xref: /openbmc/linux/fs/btrfs/transaction.c (revision ccdf9b305a49875d49dbaec6f8d2440abb0b1994)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			btrfs_err(transaction->fs_info,
69 				  "pending csums is %llu",
70 				  transaction->delayed_refs.pending_csums);
71 		while (!list_empty(&transaction->pending_chunks)) {
72 			struct extent_map *em;
73 
74 			em = list_first_entry(&transaction->pending_chunks,
75 					      struct extent_map, list);
76 			list_del_init(&em->list);
77 			free_extent_map(em);
78 		}
79 		/*
80 		 * If any block groups are found in ->deleted_bgs then it's
81 		 * because the transaction was aborted and a commit did not
82 		 * happen (things failed before writing the new superblock
83 		 * and calling btrfs_finish_extent_commit()), so we can not
84 		 * discard the physical locations of the block groups.
85 		 */
86 		while (!list_empty(&transaction->deleted_bgs)) {
87 			struct btrfs_block_group_cache *cache;
88 
89 			cache = list_first_entry(&transaction->deleted_bgs,
90 						 struct btrfs_block_group_cache,
91 						 bg_list);
92 			list_del_init(&cache->bg_list);
93 			btrfs_put_block_group_trimming(cache);
94 			btrfs_put_block_group(cache);
95 		}
96 		kmem_cache_free(btrfs_transaction_cachep, transaction);
97 	}
98 }
99 
100 static void clear_btree_io_tree(struct extent_io_tree *tree)
101 {
102 	spin_lock(&tree->lock);
103 	/*
104 	 * Do a single barrier for the waitqueue_active check here, the state
105 	 * of the waitqueue should not change once clear_btree_io_tree is
106 	 * called.
107 	 */
108 	smp_mb();
109 	while (!RB_EMPTY_ROOT(&tree->state)) {
110 		struct rb_node *node;
111 		struct extent_state *state;
112 
113 		node = rb_first(&tree->state);
114 		state = rb_entry(node, struct extent_state, rb_node);
115 		rb_erase(&state->rb_node, &tree->state);
116 		RB_CLEAR_NODE(&state->rb_node);
117 		/*
118 		 * btree io trees aren't supposed to have tasks waiting for
119 		 * changes in the flags of extent states ever.
120 		 */
121 		ASSERT(!waitqueue_active(&state->wq));
122 		free_extent_state(state);
123 
124 		cond_resched_lock(&tree->lock);
125 	}
126 	spin_unlock(&tree->lock);
127 }
128 
129 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
130 					 struct btrfs_fs_info *fs_info)
131 {
132 	struct btrfs_root *root, *tmp;
133 
134 	down_write(&fs_info->commit_root_sem);
135 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
136 				 dirty_list) {
137 		list_del_init(&root->dirty_list);
138 		free_extent_buffer(root->commit_root);
139 		root->commit_root = btrfs_root_node(root);
140 		if (is_fstree(root->objectid))
141 			btrfs_unpin_free_ino(root);
142 		clear_btree_io_tree(&root->dirty_log_pages);
143 	}
144 
145 	/* We can free old roots now. */
146 	spin_lock(&trans->dropped_roots_lock);
147 	while (!list_empty(&trans->dropped_roots)) {
148 		root = list_first_entry(&trans->dropped_roots,
149 					struct btrfs_root, root_list);
150 		list_del_init(&root->root_list);
151 		spin_unlock(&trans->dropped_roots_lock);
152 		btrfs_drop_and_free_fs_root(fs_info, root);
153 		spin_lock(&trans->dropped_roots_lock);
154 	}
155 	spin_unlock(&trans->dropped_roots_lock);
156 	up_write(&fs_info->commit_root_sem);
157 }
158 
159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
160 					 unsigned int type)
161 {
162 	if (type & TRANS_EXTWRITERS)
163 		atomic_inc(&trans->num_extwriters);
164 }
165 
166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
167 					 unsigned int type)
168 {
169 	if (type & TRANS_EXTWRITERS)
170 		atomic_dec(&trans->num_extwriters);
171 }
172 
173 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
174 					  unsigned int type)
175 {
176 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
177 }
178 
179 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
180 {
181 	return atomic_read(&trans->num_extwriters);
182 }
183 
184 /*
185  * either allocate a new transaction or hop into the existing one
186  */
187 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
188 {
189 	struct btrfs_transaction *cur_trans;
190 	struct btrfs_fs_info *fs_info = root->fs_info;
191 
192 	spin_lock(&fs_info->trans_lock);
193 loop:
194 	/* The file system has been taken offline. No new transactions. */
195 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
196 		spin_unlock(&fs_info->trans_lock);
197 		return -EROFS;
198 	}
199 
200 	cur_trans = fs_info->running_transaction;
201 	if (cur_trans) {
202 		if (cur_trans->aborted) {
203 			spin_unlock(&fs_info->trans_lock);
204 			return cur_trans->aborted;
205 		}
206 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
207 			spin_unlock(&fs_info->trans_lock);
208 			return -EBUSY;
209 		}
210 		atomic_inc(&cur_trans->use_count);
211 		atomic_inc(&cur_trans->num_writers);
212 		extwriter_counter_inc(cur_trans, type);
213 		spin_unlock(&fs_info->trans_lock);
214 		return 0;
215 	}
216 	spin_unlock(&fs_info->trans_lock);
217 
218 	/*
219 	 * If we are ATTACH, we just want to catch the current transaction,
220 	 * and commit it. If there is no transaction, just return ENOENT.
221 	 */
222 	if (type == TRANS_ATTACH)
223 		return -ENOENT;
224 
225 	/*
226 	 * JOIN_NOLOCK only happens during the transaction commit, so
227 	 * it is impossible that ->running_transaction is NULL
228 	 */
229 	BUG_ON(type == TRANS_JOIN_NOLOCK);
230 
231 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
232 	if (!cur_trans)
233 		return -ENOMEM;
234 
235 	spin_lock(&fs_info->trans_lock);
236 	if (fs_info->running_transaction) {
237 		/*
238 		 * someone started a transaction after we unlocked.  Make sure
239 		 * to redo the checks above
240 		 */
241 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
242 		goto loop;
243 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
244 		spin_unlock(&fs_info->trans_lock);
245 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
246 		return -EROFS;
247 	}
248 
249 	cur_trans->fs_info = fs_info;
250 	atomic_set(&cur_trans->num_writers, 1);
251 	extwriter_counter_init(cur_trans, type);
252 	init_waitqueue_head(&cur_trans->writer_wait);
253 	init_waitqueue_head(&cur_trans->commit_wait);
254 	init_waitqueue_head(&cur_trans->pending_wait);
255 	cur_trans->state = TRANS_STATE_RUNNING;
256 	/*
257 	 * One for this trans handle, one so it will live on until we
258 	 * commit the transaction.
259 	 */
260 	atomic_set(&cur_trans->use_count, 2);
261 	atomic_set(&cur_trans->pending_ordered, 0);
262 	cur_trans->flags = 0;
263 	cur_trans->start_time = get_seconds();
264 
265 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
266 
267 	cur_trans->delayed_refs.href_root = RB_ROOT;
268 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
269 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
270 
271 	/*
272 	 * although the tree mod log is per file system and not per transaction,
273 	 * the log must never go across transaction boundaries.
274 	 */
275 	smp_mb();
276 	if (!list_empty(&fs_info->tree_mod_seq_list))
277 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
278 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
279 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
280 	atomic64_set(&fs_info->tree_mod_seq, 0);
281 
282 	spin_lock_init(&cur_trans->delayed_refs.lock);
283 
284 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 	INIT_LIST_HEAD(&cur_trans->switch_commits);
287 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 	INIT_LIST_HEAD(&cur_trans->io_bgs);
289 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 	mutex_init(&cur_trans->cache_write_mutex);
291 	cur_trans->num_dirty_bgs = 0;
292 	spin_lock_init(&cur_trans->dirty_bgs_lock);
293 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 	spin_lock_init(&cur_trans->dropped_roots_lock);
295 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 	extent_io_tree_init(&cur_trans->dirty_pages,
297 			     fs_info->btree_inode->i_mapping);
298 	fs_info->generation++;
299 	cur_trans->transid = fs_info->generation;
300 	fs_info->running_transaction = cur_trans;
301 	cur_trans->aborted = 0;
302 	spin_unlock(&fs_info->trans_lock);
303 
304 	return 0;
305 }
306 
307 /*
308  * this does all the record keeping required to make sure that a reference
309  * counted root is properly recorded in a given transaction.  This is required
310  * to make sure the old root from before we joined the transaction is deleted
311  * when the transaction commits
312  */
313 static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 			       struct btrfs_root *root,
315 			       int force)
316 {
317 	struct btrfs_fs_info *fs_info = root->fs_info;
318 
319 	if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
320 	    root->last_trans < trans->transid) || force) {
321 		WARN_ON(root == fs_info->extent_root);
322 		WARN_ON(root->commit_root != root->node);
323 
324 		/*
325 		 * see below for IN_TRANS_SETUP usage rules
326 		 * we have the reloc mutex held now, so there
327 		 * is only one writer in this function
328 		 */
329 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
330 
331 		/* make sure readers find IN_TRANS_SETUP before
332 		 * they find our root->last_trans update
333 		 */
334 		smp_wmb();
335 
336 		spin_lock(&fs_info->fs_roots_radix_lock);
337 		if (root->last_trans == trans->transid && !force) {
338 			spin_unlock(&fs_info->fs_roots_radix_lock);
339 			return 0;
340 		}
341 		radix_tree_tag_set(&fs_info->fs_roots_radix,
342 				   (unsigned long)root->root_key.objectid,
343 				   BTRFS_ROOT_TRANS_TAG);
344 		spin_unlock(&fs_info->fs_roots_radix_lock);
345 		root->last_trans = trans->transid;
346 
347 		/* this is pretty tricky.  We don't want to
348 		 * take the relocation lock in btrfs_record_root_in_trans
349 		 * unless we're really doing the first setup for this root in
350 		 * this transaction.
