xref: /openbmc/linux/fs/btrfs/transaction.c (revision b4be6aefa73c9a6899ef3ba9c5faaa8a66e333ef)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "volumes.h"
20 #include "dev-replace.h"
21 #include "qgroup.h"
22 #include "block-group.h"
23 #include "space-info.h"
24 #include "zoned.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOLOCK |
120 					   __TRANS_JOIN_NOSTART),
121 };
122 
123 void btrfs_put_transaction(struct btrfs_transaction *transaction)
124 {
125 	WARN_ON(refcount_read(&transaction->use_count) == 0);
126 	if (refcount_dec_and_test(&transaction->use_count)) {
127 		BUG_ON(!list_empty(&transaction->list));
128 		WARN_ON(!RB_EMPTY_ROOT(
129 				&transaction->delayed_refs.href_root.rb_root));
130 		WARN_ON(!RB_EMPTY_ROOT(
131 				&transaction->delayed_refs.dirty_extent_root));
132 		if (transaction->delayed_refs.pending_csums)
133 			btrfs_err(transaction->fs_info,
134 				  "pending csums is %llu",
135 				  transaction->delayed_refs.pending_csums);
136 		/*
137 		 * If any block groups are found in ->deleted_bgs then it's
138 		 * because the transaction was aborted and a commit did not
139 		 * happen (things failed before writing the new superblock
140 		 * and calling btrfs_finish_extent_commit()), so we can not
141 		 * discard the physical locations of the block groups.
142 		 */
143 		while (!list_empty(&transaction->deleted_bgs)) {
144 			struct btrfs_block_group *cache;
145 
146 			cache = list_first_entry(&transaction->deleted_bgs,
147 						 struct btrfs_block_group,
148 						 bg_list);
149 			list_del_init(&cache->bg_list);
150 			btrfs_unfreeze_block_group(cache);
151 			btrfs_put_block_group(cache);
152 		}
153 		WARN_ON(!list_empty(&transaction->dev_update_list));
154 		kfree(transaction);
155 	}
156 }
157 
158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
159 {
160 	struct btrfs_transaction *cur_trans = trans->transaction;
161 	struct btrfs_fs_info *fs_info = trans->fs_info;
162 	struct btrfs_root *root, *tmp;
163 	struct btrfs_caching_control *caching_ctl, *next;
164 
165 	/*
166 	 * At this point no one can be using this transaction to modify any tree
167 	 * and no one can start another transaction to modify any tree either.
168 	 */
169 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
170 
171 	down_write(&fs_info->commit_root_sem);
172 
173 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
174 		fs_info->last_reloc_trans = trans->transid;
175 
176 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
177 				 dirty_list) {
178 		list_del_init(&root->dirty_list);
179 		free_extent_buffer(root->commit_root);
180 		root->commit_root = btrfs_root_node(root);
181 		extent_io_tree_release(&root->dirty_log_pages);
182 		btrfs_qgroup_clean_swapped_blocks(root);
183 	}
184 
185 	/* We can free old roots now. */
186 	spin_lock(&cur_trans->dropped_roots_lock);
187 	while (!list_empty(&cur_trans->dropped_roots)) {
188 		root = list_first_entry(&cur_trans->dropped_roots,
189 					struct btrfs_root, root_list);
190 		list_del_init(&root->root_list);
191 		spin_unlock(&cur_trans->dropped_roots_lock);
192 		btrfs_free_log(trans, root);
193 		btrfs_drop_and_free_fs_root(fs_info, root);
194 		spin_lock(&cur_trans->dropped_roots_lock);
195 	}
196 	spin_unlock(&cur_trans->dropped_roots_lock);
197 
198 	/*
199 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
200 	 * at the same time we swap out the commit roots.
201 	 *
202 	 * This is because we must have a real view of the last spot the caching
203 	 * kthreads were while caching.  Consider the following views of the
204 	 * extent tree for a block group
205 	 *
206 	 * commit root
207 	 * +----+----+----+----+----+----+----+
208 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
209 	 * +----+----+----+----+----+----+----+
210 	 * 0    1    2    3    4    5    6    7
211 	 *
212 	 * new commit root
213 	 * +----+----+----+----+----+----+----+
214 	 * |    |    |    |\\\\|    |    |\\\\|
215 	 * +----+----+----+----+----+----+----+
216 	 * 0    1    2    3    4    5    6    7
217 	 *
218 	 * If the cache_ctl->progress was at 3, then we are only allowed to
219 	 * unpin [0,1) and [2,3], because the caching thread has already
220 	 * processed those extents.  We are not allowed to unpin [5,6), because
221 	 * the caching thread will re-start it's search from 3, and thus find
222 	 * the hole from [4,6) to add to the free space cache.
223 	 */
224 	spin_lock(&fs_info->block_group_cache_lock);
225 	list_for_each_entry_safe(caching_ctl, next,
226 				 &fs_info->caching_block_groups, list) {
227 		struct btrfs_block_group *cache = caching_ctl->block_group;
228 
229 		if (btrfs_block_group_done(cache)) {
230 			cache->last_byte_to_unpin = (u64)-1;
231 			list_del_init(&caching_ctl->list);
232 			btrfs_put_caching_control(caching_ctl);
233 		} else {
234 			cache->last_byte_to_unpin = caching_ctl->progress;
235 		}
236 	}
237 	spin_unlock(&fs_info->block_group_cache_lock);
238 	up_write(&fs_info->commit_root_sem);
239 }
240 
241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
242 					 unsigned int type)
243 {
244 	if (type & TRANS_EXTWRITERS)
245 		atomic_inc(&trans->num_extwriters);
246 }
247 
248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
249 					 unsigned int type)
250 {
251 	if (type & TRANS_EXTWRITERS)
252 		atomic_dec(&trans->num_extwriters);
253 }
254 
255 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
256 					  unsigned int type)
257 {
258 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
259 }
260 
261 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
262 {
263 	return atomic_read(&trans->num_extwriters);
264 }
265 
266 /*
267  * To be called after doing the chunk btree updates right after allocating a new
268  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
269  * chunk after all chunk btree updates and after finishing the second phase of
270  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
271  * group had its chunk item insertion delayed to the second phase.
272  */
273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
274 {
275 	struct btrfs_fs_info *fs_info = trans->fs_info;
276 
277 	if (!trans->chunk_bytes_reserved)
278 		return;
279 
280 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
281 				trans->chunk_bytes_reserved, NULL);
282 	trans->chunk_bytes_reserved = 0;
283 }
284 
285 /*
286  * either allocate a new transaction or hop into the existing one
287  */
288 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
289 				     unsigned int type)
290 {
291 	struct btrfs_transaction *cur_trans;
292 
293 	spin_lock(&fs_info->trans_lock);
294 loop:
295 	/* The file system has been taken offline. No new transactions. */
296 	if (BTRFS_FS_ERROR(fs_info)) {
297 		spin_unlock(&fs_info->trans_lock);
298 		return -EROFS;
299 	}
300 
301 	cur_trans = fs_info->running_transaction;
302 	if (cur_trans) {
303 		if (TRANS_ABORTED(cur_trans)) {
304 			spin_unlock(&fs_info->trans_lock);
305 			return cur_trans->aborted;
306 		}
307 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
308 			spin_unlock(&fs_info->trans_lock);
309 			return -EBUSY;
310 		}
311 		refcount_inc(&cur_trans->use_count);
312 		atomic_inc(&cur_trans->num_writers);
313 		extwriter_counter_inc(cur_trans, type);
314 		spin_unlock(&fs_info->trans_lock);
315 		return 0;
316 	}
317 	spin_unlock(&fs_info->trans_lock);
318 
319 	/*
320 	 * If we are ATTACH, we just want to catch the current transaction,
321 	 * and commit it. If there is no transaction, just return ENOENT.
322 	 */
323 	if (type == TRANS_ATTACH)
324 		return -ENOENT;
325 
326 	/*
327 	 * JOIN_NOLOCK only happens during the transaction commit, so
328 	 * it is impossible that ->running_transaction is NULL
329 	 */
330 	BUG_ON(type == TRANS_JOIN_NOLOCK);
331 
332 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
333 	if (!cur_trans)
334 		return -ENOMEM;
335 
336 	spin_lock(&fs_info->trans_lock);
337 	if (fs_info->running_transaction) {
338 		/*
339 		 * someone started a transaction after we unlocked.  Make sure
340 		 * to redo the checks above
341 		 */
342 		kfree(cur_trans);
343 		goto loop;
344 	} else if (BTRFS_FS_ERROR(fs_info)) {
345 		spin_unlock(&fs_info->trans_lock);
346 		kfree(cur_trans);
347 		return -EROFS;
348 	}
349 
350 	cur_trans->fs_info = fs_info;
351 	atomic_set(&cur_trans->pending_ordered, 0);
352 	init_waitqueue_head(&cur_trans->pending_wait);
353 	atomic_set(&cur_trans->num_writers, 1);
354 	extwriter_counter_init(cur_trans, type);
355 	init_waitqueue_head(&cur_trans->writer_wait);
356 	init_waitqueue_head(&cur_trans->commit_wait);
357 	cur_trans->state = TRANS_STATE_RUNNING;
358 	/*
359 	 * One for this trans handle, one so it will live on until we
360 	 * commit the transaction.
361 	 */
362 	refcount_set(&cur_trans->use_count, 2);
363 	cur_trans->flags = 0;
364 	cur_trans->start_time = ktime_get_seconds();
365 
366 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
367 
368 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
369 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
370 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
371 
372 	/*
373 	 * although the tree mod log is per file system and not per transaction,
374 	 * the log must never go across transaction boundaries.
