xref: /openbmc/linux/fs/btrfs/transaction.c (revision c6b305a89b1903d63652691ad5eb9f05aa0326b8)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 	struct btrfs_transaction *cur_trans;
59 	struct btrfs_fs_info *fs_info = root->fs_info;
60 
61 	spin_lock(&fs_info->trans_lock);
62 loop:
63 	/* The file system has been taken offline. No new transactions. */
64 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 		spin_unlock(&fs_info->trans_lock);
66 		return -EROFS;
67 	}
68 
69 	if (fs_info->trans_no_join) {
70 		/*
71 		 * If we are JOIN_NOLOCK we're already committing a current
72 		 * transaction, we just need a handle to deal with something
73 		 * when committing the transaction, such as inode cache and
74 		 * space cache. It is a special case.
75 		 */
76 		if (type != TRANS_JOIN_NOLOCK) {
77 			spin_unlock(&fs_info->trans_lock);
78 			return -EBUSY;
79 		}
80 	}
81 
82 	cur_trans = fs_info->running_transaction;
83 	if (cur_trans) {
84 		if (cur_trans->aborted) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return cur_trans->aborted;
87 		}
88 		atomic_inc(&cur_trans->use_count);
89 		atomic_inc(&cur_trans->num_writers);
90 		cur_trans->num_joined++;
91 		spin_unlock(&fs_info->trans_lock);
92 		return 0;
93 	}
94 	spin_unlock(&fs_info->trans_lock);
95 
96 	/*
97 	 * If we are ATTACH, we just want to catch the current transaction,
98 	 * and commit it. If there is no transaction, just return ENOENT.
99 	 */
100 	if (type == TRANS_ATTACH)
101 		return -ENOENT;
102 
103 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 	if (!cur_trans)
105 		return -ENOMEM;
106 
107 	spin_lock(&fs_info->trans_lock);
108 	if (fs_info->running_transaction) {
109 		/*
110 		 * someone started a transaction after we unlocked.  Make sure
111 		 * to redo the trans_no_join checks above
112 		 */
113 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 		cur_trans = fs_info->running_transaction;
115 		goto loop;
116 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 		spin_unlock(&fs_info->trans_lock);
118 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 		return -EROFS;
120 	}
121 
122 	atomic_set(&cur_trans->num_writers, 1);
123 	cur_trans->num_joined = 0;
124 	init_waitqueue_head(&cur_trans->writer_wait);
125 	init_waitqueue_head(&cur_trans->commit_wait);
126 	cur_trans->in_commit = 0;
127 	cur_trans->blocked = 0;
128 	/*
129 	 * One for this trans handle, one so it will live on until we
130 	 * commit the transaction.
131 	 */
132 	atomic_set(&cur_trans->use_count, 2);
133 	cur_trans->commit_done = 0;
134 	cur_trans->start_time = get_seconds();
135 
136 	cur_trans->delayed_refs.root = RB_ROOT;
137 	cur_trans->delayed_refs.num_entries = 0;
138 	cur_trans->delayed_refs.num_heads_ready = 0;
139 	cur_trans->delayed_refs.num_heads = 0;
140 	cur_trans->delayed_refs.flushing = 0;
141 	cur_trans->delayed_refs.run_delayed_start = 0;
142 
143 	/*
144 	 * although the tree mod log is per file system and not per transaction,
145 	 * the log must never go across transaction boundaries.
146 	 */
147 	smp_mb();
148 	if (!list_empty(&fs_info->tree_mod_seq_list))
149 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 			"creating a fresh transaction\n");
151 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
152 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
153 			"creating a fresh transaction\n");
154 	atomic_set(&fs_info->tree_mod_seq, 0);
155 
156 	spin_lock_init(&cur_trans->commit_lock);
157 	spin_lock_init(&cur_trans->delayed_refs.lock);
158 
159 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
160 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
161 	extent_io_tree_init(&cur_trans->dirty_pages,
162 			     fs_info->btree_inode->i_mapping);
163 	fs_info->generation++;
164 	cur_trans->transid = fs_info->generation;
165 	fs_info->running_transaction = cur_trans;
166 	cur_trans->aborted = 0;
167 	spin_unlock(&fs_info->trans_lock);
168 
169 	return 0;
170 }
171 
172 /*
173  * this does all the record keeping required to make sure that a reference
174  * counted root is properly recorded in a given transaction.  This is required
175  * to make sure the old root from before we joined the transaction is deleted
176  * when the transaction commits
177  */
178 static int record_root_in_trans(struct btrfs_trans_handle *trans,
179 			       struct btrfs_root *root)
180 {
181 	if (root->ref_cows && root->last_trans < trans->transid) {
182 		WARN_ON(root == root->fs_info->extent_root);
183 		WARN_ON(root->commit_root != root->node);
184 
185 		/*
186 		 * see below for in_trans_setup usage rules
187 		 * we have the reloc mutex held now, so there
188 		 * is only one writer in this function
189 		 */
190 		root->in_trans_setup = 1;
191 
192 		/* make sure readers find in_trans_setup before
193 		 * they find our root->last_trans update
194 		 */
195 		smp_wmb();
196 
197 		spin_lock(&root->fs_info->fs_roots_radix_lock);
198 		if (root->last_trans == trans->transid) {
199 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 			return 0;
201 		}
202 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
203 			   (unsigned long)root->root_key.objectid,
204 			   BTRFS_ROOT_TRANS_TAG);
205 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
206 		root->last_trans = trans->transid;
207 
208 		/* this is pretty tricky.  We don't want to
209 		 * take the relocation lock in btrfs_record_root_in_trans
210 		 * unless we're really doing the first setup for this root in
211 		 * this transaction.
212 		 *
213 		 * Normally we'd use root->last_trans as a flag to decide
214 		 * if we want to take the expensive mutex.
215 		 *
216 		 * But, we have to set root->last_trans before we
217 		 * init the relocation root, otherwise, we trip over warnings
218 		 * in ctree.c.  The solution used here is to flag ourselves
219 		 * with root->in_trans_setup.  When this is 1, we're still
220 		 * fixing up the reloc trees and everyone must wait.
221 		 *
222 		 * When this is zero, they can trust root->last_trans and fly
223 		 * through btrfs_record_root_in_trans without having to take the
224 		 * lock.  smp_wmb() makes sure that all the writes above are
225 		 * done before we pop in the zero below
226 		 */
227 		btrfs_init_reloc_root(trans, root);
228 		smp_wmb();
229 		root->in_trans_setup = 0;
230 	}
231 	return 0;
232 }
233 
234 
235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
236 			       struct btrfs_root *root)
237 {
238 	if (!root->ref_cows)
239 		return 0;
240 
241 	/*
242 	 * see record_root_in_trans for comments about in_trans_setup usage
243 	 * and barriers
244 	 */
245 	smp_rmb();
246 	if (root->last_trans == trans->transid &&
247 	    !root->in_trans_setup)
248 		return 0;
249 
250 	mutex_lock(&root->fs_info->reloc_mutex);
251 	record_root_in_trans(trans, root);
252 	mutex_unlock(&root->fs_info->reloc_mutex);
253 
254 	return 0;
255 }
256 
257 /* wait for commit against the current transaction to become unblocked
258  * when this is done, it is safe to start a new transaction, but the current
259  * transaction might not be fully on disk.