351 		 *
352 		 * Normally we'd use root->last_trans as a flag to decide
353 		 * if we want to take the expensive mutex.
354 		 *
355 		 * But, we have to set root->last_trans before we
356 		 * init the relocation root, otherwise, we trip over warnings
357 		 * in ctree.c.  The solution used here is to flag ourselves
358 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
359 		 * fixing up the reloc trees and everyone must wait.
360 		 *
361 		 * When this is zero, they can trust root->last_trans and fly
362 		 * through btrfs_record_root_in_trans without having to take the
363 		 * lock.  smp_wmb() makes sure that all the writes above are
364 		 * done before we pop in the zero below
365 		 */
366 		btrfs_init_reloc_root(trans, root);
367 		smp_mb__before_atomic();
368 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
369 	}
370 	return 0;
371 }
372 
373 
374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
375 			    struct btrfs_root *root)
376 {
377 	struct btrfs_fs_info *fs_info = root->fs_info;
378 	struct btrfs_transaction *cur_trans = trans->transaction;
379 
380 	/* Add ourselves to the transaction dropped list */
381 	spin_lock(&cur_trans->dropped_roots_lock);
382 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
383 	spin_unlock(&cur_trans->dropped_roots_lock);
384 
385 	/* Make sure we don't try to update the root at commit time */
386 	spin_lock(&fs_info->fs_roots_radix_lock);
387 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
388 			     (unsigned long)root->root_key.objectid,
389 			     BTRFS_ROOT_TRANS_TAG);
390 	spin_unlock(&fs_info->fs_roots_radix_lock);
391 }
392 
393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
394 			       struct btrfs_root *root)
395 {
396 	struct btrfs_fs_info *fs_info = root->fs_info;
397 
398 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
399 		return 0;
400 
401 	/*
402 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
403 	 * and barriers
404 	 */
405 	smp_rmb();
406 	if (root->last_trans == trans->transid &&
407 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
408 		return 0;
409 
410 	mutex_lock(&fs_info->reloc_mutex);
411 	record_root_in_trans(trans, root, 0);
412 	mutex_unlock(&fs_info->reloc_mutex);
413 
414 	return 0;
415 }
416 
417 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
418 {
419 	return (trans->state >= TRANS_STATE_BLOCKED &&
420 		trans->state < TRANS_STATE_UNBLOCKED &&
421 		!trans->aborted);
422 }
423 
424 /* wait for commit against the current transaction to become unblocked
425  * when this is done, it is safe to start a new transaction, but the current
426  * transaction might not be fully on disk.
427  */
428 static void wait_current_trans(struct btrfs_root *root)
429 {
430 	struct btrfs_fs_info *fs_info = root->fs_info;
431 	struct btrfs_transaction *cur_trans;
432 
433 	spin_lock(&fs_info->trans_lock);
434 	cur_trans = fs_info->running_transaction;
435 	if (cur_trans && is_transaction_blocked(cur_trans)) {
436 		atomic_inc(&cur_trans->use_count);
437 		spin_unlock(&fs_info->trans_lock);
438 
439 		wait_event(fs_info->transaction_wait,
440 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
441 			   cur_trans->aborted);
442 		btrfs_put_transaction(cur_trans);
443 	} else {
444 		spin_unlock(&fs_info->trans_lock);
445 	}
446 }
447 
448 static int may_wait_transaction(struct btrfs_root *root, int type)
449 {
450 	struct btrfs_fs_info *fs_info = root->fs_info;
451 
452 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
453 		return 0;
454 
455 	if (type == TRANS_USERSPACE)
456 		return 1;
457 
458 	if (type == TRANS_START &&
459 	    !atomic_read(&fs_info->open_ioctl_trans))
460 		return 1;
461 
462 	return 0;
463 }
464 
465 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
466 {
467 	struct btrfs_fs_info *fs_info = root->fs_info;
468 
469 	if (!fs_info->reloc_ctl ||
470 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
471 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
472 	    root->reloc_root)
473 		return false;
474 
475 	return true;
476 }
477 
478 static struct btrfs_trans_handle *
479 start_transaction(struct btrfs_root *root, unsigned int num_items,
480 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
481 {
482 	struct btrfs_fs_info *fs_info = root->fs_info;
483 
484 	struct btrfs_trans_handle *h;
485 	struct btrfs_transaction *cur_trans;
486 	u64 num_bytes = 0;
487 	u64 qgroup_reserved = 0;
488 	bool reloc_reserved = false;
489 	int ret;
490 
491 	/* Send isn't supposed to start transactions. */
492 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
493 
494 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
495 		return ERR_PTR(-EROFS);
496 
497 	if (current->journal_info) {
498 		WARN_ON(type & TRANS_EXTWRITERS);
499 		h = current->journal_info;
500 		h->use_count++;
501 		WARN_ON(h->use_count > 2);
502 		h->orig_rsv = h->block_rsv;
503 		h->block_rsv = NULL;
504 		goto got_it;
505 	}
506 
507 	/*
508 	 * Do the reservation before we join the transaction so we can do all
509 	 * the appropriate flushing if need be.
510 	 */
511 	if (num_items > 0 && root != fs_info->chunk_root) {
512 		qgroup_reserved = num_items * fs_info->nodesize;
513 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
514 		if (ret)
515 			return ERR_PTR(ret);
516 
517 		num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
518 		/*
519 		 * Do the reservation for the relocation root creation
520 		 */
521 		if (need_reserve_reloc_root(root)) {
522 			num_bytes += fs_info->nodesize;
523 			reloc_reserved = true;
524 		}
525 
526 		ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv,
527 					  num_bytes, flush);
528 		if (ret)
529 			goto reserve_fail;
530 	}
531 again:
532 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
533 	if (!h) {
534 		ret = -ENOMEM;
535 		goto alloc_fail;
536 	}
537 
538 	/*
539 	 * If we are JOIN_NOLOCK we're already committing a transaction and
540 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
541 	 * because we're already holding a ref.  We need this because we could
542 	 * have raced in and did an fsync() on a file which can kick a commit
543 	 * and then we deadlock with somebody doing a freeze.
544 	 *
545 	 * If we are ATTACH, it means we just want to catch the current
546 	 * transaction and commit it, so we needn't do sb_start_intwrite().
547 	 */
548 	if (type & __TRANS_FREEZABLE)
549 		sb_start_intwrite(fs_info->sb);
550 
551 	if (may_wait_transaction(root, type))
552 		wait_current_trans(root);
553 
554 	do {
555 		ret = join_transaction(root, type);
556 		if (ret == -EBUSY) {
557 			wait_current_trans(root);
558 			if (unlikely(type == TRANS_ATTACH))
559 				ret = -ENOENT;
560 		}
561 	} while (ret == -EBUSY);
562 
563 	if (ret < 0)
564 		goto join_fail;
565 
566 	cur_trans = fs_info->running_transaction;
567 
568 	h->transid = cur_trans->transid;
569 	h->transaction = cur_trans;
570 	h->root = root;
571 	h->use_count = 1;
572 	h->fs_info = root->fs_info;
573 
574 	h->type = type;
575 	h->can_flush_pending_bgs = true;
576 	INIT_LIST_HEAD(&h->qgroup_ref_list);
577 	INIT_LIST_HEAD(&h->new_bgs);
578 
579 	smp_mb();
580 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
581 	    may_wait_transaction(root, type)) {
582 		current->journal_info = h;
583 		btrfs_commit_transaction(h, root);
584 		goto again;
585 	}
586 
587 	if (num_bytes) {
588 		trace_btrfs_space_reservation(fs_info, "transaction",
589 					      h->transid, num_bytes, 1);
590 		h->block_rsv = &fs_info->trans_block_rsv;
591 		h->bytes_reserved = num_bytes;
592 		h->reloc_reserved = reloc_reserved;
593 	}
594 
595 got_it:
596 	btrfs_record_root_in_trans(h, root);
597 
598 	if (!current->journal_info && type != TRANS_USERSPACE)
599 		current->journal_info = h;
600 	return h;
601 
602 join_fail:
603 	if (type & __TRANS_FREEZABLE)
604 		sb_end_intwrite(fs_info->sb);
605 	kmem_cache_free(btrfs_trans_handle_cachep, h);
606 alloc_fail:
607 	if (num_bytes)
608 		btrfs_block_rsv_release(root, &fs_info->trans_block_rsv,
609 					num_bytes);
610 reserve_fail:
611 	btrfs_qgroup_free_meta(root, qgroup_reserved);
612 	return ERR_PTR(ret);
613 }
614 
615 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
616 						   unsigned int num_items)
617 {
618 	return start_transaction(root, num_items, TRANS_START,
619 				 BTRFS_RESERVE_FLUSH_ALL);
620 }
621 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
622 					struct btrfs_root *root,
623 					unsigned int num_items,
624 					int min_factor)
625 {
626 	struct btrfs_fs_info *fs_info = root->fs_info;
627 	struct btrfs_trans_handle *trans;
628 	u64 num_bytes;
629 	int ret;
630 
631 	trans = btrfs_start_transaction(root, num_items);
632 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
633 		return trans;
634 
635 	trans = btrfs_start_transaction(root, 0);
636 	if (IS_ERR(trans))
637 		return trans;
638 
639 	num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items);
640 	ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv,
641 				       num_bytes, min_factor);
642 	if (ret) {
643 		btrfs_end_transaction(trans, root);
644 		return ERR_PTR(ret);
645 	}
646 
647 	trans->block_rsv = &fs_info->trans_block_rsv;
648 	trans->bytes_reserved = num_bytes;
649 	trace_btrfs_space_reservation(fs_info, "transaction",
650 				      trans->transid, num_bytes, 1);
651 
652 	return trans;
653 }
654 
655 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
656 					struct btrfs_root *root,
657 					unsigned int num_items)
658 {
659 	return start_transaction(root, num_items, TRANS_START,
660 				 BTRFS_RESERVE_FLUSH_LIMIT);
661 }
662 
663 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
664 {
665 	return start_transaction(root, 0, TRANS_JOIN,
666 				 BTRFS_RESERVE_NO_FLUSH);
667 }
668 
669 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
670 {
671 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
672 				 BTRFS_RESERVE_NO_FLUSH);
673 }
674 
675 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
676 {
677 	return start_transaction(root, 0, TRANS_USERSPACE,
678 				 BTRFS_RESERVE_NO_FLUSH);
679 }
680 
681 /*
682  * btrfs_attach_transaction() - catch the running transaction
683  *
684  * It is used when we want to commit the current the transaction, but
685  * don't want to start a new one.