375 	 */
376 	smp_mb();
377 	if (!list_empty(&fs_info->tree_mod_seq_list))
378 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
379 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
380 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
381 	atomic64_set(&fs_info->tree_mod_seq, 0);
382 
383 	spin_lock_init(&cur_trans->delayed_refs.lock);
384 
385 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
386 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
387 	INIT_LIST_HEAD(&cur_trans->switch_commits);
388 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
389 	INIT_LIST_HEAD(&cur_trans->io_bgs);
390 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
391 	mutex_init(&cur_trans->cache_write_mutex);
392 	spin_lock_init(&cur_trans->dirty_bgs_lock);
393 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
394 	spin_lock_init(&cur_trans->dropped_roots_lock);
395 	INIT_LIST_HEAD(&cur_trans->releasing_ebs);
396 	spin_lock_init(&cur_trans->releasing_ebs_lock);
397 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
398 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
399 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
400 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
401 			IO_TREE_FS_PINNED_EXTENTS, NULL);
402 	fs_info->generation++;
403 	cur_trans->transid = fs_info->generation;
404 	fs_info->running_transaction = cur_trans;
405 	cur_trans->aborted = 0;
406 	spin_unlock(&fs_info->trans_lock);
407 
408 	return 0;
409 }
410 
411 /*
412  * This does all the record keeping required to make sure that a shareable root
413  * is properly recorded in a given transaction.  This is required to make sure
414  * the old root from before we joined the transaction is deleted when the
415  * transaction commits.
416  */
417 static int record_root_in_trans(struct btrfs_trans_handle *trans,
418 			       struct btrfs_root *root,
419 			       int force)
420 {
421 	struct btrfs_fs_info *fs_info = root->fs_info;
422 	int ret = 0;
423 
424 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
425 	    root->last_trans < trans->transid) || force) {
426 		WARN_ON(!force && root->commit_root != root->node);
427 
428 		/*
429 		 * see below for IN_TRANS_SETUP usage rules
430 		 * we have the reloc mutex held now, so there
431 		 * is only one writer in this function
432 		 */
433 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
434 
435 		/* make sure readers find IN_TRANS_SETUP before
436 		 * they find our root->last_trans update
437 		 */
438 		smp_wmb();
439 
440 		spin_lock(&fs_info->fs_roots_radix_lock);
441 		if (root->last_trans == trans->transid && !force) {
442 			spin_unlock(&fs_info->fs_roots_radix_lock);
443 			return 0;
444 		}
445 		radix_tree_tag_set(&fs_info->fs_roots_radix,
446 				   (unsigned long)root->root_key.objectid,
447 				   BTRFS_ROOT_TRANS_TAG);
448 		spin_unlock(&fs_info->fs_roots_radix_lock);
449 		root->last_trans = trans->transid;
450 
451 		/* this is pretty tricky.  We don't want to
452 		 * take the relocation lock in btrfs_record_root_in_trans
453 		 * unless we're really doing the first setup for this root in
454 		 * this transaction.
455 		 *
456 		 * Normally we'd use root->last_trans as a flag to decide
457 		 * if we want to take the expensive mutex.
458 		 *
459 		 * But, we have to set root->last_trans before we
460 		 * init the relocation root, otherwise, we trip over warnings
461 		 * in ctree.c.  The solution used here is to flag ourselves
462 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
463 		 * fixing up the reloc trees and everyone must wait.
464 		 *
465 		 * When this is zero, they can trust root->last_trans and fly
466 		 * through btrfs_record_root_in_trans without having to take the
467 		 * lock.  smp_wmb() makes sure that all the writes above are
468 		 * done before we pop in the zero below
469 		 */
470 		ret = btrfs_init_reloc_root(trans, root);
471 		smp_mb__before_atomic();
472 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
473 	}
474 	return ret;
475 }
476 
477 
478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
479 			    struct btrfs_root *root)
480 {
481 	struct btrfs_fs_info *fs_info = root->fs_info;
482 	struct btrfs_transaction *cur_trans = trans->transaction;
483 
484 	/* Add ourselves to the transaction dropped list */
485 	spin_lock(&cur_trans->dropped_roots_lock);
486 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
487 	spin_unlock(&cur_trans->dropped_roots_lock);
488 
489 	/* Make sure we don't try to update the root at commit time */
490 	spin_lock(&fs_info->fs_roots_radix_lock);
491 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
492 			     (unsigned long)root->root_key.objectid,
493 			     BTRFS_ROOT_TRANS_TAG);
494 	spin_unlock(&fs_info->fs_roots_radix_lock);
495 }
496 
497 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
498 			       struct btrfs_root *root)
499 {
500 	struct btrfs_fs_info *fs_info = root->fs_info;
501 	int ret;
502 
503 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
504 		return 0;
505 
506 	/*
507 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
508 	 * and barriers
509 	 */
510 	smp_rmb();
511 	if (root->last_trans == trans->transid &&
512 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
513 		return 0;
514 
515 	mutex_lock(&fs_info->reloc_mutex);
516 	ret = record_root_in_trans(trans, root, 0);
517 	mutex_unlock(&fs_info->reloc_mutex);
518 
519 	return ret;
520 }
521 
522 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
523 {
524 	return (trans->state >= TRANS_STATE_COMMIT_START &&
525 		trans->state < TRANS_STATE_UNBLOCKED &&
526 		!TRANS_ABORTED(trans));
527 }
528 
529 /* wait for commit against the current transaction to become unblocked
530  * when this is done, it is safe to start a new transaction, but the current
531  * transaction might not be fully on disk.
532  */
533 static void wait_current_trans(struct btrfs_fs_info *fs_info)
534 {
535 	struct btrfs_transaction *cur_trans;
536 
537 	spin_lock(&fs_info->trans_lock);
538 	cur_trans = fs_info->running_transaction;
539 	if (cur_trans && is_transaction_blocked(cur_trans)) {
540 		refcount_inc(&cur_trans->use_count);
541 		spin_unlock(&fs_info->trans_lock);
542 
543 		wait_event(fs_info->transaction_wait,
544 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
545 			   TRANS_ABORTED(cur_trans));
546 		btrfs_put_transaction(cur_trans);
547 	} else {
548 		spin_unlock(&fs_info->trans_lock);
549 	}
550 }
551 
552 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
553 {
554 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
555 		return 0;
556 
557 	if (type == TRANS_START)
558 		return 1;
559 
560 	return 0;
561 }
562 
563 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
564 {
565 	struct btrfs_fs_info *fs_info = root->fs_info;
566 
567 	if (!fs_info->reloc_ctl ||
568 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
569 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
570 	    root->reloc_root)
571 		return false;
572 
573 	return true;
574 }
575 
576 static struct btrfs_trans_handle *
577 start_transaction(struct btrfs_root *root, unsigned int num_items,
578 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
579 		  bool enforce_qgroups)
580 {
581 	struct btrfs_fs_info *fs_info = root->fs_info;
582 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
583 	struct btrfs_trans_handle *h;
584 	struct btrfs_transaction *cur_trans;
585 	u64 num_bytes = 0;
586 	u64 qgroup_reserved = 0;
587 	bool reloc_reserved = false;
588 	bool do_chunk_alloc = false;
589 	int ret;
590 
591 	if (BTRFS_FS_ERROR(fs_info))
592 		return ERR_PTR(-EROFS);
593 
594 	if (current->journal_info) {
595 		WARN_ON(type & TRANS_EXTWRITERS);
596 		h = current->journal_info;
597 		refcount_inc(&h->use_count);
598 		WARN_ON(refcount_read(&h->use_count) > 2);
599 		h->orig_rsv = h->block_rsv;
600 		h->block_rsv = NULL;
601 		goto got_it;
602 	}
603 
604 	/*
605 	 * Do the reservation before we join the transaction so we can do all
606 	 * the appropriate flushing if need be.
607 	 */
608 	if (num_items && root != fs_info->chunk_root) {
609 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
610 		u64 delayed_refs_bytes = 0;
611 
612 		qgroup_reserved = num_items * fs_info->nodesize;
613 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
614 				enforce_qgroups);
615 		if (ret)
616 			return ERR_PTR(ret);
617 
618 		/*
619 		 * We want to reserve all the bytes we may need all at once, so
620 		 * we only do 1 enospc flushing cycle per transaction start.  We
621 		 * accomplish this by simply assuming we'll do 2 x num_items
622 		 * worth of delayed refs updates in this trans handle, and
623 		 * refill that amount for whatever is missing in the reserve.
624 		 */
625 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
626 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
627 		    delayed_refs_rsv->full == 0) {
628 			delayed_refs_bytes = num_bytes;
629 			num_bytes <<= 1;
630 		}
631 
632 		/*
633 		 * Do the reservation for the relocation root creation
634 		 */
635 		if (need_reserve_reloc_root(root)) {
636 			num_bytes += fs_info->nodesize;
637 			reloc_reserved = true;
638 		}
639 
640 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
641 		if (ret)
642 			goto reserve_fail;
643 		if (delayed_refs_bytes) {
644 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
645 							  delayed_refs_bytes);
646 			num_bytes -= delayed_refs_bytes;
647 		}
648 
649 		if (rsv->space_info->force_alloc)
650 			do_chunk_alloc = true;
651 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
652 		   !delayed_refs_rsv->full) {
653 		/*
654 		 * Some people call with btrfs_start_transaction(root, 0)
655 		 * because they can be throttled, but have some other mechanism
656 		 * for reserving space.  We still want these guys to refill the
657 		 * delayed block_rsv so just add 1 items worth of reservation
658 		 * here.
659 		 */
660 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
661 		if (ret)
662 			goto reserve_fail;
663 	}
664 again:
665 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
666 	if (!h) {
667 		ret = -ENOMEM;
668 		goto alloc_fail;
669 	}
670 
671 	/*
672 	 * If we are JOIN_NOLOCK we're already committing a transaction and
673 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
674 	 * because we're already holding a ref.  We need this because we could
675 	 * have raced in and did an fsync() on a file which can kick a commit
676 	 * and then we deadlock with somebody doing a freeze.
677 	 *
678 	 * If we are ATTACH, it means we just want to catch the current
679 	 * transaction and commit it, so we needn't do sb_start_intwrite().
