1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 btrfs_err(transaction->fs_info, 69 "pending csums is %llu", 70 transaction->delayed_refs.pending_csums); 71 while (!list_empty(&transaction->pending_chunks)) { 72 struct extent_map *em; 73 74 em = list_first_entry(&transaction->pending_chunks, 75 struct extent_map, list); 76 list_del_init(&em->list); 77 free_extent_map(em); 78 } 79 /* 80 * If any block groups are found in ->deleted_bgs then it's 81 * because the transaction was aborted and a commit did not 82 * happen (things failed before writing the new superblock 83 * and calling btrfs_finish_extent_commit()), so we can not 84 * discard the physical locations of the block groups. 85 */ 86 while (!list_empty(&transaction->deleted_bgs)) { 87 struct btrfs_block_group_cache *cache; 88 89 cache = list_first_entry(&transaction->deleted_bgs, 90 struct btrfs_block_group_cache, 91 bg_list); 92 list_del_init(&cache->bg_list); 93 btrfs_put_block_group_trimming(cache); 94 btrfs_put_block_group(cache); 95 } 96 kmem_cache_free(btrfs_transaction_cachep, transaction); 97 } 98 } 99 100 static void clear_btree_io_tree(struct extent_io_tree *tree) 101 { 102 spin_lock(&tree->lock); 103 /* 104 * Do a single barrier for the waitqueue_active check here, the state 105 * of the waitqueue should not change once clear_btree_io_tree is 106 * called. 107 */ 108 smp_mb(); 109 while (!RB_EMPTY_ROOT(&tree->state)) { 110 struct rb_node *node; 111 struct extent_state *state; 112 113 node = rb_first(&tree->state); 114 state = rb_entry(node, struct extent_state, rb_node); 115 rb_erase(&state->rb_node, &tree->state); 116 RB_CLEAR_NODE(&state->rb_node); 117 /* 118 * btree io trees aren't supposed to have tasks waiting for 119 * changes in the flags of extent states ever. 120 */ 121 ASSERT(!waitqueue_active(&state->wq)); 122 free_extent_state(state); 123 124 cond_resched_lock(&tree->lock); 125 } 126 spin_unlock(&tree->lock); 127 } 128 129 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 130 struct btrfs_fs_info *fs_info) 131 { 132 struct btrfs_root *root, *tmp; 133 134 down_write(&fs_info->commit_root_sem); 135 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 136 dirty_list) { 137 list_del_init(&root->dirty_list); 138 free_extent_buffer(root->commit_root); 139 root->commit_root = btrfs_root_node(root); 140 if (is_fstree(root->objectid)) 141 btrfs_unpin_free_ino(root); 142 clear_btree_io_tree(&root->dirty_log_pages); 143 } 144 145 /* We can free old roots now. */ 146 spin_lock(&trans->dropped_roots_lock); 147 while (!list_empty(&trans->dropped_roots)) { 148 root = list_first_entry(&trans->dropped_roots, 149 struct btrfs_root, root_list); 150 list_del_init(&root->root_list); 151 spin_unlock(&trans->dropped_roots_lock); 152 btrfs_drop_and_free_fs_root(fs_info, root); 153 spin_lock(&trans->dropped_roots_lock); 154 } 155 spin_unlock(&trans->dropped_roots_lock); 156 up_write(&fs_info->commit_root_sem); 157 } 158 159 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 160 unsigned int type) 161 { 162 if (type & TRANS_EXTWRITERS) 163 atomic_inc(&trans->num_extwriters); 164 } 165 166 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 167 unsigned int type) 168 { 169 if (type & TRANS_EXTWRITERS) 170 atomic_dec(&trans->num_extwriters); 171 } 172 173 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 174 unsigned int type) 175 { 176 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 177 } 178 179 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 180 { 181 return atomic_read(&trans->num_extwriters); 182 } 183 184 /* 185 * either allocate a new transaction or hop into the existing one 186 */ 187 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 188 { 189 struct btrfs_transaction *cur_trans; 190 struct btrfs_fs_info *fs_info = root->fs_info; 191 192 spin_lock(&fs_info->trans_lock); 193 loop: 194 /* The file system has been taken offline. No new transactions. */ 195 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 196 spin_unlock(&fs_info->trans_lock); 197 return -EROFS; 198 } 199 200 cur_trans = fs_info->running_transaction; 201 if (cur_trans) { 202 if (cur_trans->aborted) { 203 spin_unlock(&fs_info->trans_lock); 204 return cur_trans->aborted; 205 } 206 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 207 spin_unlock(&fs_info->trans_lock); 208 return -EBUSY; 209 } 210 atomic_inc(&cur_trans->use_count); 211 atomic_inc(&cur_trans->num_writers); 212 extwriter_counter_inc(cur_trans, type); 213 spin_unlock(&fs_info->trans_lock); 214 return 0; 215 } 216 spin_unlock(&fs_info->trans_lock); 217 218 /* 219 * If we are ATTACH, we just want to catch the current transaction, 220 * and commit it. If there is no transaction, just return ENOENT. 221 */ 222 if (type == TRANS_ATTACH) 223 return -ENOENT; 224 225 /* 226 * JOIN_NOLOCK only happens during the transaction commit, so 227 * it is impossible that ->running_transaction is NULL 228 */ 229 BUG_ON(type == TRANS_JOIN_NOLOCK); 230 231 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 232 if (!cur_trans) 233 return -ENOMEM; 234 235 spin_lock(&fs_info->trans_lock); 236 if (fs_info->running_transaction) { 237 /* 238 * someone started a transaction after we unlocked. Make sure 239 * to redo the checks above 240 */ 241 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 242 goto loop; 243 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 244 spin_unlock(&fs_info->trans_lock); 245 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 246 return -EROFS; 247 } 248 249 cur_trans->fs_info = fs_info; 250 atomic_set(&cur_trans->num_writers, 1); 251 extwriter_counter_init(cur_trans, type); 252 init_waitqueue_head(&cur_trans->writer_wait); 253 init_waitqueue_head(&cur_trans->commit_wait); 254 init_waitqueue_head(&cur_trans->pending_wait); 255 cur_trans->state = TRANS_STATE_RUNNING; 256 /* 257 * One for this trans handle, one so it will live on until we 258 * commit the transaction. 259 */ 260 atomic_set(&cur_trans->use_count, 2); 261 atomic_set(&cur_trans->pending_ordered, 0); 262 cur_trans->flags = 0; 263 cur_trans->start_time = get_seconds(); 264 265 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 266 267 cur_trans->delayed_refs.href_root = RB_ROOT; 268 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 269 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 270 271 /* 272 * although the tree mod log is per file system and not per transaction, 273 * the log must never go across transaction boundaries. 274 */ 275 smp_mb(); 276 if (!list_empty(&fs_info->tree_mod_seq_list)) 277 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 278 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 279 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 280 atomic64_set(&fs_info->tree_mod_seq, 0); 281 282 spin_lock_init(&cur_trans->delayed_refs.lock); 283 284 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 285 INIT_LIST_HEAD(&cur_trans->pending_chunks); 286 INIT_LIST_HEAD(&cur_trans->switch_commits); 287 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 288 INIT_LIST_HEAD(&cur_trans->io_bgs); 289 INIT_LIST_HEAD(&cur_trans->dropped_roots); 290 mutex_init(&cur_trans->cache_write_mutex); 291 cur_trans->num_dirty_bgs = 0; 292 spin_lock_init(&cur_trans->dirty_bgs_lock); 293 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 294 spin_lock_init(&cur_trans->dropped_roots_lock); 295 list_add_tail(&cur_trans->list, &fs_info->trans_list); 296 extent_io_tree_init(&cur_trans->dirty_pages, 297 fs_info->btree_inode->i_mapping); 298 fs_info->generation++; 299 cur_trans->transid = fs_info->generation; 300 fs_info->running_transaction = cur_trans; 301 cur_trans->aborted = 0; 302 spin_unlock(&fs_info->trans_lock); 303 304 return 0; 305 } 306 307 /* 308 * this does all the record keeping required to make sure that a reference 309 * counted root is properly recorded in a given transaction. This is required 310 * to make sure the old root from before we joined the transaction is deleted 311 * when the transaction commits 312 */ 313 static int record_root_in_trans(struct btrfs_trans_handle *trans, 314 struct btrfs_root *root, 315 int force) 316 { 317 struct btrfs_fs_info *fs_info = root->fs_info; 318 319 if ((test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 320 root->last_trans < trans->transid) || force) { 321 WARN_ON(root == fs_info->extent_root); 322 WARN_ON(root->commit_root != root->node); 323 324 /* 325 * see below for IN_TRANS_SETUP usage rules 326 * we have the reloc mutex held now, so there 327 * is only one writer in this function 328 */ 329 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 330 331 /* make sure readers find IN_TRANS_SETUP before 332 * they find our root->last_trans update 333 */ 334 smp_wmb(); 335 336 spin_lock(&fs_info->fs_roots_radix_lock); 337 if (root->last_trans == trans->transid && !force) { 338 spin_unlock(&fs_info->fs_roots_radix_lock); 339 return 0; 340 } 341 radix_tree_tag_set(&fs_info->fs_roots_radix, 342 (unsigned long)root->root_key.objectid, 343 BTRFS_ROOT_TRANS_TAG); 344 spin_unlock(&fs_info->fs_roots_radix_lock); 345 root->last_trans = trans->transid; 346 347 /* this is pretty tricky. We don't want to 348 * take the relocation lock in btrfs_record_root_in_trans 349 * unless we're really doing the first setup for this root in 350 * this transaction. 