260  */
261 static void wait_current_trans(struct btrfs_root *root)
262 {
263 	struct btrfs_transaction *cur_trans;
264 
265 	spin_lock(&root->fs_info->trans_lock);
266 	cur_trans = root->fs_info->running_transaction;
267 	if (cur_trans && cur_trans->blocked) {
268 		atomic_inc(&cur_trans->use_count);
269 		spin_unlock(&root->fs_info->trans_lock);
270 
271 		wait_event(root->fs_info->transaction_wait,
272 			   !cur_trans->blocked);
273 		put_transaction(cur_trans);
274 	} else {
275 		spin_unlock(&root->fs_info->trans_lock);
276 	}
277 }
278 
279 static int may_wait_transaction(struct btrfs_root *root, int type)
280 {
281 	if (root->fs_info->log_root_recovering)
282 		return 0;
283 
284 	if (type == TRANS_USERSPACE)
285 		return 1;
286 
287 	if (type == TRANS_START &&
288 	    !atomic_read(&root->fs_info->open_ioctl_trans))
289 		return 1;
290 
291 	return 0;
292 }
293 
294 static struct btrfs_trans_handle *
295 start_transaction(struct btrfs_root *root, u64 num_items, int type,
296 		  enum btrfs_reserve_flush_enum flush)
297 {
298 	struct btrfs_trans_handle *h;
299 	struct btrfs_transaction *cur_trans;
300 	u64 num_bytes = 0;
301 	int ret;
302 	u64 qgroup_reserved = 0;
303 
304 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
305 		return ERR_PTR(-EROFS);
306 
307 	if (current->journal_info) {
308 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
309 		h = current->journal_info;
310 		h->use_count++;
311 		WARN_ON(h->use_count > 2);
312 		h->orig_rsv = h->block_rsv;
313 		h->block_rsv = NULL;
314 		goto got_it;
315 	}
316 
317 	/*
318 	 * Do the reservation before we join the transaction so we can do all
319 	 * the appropriate flushing if need be.
320 	 */
321 	if (num_items > 0 && root != root->fs_info->chunk_root) {
322 		if (root->fs_info->quota_enabled &&
323 		    is_fstree(root->root_key.objectid)) {
324 			qgroup_reserved = num_items * root->leafsize;
325 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
326 			if (ret)
327 				return ERR_PTR(ret);
328 		}
329 
330 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
331 		ret = btrfs_block_rsv_add(root,
332 					  &root->fs_info->trans_block_rsv,
333 					  num_bytes, flush);
334 		if (ret)
335 			goto reserve_fail;
336 	}
337 again:
338 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
339 	if (!h) {
340 		ret = -ENOMEM;
341 		goto alloc_fail;
342 	}
343 
344 	/*
345 	 * If we are JOIN_NOLOCK we're already committing a transaction and
346 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
347 	 * because we're already holding a ref.  We need this because we could
348 	 * have raced in and did an fsync() on a file which can kick a commit
349 	 * and then we deadlock with somebody doing a freeze.
350 	 *
351 	 * If we are ATTACH, it means we just want to catch the current
352 	 * transaction and commit it, so we needn't do sb_start_intwrite().
353 	 */
354 	if (type < TRANS_JOIN_NOLOCK)
355 		sb_start_intwrite(root->fs_info->sb);
356 
357 	if (may_wait_transaction(root, type))
358 		wait_current_trans(root);
359 
360 	do {
361 		ret = join_transaction(root, type);
362 		if (ret == -EBUSY)
363 			wait_current_trans(root);
364 	} while (ret == -EBUSY);
365 
366 	if (ret < 0) {
367 		/* We must get the transaction if we are JOIN_NOLOCK. */
368 		BUG_ON(type == TRANS_JOIN_NOLOCK);
369 		goto join_fail;
370 	}
371 
372 	cur_trans = root->fs_info->running_transaction;
373 
374 	h->transid = cur_trans->transid;
375 	h->transaction = cur_trans;
376 	h->blocks_used = 0;
377 	h->bytes_reserved = 0;
378 	h->root = root;
379 	h->delayed_ref_updates = 0;
380 	h->use_count = 1;
381 	h->adding_csums = 0;
382 	h->block_rsv = NULL;
383 	h->orig_rsv = NULL;
384 	h->aborted = 0;
385 	h->qgroup_reserved = qgroup_reserved;
386 	h->delayed_ref_elem.seq = 0;
387 	h->type = type;
388 	h->allocating_chunk = false;
389 	INIT_LIST_HEAD(&h->qgroup_ref_list);
390 	INIT_LIST_HEAD(&h->new_bgs);
391 
392 	smp_mb();
393 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
394 		btrfs_commit_transaction(h, root);
395 		goto again;
396 	}
397 
398 	if (num_bytes) {
399 		trace_btrfs_space_reservation(root->fs_info, "transaction",
400 					      h->transid, num_bytes, 1);
401 		h->block_rsv = &root->fs_info->trans_block_rsv;
402 		h->bytes_reserved = num_bytes;
403 	}
404 
405 got_it:
406 	btrfs_record_root_in_trans(h, root);
407 
408 	if (!current->journal_info && type != TRANS_USERSPACE)
409 		current->journal_info = h;
410 	return h;
411 
412 join_fail:
413 	if (type < TRANS_JOIN_NOLOCK)
414 		sb_end_intwrite(root->fs_info->sb);
415 	kmem_cache_free(btrfs_trans_handle_cachep, h);
416 alloc_fail:
417 	if (num_bytes)
418 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
419 					num_bytes);
420 reserve_fail:
421 	if (qgroup_reserved)
422 		btrfs_qgroup_free(root, qgroup_reserved);
423 	return ERR_PTR(ret);
424 }
425 
426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
427 						   int num_items)
428 {
429 	return start_transaction(root, num_items, TRANS_START,
430 				 BTRFS_RESERVE_FLUSH_ALL);
431 }
432 
433 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
434 					struct btrfs_root *root, int num_items)
435 {
436 	return start_transaction(root, num_items, TRANS_START,
437 				 BTRFS_RESERVE_FLUSH_LIMIT);
438 }
439 
440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
441 {
442 	return start_transaction(root, 0, TRANS_JOIN, 0);
443 }
444 
445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
446 {
447 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
448 }
449 
450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
451 {
452 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
453 }
454 
455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
456 {
457 	return start_transaction(root, 0, TRANS_ATTACH, 0);
458 }
459 
460 /* wait for a transaction commit to be fully complete */
461 static noinline void wait_for_commit(struct btrfs_root *root,
462 				    struct btrfs_transaction *commit)
463 {
464 	wait_event(commit->commit_wait, commit->commit_done);
465 }
466 
467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
468 {
469 	struct btrfs_transaction *cur_trans = NULL, *t;
470 	int ret = 0;
471 
472 	if (transid) {
473 		if (transid <= root->fs_info->last_trans_committed)
474 			goto out;
475 
476 		ret = -EINVAL;
477 		/* find specified transaction */
478 		spin_lock(&root->fs_info->trans_lock);
479 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
480 			if (t->transid == transid) {
481 				cur_trans = t;
482 				atomic_inc(&cur_trans->use_count);
483 				ret = 0;
484 				break;
485 			}
486 			if (t->transid > transid) {
487 				ret = 0;
488 				break;
489 			}
490 		}
491 		spin_unlock(&root->fs_info->trans_lock);
492 		/* The specified transaction doesn't exist */
493 		if (!cur_trans)
494 			goto out;
495 	} else {
496 		/* find newest transaction that is committing | committed */
497 		spin_lock(&root->fs_info->trans_lock);
498 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
499 					    list) {
500 			if (t->in_commit) {
501 				if (t->commit_done)
502 					break;
503 				cur_trans = t;
504 				atomic_inc(&cur_trans->use_count);
505 				break;
506 			}
507 		}
508 		spin_unlock(&root->fs_info->trans_lock);
509 		if (!cur_trans)
510 			goto out;  /* nothing committing|committed */
511 	}
512 
513 	wait_for_commit(root, cur_trans);
514 	put_transaction(cur_trans);
515 out:
516 	return ret;
517 }
518 
519 void btrfs_throttle(struct btrfs_root *root)
520 {
521 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