680 	 */
681 	if (type & __TRANS_FREEZABLE)
682 		sb_start_intwrite(fs_info->sb);
683 
684 	if (may_wait_transaction(fs_info, type))
685 		wait_current_trans(fs_info);
686 
687 	do {
688 		ret = join_transaction(fs_info, type);
689 		if (ret == -EBUSY) {
690 			wait_current_trans(fs_info);
691 			if (unlikely(type == TRANS_ATTACH ||
692 				     type == TRANS_JOIN_NOSTART))
693 				ret = -ENOENT;
694 		}
695 	} while (ret == -EBUSY);
696 
697 	if (ret < 0)
698 		goto join_fail;
699 
700 	cur_trans = fs_info->running_transaction;
701 
702 	h->transid = cur_trans->transid;
703 	h->transaction = cur_trans;
704 	refcount_set(&h->use_count, 1);
705 	h->fs_info = root->fs_info;
706 
707 	h->type = type;
708 	INIT_LIST_HEAD(&h->new_bgs);
709 
710 	smp_mb();
711 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
712 	    may_wait_transaction(fs_info, type)) {
713 		current->journal_info = h;
714 		btrfs_commit_transaction(h);
715 		goto again;
716 	}
717 
718 	if (num_bytes) {
719 		trace_btrfs_space_reservation(fs_info, "transaction",
720 					      h->transid, num_bytes, 1);
721 		h->block_rsv = &fs_info->trans_block_rsv;
722 		h->bytes_reserved = num_bytes;
723 		h->reloc_reserved = reloc_reserved;
724 	}
725 
726 got_it:
727 	if (!current->journal_info)
728 		current->journal_info = h;
729 
730 	/*
731 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
732 	 * ALLOC_FORCE the first run through, and then we won't allocate for
733 	 * anybody else who races in later.  We don't care about the return
734 	 * value here.
735 	 */
736 	if (do_chunk_alloc && num_bytes) {
737 		u64 flags = h->block_rsv->space_info->flags;
738 
739 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
740 				  CHUNK_ALLOC_NO_FORCE);
741 	}
742 
743 	/*
744 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
745 	 * call btrfs_join_transaction() while we're also starting a
746 	 * transaction.
747 	 *
748 	 * Thus it need to be called after current->journal_info initialized,
749 	 * or we can deadlock.
750 	 */
751 	ret = btrfs_record_root_in_trans(h, root);
752 	if (ret) {
753 		/*
754 		 * The transaction handle is fully initialized and linked with
755 		 * other structures so it needs to be ended in case of errors,
756 		 * not just freed.
757 		 */
758 		btrfs_end_transaction(h);
759 		return ERR_PTR(ret);
760 	}
761 
762 	return h;
763 
764 join_fail:
765 	if (type & __TRANS_FREEZABLE)
766 		sb_end_intwrite(fs_info->sb);
767 	kmem_cache_free(btrfs_trans_handle_cachep, h);
768 alloc_fail:
769 	if (num_bytes)
770 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
771 					num_bytes, NULL);
772 reserve_fail:
773 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
774 	return ERR_PTR(ret);
775 }
776 
777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
778 						   unsigned int num_items)
779 {
780 	return start_transaction(root, num_items, TRANS_START,
781 				 BTRFS_RESERVE_FLUSH_ALL, true);
782 }
783 
784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
785 					struct btrfs_root *root,
786 					unsigned int num_items)
787 {
788 	return start_transaction(root, num_items, TRANS_START,
789 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
790 }
791 
792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
793 {
794 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
795 				 true);
796 }
797 
798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
799 {
800 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
801 				 BTRFS_RESERVE_NO_FLUSH, true);
802 }
803 
804 /*
805  * Similar to regular join but it never starts a transaction when none is
806  * running or after waiting for the current one to finish.
807  */
808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
809 {
810 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
811 				 BTRFS_RESERVE_NO_FLUSH, true);
812 }
813 
814 /*
815  * btrfs_attach_transaction() - catch the running transaction
816  *
817  * It is used when we want to commit the current the transaction, but
818  * don't want to start a new one.
819  *
820  * Note: If this function return -ENOENT, it just means there is no
821  * running transaction. But it is possible that the inactive transaction
822  * is still in the memory, not fully on disk. If you hope there is no
823  * inactive transaction in the fs when -ENOENT is returned, you should
824  * invoke
825  *     btrfs_attach_transaction_barrier()
826  */
827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
828 {
829 	return start_transaction(root, 0, TRANS_ATTACH,
830 				 BTRFS_RESERVE_NO_FLUSH, true);
831 }
832 
833 /*
834  * btrfs_attach_transaction_barrier() - catch the running transaction
835  *
836  * It is similar to the above function, the difference is this one
837  * will wait for all the inactive transactions until they fully
838  * complete.
839  */
840 struct btrfs_trans_handle *
841 btrfs_attach_transaction_barrier(struct btrfs_root *root)
842 {
843 	struct btrfs_trans_handle *trans;
844 
845 	trans = start_transaction(root, 0, TRANS_ATTACH,
846 				  BTRFS_RESERVE_NO_FLUSH, true);
847 	if (trans == ERR_PTR(-ENOENT))
848 		btrfs_wait_for_commit(root->fs_info, 0);
849 
850 	return trans;
851 }
852 
853 /* Wait for a transaction commit to reach at least the given state. */
854 static noinline void wait_for_commit(struct btrfs_transaction *commit,
855 				     const enum btrfs_trans_state min_state)
856 {
857 	wait_event(commit->commit_wait, commit->state >= min_state);
858 }
859 
860 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
861 {
862 	struct btrfs_transaction *cur_trans = NULL, *t;
863 	int ret = 0;
864 
865 	if (transid) {
866 		if (transid <= fs_info->last_trans_committed)
867 			goto out;
868 
869 		/* find specified transaction */
870 		spin_lock(&fs_info->trans_lock);
871 		list_for_each_entry(t, &fs_info->trans_list, list) {
872 			if (t->transid == transid) {
873 				cur_trans = t;
874 				refcount_inc(&cur_trans->use_count);
875 				ret = 0;
876 				break;
877 			}
878 			if (t->transid > transid) {
879 				ret = 0;
880 				break;
881 			}
882 		}
883 		spin_unlock(&fs_info->trans_lock);
884 
885 		/*
886 		 * The specified transaction doesn't exist, or we
887 		 * raced with btrfs_commit_transaction
888 		 */
889 		if (!cur_trans) {
890 			if (transid > fs_info->last_trans_committed)
891 				ret = -EINVAL;
892 			goto out;
893 		}
894 	} else {
895 		/* find newest transaction that is committing | committed */
896 		spin_lock(&fs_info->trans_lock);
897 		list_for_each_entry_reverse(t, &fs_info->trans_list,
898 					    list) {
899 			if (t->state >= TRANS_STATE_COMMIT_START) {
900 				if (t->state == TRANS_STATE_COMPLETED)
901 					break;
902 				cur_trans = t;
903 				refcount_inc(&cur_trans->use_count);
904 				break;
905 			}
906 		}
907 		spin_unlock(&fs_info->trans_lock);
908 		if (!cur_trans)
909 			goto out;  /* nothing committing|committed */
910 	}
911 
912 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
913 	btrfs_put_transaction(cur_trans);
914 out:
915 	return ret;
916 }
917 
918 void btrfs_throttle(struct btrfs_fs_info *fs_info)
919 {
920 	wait_current_trans(fs_info);
921 }
922 
923 static bool should_end_transaction(struct btrfs_trans_handle *trans)
924 {
925 	struct btrfs_fs_info *fs_info = trans->fs_info;
926 
927 	if (btrfs_check_space_for_delayed_refs(fs_info))
928 		return true;
929 
930 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
931 }
932 
933 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
934 {
935 	struct btrfs_transaction *cur_trans = trans->transaction;
936 
937 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
938 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
939 		return true;
940 
941 	return should_end_transaction(trans);
942 }
943 
944 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
945 
946 {
947 	struct btrfs_fs_info *fs_info = trans->fs_info;
948 
949 	if (!trans->block_rsv) {
950 		ASSERT(!trans->bytes_reserved);
951 		return;
952 	}
953 
954 	if (!trans->bytes_reserved)
955 		return;
956 
957 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
958 	trace_btrfs_space_reservation(fs_info, "transaction",
959 				      trans->transid, trans->bytes_reserved, 0);
960 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
961 				trans->bytes_reserved, NULL);
962 	trans->bytes_reserved = 0;
963 }
964 
965 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
966 				   int throttle)
967 {
968 	struct btrfs_fs_info *info = trans->fs_info;
969 	struct btrfs_transaction *cur_trans = trans->transaction;
970 	int err = 0;
971 
972 	if (refcount_read(&trans->use_count) > 1) {
973 		refcount_dec(&trans->use_count);
974 		trans->block_rsv = trans->orig_rsv;
975 		return 0;
976 	}
977 
978 	btrfs_trans_release_metadata(trans);
979 	trans->block_rsv = NULL;
980 
981 	btrfs_create_pending_block_groups(trans);
982 
983 	btrfs_trans_release_chunk_metadata(trans);
984 
985 	if (trans->type & __TRANS_FREEZABLE)
986 		sb_end_intwrite(info->sb);
987 
988 	WARN_ON(cur_trans != info->running_transaction);
989 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
990 	atomic_dec(&cur_trans->num_writers);
991 	extwriter_counter_dec(cur_trans, trans->type);
992 
993 	cond_wake_up(&cur_trans->writer_wait);
994 	btrfs_put_transaction(cur_trans);
995 
996 	if (current->journal_info == trans)
997 		current->journal_info = NULL;
998 
999 	if (throttle)
1000 		btrfs_run_delayed_iputs(info);
1001 
1002 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1003 		wake_up_process(info->transaction_kthread);
1004 		if (TRANS_ABORTED(trans))
1005 			err = trans->aborted;
1006 		else
1007 			err = -EROFS;
1008 	}
1009 
1010 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1011 	return err;
1012 }
1013 
1014 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1015 {
1016 	return __btrfs_end_transaction(trans, 0);
1017 }
1018 
1019 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1020 {
1021 	return __btrfs_end_transaction(trans, 1);
1022 }
1023 
1024 /*
1025  * when btree blocks are allocated, they have some corresponding bits set for
1026  * them in one of two extent_io trees.  This is used to make sure all of
1027  * those extents are sent to disk but does not wait on them
1028  */
1029 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1030 			       struct extent_io_tree *dirty_pages, int mark)
1031 {
1032 	int err = 0;
1033 	int werr = 0;
1034 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1035 	struct extent_state *cached_state = NULL;
1036 	u64 start = 0;
1037 	u64 end;
1038 
1039 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1040 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1041 				      mark, &cached_state)) {
1042 		bool wait_writeback = false;
1043 
1044 		err = convert_extent_bit(dirty_pages, start, end,
1045 					 EXTENT_NEED_WAIT,
1046 					 mark, &cached_state);
1047 		/*
1048 		 * convert_extent_bit can return -ENOMEM, which is most of the
1049 		 * time a temporary error. So when it happens, ignore the error
1050 		 * and wait for writeback of this range to finish - because we
1051 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1052 		 * to __btrfs_wait_marked_extents() would not know that
1053 		 * writeback for this range started and therefore wouldn't
1054 		 * wait for it to finish - we don't want to commit a
1055 		 * superblock that points to btree nodes/leafs for which
1056 		 * writeback hasn't finished yet (and without errors).
