 1685 1686 btrfs_commit_transaction(ac->newtrans, ac->root); 1687 kfree(ac); 1688 } 1689 1690 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1691 struct btrfs_root *root, 1692 int wait_for_unblock) 1693 { 1694 struct btrfs_async_commit *ac; 1695 struct btrfs_transaction *cur_trans; 1696 1697 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1698 if (!ac) 1699 return -ENOMEM; 1700 1701 INIT_WORK(&ac->work, do_async_commit); 1702 ac->root = root; 1703 ac->newtrans = btrfs_join_transaction(root); 1704 if (IS_ERR(ac->newtrans)) { 1705 int err = PTR_ERR(ac->newtrans); 1706 kfree(ac); 1707 return err; 1708 } 1709 1710 /* take transaction reference */ 1711 cur_trans = trans->transaction; 1712 atomic_inc(&cur_trans->use_count); 1713 1714 btrfs_end_transaction(trans, root); 1715 1716 /* 1717 * Tell lockdep we've released the freeze rwsem, since the 1718 * async commit thread will be the one to unlock it. 1719 */ 1720 if (ac->newtrans->type & __TRANS_FREEZABLE) 1721 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1722 1723 schedule_work(&ac->work); 1724 1725 /* wait for transaction to start and unblock */ 1726 if (wait_for_unblock) 1727 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1728 else 1729 wait_current_trans_commit_start(root, cur_trans); 1730 1731 if (current->journal_info == trans) 1732 current->journal_info = NULL; 1733 1734 btrfs_put_transaction(cur_trans); 1735 return 0; 1736 } 1737 1738 1739 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1740 struct btrfs_root *root, int err) 1741 { 1742 struct btrfs_transaction *cur_trans = trans->transaction; 1743 DEFINE_WAIT(wait); 1744 1745 WARN_ON(trans->use_count > 1); 1746 1747 btrfs_abort_transaction(trans, root, err); 1748 1749 spin_lock(&root->fs_info->trans_lock); 1750 1751 /* 1752 * If the transaction is removed from the list, it means this 1753 * transaction has been committed successfully, so it is impossible 1754 * to call the cleanup function. 1755 */ 1756 BUG_ON(list_empty(&cur_trans->list)); 1757 1758 list_del_init(&cur_trans->list); 1759 if (cur_trans == root->fs_info->running_transaction) { 1760 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1761 spin_unlock(&root->fs_info->trans_lock); 1762 wait_event(cur_trans->writer_wait, 1763 atomic_read(&cur_trans->num_writers) == 1); 1764 1765 spin_lock(&root->fs_info->trans_lock); 1766 } 1767 spin_unlock(&root->fs_info->trans_lock); 1768 1769 btrfs_cleanup_one_transaction(trans->transaction, root); 1770 1771 spin_lock(&root->fs_info->trans_lock); 1772 if (cur_trans == root->fs_info->running_transaction) 1773 root->fs_info->running_transaction = NULL; 1774 spin_unlock(&root->fs_info->trans_lock); 1775 1776 if (trans->type & __TRANS_FREEZABLE) 1777 sb_end_intwrite(root->fs_info->sb); 1778 btrfs_put_transaction(cur_trans); 1779 btrfs_put_transaction(cur_trans); 1780 1781 trace_btrfs_transaction_commit(root); 1782 1783 if (current->journal_info == trans) 1784 current->journal_info = NULL; 1785 btrfs_scrub_cancel(root->fs_info); 1786 1787 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1788 } 1789 1790 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1791 { 1792 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1793 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1794 return 0; 1795 } 1796 1797 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1798 { 1799 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1800 btrfs_wait_ordered_roots(fs_info, -1); 1801 } 1802 1803 static inline void 1804 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1805 { 1806 wait_event(cur_trans->pending_wait, 1807 atomic_read(&cur_trans->pending_ordered) == 0); 1808 } 1809 1810 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1811 struct btrfs_root *root) 1812 { 1813 struct btrfs_transaction *cur_trans = trans->transaction; 1814 struct btrfs_transaction *prev_trans = NULL; 1815 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1816 int ret; 1817 1818 /* Stop the commit early if ->aborted is set */ 1819 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1820 ret = cur_trans->aborted; 1821 btrfs_end_transaction(trans, root); 1822 return ret; 1823 } 1824 1825 /* make a pass through all the delayed refs we have so far 1826 * any runnings procs may add more while we are here 1827 */ 1828 ret = btrfs_run_delayed_refs(trans, root, 0); 1829 if (ret) { 1830 btrfs_end_transaction(trans, root); 1831 return ret; 1832 } 1833 1834 btrfs_trans_release_metadata(trans, root); 1835 trans->block_rsv = NULL; 1836 