xref: /openbmc/linux/fs/btrfs/transaction.c (revision def840ede34ea1fa47494c62fba06479af2abbc1)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 					 struct btrfs_fs_info *fs_info)
113 {
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		atomic_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 		return -EROFS;
229 	}
230 
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	atomic_set(&cur_trans->use_count, 2);
242 	atomic_set(&cur_trans->pending_ordered, 0);
243 	cur_trans->flags = 0;
244 	cur_trans->start_time = get_seconds();
245 
246 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 
248 	cur_trans->delayed_refs.href_root = RB_ROOT;
249 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251 
252 	/*
253 	 * although the tree mod log is per file system and not per transaction,
254 	 * the log must never go across transaction boundaries.
255 	 */
256 	smp_mb();
257 	if (!list_empty(&fs_info->tree_mod_seq_list))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 			"creating a fresh transaction\n");
260 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 			"creating a fresh transaction\n");
263 	atomic64_set(&fs_info->tree_mod_seq, 0);
264 
265 	spin_lock_init(&cur_trans->delayed_refs.lock);
266 
267 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 	INIT_LIST_HEAD(&cur_trans->switch_commits);
270 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 	INIT_LIST_HEAD(&cur_trans->io_bgs);
272 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 	mutex_init(&cur_trans->cache_write_mutex);
274 	cur_trans->num_dirty_bgs = 0;
275 	spin_lock_init(&cur_trans->dirty_bgs_lock);
276 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 	spin_lock_init(&cur_trans->deleted_bgs_lock);
278 	spin_lock_init(&cur_trans->dropped_roots_lock);
279 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 	extent_io_tree_init(&cur_trans->dirty_pages,
281 			     fs_info->btree_inode->i_mapping);
282 	fs_info->generation++;
283 	cur_trans->transid = fs_info->generation;
284 	fs_info->running_transaction = cur_trans;
285 	cur_trans->aborted = 0;
286 	spin_unlock(&fs_info->trans_lock);
287 
288 	return 0;
289 }
290 
291 /*
292  * this does all the record keeping required to make sure that a reference
293  * counted root is properly recorded in a given transaction.  This is required
294  * to make sure the old root from before we joined the transaction is deleted
295  * when the transaction commits
296  */
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 			       struct btrfs_root *root)
299 {
300 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 	    root->last_trans < trans->transid) {
302 		WARN_ON(root == root->fs_info->extent_root);
303 		WARN_ON(root->commit_root != root->node);
304 
305 		/*
306 		 * see below for IN_TRANS_SETUP usage rules
307 		 * we have the reloc mutex held now, so there
308 		 * is only one writer in this function
309 		 */
310 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311 
312 		/* make sure readers find IN_TRANS_SETUP before
313 		 * they find our root->last_trans update
314 		 */
315 		smp_wmb();
316 
317 		spin_lock(&root->fs_info->fs_roots_radix_lock);
318 		if (root->last_trans == trans->transid) {
319 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
320 			return 0;
321 		}
322 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
323 			   (unsigned long)root->root_key.objectid,
324 			   BTRFS_ROOT_TRANS_TAG);
325 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
326 		root->last_trans = trans->transid;
327 
328 		/* this is pretty tricky.  We don't want to
329 		 * take the relocation lock in btrfs_record_root_in_trans
330 		 * unless we're really doing the first setup for this root in
331 		 * this transaction.
332 		 *
333 		 * Normally we'd use root->last_trans as a flag to decide
334 		 * if we want to take the expensive mutex.
335 		 *
336 		 * But, we have to set root->last_trans before we
337 		 * init the relocation root, otherwise, we trip over warnings
338 		 * in ctree.c.  The solution used here is to flag ourselves
339 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
340 		 * fixing up the reloc trees and everyone must wait.
341 		 *
342 		 * When this is zero, they can trust root->last_trans and fly
343 		 * through btrfs_record_root_in_trans without having to take the
344 		 * lock.  smp_wmb() makes sure that all the writes above are
345 		 * done before we pop in the zero below
346 		 */
347 		btrfs_init_reloc_root(trans, root);
348 		smp_mb__before_atomic();
349 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 	}
351 	return 0;
352 }
353 
354 
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 			    struct btrfs_root *root)
357 {
358 	struct btrfs_transaction *cur_trans = trans->transaction;
359 
360 	/* Add ourselves to the transaction dropped list */
361 	spin_lock(&cur_trans->dropped_roots_lock);
362 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 	spin_unlock(&cur_trans->dropped_roots_lock);
364 
365 	/* Make sure we don't try to update the root at commit time */
366 	spin_lock(&root->fs_info->fs_roots_radix_lock);
367 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
368 			     (unsigned long)root->root_key.objectid,
369 			     BTRFS_ROOT_TRANS_TAG);
370 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
371 }
372 
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root)
375 {
376 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
377 		return 0;
378 
379 	/*
380 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
381 	 * and barriers
382 	 */
383 	smp_rmb();
384 	if (root->last_trans == trans->transid &&
385 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
386 		return 0;
387 
388 	mutex_lock(&root->fs_info->reloc_mutex);
389 	record_root_in_trans(trans, root);
390 	mutex_unlock(&root->fs_info->reloc_mutex);
391 
392 	return 0;
393 }
394 
395 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
396 {
397 	return (trans->state >= TRANS_STATE_BLOCKED &&
398 		trans->state < TRANS_STATE_UNBLOCKED &&
399 		!trans->aborted);
400 }
401 
402 /* wait for commit against the current transaction to become unblocked
403  * when this is done, it is safe to start a new transaction, but the current
404  * transaction might not be fully on disk.
405  */
406 static void wait_current_trans(struct btrfs_root *root)
407 {
408 	struct btrfs_transaction *cur_trans;
409 
410 	spin_lock(&root->fs_info->trans_lock);
411 	cur_trans = root->fs_info->running_transaction;
412 	if (cur_trans && is_transaction_blocked(cur_trans)) {
413 		atomic_inc(&cur_trans->use_count);
414 		spin_unlock(&root->fs_info->trans_lock);
415 
416 		wait_event(root->fs_info->transaction_wait,
417 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
418 			   cur_trans->aborted);
419 		btrfs_put_transaction(cur_trans);
420 	} else {
421 		spin_unlock(&root->fs_info->trans_lock);
422 	}
423 }
424 
425 static int may_wait_transaction(struct btrfs_root *root, int type)
426 {
427 	if (root->fs_info->log_root_recovering)
428 		return 0;
429 
430 	if (type == TRANS_USERSPACE)
431 		return 1;
432 
433 	if (type == TRANS_START &&
434 	    !atomic_read(&root->fs_info->open_ioctl_trans))
435 		return 1;
436 
437 	return 0;
438 }
439 
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 {
442 	if (!root->fs_info->reloc_ctl ||
443 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 	    root->reloc_root)
446 		return false;
447 
448 	return true;
449 }
450 
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
454 {
455 	struct btrfs_trans_handle *h;
456 	struct btrfs_transaction *cur_trans;
457 	u64 num_bytes = 0;
458 	u64 qgroup_reserved = 0;
459 	bool reloc_reserved = false;
460 	int ret;
461 
462 	/* Send isn't supposed to start transactions. */
463 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
464 
465 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
466 		return ERR_PTR(-EROFS);
467 
468 	if (current->journal_info) {
469 		WARN_ON(type & TRANS_EXTWRITERS);
470 		h = current->journal_info;
471 		h->use_count++;
472 		WARN_ON(h->use_count > 2);
473 		h->orig_rsv = h->block_rsv;
474 		h->block_rsv = NULL;
475 		goto got_it;
476 	}
477 
478 	/*
479 	 * Do the reservation before we join the transaction so we can do all
480 	 * the appropriate flushing if need be.