1057 		 * We cleanup any entries left in the io tree when committing
1058 		 * the transaction (through extent_io_tree_release()).
1059 		 */
1060 		if (err == -ENOMEM) {
1061 			err = 0;
1062 			wait_writeback = true;
1063 		}
1064 		if (!err)
1065 			err = filemap_fdatawrite_range(mapping, start, end);
1066 		if (err)
1067 			werr = err;
1068 		else if (wait_writeback)
1069 			werr = filemap_fdatawait_range(mapping, start, end);
1070 		free_extent_state(cached_state);
1071 		cached_state = NULL;
1072 		cond_resched();
1073 		start = end + 1;
1074 	}
1075 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1076 	return werr;
1077 }
1078 
1079 /*
1080  * when btree blocks are allocated, they have some corresponding bits set for
1081  * them in one of two extent_io trees.  This is used to make sure all of
1082  * those extents are on disk for transaction or log commit.  We wait
1083  * on all the pages and clear them from the dirty pages state tree
1084  */
1085 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1086 				       struct extent_io_tree *dirty_pages)
1087 {
1088 	int err = 0;
1089 	int werr = 0;
1090 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1091 	struct extent_state *cached_state = NULL;
1092 	u64 start = 0;
1093 	u64 end;
1094 
1095 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1096 				      EXTENT_NEED_WAIT, &cached_state)) {
1097 		/*
1098 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1099 		 * When committing the transaction, we'll remove any entries
1100 		 * left in the io tree. For a log commit, we don't remove them
1101 		 * after committing the log because the tree can be accessed
1102 		 * concurrently - we do it only at transaction commit time when
1103 		 * it's safe to do it (through extent_io_tree_release()).
1104 		 */
1105 		err = clear_extent_bit(dirty_pages, start, end,
1106 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1107 		if (err == -ENOMEM)
1108 			err = 0;
1109 		if (!err)
1110 			err = filemap_fdatawait_range(mapping, start, end);
1111 		if (err)
1112 			werr = err;
1113 		free_extent_state(cached_state);
1114 		cached_state = NULL;
1115 		cond_resched();
1116 		start = end + 1;
1117 	}
1118 	if (err)
1119 		werr = err;
1120 	return werr;
1121 }
1122 
1123 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1124 		       struct extent_io_tree *dirty_pages)
1125 {
1126 	bool errors = false;
1127 	int err;
1128 
1129 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1130 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1131 		errors = true;
1132 
1133 	if (errors && !err)
1134 		err = -EIO;
1135 	return err;
1136 }
1137 
1138 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1139 {
1140 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1141 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1142 	bool errors = false;
1143 	int err;
1144 
1145 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1146 
1147 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1148 	if ((mark & EXTENT_DIRTY) &&
1149 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1150 		errors = true;
1151 
1152 	if ((mark & EXTENT_NEW) &&
1153 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1154 		errors = true;
1155 
1156 	if (errors && !err)
1157 		err = -EIO;
1158 	return err;
1159 }
1160 
1161 /*
1162  * When btree blocks are allocated the corresponding extents are marked dirty.
1163  * This function ensures such extents are persisted on disk for transaction or
1164  * log commit.
1165  *
1166  * @trans: transaction whose dirty pages we'd like to write
1167  */
1168 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1169 {
1170 	int ret;
1171 	int ret2;
1172 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1173 	struct btrfs_fs_info *fs_info = trans->fs_info;
1174 	struct blk_plug plug;
1175 
1176 	blk_start_plug(&plug);
1177 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1178 	blk_finish_plug(&plug);
1179 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1180 
1181 	extent_io_tree_release(&trans->transaction->dirty_pages);
1182 
1183 	if (ret)
1184 		return ret;
1185 	else if (ret2)
1186 		return ret2;
1187 	else
1188 		return 0;
1189 }
1190 
1191 /*
1192  * this is used to update the root pointer in the tree of tree roots.
1193  *
1194  * But, in the case of the extent allocation tree, updating the root
1195  * pointer may allocate blocks which may change the root of the extent
1196  * allocation tree.
1197  *
1198  * So, this loops and repeats and makes sure the cowonly root didn't
1199  * change while the root pointer was being updated in the metadata.
1200  */
1201 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1202 			       struct btrfs_root *root)
1203 {
1204 	int ret;
1205 	u64 old_root_bytenr;
1206 	u64 old_root_used;
1207 	struct btrfs_fs_info *fs_info = root->fs_info;
1208 	struct btrfs_root *tree_root = fs_info->tree_root;
1209 
1210 	old_root_used = btrfs_root_used(&root->root_item);
1211 
1212 	while (1) {
1213 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1214 		if (old_root_bytenr == root->node->start &&
1215 		    old_root_used == btrfs_root_used(&root->root_item))
1216 			break;
1217 
1218 		btrfs_set_root_node(&root->root_item, root->node);
1219 		ret = btrfs_update_root(trans, tree_root,
1220 					&root->root_key,
1221 					&root->root_item);
1222 		if (ret)
1223 			return ret;
1224 
1225 		old_root_used = btrfs_root_used(&root->root_item);
1226 	}
1227 
1228 	return 0;
1229 }
1230 
1231 /*
1232  * update all the cowonly tree roots on disk
1233  *
1234  * The error handling in this function may not be obvious. Any of the
1235  * failures will cause the file system to go offline. We still need
1236  * to clean up the delayed refs.
1237  */
1238 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1239 {
1240 	struct btrfs_fs_info *fs_info = trans->fs_info;
1241 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1242 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1243 	struct list_head *next;
1244 	struct extent_buffer *eb;
1245 	int ret;
1246 
1247 	/*
1248 	 * At this point no one can be using this transaction to modify any tree
1249 	 * and no one can start another transaction to modify any tree either.
1250 	 */
1251 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1252 
1253 	eb = btrfs_lock_root_node(fs_info->tree_root);
1254 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1255 			      0, &eb, BTRFS_NESTING_COW);
1256 	btrfs_tree_unlock(eb);
1257 	free_extent_buffer(eb);
1258 
1259 	if (ret)
1260 		return ret;
1261 
1262 	ret = btrfs_run_dev_stats(trans);
1263 	if (ret)
1264 		return ret;
1265 	ret = btrfs_run_dev_replace(trans);
1266 	if (ret)
1267 		return ret;
1268 	ret = btrfs_run_qgroups(trans);
1269 	if (ret)
1270 		return ret;
1271 
1272 	ret = btrfs_setup_space_cache(trans);
1273 	if (ret)
1274 		return ret;
1275 
1276 again:
1277 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1278 		struct btrfs_root *root;
1279 		next = fs_info->dirty_cowonly_roots.next;
1280 		list_del_init(next);
1281 		root = list_entry(next, struct btrfs_root, dirty_list);
1282 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1283 
1284 		list_add_tail(&root->dirty_list,
1285 			      &trans->transaction->switch_commits);
1286 		ret = update_cowonly_root(trans, root);
1287 		if (ret)
1288 			return ret;
1289 	}
1290 
1291 	/* Now flush any delayed refs generated by updating all of the roots */
1292 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1293 	if (ret)
1294 		return ret;
1295 
1296 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1297 		ret = btrfs_write_dirty_block_groups(trans);
1298 		if (ret)
1299 			return ret;
1300 
1301 		/*
1302 		 * We're writing the dirty block groups, which could generate
1303 		 * delayed refs, which could generate more dirty block groups,
1304 		 * so we want to keep this flushing in this loop to make sure
1305 		 * everything gets run.
1306 		 */
1307 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1308 		if (ret)
1309 			return ret;
1310 	}
1311 
1312 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1313 		goto again;
1314 
1315 	/* Update dev-replace pointer once everything is committed */
1316 	fs_info->dev_replace.committed_cursor_left =
1317 		fs_info->dev_replace.cursor_left_last_write_of_item;
1318 
1319 	return 0;
1320 }
1321 
1322 /*
1323  * If we had a pending drop we need to see if there are any others left in our
1324  * dead roots list, and if not clear our bit and wake any waiters.
1325  */
1326 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1327 {
1328 	/*
1329 	 * We put the drop in progress roots at the front of the list, so if the
1330 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1331 	 * up.