351 * 352 * Normally we'd use root->last_trans as a flag to decide 353 * if we want to take the expensive mutex. 354 * 355 * But, we have to set root->last_trans before we 356 * init the relocation root, otherwise, we trip over warnings 357 * in ctree.c. The solution used here is to flag ourselves 358 * with root IN_TRANS_SETUP. When this is 1, we're still 359 * fixing up the reloc trees and everyone must wait. 360 * 361 * When this is zero, they can trust root->last_trans and fly 362 * through btrfs_record_root_in_trans without having to take the 363 * lock. smp_wmb() makes sure that all the writes above are 364 * done before we pop in the zero below 365 */ 366 btrfs_init_reloc_root(trans, root); 367 smp_mb__before_atomic(); 368 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 369 } 370 return 0; 371 } 372 373 374 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 375 struct btrfs_root *root) 376 { 377 struct btrfs_fs_info *fs_info = root->fs_info; 378 struct btrfs_transaction *cur_trans = trans->transaction; 379 380 /* Add ourselves to the transaction dropped list */ 381 spin_lock(&cur_trans->dropped_roots_lock); 382 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 383 spin_unlock(&cur_trans->dropped_roots_lock); 384 385 /* Make sure we don't try to update the root at commit time */ 386 spin_lock(&fs_info->fs_roots_radix_lock); 387 radix_tree_tag_clear(&fs_info->fs_roots_radix, 388 (unsigned long)root->root_key.objectid, 389 BTRFS_ROOT_TRANS_TAG); 390 spin_unlock(&fs_info->fs_roots_radix_lock); 391 } 392 393 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 394 struct btrfs_root *root) 395 { 396 struct btrfs_fs_info *fs_info = root->fs_info; 397 398 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 399 return 0; 400 401 /* 402 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 403 * and barriers 404 */ 405 smp_rmb(); 406 if (root->last_trans == trans->transid && 407 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 408 return 0; 409 410 mutex_lock(&fs_info->reloc_mutex); 411 record_root_in_trans(trans, root, 0); 412 mutex_unlock(&fs_info->reloc_mutex); 413 414 return 0; 415 } 416 417 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 418 { 419 return (trans->state >= TRANS_STATE_BLOCKED && 420 trans->state < TRANS_STATE_UNBLOCKED && 421 !trans->aborted); 422 } 423 424 /* wait for commit against the current transaction to become unblocked 425 * when this is done, it is safe to start a new transaction, but the current 426 * transaction might not be fully on disk. 427 */ 428 static void wait_current_trans(struct btrfs_root *root) 429 { 430 struct btrfs_fs_info *fs_info = root->fs_info; 431 struct btrfs_transaction *cur_trans; 432 433 spin_lock(&fs_info->trans_lock); 434 cur_trans = fs_info->running_transaction; 435 if (cur_trans && is_transaction_blocked(cur_trans)) { 436 atomic_inc(&cur_trans->use_count); 437 spin_unlock(&fs_info->trans_lock); 438 439 wait_event(fs_info->transaction_wait, 440 cur_trans->state >= TRANS_STATE_UNBLOCKED || 441 cur_trans->aborted); 442 btrfs_put_transaction(cur_trans); 443 } else { 444 spin_unlock(&fs_info->trans_lock); 445 } 446 } 447 448 static int may_wait_transaction(struct btrfs_root *root, int type) 449 { 450 struct btrfs_fs_info *fs_info = root->fs_info; 451 452 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 453 return 0; 454 455 if (type == TRANS_USERSPACE) 456 return 1; 457 458 if (type == TRANS_START && 459 !atomic_read(&fs_info->open_ioctl_trans)) 460 return 1; 461 462 return 0; 463 } 464 465 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 466 { 467 struct btrfs_fs_info *fs_info = root->fs_info; 468 469 if (!fs_info->reloc_ctl || 470 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 471 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 472 root->reloc_root) 473 return false; 474 475 return true; 476 } 477 478 static struct btrfs_trans_handle * 479 start_transaction(struct btrfs_root *root, unsigned int num_items, 480 unsigned int type, enum btrfs_reserve_flush_enum flush) 481 { 482 struct btrfs_fs_info *fs_info = root->fs_info; 483 484 struct btrfs_trans_handle *h; 485 struct btrfs_transaction *cur_trans; 486 u64 num_bytes = 0; 487 u64 qgroup_reserved = 0; 488 bool reloc_reserved = false; 489 int ret; 490 491 /* Send isn't supposed to start transactions. */ 492 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 493 494 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 495 return ERR_PTR(-EROFS); 496 497 if (current->journal_info) { 498 WARN_ON(type & TRANS_EXTWRITERS); 499 h = current->journal_info; 500 h->use_count++; 501 WARN_ON(h->use_count > 2); 502 h->orig_rsv = h->block_rsv; 503 h->block_rsv = NULL; 504 goto got_it; 505 } 506 507 /* 508 * Do the reservation before we join the transaction so we can do all 509 * the appropriate flushing if need be. 510 */ 511 if (num_items > 0 && root != fs_info->chunk_root) { 512 qgroup_reserved = num_items * fs_info->nodesize; 513 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 514 if (ret) 515 return ERR_PTR(ret); 516 517 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 518 /* 519 * Do the reservation for the relocation root creation 520 */ 521 if (need_reserve_reloc_root(root)) { 522 num_bytes += fs_info->nodesize; 523 reloc_reserved = true; 524 } 525 526 ret = btrfs_block_rsv_add(root, &fs_info->trans_block_rsv, 527 num_bytes, flush); 528 if (ret) 529 goto reserve_fail; 530 } 531 again: 532 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 533 if (!h) { 534 ret = -ENOMEM; 535 goto alloc_fail; 536 } 537 538 /* 539 * If we are JOIN_NOLOCK we're already committing a transaction and 540 * waiting on this guy, so we don't need to do the sb_start_intwrite 541 * because we're already holding a ref. We need this because we could 542 * have raced in and did an fsync() on a file which can kick a commit 543 * and then we deadlock with somebody doing a freeze. 544 * 545 * If we are ATTACH, it means we just want to catch the current 546 * transaction and commit it, so we needn't do sb_start_intwrite(). 547 */ 548 if (type & __TRANS_FREEZABLE) 549 sb_start_intwrite(fs_info->sb); 550 551 if (may_wait_transaction(root, type)) 552 wait_current_trans(root); 553 554 do { 555 ret = join_transaction(root, type); 556 if (ret == -EBUSY) { 557 wait_current_trans(root); 558 if (unlikely(type == TRANS_ATTACH)) 559 ret = -ENOENT; 560 } 561 } while (ret == -EBUSY); 562 563 if (ret < 0) 564 goto join_fail; 565 566 cur_trans = fs_info->running_transaction; 567 568 h->transid = cur_trans->transid; 569 h->transaction = cur_trans; 570 h->root = root; 571 h->use_count = 1; 572 h->fs_info = root->fs_info; 573 574 h->type = type; 575 h->can_flush_pending_bgs = true; 576 INIT_LIST_HEAD(&h->qgroup_ref_list); 577 INIT_LIST_HEAD(&h->new_bgs); 578 579 smp_mb(); 580 if (cur_trans->state >= TRANS_STATE_BLOCKED && 581 may_wait_transaction(root, type)) { 582 current->journal_info = h; 583 btrfs_commit_transaction(h, root); 584 goto again; 585 } 586 587 if (num_bytes) { 588 trace_btrfs_space_reservation(fs_info, "transaction", 589 h->transid, num_bytes, 1); 590 h->block_rsv = &fs_info->trans_block_rsv; 591 h->bytes_reserved = num_bytes; 592 h->reloc_reserved = reloc_reserved; 593 } 594 595 got_it: 596 btrfs_record_root_in_trans(h, root); 597 598 if (!current->journal_info && type != TRANS_USERSPACE) 599 current->journal_info = h; 600 return h; 601 602 join_fail: 603 if (type & __TRANS_FREEZABLE) 604 sb_end_intwrite(fs_info->sb); 605 kmem_cache_free(btrfs_trans_handle_cachep, h); 606 alloc_fail: 607 if (num_bytes) 608 btrfs_block_rsv_release(root, &fs_info->trans_block_rsv, 609 num_bytes); 610 reserve_fail: 611 btrfs_qgroup_free_meta(root, qgroup_reserved); 612 return ERR_PTR(ret); 613 } 614 615 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 616 unsigned int num_items) 617 { 618 return start_transaction(root, num_items, TRANS_START, 619 BTRFS_RESERVE_FLUSH_ALL); 620 } 621 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 622 struct btrfs_root *root, 623 unsigned int num_items, 624 int min_factor) 625 { 626 struct btrfs_fs_info *fs_info = root->fs_info; 627 struct btrfs_trans_handle *trans; 628 u64 num_bytes; 629 int ret; 630 631 trans = btrfs_start_transaction(root, num_items); 632 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC) 633 return trans; 634 635 trans = btrfs_start_transaction(root, 0); 636 if (IS_ERR(trans)) 637 return trans; 638 639 num_bytes = btrfs_calc_trans_metadata_size(fs_info, num_items); 640 ret = btrfs_cond_migrate_bytes(fs_info, &fs_info->trans_block_rsv, 641 num_bytes, min_factor); 642 if (ret) { 643 btrfs_end_transaction(trans, root); 644 return ERR_PTR(ret); 645 } 646 647 trans->block_rsv = &fs_info->trans_block_rsv; 648 trans->bytes_reserved = num_bytes; 649 trace_btrfs_space_reservation(fs_info, "transaction", 650 trans->transid, num_bytes, 1); 651 652 return trans; 653 } 654 655 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 656 struct btrfs_root *root, 657 unsigned int num_items) 658 { 659 return start_transaction(root, num_items, TRANS_START, 660 BTRFS_RESERVE_FLUSH_LIMIT); 661 } 662 663 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 664 { 665 return start_transaction(root, 0, TRANS_JOIN, 666 BTRFS_RESERVE_NO_FLUSH); 667 } 668 669 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 670 { 671 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 672 BTRFS_RESERVE_NO_FLUSH); 673 } 674 675 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 676 { 677 return start_transaction(root, 0, TRANS_USERSPACE, 678 BTRFS_RESERVE_NO_FLUSH); 679 } 680 681 /* 682 * btrfs_attach_transaction() - catch the running transaction 683 * 684 * It is used when we want to commit the current the transaction, but 685 * don't want to start a new one. 686 * 687 * Note: If this function return -ENOENT, it just means there is no 688 * running transaction. But it is possible that the inactive transaction 689 * is still in the memory, not fully on disk. If you hope there is no 690 * inactive transaction in the fs when -ENOENT is returned, you should 691 * invoke 692 * btrfs_attach_transaction_barrier() 693 */ 694 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 695 { 696 return start_transaction(root, 0, TRANS_ATTACH, 697 BTRFS_RESERVE_NO_FLUSH); 698 } 699 700 /* 701 * btrfs_attach_transaction_barrier() - catch the running transaction 702 * 703 * It is similar to the above function, the differentia is this one 704 * will wait for all the inactive transactions until they fully 705 * complete. 706 */ 707 struct btrfs_trans_handle * 708 btrfs_attach_transaction_barrier(struct btrfs_root *root) 709 { 710 struct btrfs_trans_handle *trans; 711 712 trans = start_transaction(root, 0, TRANS_ATTACH, 713 BTRFS_RESERVE_NO_FLUSH); 714 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 715 btrfs_wait_for_commit(root, 0); 716 717 return trans; 718 } 719 720 /* wait for a transaction commit to be fully complete */ 721 static noinline void wait_for_commit(struct btrfs_root *root, 722 struct btrfs_transaction *commit) 723 { 724 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 725 } 726 727 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 728 { 729 struct btrfs_fs_info *fs_info = root->fs_info; 730 struct btrfs_transaction *cur_trans = NULL, *t; 731 int ret = 0; 732 733 if (transid) { 734 if (transid <= fs_info->last_trans_committed) 735 goto out; 736 737 /* find specified transaction */ 738 spin_lock(&fs_info->trans_lock); 739 list_for_each_entry(t, &fs_info->trans_list, list) { 740 if (t->transid == transid) { 741 cur_trans = t; 742 atomic_inc(&cur_trans->use_count); 743 ret = 0; 744 break; 745 } 746 if (t->transid > transid) { 747 ret = 0; 748 break; 749 } 750 } 751 spin_unlock(&fs_info->trans_lock); 752 753 /* 754 * The specified transaction doesn't exist, or we 755 * raced with btrfs_commit_transaction 756 */ 757 if (!cur_trans) { 758 if (transid > fs_info->last_trans_committed) 759 ret = -EINVAL; 760 goto out; 761 } 762 } else { 763 /* find newest transaction that is committing | committed */ 764 spin_lock(&fs_info->trans_lock); 765 list_for_each_entry_reverse(t, &fs_info->trans_list, 766 list) { 767 if (t->state >= TRANS_STATE_COMMIT_START) { 768 if (t->state == TRANS_STATE_COMPLETED) 769 break; 770 cur_trans = t; 771 atomic_inc(&cur_trans->use_count); 772 break; 773 } 774 } 775 spin_unlock(&fs_info->trans_lock); 776 if (!cur_trans) 777 goto out; /* nothing committing|committed */ 778 } 779 780 wait_for_commit(root, cur_trans); 781 btrfs_put_transaction(cur_trans); 782 out: 783 return ret; 784 } 785 786 void btrfs_throttle(struct btrfs_root *root) 787 { 788 struct btrfs_fs_info *fs_info = root->fs_info; 789 790 if (!atomic_read(&fs_info->open_ioctl_trans)) 791 wait_current_trans(root); 792 } 793 794 static int should_end_transaction(struct btrfs_trans_handle *trans, 795 struct btrfs_root *root) 796 { 797 struct btrfs_fs_info *fs_info = root->fs_info; 798 799 if (fs_info->global_block_rsv.space_info->full && 800 btrfs_check_space_for_delayed_refs(trans, root)) 801 return 1; 802 803 return !!btrfs_block_rsv_check(root, &fs_info->global_block_rsv, 5); 804 } 805 806 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 807 struct btrfs_root *root) 808 { 809 struct btrfs_transaction *cur_trans = trans->transaction; 810 int updates; 811 int err; 812 813 smp_mb(); 814 if (cur_trans->state >= TRANS_STATE_BLOCKED || 815 cur_trans->delayed_refs.flushing) 816 return 1; 817 818 updates = trans->delayed_ref_updates; 819 trans->delayed_ref_updates = 0; 820 if (updates) { 821 err = btrfs_run_delayed_refs(trans, root, updates * 2); 822 if (err) /* Error code will also eval true */ 823 return err; 824 } 825 826 return should_end_transaction(trans, root); 827 } 828 829 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 830 struct btrfs_root *root, int throttle) 831 { 832 struct btrfs_transaction *cur_trans = trans->transaction; 833 struct btrfs_fs_info *info = root->fs_info; 834 u64 transid = trans->transid; 835 unsigned long cur = trans->delayed_ref_updates; 836 int lock = (trans->type != TRANS_JOIN_NOLOCK); 837 int err = 0; 838 int must_run_delayed_refs = 0; 839 840 if (trans->use_count > 1) { 841 trans->use_count--; 842 trans->block_rsv = trans->orig_rsv; 843 return 0; 844 } 845 846 btrfs_trans_release_metadata(trans, root); 847 trans->block_rsv = NULL; 848 849 if (!list_empty(&trans->new_bgs)) 850 btrfs_create_pending_block_groups(trans, root); 851 852 trans->delayed_ref_updates = 0; 853 if (!trans->sync) { 854 must_run_delayed_refs = 855 btrfs_should_throttle_delayed_refs(trans, root); 856 cur = max_t(unsigned long, cur, 32); 857 858 /* 859 * don't make the caller wait if they are from a NOLOCK 860 * or ATTACH transaction, it will deadlock with commit 861 */ 862 if (must_run_delayed_refs == 1 && 863 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 864 must_run_delayed_refs = 2; 865 } 866 867 btrfs_trans_release_metadata(trans, root); 868 trans->block_rsv = NULL; 869 870 if (!list_empty(&trans->new_bgs)) 871 btrfs_create_pending_block_groups(trans, root); 872 873 btrfs_trans_release_chunk_metadata(trans); 874 875 if (lock && !atomic_read(&info->open_ioctl_trans) && 876 should_end_transaction(trans, root) && 877 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 878 spin_lock(&info->trans_lock); 879 if (cur_trans->state == TRANS_STATE_RUNNING) 880 cur_trans->state = TRANS_STATE_BLOCKED; 881 spin_unlock(&info->trans_lock); 882 } 883 884 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 885 if (throttle) 886 return btrfs_commit_transaction(trans, root); 887 else 888 wake_up_process(info->transaction_kthread); 889 } 890 891 if (trans->type & __TRANS_FREEZABLE) 892 sb_end_intwrite(info->sb); 893 894 WARN_ON(cur_trans != info->running_transaction); 895 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 896 atomic_dec(&cur_trans->num_writers); 897 extwriter_counter_dec(cur_trans, trans->type); 898 899 /* 900 * Make sure counter is updated before we wake up waiters. 901 */ 902 smp_mb(); 903 if (waitqueue_active(&cur_trans->writer_wait)) 904 wake_up(&cur_trans->writer_wait); 905 btrfs_put_transaction(cur_trans); 906 907 if (current->journal_info == trans) 908 current->journal_info = NULL; 909 910 if (throttle) 911 btrfs_run_delayed_iputs(root); 912 913 if (trans->aborted || 914 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 915 wake_up_process(info->transaction_kthread); 916 err = -EIO; 917 } 918 assert_qgroups_uptodate(trans); 919 920 kmem_cache_free(btrfs_trans_handle_cachep, trans); 921 if (must_run_delayed_refs) { 922 btrfs_async_run_delayed_refs(root, cur, transid, 923 must_run_delayed_refs == 1); 924 } 925 return err; 926 } 927 928 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 929 struct btrfs_root *root) 930 { 931 return __btrfs_end_transaction(trans, root, 0); 932 } 933 934 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 935 struct btrfs_root *root) 936 { 937 return __btrfs_end_transaction(trans, root, 1); 938 } 939 940 /* 941 * when btree blocks are allocated, they have some corresponding bits set for 942 * them in one of two extent_io trees. This is used to make sure all of 943 * those extents are sent to disk but does not wait on them 944 */ 945 int btrfs_write_marked_extents(struct btrfs_root *root, 946 struct extent_io_tree *dirty_pages, int mark) 947 { 948 int err = 0; 949 int werr = 0; 950 struct btrfs_fs_info *fs_info = root->fs_info; 951 struct address_space *mapping = fs_info->btree_inode->i_mapping; 952 struct extent_state *cached_state = NULL; 953 u64 start = 0; 954 u64 end; 955 956 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 957 mark, &cached_state)) { 958 bool wait_writeback = false; 959 960 err = convert_extent_bit(dirty_pages, start, end, 961 EXTENT_NEED_WAIT, 962 mark, &cached_state); 963 /* 964 * convert_extent_bit can return -ENOMEM, which is most of the 965 * time a temporary error. So when it happens, ignore the error 966 * and wait for writeback of this range to finish - because we 967 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 968 * to btrfs_wait_marked_extents() would not know that writeback 969 * for this range started and therefore wouldn't wait for it to 970 * finish - we don't want to commit a superblock that points to 971 * btree nodes/leafs for which writeback hasn't finished yet 972 * (and without errors). 