1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 void put_transaction(struct btrfs_transaction *transaction) 38 { 39 WARN_ON(atomic_read(&transaction->use_count) == 0); 40 if (atomic_dec_and_test(&transaction->use_count)) { 41 BUG_ON(!list_empty(&transaction->list)); 42 WARN_ON(transaction->delayed_refs.root.rb_node); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 /* 54 * either allocate a new transaction or hop into the existing one 55 */ 56 static noinline int join_transaction(struct btrfs_root *root, int type) 57 { 58 struct btrfs_transaction *cur_trans; 59 struct btrfs_fs_info *fs_info = root->fs_info; 60 61 spin_lock(&fs_info->trans_lock); 62 loop: 63 /* The file system has been taken offline. No new transactions. */ 64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 65 spin_unlock(&fs_info->trans_lock); 66 return -EROFS; 67 } 68 69 if (fs_info->trans_no_join) { 70 /* 71 * If we are JOIN_NOLOCK we're already committing a current 72 * transaction, we just need a handle to deal with something 73 * when committing the transaction, such as inode cache and 74 * space cache. It is a special case. 75 */ 76 if (type != TRANS_JOIN_NOLOCK) { 77 spin_unlock(&fs_info->trans_lock); 78 return -EBUSY; 79 } 80 } 81 82 cur_trans = fs_info->running_transaction; 83 if (cur_trans) { 84 if (cur_trans->aborted) { 85 spin_unlock(&fs_info->trans_lock); 86 return cur_trans->aborted; 87 } 88 atomic_inc(&cur_trans->use_count); 89 atomic_inc(&cur_trans->num_writers); 90 cur_trans->num_joined++; 91 spin_unlock(&fs_info->trans_lock); 92 return 0; 93 } 94 spin_unlock(&fs_info->trans_lock); 95 96 /* 97 * If we are ATTACH, we just want to catch the current transaction, 98 * and commit it. If there is no transaction, just return ENOENT. 99 */ 100 if (type == TRANS_ATTACH) 101 return -ENOENT; 102 103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 104 if (!cur_trans) 105 return -ENOMEM; 106 107 spin_lock(&fs_info->trans_lock); 108 if (fs_info->running_transaction) { 109 /* 110 * someone started a transaction after we unlocked. Make sure 111 * to redo the trans_no_join checks above 112 */ 113 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 114 cur_trans = fs_info->running_transaction; 115 goto loop; 116 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 117 spin_unlock(&fs_info->trans_lock); 118 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 119 return -EROFS; 120 } 121 122 atomic_set(&cur_trans->num_writers, 1); 123 cur_trans->num_joined = 0; 124 init_waitqueue_head(&cur_trans->writer_wait); 125 init_waitqueue_head(&cur_trans->commit_wait); 126 cur_trans->in_commit = 0; 127 cur_trans->blocked = 0; 128 /* 129 * One for this trans handle, one so it will live on until we 130 * commit the transaction. 131 */ 132 atomic_set(&cur_trans->use_count, 2); 133 cur_trans->commit_done = 0; 134 cur_trans->start_time = get_seconds(); 135 136 cur_trans->delayed_refs.root = RB_ROOT; 137 cur_trans->delayed_refs.num_entries = 0; 138 cur_trans->delayed_refs.num_heads_ready = 0; 139 cur_trans->delayed_refs.num_heads = 0; 140 cur_trans->delayed_refs.flushing = 0; 141 cur_trans->delayed_refs.run_delayed_start = 0; 142 143 /* 144 * although the tree mod log is per file system and not per transaction, 145 * the log must never go across transaction boundaries. 146 */ 147 smp_mb(); 148 if (!list_empty(&fs_info->tree_mod_seq_list)) 149 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 150 "creating a fresh transaction\n"); 151 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 152 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 153 "creating a fresh transaction\n"); 154 atomic_set(&fs_info->tree_mod_seq, 0); 155 156 spin_lock_init(&cur_trans->commit_lock); 157 spin_lock_init(&cur_trans->delayed_refs.lock); 158 159 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 160 list_add_tail(&cur_trans->list, &fs_info->trans_list); 161 extent_io_tree_init(&cur_trans->dirty_pages, 162 fs_info->btree_inode->i_mapping); 163 fs_info->generation++; 164 cur_trans->transid = fs_info->generation; 165 fs_info->running_transaction = cur_trans; 166 cur_trans->aborted = 0; 167 spin_unlock(&fs_info->trans_lock); 168 169 return 0; 170 } 171 172 /* 173 * this does all the record keeping required to make sure that a reference 174 * counted root is properly recorded in a given transaction. This is required 175 * to make sure the old root from before we joined the transaction is deleted 176 * when the transaction commits 177 */ 178 static int record_root_in_trans(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root) 180 { 181 if (root->ref_cows && root->last_trans < trans->transid) { 182 WARN_ON(root == root->fs_info->extent_root); 183 WARN_ON(root->commit_root != root->node); 184 185 /* 186 * see below for in_trans_setup usage rules 187 * we have the reloc mutex held now, so there 188 * is only one writer in this function 189 */ 190 root->in_trans_setup = 1; 191 192 /* make sure readers find in_trans_setup before 193 * they find our root->last_trans update 194 */ 195 smp_wmb(); 196 197 spin_lock(&root->fs_info->fs_roots_radix_lock); 198 if (root->last_trans == trans->transid) { 199 spin_unlock(&root->fs_info->fs_roots_radix_lock); 200 return 0; 201 } 202 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 203 (unsigned long)root->root_key.objectid, 204 BTRFS_ROOT_TRANS_TAG); 205 spin_unlock(&root->fs_info->fs_roots_radix_lock); 206 root->last_trans = trans->transid; 207 208 /* this is pretty tricky. We don't want to 209 * take the relocation lock in btrfs_record_root_in_trans 210 * unless we're really doing the first setup for this root in 211 * this transaction. 212 * 213 * Normally we'd use root->last_trans as a flag to decide 214 * if we want to take the expensive mutex. 