481 	 */
482 	if (num_items > 0 && root != root->fs_info->chunk_root) {
483 		qgroup_reserved = num_items * root->nodesize;
484 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
485 		if (ret)
486 			return ERR_PTR(ret);
487 
488 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
489 		/*
490 		 * Do the reservation for the relocation root creation
491 		 */
492 		if (need_reserve_reloc_root(root)) {
493 			num_bytes += root->nodesize;
494 			reloc_reserved = true;
495 		}
496 
497 		ret = btrfs_block_rsv_add(root,
498 					  &root->fs_info->trans_block_rsv,
499 					  num_bytes, flush);
500 		if (ret)
501 			goto reserve_fail;
502 	}
503 again:
504 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
505 	if (!h) {
506 		ret = -ENOMEM;
507 		goto alloc_fail;
508 	}
509 
510 	/*
511 	 * If we are JOIN_NOLOCK we're already committing a transaction and
512 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 	 * because we're already holding a ref.  We need this because we could
514 	 * have raced in and did an fsync() on a file which can kick a commit
515 	 * and then we deadlock with somebody doing a freeze.
516 	 *
517 	 * If we are ATTACH, it means we just want to catch the current
518 	 * transaction and commit it, so we needn't do sb_start_intwrite().
519 	 */
520 	if (type & __TRANS_FREEZABLE)
521 		sb_start_intwrite(root->fs_info->sb);
522 
523 	if (may_wait_transaction(root, type))
524 		wait_current_trans(root);
525 
526 	do {
527 		ret = join_transaction(root, type);
528 		if (ret == -EBUSY) {
529 			wait_current_trans(root);
530 			if (unlikely(type == TRANS_ATTACH))
531 				ret = -ENOENT;
532 		}
533 	} while (ret == -EBUSY);
534 
535 	if (ret < 0) {
536 		/* We must get the transaction if we are JOIN_NOLOCK. */
537 		BUG_ON(type == TRANS_JOIN_NOLOCK);
538 		goto join_fail;
539 	}
540 
541 	cur_trans = root->fs_info->running_transaction;
542 
543 	h->transid = cur_trans->transid;
544 	h->transaction = cur_trans;
545 	h->root = root;
546 	h->use_count = 1;
547 
548 	h->type = type;
549 	h->can_flush_pending_bgs = true;
550 	INIT_LIST_HEAD(&h->qgroup_ref_list);
551 	INIT_LIST_HEAD(&h->new_bgs);
552 
553 	smp_mb();
554 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
555 	    may_wait_transaction(root, type)) {
556 		current->journal_info = h;
557 		btrfs_commit_transaction(h, root);
558 		goto again;
559 	}
560 
561 	if (num_bytes) {
562 		trace_btrfs_space_reservation(root->fs_info, "transaction",
563 					      h->transid, num_bytes, 1);
564 		h->block_rsv = &root->fs_info->trans_block_rsv;
565 		h->bytes_reserved = num_bytes;
566 		h->reloc_reserved = reloc_reserved;
567 	}
568 
569 got_it:
570 	btrfs_record_root_in_trans(h, root);
571 
572 	if (!current->journal_info && type != TRANS_USERSPACE)
573 		current->journal_info = h;
574 	return h;
575 
576 join_fail:
577 	if (type & __TRANS_FREEZABLE)
578 		sb_end_intwrite(root->fs_info->sb);
579 	kmem_cache_free(btrfs_trans_handle_cachep, h);
580 alloc_fail:
581 	if (num_bytes)
582 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
583 					num_bytes);
584 reserve_fail:
585 	btrfs_qgroup_free_meta(root, qgroup_reserved);
586 	return ERR_PTR(ret);
587 }
588 
589 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
590 						   unsigned int num_items)
591 {
592 	return start_transaction(root, num_items, TRANS_START,
593 				 BTRFS_RESERVE_FLUSH_ALL);
594 }
595 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
596 					struct btrfs_root *root,
597 					unsigned int num_items,
598 					int min_factor)
599 {
600 	struct btrfs_trans_handle *trans;
601 	u64 num_bytes;
602 	int ret;
603 
604 	trans = btrfs_start_transaction(root, num_items);
605 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
606 		return trans;
607 
608 	trans = btrfs_start_transaction(root, 0);
609 	if (IS_ERR(trans))
610 		return trans;
611 
612 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
613 	ret = btrfs_cond_migrate_bytes(root->fs_info,
614 				       &root->fs_info->trans_block_rsv,
615 				       num_bytes,
616 				       min_factor);
617 	if (ret) {
618 		btrfs_end_transaction(trans, root);
619 		return ERR_PTR(ret);
620 	}
621 
622 	trans->block_rsv = &root->fs_info->trans_block_rsv;
623 	trans->bytes_reserved = num_bytes;
624 
625 	return trans;
626 }
627 
628 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
629 					struct btrfs_root *root,
630 					unsigned int num_items)
631 {
632 	return start_transaction(root, num_items, TRANS_START,
633 				 BTRFS_RESERVE_FLUSH_LIMIT);
634 }
635 
636 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
637 {
638 	return start_transaction(root, 0, TRANS_JOIN, 0);
639 }
640 
641 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
642 {
643 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
644 }
645 
646 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
647 {
648 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
649 }
650 
651 /*
652  * btrfs_attach_transaction() - catch the running transaction
653  *
654  * It is used when we want to commit the current the transaction, but
655  * don't want to start a new one.
656  *
657  * Note: If this function return -ENOENT, it just means there is no
658  * running transaction. But it is possible that the inactive transaction
659  * is still in the memory, not fully on disk. If you hope there is no
660  * inactive transaction in the fs when -ENOENT is returned, you should
661  * invoke
662  *     btrfs_attach_transaction_barrier()
663  */
664 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
665 {
666 	return start_transaction(root, 0, TRANS_ATTACH, 0);
667 }
668 
669 /*
670  * btrfs_attach_transaction_barrier() - catch the running transaction
671  *
672  * It is similar to the above function, the differentia is this one
673  * will wait for all the inactive transactions until they fully
674  * complete.
675  */
676 struct btrfs_trans_handle *
677 btrfs_attach_transaction_barrier(struct btrfs_root *root)
678 {
679 	struct btrfs_trans_handle *trans;
680 
681 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
682 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
683 		btrfs_wait_for_commit(root, 0);
684 
685 	return trans;
686 }
687 
688 /* wait for a transaction commit to be fully complete */
689 static noinline void wait_for_commit(struct btrfs_root *root,
690 				    struct btrfs_transaction *commit)
691 {
692 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
693 }
694 
695 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
696 {
697 	struct btrfs_transaction *cur_trans = NULL, *t;
698 	int ret = 0;
699 
700 	if (transid) {
701 		if (transid <= root->fs_info->last_trans_committed)
702 			goto out;
703 
704 		/* find specified transaction */
705 		spin_lock(&root->fs_info->trans_lock);
706 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
707 			if (t->transid == transid) {
708 				cur_trans = t;
709 				atomic_inc(&cur_trans->use_count);
710 				ret = 0;
711 				break;
712 			}
713 			if (t->transid > transid) {
714 				ret = 0;
715 				break;
716 			}
717 		}
718 		spin_unlock(&root->fs_info->trans_lock);
719 
720 		/*
721 		 * The specified transaction doesn't exist, or we
722 		 * raced with btrfs_commit_transaction
723 		 */
724 		if (!cur_trans) {
725 			if (transid > root->fs_info->last_trans_committed)
726 				ret = -EINVAL;
727 			goto out;
728 		}
729 	} else {
730 		/* find newest transaction that is committing | committed */
731 		spin_lock(&root->fs_info->trans_lock);
732 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
733 					    list) {
734 			if (t->state >= TRANS_STATE_COMMIT_START) {
735 				if (t->state == TRANS_STATE_COMPLETED)
736 					break;
737 				cur_trans = t;
738 				atomic_inc(&cur_trans->use_count);
739 				break;
740 			}
741 		}
742 		spin_unlock(&root->fs_info->trans_lock);
743 		if (!cur_trans)
744 			goto out;  /* nothing committing|committed */
745 	}
746 
747 	wait_for_commit(root, cur_trans);
748 	btrfs_put_transaction(cur_trans);
749 out:
750 	return ret;
751 }
752 
753 void btrfs_throttle(struct btrfs_root *root)
754 {
755 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
756 		wait_current_trans(root);
757 }
758 
759 static int should_end_transaction(struct btrfs_trans_handle *trans,
760 				  struct btrfs_root *root)
761 {
762 	if (root->fs_info->global_block_rsv.space_info->full &&
763 	    btrfs_check_space_for_delayed_refs(trans, root))
764 		return 1;
765 
766 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
767 }
768 
769 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
770 				 struct btrfs_root *root)
771 {
772 	struct btrfs_transaction *cur_trans = trans->transaction;
773 	int updates;
774 	int err;
775 
776 	smp_mb();
777 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
778 	    cur_trans->delayed_refs.flushing)
779 		return 1;
780 
781 	updates = trans->delayed_ref_updates;
782 	trans->delayed_ref_updates = 0;
783 	if (updates) {