1332 	 */
1333 	spin_lock(&fs_info->trans_lock);
1334 	if (!list_empty(&fs_info->dead_roots)) {
1335 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1336 							   struct btrfs_root,
1337 							   root_list);
1338 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1339 			spin_unlock(&fs_info->trans_lock);
1340 			return;
1341 		}
1342 	}
1343 	spin_unlock(&fs_info->trans_lock);
1344 
1345 	btrfs_wake_unfinished_drop(fs_info);
1346 }
1347 
1348 /*
1349  * dead roots are old snapshots that need to be deleted.  This allocates
1350  * a dirty root struct and adds it into the list of dead roots that need to
1351  * be deleted
1352  */
1353 void btrfs_add_dead_root(struct btrfs_root *root)
1354 {
1355 	struct btrfs_fs_info *fs_info = root->fs_info;
1356 
1357 	spin_lock(&fs_info->trans_lock);
1358 	if (list_empty(&root->root_list)) {
1359 		btrfs_grab_root(root);
1360 
1361 		/* We want to process the partially complete drops first. */
1362 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1363 			list_add(&root->root_list, &fs_info->dead_roots);
1364 		else
1365 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1366 	}
1367 	spin_unlock(&fs_info->trans_lock);
1368 }
1369 
1370 /*
1371  * Update each subvolume root and its relocation root, if it exists, in the tree
1372  * of tree roots. Also free log roots if they exist.
1373  */
1374 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1375 {
1376 	struct btrfs_fs_info *fs_info = trans->fs_info;
1377 	struct btrfs_root *gang[8];
1378 	int i;
1379 	int ret;
1380 
1381 	/*
1382 	 * At this point no one can be using this transaction to modify any tree
1383 	 * and no one can start another transaction to modify any tree either.
1384 	 */
1385 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1386 
1387 	spin_lock(&fs_info->fs_roots_radix_lock);
1388 	while (1) {
1389 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1390 						 (void **)gang, 0,
1391 						 ARRAY_SIZE(gang),
1392 						 BTRFS_ROOT_TRANS_TAG);
1393 		if (ret == 0)
1394 			break;
1395 		for (i = 0; i < ret; i++) {
1396 			struct btrfs_root *root = gang[i];
1397 			int ret2;
1398 
1399 			/*
1400 			 * At this point we can neither have tasks logging inodes
1401 			 * from a root nor trying to commit a log tree.
1402 			 */
1403 			ASSERT(atomic_read(&root->log_writers) == 0);
1404 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1405 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1406 
1407 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1408 					(unsigned long)root->root_key.objectid,
1409 					BTRFS_ROOT_TRANS_TAG);
1410 			spin_unlock(&fs_info->fs_roots_radix_lock);
1411 
1412 			btrfs_free_log(trans, root);
1413 			ret2 = btrfs_update_reloc_root(trans, root);
1414 			if (ret2)
1415 				return ret2;
1416 
1417 			/* see comments in should_cow_block() */
1418 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1419 			smp_mb__after_atomic();
1420 
1421 			if (root->commit_root != root->node) {
1422 				list_add_tail(&root->dirty_list,
1423 					&trans->transaction->switch_commits);
1424 				btrfs_set_root_node(&root->root_item,
1425 						    root->node);
1426 			}
1427 
1428 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1429 						&root->root_key,
1430 						&root->root_item);
1431 			if (ret2)
1432 				return ret2;
1433 			spin_lock(&fs_info->fs_roots_radix_lock);
1434 			btrfs_qgroup_free_meta_all_pertrans(root);
1435 		}
1436 	}
1437 	spin_unlock(&fs_info->fs_roots_radix_lock);
1438 	return 0;
1439 }
1440 
1441 /*
1442  * defrag a given btree.
1443  * Every leaf in the btree is read and defragged.
1444  */
1445 int btrfs_defrag_root(struct btrfs_root *root)
1446 {
1447 	struct btrfs_fs_info *info = root->fs_info;
1448 	struct btrfs_trans_handle *trans;
1449 	int ret;
1450 
1451 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1452 		return 0;
1453 
1454 	while (1) {
1455 		trans = btrfs_start_transaction(root, 0);
1456 		if (IS_ERR(trans)) {
1457 			ret = PTR_ERR(trans);
1458 			break;
1459 		}
1460 
1461 		ret = btrfs_defrag_leaves(trans, root);
1462 
1463 		btrfs_end_transaction(trans);
1464 		btrfs_btree_balance_dirty(info);
1465 		cond_resched();
1466 
1467 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1468 			break;
1469 
1470 		if (btrfs_defrag_cancelled(info)) {
1471 			btrfs_debug(info, "defrag_root cancelled");
1472 			ret = -EAGAIN;
1473 			break;
1474 		}
1475 	}
1476 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1477 	return ret;
1478 }
1479 
1480 /*
1481  * Do all special snapshot related qgroup dirty hack.
1482  *
1483  * Will do all needed qgroup inherit and dirty hack like switch commit
1484  * roots inside one transaction and write all btree into disk, to make
1485  * qgroup works.
1486  */
1487 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1488 				   struct btrfs_root *src,
1489 				   struct btrfs_root *parent,
1490 				   struct btrfs_qgroup_inherit *inherit,
1491 				   u64 dst_objectid)
1492 {
1493 	struct btrfs_fs_info *fs_info = src->fs_info;
1494 	int ret;
1495 
1496 	/*
1497 	 * Save some performance in the case that qgroups are not
1498 	 * enabled. If this check races with the ioctl, rescan will
1499 	 * kick in anyway.
1500 	 */
1501 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1502 		return 0;
1503 
1504 	/*
1505 	 * Ensure dirty @src will be committed.  Or, after coming
1506 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1507 	 * recorded root will never be updated again, causing an outdated root
1508 	 * item.
1509 	 */
1510 	ret = record_root_in_trans(trans, src, 1);
1511 	if (ret)
1512 		return ret;
1513 
1514 	/*
1515 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1516 	 * src root, so we must run the delayed refs here.
1517 	 *
1518 	 * However this isn't particularly fool proof, because there's no
1519 	 * synchronization keeping us from changing the tree after this point
1520 	 * before we do the qgroup_inherit, or even from making changes while
1521 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1522 	 * for now flush the delayed refs to narrow the race window where the
1523 	 * qgroup counters could end up wrong.
1524 	 */
1525 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1526 	if (ret) {
1527 		btrfs_abort_transaction(trans, ret);
1528 		return ret;
1529 	}
1530 
1531 	ret = commit_fs_roots(trans);
1532 	if (ret)
1533 		goto out;
1534 	ret = btrfs_qgroup_account_extents(trans);
1535 	if (ret < 0)
1536 		goto out;
1537 
1538 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1539 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1540 				   inherit);
1541 	if (ret < 0)
1542 		goto out;
1543 
1544 	/*
1545 	 * Now we do a simplified commit transaction, which will:
1546 	 * 1) commit all subvolume and extent tree
1547 	 *    To ensure all subvolume and extent tree have a valid
1548 	 *    commit_root to accounting later insert_dir_item()
1549 	 * 2) write all btree blocks onto disk
1550 	 *    This is to make sure later btree modification will be cowed
1551 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1552 	 * In this simplified commit, we don't really care about other trees
1553 	 * like chunk and root tree, as they won't affect qgroup.
1554 	 * And we don't write super to avoid half committed status.
1555 	 */
1556 	ret = commit_cowonly_roots(trans);
1557 	if (ret)
1558 		goto out;
1559 	switch_commit_roots(trans);
1560 	ret = btrfs_write_and_wait_transaction(trans);
1561 	if (ret)
1562 		btrfs_handle_fs_error(fs_info, ret,
1563 			"Error while writing out transaction for qgroup");
1564 
1565 out:
1566 	/*
1567 	 * Force parent root to be updated, as we recorded it before so its
1568 	 * last_trans == cur_transid.
1569 	 * Or it won't be committed again onto disk after later
1570 	 * insert_dir_item()
1571 	 */
1572 	if (!ret)
1573 		ret = record_root_in_trans(trans, parent, 1);
1574 	return ret;
1575 }
1576 
1577 /*
1578  * new snapshots need to be created at a very specific time in the
1579  * transaction commit.  This does the actual creation.
1580  *
1581  * Note:
1582  * If the error which may affect the commitment of the current transaction
1583  * happens, we should return the error number. If the error which just affect
1584  * the creation of the pending snapshots, just return 0.
1585  */
1586 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1587 				   struct btrfs_pending_snapshot *pending)
1588 {
1589 
1590 	struct btrfs_fs_info *fs_info = trans->fs_info;
1591 	struct btrfs_key key;
1592 	struct btrfs_root_item *new_root_item;
1593 	struct btrfs_root *tree_root = fs_info->tree_root;
1594 	struct btrfs_root *root = pending->root;
1595 	struct btrfs_root *parent_root;
1596 	struct btrfs_block_rsv *rsv;
1597 	struct inode *parent_inode;
1598 	struct btrfs_path *path;
1599 	struct btrfs_dir_item *dir_item;
1600 	struct dentry *dentry;
1601 	struct extent_buffer *tmp;
1602 	struct extent_buffer *old;
1603 	struct timespec64 cur_time;
1604 	int ret = 0;
1605 	u64 to_reserve = 0;
1606 	u64 index = 0;
1607 	u64 objectid;
1608 	u64 root_flags;
1609 
1610 	ASSERT(pending->path);
1611 	path = pending->path;
1612 
1613 	ASSERT(pending->root_item);
1614 	new_root_item = pending->root_item;
1615 
1616 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1617 	if (pending->error)
1618 		goto no_free_objectid;
1619 
1620 	/*
1621 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1622 	 * accounted by later btrfs_qgroup_inherit().