215 * 216 * But, we have to set root->last_trans before we 217 * init the relocation root, otherwise, we trip over warnings 218 * in ctree.c. The solution used here is to flag ourselves 219 * with root->in_trans_setup. When this is 1, we're still 220 * fixing up the reloc trees and everyone must wait. 221 * 222 * When this is zero, they can trust root->last_trans and fly 223 * through btrfs_record_root_in_trans without having to take the 224 * lock. smp_wmb() makes sure that all the writes above are 225 * done before we pop in the zero below 226 */ 227 btrfs_init_reloc_root(trans, root); 228 smp_wmb(); 229 root->in_trans_setup = 0; 230 } 231 return 0; 232 } 233 234 235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 236 struct btrfs_root *root) 237 { 238 if (!root->ref_cows) 239 return 0; 240 241 /* 242 * see record_root_in_trans for comments about in_trans_setup usage 243 * and barriers 244 */ 245 smp_rmb(); 246 if (root->last_trans == trans->transid && 247 !root->in_trans_setup) 248 return 0; 249 250 mutex_lock(&root->fs_info->reloc_mutex); 251 record_root_in_trans(trans, root); 252 mutex_unlock(&root->fs_info->reloc_mutex); 253 254 return 0; 255 } 256 257 /* wait for commit against the current transaction to become unblocked 258 * when this is done, it is safe to start a new transaction, but the current 259 * transaction might not be fully on disk. 260 */ 261 static void wait_current_trans(struct btrfs_root *root) 262 { 263 struct btrfs_transaction *cur_trans; 264 265 spin_lock(&root->fs_info->trans_lock); 266 cur_trans = root->fs_info->running_transaction; 267 if (cur_trans && cur_trans->blocked) { 268 atomic_inc(&cur_trans->use_count); 269 spin_unlock(&root->fs_info->trans_lock); 270 271 wait_event(root->fs_info->transaction_wait, 272 !cur_trans->blocked); 273 put_transaction(cur_trans); 274 } else { 275 spin_unlock(&root->fs_info->trans_lock); 276 } 277 } 278 279 static int may_wait_transaction(struct btrfs_root *root, int type) 280 { 281 if (root->fs_info->log_root_recovering) 282 return 0; 283 284 if (type == TRANS_USERSPACE) 285 return 1; 286 287 if (type == TRANS_START && 288 !atomic_read(&root->fs_info->open_ioctl_trans)) 289 return 1; 290 291 return 0; 292 } 293 294 static struct btrfs_trans_handle * 295 start_transaction(struct btrfs_root *root, u64 num_items, int type, 296 enum btrfs_reserve_flush_enum flush) 297 { 298 struct btrfs_trans_handle *h; 299 struct btrfs_transaction *cur_trans; 300 u64 num_bytes = 0; 301 int ret; 302 u64 qgroup_reserved = 0; 303 304 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 305 return ERR_PTR(-EROFS); 306 307 if (current->journal_info) { 308 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 309 h = current->journal_info; 310 h->use_count++; 311 WARN_ON(h->use_count > 2); 312 h->orig_rsv = h->block_rsv; 313 h->block_rsv = NULL; 314 goto got_it; 315 } 316 317 /* 318 * Do the reservation before we join the transaction so we can do all 319 * the appropriate flushing if need be. 320 */ 321 if (num_items > 0 && root != root->fs_info->chunk_root) { 322 if (root->fs_info->quota_enabled && 323 is_fstree(root->root_key.objectid)) { 324 qgroup_reserved = num_items * root->leafsize; 325 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 326 if (ret) 327 return ERR_PTR(ret); 328 } 329 330 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 331 ret = btrfs_block_rsv_add(root, 332 &root->fs_info->trans_block_rsv, 333 num_bytes, flush); 334 if (ret) 335 goto reserve_fail; 336 } 337 again: 338 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 339 if (!h) { 340 ret = -ENOMEM; 341 goto alloc_fail; 342 } 343 344 /* 345 * If we are JOIN_NOLOCK we're already committing a transaction and 346 * waiting on this guy, so we don't need to do the sb_start_intwrite 347 * because we're already holding a ref. We need this because we could 348 * have raced in and did an fsync() on a file which can kick a commit 349 * and then we deadlock with somebody doing a freeze. 350 * 351 * If we are ATTACH, it means we just want to catch the current 352 * transaction and commit it, so we needn't do sb_start_intwrite(). 353 */ 354 if (type < TRANS_JOIN_NOLOCK) 355 sb_start_intwrite(root->fs_info->sb); 356 357 if (may_wait_transaction(root, type)) 358 wait_current_trans(root); 359 360 do { 361 ret = join_transaction(root, type); 362 if (ret == -EBUSY) 363 wait_current_trans(root); 364 } while (ret == -EBUSY); 365 366 if (ret < 0) { 367 /* We must get the transaction if we are JOIN_NOLOCK. */ 368 BUG_ON(type == TRANS_JOIN_NOLOCK); 369 goto join_fail; 370 } 371 372 cur_trans = root->fs_info->running_transaction; 373 374 h->transid = cur_trans->transid; 375 h->transaction = cur_trans; 376 h->blocks_used = 0; 377 h->bytes_reserved = 0; 378 h->root = root; 379 h->delayed_ref_updates = 0; 380 h->use_count = 1; 381 h->adding_csums = 0; 382 h->block_rsv = NULL; 383 h->orig_rsv = NULL; 384 h->aborted = 0; 385 h->qgroup_reserved = qgroup_reserved; 386 h->delayed_ref_elem.seq = 0; 387 h->type = type; 388 h->allocating_chunk = false; 389 INIT_LIST_HEAD(&h->qgroup_ref_list); 390 INIT_LIST_HEAD(&h->new_bgs); 391 392 smp_mb(); 393 if (cur_trans->blocked && may_wait_transaction(root, type)) { 394 btrfs_commit_transaction(h, root); 395 goto again; 396 } 397 398 if (num_bytes) { 399 trace_btrfs_space_reservation(root->fs_info, "transaction", 400 h->transid, num_bytes, 1); 401 h->block_rsv = &root->fs_info->trans_block_rsv; 402 h->bytes_reserved = num_bytes; 403 } 404 405 got_it: 406 btrfs_record_root_in_trans(h, root); 407 408 if (!current->journal_info && type != TRANS_USERSPACE) 409 current->journal_info = h; 410 return h; 411 412 join_fail: 413 if (type < TRANS_JOIN_NOLOCK) 414 sb_end_intwrite(root->fs_info->sb); 415 kmem_cache_free(btrfs_trans_handle_cachep, h); 416 alloc_fail: 417 if (num_bytes) 418 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 419 num_bytes); 420 reserve_fail: 421 if (qgroup_reserved) 422 btrfs_qgroup_free(root, qgroup_reserved); 423 return ERR_PTR(ret); 424 } 425 426 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 427 int num_items) 428 { 429 return start_transaction(root, num_items, TRANS_START, 430 BTRFS_RESERVE_FLUSH_ALL); 431 } 432 433 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 434 struct btrfs_root *root, int num_items) 435 { 436 return start_transaction(root, num_items, TRANS_START, 437 BTRFS_RESERVE_FLUSH_LIMIT); 438 } 439 440 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 441 { 442 return start_transaction(root, 0, TRANS_JOIN, 0); 443 } 444 445 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 446 { 447 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 448 } 449 450 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 451 { 452 return start_transaction(root, 0, TRANS_USERSPACE, 0); 453 } 454 455 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 456 { 457 return start_transaction(root, 0, TRANS_ATTACH, 0); 458 } 459 460 /* wait for a transaction commit to be fully complete */ 461 static noinline void wait_for_commit(struct btrfs_root *root, 462 struct btrfs_transaction *commit) 463 { 464 wait_event(commit->commit_wait, commit->commit_done); 465 } 466 467 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 