784 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
785 		if (err) /* Error code will also eval true */
786 			return err;
787 	}
788 
789 	return should_end_transaction(trans, root);
790 }
791 
792 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
793 			  struct btrfs_root *root, int throttle)
794 {
795 	struct btrfs_transaction *cur_trans = trans->transaction;
796 	struct btrfs_fs_info *info = root->fs_info;
797 	unsigned long cur = trans->delayed_ref_updates;
798 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
799 	int err = 0;
800 	int must_run_delayed_refs = 0;
801 
802 	if (trans->use_count > 1) {
803 		trans->use_count--;
804 		trans->block_rsv = trans->orig_rsv;
805 		return 0;
806 	}
807 
808 	btrfs_trans_release_metadata(trans, root);
809 	trans->block_rsv = NULL;
810 
811 	if (!list_empty(&trans->new_bgs))
812 		btrfs_create_pending_block_groups(trans, root);
813 
814 	trans->delayed_ref_updates = 0;
815 	if (!trans->sync) {
816 		must_run_delayed_refs =
817 			btrfs_should_throttle_delayed_refs(trans, root);
818 		cur = max_t(unsigned long, cur, 32);
819 
820 		/*
821 		 * don't make the caller wait if they are from a NOLOCK
822 		 * or ATTACH transaction, it will deadlock with commit
823 		 */
824 		if (must_run_delayed_refs == 1 &&
825 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
826 			must_run_delayed_refs = 2;
827 	}
828 
829 	btrfs_trans_release_metadata(trans, root);
830 	trans->block_rsv = NULL;
831 
832 	if (!list_empty(&trans->new_bgs))
833 		btrfs_create_pending_block_groups(trans, root);
834 
835 	btrfs_trans_release_chunk_metadata(trans);
836 
837 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
838 	    should_end_transaction(trans, root) &&
839 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
840 		spin_lock(&info->trans_lock);
841 		if (cur_trans->state == TRANS_STATE_RUNNING)
842 			cur_trans->state = TRANS_STATE_BLOCKED;
843 		spin_unlock(&info->trans_lock);
844 	}
845 
846 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
847 		if (throttle)
848 			return btrfs_commit_transaction(trans, root);
849 		else
850 			wake_up_process(info->transaction_kthread);
851 	}
852 
853 	if (trans->type & __TRANS_FREEZABLE)
854 		sb_end_intwrite(root->fs_info->sb);
855 
856 	WARN_ON(cur_trans != info->running_transaction);
857 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
858 	atomic_dec(&cur_trans->num_writers);
859 	extwriter_counter_dec(cur_trans, trans->type);
860 
861 	/*
862 	 * Make sure counter is updated before we wake up waiters.
863 	 */
864 	smp_mb();
865 	if (waitqueue_active(&cur_trans->writer_wait))
866 		wake_up(&cur_trans->writer_wait);
867 	btrfs_put_transaction(cur_trans);
868 
869 	if (current->journal_info == trans)
870 		current->journal_info = NULL;
871 
872 	if (throttle)
873 		btrfs_run_delayed_iputs(root);
874 
875 	if (trans->aborted ||
876 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
877 		wake_up_process(info->transaction_kthread);
878 		err = -EIO;
879 	}
880 	assert_qgroups_uptodate(trans);
881 
882 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
883 	if (must_run_delayed_refs) {
884 		btrfs_async_run_delayed_refs(root, cur,
885 					     must_run_delayed_refs == 1);
886 	}
887 	return err;
888 }
889 
890 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
891 			  struct btrfs_root *root)
892 {
893 	return __btrfs_end_transaction(trans, root, 0);
894 }
895 
896 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
897 				   struct btrfs_root *root)
898 {
899 	return __btrfs_end_transaction(trans, root, 1);
900 }
901 
902 /*
903  * when btree blocks are allocated, they have some corresponding bits set for
904  * them in one of two extent_io trees.  This is used to make sure all of
905  * those extents are sent to disk but does not wait on them
906  */
907 int btrfs_write_marked_extents(struct btrfs_root *root,
908 			       struct extent_io_tree *dirty_pages, int mark)
909 {
910 	int err = 0;
911 	int werr = 0;
912 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
913 	struct extent_state *cached_state = NULL;
914 	u64 start = 0;
915 	u64 end;
916 
917 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
918 				      mark, &cached_state)) {
919 		bool wait_writeback = false;
920 
921 		err = convert_extent_bit(dirty_pages, start, end,
922 					 EXTENT_NEED_WAIT,
923 					 mark, &cached_state, GFP_NOFS);
924 		/*
925 		 * convert_extent_bit can return -ENOMEM, which is most of the
926 		 * time a temporary error. So when it happens, ignore the error
927 		 * and wait for writeback of this range to finish - because we
928 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
929 		 * to btrfs_wait_marked_extents() would not know that writeback
930 		 * for this range started and therefore wouldn't wait for it to
931 		 * finish - we don't want to commit a superblock that points to
932 		 * btree nodes/leafs for which writeback hasn't finished yet
933 		 * (and without errors).
934 		 * We cleanup any entries left in the io tree when committing
935 		 * the transaction (through clear_btree_io_tree()).
936 		 */
937 		if (err == -ENOMEM) {
938 			err = 0;
939 			wait_writeback = true;
940 		}
941 		if (!err)
942 			err = filemap_fdatawrite_range(mapping, start, end);
943 		if (err)
944 			werr = err;
945 		else if (wait_writeback)
946 			werr = filemap_fdatawait_range(mapping, start, end);
947 		free_extent_state(cached_state);
948 		cached_state = NULL;
949 		cond_resched();
950 		start = end + 1;
951 	}
952 	return werr;
953 }
954 
955 /*
956  * when btree blocks are allocated, they have some corresponding bits set for
957  * them in one of two extent_io trees.  This is used to make sure all of
958  * those extents are on disk for transaction or log commit.  We wait
959  * on all the pages and clear them from the dirty pages state tree
960  */
961 int btrfs_wait_marked_extents(struct btrfs_root *root,
962 			      struct extent_io_tree *dirty_pages, int mark)
963 {
964 	int err = 0;
965 	int werr = 0;
966 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
967 	struct extent_state *cached_state = NULL;
968 	u64 start = 0;
969 	u64 end;
970 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
971 	bool errors = false;
972 
973 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
974 				      EXTENT_NEED_WAIT, &cached_state)) {
975 		/*
976 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
977 		 * When committing the transaction, we'll remove any entries
978 		 * left in the io tree. For a log commit, we don't remove them
979 		 * after committing the log because the tree can be accessed
980 		 * concurrently - we do it only at transaction commit time when
981 		 * it's safe to do it (through clear_btree_io_tree()).
982 		 */
983 		err = clear_extent_bit(dirty_pages, start, end,
984 				       EXTENT_NEED_WAIT,
985 				       0, 0, &cached_state, GFP_NOFS);
986 		if (err == -ENOMEM)
987 			err = 0;
988 		if (!err)
989 			err = filemap_fdatawait_range(mapping, start, end);
990 		if (err)
991 			werr = err;
992 		free_extent_state(cached_state);
993 		cached_state = NULL;
994 		cond_resched();
995 		start = end + 1;
996 	}
997 	if (err)
998 		werr = err;
999 
1000 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1001 		if ((mark & EXTENT_DIRTY) &&
1002 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1003 				       &btree_ino->runtime_flags))
1004 			errors = true;
1005 
1006 		if ((mark & EXTENT_NEW) &&
1007 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1008 				       &btree_ino->runtime_flags))
1009 			errors = true;
1010 	} else {
1011 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1012 				       &btree_ino->runtime_flags))
1013 			errors = true;
1014 	}
1015 
1016 	if (errors && !werr)
1017 		werr = -EIO;
1018 
1019 	return werr;
1020 }
1021 
1022 /*
1023  * when btree blocks are allocated, they have some corresponding bits set for
1024  * them in one of two extent_io trees.  This is used to make sure all of
1025  * those extents are on disk for transaction or log commit
1026  */
1027 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1028 				struct extent_io_tree *dirty_pages, int mark)
1029 {
1030 	int ret;
1031 	int ret2;
1032 	struct blk_plug plug;
1033 
1034 	blk_start_plug(&plug);
1035 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1036 	blk_finish_plug(&plug);
1037 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1038 
1039 	if (ret)
1040 		return ret;
1041 	if (ret2)
1042 		return ret2;
1043 	return 0;
1044 }
1045 
1046 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1047 				     struct btrfs_root *root)
1048 {
1049 	int ret;
1050 
1051 	ret = btrfs_write_and_wait_marked_extents(root,
1052 					   &trans->transaction->dirty_pages,
1053 					   EXTENT_DIRTY);
1054 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1055 
1056 	return ret;
1057 }
1058 
1059 /*
1060  * this is used to update the root pointer in the tree of tree roots.