522 		wait_current_trans(root);
523 }
524 
525 static int should_end_transaction(struct btrfs_trans_handle *trans,
526 				  struct btrfs_root *root)
527 {
528 	int ret;
529 
530 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
531 	return ret ? 1 : 0;
532 }
533 
534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
535 				 struct btrfs_root *root)
536 {
537 	struct btrfs_transaction *cur_trans = trans->transaction;
538 	int updates;
539 	int err;
540 
541 	smp_mb();
542 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
543 		return 1;
544 
545 	updates = trans->delayed_ref_updates;
546 	trans->delayed_ref_updates = 0;
547 	if (updates) {
548 		err = btrfs_run_delayed_refs(trans, root, updates);
549 		if (err) /* Error code will also eval true */
550 			return err;
551 	}
552 
553 	return should_end_transaction(trans, root);
554 }
555 
556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
557 			  struct btrfs_root *root, int throttle)
558 {
559 	struct btrfs_transaction *cur_trans = trans->transaction;
560 	struct btrfs_fs_info *info = root->fs_info;
561 	int count = 0;
562 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
563 	int err = 0;
564 
565 	if (--trans->use_count) {
566 		trans->block_rsv = trans->orig_rsv;
567 		return 0;
568 	}
569 
570 	/*
571 	 * do the qgroup accounting as early as possible
572 	 */
573 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
574 
575 	btrfs_trans_release_metadata(trans, root);
576 	trans->block_rsv = NULL;
577 	/*
578 	 * the same root has to be passed to start_transaction and
579 	 * end_transaction. Subvolume quota depends on this.
580 	 */
581 	WARN_ON(trans->root != root);
582 
583 	if (trans->qgroup_reserved) {
584 		btrfs_qgroup_free(root, trans->qgroup_reserved);
585 		trans->qgroup_reserved = 0;
586 	}
587 
588 	if (!list_empty(&trans->new_bgs))
589 		btrfs_create_pending_block_groups(trans, root);
590 
591 	while (count < 2) {
592 		unsigned long cur = trans->delayed_ref_updates;
593 		trans->delayed_ref_updates = 0;
594 		if (cur &&
595 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
596 			trans->delayed_ref_updates = 0;
597 			btrfs_run_delayed_refs(trans, root, cur);
598 		} else {
599 			break;
600 		}
601 		count++;
602 	}
603 	btrfs_trans_release_metadata(trans, root);
604 	trans->block_rsv = NULL;
605 
606 	if (!list_empty(&trans->new_bgs))
607 		btrfs_create_pending_block_groups(trans, root);
608 
609 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
610 	    should_end_transaction(trans, root)) {
611 		trans->transaction->blocked = 1;
612 		smp_wmb();
613 	}
614 
615 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
616 		if (throttle) {
617 			/*
618 			 * We may race with somebody else here so end up having
619 			 * to call end_transaction on ourselves again, so inc
620 			 * our use_count.
621 			 */
622 			trans->use_count++;
623 			return btrfs_commit_transaction(trans, root);
624 		} else {
625 			wake_up_process(info->transaction_kthread);
626 		}
627 	}
628 
629 	if (trans->type < TRANS_JOIN_NOLOCK)
630 		sb_end_intwrite(root->fs_info->sb);
631 
632 	WARN_ON(cur_trans != info->running_transaction);
633 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
634 	atomic_dec(&cur_trans->num_writers);
635 
636 	smp_mb();
637 	if (waitqueue_active(&cur_trans->writer_wait))
638 		wake_up(&cur_trans->writer_wait);
639 	put_transaction(cur_trans);
640 
641 	if (current->journal_info == trans)
642 		current->journal_info = NULL;
643 
644 	if (throttle)
645 		btrfs_run_delayed_iputs(root);
646 
647 	if (trans->aborted ||
648 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
649 		err = -EIO;
650 	}
651 	assert_qgroups_uptodate(trans);
652 
653 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
654 	return err;
655 }
656 
657 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
658 			  struct btrfs_root *root)
659 {
660 	int ret;
661 
662 	ret = __btrfs_end_transaction(trans, root, 0);
663 	if (ret)
664 		return ret;
665 	return 0;
666 }
667 
668 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
669 				   struct btrfs_root *root)
670 {
671 	int ret;
672 
673 	ret = __btrfs_end_transaction(trans, root, 1);
674 	if (ret)
675 		return ret;
676 	return 0;
677 }
678 
679 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
680 				struct btrfs_root *root)
681 {
682 	return __btrfs_end_transaction(trans, root, 1);
683 }
684 
685 /*
686  * when btree blocks are allocated, they have some corresponding bits set for
687  * them in one of two extent_io trees.  This is used to make sure all of
688  * those extents are sent to disk but does not wait on them
689  */
690 int btrfs_write_marked_extents(struct btrfs_root *root,
691 			       struct extent_io_tree *dirty_pages, int mark)
692 {
693 	int err = 0;
694 	int werr = 0;
695 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
696 	struct extent_state *cached_state = NULL;
697 	u64 start = 0;
698 	u64 end;
699 
700 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
701 				      mark, &cached_state)) {
702 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
703 				   mark, &cached_state, GFP_NOFS);
704 		cached_state = NULL;
705 		err = filemap_fdatawrite_range(mapping, start, end);
706 		if (err)
707 			werr = err;
708 		cond_resched();
709 		start = end + 1;
710 	}
711 	if (err)
712 		werr = err;
713 	return werr;
714 }
715 
716 /*
717  * when btree blocks are allocated, they have some corresponding bits set for
718  * them in one of two extent_io trees.  This is used to make sure all of
719  * those extents are on disk for transaction or log commit.  We wait
720  * on all the pages and clear them from the dirty pages state tree
721  */
722 int btrfs_wait_marked_extents(struct btrfs_root *root,
723 			      struct extent_io_tree *dirty_pages, int mark)
724 {
725 	int err = 0;
726 	int werr = 0;
727 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
728 	struct extent_state *cached_state = NULL;
729 	u64 start = 0;
730 	u64 end;
731 
732 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
733 				      EXTENT_NEED_WAIT, &cached_state)) {
734 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
735 				 0, 0, &cached_state, GFP_NOFS);
736 		err = filemap_fdatawait_range(mapping, start, end);
737 		if (err)
738 			werr = err;
739 		cond_resched();
740 		start = end + 1;
741 	}
742 	if (err)
743 		werr = err;
744 	return werr;
745 }
746 
747 /*
748  * when btree blocks are allocated, they have some corresponding bits set for
749  * them in one of two extent_io trees.  This is used to make sure all of
750  * those extents are on disk for transaction or log commit
751  */
752 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
753 				struct extent_io_tree *dirty_pages, int mark)
754 {
755 	int ret;
756 	int ret2;
757 
758 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
759 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
760 
761 	if (ret)
762 		return ret;
763 	if (ret2)
764 		return ret2;
765 	return 0;
766 }
767 
768 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
769 				     struct btrfs_root *root)
770 {
771 	if (!trans || !trans->transaction) {
772 		struct inode *btree_inode;
773 		btree_inode = root->fs_info->btree_inode;
774 		return filemap_write_and_wait(btree_inode->i_mapping);
775 	}
776 	return btrfs_write_and_wait_marked_extents(root,
777 					   &trans->transaction->dirty_pages,
778 					   EXTENT_DIRTY);
779 }
780 
781 /*
782  * this is used to update the root pointer in the tree of tree roots.