468 { 469 struct btrfs_transaction *cur_trans = NULL, *t; 470 int ret = 0; 471 472 if (transid) { 473 if (transid <= root->fs_info->last_trans_committed) 474 goto out; 475 476 ret = -EINVAL; 477 /* find specified transaction */ 478 spin_lock(&root->fs_info->trans_lock); 479 list_for_each_entry(t, &root->fs_info->trans_list, list) { 480 if (t->transid == transid) { 481 cur_trans = t; 482 atomic_inc(&cur_trans->use_count); 483 ret = 0; 484 break; 485 } 486 if (t->transid > transid) { 487 ret = 0; 488 break; 489 } 490 } 491 spin_unlock(&root->fs_info->trans_lock); 492 /* The specified transaction doesn't exist */ 493 if (!cur_trans) 494 goto out; 495 } else { 496 /* find newest transaction that is committing | committed */ 497 spin_lock(&root->fs_info->trans_lock); 498 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 499 list) { 500 if (t->in_commit) { 501 if (t->commit_done) 502 break; 503 cur_trans = t; 504 atomic_inc(&cur_trans->use_count); 505 break; 506 } 507 } 508 spin_unlock(&root->fs_info->trans_lock); 509 if (!cur_trans) 510 goto out; /* nothing committing|committed */ 511 } 512 513 wait_for_commit(root, cur_trans); 514 put_transaction(cur_trans); 515 out: 516 return ret; 517 } 518 519 void btrfs_throttle(struct btrfs_root *root) 520 { 521 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 522 wait_current_trans(root); 523 } 524 525 static int should_end_transaction(struct btrfs_trans_handle *trans, 526 struct btrfs_root *root) 527 { 528 int ret; 529 530 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 531 return ret ? 1 : 0; 532 } 533 534 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 535 struct btrfs_root *root) 536 { 537 struct btrfs_transaction *cur_trans = trans->transaction; 538 int updates; 539 int err; 540 541 smp_mb(); 542 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 543 return 1; 544 545 updates = trans->delayed_ref_updates; 546 trans->delayed_ref_updates = 0; 547 if (updates) { 548 err = btrfs_run_delayed_refs(trans, root, updates); 549 if (err) /* Error code will also eval true */ 550 return err; 551 } 552 553 return should_end_transaction(trans, root); 554 } 555 556 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 557 struct btrfs_root *root, int throttle) 558 { 559 struct btrfs_transaction *cur_trans = trans->transaction; 560 struct btrfs_fs_info *info = root->fs_info; 561 int count = 0; 562 int lock = (trans->type != TRANS_JOIN_NOLOCK); 563 int err = 0; 564 565 if (--trans->use_count) { 566 trans->block_rsv = trans->orig_rsv; 567 return 0; 568 } 569 570 /* 571 * do the qgroup accounting as early as possible 572 */ 573 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 574 575 btrfs_trans_release_metadata(trans, root); 576 trans->block_rsv = NULL; 577 /* 578 * the same root has to be passed to start_transaction and 579 * end_transaction. Subvolume quota depends on this. 580 */ 581 WARN_ON(trans->root != root); 582 583 if (trans->qgroup_reserved) { 584 btrfs_qgroup_free(root, trans->qgroup_reserved); 585 trans->qgroup_reserved = 0; 586 } 587 588 if (!list_empty(&trans->new_bgs)) 589 btrfs_create_pending_block_groups(trans, root); 590 591 while (count < 2) { 592 unsigned long cur = trans->delayed_ref_updates; 593 trans->delayed_ref_updates = 0; 594 if (cur && 595 trans->transaction->delayed_refs.num_heads_ready > 64) { 596 trans->delayed_ref_updates = 0; 597 btrfs_run_delayed_refs(trans, root, cur); 598 } else { 599 break; 600 } 601 count++; 602 } 603 btrfs_trans_release_metadata(trans, root); 604 trans->block_rsv = NULL; 605 606 if (!list_empty(&trans->new_bgs)) 607 btrfs_create_pending_block_groups(trans, root); 608 609 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 610 should_end_transaction(trans, root)) { 611 trans->transaction->blocked = 1; 612 smp_wmb(); 613 } 614 615 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 616 if (throttle) { 617 /* 618 * We may race with somebody else here so end up having 619 * to call end_transaction on ourselves again, so inc 620 * our use_count. 621 */ 622 trans->use_count++; 623 return btrfs_commit_transaction(trans, root); 624 } else { 625 wake_up_process(info->transaction_kthread); 626 } 627 } 628 629 if (trans->type < TRANS_JOIN_NOLOCK) 630 sb_end_intwrite(root->fs_info->sb); 631 632 WARN_ON(cur_trans != info->running_transaction); 633 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 634 atomic_dec(&cur_trans->num_writers); 635 636 smp_mb(); 637 if (waitqueue_active(&cur_trans->writer_wait)) 638 wake_up(&cur_trans->writer_wait); 639 put_transaction(cur_trans); 640 641 if (current->journal_info == trans) 642 current->journal_info = NULL; 643 644 if (throttle) 645 btrfs_run_delayed_iputs(root); 646 647 if (trans->aborted || 648 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 649 err = -EIO; 650 } 651 assert_qgroups_uptodate(trans); 652 653 kmem_cache_free(btrfs_trans_handle_cachep, trans); 654 return err; 655 } 656 657 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 658 struct btrfs_root *root) 659 { 660 int ret; 661 662 ret = __btrfs_end_transaction(trans, root, 0); 663 if (ret) 664 return ret; 665 return 0; 666 } 667 668 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 669 struct btrfs_root *root) 670 { 671 int ret; 672 673 ret = __btrfs_end_transaction(trans, root, 1); 674 if (ret) 675 return ret; 676 return 0; 677 } 678 679 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 680 struct btrfs_root *root) 681 { 682 return __btrfs_end_transaction(trans, root, 1); 683 } 684 685 /* 686 * when btree blocks are allocated, they have some corresponding bits set for 687 * them in one of two extent_io trees. This is used to make sure all of 688 * those extents are sent to disk but does not wait on them 689 */ 690 int btrfs_write_marked_extents(struct btrfs_root *root, 691 struct extent_io_tree *dirty_pages, int mark) 692 { 693 int err = 0; 694 int werr = 0; 695 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 696 struct extent_state *cached_state = NULL; 697 u64 start = 0; 698 u64 end; 699 700 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 701 mark, &cached_state)) { 702 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 703 mark, &cached_state, GFP_NOFS); 704 cached_state = NULL; 705 err = filemap_fdatawrite_range(mapping, start, end); 706 if (err) 707 werr = err; 708 cond_resched(); 709 start = end + 1; 710 } 711 if (err) 712 werr = err; 713 return werr; 714 } 715 716 /* 717 * when btree blocks are allocated, they