1623 	 */
1624 	btrfs_set_skip_qgroup(trans, objectid);
1625 
1626 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1627 
1628 	if (to_reserve > 0) {
1629 		pending->error = btrfs_block_rsv_add(fs_info,
1630 						     &pending->block_rsv,
1631 						     to_reserve,
1632 						     BTRFS_RESERVE_NO_FLUSH);
1633 		if (pending->error)
1634 			goto clear_skip_qgroup;
1635 	}
1636 
1637 	key.objectid = objectid;
1638 	key.offset = (u64)-1;
1639 	key.type = BTRFS_ROOT_ITEM_KEY;
1640 
1641 	rsv = trans->block_rsv;
1642 	trans->block_rsv = &pending->block_rsv;
1643 	trans->bytes_reserved = trans->block_rsv->reserved;
1644 	trace_btrfs_space_reservation(fs_info, "transaction",
1645 				      trans->transid,
1646 				      trans->bytes_reserved, 1);
1647 	dentry = pending->dentry;
1648 	parent_inode = pending->dir;
1649 	parent_root = BTRFS_I(parent_inode)->root;
1650 	ret = record_root_in_trans(trans, parent_root, 0);
1651 	if (ret)
1652 		goto fail;
1653 	cur_time = current_time(parent_inode);
1654 
1655 	/*
1656 	 * insert the directory item
1657 	 */
1658 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1659 	BUG_ON(ret); /* -ENOMEM */
1660 
1661 	/* check if there is a file/dir which has the same name. */
1662 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1663 					 btrfs_ino(BTRFS_I(parent_inode)),
1664 					 dentry->d_name.name,
1665 					 dentry->d_name.len, 0);
1666 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1667 		pending->error = -EEXIST;
1668 		goto dir_item_existed;
1669 	} else if (IS_ERR(dir_item)) {
1670 		ret = PTR_ERR(dir_item);
1671 		btrfs_abort_transaction(trans, ret);
1672 		goto fail;
1673 	}
1674 	btrfs_release_path(path);
1675 
1676 	/*
1677 	 * pull in the delayed directory update
1678 	 * and the delayed inode item
1679 	 * otherwise we corrupt the FS during
1680 	 * snapshot
1681 	 */
1682 	ret = btrfs_run_delayed_items(trans);
1683 	if (ret) {	/* Transaction aborted */
1684 		btrfs_abort_transaction(trans, ret);
1685 		goto fail;
1686 	}
1687 
1688 	ret = record_root_in_trans(trans, root, 0);
1689 	if (ret) {
1690 		btrfs_abort_transaction(trans, ret);
1691 		goto fail;
1692 	}
1693 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1694 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1695 	btrfs_check_and_init_root_item(new_root_item);
1696 
1697 	root_flags = btrfs_root_flags(new_root_item);
1698 	if (pending->readonly)
1699 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1700 	else
1701 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1702 	btrfs_set_root_flags(new_root_item, root_flags);
1703 
1704 	btrfs_set_root_generation_v2(new_root_item,
1705 			trans->transid);
1706 	generate_random_guid(new_root_item->uuid);
1707 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1708 			BTRFS_UUID_SIZE);
1709 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1710 		memset(new_root_item->received_uuid, 0,
1711 		       sizeof(new_root_item->received_uuid));
1712 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1713 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1714 		btrfs_set_root_stransid(new_root_item, 0);
1715 		btrfs_set_root_rtransid(new_root_item, 0);
1716 	}
1717 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1718 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1719 	btrfs_set_root_otransid(new_root_item, trans->transid);
1720 
1721 	old = btrfs_lock_root_node(root);
1722 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1723 			      BTRFS_NESTING_COW);
1724 	if (ret) {
1725 		btrfs_tree_unlock(old);
1726 		free_extent_buffer(old);
1727 		btrfs_abort_transaction(trans, ret);
1728 		goto fail;
1729 	}
1730 
1731 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1732 	/* clean up in any case */
1733 	btrfs_tree_unlock(old);
1734 	free_extent_buffer(old);
1735 	if (ret) {
1736 		btrfs_abort_transaction(trans, ret);
1737 		goto fail;
1738 	}
1739 	/* see comments in should_cow_block() */
1740 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1741 	smp_wmb();
1742 
1743 	btrfs_set_root_node(new_root_item, tmp);
1744 	/* record when the snapshot was created in key.offset */
1745 	key.offset = trans->transid;
1746 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1747 	btrfs_tree_unlock(tmp);
1748 	free_extent_buffer(tmp);
1749 	if (ret) {
1750 		btrfs_abort_transaction(trans, ret);
1751 		goto fail;
1752 	}
1753 
1754 	/*
1755 	 * insert root back/forward references
1756 	 */
1757 	ret = btrfs_add_root_ref(trans, objectid,
1758 				 parent_root->root_key.objectid,
1759 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1760 				 dentry->d_name.name, dentry->d_name.len);
1761 	if (ret) {
1762 		btrfs_abort_transaction(trans, ret);
1763 		goto fail;
1764 	}
1765 
1766 	key.offset = (u64)-1;
1767 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1768 	if (IS_ERR(pending->snap)) {
1769 		ret = PTR_ERR(pending->snap);
1770 		pending->snap = NULL;
1771 		btrfs_abort_transaction(trans, ret);
1772 		goto fail;
1773 	}
1774 
1775 	ret = btrfs_reloc_post_snapshot(trans, pending);
1776 	if (ret) {
1777 		btrfs_abort_transaction(trans, ret);
1778 		goto fail;
1779 	}
1780 
1781 	/*
1782 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1783 	 * snapshot hack to do fast snapshot.
1784 	 * To co-operate with that hack, we do hack again.
1785 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1786 	 */
1787 	ret = qgroup_account_snapshot(trans, root, parent_root,
1788 				      pending->inherit, objectid);
1789 	if (ret < 0)
1790 		goto fail;
1791 
1792 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1793 				    dentry->d_name.len, BTRFS_I(parent_inode),
1794 				    &key, BTRFS_FT_DIR, index);
1795 	/* We have check then name at the beginning, so it is impossible. */
1796 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1797 	if (ret) {
1798 		btrfs_abort_transaction(trans, ret);
1799 		goto fail;
1800 	}
1801 
1802 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1803 					 dentry->d_name.len * 2);
1804 	parent_inode->i_mtime = parent_inode->i_ctime =
1805 		current_time(parent_inode);
1806 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1807 	if (ret) {
1808 		btrfs_abort_transaction(trans, ret);
1809 		goto fail;
1810 	}
1811 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1812 				  BTRFS_UUID_KEY_SUBVOL,
1813 				  objectid);
1814 	if (ret) {
1815 		btrfs_abort_transaction(trans, ret);
1816 		goto fail;
1817 	}
1818 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1819 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1820 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1821 					  objectid);
1822 		if (ret && ret != -EEXIST) {
1823 			btrfs_abort_transaction(trans, ret);
1824 			goto fail;
1825 		}
1826 	}
1827 
1828 fail:
1829 	pending->error = ret;
1830 dir_item_existed:
1831 	trans->block_rsv = rsv;
1832 	trans->bytes_reserved = 0;
1833 clear_skip_qgroup:
1834 	btrfs_clear_skip_qgroup(trans);
1835 no_free_objectid:
1836 	kfree(new_root_item);
1837 	pending->root_item = NULL;
1838 	btrfs_free_path(path);
1839 	pending->path = NULL;
1840 
1841 	return ret;
1842 }
1843 
1844 /*
1845  * create all the snapshots we've scheduled for creation
1846  */
1847 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1848 {
1849 	struct btrfs_pending_snapshot *pending, *next;
1850 	struct list_head *head = &trans->transaction->pending_snapshots;
1851 	int ret = 0;
1852 
1853 	list_for_each_entry_safe(pending, next, head, list) {
1854 		list_del(&pending->list);
1855 		ret = create_pending_snapshot(trans, pending);
1856 		if (ret)
1857 			break;
1858 	}
1859 	return ret;
1860 }
1861 
1862 static void update_super_roots(struct btrfs_fs_info *fs_info)
1863 {
1864 	struct btrfs_root_item *root_item;
1865 	struct btrfs_super_block *super;
1866 
1867 	super = fs_info->super_copy;
1868 
1869 	root_item = &fs_info->chunk_root->root_item;
1870 	super->chunk_root = root_item->bytenr;
1871 	super->chunk_root_generation = root_item->generation;
1872 	super->chunk_root_level = root_item->level;
1873 
1874 	root_item = &fs_info->tree_root->root_item;
1875 	super->root = root_item->bytenr;
1876 	super->generation = root_item->generation;
1877 	super->root_level = root_item->level;
1878 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1879 		super->cache_generation = root_item->generation;
1880 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1881 		super->cache_generation = 0;
1882 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1883 		super->uuid_tree_generation = root_item->generation;
1884 }
1885 
1886 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1887 {
1888 	struct btrfs_transaction *trans;
1889 	int ret = 0;
1890 
1891 	spin_lock(&info->trans_lock);
1892 	trans = info->running_transaction;
1893 	if (trans)
1894 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1895 	spin_unlock(&info->trans_lock);
1896 	return ret;
1897 }
1898 
1899 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1900 {
1901 	struct btrfs_transaction *trans;
1902 	int ret = 0;
1903 
1904 	spin_lock(&info->trans_lock);
1905 	trans = info->running_transaction;
1906 	if (trans)
1907 		ret = is_transaction_blocked(trans);
1908 	spin_unlock(&info->trans_lock);
1909 	return ret;
1910 }
1911 
1912 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1913 {
1914 	struct btrfs_fs_info *fs_info = trans->fs_info;
1915 	struct btrfs_transaction *cur_trans;
1916 
1917 	/* Kick the transaction kthread. */
1918 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1919 	wake_up_process(fs_info->transaction_kthread);
1920 
1921 	/* take transaction reference */
1922 	cur_trans = trans->transaction;
1923 	refcount_inc(&cur_trans->use_count);
1924 
1925 	btrfs_end_transaction(trans);
1926 
1927 	/*
1928 	 * Wait for the current transaction commit to start and block
1929 	 * subsequent transaction joins
1930 	 */
1931 	wait_event(fs_info->transaction_blocked_wait,
1932 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1933 		   TRANS_ABORTED(cur_trans));
1934 	btrfs_put_transaction(cur_trans);
1935 }
1936 
1937 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1938 {
1939 	struct btrfs_fs_info *fs_info = trans->fs_info;
1940 	struct btrfs_transaction *cur_trans = trans->transaction;
1941 
1942 	WARN_ON(refcount_read(&trans->use_count) > 1);
1943 
1944 	btrfs_abort_transaction(trans, err);
1945 
1946 	spin_lock(&fs_info->trans_lock);
1947 
1948 	/*
1949 	 * If the transaction is removed from the list, it means this
1950 	 * transaction has been committed successfully, so it is impossible
1951 	 * to call the cleanup function.