783  *
784  * But, in the case of the extent allocation tree, updating the root
785  * pointer may allocate blocks which may change the root of the extent
786  * allocation tree.
787  *
788  * So, this loops and repeats and makes sure the cowonly root didn't
789  * change while the root pointer was being updated in the metadata.
790  */
791 static int update_cowonly_root(struct btrfs_trans_handle *trans,
792 			       struct btrfs_root *root)
793 {
794 	int ret;
795 	u64 old_root_bytenr;
796 	u64 old_root_used;
797 	struct btrfs_root *tree_root = root->fs_info->tree_root;
798 
799 	old_root_used = btrfs_root_used(&root->root_item);
800 	btrfs_write_dirty_block_groups(trans, root);
801 
802 	while (1) {
803 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
804 		if (old_root_bytenr == root->node->start &&
805 		    old_root_used == btrfs_root_used(&root->root_item))
806 			break;
807 
808 		btrfs_set_root_node(&root->root_item, root->node);
809 		ret = btrfs_update_root(trans, tree_root,
810 					&root->root_key,
811 					&root->root_item);
812 		if (ret)
813 			return ret;
814 
815 		old_root_used = btrfs_root_used(&root->root_item);
816 		ret = btrfs_write_dirty_block_groups(trans, root);
817 		if (ret)
818 			return ret;
819 	}
820 
821 	if (root != root->fs_info->extent_root)
822 		switch_commit_root(root);
823 
824 	return 0;
825 }
826 
827 /*
828  * update all the cowonly tree roots on disk
829  *
830  * The error handling in this function may not be obvious. Any of the
831  * failures will cause the file system to go offline. We still need
832  * to clean up the delayed refs.
833  */
834 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
835 					 struct btrfs_root *root)
836 {
837 	struct btrfs_fs_info *fs_info = root->fs_info;
838 	struct list_head *next;
839 	struct extent_buffer *eb;
840 	int ret;
841 
842 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
843 	if (ret)
844 		return ret;
845 
846 	eb = btrfs_lock_root_node(fs_info->tree_root);
847 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
848 			      0, &eb);
849 	btrfs_tree_unlock(eb);
850 	free_extent_buffer(eb);
851 
852 	if (ret)
853 		return ret;
854 
855 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
856 	if (ret)
857 		return ret;
858 
859 	ret = btrfs_run_dev_stats(trans, root->fs_info);
860 	WARN_ON(ret);
861 	ret = btrfs_run_dev_replace(trans, root->fs_info);
862 	WARN_ON(ret);
863 
864 	ret = btrfs_run_qgroups(trans, root->fs_info);
865 	BUG_ON(ret);
866 
867 	/* run_qgroups might have added some more refs */
868 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
869 	BUG_ON(ret);
870 
871 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
872 		next = fs_info->dirty_cowonly_roots.next;
873 		list_del_init(next);
874 		root = list_entry(next, struct btrfs_root, dirty_list);
875 
876 		ret = update_cowonly_root(trans, root);
877 		if (ret)
878 			return ret;
879 	}
880 
881 	down_write(&fs_info->extent_commit_sem);
882 	switch_commit_root(fs_info->extent_root);
883 	up_write(&fs_info->extent_commit_sem);
884 
885 	btrfs_after_dev_replace_commit(fs_info);
886 
887 	return 0;
888 }
889 
890 /*
891  * dead roots are old snapshots that need to be deleted.  This allocates
892  * a dirty root struct and adds it into the list of dead roots that need to
893  * be deleted
894  */
895 int btrfs_add_dead_root(struct btrfs_root *root)
896 {
897 	spin_lock(&root->fs_info->trans_lock);
898 	list_add(&root->root_list, &root->fs_info->dead_roots);
899 	spin_unlock(&root->fs_info->trans_lock);
900 	return 0;
901 }
902 
903 /*
904  * update all the cowonly tree roots on disk
905  */
906 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
907 				    struct btrfs_root *root)
908 {
909 	struct btrfs_root *gang[8];
910 	struct btrfs_fs_info *fs_info = root->fs_info;
911 	int i;
912 	int ret;
913 	int err = 0;
914 
915 	spin_lock(&fs_info->fs_roots_radix_lock);
916 	while (1) {
917 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
918 						 (void **)gang, 0,
919 						 ARRAY_SIZE(gang),
920 						 BTRFS_ROOT_TRANS_TAG);
921 		if (ret == 0)
922 			break;
923 		for (i = 0; i < ret; i++) {
924 			root = gang[i];
925 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
926 					(unsigned long)root->root_key.objectid,
927 					BTRFS_ROOT_TRANS_TAG);
928 			spin_unlock(&fs_info->fs_roots_radix_lock);
929 
930 			btrfs_free_log(trans, root);
931 			btrfs_update_reloc_root(trans, root);
932 			btrfs_orphan_commit_root(trans, root);
933 
934 			btrfs_save_ino_cache(root, trans);
935 
936 			/* see comments in should_cow_block() */
937 			root->force_cow = 0;
938 			smp_wmb();
939 
940 			if (root->commit_root != root->node) {
941 				mutex_lock(&root->fs_commit_mutex);
942 				switch_commit_root(root);
943 				btrfs_unpin_free_ino(root);
944 				mutex_unlock(&root->fs_commit_mutex);
945 
946 				btrfs_set_root_node(&root->root_item,
947 						    root->node);
948 			}
949 
950 			err = btrfs_update_root(trans, fs_info->tree_root,
951 						&root->root_key,
952 						&root->root_item);
953 			spin_lock(&fs_info->fs_roots_radix_lock);
954 			if (err)
955 				break;
956 		}
957 	}
958 	spin_unlock(&fs_info->fs_roots_radix_lock);
959 	return err;
960 }
961 
962 /*
963  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
964  * otherwise every leaf in the btree is read and defragged.