have some corresponding bits set for 718 * them in one of two extent_io trees. This is used to make sure all of 719 * those extents are on disk for transaction or log commit. We wait 720 * on all the pages and clear them from the dirty pages state tree 721 */ 722 int btrfs_wait_marked_extents(struct btrfs_root *root, 723 struct extent_io_tree *dirty_pages, int mark) 724 { 725 int err = 0; 726 int werr = 0; 727 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 728 struct extent_state *cached_state = NULL; 729 u64 start = 0; 730 u64 end; 731 732 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 733 EXTENT_NEED_WAIT, &cached_state)) { 734 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 735 0, 0, &cached_state, GFP_NOFS); 736 err = filemap_fdatawait_range(mapping, start, end); 737 if (err) 738 werr = err; 739 cond_resched(); 740 start = end + 1; 741 } 742 if (err) 743 werr = err; 744 return werr; 745 } 746 747 /* 748 * when btree blocks are allocated, they have some corresponding bits set for 749 * them in one of two extent_io trees. This is used to make sure all of 750 * those extents are on disk for transaction or log commit 751 */ 752 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 753 struct extent_io_tree *dirty_pages, int mark) 754 { 755 int ret; 756 int ret2; 757 758 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 759 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 760 761 if (ret) 762 return ret; 763 if (ret2) 764 return ret2; 765 return 0; 766 } 767 768 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 769 struct btrfs_root *root) 770 { 771 if (!trans || !trans->transaction) { 772 struct inode *btree_inode; 773 btree_inode = root->fs_info->btree_inode; 774 return filemap_write_and_wait(btree_inode->i_mapping); 775 } 776 return btrfs_write_and_wait_marked_extents(root, 777 &trans->transaction->dirty_pages, 778 EXTENT_DIRTY); 779 } 780 781 /* 782 * this is used to update the root pointer in the tree of tree roots. 783 * 784 * But, in the case of the extent allocation tree, updating the root 785 * pointer may allocate blocks which may change the root of the extent 786 * allocation tree. 787 * 788 * So, this loops and repeats and makes sure the cowonly root didn't 789 * change while the root pointer was being updated in the metadata. 790 */ 791 static int update_cowonly_root(struct btrfs_trans_handle *trans, 792 struct btrfs_root *root) 793 { 794 int ret; 795 u64 old_root_bytenr; 796 u64 old_root_used; 797 struct btrfs_root *tree_root = root->fs_info->tree_root; 798 799 old_root_used = btrfs_root_used(&root->root_item); 800 btrfs_write_dirty_block_groups(trans, root); 801 802 while (1) { 803 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 804 if (old_root_bytenr == root->node->start && 805 old_root_used == btrfs_root_used(&root->root_item)) 806 break; 807 808 btrfs_set_root_node(&root->root_item, root->node); 809 ret = btrfs_update_root(trans, tree_root, 810 &root->root_key, 811 &root->root_item); 812 if (ret) 813 return ret; 814 815 old_root_used = btrfs_root_used(&root->root_item); 816 ret = btrfs_write_dirty_block_groups(trans, root); 817 if (ret) 818 return ret; 819 } 820 821 if (root != root->fs_info->extent_root) 822 switch_commit_root(root); 823 824 return 0; 825 } 826 827 /* 828 * update all the cowonly tree roots on disk 829 * 830 * The error handling in this function may not be obvious. Any of the 831 * failures will cause the file system to go offline. We still need 832 * to clean up the delayed refs. 833 */ 834 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 835 struct btrfs_root *root) 836 { 837 struct btrfs_fs_info *fs_info = root->fs_info; 838 struct list_head *next; 839 struct extent_buffer *eb; 840 int ret; 841 842 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 843 if (ret) 844 return ret; 845 846 eb = btrfs_lock_root_node(fs_info->tree_root); 847 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 848 0, &eb); 849 btrfs_tree_unlock(eb); 850 free_extent_buffer(eb); 851 852 if (ret) 853 return ret; 854 855 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 856 if (ret) 857 return ret; 858 859 ret = btrfs_run_dev_stats(trans, root->fs_info); 860 WARN_ON(ret); 861 ret = btrfs_run_dev_replace(trans, root->fs_info); 862 WARN_ON(ret); 863 864 ret = btrfs_run_qgroups(trans, root->fs_info); 865 BUG_ON(ret); 866 867 /* run_qgroups might have added some more refs */ 868 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 869 BUG_ON(ret); 870 871 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 872 next = fs_info->dirty_cowonly_roots.next; 873 list_del_init(next); 874 root = list_entry(next, struct btrfs_root, dirty_list); 875 876 ret = update_cowonly_root(trans, root); 877 if (ret) 878 return ret; 879 } 880 881 down_write(&fs_info->extent_commit_sem); 882 switch_commit_root(fs_info->extent_root); 883 up_write(&fs_info->extent_commit_sem); 884 885 btrfs_after_dev_replace_commit(fs_info); 886 887 return 0; 888 } 889 890 /* 891 * dead roots are old snapshots that need to be deleted. This allocates 892 * a dirty root struct and adds it into the list of dead roots that need to 893 * be deleted 894 */ 895 int btrfs_add_dead_root(struct btrfs_root *root) 896 { 897 spin_lock(&root->fs_info->trans_lock); 898 list_add(&root->root_list, &root->fs_info->dead_roots); 899 spin_unlock(&root->fs_info->trans_lock); 900 return 0; 901 } 902 903 /* 904 * update all the cowonly tree roots on disk 905 */ 906 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 907 struct btrfs_root *root) 908 { 909 struct btrfs_root *gang[8]; 910 struct btrfs_fs_info *fs_info = root->fs_info; 911 int i; 912 int ret; 913 int err = 0; 914 915 spin_lock(&fs_info->fs_roots_radix_lock); 916 while (1) { 917 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 918 (void **)gang, 0, 919 ARRAY_SIZE(gang), 920 BTRFS_ROOT_TRANS_TAG); 921 if (ret == 0) 922 break; 923 for (i = 0; i < ret; i++) { 924 root = gang[i]; 925 radix_tree_tag_clear(&fs_info->fs_roots_radix, 926 (unsigned long)root->root_key.objectid, 927 BTRFS_ROOT_TRANS_TAG); 928 spin_unlock(&fs_info->fs_roots_radix_lock); 929 930 btrfs_free_log(trans, root); 931 btrfs_update_reloc_root(trans, root); 932 btrfs_orphan_commit_root(trans, root); 933 934 btrfs_save_ino_cache(root, trans); 935 936 /* see comments in should_cow_block() */ 937 root->force_cow = 0; 938 smp_wmb(); 939 940 if (root->commit_root != root->node) { 941 mutex_lock(&root->fs_commit_mutex); 942 switch_commit_root(root); 943 btrfs_unpin_free_ino(root); 944 mutex_unlock(&root->fs_commit_mutex); 945 946 btrfs_set_root_node(&root->root_item, 947 root->node); 948 } 949 950 err = btrfs_update_root(trans, fs_info->tree_root, 951 &root->root_key, 952 &root->root_item); 953 spin_lock(&fs_info->fs_roots_radix_lock); 954 if (err) 955 break; 956 } 957 } 958 spin_unlock(&fs_info->fs_roots_radix_lock); 959 return err; 960 } 961 962 /* 963 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 964 * otherwise every leaf in the btree is read and defragged. 