973 * We cleanup any entries left in the io tree when committing 974 * the transaction (through clear_btree_io_tree()). 975 */ 976 if (err == -ENOMEM) { 977 err = 0; 978 wait_writeback = true; 979 } 980 if (!err) 981 err = filemap_fdatawrite_range(mapping, start, end); 982 if (err) 983 werr = err; 984 else if (wait_writeback) 985 werr = filemap_fdatawait_range(mapping, start, end); 986 free_extent_state(cached_state); 987 cached_state = NULL; 988 cond_resched(); 989 start = end + 1; 990 } 991 return werr; 992 } 993 994 /* 995 * when btree blocks are allocated, they have some corresponding bits set for 996 * them in one of two extent_io trees. This is used to make sure all of 997 * those extents are on disk for transaction or log commit. We wait 998 * on all the pages and clear them from the dirty pages state tree 999 */ 1000 int btrfs_wait_marked_extents(struct btrfs_root *root, 1001 struct extent_io_tree *dirty_pages, int mark) 1002 { 1003 int err = 0; 1004 int werr = 0; 1005 struct btrfs_fs_info *fs_info = root->fs_info; 1006 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1007 struct extent_state *cached_state = NULL; 1008 u64 start = 0; 1009 u64 end; 1010 bool errors = false; 1011 1012 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1013 EXTENT_NEED_WAIT, &cached_state)) { 1014 /* 1015 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1016 * When committing the transaction, we'll remove any entries 1017 * left in the io tree. For a log commit, we don't remove them 1018 * after committing the log because the tree can be accessed 1019 * concurrently - we do it only at transaction commit time when 1020 * it's safe to do it (through clear_btree_io_tree()). 1021 */ 1022 err = clear_extent_bit(dirty_pages, start, end, 1023 EXTENT_NEED_WAIT, 1024 0, 0, &cached_state, GFP_NOFS); 1025 if (err == -ENOMEM) 1026 err = 0; 1027 if (!err) 1028 err = filemap_fdatawait_range(mapping, start, end); 1029 if (err) 1030 werr = err; 1031 free_extent_state(cached_state); 1032 cached_state = NULL; 1033 cond_resched(); 1034 start = end + 1; 1035 } 1036 if (err) 1037 werr = err; 1038 1039 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 1040 if ((mark & EXTENT_DIRTY) && 1041 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1042 errors = true; 1043 1044 if ((mark & EXTENT_NEW) && 1045 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1046 errors = true; 1047 } else { 1048 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1049 errors = true; 1050 } 1051 1052 if (errors && !werr) 1053 werr = -EIO; 1054 1055 return werr; 1056 } 1057 1058 /* 1059 * when btree blocks are allocated, they have some corresponding bits set for 1060 * them in one of two extent_io trees. This is used to make sure all of 1061 * those extents are on disk for transaction or log commit 1062 */ 1063 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1064 struct extent_io_tree *dirty_pages, int mark) 1065 { 1066 int ret; 1067 int ret2; 1068 struct blk_plug plug; 1069 1070 blk_start_plug(&plug); 1071 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1072 blk_finish_plug(&plug); 1073 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1074 1075 if (ret) 1076 return ret; 1077 if (ret2) 1078 return ret2; 1079 return 0; 1080 } 1081 1082 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1083 struct btrfs_root *root) 1084 { 1085 int ret; 1086 1087 ret = btrfs_write_and_wait_marked_extents(root, 1088 &trans->transaction->dirty_pages, 1089 EXTENT_DIRTY); 1090 clear_btree_io_tree(&trans->transaction->dirty_pages); 1091 1092 return ret; 1093 } 1094 1095 /* 1096 * this is used to update the root pointer in the tree of tree roots. 1097 * 1098 * But, in the case of the extent allocation tree, updating the root 1099 * pointer may allocate blocks which may change the root of the extent 1100 * allocation tree. 1101 * 1102 * So, this loops and repeats and makes sure the cowonly root didn't 1103 * change while the root pointer was being updated in the metadata. 1104 */ 1105 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1106 struct btrfs_root *root) 1107 { 1108 int ret; 1109 u64 old_root_bytenr; 1110 u64 old_root_used; 1111 struct btrfs_fs_info *fs_info = root->fs_info; 1112 struct btrfs_root *tree_root = fs_info->tree_root; 1113 1114 old_root_used = btrfs_root_used(&root->root_item); 1115 1116 while (1) { 1117 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1118 if (old_root_bytenr == root->node->start && 1119 old_root_used == btrfs_root_used(&root->root_item)) 1120 break; 1121 1122 btrfs_set_root_node(&root->root_item, root->node); 1123 ret = btrfs_update_root(trans, tree_root, 1124 &root->root_key, 1125 &root->root_item); 1126 if (ret) 1127 return ret; 1128 1129 old_root_used = btrfs_root_used(&root->root_item); 1130 } 1131 1132 return 0; 1133 } 1134 1135 /* 1136 * update all the cowonly tree roots on disk 1137 * 1138 * The error handling in this function may not be obvious. Any of the 1139 * failures will cause the file system to go offline. We still need 1140 * to clean up the delayed refs. 1141 */ 1142 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1143 struct btrfs_root *root) 1144 { 1145 struct btrfs_fs_info *fs_info = root->fs_info; 1146 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1147 struct list_head *io_bgs = &trans->transaction->io_bgs; 1148 struct list_head *next; 1149 struct extent_buffer *eb; 1150 int ret; 1151 1152 eb = btrfs_lock_root_node(fs_info->tree_root); 1153 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1154 0, &eb); 1155 btrfs_tree_unlock(eb); 1156 free_extent_buffer(eb); 1157 1158 if (ret) 1159 return ret; 1160 1161 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1162 if (ret) 1163 return ret; 1164 1165 ret = btrfs_run_dev_stats(trans, fs_info); 1166 if (ret) 1167 return ret; 1168 ret = btrfs_run_dev_replace(trans, fs_info); 1169 if (ret) 1170 return ret; 1171 ret = btrfs_run_qgroups(trans, fs_info); 1172 if (ret) 1173 return ret; 1174 1175 ret = btrfs_setup_space_cache(trans, root); 1176 if (ret) 1177 return ret; 1178 1179 /* run_qgroups might have added some more refs */ 1180 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1181 if (ret) 1182 return ret; 1183 again: 1184 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1185 next = fs_info->dirty_cowonly_roots.next; 1186 list_del_init(next); 1187 root = list_entry(next, struct btrfs_root, dirty_list); 1188 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1189 1190 if (root != fs_info->extent_root) 1191 list_add_tail(&root->dirty_list, 1192 &trans->transaction->switch_commits); 1193 ret = update_cowonly_root(trans, root); 1194 if (ret) 1195 return ret; 1196 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1197 if (ret) 1198 return ret; 1199 } 1200 1201 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1202 ret = btrfs_write_dirty_block_groups(trans, root); 1203 if (ret) 1204 return ret; 1205 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1206 if (ret) 1207 return ret; 1208 } 1209 1210 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1211 goto again; 1212 1213 list_add_tail(&fs_info->extent_root->dirty_list, 1214 &trans->transaction->switch_commits); 1215 btrfs_after_dev_replace_commit(fs_info); 1216 1217 return 0; 1218 } 1219 1220 /* 1221 * dead roots are old snapshots that need to be deleted. This allocates 1222 * a dirty root struct and adds it into the list of dead roots that need to 1223 * be deleted 1224 */ 1225 void btrfs_add_dead_root(struct btrfs_root *root) 1226 { 1227 struct btrfs_fs_info *fs_info = root->fs_info; 1228 1229 spin_lock(&fs_info->trans_lock); 1230 if (list_empty(&root->root_list)) 1231 list_add_tail(&root->root_list, &fs_info->dead_roots); 