686  *
687  * Note: If this function return -ENOENT, it just means there is no
688  * running transaction. But it is possible that the inactive transaction
689  * is still in the memory, not fully on disk. If you hope there is no
690  * inactive transaction in the fs when -ENOENT is returned, you should
691  * invoke
692  *     btrfs_attach_transaction_barrier()
693  */
694 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
695 {
696 	return start_transaction(root, 0, TRANS_ATTACH,
697 				 BTRFS_RESERVE_NO_FLUSH);
698 }
699 
700 /*
701  * btrfs_attach_transaction_barrier() - catch the running transaction
702  *
703  * It is similar to the above function, the differentia is this one
704  * will wait for all the inactive transactions until they fully
705  * complete.
706  */
707 struct btrfs_trans_handle *
708 btrfs_attach_transaction_barrier(struct btrfs_root *root)
709 {
710 	struct btrfs_trans_handle *trans;
711 
712 	trans = start_transaction(root, 0, TRANS_ATTACH,
713 				  BTRFS_RESERVE_NO_FLUSH);
714 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
715 		btrfs_wait_for_commit(root, 0);
716 
717 	return trans;
718 }
719 
720 /* wait for a transaction commit to be fully complete */
721 static noinline void wait_for_commit(struct btrfs_root *root,
722 				    struct btrfs_transaction *commit)
723 {
724 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
725 }
726 
727 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
728 {
729 	struct btrfs_fs_info *fs_info = root->fs_info;
730 	struct btrfs_transaction *cur_trans = NULL, *t;
731 	int ret = 0;
732 
733 	if (transid) {
734 		if (transid <= fs_info->last_trans_committed)
735 			goto out;
736 
737 		/* find specified transaction */
738 		spin_lock(&fs_info->trans_lock);
739 		list_for_each_entry(t, &fs_info->trans_list, list) {
740 			if (t->transid == transid) {
741 				cur_trans = t;
742 				atomic_inc(&cur_trans->use_count);
743 				ret = 0;
744 				break;
745 			}
746 			if (t->transid > transid) {
747 				ret = 0;
748 				break;
749 			}
750 		}
751 		spin_unlock(&fs_info->trans_lock);
752 
753 		/*
754 		 * The specified transaction doesn't exist, or we
755 		 * raced with btrfs_commit_transaction
756 		 */
757 		if (!cur_trans) {
758 			if (transid > fs_info->last_trans_committed)
759 				ret = -EINVAL;
760 			goto out;
761 		}
762 	} else {
763 		/* find newest transaction that is committing | committed */
764 		spin_lock(&fs_info->trans_lock);
765 		list_for_each_entry_reverse(t, &fs_info->trans_list,
766 					    list) {
767 			if (t->state >= TRANS_STATE_COMMIT_START) {
768 				if (t->state == TRANS_STATE_COMPLETED)
769 					break;
770 				cur_trans = t;
771 				atomic_inc(&cur_trans->use_count);
772 				break;
773 			}
774 		}
775 		spin_unlock(&fs_info->trans_lock);
776 		if (!cur_trans)
777 			goto out;  /* nothing committing|committed */
778 	}
779 
780 	wait_for_commit(root, cur_trans);
781 	btrfs_put_transaction(cur_trans);
782 out:
783 	return ret;
784 }
785 
786 void btrfs_throttle(struct btrfs_root *root)
787 {
788 	struct btrfs_fs_info *fs_info = root->fs_info;
789 
790 	if (!atomic_read(&fs_info->open_ioctl_trans))
791 		wait_current_trans(root);
792 }
793 
794 static int should_end_transaction(struct btrfs_trans_handle *trans,
795 				  struct btrfs_root *root)
796 {
797 	struct btrfs_fs_info *fs_info = root->fs_info;
798 
799 	if (fs_info->global_block_rsv.space_info->full &&
800 	    btrfs_check_space_for_delayed_refs(trans, root))
801 		return 1;
802 
803 	return !!btrfs_block_rsv_check(root, &fs_info->global_block_rsv, 5);
804 }
805 
806 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
807 				 struct btrfs_root *root)
808 {
809 	struct btrfs_transaction *cur_trans = trans->transaction;
810 	int updates;
811 	int err;
812 
813 	smp_mb();
814 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
815 	    cur_trans->delayed_refs.flushing)
816 		return 1;
817 
818 	updates = trans->delayed_ref_updates;
819 	trans->delayed_ref_updates = 0;
820 	if (updates) {
821 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
822 		if (err) /* Error code will also eval true */
823 			return err;
824 	}
825 
826 	return should_end_transaction(trans, root);
827 }
828 
829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
830 			  struct btrfs_root *root, int throttle)
831 {
832 	struct btrfs_transaction *cur_trans = trans->transaction;
833 	struct btrfs_fs_info *info = root->fs_info;
834 	u64 transid = trans->transid;
835 	unsigned long cur = trans->delayed_ref_updates;
836 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
837 	int err = 0;
838 	int must_run_delayed_refs = 0;
839 
840 	if (trans->use_count > 1) {
841 		trans->use_count--;
842 		trans->block_rsv = trans->orig_rsv;
843 		return 0;
844 	}
845 
846 	btrfs_trans_release_metadata(trans, root);
847 	trans->block_rsv = NULL;
848 
849 	if (!list_empty(&trans->new_bgs))
850 		btrfs_create_pending_block_groups(trans, root);
851 
852 	trans->delayed_ref_updates = 0;
853 	if (!trans->sync) {
854 		must_run_delayed_refs =
855 			btrfs_should_throttle_delayed_refs(trans, root);
856 		cur = max_t(unsigned long, cur, 32);
857 
858 		/*
859 		 * don't make the caller wait if they are from a NOLOCK
860 		 * or ATTACH transaction, it will deadlock with commit
861 		 */
862 		if (must_run_delayed_refs == 1 &&
863 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
864 			must_run_delayed_refs = 2;
865 	}
866 
867 	btrfs_trans_release_metadata(trans, root);
868 	trans->block_rsv = NULL;
869 
870 	if (!list_empty(&trans->new_bgs))
871 		btrfs_create_pending_block_groups(trans, root);
872 
873 	btrfs_trans_release_chunk_metadata(trans);
874 
875 	if (lock && !atomic_read(&info->open_ioctl_trans) &&
876 	    should_end_transaction(trans, root) &&
877 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
878 		spin_lock(&info->trans_lock);
879 		if (cur_trans->state == TRANS_STATE_RUNNING)
880 			cur_trans->state = TRANS_STATE_BLOCKED;
881 		spin_unlock(&info->trans_lock);
882 	}
883 
884 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
885 		if (throttle)
886 			return btrfs_commit_transaction(trans, root);
887 		else
888 			wake_up_process(info->transaction_kthread);
889 	}
890 
891 	if (trans->type & __TRANS_FREEZABLE)
892 		sb_end_intwrite(info->sb);
893 
894 	WARN_ON(cur_trans != info->running_transaction);
895 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
896 	atomic_dec(&cur_trans->num_writers);
897 	extwriter_counter_dec(cur_trans, trans->type);
898 
899 	/*
900 	 * Make sure counter is updated before we wake up waiters.
901 	 */
902 	smp_mb();
903 	if (waitqueue_active(&cur_trans->writer_wait))
904 		wake_up(&cur_trans->writer_wait);
905 	btrfs_put_transaction(cur_trans);
906 
907 	if (current->journal_info == trans)
908 		current->journal_info = NULL;
909 
910 	if (throttle)
911 		btrfs_run_delayed_iputs(root);
912 
913 	if (trans->aborted ||
914 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
915 		wake_up_process(info->transaction_kthread);
916 		err = -EIO;
917 	}
918 	assert_qgroups_uptodate(trans);
919 
920 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
921 	if (must_run_delayed_refs) {
922 		btrfs_async_run_delayed_refs(root, cur, transid,
923 					     must_run_delayed_refs == 1);
924 	}
925 	return err;
926 }
927 
928 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
929 			  struct btrfs_root *root)
930 {
931 	return __btrfs_end_transaction(trans, root, 0);
932 }
933 
934 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
935 				   struct btrfs_root *root)
936 {
937 	return __btrfs_end_transaction(trans, root, 1);
938 }
939 
940 /*
941  * when btree blocks are allocated, they have some corresponding bits set for
942  * them in one of two extent_io trees.  This is used to make sure all of
943  * those extents are sent to disk but does not wait on them
944  */
945 int btrfs_write_marked_extents(struct btrfs_root *root,
946 			       struct extent_io_tree *dirty_pages, int mark)
947 {
948 	int err = 0;
949 	int werr = 0;
950 	struct btrfs_fs_info *fs_info = root->fs_info;
951 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
952 	struct extent_state *cached_state = NULL;
953 	u64 start = 0;
954 	u64 end;
955 
956 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
957 				      mark, &cached_state)) {
958 		bool wait_writeback = false;
959 
960 		err = convert_extent_bit(dirty_pages, start, end,
961 					 EXTENT_NEED_WAIT,
962 					 mark, &cached_state);
963 		/*
964 		 * convert_extent_bit can return -ENOMEM, which is most of the
965 		 * time a temporary error. So when it happens, ignore the error
966 		 * and wait for writeback of this range to finish - because we
967 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
968 		 * to btrfs_wait_marked_extents() would not know that writeback
969 		 * for this range started and therefore wouldn't wait for it to
970 		 * finish - we don't want to commit a superblock that points to
971 		 * btree nodes/leafs for which writeback hasn't finished yet
972 		 * (and without errors).