965 */ 966 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 967 { 968 struct btrfs_fs_info *info = root->fs_info; 969 struct btrfs_trans_handle *trans; 970 int ret; 971 972 if (xchg(&root->defrag_running, 1)) 973 return 0; 974 975 while (1) { 976 trans = btrfs_start_transaction(root, 0); 977 if (IS_ERR(trans)) 978 return PTR_ERR(trans); 979 980 ret = btrfs_defrag_leaves(trans, root, cacheonly); 981 982 btrfs_end_transaction(trans, root); 983 btrfs_btree_balance_dirty(info->tree_root); 984 cond_resched(); 985 986 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 987 break; 988 } 989 root->defrag_running = 0; 990 return ret; 991 } 992 993 /* 994 * new snapshots need to be created at a very specific time in the 995 * transaction commit. This does the actual creation 996 */ 997 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 998 struct btrfs_fs_info *fs_info, 999 struct btrfs_pending_snapshot *pending) 1000 { 1001 struct btrfs_key key; 1002 struct btrfs_root_item *new_root_item; 1003 struct btrfs_root *tree_root = fs_info->tree_root; 1004 struct btrfs_root *root = pending->root; 1005 struct btrfs_root *parent_root; 1006 struct btrfs_block_rsv *rsv; 1007 struct inode *parent_inode; 1008 struct btrfs_path *path; 1009 struct btrfs_dir_item *dir_item; 1010 struct dentry *parent; 1011 struct dentry *dentry; 1012 struct extent_buffer *tmp; 1013 struct extent_buffer *old; 1014 struct timespec cur_time = CURRENT_TIME; 1015 int ret; 1016 u64 to_reserve = 0; 1017 u64 index = 0; 1018 u64 objectid; 1019 u64 root_flags; 1020 uuid_le new_uuid; 1021 1022 path = btrfs_alloc_path(); 1023 if (!path) { 1024 ret = pending->error = -ENOMEM; 1025 goto path_alloc_fail; 1026 } 1027 1028 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1029 if (!new_root_item) { 1030 ret = pending->error = -ENOMEM; 1031 goto root_item_alloc_fail; 1032 } 1033 1034 ret = btrfs_find_free_objectid(tree_root, &objectid); 1035 if (ret) { 1036 pending->error = ret; 1037 goto no_free_objectid; 1038 } 1039 1040 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1041 1042 if (to_reserve > 0) { 1043 ret = btrfs_block_rsv_add(root, &pending->block_rsv, 1044 to_reserve, 1045 BTRFS_RESERVE_NO_FLUSH); 1046 if (ret) { 1047 pending->error = ret; 1048 goto no_free_objectid; 1049 } 1050 } 1051 1052 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 1053 objectid, pending->inherit); 1054 if (ret) { 1055 pending->error = ret; 1056 goto no_free_objectid; 1057 } 1058 1059 key.objectid = objectid; 1060 key.offset = (u64)-1; 1061 key.type = BTRFS_ROOT_ITEM_KEY; 1062 1063 rsv = trans->block_rsv; 1064 trans->block_rsv = &pending->block_rsv; 1065 1066 dentry = pending->dentry; 1067 parent = dget_parent(dentry); 1068 parent_inode = parent->d_inode; 1069 parent_root = BTRFS_I(parent_inode)->root; 1070 record_root_in_trans(trans, parent_root); 1071 1072 /* 1073 * insert the directory item 1074 */ 1075 ret = btrfs_set_inode_index(parent_inode, &index); 1076 BUG_ON(ret); /* -ENOMEM */ 1077 1078 /* check if there is a file/dir which has the same name. */ 1079 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1080 btrfs_ino(parent_inode), 1081 dentry->d_name.name, 1082 dentry->d_name.len, 0); 1083 if (dir_item != NULL && !IS_ERR(dir_item)) { 1084 pending->error = -EEXIST; 1085 goto fail; 1086 } else if (IS_ERR(dir_item)) { 1087 ret = PTR_ERR(dir_item); 1088 btrfs_abort_transaction(trans, root, ret); 1089 goto fail; 1090 } 1091 btrfs_release_path(path); 1092 1093 /* 1094 * pull in the delayed directory update 1095 * and the delayed inode item 1096 * otherwise we corrupt the FS during 1097 * snapshot 1098 */ 1099 ret = btrfs_run_delayed_items(trans, root); 1100 if (ret) { /* Transaction aborted */ 1101 btrfs_abort_transaction(trans, root, ret); 1102 goto fail; 1103 } 1104 1105 record_root_in_trans(trans, root); 1106 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1107 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1108 btrfs_check_and_init_root_item(new_root_item); 1109 1110 root_flags = btrfs_root_flags(new_root_item); 1111 if (pending->readonly) 1112 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1113 else 1114 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1115 btrfs_set_root_flags(new_root_item, root_flags); 1116 1117 btrfs_set_root_generation_v2(new_root_item, 1118 trans->transid); 1119 uuid_le_gen(&new_uuid); 1120 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1121 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1122 BTRFS_UUID_SIZE); 1123 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1124 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1125 btrfs_set_root_otransid(new_root_item, trans->transid); 1126 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1127 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1128 btrfs_set_root_stransid(new_root_item, 0); 1129 btrfs_set_root_rtransid(new_root_item, 0); 1130 1131 old = btrfs_lock_root_node(root); 1132 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1133 if (ret) { 1134 btrfs_tree_unlock(old); 1135 free_extent_buffer(old); 1136 btrfs_abort_transaction(trans, root, ret); 1137 goto fail; 1138 } 1139 1140 btrfs_set_lock_blocking(old); 1141 1142 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1143 /* clean up in any case */ 1144 btrfs_tree_unlock(old); 1145 free_extent_buffer(old); 1146 if (ret) { 1147 btrfs_abort_transaction(trans, root, ret); 1148 goto fail; 1149 } 1150 1151 /* see comments in should_cow_block() */ 1152 root->force_cow = 1; 1153 smp_wmb(); 1154 1155 btrfs_set_root_node(new_root_item, tmp); 1156 /* record when the snapshot was created in key.offset */ 1157 key.offset = trans->transid; 1158 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1159 btrfs_tree_unlock(tmp); 1160 free_extent_buffer(tmp); 1161 if (ret) { 1162 btrfs_abort_transaction(trans, root, ret); 1163 goto fail; 1164 } 1165 1166 /* 1167 * insert root back/forward references 1168 */ 1169 