1837 cur_trans = trans->transaction; 1838 1839 /* 1840 * set the flushing flag so procs in this transaction have to 1841 * start sending their work down. 1842 */ 1843 cur_trans->delayed_refs.flushing = 1; 1844 smp_wmb(); 1845 1846 if (!list_empty(&trans->new_bgs)) 1847 btrfs_create_pending_block_groups(trans, root); 1848 1849 ret = btrfs_run_delayed_refs(trans, root, 0); 1850 if (ret) { 1851 btrfs_end_transaction(trans, root); 1852 return ret; 1853 } 1854 1855 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1856 int run_it = 0; 1857 1858 /* this mutex is also taken before trying to set 1859 * block groups readonly. We need to make sure 1860 * that nobody has set a block group readonly 1861 * after a extents from that block group have been 1862 * allocated for cache files. btrfs_set_block_group_ro 1863 * will wait for the transaction to commit if it 1864 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1865 * 1866 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1867 * only one process starts all the block group IO. It wouldn't 1868 * hurt to have more than one go through, but there's no 1869 * real advantage to it either. 1870 */ 1871 mutex_lock(&root->fs_info->ro_block_group_mutex); 1872 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1873 &cur_trans->flags)) 1874 run_it = 1; 1875 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1876 1877 if (run_it) 1878 ret = btrfs_start_dirty_block_groups(trans, root); 1879 } 1880 if (ret) { 1881 btrfs_end_transaction(trans, root); 1882 return ret; 1883 } 1884 1885 spin_lock(&root->fs_info->trans_lock); 1886 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1887 spin_unlock(&root->fs_info->trans_lock); 1888 atomic_inc(&cur_trans->use_count); 1889 ret = btrfs_end_transaction(trans, root); 1890 1891 wait_for_commit(root, cur_trans); 1892 1893 if (unlikely(cur_trans->aborted)) 1894 ret = cur_trans->aborted; 1895 1896 btrfs_put_transaction(cur_trans); 1897 1898 return ret; 1899 } 1900 1901 cur_trans->state = TRANS_STATE_COMMIT_START; 1902 wake_up(&root->fs_info->transaction_blocked_wait); 1903 1904 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1905 prev_trans = list_entry(cur_trans->list.prev, 1906 struct btrfs_transaction, list); 1907 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1908 atomic_inc(&prev_trans->use_count); 1909 spin_unlock(&root->fs_info->trans_lock); 1910 1911 wait_for_commit(root, prev_trans); 1912 ret = prev_trans->aborted; 1913 1914 btrfs_put_transaction(prev_trans); 1915 if (ret) 1916 goto cleanup_transaction; 1917 } else { 1918 spin_unlock(&root->fs_info->trans_lock); 1919 } 1920 } else { 1921 spin_unlock(&root->fs_info->trans_lock); 1922 } 1923 1924 extwriter_counter_dec(cur_trans, trans->type); 1925 1926 ret = btrfs_start_delalloc_flush(root->fs_info); 1927 if (ret) 1928 goto cleanup_transaction; 1929 1930 ret = btrfs_run_delayed_items(trans, root); 1931 if (ret) 1932 goto cleanup_transaction; 1933 1934 wait_event(cur_trans->writer_wait, 1935 extwriter_counter_read(cur_trans) == 0); 1936 1937 /* some pending stuffs might be added after the previous flush. */ 1938 ret = btrfs_run_delayed_items(trans, root); 1939 if (ret) 1940 goto cleanup_transaction; 1941 1942 btrfs_wait_delalloc_flush(root->fs_info); 1943 1944 btrfs_wait_pending_ordered(cur_trans); 1945 1946 btrfs_scrub_pause(root); 1947 /* 1948 * Ok now we need to make sure to block out any other joins while we 1949 * commit the transaction. We could have started a join before setting 1950 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1951 */ 1952 spin_lock(&root->fs_info->trans_lock); 1953 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1954 spin_unlock(&root->fs_info->trans_lock); 1955 wait_event(cur_trans->writer_wait, 1956 atomic_read(&cur_trans->num_writers) == 1); 1957 1958 /* ->aborted might be set after the previous check, so check it */ 1959 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1960 ret = cur_trans->aborted; 1961 goto scrub_continue; 1962 } 1963 /* 1964 * the reloc mutex makes sure that we stop 1965 * the balancing code from coming in and moving 1966 * extents around in the middle of the commit 1967 */ 1968 mutex_lock(&root->fs_info->reloc_mutex); 1969 1970 /* 1971 * We needn't worry about the delayed items because we will 1972 * deal with them in create_pending_snapshot(), which is the 1973 * core function of the snapshot creation. 