973 		 * We cleanup any entries left in the io tree when committing
974 		 * the transaction (through clear_btree_io_tree()).
975 		 */
976 		if (err == -ENOMEM) {
977 			err = 0;
978 			wait_writeback = true;
979 		}
980 		if (!err)
981 			err = filemap_fdatawrite_range(mapping, start, end);
982 		if (err)
983 			werr = err;
984 		else if (wait_writeback)
985 			werr = filemap_fdatawait_range(mapping, start, end);
986 		free_extent_state(cached_state);
987 		cached_state = NULL;
988 		cond_resched();
989 		start = end + 1;
990 	}
991 	return werr;
992 }
993 
994 /*
995  * when btree blocks are allocated, they have some corresponding bits set for
996  * them in one of two extent_io trees.  This is used to make sure all of
997  * those extents are on disk for transaction or log commit.  We wait
998  * on all the pages and clear them from the dirty pages state tree
999  */
1000 int btrfs_wait_marked_extents(struct btrfs_root *root,
1001 			      struct extent_io_tree *dirty_pages, int mark)
1002 {
1003 	int err = 0;
1004 	int werr = 0;
1005 	struct btrfs_fs_info *fs_info = root->fs_info;
1006 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1007 	struct extent_state *cached_state = NULL;
1008 	u64 start = 0;
1009 	u64 end;
1010 	bool errors = false;
1011 
1012 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1013 				      EXTENT_NEED_WAIT, &cached_state)) {
1014 		/*
1015 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1016 		 * When committing the transaction, we'll remove any entries
1017 		 * left in the io tree. For a log commit, we don't remove them
1018 		 * after committing the log because the tree can be accessed
1019 		 * concurrently - we do it only at transaction commit time when
1020 		 * it's safe to do it (through clear_btree_io_tree()).
1021 		 */
1022 		err = clear_extent_bit(dirty_pages, start, end,
1023 				       EXTENT_NEED_WAIT,
1024 				       0, 0, &cached_state, GFP_NOFS);
1025 		if (err == -ENOMEM)
1026 			err = 0;
1027 		if (!err)
1028 			err = filemap_fdatawait_range(mapping, start, end);
1029 		if (err)
1030 			werr = err;
1031 		free_extent_state(cached_state);
1032 		cached_state = NULL;
1033 		cond_resched();
1034 		start = end + 1;
1035 	}
1036 	if (err)
1037 		werr = err;
1038 
1039 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1040 		if ((mark & EXTENT_DIRTY) &&
1041 		    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1042 			errors = true;
1043 
1044 		if ((mark & EXTENT_NEW) &&
1045 		    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1046 			errors = true;
1047 	} else {
1048 		if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1049 			errors = true;
1050 	}
1051 
1052 	if (errors && !werr)
1053 		werr = -EIO;
1054 
1055 	return werr;
1056 }
1057 
1058 /*
1059  * when btree blocks are allocated, they have some corresponding bits set for
1060  * them in one of two extent_io trees.  This is used to make sure all of
1061  * those extents are on disk for transaction or log commit
1062  */
1063 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1064 				struct extent_io_tree *dirty_pages, int mark)
1065 {
1066 	int ret;
1067 	int ret2;
1068 	struct blk_plug plug;
1069 
1070 	blk_start_plug(&plug);
1071 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1072 	blk_finish_plug(&plug);
1073 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1074 
1075 	if (ret)
1076 		return ret;
1077 	if (ret2)
1078 		return ret2;
1079 	return 0;
1080 }
1081 
1082 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1083 				     struct btrfs_root *root)
1084 {
1085 	int ret;
1086 
1087 	ret = btrfs_write_and_wait_marked_extents(root,
1088 					   &trans->transaction->dirty_pages,
1089 					   EXTENT_DIRTY);
1090 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1091 
1092 	return ret;
1093 }
1094 
1095 /*
1096  * this is used to update the root pointer in the tree of tree roots.
1097  *
1098  * But, in the case of the extent allocation tree, updating the root
1099  * pointer may allocate blocks which may change the root of the extent
1100  * allocation tree.
1101  *
1102  * So, this loops and repeats and makes sure the cowonly root didn't
1103  * change while the root pointer was being updated in the metadata.
1104  */
1105 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1106 			       struct btrfs_root *root)
1107 {
1108 	int ret;
1109 	u64 old_root_bytenr;
1110 	u64 old_root_used;
1111 	struct btrfs_fs_info *fs_info = root->fs_info;
1112 	struct btrfs_root *tree_root = fs_info->tree_root;
1113 
1114 	old_root_used = btrfs_root_used(&root->root_item);
1115 
1116 	while (1) {
1117 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1118 		if (old_root_bytenr == root->node->start &&
1119 		    old_root_used == btrfs_root_used(&root->root_item))
1120 			break;
1121 
1122 		btrfs_set_root_node(&root->root_item, root->node);
1123 		ret = btrfs_update_root(trans, tree_root,
1124 					&root->root_key,
1125 					&root->root_item);
1126 		if (ret)
1127 			return ret;
1128 
1129 		old_root_used = btrfs_root_used(&root->root_item);
1130 	}
1131 
1132 	return 0;
1133 }
1134 
1135 /*
1136  * update all the cowonly tree roots on disk
1137  *
1138  * The error handling in this function may not be obvious. Any of the
1139  * failures will cause the file system to go offline. We still need
1140  * to clean up the delayed refs.
1141  */
1142 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1143 					 struct btrfs_root *root)
1144 {
1145 	struct btrfs_fs_info *fs_info = root->fs_info;
1146 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1147 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1148 	struct list_head *next;
1149 	struct extent_buffer *eb;
1150 	int ret;
1151 
1152 	eb = btrfs_lock_root_node(fs_info->tree_root);
1153 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1154 			      0, &eb);
1155 	btrfs_tree_unlock(eb);
1156 	free_extent_buffer(eb);
1157 
1158 	if (ret)
1159 		return ret;
1160 
1161 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1162 	if (ret)
1163 		return ret;
1164 
1165 	ret = btrfs_run_dev_stats(trans, fs_info);
1166 	if (ret)
1167 		return ret;
1168 	ret = btrfs_run_dev_replace(trans, fs_info);
1169 	if (ret)
1170 		return ret;
1171 	ret = btrfs_run_qgroups(trans, fs_info);
1172 	if (ret)
1173 		return ret;
1174 
1175 	ret = btrfs_setup_space_cache(trans, root);
1176 	if (ret)
1177 		return ret;
1178 
1179 	/* run_qgroups might have added some more refs */
1180 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1181 	if (ret)
1182 		return ret;
1183 again:
1184 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1185 		next = fs_info->dirty_cowonly_roots.next;
1186 		list_del_init(next);
1187 		root = list_entry(next, struct btrfs_root, dirty_list);
1188 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1189 
1190 		if (root != fs_info->extent_root)
1191 			list_add_tail(&root->dirty_list,
1192 				      &trans->transaction->switch_commits);
1193 		ret = update_cowonly_root(trans, root);
1194 		if (ret)
1195 			return ret;
1196 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1197 		if (ret)
1198 			return ret;
1199 	}
1200 
1201 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1202 		ret = btrfs_write_dirty_block_groups(trans, root);
1203 		if (ret)
1204 			return ret;
1205 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1206 		if (ret)
1207 			return ret;
1208 	}
1209 
1210 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1211 		goto again;
1212 
1213 	list_add_tail(&fs_info->extent_root->dirty_list,
1214 		      &trans->transaction->switch_commits);
1215 	btrfs_after_dev_replace_commit(fs_info);
1216 
1217 	return 0;
1218 }
1219 
1220 /*
1221  * dead roots are old snapshots that need to be deleted.  This allocates
1222  * a dirty root struct and adds it into the list of dead roots that need to
1223  * be deleted
1224  */
1225 void btrfs_add_dead_root(struct btrfs_root *root)
1226 {
1227 	struct btrfs_fs_info *fs_info = root->fs_info;
1228 
1229 	spin_lock(&fs_info->trans_lock);
1230 	if (list_empty(&root->root_list))
1231 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1232 	spin_unlock(&fs_info->trans_lock);
1233 }
1234 
1235 /*
1236  * update all the cowonly tree roots on disk
1237  */
1238 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1239 				    struct btrfs_fs_info *fs_info)
1240 {
1241 	struct btrfs_root *gang[8];
1242 	int i;
1243 	int ret;
1244 	int err = 0;
1245 
1246 	spin_lock(&fs_info->fs_roots_radix_lock);
1247 	while (1) {
1248 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1249 						 (void **)gang, 0,
1250 						 ARRAY_SIZE(gang),
1251 						 BTRFS_ROOT_TRANS_TAG);
1252 		if (ret == 0)
1253 			break;
1254 		for (i = 0; i < ret; i++) {
1255 			struct btrfs_root *root = gang[i];
1256 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1257 					(unsigned long)root->root_key.objectid,
1258 					BTRFS_ROOT_TRANS_TAG);
1259 			spin_unlock(&fs_info->fs_roots_radix_lock);
1260 
1261 			btrfs_free_log(trans, root);
1262 			btrfs_update_reloc_root(trans, root);
1263 			btrfs_orphan_commit_root(trans, root);
1264 
1265 			btrfs_save_ino_cache(root, trans);
1266 
1267 			/* see comments in should_cow_block() */
1268 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1269 			smp_mb__after_atomic();
1270 
1271 			if (root->commit_root != root->node) {
1272 				list_add_tail(&root->dirty_list,
1273 					&trans->transaction->switch_commits);
1274 				btrfs_set_root_node(&root->root_item,
1275 						    root->node);
1276 			}
1277 
1278 			err = btrfs_update_root(trans, fs_info->tree_root,
1279 						&root->root_key,
1280 						&root->root_item);
1281 			spin_lock(&fs_info->fs_roots_radix_lock);
1282 			if (err)
1283 				break;
1284 			btrfs_qgroup_free_meta_all(root);
1285 		}
1286 	}
1287 	spin_unlock(&fs_info->fs_roots_radix_lock);
1288 	return err;
1289 }
1290 
1291 /*
1292  * defrag a given btree.