1061  *
1062  * But, in the case of the extent allocation tree, updating the root
1063  * pointer may allocate blocks which may change the root of the extent
1064  * allocation tree.
1065  *
1066  * So, this loops and repeats and makes sure the cowonly root didn't
1067  * change while the root pointer was being updated in the metadata.
1068  */
1069 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1070 			       struct btrfs_root *root)
1071 {
1072 	int ret;
1073 	u64 old_root_bytenr;
1074 	u64 old_root_used;
1075 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1076 
1077 	old_root_used = btrfs_root_used(&root->root_item);
1078 
1079 	while (1) {
1080 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1081 		if (old_root_bytenr == root->node->start &&
1082 		    old_root_used == btrfs_root_used(&root->root_item))
1083 			break;
1084 
1085 		btrfs_set_root_node(&root->root_item, root->node);
1086 		ret = btrfs_update_root(trans, tree_root,
1087 					&root->root_key,
1088 					&root->root_item);
1089 		if (ret)
1090 			return ret;
1091 
1092 		old_root_used = btrfs_root_used(&root->root_item);
1093 	}
1094 
1095 	return 0;
1096 }
1097 
1098 /*
1099  * update all the cowonly tree roots on disk
1100  *
1101  * The error handling in this function may not be obvious. Any of the
1102  * failures will cause the file system to go offline. We still need
1103  * to clean up the delayed refs.
1104  */
1105 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1106 					 struct btrfs_root *root)
1107 {
1108 	struct btrfs_fs_info *fs_info = root->fs_info;
1109 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1110 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1111 	struct list_head *next;
1112 	struct extent_buffer *eb;
1113 	int ret;
1114 
1115 	eb = btrfs_lock_root_node(fs_info->tree_root);
1116 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1117 			      0, &eb);
1118 	btrfs_tree_unlock(eb);
1119 	free_extent_buffer(eb);
1120 
1121 	if (ret)
1122 		return ret;
1123 
1124 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1125 	if (ret)
1126 		return ret;
1127 
1128 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1129 	if (ret)
1130 		return ret;
1131 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1132 	if (ret)
1133 		return ret;
1134 	ret = btrfs_run_qgroups(trans, root->fs_info);
1135 	if (ret)
1136 		return ret;
1137 
1138 	ret = btrfs_setup_space_cache(trans, root);
1139 	if (ret)
1140 		return ret;
1141 
1142 	/* run_qgroups might have added some more refs */
1143 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1144 	if (ret)
1145 		return ret;
1146 again:
1147 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1148 		next = fs_info->dirty_cowonly_roots.next;
1149 		list_del_init(next);
1150 		root = list_entry(next, struct btrfs_root, dirty_list);
1151 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1152 
1153 		if (root != fs_info->extent_root)
1154 			list_add_tail(&root->dirty_list,
1155 				      &trans->transaction->switch_commits);
1156 		ret = update_cowonly_root(trans, root);
1157 		if (ret)
1158 			return ret;
1159 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1160 		if (ret)
1161 			return ret;
1162 	}
1163 
1164 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1165 		ret = btrfs_write_dirty_block_groups(trans, root);
1166 		if (ret)
1167 			return ret;
1168 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1169 		if (ret)
1170 			return ret;
1171 	}
1172 
1173 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1174 		goto again;
1175 
1176 	list_add_tail(&fs_info->extent_root->dirty_list,
1177 		      &trans->transaction->switch_commits);
1178 	btrfs_after_dev_replace_commit(fs_info);
1179 
1180 	return 0;
1181 }
1182 
1183 /*
1184  * dead roots are old snapshots that need to be deleted.  This allocates
1185  * a dirty root struct and adds it into the list of dead roots that need to
1186  * be deleted
1187  */
1188 void btrfs_add_dead_root(struct btrfs_root *root)
1189 {
1190 	spin_lock(&root->fs_info->trans_lock);
1191 	if (list_empty(&root->root_list))
1192 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1193 	spin_unlock(&root->fs_info->trans_lock);
1194 }
1195 
1196 /*
1197  * update all the cowonly tree roots on disk
1198  */
1199 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1200 				    struct btrfs_root *root)
1201 {
1202 	struct btrfs_root *gang[8];
1203 	struct btrfs_fs_info *fs_info = root->fs_info;
1204 	int i;
1205 	int ret;
1206 	int err = 0;
1207 
1208 	spin_lock(&fs_info->fs_roots_radix_lock);
1209 	while (1) {
1210 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1211 						 (void **)gang, 0,
1212 						 ARRAY_SIZE(gang),
1213 						 BTRFS_ROOT_TRANS_TAG);
1214 		if (ret == 0)
1215 			break;
1216 		for (i = 0; i < ret; i++) {
1217 			root = gang[i];
1218 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1219 					(unsigned long)root->root_key.objectid,
1220 					BTRFS_ROOT_TRANS_TAG);
1221 			spin_unlock(&fs_info->fs_roots_radix_lock);
1222 
1223 			btrfs_free_log(trans, root);
1224 			btrfs_update_reloc_root(trans, root);
1225 			btrfs_orphan_commit_root(trans, root);
1226 
1227 			btrfs_save_ino_cache(root, trans);
1228 
1229 			/* see comments in should_cow_block() */
1230 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1231 			smp_mb__after_atomic();
1232 
1233 			if (root->commit_root != root->node) {
1234 				list_add_tail(&root->dirty_list,
1235 					&trans->transaction->switch_commits);
1236 				btrfs_set_root_node(&root->root_item,
1237 						    root->node);
1238 			}
1239 
1240 			err = btrfs_update_root(trans, fs_info->tree_root,
1241 						&root->root_key,
1242 						&root->root_item);
1243 			spin_lock(&fs_info->fs_roots_radix_lock);
1244 			if (err)
1245 				break;
1246 			btrfs_qgroup_free_meta_all(root);
1247 		}
1248 	}
1249 	spin_unlock(&fs_info->fs_roots_radix_lock);
1250 	return err;
1251 }
1252 
1253 /*
1254  * defrag a given btree.
1255  * Every leaf in the btree is read and defragged.
1256  */
1257 int btrfs_defrag_root(struct btrfs_root *root)
1258 {
1259 	struct btrfs_fs_info *info = root->fs_info;
1260 	struct btrfs_trans_handle *trans;
1261 	int ret;
1262 
1263 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1264 		return 0;
1265 
1266 	while (1) {
1267 		trans = btrfs_start_transaction(root, 0);
1268 		if (IS_ERR(trans))
1269 			return PTR_ERR(trans);
1270 
1271 		ret = btrfs_defrag_leaves(trans, root);
1272 
1273 		btrfs_end_transaction(trans, root);
1274 		btrfs_btree_balance_dirty(info->tree_root);
1275 		cond_resched();
1276 
1277 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1278 			break;
1279 
1280 		if (btrfs_defrag_cancelled(root->fs_info)) {
1281 			pr_debug("BTRFS: defrag_root cancelled\n");
1282 			ret = -EAGAIN;
1283 			break;
1284 		}
1285 	}
1286 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1287 	return ret;
1288 }
1289 
1290 /*
1291  * new snapshots need to be created at a very specific time in the
1292  * transaction commit.  This does the actual creation.