1232 spin_unlock(&fs_info->trans_lock); 1233 } 1234 1235 /* 1236 * update all the cowonly tree roots on disk 1237 */ 1238 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1239 struct btrfs_fs_info *fs_info) 1240 { 1241 struct btrfs_root *gang[8]; 1242 int i; 1243 int ret; 1244 int err = 0; 1245 1246 spin_lock(&fs_info->fs_roots_radix_lock); 1247 while (1) { 1248 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1249 (void **)gang, 0, 1250 ARRAY_SIZE(gang), 1251 BTRFS_ROOT_TRANS_TAG); 1252 if (ret == 0) 1253 break; 1254 for (i = 0; i < ret; i++) { 1255 struct btrfs_root *root = gang[i]; 1256 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1257 (unsigned long)root->root_key.objectid, 1258 BTRFS_ROOT_TRANS_TAG); 1259 spin_unlock(&fs_info->fs_roots_radix_lock); 1260 1261 btrfs_free_log(trans, root); 1262 btrfs_update_reloc_root(trans, root); 1263 btrfs_orphan_commit_root(trans, root); 1264 1265 btrfs_save_ino_cache(root, trans); 1266 1267 /* see comments in should_cow_block() */ 1268 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1269 smp_mb__after_atomic(); 1270 1271 if (root->commit_root != root->node) { 1272 list_add_tail(&root->dirty_list, 1273 &trans->transaction->switch_commits); 1274 btrfs_set_root_node(&root->root_item, 1275 root->node); 1276 } 1277 1278 err = btrfs_update_root(trans, fs_info->tree_root, 1279 &root->root_key, 1280 &root->root_item); 1281 spin_lock(&fs_info->fs_roots_radix_lock); 1282 if (err) 1283 break; 1284 btrfs_qgroup_free_meta_all(root); 1285 } 1286 } 1287 spin_unlock(&fs_info->fs_roots_radix_lock); 1288 return err; 1289 } 1290 1291 /* 1292 * defrag a given btree. 1293 * Every leaf in the btree is read and defragged. 1294 */ 1295 int btrfs_defrag_root(struct btrfs_root *root) 1296 { 1297 struct btrfs_fs_info *info = root->fs_info; 1298 struct btrfs_trans_handle *trans; 1299 int ret; 1300 1301 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1302 return 0; 1303 1304 while (1) { 1305 trans = btrfs_start_transaction(root, 0); 1306 if (IS_ERR(trans)) 1307 return PTR_ERR(trans); 1308 1309 ret = btrfs_defrag_leaves(trans, root); 1310 1311 btrfs_end_transaction(trans, root); 1312 btrfs_btree_balance_dirty(info->tree_root); 1313 cond_resched(); 1314 1315 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1316 break; 1317 1318 if (btrfs_defrag_cancelled(info)) { 1319 btrfs_debug(info, "defrag_root cancelled"); 1320 ret = -EAGAIN; 1321 break; 1322 } 1323 } 1324 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1325 return ret; 1326 } 1327 1328 /* 1329 * Do all special snapshot related qgroup dirty hack. 1330 * 1331 * Will do all needed qgroup inherit and dirty hack like switch commit 1332 * roots inside one transaction and write all btree into disk, to make 1333 * qgroup works. 1334 */ 1335 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1336 struct btrfs_root *src, 1337 struct btrfs_root *parent, 1338 struct btrfs_qgroup_inherit *inherit, 1339 u64 dst_objectid) 1340 { 1341 struct btrfs_fs_info *fs_info = src->fs_info; 1342 int ret; 1343 1344 /* 1345 * Save some performance in the case that qgroups are not 1346 * enabled. If this check races with the ioctl, rescan will 1347 * kick in anyway. 1348 */ 1349 mutex_lock(&fs_info->qgroup_ioctl_lock); 1350 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) { 1351 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1352 return 0; 1353 } 1354 mutex_unlock(&fs_info->qgroup_ioctl_lock); 1355 1356 /* 1357 * We are going to commit transaction, see btrfs_commit_transaction() 1358 * comment for reason locking tree_log_mutex 1359 */ 1360 mutex_lock(&fs_info->tree_log_mutex); 1361 1362 ret = commit_fs_roots(trans, fs_info); 1363 if (ret) 1364 goto out; 1365 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1366 if (ret < 0) 1367 goto out; 1368 ret = btrfs_qgroup_account_extents(trans, fs_info); 1369 if (ret < 0) 1370 goto out; 1371 1372 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1373 ret = btrfs_qgroup_inherit(trans, fs_info, 1374 src->root_key.objectid, dst_objectid, 1375 inherit); 1376 if (ret < 0) 1377 goto out; 1378 1379 /* 1380 * Now we do a simplified commit transaction, which will: 1381 * 1) commit all subvolume and extent tree 1382 * To ensure all subvolume and extent tree have a valid 1383 * commit_root to accounting later insert_dir_item() 1384 * 2) write all btree blocks onto disk 1385 * This is to make sure later btree modification will be cowed 1386 * Or commit_root can be populated and cause wrong qgroup numbers 1387 * In this simplified commit, we don't really care about other trees 1388 * like chunk and root tree, as they won't affect qgroup. 1389 * And we don't write super to avoid half committed status. 1390 */ 1391 ret = commit_cowonly_roots(trans, src); 1392 if (ret) 1393 goto out; 1394 switch_commit_roots(trans->transaction, fs_info); 1395 ret = btrfs_write_and_wait_transaction(trans, src); 1396 if (ret) 1397 btrfs_handle_fs_error(fs_info, ret, 1398 "Error while writing out transaction for qgroup"); 1399 1400 out: 1401 mutex_unlock(&fs_info->tree_log_mutex); 1402 1403 /* 1404 * Force parent root to be updated, as we recorded it before so its 1405 * last_trans == cur_transid. 1406 * Or it won't be committed again onto disk after later 1407 * insert_dir_item() 1408 */ 1409 if (!ret) 1410 record_root_in_trans(trans, parent, 1); 1411 return ret; 1412 } 1413 1414 /* 1415 * new snapshots need to be created at a very specific time in the 1416 * transaction commit. This does the actual creation. 1417 * 1418 * Note: 1419 * If the error which may affect the commitment of the current transaction 1420 * happens, we should return the error number. If the error which just affect 1421 * the creation of the pending snapshots, just return 0. 1422 */ 1423 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1424 struct btrfs_fs_info *fs_info, 1425 struct btrfs_pending_snapshot *pending) 1426 { 1427 struct btrfs_key key; 1428 struct btrfs_root_item *new_root_item; 1429 struct btrfs_root *tree_root = fs_info->tree_root; 1430 struct btrfs_root *root = pending->root; 1431 struct btrfs_root *parent_root; 1432 struct btrfs_block_rsv *rsv; 1433 struct inode *parent_inode; 1434 struct btrfs_path *path; 1435 struct btrfs_dir_item *dir_item; 1436 struct dentry *dentry; 1437 struct extent_buffer *tmp; 1438 struct extent_buffer *old; 1439 struct timespec cur_time; 1440 int ret = 0; 1441 u64 to_reserve = 0; 1442 u64 index = 0; 1443 u64 objectid; 1444 u64 root_flags; 1445 uuid_le new_uuid; 1446 1447 ASSERT(pending->path); 1448 path = pending->path; 1449 1450 ASSERT(pending->root_item); 1451 new_root_item = pending->root_item; 1452 1453 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1454 if (pending->error) 1455 goto no_free_objectid; 1456 1457 /* 1458 * Make qgroup to skip current new snapshot's qgroupid, as it is 1459 * accounted by later btrfs_qgroup_inherit(). 1460 */ 1461 btrfs_set_skip_qgroup(trans, objectid); 1462 1463 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1464 1465 if (to_reserve > 0) { 1466 pending->error = btrfs_block_rsv_add(root, 1467 &pending->block_rsv, 1468 to_reserve, 1469 BTRFS_RESERVE_NO_FLUSH); 1470 if (pending->error) 1471 goto clear_skip_qgroup; 1472 } 1473 1474 key.objectid = objectid; 1475 key.offset = (u64)-1; 1476 key.type = BTRFS_ROOT_ITEM_KEY; 1477 1478 rsv = trans->block_rsv; 1479 trans->block_rsv = &pending->block_rsv; 1480 trans->bytes_reserved = trans->block_rsv->reserved; 1481 trace_btrfs_space_reservation(fs_info, "transaction", 1482 trans->transid, 1483 trans->bytes_reserved, 1); 1484 dentry = pending->dentry; 1485 parent_inode = pending->dir; 1486 parent_root = BTRFS_I(parent_inode)->root; 1487 record_root_in_trans(trans, parent_root, 0); 1488 1489 cur_time = current_time(parent_inode); 1490 1491 /* 1492 * insert the directory item 1493 */ 1494 ret = btrfs_set_inode_index(parent_inode, &index); 1495 BUG_ON(ret); /* -ENOMEM */ 1496 1497 /* check if there is a file/dir which has the same name. */ 1498 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1499 btrfs_ino(parent_inode), 1500 dentry->d_name.name, 1501 dentry->d_name.len, 0); 1502 if (dir_item != NULL && !IS_ERR(dir_item)) { 1503 pending->error = -EEXIST; 1504 goto dir_item_existed; 1505 } else if (IS_ERR(dir_item)) { 1506 ret = PTR_ERR(dir_item); 1507 btrfs_abort_transaction(trans, ret); 1508 goto fail; 1509 } 1510 btrfs_release_path(path); 1511 1512 /* 1513 * pull in the delayed directory update 1514 * and the delayed inode item 1515 * otherwise we corrupt the FS during 1516 * snapshot 1517 */ 1518 ret = btrfs_run_delayed_items(trans, root); 1519 if (ret) { /* Transaction aborted */ 1520 btrfs_abort_transaction(trans, ret); 1521 goto fail; 1522 } 1523 1524 record_root_in_trans(trans, root, 0); 1525 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1526 