965  */
966 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
967 {
968 	struct btrfs_fs_info *info = root->fs_info;
969 	struct btrfs_trans_handle *trans;
970 	int ret;
971 
972 	if (xchg(&root->defrag_running, 1))
973 		return 0;
974 
975 	while (1) {
976 		trans = btrfs_start_transaction(root, 0);
977 		if (IS_ERR(trans))
978 			return PTR_ERR(trans);
979 
980 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
981 
982 		btrfs_end_transaction(trans, root);
983 		btrfs_btree_balance_dirty(info->tree_root);
984 		cond_resched();
985 
986 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
987 			break;
988 	}
989 	root->defrag_running = 0;
990 	return ret;
991 }
992 
993 /*
994  * new snapshots need to be created at a very specific time in the
995  * transaction commit.  This does the actual creation
996  */
997 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
998 				   struct btrfs_fs_info *fs_info,
999 				   struct btrfs_pending_snapshot *pending)
1000 {
1001 	struct btrfs_key key;
1002 	struct btrfs_root_item *new_root_item;
1003 	struct btrfs_root *tree_root = fs_info->tree_root;
1004 	struct btrfs_root *root = pending->root;
1005 	struct btrfs_root *parent_root;
1006 	struct btrfs_block_rsv *rsv;
1007 	struct inode *parent_inode;
1008 	struct btrfs_path *path;
1009 	struct btrfs_dir_item *dir_item;
1010 	struct dentry *parent;
1011 	struct dentry *dentry;
1012 	struct extent_buffer *tmp;
1013 	struct extent_buffer *old;
1014 	struct timespec cur_time = CURRENT_TIME;
1015 	int ret;
1016 	u64 to_reserve = 0;
1017 	u64 index = 0;
1018 	u64 objectid;
1019 	u64 root_flags;
1020 	uuid_le new_uuid;
1021 
1022 	path = btrfs_alloc_path();
1023 	if (!path) {
1024 		ret = pending->error = -ENOMEM;
1025 		goto path_alloc_fail;
1026 	}
1027 
1028 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1029 	if (!new_root_item) {
1030 		ret = pending->error = -ENOMEM;
1031 		goto root_item_alloc_fail;
1032 	}
1033 
1034 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1035 	if (ret) {
1036 		pending->error = ret;
1037 		goto no_free_objectid;
1038 	}
1039 
1040 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1041 
1042 	if (to_reserve > 0) {
1043 		ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1044 					  to_reserve,
1045 					  BTRFS_RESERVE_NO_FLUSH);
1046 		if (ret) {
1047 			pending->error = ret;
1048 			goto no_free_objectid;
1049 		}
1050 	}
1051 
1052 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1053 				   objectid, pending->inherit);
1054 	if (ret) {
1055 		pending->error = ret;
1056 		goto no_free_objectid;
1057 	}
1058 
1059 	key.objectid = objectid;
1060 	key.offset = (u64)-1;
1061 	key.type = BTRFS_ROOT_ITEM_KEY;
1062 
1063 	rsv = trans->block_rsv;
1064 	trans->block_rsv = &pending->block_rsv;
1065 
1066 	dentry = pending->dentry;
1067 	parent = dget_parent(dentry);
1068 	parent_inode = parent->d_inode;
1069 	parent_root = BTRFS_I(parent_inode)->root;
1070 	record_root_in_trans(trans, parent_root);
1071 
1072 	/*
1073 	 * insert the directory item
1074 	 */
1075 	ret = btrfs_set_inode_index(parent_inode, &index);
1076 	BUG_ON(ret); /* -ENOMEM */
1077 
1078 	/* check if there is a file/dir which has the same name. */
1079 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1080 					 btrfs_ino(parent_inode),
1081 					 dentry->d_name.name,
1082 					 dentry->d_name.len, 0);
1083 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1084 		pending->error = -EEXIST;
1085 		goto fail;
1086 	} else if (IS_ERR(dir_item)) {
1087 		ret = PTR_ERR(dir_item);
1088 		btrfs_abort_transaction(trans, root, ret);
1089 		goto fail;
1090 	}
1091 	btrfs_release_path(path);
1092 
1093 	/*
1094 	 * pull in the delayed directory update
1095 	 * and the delayed inode item
1096 	 * otherwise we corrupt the FS during
1097 	 * snapshot
1098 	 */
1099 	ret = btrfs_run_delayed_items(trans, root);
1100 	if (ret) {	/* Transaction aborted */
1101 		btrfs_abort_transaction(trans, root, ret);
1102 		goto fail;
1103 	}
1104 
1105 	record_root_in_trans(trans, root);
1106 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1107 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1108 	btrfs_check_and_init_root_item(new_root_item);
1109 
1110 	root_flags = btrfs_root_flags(new_root_item);
1111 	if (pending->readonly)
1112 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1113 	else
1114 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1115 	btrfs_set_root_flags(new_root_item, root_flags);
1116 
1117 	btrfs_set_root_generation_v2(new_root_item,
1118 			trans->transid);
1119 	uuid_le_gen(&new_uuid);
1120 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1121 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1122 			BTRFS_UUID_SIZE);
1123 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1124 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1125 	btrfs_set_root_otransid(new_root_item, trans->transid);
1126 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1127 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1128 	btrfs_set_root_stransid(new_root_item, 0);
1129 	btrfs_set_root_rtransid(new_root_item, 0);
1130 
1131 	old = btrfs_lock_root_node(root);
1132 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1133 	if (ret) {
1134 		btrfs_tree_unlock(old);
1135 		free_extent_buffer(old);
1136 		btrfs_abort_transaction(trans, root, ret);
1137 		goto fail;
1138 	}
1139 
1140 	btrfs_set_lock_blocking(old);
1141 
1142 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1143 	/* clean up in any case */
1144 	btrfs_tree_unlock(old);
1145 	free_extent_buffer(old);
1146 	if (ret) {
1147 		btrfs_abort_transaction(trans, root, ret);
1148 		goto fail;
1149 	}
1150 
1151 	/* see comments in should_cow_block() */
1152 	root->force_cow = 1;
1153 	smp_wmb();
1154 
1155 	btrfs_set_root_node(new_root_item, tmp);
1156 	/* record when the snapshot was created in key.offset */
1157 	key.offset = trans->transid;
1158 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1159 	btrfs_tree_unlock(tmp);
1160 	free_extent_buffer(tmp);
1161 	if (ret) {
1162 		btrfs_abort_transaction(trans, root, ret);
1163 		goto fail;
1164 	}
1165 
1166 	/*
1167 	 * insert root back/forward references
1168 	 */
1169 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1170 				 parent_root->root_key.objectid,
1171 				 btrfs_ino(parent_inode), index,
1172 				 dentry->d_name.name, dentry->d_name.len);
1173 	if (ret) {
1174 		btrfs_abort_transaction(trans, root, ret);
1175 		goto fail;
1176 	}
1177 
1178 	key.offset = (u64)-1;
1179 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1180 	if (IS_ERR(pending->snap)) {
1181 		ret = PTR_ERR(pending->snap);
1182 		btrfs_abort_transaction(trans, root, ret);
1183 		goto fail;
1184 	}
1185 
1186 	ret = btrfs_reloc_post_snapshot(trans, pending);
1187 	if (ret) {
1188 		btrfs_abort_transaction(trans, root, ret);
1189 		goto fail;
1190 	}
1191 
1192 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1193 	if (ret) {
1194 		btrfs_abort_transaction(trans, root, ret);
1195 		goto fail;
1196 	}
1197 
1198 	ret = btrfs_insert_dir_item(trans, parent_root,
1199 				    dentry->d_name.name, dentry->d_name.len,
1200 				    parent_inode, &key,
1201 				    BTRFS_FT_DIR, index);
1202 	/* We have check then name at the beginning, so it is impossible. */
