1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/sched/mm.h> 10 #include <linux/writeback.h> 11 #include <linux/pagemap.h> 12 #include <linux/blkdev.h> 13 #include <linux/uuid.h> 14 #include <linux/timekeeping.h> 15 #include "misc.h" 16 #include "ctree.h" 17 #include "disk-io.h" 18 #include "transaction.h" 19 #include "locking.h" 20 #include "tree-log.h" 21 #include "volumes.h" 22 #include "dev-replace.h" 23 #include "qgroup.h" 24 #include "block-group.h" 25 #include "space-info.h" 26 #include "zoned.h" 27 #include "fs.h" 28 #include "accessors.h" 29 #include "extent-tree.h" 30 #include "root-tree.h" 31 #include "defrag.h" 32 #include "dir-item.h" 33 #include "uuid-tree.h" 34 #include "ioctl.h" 35 #include "relocation.h" 36 #include "scrub.h" 37 38 static struct kmem_cache *btrfs_trans_handle_cachep; 39 40 #define BTRFS_ROOT_TRANS_TAG 0 41 42 /* 43 * Transaction states and transitions 44 * 45 * No running transaction (fs tree blocks are not modified) 46 * | 47 * | To next stage: 48 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 49 * V 50 * Transaction N [[TRANS_STATE_RUNNING]] 51 * | 52 * | New trans handles can be attached to transaction N by calling all 53 * | start_transaction() variants. 54 * | 55 * | To next stage: 56 * | Call btrfs_commit_transaction() on any trans handle attached to 57 * | transaction N 58 * V 59 * Transaction N [[TRANS_STATE_COMMIT_START]] 60 * | 61 * | Will wait for previous running transaction to completely finish if there 62 * | is one 63 * | 64 * | Then one of the following happes: 65 * | - Wait for all other trans handle holders to release. 66 * | The btrfs_commit_transaction() caller will do the commit work. 67 * | - Wait for current transaction to be committed by others. 68 * | Other btrfs_commit_transaction() caller will do the commit work. 69 * | 70 * | At this stage, only btrfs_join_transaction*() variants can attach 71 * | to this running transaction. 72 * | All other variants will wait for current one to finish and attach to 73 * | transaction N+1. 74 * | 75 * | To next stage: 76 * | Caller is chosen to commit transaction N, and all other trans handle 77 * | haven been released. 78 * V 79 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 80 * | 81 * | The heavy lifting transaction work is started. 82 * | From running delayed refs (modifying extent tree) to creating pending 83 * | snapshots, running qgroups. 84 * | In short, modify supporting trees to reflect modifications of subvolume 85 * | trees. 86 * | 87 * | At this stage, all start_transaction() calls will wait for this 88 * | transaction to finish and attach to transaction N+1. 89 * | 90 * | To next stage: 91 * | Until all supporting trees are updated. 92 * V 93 * Transaction N [[TRANS_STATE_UNBLOCKED]] 94 * | Transaction N+1 95 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 96 * | need to write them back to disk and update | 97 * | super blocks. | 98 * | | 99 * | At this stage, new transaction is allowed to | 100 * | start. | 101 * | All new start_transaction() calls will be | 102 * | attached to transid N+1. | 103 * | | 104 * | To next stage: | 105 * | Until all tree blocks are super blocks are | 106 * | written to block devices | 107 * V | 108 * Transaction N [[TRANS_STATE_COMPLETED]] V 109 * All tree blocks and super blocks are written. Transaction N+1 110 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 111 * data structures will be cleaned up. | Life goes on 112 */ 113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 114 [TRANS_STATE_RUNNING] = 0U, 115 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 116 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOSTART), 120 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 121 __TRANS_ATTACH | 122 __TRANS_JOIN | 123 __TRANS_JOIN_NOLOCK | 124 __TRANS_JOIN_NOSTART), 125 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 126 __TRANS_ATTACH | 127 __TRANS_JOIN | 128 __TRANS_JOIN_NOLOCK | 129 __TRANS_JOIN_NOSTART), 130 [TRANS_STATE_COMPLETED] = (__TRANS_START | 131 __TRANS_ATTACH | 132 __TRANS_JOIN | 133 __TRANS_JOIN_NOLOCK | 134 __TRANS_JOIN_NOSTART), 135 }; 136 137 void btrfs_put_transaction(struct btrfs_transaction *transaction) 138 { 139 WARN_ON(refcount_read(&transaction->use_count) == 0); 140 if (refcount_dec_and_test(&transaction->use_count)) { 141 BUG_ON(!list_empty(&transaction->list)); 142 WARN_ON(!RB_EMPTY_ROOT( 143 &transaction->delayed_refs.href_root.rb_root)); 144 WARN_ON(!RB_EMPTY_ROOT( 145 &transaction->delayed_refs.dirty_extent_root)); 146 if (transaction->delayed_refs.pending_csums) 147 btrfs_err(transaction->fs_info, 148 "pending csums is %llu", 149 transaction->delayed_refs.pending_csums); 150 /* 151 * If any block groups are found in ->deleted_bgs then it's 152 * because the transaction was aborted and a commit did not 153 * happen (things failed before writing the new superblock 154 * and calling btrfs_finish_extent_commit()), so we can not 155 * discard the physical locations of the block groups. 156 */ 157 while (!list_empty(&transaction->deleted_bgs)) { 158 struct btrfs_block_group *cache; 159 160 cache = list_first_entry(&transaction->deleted_bgs, 161 struct btrfs_block_group, 162 bg_list); 163 list_del_init(&cache->bg_list); 164 btrfs_unfreeze_block_group(cache); 165 btrfs_put_block_group(cache); 166 } 167 WARN_ON(!list_empty(&transaction->dev_update_list)); 168 kfree(transaction); 169 } 170 } 171 172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 173 { 174 struct btrfs_transaction *cur_trans = trans->transaction; 175 struct btrfs_fs_info *fs_info = trans->fs_info; 176 struct btrfs_root *root, *tmp; 177 178 /* 179 * At this point no one can be using this transaction to modify any tree 180 * and no one can start another transaction to modify any tree either. 181 */ 182 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 183 184 down_write(&fs_info->commit_root_sem); 185 186 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 187 fs_info->last_reloc_trans = trans->transid; 188 189 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 190 dirty_list) { 191 list_del_init(&root->dirty_list); 192 free_extent_buffer(root->commit_root); 193 root->commit_root = btrfs_root_node(root); 194 extent_io_tree_release(&root->dirty_log_pages); 195 btrfs_qgroup_clean_swapped_blocks(root); 196 } 197 198 /* We can free old roots now. */ 199 spin_lock(&cur_trans->dropped_roots_lock); 200 while (!list_empty(&cur_trans->dropped_roots)) { 201 root = list_first_entry(&cur_trans->dropped_roots, 202 struct btrfs_root, root_list); 203 list_del_init(&root->root_list); 204 spin_unlock(&cur_trans->dropped_roots_lock); 205 btrfs_free_log(trans, root); 206 btrfs_drop_and_free_fs_root(fs_info, root); 207 spin_lock(&cur_trans->dropped_roots_lock); 208 } 209 spin_unlock(&cur_trans->dropped_roots_lock); 210 211 up_write(&fs_info->commit_root_sem); 212 } 213 214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 215 unsigned int type) 216 { 217 if (type & TRANS_EXTWRITERS) 218 atomic_inc(&trans->num_extwriters); 219 } 220 221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 222 unsigned int type) 223 { 224 if (type & TRANS_EXTWRITERS) 225 atomic_dec(&trans->num_extwriters); 226 } 227 228 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 229 unsigned int type) 230 { 231 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 232 } 233 234 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 235 { 236 return atomic_read(&trans->num_extwriters); 237 } 238 239 /* 240 * To be called after doing the chunk btree updates right after allocating a new 241 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 242 * chunk after all chunk btree updates and after finishing the second phase of 243 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 244 * group had its chunk item insertion delayed to the second phase. 