1293  * Every leaf in the btree is read and defragged.
1294  */
1295 int btrfs_defrag_root(struct btrfs_root *root)
1296 {
1297 	struct btrfs_fs_info *info = root->fs_info;
1298 	struct btrfs_trans_handle *trans;
1299 	int ret;
1300 
1301 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1302 		return 0;
1303 
1304 	while (1) {
1305 		trans = btrfs_start_transaction(root, 0);
1306 		if (IS_ERR(trans))
1307 			return PTR_ERR(trans);
1308 
1309 		ret = btrfs_defrag_leaves(trans, root);
1310 
1311 		btrfs_end_transaction(trans, root);
1312 		btrfs_btree_balance_dirty(info->tree_root);
1313 		cond_resched();
1314 
1315 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1316 			break;
1317 
1318 		if (btrfs_defrag_cancelled(info)) {
1319 			btrfs_debug(info, "defrag_root cancelled");
1320 			ret = -EAGAIN;
1321 			break;
1322 		}
1323 	}
1324 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1325 	return ret;
1326 }
1327 
1328 /*
1329  * Do all special snapshot related qgroup dirty hack.
1330  *
1331  * Will do all needed qgroup inherit and dirty hack like switch commit
1332  * roots inside one transaction and write all btree into disk, to make
1333  * qgroup works.
1334  */
1335 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1336 				   struct btrfs_root *src,
1337 				   struct btrfs_root *parent,
1338 				   struct btrfs_qgroup_inherit *inherit,
1339 				   u64 dst_objectid)
1340 {
1341 	struct btrfs_fs_info *fs_info = src->fs_info;
1342 	int ret;
1343 
1344 	/*
1345 	 * Save some performance in the case that qgroups are not
1346 	 * enabled. If this check races with the ioctl, rescan will
1347 	 * kick in anyway.
1348 	 */
1349 	mutex_lock(&fs_info->qgroup_ioctl_lock);
1350 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) {
1351 		mutex_unlock(&fs_info->qgroup_ioctl_lock);
1352 		return 0;
1353 	}
1354 	mutex_unlock(&fs_info->qgroup_ioctl_lock);
1355 
1356 	/*
1357 	 * We are going to commit transaction, see btrfs_commit_transaction()
1358 	 * comment for reason locking tree_log_mutex
1359 	 */
1360 	mutex_lock(&fs_info->tree_log_mutex);
1361 
1362 	ret = commit_fs_roots(trans, fs_info);
1363 	if (ret)
1364 		goto out;
1365 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1366 	if (ret < 0)
1367 		goto out;
1368 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1369 	if (ret < 0)
1370 		goto out;
1371 
1372 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1373 	ret = btrfs_qgroup_inherit(trans, fs_info,
1374 				   src->root_key.objectid, dst_objectid,
1375 				   inherit);
1376 	if (ret < 0)
1377 		goto out;
1378 
1379 	/*
1380 	 * Now we do a simplified commit transaction, which will:
1381 	 * 1) commit all subvolume and extent tree
1382 	 *    To ensure all subvolume and extent tree have a valid
1383 	 *    commit_root to accounting later insert_dir_item()
1384 	 * 2) write all btree blocks onto disk
1385 	 *    This is to make sure later btree modification will be cowed
1386 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1387 	 * In this simplified commit, we don't really care about other trees
1388 	 * like chunk and root tree, as they won't affect qgroup.
1389 	 * And we don't write super to avoid half committed status.
1390 	 */
1391 	ret = commit_cowonly_roots(trans, src);
1392 	if (ret)
1393 		goto out;
1394 	switch_commit_roots(trans->transaction, fs_info);
1395 	ret = btrfs_write_and_wait_transaction(trans, src);
1396 	if (ret)
1397 		btrfs_handle_fs_error(fs_info, ret,
1398 			"Error while writing out transaction for qgroup");
1399 
1400 out:
1401 	mutex_unlock(&fs_info->tree_log_mutex);
1402 
1403 	/*
1404 	 * Force parent root to be updated, as we recorded it before so its
1405 	 * last_trans == cur_transid.
1406 	 * Or it won't be committed again onto disk after later
1407 	 * insert_dir_item()
1408 	 */
1409 	if (!ret)
1410 		record_root_in_trans(trans, parent, 1);
1411 	return ret;
1412 }
1413 
1414 /*
1415  * new snapshots need to be created at a very specific time in the
1416  * transaction commit.  This does the actual creation.
1417  *
1418  * Note:
1419  * If the error which may affect the commitment of the current transaction
1420  * happens, we should return the error number. If the error which just affect
1421  * the creation of the pending snapshots, just return 0.
1422  */
1423 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1424 				   struct btrfs_fs_info *fs_info,
1425 				   struct btrfs_pending_snapshot *pending)
1426 {
1427 	struct btrfs_key key;
1428 	struct btrfs_root_item *new_root_item;
1429 	struct btrfs_root *tree_root = fs_info->tree_root;
1430 	struct btrfs_root *root = pending->root;
1431 	struct btrfs_root *parent_root;
1432 	struct btrfs_block_rsv *rsv;
1433 	struct inode *parent_inode;
1434 	struct btrfs_path *path;
1435 	struct btrfs_dir_item *dir_item;
1436 	struct dentry *dentry;
1437 	struct extent_buffer *tmp;
1438 	struct extent_buffer *old;
1439 	struct timespec cur_time;
1440 	int ret = 0;
1441 	u64 to_reserve = 0;
1442 	u64 index = 0;
1443 	u64 objectid;
1444 	u64 root_flags;
1445 	uuid_le new_uuid;
1446 
1447 	ASSERT(pending->path);
1448 	path = pending->path;
1449 
1450 	ASSERT(pending->root_item);
1451 	new_root_item = pending->root_item;
1452 
1453 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1454 	if (pending->error)
1455 		goto no_free_objectid;
1456 
1457 	/*
1458 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1459 	 * accounted by later btrfs_qgroup_inherit().