1203 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1204 	if (ret) {
1205 		btrfs_abort_transaction(trans, root, ret);
1206 		goto fail;
1207 	}
1208 
1209 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1210 					 dentry->d_name.len * 2);
1211 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1212 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1213 	if (ret)
1214 		btrfs_abort_transaction(trans, root, ret);
1215 fail:
1216 	dput(parent);
1217 	trans->block_rsv = rsv;
1218 no_free_objectid:
1219 	kfree(new_root_item);
1220 root_item_alloc_fail:
1221 	btrfs_free_path(path);
1222 path_alloc_fail:
1223 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1224 	return ret;
1225 }
1226 
1227 /*
1228  * create all the snapshots we've scheduled for creation
1229  */
1230 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1231 					     struct btrfs_fs_info *fs_info)
1232 {
1233 	struct btrfs_pending_snapshot *pending;
1234 	struct list_head *head = &trans->transaction->pending_snapshots;
1235 
1236 	list_for_each_entry(pending, head, list)
1237 		create_pending_snapshot(trans, fs_info, pending);
1238 	return 0;
1239 }
1240 
1241 static void update_super_roots(struct btrfs_root *root)
1242 {
1243 	struct btrfs_root_item *root_item;
1244 	struct btrfs_super_block *super;
1245 
1246 	super = root->fs_info->super_copy;
1247 
1248 	root_item = &root->fs_info->chunk_root->root_item;
1249 	super->chunk_root = root_item->bytenr;
1250 	super->chunk_root_generation = root_item->generation;
1251 	super->chunk_root_level = root_item->level;
1252 
1253 	root_item = &root->fs_info->tree_root->root_item;
1254 	super->root = root_item->bytenr;
1255 	super->generation = root_item->generation;
1256 	super->root_level = root_item->level;
1257 	if (btrfs_test_opt(root, SPACE_CACHE))
1258 		super->cache_generation = root_item->generation;
1259 }
1260 
1261 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1262 {
1263 	int ret = 0;
1264 	spin_lock(&info->trans_lock);
1265 	if (info->running_transaction)
1266 		ret = info->running_transaction->in_commit;
1267 	spin_unlock(&info->trans_lock);
1268 	return ret;
1269 }
1270 
1271 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1272 {
1273 	int ret = 0;
1274 	spin_lock(&info->trans_lock);
1275 	if (info->running_transaction)
1276 		ret = info->running_transaction->blocked;
1277 	spin_unlock(&info->trans_lock);
1278 	return ret;
1279 }
1280 
1281 /*
1282  * wait for the current transaction commit to start and block subsequent
1283  * transaction joins
1284  */
1285 static void wait_current_trans_commit_start(struct btrfs_root *root,
1286 					    struct btrfs_transaction *trans)
1287 {
1288 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1289 }
1290 
1291 /*
1292  * wait for the current transaction to start and then become unblocked.
1293  * caller holds ref.
1294  */
1295 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1296 					 struct btrfs_transaction *trans)
1297 {
1298 	wait_event(root->fs_info->transaction_wait,
1299 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1300 }
1301 
1302 /*
1303  * commit transactions asynchronously. once btrfs_commit_transaction_async
1304  * returns, any subsequent transaction will not be allowed to join.
1305  */
1306 struct btrfs_async_commit {
1307 	struct btrfs_trans_handle *newtrans;
1308 	struct btrfs_root *root;
1309 	struct work_struct work;
1310 };
1311 
1312 static void do_async_commit(struct work_struct *work)
1313 {
1314 	struct btrfs_async_commit *ac =
1315 		container_of(work, struct btrfs_async_commit, work);
1316 
1317 	/*
1318 	 * We've got freeze protection passed with the transaction.
1319 	 * Tell lockdep about it.
1320 	 */
1321 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1322 		rwsem_acquire_read(
1323 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1324 		     0, 1, _THIS_IP_);
1325 
1326 	current->journal_info = ac->newtrans;
1327 
1328 	btrfs_commit_transaction(ac->newtrans, ac->root);
1329 	kfree(ac);
1330 }
1331 
1332 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1333 				   struct btrfs_root *root,
1334 				   int wait_for_unblock)
1335 {
1336 	struct btrfs_async_commit *ac;
1337 	struct btrfs_transaction *cur_trans;
1338 
1339 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1340 	if (!ac)
1341 		return -ENOMEM;
1342 
1343 	INIT_WORK(&ac->work, do_async_commit);
1344 	ac->root = root;
1345 	ac->newtrans = btrfs_join_transaction(root);
1346 	if (IS_ERR(ac->newtrans)) {
1347 		int err = PTR_ERR(ac->newtrans);
1348 		kfree(ac);
1349 		return err;
1350 	}
1351 
1352 	/* take transaction reference */
1353 	cur_trans = trans->transaction;
1354 	atomic_inc(&cur_trans->use_count);
1355 
1356 	btrfs_end_transaction(trans, root);
1357 
1358 	/*
1359 	 * Tell lockdep we've released the freeze rwsem, since the
1360 	 * async commit thread will be the one to unlock it.
1361 	 */
1362 	if (trans->type < TRANS_JOIN_NOLOCK)
1363 		rwsem_release(
1364 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1365 			1, _THIS_IP_);
1366 
1367 	schedule_work(&ac->work);
1368 
1369 	/* wait for transaction to start and unblock */
1370 	if (wait_for_unblock)
1371 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1372 	else
1373 		wait_current_trans_commit_start(root, cur_trans);
1374 
1375 	if (current->journal_info == trans)
1376 		current->journal_info = NULL;
1377 
1378 	put_transaction(cur_trans);
1379 	return 0;
1380 }
1381 
1382 
1383 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1384 				struct btrfs_root *root, int err)
1385 {
1386 	struct btrfs_transaction *cur_trans = trans->transaction;
1387 
1388 	WARN_ON(trans->use_count > 1);
1389 
1390 	btrfs_abort_transaction(trans, root, err);
1391 
1392 	spin_lock(&root->fs_info->trans_lock);
1393 	list_del_init(&cur_trans->list);
1394 	if (cur_trans == root->fs_info->running_transaction) {
1395 		root->fs_info->running_transaction = NULL;
1396 		root->fs_info->trans_no_join = 0;
1397 	}
1398 	spin_unlock(&root->fs_info->trans_lock);
1399 
1400 	btrfs_cleanup_one_transaction(trans->transaction, root);
1401 
1402 	put_transaction(cur_trans);
1403 	put_transaction(cur_trans);
1404 
1405 	trace_btrfs_transaction_commit(root);
1406 
1407 	btrfs_scrub_continue(root);
1408 
1409 	if (current->journal_info == trans)
1410 		current->journal_info = NULL;
1411 
1412 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1413 }
1414 
1415 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1416 					  struct btrfs_root *root)
1417 {
1418 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1419 	int snap_pending = 0;
1420 	int ret;
1421 
1422 	if (!flush_on_commit) {
1423 		spin_lock(&root->fs_info->trans_lock);
1424 		if (!list_empty(&trans->transaction->pending_snapshots))
1425 			snap_pending = 1;
1426 		spin_unlock(&root->fs_info->trans_lock);
1427 	}
1428 
1429 	if (flush_on_commit || snap_pending) {
1430 		btrfs_start_delalloc_inodes(root, 1);
1431 		btrfs_wait_ordered_extents(root, 1);
1432 	}
1433 
1434 	ret = btrfs_run_delayed_items(trans, root);
1435 	if (ret)
1436 		return ret;
1437 
1438 	/*
1439 	 * running the delayed items may have added new refs. account
1440 	 * them now so that they hinder processing of more delayed refs
1441 	 * as little as possible.