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1527 btrfs_check_and_init_root_item(new_root_item); 1528 1529 root_flags = btrfs_root_flags(new_root_item); 1530 if (pending->readonly) 1531 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1532 else 1533 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1534 btrfs_set_root_flags(new_root_item, root_flags); 1535 1536 btrfs_set_root_generation_v2(new_root_item, 1537 trans->transid); 1538 uuid_le_gen(&new_uuid); 1539 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1540 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1541 BTRFS_UUID_SIZE); 1542 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1543 memset(new_root_item->received_uuid, 0, 1544 sizeof(new_root_item->received_uuid)); 1545 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1546 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1547 btrfs_set_root_stransid(new_root_item, 0); 1548 btrfs_set_root_rtransid(new_root_item, 0); 1549 } 1550 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1551 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1552 btrfs_set_root_otransid(new_root_item, trans->transid); 1553 1554 old = btrfs_lock_root_node(root); 1555 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1556 if (ret) { 1557 btrfs_tree_unlock(old); 1558 free_extent_buffer(old); 1559 btrfs_abort_transaction(trans, ret); 1560 goto fail; 1561 } 1562 1563 btrfs_set_lock_blocking(old); 1564 1565 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1566 /* clean up in any case */ 1567 btrfs_tree_unlock(old); 1568 free_extent_buffer(old); 1569 if (ret) { 1570 btrfs_abort_transaction(trans, ret); 1571 goto fail; 1572 } 1573 /* see comments in should_cow_block() */ 1574 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1575 smp_wmb(); 1576 1577 btrfs_set_root_node(new_root_item, tmp); 1578 /* record when the snapshot was created in key.offset */ 1579 key.offset = trans->transid; 1580 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1581 btrfs_tree_unlock(tmp); 1582 free_extent_buffer(tmp); 1583 if (ret) { 1584 btrfs_abort_transaction(trans, ret); 1585 goto fail; 1586 } 1587 1588 /* 1589 * insert root back/forward references 1590 */ 1591 ret = btrfs_add_root_ref(trans, fs_info, objectid, 1592 parent_root->root_key.objectid, 1593 btrfs_ino(parent_inode), index, 1594 dentry->d_name.name, dentry->d_name.len); 1595 if (ret) { 1596 btrfs_abort_transaction(trans, ret); 1597 goto fail; 1598 } 1599 1600 key.offset = (u64)-1; 1601 pending->snap = btrfs_read_fs_root_no_name(fs_info, &key); 1602 if (IS_ERR(pending->snap)) { 1603 ret = PTR_ERR(pending->snap); 1604 btrfs_abort_transaction(trans, ret); 1605 goto fail; 1606 } 1607 1608 ret = btrfs_reloc_post_snapshot(trans, pending); 1609 if (ret) { 1610 btrfs_abort_transaction(trans, ret); 1611 goto fail; 1612 } 1613 1614 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1615 if (ret) { 1616 btrfs_abort_transaction(trans, ret); 1617 goto fail; 1618 } 1619 1620 /* 1621 * Do special qgroup accounting for snapshot, as we do some qgroup 1622 * snapshot hack to do fast snapshot. 1623 * To co-operate with that hack, we do hack again. 1624 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1625 */ 1626 ret = qgroup_account_snapshot(trans, root, parent_root, 1627 pending->inherit, objectid); 1628 if (ret < 0) 1629 goto fail; 1630 1631 ret = btrfs_insert_dir_item(trans, parent_root, 1632 dentry->d_name.name, dentry->d_name.len, 1633 parent_inode, &key, 1634 BTRFS_FT_DIR, index); 1635 /* We have check then name at the beginning, so it is impossible. */ 1636 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1637 if (ret) { 1638 btrfs_abort_transaction(trans, ret); 1639 goto fail; 1640 } 1641 1642 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1643 dentry->d_name.len * 2); 1644 parent_inode->i_mtime = parent_inode->i_ctime = 1645 current_time(parent_inode); 1646 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1647 if (ret) { 1648 btrfs_abort_transaction(trans, ret); 1649 goto fail; 1650 } 1651 ret = btrfs_uuid_tree_add(trans, fs_info, new_uuid.b, 1652 BTRFS_UUID_KEY_SUBVOL, objectid); 1653 if (ret) { 1654 btrfs_abort_transaction(trans, ret); 1655 goto fail; 1656 } 1657 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1658 ret = btrfs_uuid_tree_add(trans, fs_info, 1659 new_root_item->received_uuid, 1660 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1661 objectid); 1662 if (ret && ret != -EEXIST) { 1663 btrfs_abort_transaction(trans, ret); 1664 goto fail; 1665 } 1666 } 1667 1668 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1669 if (ret) { 1670 btrfs_abort_transaction(trans, ret); 1671 goto fail; 1672 } 1673 1674 fail: 1675 pending->error = ret; 1676 dir_item_existed: 1677 trans->block_rsv = rsv; 1678 trans->bytes_reserved = 0; 1679 clear_skip_qgroup: 1680 btrfs_clear_skip_qgroup(trans); 1681 no_free_objectid: 1682 kfree(new_root_item); 1683 pending->root_item = NULL; 1684 btrfs_free_path(path); 1685 pending->path = NULL; 1686 1687 return ret; 1688 } 1689 1690 /* 1691 * create all the snapshots we've scheduled for creation 1692 */ 1693 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1694 struct btrfs_fs_info *fs_info) 1695 { 1696 struct btrfs_pending_snapshot *pending, *next; 1697 struct list_head *head = &trans->transaction->pending_snapshots; 1698 int ret = 0; 1699 1700 list_for_each_entry_safe(pending, next, head, list) { 1701 list_del(&pending->list); 1702 ret = create_pending_snapshot(trans, fs_info, pending); 1703 if (ret) 1704 break; 1705 } 1706 return ret; 1707 } 1708 1709 static void update_super_roots(struct btrfs_root *root) 1710 { 1711 struct btrfs_fs_info *fs_info = root->fs_info; 1712 struct btrfs_root_item *root_item; 1713 struct btrfs_super_block *super; 1714 1715 super = fs_info->super_copy; 1716 1717 root_item = &fs_info->chunk_root->root_item; 1718 super->chunk_root = root_item->bytenr; 1719 super->chunk_root_generation = root_item->generation; 1720 super->chunk_root_level = root_item->level; 1721 1722 root_item = &fs_info->tree_root->root_item; 1723 super->root = root_item->bytenr; 1724 super->generation = root_item->generation; 1725 super->root_level = root_item->level; 1726 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1727 super->cache_generation = root_item->generation; 1728 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1729 super->uuid_tree_generation = root_item->generation; 1730 } 1731 1732 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1733 { 1734 struct btrfs_transaction *trans; 1735 int ret = 0; 1736 1737 spin_lock(&info->trans_lock); 1738 trans = info->running_transaction; 1739 if (trans) 1740 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1741 spin_unlock(&info->trans_lock); 1742 return ret; 1743 } 1744 1745 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1746 { 1747 struct btrfs_transaction *trans; 1748 int ret = 0; 1749 1750 spin_lock(&info->trans_lock); 1751 trans = info->running_transaction; 1752 if (trans) 1753 ret = is_transaction_blocked(trans); 1754 spin_unlock(&info->trans_lock); 1755 return ret; 1756 } 1757 1758 /* 1759 * wait for the current transaction commit to start and block subsequent 1760 * transaction joins 1761 */ 1762 static void wait_current_trans_commit_start(struct btrfs_root *root, 1763 struct btrfs_transaction *trans) 1764 { 1765 wait_event(root->fs_info->transaction_blocked_wait, 1766 trans->state >= TRANS_STATE_COMMIT_START || 1767 trans->aborted); 1768 } 1769 1770 /* 1771 * wait for the current transaction to start and then become unblocked. 1772 * caller holds ref. 1773 */ 1774 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1775 struct btrfs_transaction *trans) 1776 { 1777 wait_event(root->fs_info->transaction_wait, 1778 trans->state >= TRANS_STATE_UNBLOCKED || 1779 trans->aborted); 1780 } 1781 1782 /* 1783 * commit transactions asynchronously. once btrfs_commit_transaction_async 1784 * returns, any subsequent transaction will not be allowed to join. 1785 */ 1786 struct btrfs_async_commit { 1787 struct btrfs_trans_handle *newtrans; 1788 struct btrfs_root *root; 1789 struct work_struct work; 1790 }; 1791 1792 static void do_async_commit(struct work_struct *work) 1793 { 1794 struct btrfs_async_commit *ac = 1795 container_of(work, struct btrfs_async_commit, work); 1796 1797 /* 1798 * We've got freeze protection passed with the transaction. 