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1170 parent_root->root_key.objectid, 1171 btrfs_ino(parent_inode), index, 1172 dentry->d_name.name, dentry->d_name.len); 1173 if (ret) { 1174 btrfs_abort_transaction(trans, root, ret); 1175 goto fail; 1176 } 1177 1178 key.offset = (u64)-1; 1179 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1180 if (IS_ERR(pending->snap)) { 1181 ret = PTR_ERR(pending->snap); 1182 btrfs_abort_transaction(trans, root, ret); 1183 goto fail; 1184 } 1185 1186 ret = btrfs_reloc_post_snapshot(trans, pending); 1187 if (ret) { 1188 btrfs_abort_transaction(trans, root, ret); 1189 goto fail; 1190 } 1191 1192 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1193 if (ret) { 1194 btrfs_abort_transaction(trans, root, ret); 1195 goto fail; 1196 } 1197 1198 ret = btrfs_insert_dir_item(trans, parent_root, 1199 dentry->d_name.name, dentry->d_name.len, 1200 parent_inode, &key, 1201 BTRFS_FT_DIR, index); 1202 /* We have check then name at the beginning, so it is impossible. */ 1203 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1204 if (ret) { 1205 btrfs_abort_transaction(trans, root, ret); 1206 goto fail; 1207 } 1208 1209 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1210 dentry->d_name.len * 2); 1211 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1212 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1213 if (ret) 1214 btrfs_abort_transaction(trans, root, ret); 1215 fail: 1216 dput(parent); 1217 trans->block_rsv = rsv; 1218 no_free_objectid: 1219 kfree(new_root_item); 1220 root_item_alloc_fail: 1221 btrfs_free_path(path); 1222 path_alloc_fail: 1223 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1224 return ret; 1225 } 1226 1227 /* 1228 * create all the snapshots we've scheduled for creation 1229 */ 1230 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1231 struct btrfs_fs_info *fs_info) 1232 { 1233 struct btrfs_pending_snapshot *pending; 1234 struct list_head *head = &trans->transaction->pending_snapshots; 1235 1236 list_for_each_entry(pending, head, list) 1237 create_pending_snapshot(trans, fs_info, pending); 1238 return 0; 1239 } 1240 1241 static void update_super_roots(struct btrfs_root *root) 1242 { 1243 struct btrfs_root_item *root_item; 1244 struct btrfs_super_block *super; 1245 1246 super = root->fs_info->super_copy; 1247 1248 root_item = &root->fs_info->chunk_root->root_item; 1249 super->chunk_root = root_item->bytenr; 1250 super->chunk_root_generation = root_item->generation; 1251 super->chunk_root_level = root_item->level; 1252 1253 root_item = &root->fs_info->tree_root->root_item; 1254 super->root = root_item->bytenr; 1255 super->generation = root_item->generation; 1256 super->root_level = root_item->level; 1257 if (btrfs_test_opt(root, SPACE_CACHE)) 1258 super->cache_generation = root_item->generation; 1259 } 1260 1261 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1262 { 1263 int ret = 0; 1264 spin_lock(&info->trans_lock); 1265 if (info->running_transaction) 1266 ret = info->running_transaction->in_commit; 1267 spin_unlock(&info->trans_lock); 1268 return ret; 1269 } 1270 1271 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1272 { 1273 int ret = 0; 1274 spin_lock(&info->trans_lock); 1275 if (info->running_transaction) 1276 ret = info->running_transaction->blocked; 1277 spin_unlock(&info->trans_lock); 1278 return ret; 1279 } 1280 1281 /* 1282 * wait for the current transaction commit to start and block subsequent 1283 * transaction joins 1284 */ 1285 static void wait_current_trans_commit_start(struct btrfs_root *root, 1286 struct btrfs_transaction *trans) 1287 { 1288 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1289 } 1290 1291 /* 1292 * wait for the current transaction to start and then become unblocked. 1293 * caller holds ref. 1294 */ 1295 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1296 struct btrfs_transaction *trans) 1297 { 1298 wait_event(root->fs_info->transaction_wait, 1299 trans->commit_done || (trans->in_commit && !trans->blocked)); 1300 } 1301 1302 /* 1303 * commit transactions asynchronously. once btrfs_commit_transaction_async 1304 * returns, any subsequent transaction will not be allowed to join. 1305 */ 1306 struct btrfs_async_commit { 1307 struct btrfs_trans_handle *newtrans; 1308 struct btrfs_root *root; 1309 struct work_struct work; 1310 }; 1311 1312 static void do_async_commit(struct work_struct *work) 1313 { 1314 struct btrfs_async_commit *ac = 1315 container_of(work, struct btrfs_async_commit, work); 1316 1317 /* 1318 * We've got freeze protection passed with the transaction. 1319 * Tell lockdep about it. 1320 */ 1321 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1322 rwsem_acquire_read( 1323 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1324 0, 1, _THIS_IP_); 1325 1326 current->journal_info = ac->newtrans; 1327 1328 btrfs_commit_transaction(ac->newtrans, ac->root); 1329 kfree(ac); 1330 } 1331 1332 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1333 struct btrfs_root *root, 1334 int wait_for_unblock) 1335 { 1336 struct btrfs_async_commit *ac; 1337 struct btrfs_transaction *cur_trans; 1338 1339 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1340 if (!ac) 1341 return -ENOMEM; 1342 1343 INIT_WORK(&ac->work, do_async_commit); 1344 ac->root = root; 1345 ac->newtrans = btrfs_join_transaction(root); 1346 if (IS_ERR(ac->newtrans)) { 1347 int err = PTR_ERR(ac->newtrans); 1348 kfree(ac); 1349 return err; 1350 } 1351 1352 /* take transaction reference */ 1353 cur_trans = trans->transaction; 1354 atomic_inc(&cur_trans->use_count); 1355 1356 btrfs_end_transaction(trans, root); 1357 1358 /* 1359 * Tell lockdep we've released the freeze rwsem, since the 1360 * async commit thread will be the one to unlock it. 1361 */ 1362 if (trans->type < TRANS_JOIN_NOLOCK) 1363 rwsem_release( 1364 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1365 1, _THIS_IP_); 1366 1367 schedule_work(&ac->work); 1368 1369 /* wait for transaction to start and unblock */ 1370 if (wait_for_unblock) 1371 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1372 else 1373 wait_current_trans_commit_start(root, cur_trans); 1374 1375 if (current->journal_info == trans) 1376 current->journal_info = NULL; 1377 1378 put_transaction(cur_trans); 1379 return 0; 1380 } 1381 1382 1383 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1384 struct btrfs_root *root, int err) 1385 { 1386 struct btrfs_transaction *cur_trans = trans->transaction; 1387 1388 WARN_ON(trans->use_count > 