1442 	 */
1443 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1444 
1445 	/*
1446 	 * rename don't use btrfs_join_transaction, so, once we
1447 	 * set the transaction to blocked above, we aren't going
1448 	 * to get any new ordered operations.  We can safely run
1449 	 * it here and no for sure that nothing new will be added
1450 	 * to the list
1451 	 */
1452 	btrfs_run_ordered_operations(root, 1);
1453 
1454 	return 0;
1455 }
1456 
1457 /*
1458  * btrfs_transaction state sequence:
1459  *    in_commit = 0, blocked = 0  (initial)
1460  *    in_commit = 1, blocked = 1
1461  *    blocked = 0
1462  *    commit_done = 1
1463  */
1464 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1465 			     struct btrfs_root *root)
1466 {
1467 	unsigned long joined = 0;
1468 	struct btrfs_transaction *cur_trans = trans->transaction;
1469 	struct btrfs_transaction *prev_trans = NULL;
1470 	DEFINE_WAIT(wait);
1471 	int ret;
1472 	int should_grow = 0;
1473 	unsigned long now = get_seconds();
1474 
1475 	ret = btrfs_run_ordered_operations(root, 0);
1476 	if (ret) {
1477 		btrfs_abort_transaction(trans, root, ret);
1478 		goto cleanup_transaction;
1479 	}
1480 
1481 	/* Stop the commit early if ->aborted is set */
1482 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1483 		ret = cur_trans->aborted;
1484 		goto cleanup_transaction;
1485 	}
1486 
1487 	/* make a pass through all the delayed refs we have so far
1488 	 * any runnings procs may add more while we are here
1489 	 */
1490 	ret = btrfs_run_delayed_refs(trans, root, 0);
1491 	if (ret)
1492 		goto cleanup_transaction;
1493 
1494 	btrfs_trans_release_metadata(trans, root);
1495 	trans->block_rsv = NULL;
1496 
1497 	cur_trans = trans->transaction;
1498 
1499 	/*
1500 	 * set the flushing flag so procs in this transaction have to
1501 	 * start sending their work down.
1502 	 */
1503 	cur_trans->delayed_refs.flushing = 1;
1504 
1505 	if (!list_empty(&trans->new_bgs))
1506 		btrfs_create_pending_block_groups(trans, root);
1507 
1508 	ret = btrfs_run_delayed_refs(trans, root, 0);
1509 	if (ret)
1510 		goto cleanup_transaction;
1511 
1512 	spin_lock(&cur_trans->commit_lock);
1513 	if (cur_trans->in_commit) {
1514 		spin_unlock(&cur_trans->commit_lock);
1515 		atomic_inc(&cur_trans->use_count);
1516 		ret = btrfs_end_transaction(trans, root);
1517 
1518 		wait_for_commit(root, cur_trans);
1519 
1520 		put_transaction(cur_trans);
1521 
1522 		return ret;
1523 	}
1524 
1525 	trans->transaction->in_commit = 1;
1526 	trans->transaction->blocked = 1;
1527 	spin_unlock(&cur_trans->commit_lock);
1528 	wake_up(&root->fs_info->transaction_blocked_wait);
1529 
1530 	spin_lock(&root->fs_info->trans_lock);
1531 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1532 		prev_trans = list_entry(cur_trans->list.prev,
1533 					struct btrfs_transaction, list);
1534 		if (!prev_trans->commit_done) {
1535 			atomic_inc(&prev_trans->use_count);
1536 			spin_unlock(&root->fs_info->trans_lock);
1537 
1538 			wait_for_commit(root, prev_trans);
1539 
1540 			put_transaction(prev_trans);
1541 		} else {
1542 			spin_unlock(&root->fs_info->trans_lock);
1543 		}
1544 	} else {
1545 		spin_unlock(&root->fs_info->trans_lock);
1546 	}
1547 
1548 	if (!btrfs_test_opt(root, SSD) &&
1549 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1550 		should_grow = 1;
1551 
1552 	do {
1553 		joined = cur_trans->num_joined;
1554 
1555 		WARN_ON(cur_trans != trans->transaction);
1556 
1557 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1558 		if (ret)
1559 			goto cleanup_transaction;
1560 
1561 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1562 				TASK_UNINTERRUPTIBLE);
1563 
1564 		if (atomic_read(&cur_trans->num_writers) > 1)
1565 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1566 		else if (should_grow)
1567 			schedule_timeout(1);
1568 
1569 		finish_wait(&cur_trans->writer_wait, &wait);
1570 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1571 		 (should_grow && cur_trans->num_joined != joined));
1572 
1573 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1574 	if (ret)
1575 		goto cleanup_transaction;
1576 
1577 	/*
1578 	 * Ok now we need to make sure to block out any other joins while we
1579 	 * commit the transaction.  We could have started a join before setting
1580 	 * no_join so make sure to wait for num_writers to == 1 again.
1581 	 */
1582 	spin_lock(&root->fs_info->trans_lock);
1583 	root->fs_info->trans_no_join = 1;
1584 	spin_unlock(&root->fs_info->trans_lock);
1585 	wait_event(cur_trans->writer_wait,
1586 		   atomic_read(&cur_trans->num_writers) == 1);
1587 
1588 	/* ->aborted might be set after the previous check, so check it */
1589 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1590 		ret = cur_trans->aborted;
1591 		goto cleanup_transaction;
1592 	}
1593 	/*
1594 	 * the reloc mutex makes sure that we stop
1595 	 * the balancing code from coming in and moving
1596 	 * extents around in the middle of the commit
1597 	 */
1598 	mutex_lock(&root->fs_info->reloc_mutex);
1599 
1600 	/*
1601 	 * We needn't worry about the delayed items because we will
1602 	 * deal with them in create_pending_snapshot(), which is the
1603 	 * core function of the snapshot creation.
1604 	 */
1605 	ret = create_pending_snapshots(trans, root->fs_info);
1606 	if (ret) {
1607 		mutex_unlock(&root->fs_info->reloc_mutex);
1608 		goto cleanup_transaction;
1609 	}
1610 
1611 	/*
1612 	 * We insert the dir indexes of the snapshots and update the inode
1613 	 * of the snapshots' parents after the snapshot creation, so there
1614 	 * are some delayed items which are not dealt with. Now deal with
1615 	 * them.