1460 	 */
1461 	btrfs_set_skip_qgroup(trans, objectid);
1462 
1463 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1464 
1465 	if (to_reserve > 0) {
1466 		pending->error = btrfs_block_rsv_add(root,
1467 						     &pending->block_rsv,
1468 						     to_reserve,
1469 						     BTRFS_RESERVE_NO_FLUSH);
1470 		if (pending->error)
1471 			goto clear_skip_qgroup;
1472 	}
1473 
1474 	key.objectid = objectid;
1475 	key.offset = (u64)-1;
1476 	key.type = BTRFS_ROOT_ITEM_KEY;
1477 
1478 	rsv = trans->block_rsv;
1479 	trans->block_rsv = &pending->block_rsv;
1480 	trans->bytes_reserved = trans->block_rsv->reserved;
1481 	trace_btrfs_space_reservation(fs_info, "transaction",
1482 				      trans->transid,
1483 				      trans->bytes_reserved, 1);
1484 	dentry = pending->dentry;
1485 	parent_inode = pending->dir;
1486 	parent_root = BTRFS_I(parent_inode)->root;
1487 	record_root_in_trans(trans, parent_root, 0);
1488 
1489 	cur_time = current_time(parent_inode);
1490 
1491 	/*
1492 	 * insert the directory item
1493 	 */
1494 	ret = btrfs_set_inode_index(parent_inode, &index);
1495 	BUG_ON(ret); /* -ENOMEM */
1496 
1497 	/* check if there is a file/dir which has the same name. */
1498 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1499 					 btrfs_ino(parent_inode),
1500 					 dentry->d_name.name,
1501 					 dentry->d_name.len, 0);
1502 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1503 		pending->error = -EEXIST;
1504 		goto dir_item_existed;
1505 	} else if (IS_ERR(dir_item)) {
1506 		ret = PTR_ERR(dir_item);
1507 		btrfs_abort_transaction(trans, ret);
1508 		goto fail;
1509 	}
1510 	btrfs_release_path(path);
1511 
1512 	/*
1513 	 * pull in the delayed directory update
1514 	 * and the delayed inode item
1515 	 * otherwise we corrupt the FS during
1516 	 * snapshot
1517 	 */
1518 	ret = btrfs_run_delayed_items(trans, root);
1519 	if (ret) {	/* Transaction aborted */
1520 		btrfs_abort_transaction(trans, ret);
1521 		goto fail;
1522 	}
1523 
1524 	record_root_in_trans(trans, root, 0);
1525 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1526 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1527 	btrfs_check_and_init_root_item(new_root_item);
1528 
1529 	root_flags = btrfs_root_flags(new_root_item);
1530 	if (pending->readonly)
1531 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1532 	else
1533 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1534 	btrfs_set_root_flags(new_root_item, root_flags);
1535 
1536 	btrfs_set_root_generation_v2(new_root_item,
1537 			trans->transid);
1538 	uuid_le_gen(&new_uuid);
1539 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1540 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1541 			BTRFS_UUID_SIZE);
1542 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1543 		memset(new_root_item->received_uuid, 0,
1544 		       sizeof(new_root_item->received_uuid));
1545 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1546 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1547 		btrfs_set_root_stransid(new_root_item, 0);
1548 		btrfs_set_root_rtransid(new_root_item, 0);
1549 	}
1550 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1551 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1552 	btrfs_set_root_otransid(new_root_item, trans->transid);
1553 
1554 	old = btrfs_lock_root_node(root);
1555 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1556 	if (ret) {
1557 		btrfs_tree_unlock(old);
1558 		free_extent_buffer(old);
1559 		btrfs_abort_transaction(trans, ret);
1560 		goto fail;
1561 	}
1562 
1563 	btrfs_set_lock_blocking(old);
1564 
1565 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1566 	/* clean up in any case */
1567 	btrfs_tree_unlock(old);
1568 	free_extent_buffer(old);
1569 	if (ret) {
1570 		btrfs_abort_transaction(trans, ret);
1571 		goto fail;
1572 	}
1573 	/* see comments in should_cow_block() */
1574 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1575 	smp_wmb();
1576 
1577 	btrfs_set_root_node(new_root_item, tmp);
1578 	/* record when the snapshot was created in key.offset */
1579 	key.offset = trans->transid;
1580 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1581 	btrfs_tree_unlock(tmp);
1582 	free_extent_buffer(tmp);
1583 	if (ret) {
1584 		btrfs_abort_transaction(trans, ret);
1585 		goto fail;
1586 	}
1587 
1588 	/*
1589 	 * insert root back/forward references
1590 	 */
1591 	ret = btrfs_add_root_ref(trans, fs_info, objectid,
1592 				 parent_root->root_key.objectid,
1593 				 btrfs_ino(parent_inode), index,
1594 				 dentry->d_name.name, dentry->d_name.len);
1595 	if (ret) {
1596 		btrfs_abort_transaction(trans, ret);
1597 		goto fail;
1598 	}
1599 
1600 	key.offset = (u64)-1;
1601 	pending->snap = btrfs_read_fs_root_no_name(fs_info, &key);
1602 	if (IS_ERR(pending->snap)) {
1603 		ret = PTR_ERR(pending->snap);
1604 		btrfs_abort_transaction(trans, ret);
1605 		goto fail;
1606 	}
1607 
1608 	ret = btrfs_reloc_post_snapshot(trans, pending);
1609 	if (ret) {
1610 		btrfs_abort_transaction(trans, ret);
1611 		goto fail;
1612 	}
1613 
1614 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1615 	if (ret) {
1616 		btrfs_abort_transaction(trans, ret);
1617 		goto fail;
1618 	}
1619 
1620 	/*
1621 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1622 	 * snapshot hack to do fast snapshot.
1623 	 * To co-operate with that hack, we do hack again.
1624 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1625 	 */
1626 	ret = qgroup_account_snapshot(trans, root, parent_root,
1627 				      pending->inherit, objectid);
1628 	if (ret < 0)
1629 		goto fail;
1630 
1631 	ret = btrfs_insert_dir_item(trans, parent_root,
1632 				    dentry->d_name.name, dentry->d_name.len,
1633 				    parent_inode, &key,
1634 				    BTRFS_FT_DIR, index);
1635 	/* We have check then name at the beginning, so it is impossible. */
1636 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1637 	if (ret) {
1638 		btrfs_abort_transaction(trans, ret);
1639 		goto fail;
1640 	}
1641 
1642 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1643 					 dentry->d_name.len * 2);
1644 	parent_inode->i_mtime = parent_inode->i_ctime =
1645 		current_time(parent_inode);
1646 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1647 	if (ret) {
1648 		btrfs_abort_transaction(trans, ret);
1649 		goto fail;
1650 	}
1651 	ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b,
1652 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1653 	if (ret) {
1654 		btrfs_abort_transaction(trans, ret);
1655 		goto fail;
1656 	}
1657 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1658 		ret = btrfs_uuid_tree_add(trans, fs_info,
1659 					  new_root_item->received_uuid,
1660 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1661 					  objectid);
1662 		if (ret && ret != -EEXIST) {
1663 			btrfs_abort_transaction(trans, ret);
1664 			goto fail;
1665 		}
1666 	}
1667 
1668 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1669 	if (ret) {
1670 		btrfs_abort_transaction(trans, ret);
1671 		goto fail;
1672 	}
1673 
1674 fail:
1675 	pending->error = ret;
1676 dir_item_existed:
1677 	trans->block_rsv = rsv;
1678 	trans->bytes_reserved = 0;
1679 clear_skip_qgroup:
1680 	btrfs_clear_skip_qgroup(trans);
1681 no_free_objectid:
1682 	kfree(new_root_item);
1683 	pending->root_item = NULL;
1684 	btrfs_free_path(path);
1685 	pending->path = NULL;
1686 
1687 	return ret;
1688 }
1689 
1690 /*
1691  * create all the snapshots we've scheduled for creation
1692  */
1693 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1694 					     struct btrfs_fs_info *fs_info)
1695 {
1696 	struct btrfs_pending_snapshot *pending, *next;
1697 	struct list_head *head = &trans->transaction->pending_snapshots;
1698 	int ret = 0;
1699 
1700 	list_for_each_entry_safe(pending, next, head, list) {
1701 		list_del(&pending->list);
1702 		ret = create_pending_snapshot(trans, fs_info, pending);
1703 		if (ret)
1704 			break;
1705 	}
1706 	return ret;
1707 }
1708 
1709 static void update_super_roots(struct btrfs_root *root)
1710 {
1711 	struct btrfs_fs_info *fs_info = root->fs_info;
1712 	struct btrfs_root_item *root_item;
1713 	struct btrfs_super_block *super;
1714 
1715 	super = fs_info->super_copy;
1716 
1717 	root_item = &fs_info->chunk_root->root_item;
1718 	super->chunk_root = root_item->bytenr;
1719 	super->chunk_root_generation = root_item->generation;
1720 	super->chunk_root_level = root_item->level;
1721 
1722 	root_item = &fs_info->tree_root->root_item;
1723 	super->root = root_item->bytenr;
1724 	super->generation = root_item->generation;
1725 	super->root_level = root_item->level;
1726 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1727 		super->cache_generation = root_item->generation;
1728 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1729 		super->uuid_tree_generation = root_item->generation;
1730 }
1731 
1732 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1733 {
1734 	struct btrfs_transaction *trans;
1735 	int ret = 0;
1736 
1737 	spin_lock(&info->trans_lock);
1738 	trans = info->running_transaction;
1739 	if (trans)
1740 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1741 	spin_unlock(&info->trans_lock);
1742 	return ret;
1743 }
1744 
1745 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1746 {
1747 	struct btrfs_transaction *trans;
1748 	int ret = 0;
1749 
1750 	spin_lock(&info->trans_lock);
1751 	trans = info->running_transaction;
1752 	if (trans)
1753 		ret = is_transaction_blocked(trans);
1754 	spin_unlock(&info->trans_lock);
1755 	return ret;
1756 }
1757 
1758 /*
1759  * wait for the current transaction commit to start and block subsequent
1760  * transaction joins
1761  */
1762 static void wait_current_trans_commit_start(struct btrfs_root *root,
1763 					    struct btrfs_transaction *trans)
1764 {
1765 	wait_event(root->fs_info->transaction_blocked_wait,
1766 		   trans->state >= TRANS_STATE_COMMIT_START ||
1767 		   trans->aborted);
1768 }
1769 
1770 /*
1771  * wait for the current transaction to start and then become unblocked.
1772  * caller holds ref.
1773  */
1774 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1775 					 struct btrfs_transaction *trans)
1776 {
1777 	wait_event(root->fs_info->transaction_wait,
1778 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1779 		   trans->aborted);
1780 }
1781 
1782 /*
1783  * commit transactions asynchronously. once btrfs_commit_transaction_async
1784  * returns, any subsequent transaction will not be allowed to join.
1785  */
1786 struct btrfs_async_commit {
1787 	struct btrfs_trans_handle *newtrans;
1788 	struct btrfs_root *root;
1789 	struct work_struct work;
1790 };
1791 
1792 static void do_async_commit(struct work_struct *work)
1793 {
1794 	struct btrfs_async_commit *ac =
1795 		container_of(work, struct btrfs_async_commit, work);
1796 
1797 	/*
1798 	 * We've got freeze protection passed with the transaction.
1799 	 * Tell lockdep about it.
1800 	 */
1801 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1802 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1803 
1804 	current->journal_info = ac->newtrans;
1805 
1806 	btrfs_commit_transaction(ac->newtrans, ac->root);
1807 	kfree(ac);
1808 }
1809 
1810 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1811 				   struct btrfs_root *root,
1812 				   int wait_for_unblock)
1813 {
1814 	struct btrfs_fs_info *fs_info = root->fs_info;
1815 	struct btrfs_async_commit *ac;
1816 	struct btrfs_transaction *cur_trans;
1817 
1818 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1819 	if (!ac)
1820 		return -ENOMEM;
1821 
1822 	INIT_WORK(&ac->work, do_async_commit);
1823 	ac->root = root;
1824 	ac->newtrans = btrfs_join_transaction(root);
1825 	if (IS_ERR(ac->newtrans)) {
1826 		int err = PTR_ERR(ac->newtrans);
1827 		kfree(ac);
1828 		return err;
1829 	}
1830 
1831 	/* take transaction reference */
1832 	cur_trans = trans->transaction;
1833 	atomic_inc(&cur_trans->use_count);
1834 
1835 	btrfs_end_transaction(trans, root);
1836 
1837 	/*
1838 	 * Tell lockdep we've released the freeze rwsem, since the
1839 	 * async commit thread will be the one to unlock it.