1293  *
1294  * Note:
1295  * If the error which may affect the commitment of the current transaction
1296  * happens, we should return the error number. If the error which just affect
1297  * the creation of the pending snapshots, just return 0.
1298  */
1299 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1300 				   struct btrfs_fs_info *fs_info,
1301 				   struct btrfs_pending_snapshot *pending)
1302 {
1303 	struct btrfs_key key;
1304 	struct btrfs_root_item *new_root_item;
1305 	struct btrfs_root *tree_root = fs_info->tree_root;
1306 	struct btrfs_root *root = pending->root;
1307 	struct btrfs_root *parent_root;
1308 	struct btrfs_block_rsv *rsv;
1309 	struct inode *parent_inode;
1310 	struct btrfs_path *path;
1311 	struct btrfs_dir_item *dir_item;
1312 	struct dentry *dentry;
1313 	struct extent_buffer *tmp;
1314 	struct extent_buffer *old;
1315 	struct timespec cur_time = CURRENT_TIME;
1316 	int ret = 0;
1317 	u64 to_reserve = 0;
1318 	u64 index = 0;
1319 	u64 objectid;
1320 	u64 root_flags;
1321 	uuid_le new_uuid;
1322 
1323 	path = btrfs_alloc_path();
1324 	if (!path) {
1325 		pending->error = -ENOMEM;
1326 		return 0;
1327 	}
1328 
1329 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1330 	if (!new_root_item) {
1331 		pending->error = -ENOMEM;
1332 		goto root_item_alloc_fail;
1333 	}
1334 
1335 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1336 	if (pending->error)
1337 		goto no_free_objectid;
1338 
1339 	/*
1340 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1341 	 * accounted by later btrfs_qgroup_inherit().
1342 	 */
1343 	btrfs_set_skip_qgroup(trans, objectid);
1344 
1345 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1346 
1347 	if (to_reserve > 0) {
1348 		pending->error = btrfs_block_rsv_add(root,
1349 						     &pending->block_rsv,
1350 						     to_reserve,
1351 						     BTRFS_RESERVE_NO_FLUSH);
1352 		if (pending->error)
1353 			goto clear_skip_qgroup;
1354 	}
1355 
1356 	key.objectid = objectid;
1357 	key.offset = (u64)-1;
1358 	key.type = BTRFS_ROOT_ITEM_KEY;
1359 
1360 	rsv = trans->block_rsv;
1361 	trans->block_rsv = &pending->block_rsv;
1362 	trans->bytes_reserved = trans->block_rsv->reserved;
1363 
1364 	dentry = pending->dentry;
1365 	parent_inode = pending->dir;
1366 	parent_root = BTRFS_I(parent_inode)->root;
1367 	record_root_in_trans(trans, parent_root);
1368 
1369 	/*
1370 	 * insert the directory item
1371 	 */
1372 	ret = btrfs_set_inode_index(parent_inode, &index);
1373 	BUG_ON(ret); /* -ENOMEM */
1374 
1375 	/* check if there is a file/dir which has the same name. */
1376 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1377 					 btrfs_ino(parent_inode),
1378 					 dentry->d_name.name,
1379 					 dentry->d_name.len, 0);
1380 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1381 		pending->error = -EEXIST;
1382 		goto dir_item_existed;
1383 	} else if (IS_ERR(dir_item)) {
1384 		ret = PTR_ERR(dir_item);
1385 		btrfs_abort_transaction(trans, root, ret);
1386 		goto fail;
1387 	}
1388 	btrfs_release_path(path);
1389 
1390 	/*
1391 	 * pull in the delayed directory update
1392 	 * and the delayed inode item
1393 	 * otherwise we corrupt the FS during
1394 	 * snapshot
1395 	 */
1396 	ret = btrfs_run_delayed_items(trans, root);
1397 	if (ret) {	/* Transaction aborted */
1398 		btrfs_abort_transaction(trans, root, ret);
1399 		goto fail;
1400 	}
1401 
1402 	record_root_in_trans(trans, root);
1403 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1404 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1405 	btrfs_check_and_init_root_item(new_root_item);
1406 
1407 	root_flags = btrfs_root_flags(new_root_item);
1408 	if (pending->readonly)
1409 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1410 	else
1411 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1412 	btrfs_set_root_flags(new_root_item, root_flags);
1413 
1414 	btrfs_set_root_generation_v2(new_root_item,
1415 			trans->transid);
1416 	uuid_le_gen(&new_uuid);
1417 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1418 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1419 			BTRFS_UUID_SIZE);
1420 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1421 		memset(new_root_item->received_uuid, 0,
1422 		       sizeof(new_root_item->received_uuid));
1423 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1424 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1425 		btrfs_set_root_stransid(new_root_item, 0);
1426 		btrfs_set_root_rtransid(new_root_item, 0);
1427 	}
1428 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1429 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1430 	btrfs_set_root_otransid(new_root_item, trans->transid);
1431 
1432 	old = btrfs_lock_root_node(root);
1433 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1434 	if (ret) {
1435 		btrfs_tree_unlock(old);
1436 		free_extent_buffer(old);
1437 		btrfs_abort_transaction(trans, root, ret);
1438 		goto fail;
1439 	}
1440 
1441 	btrfs_set_lock_blocking(old);
1442 
1443 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1444 	/* clean up in any case */
1445 	btrfs_tree_unlock(old);
1446 	free_extent_buffer(old);
1447 	if (ret) {
1448 		btrfs_abort_transaction(trans, root, ret);
1449 		goto fail;
1450 	}
1451 	/* see comments in should_cow_block() */
1452 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1453 	smp_wmb();
1454 
1455 	btrfs_set_root_node(new_root_item, tmp);
1456 	/* record when the snapshot was created in key.offset */
1457 	key.offset = trans->transid;
1458 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1459 	btrfs_tree_unlock(tmp);
1460 	free_extent_buffer(tmp);
1461 	if (ret) {
1462 		btrfs_abort_transaction(trans, root, ret);
1463 		goto fail;
1464 	}
1465 
1466 	/*
1467 	 * insert root back/forward references
1468 	 */
1469 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1470 				 parent_root->root_key.objectid,
1471 				 btrfs_ino(parent_inode), index,
1472 				 dentry->d_name.name, dentry->d_name.len);
1473 	if (ret) {
1474 		btrfs_abort_transaction(trans, root, ret);
1475 		goto fail;
1476 	}
1477 
1478 	key.offset = (u64)-1;
1479 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1480 	if (IS_ERR(pending->snap)) {
1481 		ret = PTR_ERR(pending->snap);
1482 		btrfs_abort_transaction(trans, root, ret);
1483 		goto fail;
1484 	}
1485 
1486 	ret = btrfs_reloc_post_snapshot(trans, pending);
1487 	if (ret) {
1488 		btrfs_abort_transaction(trans, root, ret);
1489 		goto fail;
1490 	}
1491 
1492 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1493 	if (ret) {
1494 		btrfs_abort_transaction(trans, root, ret);
1495 		goto fail;
1496 	}
1497 
1498 	ret = btrfs_insert_dir_item(trans, parent_root,
1499 				    dentry->d_name.name, dentry->d_name.len,
1500 				    parent_inode, &key,
1501 				    BTRFS_FT_DIR, index);
1502 	/* We have check then name at the beginning, so it is impossible. */
1503 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1504 	if (ret) {
1505 		btrfs_abort_transaction(trans, root, ret);
1506 		goto fail;
1507 	}
1508 
1509 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1510 					 dentry->d_name.len * 2);
1511 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1512 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1513 	if (ret) {