1799 * Tell lockdep about it. 1800 */ 1801 if (ac->newtrans->type & __TRANS_FREEZABLE) 1802 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1803 1804 current->journal_info = ac->newtrans; 1805 1806 btrfs_commit_transaction(ac->newtrans, ac->root); 1807 kfree(ac); 1808 } 1809 1810 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1811 struct btrfs_root *root, 1812 int wait_for_unblock) 1813 { 1814 struct btrfs_fs_info *fs_info = root->fs_info; 1815 struct btrfs_async_commit *ac; 1816 struct btrfs_transaction *cur_trans; 1817 1818 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1819 if (!ac) 1820 return -ENOMEM; 1821 1822 INIT_WORK(&ac->work, do_async_commit); 1823 ac->root = root; 1824 ac->newtrans = btrfs_join_transaction(root); 1825 if (IS_ERR(ac->newtrans)) { 1826 int err = PTR_ERR(ac->newtrans); 1827 kfree(ac); 1828 return err; 1829 } 1830 1831 /* take transaction reference */ 1832 cur_trans = trans->transaction; 1833 atomic_inc(&cur_trans->use_count); 1834 1835 btrfs_end_transaction(trans, root); 1836 1837 /* 1838 * Tell lockdep we've released the freeze rwsem, since the 1839 * async commit thread will be the one to unlock it. 1840 */ 1841 if (ac->newtrans->type & __TRANS_FREEZABLE) 1842 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1843 1844 schedule_work(&ac->work); 1845 1846 /* wait for transaction to start and unblock */ 1847 if (wait_for_unblock) 1848 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1849 else 1850 wait_current_trans_commit_start(root, cur_trans); 1851 1852 if (current->journal_info == trans) 1853 current->journal_info = NULL; 1854 1855 btrfs_put_transaction(cur_trans); 1856 return 0; 1857 } 1858 1859 1860 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1861 struct btrfs_root *root, int err) 1862 { 1863 struct btrfs_fs_info *fs_info = root->fs_info; 1864 struct btrfs_transaction *cur_trans = trans->transaction; 1865 DEFINE_WAIT(wait); 1866 1867 WARN_ON(trans->use_count > 1); 1868 1869 btrfs_abort_transaction(trans, err); 1870 1871 spin_lock(&fs_info->trans_lock); 1872 1873 /* 1874 * If the transaction is removed from the list, it means this 1875 * transaction has been committed successfully, so it is impossible 1876 * to call the cleanup function. 1877 */ 1878 BUG_ON(list_empty(&cur_trans->list)); 1879 1880 list_del_init(&cur_trans->list); 1881 if (cur_trans == fs_info->running_transaction) { 1882 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1883 spin_unlock(&fs_info->trans_lock); 1884 wait_event(cur_trans->writer_wait, 1885 atomic_read(&cur_trans->num_writers) == 1); 1886 1887 spin_lock(&fs_info->trans_lock); 1888 } 1889 spin_unlock(&fs_info->trans_lock); 1890 1891 btrfs_cleanup_one_transaction(trans->transaction, root); 1892 1893 spin_lock(&fs_info->trans_lock); 1894 if (cur_trans == fs_info->running_transaction) 1895 fs_info->running_transaction = NULL; 1896 spin_unlock(&fs_info->trans_lock); 1897 1898 if (trans->type & __TRANS_FREEZABLE) 1899 sb_end_intwrite(fs_info->sb); 1900 btrfs_put_transaction(cur_trans); 1901 btrfs_put_transaction(cur_trans); 1902 1903 trace_btrfs_transaction_commit(root); 1904 1905 if (current->journal_info == trans) 1906 current->journal_info = NULL; 1907 btrfs_scrub_cancel(fs_info); 1908 1909 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1910 } 1911 1912 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1913 { 1914 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1915 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1916 return 0; 1917 } 1918 1919 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1920 { 1921 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 1922 btrfs_wait_ordered_roots(fs_info, -1, 0, (u64)-1); 1923 } 1924 1925 static inline void 1926 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1927 { 1928 wait_event(cur_trans->pending_wait, 1929 atomic_read(&cur_trans->pending_ordered) == 0); 1930 } 1931 1932 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1933 struct btrfs_root *root) 1934 { 1935 struct btrfs_fs_info *fs_info = root->fs_info; 1936 struct btrfs_transaction *cur_trans = trans->transaction; 1937 struct btrfs_transaction *prev_trans = NULL; 1938 int ret; 1939 1940 /* Stop the commit early if ->aborted is set */ 1941 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1942 ret = cur_trans->aborted; 1943 btrfs_end_transaction(trans, root); 1944 return ret; 1945 } 1946 1947 /* make a pass through all the delayed refs we have so far 1948 * any runnings procs may add more while we are here 1949 */ 1950 ret = btrfs_run_delayed_refs(trans, root, 0); 1951 if (ret) { 1952 btrfs_end_transaction(trans, root); 1953 return ret; 1954 } 1955 1956 btrfs_trans_release_metadata(trans, root); 1957 trans->block_rsv = NULL; 1958 1959 cur_trans = trans->transaction; 1960 1961 /* 1962 * set the flushing flag so procs in this transaction have to 1963 * start sending their work down. 1964 */ 1965 cur_trans->delayed_refs.flushing = 1; 1966 smp_wmb(); 1967 1968 if (!list_empty(&trans->new_bgs)) 1969 btrfs_create_pending_block_groups(trans, root); 1970 1971 ret = btrfs_run_delayed_refs(trans, root, 0); 1972 if (ret) { 1973 btrfs_end_transaction(trans, root); 1974 return ret; 1975 } 1976 1977 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 1978 int run_it = 0; 1979 1980 /* this mutex is also taken before trying to set 1981 * block groups readonly. We need to make sure 1982 * that nobody has set a block group readonly 1983 * after a extents from that block group have been 1984 * allocated for cache files. btrfs_set_block_group_ro 1985 * will wait for the transaction to commit if it 1986 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 1987 * 1988 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 1989 * only one process starts all the block group IO. It wouldn't 1990 * hurt to have more than one go through, but there's no 1991 * real advantage to it either. 1992 */ 1993 mutex_lock(&fs_info->ro_block_group_mutex); 1994 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 1995 &cur_trans->flags)) 1996 run_it = 1; 1997 mutex_unlock(&fs_info->ro_block_group_mutex); 1998 1999 if (run_it) 2000 ret = btrfs_start_dirty_block_groups(trans, root); 2001 } 2002 if (ret) { 2003 btrfs_end_transaction(trans, root); 2004 return ret; 2005 } 2006 2007 spin_lock(&fs_info->trans_lock); 2008 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2009 spin_unlock(&fs_info->trans_lock); 2010 atomic_inc(&cur_trans->use_count); 2011 ret = btrfs_end_transaction(trans, root); 2012 2013 wait_for_commit(root, cur_trans); 2014 2015 if (unlikely(cur_trans->aborted)) 2016 ret = cur_trans->aborted; 2017 2018 btrfs_put_transaction(cur_trans); 2019 2020 return ret; 2021 } 2022 2023 cur_trans->state = TRANS_STATE_COMMIT_START; 2024 wake_up(&fs_info->transaction_blocked_wait); 2025 2026 if (cur_trans->list.prev != &fs_info->trans_list) { 2027 prev_trans = list_entry(cur_trans->list.prev, 2028 struct btrfs_transaction, list); 2029 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2030 atomic_inc(&prev_trans->use_count); 2031 spin_unlock(&fs_info->trans_lock); 2032 2033 wait_for_commit(root, prev_trans); 2034 ret = prev_trans->aborted; 2035 2036 btrfs_put_transaction(prev_trans); 2037 if (ret) 2038 goto cleanup_transaction; 2039 } else { 2040 spin_unlock(&fs_info->trans_lock); 2041 } 2042 } else { 2043 spin_unlock(&fs_info->trans_lock); 2044 } 2045 2046 extwriter_counter_dec(cur_trans, trans->type); 2047 2048 ret = btrfs_start_delalloc_flush(fs_info); 2049 if (ret) 2050 goto cleanup_transaction; 2051 2052 ret = btrfs_run_delayed_items(trans, root); 2053 if (ret) 2054 goto cleanup_transaction; 2055 2056 wait_event(cur_trans->writer_wait, 2057 extwriter_counter_read(cur_trans) == 0); 2058 2059 /* some pending stuffs might be added after the previous flush. */ 2060 ret = btrfs_run_delayed_items(trans, root); 2061 if (ret) 2062 goto cleanup_transaction; 2063 2064 btrfs_wait_delalloc_flush(fs_info); 2065 2066 btrfs_wait_pending_ordered(cur_trans); 2067 2068 btrfs_scrub_pause(root); 2069 /* 2070 * Ok now we need to make sure to block out any other joins while we 2071 * commit the transaction. We could have started a join before setting 2072 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2073 */ 2074 spin_lock(&fs_info->trans_lock); 2075 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2076 spin_unlock(&fs_info->trans_lock); 2077 wait_event(cur_trans->writer_wait, 2078 atomic_read(&cur_trans->num_writers) == 1); 2079 2080 /* ->aborted might be set after the previous check, so check it */ 2081 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2082 ret = cur_trans->aborted; 2083 goto scrub_continue; 2084 } 2085 /* 2086 * the reloc mutex makes sure that we stop 2087 * the balancing code from coming in and moving 2088 * extents around in the middle of the commit 2089 */ 2090 mutex_lock(&fs_info->reloc_mutex); 2091 2092 /* 2093 * We needn't worry about the delayed items because we will 2094 * deal with them in create_pending_snapshot(), which is the 2095 * core function of the snapshot creation. 