1840 	 */
1841 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1842 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1843 
1844 	schedule_work(&ac->work);
1845 
1846 	/* wait for transaction to start and unblock */
1847 	if (wait_for_unblock)
1848 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1849 	else
1850 		wait_current_trans_commit_start(root, cur_trans);
1851 
1852 	if (current->journal_info == trans)
1853 		current->journal_info = NULL;
1854 
1855 	btrfs_put_transaction(cur_trans);
1856 	return 0;
1857 }
1858 
1859 
1860 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1861 				struct btrfs_root *root, int err)
1862 {
1863 	struct btrfs_fs_info *fs_info = root->fs_info;
1864 	struct btrfs_transaction *cur_trans = trans->transaction;
1865 	DEFINE_WAIT(wait);
1866 
1867 	WARN_ON(trans->use_count > 1);
1868 
1869 	btrfs_abort_transaction(trans, err);
1870 
1871 	spin_lock(&fs_info->trans_lock);
1872 
1873 	/*
1874 	 * If the transaction is removed from the list, it means this
1875 	 * transaction has been committed successfully, so it is impossible
1876 	 * to call the cleanup function.
1877 	 */
1878 	BUG_ON(list_empty(&cur_trans->list));
1879 
1880 	list_del_init(&cur_trans->list);
1881 	if (cur_trans == fs_info->running_transaction) {
1882 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1883 		spin_unlock(&fs_info->trans_lock);
1884 		wait_event(cur_trans->writer_wait,
1885 			   atomic_read(&cur_trans->num_writers) == 1);
1886 
1887 		spin_lock(&fs_info->trans_lock);
1888 	}
1889 	spin_unlock(&fs_info->trans_lock);
1890 
1891 	btrfs_cleanup_one_transaction(trans->transaction, root);
1892 
1893 	spin_lock(&fs_info->trans_lock);
1894 	if (cur_trans == fs_info->running_transaction)
1895 		fs_info->running_transaction = NULL;
1896 	spin_unlock(&fs_info->trans_lock);
1897 
1898 	if (trans->type & __TRANS_FREEZABLE)
1899 		sb_end_intwrite(fs_info->sb);
1900 	btrfs_put_transaction(cur_trans);
1901 	btrfs_put_transaction(cur_trans);
1902 
1903 	trace_btrfs_transaction_commit(root);
1904 
1905 	if (current->journal_info == trans)
1906 		current->journal_info = NULL;
1907 	btrfs_scrub_cancel(fs_info);
1908 
1909 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1910 }
1911 
1912 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1913 {
1914 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1915 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1916 	return 0;
1917 }
1918 
1919 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1920 {
1921 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
1922 		btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1);
1923 }
1924 
1925 static inline void
1926 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1927 {
1928 	wait_event(cur_trans->pending_wait,
1929 		   atomic_read(&cur_trans->pending_ordered) == 0);
1930 }
1931 
1932 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1933 			     struct btrfs_root *root)
1934 {
1935 	struct btrfs_fs_info *fs_info = root->fs_info;
1936 	struct btrfs_transaction *cur_trans = trans->transaction;
1937 	struct btrfs_transaction *prev_trans = NULL;
1938 	int ret;
1939 
1940 	/* Stop the commit early if ->aborted is set */
1941 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1942 		ret = cur_trans->aborted;
1943 		btrfs_end_transaction(trans, root);
1944 		return ret;
1945 	}
1946 
1947 	/* make a pass through all the delayed refs we have so far
1948 	 * any runnings procs may add more while we are here
1949 	 */
1950 	ret = btrfs_run_delayed_refs(trans, root, 0);
1951 	if (ret) {
1952 		btrfs_end_transaction(trans, root);
1953 		return ret;
1954 	}
1955 
1956 	btrfs_trans_release_metadata(trans, root);
1957 	trans->block_rsv = NULL;
1958 
1959 	cur_trans = trans->transaction;
1960 
1961 	/*
1962 	 * set the flushing flag so procs in this transaction have to
1963 	 * start sending their work down.
1964 	 */
1965 	cur_trans->delayed_refs.flushing = 1;
1966 	smp_wmb();
1967 
1968 	if (!list_empty(&trans->new_bgs))
1969 		btrfs_create_pending_block_groups(trans, root);
1970 
1971 	ret = btrfs_run_delayed_refs(trans, root, 0);
1972 	if (ret) {
1973 		btrfs_end_transaction(trans, root);
1974 		return ret;
1975 	}
1976 
1977 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1978 		int run_it = 0;
1979 
1980 		/* this mutex is also taken before trying to set
1981 		 * block groups readonly.  We need to make sure
1982 		 * that nobody has set a block group readonly
1983 		 * after a extents from that block group have been
1984 		 * allocated for cache files.  btrfs_set_block_group_ro
1985 		 * will wait for the transaction to commit if it
1986 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1987 		 *
1988 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1989 		 * only one process starts all the block group IO.  It wouldn't
1990 		 * hurt to have more than one go through, but there's no
1991 		 * real advantage to it either.
1992 		 */
1993 		mutex_lock(&fs_info->ro_block_group_mutex);
1994 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1995 				      &cur_trans->flags))
1996 			run_it = 1;
1997 		mutex_unlock(&fs_info->ro_block_group_mutex);
1998 
1999 		if (run_it)
2000 			ret = btrfs_start_dirty_block_groups(trans, root);
2001 	}
2002 	if (ret) {
2003 		btrfs_end_transaction(trans, root);
2004 		return ret;
2005 	}
2006 
2007 	spin_lock(&fs_info->trans_lock);
2008 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2009 		spin_unlock(&fs_info->trans_lock);
2010 		atomic_inc(&cur_trans->use_count);
2011 		ret = btrfs_end_transaction(trans, root);
2012 
2013 		wait_for_commit(root, cur_trans);
2014 
2015 		if (unlikely(cur_trans->aborted))
2016 			ret = cur_trans->aborted;
2017 
2018 		btrfs_put_transaction(cur_trans);
2019 
2020 		return ret;
2021 	}
2022 
2023 	cur_trans->state = TRANS_STATE_COMMIT_START;
2024 	wake_up(&fs_info->transaction_blocked_wait);
2025 
2026 	if (cur_trans->list.prev != &fs_info->trans_list) {
2027 		prev_trans = list_entry(cur_trans->list.prev,
2028 					struct btrfs_transaction, list);
2029 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2030 			atomic_inc(&prev_trans->use_count);
2031 			spin_unlock(&fs_info->trans_lock);
2032 
2033 			wait_for_commit(root, prev_trans);
2034 			ret = prev_trans->aborted;
2035 
2036 			btrfs_put_transaction(prev_trans);
2037 			if (ret)
2038 				goto cleanup_transaction;
2039 		} else {
2040 			spin_unlock(&fs_info->trans_lock);
2041 		}
2042 	} else {
2043 		spin_unlock(&fs_info->trans_lock);
2044 	}
2045 
2046 	extwriter_counter_dec(cur_trans, trans->type);
2047 
2048 	ret = btrfs_start_delalloc_flush(fs_info);
2049 	if (ret)
2050 		goto cleanup_transaction;
2051 
2052 	ret = btrfs_run_delayed_items(trans, root);
2053 	if (ret)
2054 		goto cleanup_transaction;
2055 
2056 	wait_event(cur_trans->writer_wait,
2057 		   extwriter_counter_read(cur_trans) == 0);
2058 
2059 	/* some pending stuffs might be added after the previous flush. */
2060 	ret = btrfs_run_delayed_items(trans, root);
2061 	if (ret)
2062 		goto cleanup_transaction;
2063 
2064 	btrfs_wait_delalloc_flush(fs_info);
2065 
2066 	btrfs_wait_pending_ordered(cur_trans);
2067 
2068 	btrfs_scrub_pause(root);
2069 	/*
2070 	 * Ok now we need to make sure to block out any other joins while we
2071 	 * commit the transaction.  We could have started a join before setting
2072 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2073 	 */
2074 	spin_lock(&fs_info->trans_lock);
2075 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2076 	spin_unlock(&fs_info->trans_lock);
2077 	wait_event(cur_trans->writer_wait,
2078 		   atomic_read(&cur_trans->num_writers) == 1);
2079 
2080 	/* ->aborted might be set after the previous check, so check it */
2081 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2082 		ret = cur_trans->aborted;
2083 		goto scrub_continue;
2084 	}
2085 	/*
2086 	 * the reloc mutex makes sure that we stop
2087 	 * the balancing code from coming in and moving
2088 	 * extents around in the middle of the commit
2089 	 */
2090 	mutex_lock(&fs_info->reloc_mutex);
2091 
2092 	/*
2093 	 * We needn't worry about the delayed items because we will
2094 	 * deal with them in create_pending_snapshot(), which is the
2095 	 * core function of the snapshot creation.
2096 	 */
2097 	ret = create_pending_snapshots(trans, fs_info);
2098 	if (ret) {
2099 		mutex_unlock(&fs_info->reloc_mutex);
2100 		goto scrub_continue;
2101 	}
2102 
2103 	/*
2104 	 * We insert the dir indexes of the snapshots and update the inode
2105 	 * of the snapshots' parents after the snapshot creation, so there
2106 	 * are some delayed items which are not dealt with. Now deal with
2107 	 * them.
2108 	 *
2109 	 * We needn't worry that this operation will corrupt the snapshots,
2110 	 * because all the tree which are snapshoted will be forced to COW
2111 	 * the nodes and leaves.