1514 		btrfs_abort_transaction(trans, root, ret);
1515 		goto fail;
1516 	}
1517 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1518 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1519 	if (ret) {
1520 		btrfs_abort_transaction(trans, root, ret);
1521 		goto fail;
1522 	}
1523 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1524 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1525 					  new_root_item->received_uuid,
1526 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1527 					  objectid);
1528 		if (ret && ret != -EEXIST) {
1529 			btrfs_abort_transaction(trans, root, ret);
1530 			goto fail;
1531 		}
1532 	}
1533 
1534 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1535 	if (ret) {
1536 		btrfs_abort_transaction(trans, root, ret);
1537 		goto fail;
1538 	}
1539 
1540 	/*
1541 	 * account qgroup counters before qgroup_inherit()
1542 	 */
1543 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1544 	if (ret)
1545 		goto fail;
1546 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1547 	if (ret)
1548 		goto fail;
1549 	ret = btrfs_qgroup_inherit(trans, fs_info,
1550 				   root->root_key.objectid,
1551 				   objectid, pending->inherit);
1552 	if (ret) {
1553 		btrfs_abort_transaction(trans, root, ret);
1554 		goto fail;
1555 	}
1556 
1557 fail:
1558 	pending->error = ret;
1559 dir_item_existed:
1560 	trans->block_rsv = rsv;
1561 	trans->bytes_reserved = 0;
1562 clear_skip_qgroup:
1563 	btrfs_clear_skip_qgroup(trans);
1564 no_free_objectid:
1565 	kfree(new_root_item);
1566 root_item_alloc_fail:
1567 	btrfs_free_path(path);
1568 	return ret;
1569 }
1570 
1571 /*
1572  * create all the snapshots we've scheduled for creation
1573  */
1574 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1575 					     struct btrfs_fs_info *fs_info)
1576 {
1577 	struct btrfs_pending_snapshot *pending, *next;
1578 	struct list_head *head = &trans->transaction->pending_snapshots;
1579 	int ret = 0;
1580 
1581 	list_for_each_entry_safe(pending, next, head, list) {
1582 		list_del(&pending->list);
1583 		ret = create_pending_snapshot(trans, fs_info, pending);
1584 		if (ret)
1585 			break;
1586 	}
1587 	return ret;
1588 }
1589 
1590 static void update_super_roots(struct btrfs_root *root)
1591 {
1592 	struct btrfs_root_item *root_item;
1593 	struct btrfs_super_block *super;
1594 
1595 	super = root->fs_info->super_copy;
1596 
1597 	root_item = &root->fs_info->chunk_root->root_item;
1598 	super->chunk_root = root_item->bytenr;
1599 	super->chunk_root_generation = root_item->generation;
1600 	super->chunk_root_level = root_item->level;
1601 
1602 	root_item = &root->fs_info->tree_root->root_item;
1603 	super->root = root_item->bytenr;
1604 	super->generation = root_item->generation;
1605 	super->root_level = root_item->level;
1606 	if (btrfs_test_opt(root, SPACE_CACHE))
1607 		super->cache_generation = root_item->generation;
1608 	if (root->fs_info->update_uuid_tree_gen)
1609 		super->uuid_tree_generation = root_item->generation;
1610 }
1611 
1612 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1613 {
1614 	struct btrfs_transaction *trans;
1615 	int ret = 0;
1616 
1617 	spin_lock(&info->trans_lock);
1618 	trans = info->running_transaction;
1619 	if (trans)
1620 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1621 	spin_unlock(&info->trans_lock);
1622 	return ret;
1623 }
1624 
1625 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1626 {
1627 	struct btrfs_transaction *trans;
1628 	int ret = 0;
1629 
1630 	spin_lock(&info->trans_lock);
1631 	trans = info->running_transaction;
1632 	if (trans)
1633 		ret = is_transaction_blocked(trans);
1634 	spin_unlock(&info->trans_lock);
1635 	return ret;
1636 }
1637 
1638 /*
1639  * wait for the current transaction commit to start and block subsequent
1640  * transaction joins
1641  */
1642 static void wait_current_trans_commit_start(struct btrfs_root *root,
1643 					    struct btrfs_transaction *trans)
1644 {
1645 	wait_event(root->fs_info->transaction_blocked_wait,
1646 		   trans->state >= TRANS_STATE_COMMIT_START ||
1647 		   trans->aborted);
1648 }
1649 
1650 /*
1651  * wait for the current transaction to start and then become unblocked.
1652  * caller holds ref.
1653  */
1654 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1655 					 struct btrfs_transaction *trans)
1656 {
1657 	wait_event(root->fs_info->transaction_wait,
1658 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1659 		   trans->aborted);
1660 }
1661 
1662 /*
1663  * commit transactions asynchronously. once btrfs_commit_transaction_async
1664  * returns, any subsequent transaction will not be allowed to join.
1665  */
1666 struct btrfs_async_commit {
1667 	struct btrfs_trans_handle *newtrans;
1668 	struct btrfs_root *root;
1669 	struct work_struct work;
1670 };
1671 
1672 static void do_async_commit(struct work_struct *work)
1673 {
1674 	struct btrfs_async_commit *ac =
1675 		container_of(work, struct btrfs_async_commit, work);
1676 
1677 	/*
1678 	 * We've got freeze protection passed with the transaction.
1679 	 * Tell lockdep about it.
1680 	 */
1681 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1682 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1683 
1684 	current->journal_info = ac->newtrans;
1685 
1686 	btrfs_commit_transaction(ac->newtrans, ac->root);
1687 	kfree(ac);
1688 }
1689 
1690 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1691 				   struct btrfs_root *root,
1692 				   int wait_for_unblock)
1693 {
1694 	struct btrfs_async_commit *ac;
1695 	struct btrfs_transaction *cur_trans;
1696 
1697 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1698 	if (!ac)
1699 		return -ENOMEM;
1700 
1701 	INIT_WORK(&ac->work, do_async_commit);
1702 	ac->root = root;
1703 	ac->newtrans = btrfs_join_transaction(root);
1704 	if (IS_ERR(ac->newtrans)) {
1705 		int err = PTR_ERR(ac->newtrans);
1706 		kfree(ac);
1707 		return err;
1708 	}
1709 
1710 	/* take transaction reference */
1711 	cur_trans = trans->transaction;
1712 	atomic_inc(&cur_trans->use_count);
1713 
1714 	btrfs_end_transaction(trans, root);
1715 
1716 	/*
1717 	 * Tell lockdep we've released the freeze rwsem, since the
1718 	 * async commit thread will be the one to unlock it.
1719 	 */
1720 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1721 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1722 
1723 	schedule_work(&ac->work);
1724 
1725 	/* wait for transaction to start and unblock */
1726 	if (wait_for_unblock)
1727 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1728 	else
1729 		wait_current_trans_commit_start(root, cur_trans);
1730 
1731 	if (current->journal_info == trans)
1732 		current->journal_info = NULL;
1733 
1734 	btrfs_put_transaction(cur_trans);
1735 	return 0;
1736 }
1737 
1738 
1739 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1740 				struct btrfs_root *root, int err)
1741 {
1742 	struct btrfs_transaction *cur_trans = trans->transaction;
1743 	DEFINE_WAIT(wait);
1744 
1745 	WARN_ON(trans->use_count > 1);
1746 
1747 	btrfs_abort_transaction(trans, root, err);
1748 
1749 	spin_lock(&root->fs_info->trans_lock);
1750 
1751 	/*
1752 	 * If the transaction is removed from the list, it means this
1753 	 * transaction has been committed successfully, so it is impossible
1754 	 * to call the cleanup function.