1974 */ 1975 ret = create_pending_snapshots(trans, root->fs_info); 1976 if (ret) { 1977 mutex_unlock(&root->fs_info->reloc_mutex); 1978 goto scrub_continue; 1979 } 1980 1981 /* 1982 * We insert the dir indexes of the snapshots and update the inode 1983 * of the snapshots' parents after the snapshot creation, so there 1984 * are some delayed items which are not dealt with. Now deal with 1985 * them. 1986 * 1987 * We needn't worry that this operation will corrupt the snapshots, 1988 * because all the tree which are snapshoted will be forced to COW 1989 * the nodes and leaves. 1990 */ 1991 ret = btrfs_run_delayed_items(trans, root); 1992 if (ret) { 1993 mutex_unlock(&root->fs_info->reloc_mutex); 1994 goto scrub_continue; 1995 } 1996 1997 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1998 if (ret) { 1999 mutex_unlock(&root->fs_info->reloc_mutex); 2000 goto scrub_continue; 2001 } 2002 2003 /* Reocrd old roots for later qgroup accounting */ 2004 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 2005 if (ret) { 2006 mutex_unlock(&root->fs_info->reloc_mutex); 2007 goto scrub_continue; 2008 } 2009 2010 /* 2011 * make sure none of the code above managed to slip in a 2012 * delayed item 2013 */ 2014 btrfs_assert_delayed_root_empty(root); 2015 2016 WARN_ON(cur_trans != trans->transaction); 2017 2018 /* btrfs_commit_tree_roots is responsible for getting the 2019 * various roots consistent with each other. Every pointer 2020 * in the tree of tree roots has to point to the most up to date 2021 * root for every subvolume and other tree. So, we have to keep 2022 * the tree logging code from jumping in and changing any 2023 * of the trees. 2024 * 2025 * At this point in the commit, there can't be any tree-log 2026 * writers, but a little lower down we drop the trans mutex 2027 * and let new people in. By holding the tree_log_mutex 2028 * from now until after the super is written, we avoid races 2029 * with the tree-log code. 2030 */ 2031 mutex_lock(&root->fs_info->tree_log_mutex); 2032 2033 ret = commit_fs_roots(trans, root); 2034 if (ret) { 2035 mutex_unlock(&root->fs_info->tree_log_mutex); 2036 mutex_unlock(&root->fs_info->reloc_mutex); 2037 goto scrub_continue; 2038 } 2039 2040 /* 2041 * Since the transaction is done, we can apply the pending changes 2042 * before the next transaction. 2043 */ 2044 btrfs_apply_pending_changes(root->fs_info); 2045 2046 /* commit_fs_roots gets rid of all the tree log roots, it is now 2047 * safe to free the root of tree log roots 2048 */ 2049 btrfs_free_log_root_tree(trans, root->fs_info); 2050 2051 /* 2052 * Since fs roots are all committed, we can get a quite accurate 2053 * new_roots. So let's do quota accounting. 2054 */ 2055 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2056 if (ret < 0) { 2057 mutex_unlock(&root->fs_info->tree_log_mutex); 2058 mutex_unlock(&root->fs_info->reloc_mutex); 2059 goto scrub_continue; 2060 } 2061 2062 ret = commit_cowonly_roots(trans, root); 2063 if (ret) { 2064 mutex_unlock(&root->fs_info->tree_log_mutex); 2065 mutex_unlock(&root->fs_info->reloc_mutex); 2066 goto scrub_continue; 2067 } 2068 2069 /* 2070 * The tasks which save the space cache and inode cache may also 2071 * update ->aborted, check it. 2072 */ 2073 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2074 ret = cur_trans->aborted; 2075 mutex_unlock(&root->fs_info->tree_log_mutex); 2076 mutex_unlock(&root->fs_info->reloc_mutex); 2077 goto scrub_continue; 2078 } 2079 2080 btrfs_prepare_extent_commit(trans, root); 2081 2082 cur_trans = root->fs_info->running_transaction; 2083 2084 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2085 root->fs_info->tree_root->node); 2086 list_add_tail(&root->fs_info->tree_root->dirty_list, 2087 &cur_trans->switch_commits); 2088 2089 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2090 root->fs_info->chunk_root->node); 2091 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2092 &cur_trans->switch_commits); 2093 2094 switch_commit_roots(cur_trans, root->fs_info); 2095 2096 assert_qgroups_uptodate(trans); 2097 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2098 ASSERT(list_empty(&cur_trans->io_bgs)); 2099 update_super_roots(root); 2100 2101 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2102 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2103 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2104 sizeof(*root->fs_info->super_copy)); 2105 2106 btrfs_update_commit_device_size(root->fs_info); 2107 btrfs_update_commit_device_bytes_used(root, cur_trans); 2108 2109 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2110 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2111 