1); 1389 1390 btrfs_abort_transaction(trans, root, err); 1391 1392 spin_lock(&root->fs_info->trans_lock); 1393 list_del_init(&cur_trans->list); 1394 if (cur_trans == root->fs_info->running_transaction) { 1395 root->fs_info->running_transaction = NULL; 1396 root->fs_info->trans_no_join = 0; 1397 } 1398 spin_unlock(&root->fs_info->trans_lock); 1399 1400 btrfs_cleanup_one_transaction(trans->transaction, root); 1401 1402 put_transaction(cur_trans); 1403 put_transaction(cur_trans); 1404 1405 trace_btrfs_transaction_commit(root); 1406 1407 btrfs_scrub_continue(root); 1408 1409 if (current->journal_info == trans) 1410 current->journal_info = NULL; 1411 1412 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1413 } 1414 1415 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1416 struct btrfs_root *root) 1417 { 1418 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1419 int snap_pending = 0; 1420 int ret; 1421 1422 if (!flush_on_commit) { 1423 spin_lock(&root->fs_info->trans_lock); 1424 if (!list_empty(&trans->transaction->pending_snapshots)) 1425 snap_pending = 1; 1426 spin_unlock(&root->fs_info->trans_lock); 1427 } 1428 1429 if (flush_on_commit || snap_pending) { 1430 btrfs_start_delalloc_inodes(root, 1); 1431 btrfs_wait_ordered_extents(root, 1); 1432 } 1433 1434 ret = btrfs_run_delayed_items(trans, root); 1435 if (ret) 1436 return ret; 1437 1438 /* 1439 * running the delayed items may have added new refs. account 1440 * them now so that they hinder processing of more delayed refs 1441 * as little as possible. 1442 */ 1443 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1444 1445 /* 1446 * rename don't use btrfs_join_transaction, so, once we 1447 * set the transaction to blocked above, we aren't going 1448 * to get any new ordered operations. We can safely run 1449 * it here and no for sure that nothing new will be added 1450 * to the list 1451 */ 1452 btrfs_run_ordered_operations(root, 1); 1453 1454 return 0; 1455 } 1456 1457 /* 1458 * btrfs_transaction state sequence: 1459 * in_commit = 0, blocked = 0 (initial) 1460 * in_commit = 1, blocked = 1 1461 * blocked = 0 1462 * commit_done = 1 1463 */ 1464 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1465 struct btrfs_root *root) 1466 { 1467 unsigned long joined = 0; 1468 struct btrfs_transaction *cur_trans = trans->transaction; 1469 struct btrfs_transaction *prev_trans = NULL; 1470 DEFINE_WAIT(wait); 1471 int ret; 1472 int should_grow = 0; 1473 unsigned long now = get_seconds(); 1474 1475 ret = btrfs_run_ordered_operations(root, 0); 1476 if (ret) { 1477 btrfs_abort_transaction(trans, root, ret); 1478 goto cleanup_transaction; 1479 } 1480 1481 /* Stop the commit early if ->aborted is set */ 1482 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1483 ret = cur_trans->aborted; 1484 goto cleanup_transaction; 1485 } 1486 1487 /* make a pass through all the delayed refs we have so far 1488 * any runnings procs may add more while we are here 1489 */ 1490 ret = btrfs_run_delayed_refs(trans, root, 0); 1491 if (ret) 1492 goto cleanup_transaction; 1493 1494 btrfs_trans_release_metadata(trans, root); 1495 trans->block_rsv = NULL; 1496 1497 cur_trans = trans->transaction; 1498 1499 /* 1500 * set the flushing flag so procs in this transaction have to 1501 * start sending their work down. 1502 */ 1503 cur_trans->delayed_refs.flushing = 1; 1504 1505 if (!list_empty(&trans->new_bgs)) 1506 btrfs_create_pending_block_groups(trans, root); 1507 1508 ret = btrfs_run_delayed_refs(trans, root, 0); 1509 if (ret) 1510 goto cleanup_transaction; 1511 1512 spin_lock(&cur_trans->commit_lock); 1513 if (cur_trans->in_commit) { 1514 spin_unlock(&cur_trans->commit_lock); 1515 atomic_inc(&cur_trans->use_count); 1516 ret = btrfs_end_transaction(trans, root); 1517 1518 wait_for_commit(root, cur_trans); 1519 1520 put_transaction(cur_trans); 1521 1522 return ret; 1523 } 1524 1525 trans->transaction->in_commit = 1; 1526 trans->transaction->blocked = 1; 1527 spin_unlock(&cur_trans->commit_lock); 1528 wake_up(&root->fs_info->transaction_blocked_wait); 1529 1530 spin_lock(&root->fs_info->trans_lock); 1531 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1532 prev_trans = list_entry(cur_trans->list.prev, 1533 struct btrfs_transaction, list); 1534 if (!prev_trans->commit_done) { 1535 atomic_inc(&prev_trans->use_count); 1536 spin_unlock(&root->fs_info->trans_lock); 1537 1538 wait_for_commit(root, prev_trans); 1539 1540 put_transaction(prev_trans); 1541 } else { 1542 spin_unlock(&root->fs_info->trans_lock); 1543 } 1544 } else { 1545 spin_unlock(&root->fs_info->trans_lock); 1546 } 1547 1548 if (!btrfs_test_opt(root, SSD) && 1549 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1550 should_grow = 1; 1551 1552 do { 1553 joined = cur_trans->num_joined; 1554 1555 WARN_ON(cur_trans != trans->transaction); 1556 1557 ret = btrfs_flush_all_pending_stuffs(trans, root); 1558 if (ret) 1559 goto cleanup_transaction; 1560 1561 prepare_to_wait(&cur_trans->writer_wait, &wait, 1562 TASK_UNINTERRUPTIBLE); 1563 1564 if (atomic_read(&cur_trans->num_writers) > 1) 1565 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1566 else if (should_grow) 1567 schedule_timeout(1); 1568 1569 finish_wait(&cur_trans->writer_wait, &wait); 1570 } while (atomic_read(&cur_trans->num_writers) > 1 || 1571 (should_grow && cur_trans->num_joined != joined)); 1572 1573 ret = btrfs_flush_all_pending_stuffs(trans, root); 1574 if (ret) 1575 goto cleanup_transaction; 1576 1577 /* 1578 * Ok now we need to make sure to block out any other joins while we 1579 * commit the transaction. We could have started a join before setting 1580 * no_join so make sure to wait for num_writers to == 1 again. 1581 */ 1582 spin_lock(&root->fs_info->trans_lock); 1583 root->fs_info->trans_no_join = 1; 1584 spin_unlock(&root->fs_info->trans_lock); 1585 wait_event(cur_trans->writer_wait, 1586 atomic_read(&cur_trans->num_writers) == 1); 1587 1588 /* ->aborted might be set after the previous check, so check it */ 1589 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1590 ret = cur_trans->aborted; 1591 goto cleanup_transaction; 1592 } 1593 /* 1594 * the reloc mutex makes sure that we stop 1595 * the balancing code from coming in and moving 1596 * extents around in the middle of the commit 1597 */ 1598 mutex_lock(&root->fs_info->reloc_mutex); 1599 1600 /* 1601 * We needn't worry about the delayed items because we will 1602 * deal with them in create_pending_snapshot(), which is the 1603 * core function of the snapshot creation. 