1755 	 */
1756 	BUG_ON(list_empty(&cur_trans->list));
1757 
1758 	list_del_init(&cur_trans->list);
1759 	if (cur_trans == root->fs_info->running_transaction) {
1760 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1761 		spin_unlock(&root->fs_info->trans_lock);
1762 		wait_event(cur_trans->writer_wait,
1763 			   atomic_read(&cur_trans->num_writers) == 1);
1764 
1765 		spin_lock(&root->fs_info->trans_lock);
1766 	}
1767 	spin_unlock(&root->fs_info->trans_lock);
1768 
1769 	btrfs_cleanup_one_transaction(trans->transaction, root);
1770 
1771 	spin_lock(&root->fs_info->trans_lock);
1772 	if (cur_trans == root->fs_info->running_transaction)
1773 		root->fs_info->running_transaction = NULL;
1774 	spin_unlock(&root->fs_info->trans_lock);
1775 
1776 	if (trans->type & __TRANS_FREEZABLE)
1777 		sb_end_intwrite(root->fs_info->sb);
1778 	btrfs_put_transaction(cur_trans);
1779 	btrfs_put_transaction(cur_trans);
1780 
1781 	trace_btrfs_transaction_commit(root);
1782 
1783 	if (current->journal_info == trans)
1784 		current->journal_info = NULL;
1785 	btrfs_scrub_cancel(root->fs_info);
1786 
1787 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1788 }
1789 
1790 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1791 {
1792 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1793 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1794 	return 0;
1795 }
1796 
1797 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1798 {
1799 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1800 		btrfs_wait_ordered_roots(fs_info, -1);
1801 }
1802 
1803 static inline void
1804 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1805 {
1806 	wait_event(cur_trans->pending_wait,
1807 		   atomic_read(&cur_trans->pending_ordered) == 0);
1808 }
1809 
1810 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1811 			     struct btrfs_root *root)
1812 {
1813 	struct btrfs_transaction *cur_trans = trans->transaction;
1814 	struct btrfs_transaction *prev_trans = NULL;
1815 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1816 	int ret;
1817 
1818 	/* Stop the commit early if ->aborted is set */
1819 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1820 		ret = cur_trans->aborted;
1821 		btrfs_end_transaction(trans, root);
1822 		return ret;
1823 	}
1824 
1825 	/* make a pass through all the delayed refs we have so far
1826 	 * any runnings procs may add more while we are here
1827 	 */
1828 	ret = btrfs_run_delayed_refs(trans, root, 0);
1829 	if (ret) {
1830 		btrfs_end_transaction(trans, root);
1831 		return ret;
1832 	}
1833 
1834 	btrfs_trans_release_metadata(trans, root);
1835 	trans->block_rsv = NULL;
1836 
1837 	cur_trans = trans->transaction;
1838 
1839 	/*
1840 	 * set the flushing flag so procs in this transaction have to
1841 	 * start sending their work down.
1842 	 */
1843 	cur_trans->delayed_refs.flushing = 1;
1844 	smp_wmb();
1845 
1846 	if (!list_empty(&trans->new_bgs))
1847 		btrfs_create_pending_block_groups(trans, root);
1848 
1849 	ret = btrfs_run_delayed_refs(trans, root, 0);
1850 	if (ret) {
1851 		btrfs_end_transaction(trans, root);
1852 		return ret;
1853 	}
1854 
1855 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1856 		int run_it = 0;
1857 
1858 		/* this mutex is also taken before trying to set
1859 		 * block groups readonly.  We need to make sure
1860 		 * that nobody has set a block group readonly
1861 		 * after a extents from that block group have been
1862 		 * allocated for cache files.  btrfs_set_block_group_ro
1863 		 * will wait for the transaction to commit if it
1864 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1865 		 *
1866 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1867 		 * only one process starts all the block group IO.  It wouldn't
1868 		 * hurt to have more than one go through, but there's no
1869 		 * real advantage to it either.
1870 		 */
1871 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1872 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1873 				      &cur_trans->flags))
1874 			run_it = 1;
1875 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1876 
1877 		if (run_it)
1878 			ret = btrfs_start_dirty_block_groups(trans, root);
1879 	}
1880 	if (ret) {
1881 		btrfs_end_transaction(trans, root);
1882 		return ret;
1883 	}
1884 
1885 	spin_lock(&root->fs_info->trans_lock);
1886 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1887 		spin_unlock(&root->fs_info->trans_lock);
1888 		atomic_inc(&cur_trans->use_count);
1889 		ret = btrfs_end_transaction(trans, root);
1890 
1891 		wait_for_commit(root, cur_trans);
1892 
1893 		if (unlikely(cur_trans->aborted))
1894 			ret = cur_trans->aborted;
1895 
1896 		btrfs_put_transaction(cur_trans);
1897 
1898 		return ret;
1899 	}
1900 
1901 	cur_trans->state = TRANS_STATE_COMMIT_START;
1902 	wake_up(&root->fs_info->transaction_blocked_wait);
1903 
1904 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1905 		prev_trans = list_entry(cur_trans->list.prev,
1906 					struct btrfs_transaction, list);
1907 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1908 			atomic_inc(&prev_trans->use_count);
1909 			spin_unlock(&root->fs_info->trans_lock);
1910 
1911 			wait_for_commit(root, prev_trans);
1912 			ret = prev_trans->aborted;
1913 
1914 			btrfs_put_transaction(prev_trans);
1915 			if (ret)
1916 				goto cleanup_transaction;
1917 		} else {
1918 			spin_unlock(&root->fs_info->trans_lock);
1919 		}
1920 	} else {
1921 		spin_unlock(&root->fs_info->trans_lock);
1922 	}
1923 
1924 	extwriter_counter_dec(cur_trans, trans->type);
1925 
1926 	ret = btrfs_start_delalloc_flush(root->fs_info);
1927 	if (ret)
1928 		goto cleanup_transaction;
1929 
1930 	ret = btrfs_run_delayed_items(trans, root);
1931 	if (ret)
1932 		goto cleanup_transaction;
1933 
1934 	wait_event(cur_trans->writer_wait,
1935 		   extwriter_counter_read(cur_trans) == 0);
1936 
1937 	/* some pending stuffs might be added after the previous flush. */
1938 	ret = btrfs_run_delayed_items(trans, root);
1939 	if (ret)
1940 		goto cleanup_transaction;
1941 
1942 	btrfs_wait_delalloc_flush(root->fs_info);
1943 
1944 	btrfs_wait_pending_ordered(cur_trans);
1945 
1946 	btrfs_scrub_pause(root);
1947 	/*
1948 	 * Ok now we need to make sure to block out any other joins while we
1949 	 * commit the transaction.  We could have started a join before setting
1950 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1951 	 */
1952 	spin_lock(&root->fs_info->trans_lock);
1953 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1954 	spin_unlock(&root->fs_info->trans_lock);
1955 	wait_event(cur_trans->writer_wait,
1956 		   atomic_read(&cur_trans->num_writers) == 1);
1957 
1958 	/* ->aborted might be set after the previous check, so check it */
1959 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1960 		ret = cur_trans->aborted;
1961 		goto scrub_continue;
1962 	}
1963 	/*
1964 	 * the reloc mutex makes sure that we stop
1965 	 * the balancing code from coming in and moving
1966 	 * extents around in the middle of the commit
1967 	 */
1968 	mutex_lock(&root->fs_info->reloc_mutex);
1969 
1970 	/*
1971 	 * We needn't worry about the delayed items because we will
1972 	 * deal with them in create_pending_snapshot(), which is the
1973 	 * core function of the snapshot creation.
1974 	 */
1975 	ret = create_pending_snapshots(trans, root->fs_info);
1976 	if (ret) {
1977 		mutex_unlock(&root->fs_info->reloc_mutex);
1978 		goto scrub_continue;
1979 	}
1980 
1981 	/*
1982 	 * We insert the dir indexes of the snapshots and update the inode
1983 	 * of the snapshots' parents after the snapshot creation, so there
1984 	 * are some delayed items which are not dealt with. Now deal with
1985 	 * them.
1986 	 *
1987 	 * We needn't worry that this operation will corrupt the snapshots,
1988 	 * because all the tree which are snapshoted will be forced to COW
1989 	 * the nodes and leaves.
1990 	 */
1991 	ret = btrfs_run_delayed_items(trans, root);
1992 	if (ret) {
1993 		mutex_unlock(&root->fs_info->reloc_mutex);
1994 		goto scrub_continue;
1995 	}
1996 
1997 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1998 	if (ret) {
1999 		mutex_unlock(&root->fs_info->reloc_mutex);
2000 		goto scrub_continue;
2001 	}
2002 
2003 	/* Reocrd old roots for later qgroup accounting */
2004 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2005 	if (ret) {
2006 		mutex_unlock(&root->fs_info->reloc_mutex);
2007 		goto scrub_continue;
2008 	}
2009 
2010 	/*
2011 	 * make sure none of the code above managed to slip in a
2012 	 * delayed item
2013 	 */
2014 	btrfs_assert_delayed_root_empty(root);
2015 
2016 	WARN_ON(cur_trans != trans->transaction);
2017 
2018 	/* btrfs_commit_tree_roots is responsible for getting the
2019 	 * various roots consistent with each other.  Every pointer
2020 	 * in the tree of tree roots has to point to the most up to date
2021 	 * root for every subvolume and other tree.  So, we have to keep
2022 	 * the tree logging code from jumping in and changing any
2023 	 * of the trees.