1616 	 *
1617 	 * We needn't worry that this operation will corrupt the snapshots,
1618 	 * because all the tree which are snapshoted will be forced to COW
1619 	 * the nodes and leaves.
1620 	 */
1621 	ret = btrfs_run_delayed_items(trans, root);
1622 	if (ret) {
1623 		mutex_unlock(&root->fs_info->reloc_mutex);
1624 		goto cleanup_transaction;
1625 	}
1626 
1627 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1628 	if (ret) {
1629 		mutex_unlock(&root->fs_info->reloc_mutex);
1630 		goto cleanup_transaction;
1631 	}
1632 
1633 	/*
1634 	 * make sure none of the code above managed to slip in a
1635 	 * delayed item
1636 	 */
1637 	btrfs_assert_delayed_root_empty(root);
1638 
1639 	WARN_ON(cur_trans != trans->transaction);
1640 
1641 	btrfs_scrub_pause(root);
1642 	/* btrfs_commit_tree_roots is responsible for getting the
1643 	 * various roots consistent with each other.  Every pointer
1644 	 * in the tree of tree roots has to point to the most up to date
1645 	 * root for every subvolume and other tree.  So, we have to keep
1646 	 * the tree logging code from jumping in and changing any
1647 	 * of the trees.
1648 	 *
1649 	 * At this point in the commit, there can't be any tree-log
1650 	 * writers, but a little lower down we drop the trans mutex
1651 	 * and let new people in.  By holding the tree_log_mutex
1652 	 * from now until after the super is written, we avoid races
1653 	 * with the tree-log code.
1654 	 */
1655 	mutex_lock(&root->fs_info->tree_log_mutex);
1656 
1657 	ret = commit_fs_roots(trans, root);
1658 	if (ret) {
1659 		mutex_unlock(&root->fs_info->tree_log_mutex);
1660 		mutex_unlock(&root->fs_info->reloc_mutex);
1661 		goto cleanup_transaction;
1662 	}
1663 
1664 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1665 	 * safe to free the root of tree log roots
1666 	 */
1667 	btrfs_free_log_root_tree(trans, root->fs_info);
1668 
1669 	ret = commit_cowonly_roots(trans, root);
1670 	if (ret) {
1671 		mutex_unlock(&root->fs_info->tree_log_mutex);
1672 		mutex_unlock(&root->fs_info->reloc_mutex);
1673 		goto cleanup_transaction;
1674 	}
1675 
1676 	/*
1677 	 * The tasks which save the space cache and inode cache may also
1678 	 * update ->aborted, check it.
1679 	 */
1680 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1681 		ret = cur_trans->aborted;
1682 		mutex_unlock(&root->fs_info->tree_log_mutex);
1683 		mutex_unlock(&root->fs_info->reloc_mutex);
1684 		goto cleanup_transaction;
1685 	}
1686 
1687 	btrfs_prepare_extent_commit(trans, root);
1688 
1689 	cur_trans = root->fs_info->running_transaction;
1690 
1691 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1692 			    root->fs_info->tree_root->node);
1693 	switch_commit_root(root->fs_info->tree_root);
1694 
1695 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1696 			    root->fs_info->chunk_root->node);
1697 	switch_commit_root(root->fs_info->chunk_root);
1698 
1699 	assert_qgroups_uptodate(trans);
1700 	update_super_roots(root);
1701 
1702 	if (!root->fs_info->log_root_recovering) {
1703 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1704 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1705 	}
1706 
1707 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1708 	       sizeof(*root->fs_info->super_copy));
1709 
1710 	trans->transaction->blocked = 0;
1711 	spin_lock(&root->fs_info->trans_lock);
1712 	root->fs_info->running_transaction = NULL;
1713 	root->fs_info->trans_no_join = 0;
1714 	spin_unlock(&root->fs_info->trans_lock);
1715 	mutex_unlock(&root->fs_info->reloc_mutex);
1716 
1717 	wake_up(&root->fs_info->transaction_wait);
1718 
1719 	ret = btrfs_write_and_wait_transaction(trans, root);
1720 	if (ret) {
1721 		btrfs_error(root->fs_info, ret,
1722 			    "Error while writing out transaction.");
1723 		mutex_unlock(&root->fs_info->tree_log_mutex);
1724 		goto cleanup_transaction;
1725 	}
1726 
1727 	ret = write_ctree_super(trans, root, 0);
1728 	if (ret) {
1729 		mutex_unlock(&root->fs_info->tree_log_mutex);
1730 		goto cleanup_transaction;
1731 	}
1732 
1733 	/*
1734 	 * the super is written, we can safely allow the tree-loggers
1735 	 * to go about their business
1736 	 */
1737 	mutex_unlock(&root->fs_info->tree_log_mutex);
1738 
1739 	btrfs_finish_extent_commit(trans, root);
1740 
1741 	cur_trans->commit_done = 1;
1742 
1743 	root->fs_info->last_trans_committed = cur_trans->transid;
1744 
1745 	wake_up(&cur_trans->commit_wait);
1746 
1747 	spin_lock(&root->fs_info->trans_lock);
1748 	list_del_init(&cur_trans->list);
1749 	spin_unlock(&root->fs_info->trans_lock);
1750 
1751 	put_transaction(cur_trans);
1752 	put_transaction(cur_trans);
1753 
1754 	if (trans->type < TRANS_JOIN_NOLOCK)
1755 		sb_end_intwrite(root->fs_info->sb);
1756 
1757 	trace_btrfs_transaction_commit(root);
1758 
1759 	btrfs_scrub_continue(root);
1760 
1761 	if (current->journal_info == trans)
1762 		current->journal_info = NULL;
1763 
1764 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1765 
1766 	if (current != root->fs_info->transaction_kthread)
1767 		btrfs_run_delayed_iputs(root);
1768 
1769 	return ret;
1770 
1771 cleanup_transaction:
1772 	btrfs_trans_release_metadata(trans, root);
1773 	trans->block_rsv = NULL;
1774 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1775 //	WARN_ON(1);
1776 	if (current->journal_info == trans)
1777 		current->journal_info = NULL;
1778 	cleanup_transaction(trans, root, ret);
1779 
1780 	return ret;
1781 }
1782 
1783 /*
1784  * interface function to delete all the snapshots we have scheduled for deletion
1785  */
1786 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1787 {
1788 	LIST_HEAD(list);
1789 	struct btrfs_fs_info *fs_info = root->fs_info;
1790 
1791 	spin_lock(&fs_info->trans_lock);
1792 	list_splice_init(&fs_info->dead_roots, &list);
1793 	spin_unlock(&fs_info->trans_lock);
1794 
1795 	while (!list_empty(&list)) {
1796 		int ret;
1797 
1798 		root = list_entry(list.next, struct btrfs_root, root_list);
1799 		list_del(&root->root_list);
1800 
1801 		btrfs_kill_all_delayed_nodes(root);
1802 
1803 		if (btrfs_header_backref_rev(root->node) <
1804 		    BTRFS_MIXED_BACKREF_REV)
1805 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1806 		else
1807 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1808 		BUG_ON(ret < 0);
1809 	}
1810 	return 0;
1811 }
1812