2096 */ 2097 ret = create_pending_snapshots(trans, fs_info); 2098 if (ret) { 2099 mutex_unlock(&fs_info->reloc_mutex); 2100 goto scrub_continue; 2101 } 2102 2103 /* 2104 * We insert the dir indexes of the snapshots and update the inode 2105 * of the snapshots' parents after the snapshot creation, so there 2106 * are some delayed items which are not dealt with. Now deal with 2107 * them. 2108 * 2109 * We needn't worry that this operation will corrupt the snapshots, 2110 * because all the tree which are snapshoted will be forced to COW 2111 * the nodes and leaves. 2112 */ 2113 ret = btrfs_run_delayed_items(trans, root); 2114 if (ret) { 2115 mutex_unlock(&fs_info->reloc_mutex); 2116 goto scrub_continue; 2117 } 2118 2119 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 2120 if (ret) { 2121 mutex_unlock(&fs_info->reloc_mutex); 2122 goto scrub_continue; 2123 } 2124 2125 /* Reocrd old roots for later qgroup accounting */ 2126 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 2127 if (ret) { 2128 mutex_unlock(&fs_info->reloc_mutex); 2129 goto scrub_continue; 2130 } 2131 2132 /* 2133 * make sure none of the code above managed to slip in a 2134 * delayed item 2135 */ 2136 btrfs_assert_delayed_root_empty(fs_info); 2137 2138 WARN_ON(cur_trans != trans->transaction); 2139 2140 /* btrfs_commit_tree_roots is responsible for getting the 2141 * various roots consistent with each other. Every pointer 2142 * in the tree of tree roots has to point to the most up to date 2143 * root for every subvolume and other tree. So, we have to keep 2144 * the tree logging code from jumping in and changing any 2145 * of the trees. 2146 * 2147 * At this point in the commit, there can't be any tree-log 2148 * writers, but a little lower down we drop the trans mutex 2149 * and let new people in. By holding the tree_log_mutex 2150 * from now until after the super is written, we avoid races 2151 * with the tree-log code. 2152 */ 2153 mutex_lock(&fs_info->tree_log_mutex); 2154 2155 ret = commit_fs_roots(trans, fs_info); 2156 if (ret) { 2157 mutex_unlock(&fs_info->tree_log_mutex); 2158 mutex_unlock(&fs_info->reloc_mutex); 2159 goto scrub_continue; 2160 } 2161 2162 /* 2163 * Since the transaction is done, we can apply the pending changes 2164 * before the next transaction. 2165 */ 2166 btrfs_apply_pending_changes(fs_info); 2167 2168 /* commit_fs_roots gets rid of all the tree log roots, it is now 2169 * safe to free the root of tree log roots 2170 */ 2171 btrfs_free_log_root_tree(trans, fs_info); 2172 2173 /* 2174 * Since fs roots are all committed, we can get a quite accurate 2175 * new_roots. So let's do quota accounting. 2176 */ 2177 ret = btrfs_qgroup_account_extents(trans, fs_info); 2178 if (ret < 0) { 2179 mutex_unlock(&fs_info->tree_log_mutex); 2180 mutex_unlock(&fs_info->reloc_mutex); 2181 goto scrub_continue; 2182 } 2183 2184 ret = commit_cowonly_roots(trans, root); 2185 if (ret) { 2186 mutex_unlock(&fs_info->tree_log_mutex); 2187 mutex_unlock(&fs_info->reloc_mutex); 2188 goto scrub_continue; 2189 } 2190 2191 /* 2192 * The tasks which save the space cache and inode cache may also 2193 * update ->aborted, check it. 2194 */ 2195 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2196 ret = cur_trans->aborted; 2197 mutex_unlock(&fs_info->tree_log_mutex); 2198 mutex_unlock(&fs_info->reloc_mutex); 2199 goto scrub_continue; 2200 } 2201 2202 btrfs_prepare_extent_commit(trans, root); 2203 2204 cur_trans = fs_info->running_transaction; 2205 2206 btrfs_set_root_node(&fs_info->tree_root->root_item, 2207 fs_info->tree_root->node); 2208 list_add_tail(&fs_info->tree_root->dirty_list, 2209 &cur_trans->switch_commits); 2210 2211 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2212 fs_info->chunk_root->node); 2213 list_add_tail(&fs_info->chunk_root->dirty_list, 2214 &cur_trans->switch_commits); 2215 2216 switch_commit_roots(cur_trans, fs_info); 2217 2218 assert_qgroups_uptodate(trans); 2219 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2220 ASSERT(list_empty(&cur_trans->io_bgs)); 2221 update_super_roots(root); 2222 2223 btrfs_set_super_log_root(fs_info->super_copy, 0); 2224 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2225 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2226 sizeof(*fs_info->super_copy)); 2227 2228 btrfs_update_commit_device_size(fs_info); 2229 btrfs_update_commit_device_bytes_used(root, cur_trans); 2230 2231 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2232 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2233 2234 btrfs_trans_release_chunk_metadata(trans); 2235 2236 spin_lock(&fs_info->trans_lock); 2237 cur_trans->state = TRANS_STATE_UNBLOCKED; 2238 fs_info->running_transaction = NULL; 2239 spin_unlock(&fs_info->trans_lock); 2240 mutex_unlock(&fs_info->reloc_mutex); 2241 2242 wake_up(&fs_info->transaction_wait); 2243 2244 ret = btrfs_write_and_wait_transaction(trans, root); 2245 if (ret) { 2246 btrfs_handle_fs_error(fs_info, ret, 2247 "Error while writing out transaction"); 2248 mutex_unlock(&fs_info->tree_log_mutex); 2249 goto scrub_continue; 2250 } 2251 2252 ret = write_ctree_super(trans, root, 0); 2253 if (ret) { 2254 mutex_unlock(&fs_info->tree_log_mutex); 2255 goto scrub_continue; 2256 } 2257 2258 /* 2259 * the super is written, we can safely allow the tree-loggers 2260 * to go about their business 2261 */ 2262 mutex_unlock(&fs_info->tree_log_mutex); 2263 2264 btrfs_finish_extent_commit(trans, root); 2265 2266 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2267 btrfs_clear_space_info_full(fs_info); 2268 2269 fs_info->last_trans_committed = cur_trans->transid; 2270 /* 2271 * We needn't acquire the lock here because there is no other task 2272 * which can change it. 2273 */ 2274 cur_trans->state = TRANS_STATE_COMPLETED; 2275 wake_up(&cur_trans->commit_wait); 2276 2277 spin_lock(&fs_info->trans_lock); 2278 list_del_init(&cur_trans->list); 2279 spin_unlock(&fs_info->trans_lock); 2280 2281 btrfs_put_transaction(cur_trans); 2282 btrfs_put_transaction(cur_trans); 2283 2284 if (trans->type & __TRANS_FREEZABLE) 2285 sb_end_intwrite(fs_info->sb); 2286 2287 trace_btrfs_transaction_commit(root); 2288 2289 btrfs_scrub_continue(root); 2290 2291 if (current->journal_info == trans) 2292 current->journal_info = NULL; 2293 2294 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2295 2296 /* 2297 * If fs has been frozen, we can not handle delayed iputs, otherwise 2298 * it'll result in deadlock about SB_FREEZE_FS. 2299 */ 2300 if (current != fs_info->transaction_kthread && 2301 current != fs_info->cleaner_kthread && !fs_info->fs_frozen) 2302 btrfs_run_delayed_iputs(root); 2303 2304 return ret; 2305 2306 scrub_continue: 2307 btrfs_scrub_continue(root); 2308 cleanup_transaction: 2309 btrfs_trans_release_metadata(trans, root); 2310 btrfs_trans_release_chunk_metadata(trans); 2311 trans->block_rsv = NULL; 2312 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2313 if (current->journal_info == trans) 2314 current->journal_info = NULL; 2315 cleanup_transaction(trans, root, ret); 2316 2317 return ret; 2318 } 2319 2320 /* 2321 * return < 0 if error 2322 * 0 if there are no more dead_roots at the time of call 2323 * 1 there are more to be processed, call me again 2324 * 2325 * The return value indicates there are certainly more snapshots to delete, but 2326 * if there comes a new one during processing, it may return 0. We don't mind, 2327 * because btrfs_commit_super will poke cleaner thread and it will process it a 2328 * few seconds later. 2329 */ 2330 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2331 { 2332 int ret; 2333 struct btrfs_fs_info *fs_info = root->fs_info; 2334 2335 spin_lock(&fs_info->trans_lock); 2336 if (list_empty(&fs_info->dead_roots)) { 2337 spin_unlock(&fs_info->trans_lock); 2338 return 0; 2339 } 2340 root = list_first_entry(&fs_info->dead_roots, 2341 struct btrfs_root, root_list); 2342 list_del_init(&root->root_list); 2343 spin_unlock(&fs_info->trans_lock); 2344 2345 btrfs_debug(fs_info, "cleaner removing %llu", root->objectid); 2346 2347 btrfs_kill_all_delayed_nodes(root); 2348 2349 if (btrfs_header_backref_rev(root->node) < 2350 BTRFS_MIXED_BACKREF_REV) 2351 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2352 else 2353 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2354 2355 return (ret < 0) ? 0 : 1; 2356 } 2357 2358 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2359 { 2360 unsigned long prev; 2361 unsigned long bit; 2362 2363 prev = xchg(&fs_info->pending_changes, 0); 2364 if (!prev) 2365 return; 2366 2367 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2368 if (prev & bit) 2369 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2370 prev &= ~bit; 2371 2372 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2373 if (prev & bit) 2374 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2375 prev &= ~bit; 2376 2377 bit = 1 << BTRFS_PENDING_COMMIT; 2378 if (prev & bit) 2379 btrfs_debug(fs_info, "pending commit done"); 2380 prev &= ~bit; 2381 2382 if (prev) 2383 btrfs_warn(fs_info, 2384 "unknown pending changes left 0x%lx, ignoring", prev); 2385 } 2386