2024 	 *
2025 	 * At this point in the commit, there can't be any tree-log
2026 	 * writers, but a little lower down we drop the trans mutex
2027 	 * and let new people in.  By holding the tree_log_mutex
2028 	 * from now until after the super is written, we avoid races
2029 	 * with the tree-log code.
2030 	 */
2031 	mutex_lock(&root->fs_info->tree_log_mutex);
2032 
2033 	ret = commit_fs_roots(trans, root);
2034 	if (ret) {
2035 		mutex_unlock(&root->fs_info->tree_log_mutex);
2036 		mutex_unlock(&root->fs_info->reloc_mutex);
2037 		goto scrub_continue;
2038 	}
2039 
2040 	/*
2041 	 * Since the transaction is done, we can apply the pending changes
2042 	 * before the next transaction.
2043 	 */
2044 	btrfs_apply_pending_changes(root->fs_info);
2045 
2046 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2047 	 * safe to free the root of tree log roots
2048 	 */
2049 	btrfs_free_log_root_tree(trans, root->fs_info);
2050 
2051 	/*
2052 	 * Since fs roots are all committed, we can get a quite accurate
2053 	 * new_roots. So let's do quota accounting.
2054 	 */
2055 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2056 	if (ret < 0) {
2057 		mutex_unlock(&root->fs_info->tree_log_mutex);
2058 		mutex_unlock(&root->fs_info->reloc_mutex);
2059 		goto scrub_continue;
2060 	}
2061 
2062 	ret = commit_cowonly_roots(trans, root);
2063 	if (ret) {
2064 		mutex_unlock(&root->fs_info->tree_log_mutex);
2065 		mutex_unlock(&root->fs_info->reloc_mutex);
2066 		goto scrub_continue;
2067 	}
2068 
2069 	/*
2070 	 * The tasks which save the space cache and inode cache may also
2071 	 * update ->aborted, check it.
2072 	 */
2073 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2074 		ret = cur_trans->aborted;
2075 		mutex_unlock(&root->fs_info->tree_log_mutex);
2076 		mutex_unlock(&root->fs_info->reloc_mutex);
2077 		goto scrub_continue;
2078 	}
2079 
2080 	btrfs_prepare_extent_commit(trans, root);
2081 
2082 	cur_trans = root->fs_info->running_transaction;
2083 
2084 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2085 			    root->fs_info->tree_root->node);
2086 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2087 		      &cur_trans->switch_commits);
2088 
2089 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2090 			    root->fs_info->chunk_root->node);
2091 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2092 		      &cur_trans->switch_commits);
2093 
2094 	switch_commit_roots(cur_trans, root->fs_info);
2095 
2096 	assert_qgroups_uptodate(trans);
2097 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2098 	ASSERT(list_empty(&cur_trans->io_bgs));
2099 	update_super_roots(root);
2100 
2101 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2102 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2103 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2104 	       sizeof(*root->fs_info->super_copy));
2105 
2106 	btrfs_update_commit_device_size(root->fs_info);
2107 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2108 
2109 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2110 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2111 
2112 	btrfs_trans_release_chunk_metadata(trans);
2113 
2114 	spin_lock(&root->fs_info->trans_lock);
2115 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2116 	root->fs_info->running_transaction = NULL;
2117 	spin_unlock(&root->fs_info->trans_lock);
2118 	mutex_unlock(&root->fs_info->reloc_mutex);
2119 
2120 	wake_up(&root->fs_info->transaction_wait);
2121 
2122 	ret = btrfs_write_and_wait_transaction(trans, root);
2123 	if (ret) {
2124 		btrfs_std_error(root->fs_info, ret,
2125 			    "Error while writing out transaction");
2126 		mutex_unlock(&root->fs_info->tree_log_mutex);
2127 		goto scrub_continue;
2128 	}
2129 
2130 	ret = write_ctree_super(trans, root, 0);
2131 	if (ret) {
2132 		mutex_unlock(&root->fs_info->tree_log_mutex);
2133 		goto scrub_continue;
2134 	}
2135 
2136 	/*
2137 	 * the super is written, we can safely allow the tree-loggers
2138 	 * to go about their business
2139 	 */
2140 	mutex_unlock(&root->fs_info->tree_log_mutex);
2141 
2142 	btrfs_finish_extent_commit(trans, root);
2143 
2144 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2145 		btrfs_clear_space_info_full(root->fs_info);
2146 
2147 	root->fs_info->last_trans_committed = cur_trans->transid;
2148 	/*
2149 	 * We needn't acquire the lock here because there is no other task
2150 	 * which can change it.
2151 	 */
2152 	cur_trans->state = TRANS_STATE_COMPLETED;
2153 	wake_up(&cur_trans->commit_wait);
2154 
2155 	spin_lock(&root->fs_info->trans_lock);
2156 	list_del_init(&cur_trans->list);
2157 	spin_unlock(&root->fs_info->trans_lock);
2158 
2159 	btrfs_put_transaction(cur_trans);
2160 	btrfs_put_transaction(cur_trans);
2161 
2162 	if (trans->type & __TRANS_FREEZABLE)
2163 		sb_end_intwrite(root->fs_info->sb);
2164 
2165 	trace_btrfs_transaction_commit(root);
2166 
2167 	btrfs_scrub_continue(root);
2168 
2169 	if (current->journal_info == trans)
2170 		current->journal_info = NULL;
2171 
2172 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2173 
2174 	if (current != root->fs_info->transaction_kthread &&
2175 	    current != root->fs_info->cleaner_kthread)
2176 		btrfs_run_delayed_iputs(root);
2177 
2178 	return ret;
2179 
2180 scrub_continue:
2181 	btrfs_scrub_continue(root);
2182 cleanup_transaction:
2183 	btrfs_trans_release_metadata(trans, root);
2184 	btrfs_trans_release_chunk_metadata(trans);
2185 	trans->block_rsv = NULL;
2186 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2187 	if (current->journal_info == trans)
2188 		current->journal_info = NULL;
2189 	cleanup_transaction(trans, root, ret);
2190 
2191 	return ret;
2192 }
2193 
2194 /*
2195  * return < 0 if error
2196  * 0 if there are no more dead_roots at the time of call
2197  * 1 there are more to be processed, call me again
2198  *
2199  * The return value indicates there are certainly more snapshots to delete, but
2200  * if there comes a new one during processing, it may return 0. We don't mind,
2201  * because btrfs_commit_super will poke cleaner thread and it will process it a
2202  * few seconds later.
2203  */
2204 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2205 {
2206 	int ret;
2207 	struct btrfs_fs_info *fs_info = root->fs_info;
2208 
2209 	spin_lock(&fs_info->trans_lock);
2210 	if (list_empty(&fs_info->dead_roots)) {
2211 		spin_unlock(&fs_info->trans_lock);
2212 		return 0;
2213 	}
2214 	root = list_first_entry(&fs_info->dead_roots,
2215 			struct btrfs_root, root_list);
2216 	list_del_init(&root->root_list);
2217 	spin_unlock(&fs_info->trans_lock);
2218 
2219 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2220 
2221 	btrfs_kill_all_delayed_nodes(root);
2222 
2223 	if (btrfs_header_backref_rev(root->node) <
2224 			BTRFS_MIXED_BACKREF_REV)
2225 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2226 	else
2227 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2228 
2229 	return (ret < 0) ? 0 : 1;
2230 }
2231 
2232 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2233 {
2234 	unsigned long prev;
2235 	unsigned long bit;
2236 
2237 	prev = xchg(&fs_info->pending_changes, 0);
2238 	if (!prev)
2239 		return;
2240 
2241 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2242 	if (prev & bit)
2243 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2244 	prev &= ~bit;
2245 
2246 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2247 	if (prev & bit)
2248 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2249 	prev &= ~bit;
2250 
2251 	bit = 1 << BTRFS_PENDING_COMMIT;
2252 	if (prev & bit)
2253 		btrfs_debug(fs_info, "pending commit done");
2254 	prev &= ~bit;
2255 
2256 	if (prev)
2257 		btrfs_warn(fs_info,
2258 			"unknown pending changes left 0x%lx, ignoring", prev);
2259 }
2260