1604 */ 1605 ret = create_pending_snapshots(trans, root->fs_info); 1606 if (ret) { 1607 mutex_unlock(&root->fs_info->reloc_mutex); 1608 goto cleanup_transaction; 1609 } 1610 1611 /* 1612 * We insert the dir indexes of the snapshots and update the inode 1613 * of the snapshots' parents after the snapshot creation, so there 1614 * are some delayed items which are not dealt with. Now deal with 1615 * them. 1616 * 1617 * We needn't worry that this operation will corrupt the snapshots, 1618 * because all the tree which are snapshoted will be forced to COW 1619 * the nodes and leaves. 1620 */ 1621 ret = btrfs_run_delayed_items(trans, root); 1622 if (ret) { 1623 mutex_unlock(&root->fs_info->reloc_mutex); 1624 goto cleanup_transaction; 1625 } 1626 1627 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1628 if (ret) { 1629 mutex_unlock(&root->fs_info->reloc_mutex); 1630 goto cleanup_transaction; 1631 } 1632 1633 /* 1634 * make sure none of the code above managed to slip in a 1635 * delayed item 1636 */ 1637 btrfs_assert_delayed_root_empty(root); 1638 1639 WARN_ON(cur_trans != trans->transaction); 1640 1641 btrfs_scrub_pause(root); 1642 /* btrfs_commit_tree_roots is responsible for getting the 1643 * various roots consistent with each other. Every pointer 1644 * in the tree of tree roots has to point to the most up to date 1645 * root for every subvolume and other tree. So, we have to keep 1646 * the tree logging code from jumping in and changing any 1647 * of the trees. 1648 * 1649 * At this point in the commit, there can't be any tree-log 1650 * writers, but a little lower down we drop the trans mutex 1651 * and let new people in. By holding the tree_log_mutex 1652 * from now until after the super is written, we avoid races 1653 * with the tree-log code. 1654 */ 1655 mutex_lock(&root->fs_info->tree_log_mutex); 1656 1657 ret = commit_fs_roots(trans, root); 1658 if (ret) { 1659 mutex_unlock(&root->fs_info->tree_log_mutex); 1660 mutex_unlock(&root->fs_info->reloc_mutex); 1661 goto cleanup_transaction; 1662 } 1663 1664 /* commit_fs_roots gets rid of all the tree log roots, it is now 1665 * safe to free the root of tree log roots 1666 */ 1667 btrfs_free_log_root_tree(trans, root->fs_info); 1668 1669 ret = commit_cowonly_roots(trans, root); 1670 if (ret) { 1671 mutex_unlock(&root->fs_info->tree_log_mutex); 1672 mutex_unlock(&root->fs_info->reloc_mutex); 1673 goto cleanup_transaction; 1674 } 1675 1676 /* 1677 * The tasks which save the space cache and inode cache may also 1678 * update ->aborted, check it. 1679 */ 1680 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1681 ret = cur_trans->aborted; 1682 mutex_unlock(&root->fs_info->tree_log_mutex); 1683 mutex_unlock(&root->fs_info->reloc_mutex); 1684 goto cleanup_transaction; 1685 } 1686 1687 btrfs_prepare_extent_commit(trans, root); 1688 1689 cur_trans = root->fs_info->running_transaction; 1690 1691 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1692 root->fs_info->tree_root->node); 1693 switch_commit_root(root->fs_info->tree_root); 1694 1695 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1696 root->fs_info->chunk_root->node); 1697 switch_commit_root(root->fs_info->chunk_root); 1698 1699 assert_qgroups_uptodate(trans); 1700 update_super_roots(root); 1701 1702 if (!root->fs_info->log_root_recovering) { 1703 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1704 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1705 } 1706 1707 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1708 sizeof(*root->fs_info->super_copy)); 1709 1710 trans->transaction->blocked = 0; 1711 spin_lock(&root->fs_info->trans_lock); 1712 root->fs_info->running_transaction = NULL; 1713 root->fs_info->trans_no_join = 0; 1714 spin_unlock(&root->fs_info->trans_lock); 1715 mutex_unlock(&root->fs_info->reloc_mutex); 1716 1717 wake_up(&root->fs_info->transaction_wait); 1718 1719 ret = btrfs_write_and_wait_transaction(trans, root); 1720 if (ret) { 1721 btrfs_error(root->fs_info, ret, 1722 "Error while writing out transaction."); 1723 mutex_unlock(&root->fs_info->tree_log_mutex); 1724 goto cleanup_transaction; 1725 } 1726 1727 ret = write_ctree_super(trans, root, 0); 1728 if (ret) { 1729 mutex_unlock(&root->fs_info->tree_log_mutex); 1730 goto cleanup_transaction; 1731 } 1732 1733 /* 1734 * the super is written, we can safely allow the tree-loggers 1735 * to go about their business 1736 */ 1737 mutex_unlock(&root->fs_info->tree_log_mutex); 1738 1739 btrfs_finish_extent_commit(trans, root); 1740 1741 cur_trans->commit_done = 1; 1742 1743 root->fs_info->last_trans_committed = cur_trans->transid; 1744 1745 wake_up(&cur_trans->commit_wait); 1746 1747 spin_lock(&root->fs_info->trans_lock); 1748 list_del_init(&cur_trans->list); 1749 spin_unlock(&root->fs_info->trans_lock); 1750 1751 put_transaction(cur_trans); 1752 put_transaction(cur_trans); 1753 1754 if (trans->type < TRANS_JOIN_NOLOCK) 1755 sb_end_intwrite(root->fs_info->sb); 1756 1757 trace_btrfs_transaction_commit(root); 1758 1759 btrfs_scrub_continue(root); 1760 1761 if (current->journal_info == trans) 1762 current->journal_info = NULL; 1763 1764 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1765 1766 if (current != root->fs_info->transaction_kthread) 1767 btrfs_run_delayed_iputs(root); 1768 1769 return ret; 1770 1771 cleanup_transaction: 1772 btrfs_trans_release_metadata(trans, root); 1773 trans->block_rsv = NULL; 1774 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1775 // WARN_ON(1); 1776 if (current->journal_info == trans) 1777 current->journal_info = NULL; 1778 cleanup_transaction(trans, root, ret); 1779 1780 return ret; 1781 } 1782 1783 /* 1784 * interface function to delete all the snapshots we have scheduled for deletion 1785 */ 1786 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1787 { 1788 LIST_HEAD(list); 1789 struct btrfs_fs_info *fs_info = root->fs_info; 1790 1791 spin_lock(&fs_info->trans_lock); 1792 list_splice_init(&fs_info->dead_roots, &list); 1793 spin_unlock(&fs_info->trans_lock); 1794 1795 while (!list_empty(&list)) { 1796 int ret; 1797 1798 root = list_entry(list.next, struct btrfs_root, root_list); 1799 list_del(&root->root_list); 1800 1801 btrfs_kill_all_delayed_nodes(root); 1802 1803 if (btrfs_header_backref_rev(root->node) < 1804 BTRFS_MIXED_BACKREF_REV) 1805 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1806 else 1807 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1808 BUG_ON(ret < 0); 1809 } 1810 return 0; 1811 } 1812