2112 btrfs_trans_release_chunk_metadata(trans); 2113 2114 spin_lock(&root->fs_info->trans_lock); 2115 cur_trans->state = TRANS_STATE_UNBLOCKED; 2116 root->fs_info->running_transaction = NULL; 2117 spin_unlock(&root->fs_info->trans_lock); 2118 mutex_unlock(&root->fs_info->reloc_mutex); 2119 2120 wake_up(&root->fs_info->transaction_wait); 2121 2122 ret = btrfs_write_and_wait_transaction(trans, root); 2123 if (ret) { 2124 btrfs_std_error(root->fs_info, ret, 2125 "Error while writing out transaction"); 2126 mutex_unlock(&root->fs_info->tree_log_mutex); 2127 goto scrub_continue; 2128 } 2129 2130 ret = write_ctree_super(trans, root, 0); 2131 if (ret) { 2132 mutex_unlock(&root->fs_info->tree_log_mutex); 2133 goto scrub_continue; 2134 } 2135 2136 /* 2137 * the super is written, we can safely allow the tree-loggers 2138 * to go about their business 2139 */ 2140 mutex_unlock(&root->fs_info->tree_log_mutex); 2141 2142 btrfs_finish_extent_commit(trans, root); 2143 2144 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2145 btrfs_clear_space_info_full(root->fs_info); 2146 2147 root->fs_info->last_trans_committed = cur_trans->transid; 2148 /* 2149 * We needn't acquire the lock here because there is no other task 2150 * which can change it. 2151 */ 2152 cur_trans->state = TRANS_STATE_COMPLETED; 2153 wake_up(&cur_trans->commit_wait); 2154 2155 spin_lock(&root->fs_info->trans_lock); 2156 list_del_init(&cur_trans->list); 2157 spin_unlock(&root->fs_info->trans_lock); 2158 2159 btrfs_put_transaction(cur_trans); 2160 btrfs_put_transaction(cur_trans); 2161 2162 if (trans->type & __TRANS_FREEZABLE) 2163 sb_end_intwrite(root->fs_info->sb); 2164 2165 trace_btrfs_transaction_commit(root); 2166 2167 btrfs_scrub_continue(root); 2168 2169 if (current->journal_info == trans) 2170 current->journal_info = NULL; 2171 2172 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2173 2174 if (current != root->fs_info->transaction_kthread && 2175 current != root->fs_info->cleaner_kthread) 2176 btrfs_run_delayed_iputs(root); 2177 2178 return ret; 2179 2180 scrub_continue: 2181 btrfs_scrub_continue(root); 2182 cleanup_transaction: 2183 btrfs_trans_release_metadata(trans, root); 2184 btrfs_trans_release_chunk_metadata(trans); 2185 trans->block_rsv = NULL; 2186 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2187 if (current->journal_info == trans) 2188 current->journal_info = NULL; 2189 cleanup_transaction(trans, root, ret); 2190 2191 return ret; 2192 } 2193 2194 /* 2195 * return < 0 if error 2196 * 0 if there are no more dead_roots at the time of call 2197 * 1 there are more to be processed, call me again 2198 * 2199 * The return value indicates there are certainly more snapshots to delete, but 2200 * if there comes a new one during processing, it may return 0. We don't mind, 2201 * because btrfs_commit_super will poke cleaner thread and it will process it a 2202 * few seconds later. 2203 */ 2204 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2205 { 2206 int ret; 2207 struct btrfs_fs_info *fs_info = root->fs_info; 2208 2209 spin_lock(&fs_info->trans_lock); 2210 if (list_empty(&fs_info->dead_roots)) { 2211 spin_unlock(&fs_info->trans_lock); 2212 return 0; 2213 } 2214 root = list_first_entry(&fs_info->dead_roots, 2215 struct btrfs_root, root_list); 2216 list_del_init(&root->root_list); 2217 spin_unlock(&fs_info->trans_lock); 2218 2219 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2220 2221 btrfs_kill_all_delayed_nodes(root); 2222 2223 if (btrfs_header_backref_rev(root->node) < 2224 BTRFS_MIXED_BACKREF_REV) 2225 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2226 else 2227 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2228 2229 return (ret < 0) ? 0 : 1; 2230 } 2231 2232 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2233 { 2234 unsigned long prev; 2235 unsigned long bit; 2236 2237 prev = xchg(&fs_info->pending_changes, 0); 2238 if (!prev) 2239 return; 2240 2241 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2242 if (prev & bit) 2243 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2244 prev &= ~bit; 2245 2246 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2247 if (prev & bit) 2248 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2249 prev &= ~bit; 2250 2251 bit = 1 << BTRFS_PENDING_COMMIT; 2252 if (prev & bit) 2253 btrfs_debug(fs_info, "pending commit done"); 2254 prev &= ~bit; 2255 2256 if (prev) 2257 btrfs_warn(fs_info, 2258 "unknown pending changes left 0x%lx, ignoring", prev); 2259 } 2260