1952 	 */
1953 	BUG_ON(list_empty(&cur_trans->list));
1954 
1955 	if (cur_trans == fs_info->running_transaction) {
1956 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1957 		spin_unlock(&fs_info->trans_lock);
1958 		wait_event(cur_trans->writer_wait,
1959 			   atomic_read(&cur_trans->num_writers) == 1);
1960 
1961 		spin_lock(&fs_info->trans_lock);
1962 	}
1963 
1964 	/*
1965 	 * Now that we know no one else is still using the transaction we can
1966 	 * remove the transaction from the list of transactions. This avoids
1967 	 * the transaction kthread from cleaning up the transaction while some
1968 	 * other task is still using it, which could result in a use-after-free
1969 	 * on things like log trees, as it forces the transaction kthread to
1970 	 * wait for this transaction to be cleaned up by us.
1971 	 */
1972 	list_del_init(&cur_trans->list);
1973 
1974 	spin_unlock(&fs_info->trans_lock);
1975 
1976 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1977 
1978 	spin_lock(&fs_info->trans_lock);
1979 	if (cur_trans == fs_info->running_transaction)
1980 		fs_info->running_transaction = NULL;
1981 	spin_unlock(&fs_info->trans_lock);
1982 
1983 	if (trans->type & __TRANS_FREEZABLE)
1984 		sb_end_intwrite(fs_info->sb);
1985 	btrfs_put_transaction(cur_trans);
1986 	btrfs_put_transaction(cur_trans);
1987 
1988 	trace_btrfs_transaction_commit(fs_info);
1989 
1990 	if (current->journal_info == trans)
1991 		current->journal_info = NULL;
1992 	btrfs_scrub_cancel(fs_info);
1993 
1994 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1995 }
1996 
1997 /*
1998  * Release reserved delayed ref space of all pending block groups of the
1999  * transaction and remove them from the list
2000  */
2001 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2002 {
2003        struct btrfs_fs_info *fs_info = trans->fs_info;
2004        struct btrfs_block_group *block_group, *tmp;
2005 
2006        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2007                btrfs_delayed_refs_rsv_release(fs_info, 1);
2008                list_del_init(&block_group->bg_list);
2009        }
2010 }
2011 
2012 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2013 {
2014 	/*
2015 	 * We use try_to_writeback_inodes_sb() here because if we used
2016 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2017 	 * Currently are holding the fs freeze lock, if we do an async flush
2018 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2019 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2020 	 * from already being in a transaction and our join_transaction doesn't
2021 	 * have to re-take the fs freeze lock.
2022 	 *
2023 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2024 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2025 	 * except when the filesystem is being unmounted or being frozen, but in
2026 	 * those cases sync_filesystem() is called, which results in calling
2027 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2028 	 * Note that we don't call writeback_inodes_sb() directly, because it
2029 	 * will emit a warning if sb->s_umount is not locked.
2030 	 */
2031 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2032 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2033 	return 0;
2034 }
2035 
2036 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2037 {
2038 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2039 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2040 }
2041 
2042 /*
2043  * Add a pending snapshot associated with the given transaction handle to the
2044  * respective handle. This must be called after the transaction commit started
2045  * and while holding fs_info->trans_lock.
2046  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2047  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2048  * returns an error.
2049  */
2050 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2051 {
2052 	struct btrfs_transaction *cur_trans = trans->transaction;
2053 
2054 	if (!trans->pending_snapshot)
2055 		return;
2056 
2057 	lockdep_assert_held(&trans->fs_info->trans_lock);
2058 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2059 
2060 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2061 }
2062 
2063 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2064 {
2065 	struct btrfs_fs_info *fs_info = trans->fs_info;
2066 	struct btrfs_transaction *cur_trans = trans->transaction;
2067 	struct btrfs_transaction *prev_trans = NULL;
2068 	int ret;
2069 
2070 	ASSERT(refcount_read(&trans->use_count) == 1);
2071 
2072 	/* Stop the commit early if ->aborted is set */
2073 	if (TRANS_ABORTED(cur_trans)) {
2074 		ret = cur_trans->aborted;
2075 		btrfs_end_transaction(trans);
2076 		return ret;
2077 	}
2078 
2079 	btrfs_trans_release_metadata(trans);
2080 	trans->block_rsv = NULL;
2081 
2082 	/*
2083 	 * We only want one transaction commit doing the flushing so we do not
2084 	 * waste a bunch of time on lock contention on the extent root node.
2085 	 */
2086 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2087 			      &cur_trans->delayed_refs.flags)) {
2088 		/*
2089 		 * Make a pass through all the delayed refs we have so far.
2090 		 * Any running threads may add more while we are here.
2091 		 */
2092 		ret = btrfs_run_delayed_refs(trans, 0);
2093 		if (ret) {
2094 			btrfs_end_transaction(trans);
2095 			return ret;
2096 		}
2097 	}
2098 
2099 	btrfs_create_pending_block_groups(trans);
2100 
2101 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2102 		int run_it = 0;
2103 
2104 		/* this mutex is also taken before trying to set
2105 		 * block groups readonly.  We need to make sure
2106 		 * that nobody has set a block group readonly
2107 		 * after a extents from that block group have been
2108 		 * allocated for cache files.  btrfs_set_block_group_ro
2109 		 * will wait for the transaction to commit if it
2110 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2111 		 *
2112 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2113 		 * only one process starts all the block group IO.  It wouldn't
2114 		 * hurt to have more than one go through, but there's no
2115 		 * real advantage to it either.
2116 		 */
2117 		mutex_lock(&fs_info->ro_block_group_mutex);
2118 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2119 				      &cur_trans->flags))
2120 			run_it = 1;
2121 		mutex_unlock(&fs_info->ro_block_group_mutex);
2122 
2123 		if (run_it) {
2124 			ret = btrfs_start_dirty_block_groups(trans);
2125 			if (ret) {
2126 				btrfs_end_transaction(trans);
2127 				return ret;
2128 			}
2129 		}
2130 	}
2131 
2132 	spin_lock(&fs_info->trans_lock);
2133 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2134 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2135 
2136 		add_pending_snapshot(trans);
2137 
2138 		spin_unlock(&fs_info->trans_lock);
2139 		refcount_inc(&cur_trans->use_count);
2140 
2141 		if (trans->in_fsync)
2142 			want_state = TRANS_STATE_SUPER_COMMITTED;
2143 		ret = btrfs_end_transaction(trans);
2144 		wait_for_commit(cur_trans, want_state);
2145 
2146 		if (TRANS_ABORTED(cur_trans))
2147 			ret = cur_trans->aborted;
2148 
2149 		btrfs_put_transaction(cur_trans);
2150 
2151 		return ret;
2152 	}
2153 
2154 	cur_trans->state = TRANS_STATE_COMMIT_START;
2155 	wake_up(&fs_info->transaction_blocked_wait);
2156 
2157 	if (cur_trans->list.prev != &fs_info->trans_list) {
2158 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2159 
2160 		if (trans->in_fsync)
2161 			want_state = TRANS_STATE_SUPER_COMMITTED;
2162 
2163 		prev_trans = list_entry(cur_trans->list.prev,
2164 					struct btrfs_transaction, list);
2165 		if (prev_trans->state < want_state) {
2166 			refcount_inc(&prev_trans->use_count);
2167 			spin_unlock(&fs_info->trans_lock);
2168 
2169 			wait_for_commit(prev_trans, want_state);
2170 
2171 			ret = READ_ONCE(prev_trans->aborted);
2172 
2173 			btrfs_put_transaction(prev_trans);
2174 			if (ret)
2175 				goto cleanup_transaction;
2176 		} else {
2177 			spin_unlock(&fs_info->trans_lock);
2178 		}
2179 	} else {
2180 		spin_unlock(&fs_info->trans_lock);
2181 		/*
2182 		 * The previous transaction was aborted and was already removed
2183 		 * from the list of transactions at fs_info->trans_list. So we
2184 		 * abort to prevent writing a new superblock that reflects a
2185 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2186 		 */
2187 		if (BTRFS_FS_ERROR(fs_info)) {
2188 			ret = -EROFS;
2189 			goto cleanup_transaction;
2190 		}
2191 	}
2192 
2193 	extwriter_counter_dec(cur_trans, trans->type);
2194 
2195 	ret = btrfs_start_delalloc_flush(fs_info);
2196 	if (ret)
2197 		goto cleanup_transaction;
2198 
2199 	ret = btrfs_run_delayed_items(trans);
2200 	if (ret)
2201 		goto cleanup_transaction;
2202 
2203 	wait_event(cur_trans->writer_wait,
2204 		   extwriter_counter_read(cur_trans) == 0);
2205 
2206 	/* some pending stuffs might be added after the previous flush. */
2207 	ret = btrfs_run_delayed_items(trans);
2208 	if (ret)
2209 		goto cleanup_transaction;
2210 
2211 	btrfs_wait_delalloc_flush(fs_info);
2212 
2213 	/*
2214 	 * Wait for all ordered extents started by a fast fsync that joined this
2215 	 * transaction. Otherwise if this transaction commits before the ordered
2216 	 * extents complete we lose logged data after a power failure.