2112 	 */
2113 	ret = btrfs_run_delayed_items(trans, root);
2114 	if (ret) {
2115 		mutex_unlock(&fs_info->reloc_mutex);
2116 		goto scrub_continue;
2117 	}
2118 
2119 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2120 	if (ret) {
2121 		mutex_unlock(&fs_info->reloc_mutex);
2122 		goto scrub_continue;
2123 	}
2124 
2125 	/* Reocrd old roots for later qgroup accounting */
2126 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
2127 	if (ret) {
2128 		mutex_unlock(&fs_info->reloc_mutex);
2129 		goto scrub_continue;
2130 	}
2131 
2132 	/*
2133 	 * make sure none of the code above managed to slip in a
2134 	 * delayed item
2135 	 */
2136 	btrfs_assert_delayed_root_empty(fs_info);
2137 
2138 	WARN_ON(cur_trans != trans->transaction);
2139 
2140 	/* btrfs_commit_tree_roots is responsible for getting the
2141 	 * various roots consistent with each other.  Every pointer
2142 	 * in the tree of tree roots has to point to the most up to date
2143 	 * root for every subvolume and other tree.  So, we have to keep
2144 	 * the tree logging code from jumping in and changing any
2145 	 * of the trees.
2146 	 *
2147 	 * At this point in the commit, there can't be any tree-log
2148 	 * writers, but a little lower down we drop the trans mutex
2149 	 * and let new people in.  By holding the tree_log_mutex
2150 	 * from now until after the super is written, we avoid races
2151 	 * with the tree-log code.
2152 	 */
2153 	mutex_lock(&fs_info->tree_log_mutex);
2154 
2155 	ret = commit_fs_roots(trans, fs_info);
2156 	if (ret) {
2157 		mutex_unlock(&fs_info->tree_log_mutex);
2158 		mutex_unlock(&fs_info->reloc_mutex);
2159 		goto scrub_continue;
2160 	}
2161 
2162 	/*
2163 	 * Since the transaction is done, we can apply the pending changes
2164 	 * before the next transaction.
2165 	 */
2166 	btrfs_apply_pending_changes(fs_info);
2167 
2168 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2169 	 * safe to free the root of tree log roots
2170 	 */
2171 	btrfs_free_log_root_tree(trans, fs_info);
2172 
2173 	/*
2174 	 * Since fs roots are all committed, we can get a quite accurate
2175 	 * new_roots. So let's do quota accounting.
2176 	 */
2177 	ret = btrfs_qgroup_account_extents(trans, fs_info);
2178 	if (ret < 0) {
2179 		mutex_unlock(&fs_info->tree_log_mutex);
2180 		mutex_unlock(&fs_info->reloc_mutex);
2181 		goto scrub_continue;
2182 	}
2183 
2184 	ret = commit_cowonly_roots(trans, root);
2185 	if (ret) {
2186 		mutex_unlock(&fs_info->tree_log_mutex);
2187 		mutex_unlock(&fs_info->reloc_mutex);
2188 		goto scrub_continue;
2189 	}
2190 
2191 	/*
2192 	 * The tasks which save the space cache and inode cache may also
2193 	 * update ->aborted, check it.
2194 	 */
2195 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2196 		ret = cur_trans->aborted;
2197 		mutex_unlock(&fs_info->tree_log_mutex);
2198 		mutex_unlock(&fs_info->reloc_mutex);
2199 		goto scrub_continue;
2200 	}
2201 
2202 	btrfs_prepare_extent_commit(trans, root);
2203 
2204 	cur_trans = fs_info->running_transaction;
2205 
2206 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2207 			    fs_info->tree_root->node);
2208 	list_add_tail(&fs_info->tree_root->dirty_list,
2209 		      &cur_trans->switch_commits);
2210 
2211 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2212 			    fs_info->chunk_root->node);
2213 	list_add_tail(&fs_info->chunk_root->dirty_list,
2214 		      &cur_trans->switch_commits);
2215 
2216 	switch_commit_roots(cur_trans, fs_info);
2217 
2218 	assert_qgroups_uptodate(trans);
2219 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2220 	ASSERT(list_empty(&cur_trans->io_bgs));
2221 	update_super_roots(root);
2222 
2223 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2224 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2225 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2226 	       sizeof(*fs_info->super_copy));
2227 
2228 	btrfs_update_commit_device_size(fs_info);
2229 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2230 
2231 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2232 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2233 
2234 	btrfs_trans_release_chunk_metadata(trans);
2235 
2236 	spin_lock(&fs_info->trans_lock);
2237 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2238 	fs_info->running_transaction = NULL;
2239 	spin_unlock(&fs_info->trans_lock);
2240 	mutex_unlock(&fs_info->reloc_mutex);
2241 
2242 	wake_up(&fs_info->transaction_wait);
2243 
2244 	ret = btrfs_write_and_wait_transaction(trans, root);
2245 	if (ret) {
2246 		btrfs_handle_fs_error(fs_info, ret,
2247 				      "Error while writing out transaction");
2248 		mutex_unlock(&fs_info->tree_log_mutex);
2249 		goto scrub_continue;
2250 	}
2251 
2252 	ret = write_ctree_super(trans, root, 0);
2253 	if (ret) {
2254 		mutex_unlock(&fs_info->tree_log_mutex);
2255 		goto scrub_continue;
2256 	}
2257 
2258 	/*
2259 	 * the super is written, we can safely allow the tree-loggers
2260 	 * to go about their business
2261 	 */
2262 	mutex_unlock(&fs_info->tree_log_mutex);
2263 
2264 	btrfs_finish_extent_commit(trans, root);
2265 
2266 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2267 		btrfs_clear_space_info_full(fs_info);
2268 
2269 	fs_info->last_trans_committed = cur_trans->transid;
2270 	/*
2271 	 * We needn't acquire the lock here because there is no other task
2272 	 * which can change it.
2273 	 */
2274 	cur_trans->state = TRANS_STATE_COMPLETED;
2275 	wake_up(&cur_trans->commit_wait);
2276 
2277 	spin_lock(&fs_info->trans_lock);
2278 	list_del_init(&cur_trans->list);
2279 	spin_unlock(&fs_info->trans_lock);
2280 
2281 	btrfs_put_transaction(cur_trans);
2282 	btrfs_put_transaction(cur_trans);
2283 
2284 	if (trans->type & __TRANS_FREEZABLE)
2285 		sb_end_intwrite(fs_info->sb);
2286 
2287 	trace_btrfs_transaction_commit(root);
2288 
2289 	btrfs_scrub_continue(root);
2290 
2291 	if (current->journal_info == trans)
2292 		current->journal_info = NULL;
2293 
2294 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2295 
2296 	/*
2297 	 * If fs has been frozen, we can not handle delayed iputs, otherwise
2298 	 * it'll result in deadlock about SB_FREEZE_FS.
2299 	 */
2300 	if (current != fs_info->transaction_kthread &&
2301 	    current != fs_info->cleaner_kthread && !fs_info->fs_frozen)
2302 		btrfs_run_delayed_iputs(root);
2303 
2304 	return ret;
2305 
2306 scrub_continue:
2307 	btrfs_scrub_continue(root);
2308 cleanup_transaction:
2309 	btrfs_trans_release_metadata(trans, root);
2310 	btrfs_trans_release_chunk_metadata(trans);
2311 	trans->block_rsv = NULL;
2312 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2313 	if (current->journal_info == trans)
2314 		current->journal_info = NULL;
2315 	cleanup_transaction(trans, root, ret);
2316 
2317 	return ret;
2318 }
2319 
2320 /*
2321  * return < 0 if error
2322  * 0 if there are no more dead_roots at the time of call
2323  * 1 there are more to be processed, call me again
2324  *
2325  * The return value indicates there are certainly more snapshots to delete, but
2326  * if there comes a new one during processing, it may return 0. We don't mind,
2327  * because btrfs_commit_super will poke cleaner thread and it will process it a
2328  * few seconds later.
2329  */
2330 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2331 {
2332 	int ret;
2333 	struct btrfs_fs_info *fs_info = root->fs_info;
2334 
2335 	spin_lock(&fs_info->trans_lock);
2336 	if (list_empty(&fs_info->dead_roots)) {
2337 		spin_unlock(&fs_info->trans_lock);
2338 		return 0;
2339 	}
2340 	root = list_first_entry(&fs_info->dead_roots,
2341 			struct btrfs_root, root_list);
2342 	list_del_init(&root->root_list);
2343 	spin_unlock(&fs_info->trans_lock);
2344 
2345 	btrfs_debug(fs_info, "cleaner removing %llu", root->objectid);
2346 
2347 	btrfs_kill_all_delayed_nodes(root);
2348 
2349 	if (btrfs_header_backref_rev(root->node) <
2350 			BTRFS_MIXED_BACKREF_REV)
2351 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2352 	else
2353 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2354 
2355 	return (ret < 0) ? 0 : 1;
2356 }
2357 
2358 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2359 {
2360 	unsigned long prev;
2361 	unsigned long bit;
2362 
2363 	prev = xchg(&fs_info->pending_changes, 0);
2364 	if (!prev)
2365 		return;
2366 
2367 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2368 	if (prev & bit)
2369 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2370 	prev &= ~bit;
2371 
2372 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2373 	if (prev & bit)
2374 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2375 	prev &= ~bit;
2376 
2377 	bit = 1 << BTRFS_PENDING_COMMIT;
2378 	if (prev & bit)
2379 		btrfs_debug(fs_info, "pending commit done");
2380 	prev &= ~bit;
2381 
2382 	if (prev)
2383 		btrfs_warn(fs_info,
2384 			"unknown pending changes left 0x%lx, ignoring", prev);
2385 }
2386