2217 	 */
2218 	wait_event(cur_trans->pending_wait,
2219 		   atomic_read(&cur_trans->pending_ordered) == 0);
2220 
2221 	btrfs_scrub_pause(fs_info);
2222 	/*
2223 	 * Ok now we need to make sure to block out any other joins while we
2224 	 * commit the transaction.  We could have started a join before setting
2225 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2226 	 */
2227 	spin_lock(&fs_info->trans_lock);
2228 	add_pending_snapshot(trans);
2229 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2230 	spin_unlock(&fs_info->trans_lock);
2231 	wait_event(cur_trans->writer_wait,
2232 		   atomic_read(&cur_trans->num_writers) == 1);
2233 
2234 	/*
2235 	 * We've started the commit, clear the flag in case we were triggered to
2236 	 * do an async commit but somebody else started before the transaction
2237 	 * kthread could do the work.
2238 	 */
2239 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2240 
2241 	if (TRANS_ABORTED(cur_trans)) {
2242 		ret = cur_trans->aborted;
2243 		goto scrub_continue;
2244 	}
2245 	/*
2246 	 * the reloc mutex makes sure that we stop
2247 	 * the balancing code from coming in and moving
2248 	 * extents around in the middle of the commit
2249 	 */
2250 	mutex_lock(&fs_info->reloc_mutex);
2251 
2252 	/*
2253 	 * We needn't worry about the delayed items because we will
2254 	 * deal with them in create_pending_snapshot(), which is the
2255 	 * core function of the snapshot creation.
2256 	 */
2257 	ret = create_pending_snapshots(trans);
2258 	if (ret)
2259 		goto unlock_reloc;
2260 
2261 	/*
2262 	 * We insert the dir indexes of the snapshots and update the inode
2263 	 * of the snapshots' parents after the snapshot creation, so there
2264 	 * are some delayed items which are not dealt with. Now deal with
2265 	 * them.
2266 	 *
2267 	 * We needn't worry that this operation will corrupt the snapshots,
2268 	 * because all the tree which are snapshoted will be forced to COW
2269 	 * the nodes and leaves.
2270 	 */
2271 	ret = btrfs_run_delayed_items(trans);
2272 	if (ret)
2273 		goto unlock_reloc;
2274 
2275 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2276 	if (ret)
2277 		goto unlock_reloc;
2278 
2279 	/*
2280 	 * make sure none of the code above managed to slip in a
2281 	 * delayed item
2282 	 */
2283 	btrfs_assert_delayed_root_empty(fs_info);
2284 
2285 	WARN_ON(cur_trans != trans->transaction);
2286 
2287 	ret = commit_fs_roots(trans);
2288 	if (ret)
2289 		goto unlock_reloc;
2290 
2291 	/*
2292 	 * Since the transaction is done, we can apply the pending changes
2293 	 * before the next transaction.
2294 	 */
2295 	btrfs_apply_pending_changes(fs_info);
2296 
2297 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2298 	 * safe to free the root of tree log roots
2299 	 */
2300 	btrfs_free_log_root_tree(trans, fs_info);
2301 
2302 	/*
2303 	 * Since fs roots are all committed, we can get a quite accurate
2304 	 * new_roots. So let's do quota accounting.
2305 	 */
2306 	ret = btrfs_qgroup_account_extents(trans);
2307 	if (ret < 0)
2308 		goto unlock_reloc;
2309 
2310 	ret = commit_cowonly_roots(trans);
2311 	if (ret)
2312 		goto unlock_reloc;
2313 
2314 	/*
2315 	 * The tasks which save the space cache and inode cache may also
2316 	 * update ->aborted, check it.
2317 	 */
2318 	if (TRANS_ABORTED(cur_trans)) {
2319 		ret = cur_trans->aborted;
2320 		goto unlock_reloc;
2321 	}
2322 
2323 	cur_trans = fs_info->running_transaction;
2324 
2325 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2326 			    fs_info->tree_root->node);
2327 	list_add_tail(&fs_info->tree_root->dirty_list,
2328 		      &cur_trans->switch_commits);
2329 
2330 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2331 			    fs_info->chunk_root->node);
2332 	list_add_tail(&fs_info->chunk_root->dirty_list,
2333 		      &cur_trans->switch_commits);
2334 
2335 	switch_commit_roots(trans);
2336 
2337 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2338 	ASSERT(list_empty(&cur_trans->io_bgs));
2339 	update_super_roots(fs_info);
2340 
2341 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2342 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2343 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2344 	       sizeof(*fs_info->super_copy));
2345 
2346 	btrfs_commit_device_sizes(cur_trans);
2347 
2348 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2349 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2350 
2351 	btrfs_trans_release_chunk_metadata(trans);
2352 
2353 	/*
2354 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2355 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2356 	 * make sure that before we commit our superblock, no other task can
2357 	 * start a new transaction and commit a log tree before we commit our
2358 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2359 	 * writing its superblock.
2360 	 */
2361 	mutex_lock(&fs_info->tree_log_mutex);
2362 
2363 	spin_lock(&fs_info->trans_lock);
2364 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2365 	fs_info->running_transaction = NULL;
2366 	spin_unlock(&fs_info->trans_lock);
2367 	mutex_unlock(&fs_info->reloc_mutex);
2368 
2369 	wake_up(&fs_info->transaction_wait);
2370 
2371 	ret = btrfs_write_and_wait_transaction(trans);
2372 	if (ret) {
2373 		btrfs_handle_fs_error(fs_info, ret,
2374 				      "Error while writing out transaction");
2375 		mutex_unlock(&fs_info->tree_log_mutex);
2376 		goto scrub_continue;
2377 	}
2378 
2379 	/*
2380 	 * At this point, we should have written all the tree blocks allocated
2381 	 * in this transaction. So it's now safe to free the redirtyied extent
2382 	 * buffers.
2383 	 */
2384 	btrfs_free_redirty_list(cur_trans);
2385 
2386 	ret = write_all_supers(fs_info, 0);
2387 	/*
2388 	 * the super is written, we can safely allow the tree-loggers
2389 	 * to go about their business
2390 	 */
2391 	mutex_unlock(&fs_info->tree_log_mutex);
2392 	if (ret)
2393 		goto scrub_continue;
2394 
2395 	/*
2396 	 * We needn't acquire the lock here because there is no other task
2397 	 * which can change it.
2398 	 */
2399 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2400 	wake_up(&cur_trans->commit_wait);
2401 
2402 	btrfs_finish_extent_commit(trans);
2403 
2404 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2405 		btrfs_clear_space_info_full(fs_info);
2406 
2407 	fs_info->last_trans_committed = cur_trans->transid;
2408 	/*
2409 	 * We needn't acquire the lock here because there is no other task
2410 	 * which can change it.
2411 	 */
2412 	cur_trans->state = TRANS_STATE_COMPLETED;
2413 	wake_up(&cur_trans->commit_wait);
2414 
2415 	spin_lock(&fs_info->trans_lock);
2416 	list_del_init(&cur_trans->list);
2417 	spin_unlock(&fs_info->trans_lock);
2418 
2419 	btrfs_put_transaction(cur_trans);
2420 	btrfs_put_transaction(cur_trans);
2421 
2422 	if (trans->type & __TRANS_FREEZABLE)
2423 		sb_end_intwrite(fs_info->sb);
2424 
2425 	trace_btrfs_transaction_commit(fs_info);
2426 
2427 	btrfs_scrub_continue(fs_info);
2428 
2429 	if (current->journal_info == trans)
2430 		current->journal_info = NULL;
2431 
2432 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2433 
2434 	return ret;
2435 
2436 unlock_reloc:
2437 	mutex_unlock(&fs_info->reloc_mutex);
2438 scrub_continue:
2439 	btrfs_scrub_continue(fs_info);
2440 cleanup_transaction:
2441 	btrfs_trans_release_metadata(trans);
2442 	btrfs_cleanup_pending_block_groups(trans);
2443 	btrfs_trans_release_chunk_metadata(trans);
2444 	trans->block_rsv = NULL;
2445 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2446 	if (current->journal_info == trans)
2447 		current->journal_info = NULL;
2448 	cleanup_transaction(trans, ret);
2449 
2450 	return ret;
2451 }
2452 
2453 /*
2454  * return < 0 if error
2455  * 0 if there are no more dead_roots at the time of call
2456  * 1 there are more to be processed, call me again
2457  *
2458  * The return value indicates there are certainly more snapshots to delete, but
2459  * if there comes a new one during processing, it may return 0. We don't mind,
2460  * because btrfs_commit_super will poke cleaner thread and it will process it a
2461  * few seconds later.
2462  */
2463 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2464 {
2465 	int ret;
2466 	struct btrfs_fs_info *fs_info = root->fs_info;
2467 
2468 	spin_lock(&fs_info->trans_lock);
2469 	if (list_empty(&fs_info->dead_roots)) {
2470 		spin_unlock(&fs_info->trans_lock);
2471 		return 0;
2472 	}
2473 	root = list_first_entry(&fs_info->dead_roots,
2474 			struct btrfs_root, root_list);
2475 	list_del_init(&root->root_list);
2476 	spin_unlock(&fs_info->trans_lock);
2477 
2478 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2479 
2480 	btrfs_kill_all_delayed_nodes(root);
2481 
2482 	if (btrfs_header_backref_rev(root->node) <
2483 			BTRFS_MIXED_BACKREF_REV)
2484 		ret = btrfs_drop_snapshot(root, 0, 0);
2485 	else
2486 		ret = btrfs_drop_snapshot(root, 1, 0);
2487 
2488 	btrfs_put_root(root);
2489 	return (ret < 0) ? 0 : 1;
2490 }
2491 
2492 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2493 {
2494 	unsigned long prev;
2495 	unsigned long bit;
2496 
2497 	prev = xchg(&fs_info->pending_changes, 0);
2498 	if (!prev)
2499 		return;
2500 
2501 	bit = 1 << BTRFS_PENDING_COMMIT;
2502 	if (prev & bit)
2503 		btrfs_debug(fs_info, "pending commit done");
2504 	prev &= ~bit;
2505 
2506 	if (prev)
2507 		btrfs_warn(fs_info,
2508 			"unknown pending changes left 0x%lx, ignoring", prev);
2509 }
2510