245 */ 246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 247 { 248 struct btrfs_fs_info *fs_info = trans->fs_info; 249 250 if (!trans->chunk_bytes_reserved) 251 return; 252 253 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 254 trans->chunk_bytes_reserved, NULL); 255 trans->chunk_bytes_reserved = 0; 256 } 257 258 /* 259 * either allocate a new transaction or hop into the existing one 260 */ 261 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 262 unsigned int type) 263 { 264 struct btrfs_transaction *cur_trans; 265 266 spin_lock(&fs_info->trans_lock); 267 loop: 268 /* The file system has been taken offline. No new transactions. */ 269 if (BTRFS_FS_ERROR(fs_info)) { 270 spin_unlock(&fs_info->trans_lock); 271 return -EROFS; 272 } 273 274 cur_trans = fs_info->running_transaction; 275 if (cur_trans) { 276 if (TRANS_ABORTED(cur_trans)) { 277 spin_unlock(&fs_info->trans_lock); 278 return cur_trans->aborted; 279 } 280 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 281 spin_unlock(&fs_info->trans_lock); 282 return -EBUSY; 283 } 284 refcount_inc(&cur_trans->use_count); 285 atomic_inc(&cur_trans->num_writers); 286 extwriter_counter_inc(cur_trans, type); 287 spin_unlock(&fs_info->trans_lock); 288 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 289 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 290 return 0; 291 } 292 spin_unlock(&fs_info->trans_lock); 293 294 /* 295 * If we are ATTACH, we just want to catch the current transaction, 296 * and commit it. If there is no transaction, just return ENOENT. 297 */ 298 if (type == TRANS_ATTACH) 299 return -ENOENT; 300 301 /* 302 * JOIN_NOLOCK only happens during the transaction commit, so 303 * it is impossible that ->running_transaction is NULL 304 */ 305 BUG_ON(type == TRANS_JOIN_NOLOCK); 306 307 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 308 if (!cur_trans) 309 return -ENOMEM; 310 311 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers); 312 btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters); 313 314 spin_lock(&fs_info->trans_lock); 315 if (fs_info->running_transaction) { 316 /* 317 * someone started a transaction after we unlocked. Make sure 318 * to redo the checks above 319 */ 320 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 321 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 322 kfree(cur_trans); 323 goto loop; 324 } else if (BTRFS_FS_ERROR(fs_info)) { 325 spin_unlock(&fs_info->trans_lock); 326 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 327 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 328 kfree(cur_trans); 329 return -EROFS; 330 } 331 332 cur_trans->fs_info = fs_info; 333 atomic_set(&cur_trans->pending_ordered, 0); 334 init_waitqueue_head(&cur_trans->pending_wait); 335 atomic_set(&cur_trans->num_writers, 1); 336 extwriter_counter_init(cur_trans, type); 337 init_waitqueue_head(&cur_trans->writer_wait); 338 init_waitqueue_head(&cur_trans->commit_wait); 339 cur_trans->state = TRANS_STATE_RUNNING; 340 /* 341 * One for this trans handle, one so it will live on until we 342 * commit the transaction. 343 */ 344 refcount_set(&cur_trans->use_count, 2); 345 cur_trans->flags = 0; 346 cur_trans->start_time = ktime_get_seconds(); 347 348 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 349 350 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 351 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 352 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 353 354 /* 355 * although the tree mod log is per file system and not per transaction, 356 * the log must never go across transaction boundaries. 357 */ 358 smp_mb(); 359 if (!list_empty(&fs_info->tree_mod_seq_list)) 360 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 361 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 362 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 363 atomic64_set(&fs_info->tree_mod_seq, 0); 364 365 spin_lock_init(&cur_trans->delayed_refs.lock); 366 367 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 368 INIT_LIST_HEAD(&cur_trans->dev_update_list); 369 INIT_LIST_HEAD(&cur_trans->switch_commits); 370 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 371 INIT_LIST_HEAD(&cur_trans->io_bgs); 372 INIT_LIST_HEAD(&cur_trans->dropped_roots); 373 mutex_init(&cur_trans->cache_write_mutex); 374 spin_lock_init(&cur_trans->dirty_bgs_lock); 375 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 376 spin_lock_init(&cur_trans->dropped_roots_lock); 377 list_add_tail(&cur_trans->list, &fs_info->trans_list); 378 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 379 IO_TREE_TRANS_DIRTY_PAGES); 380 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 381 IO_TREE_FS_PINNED_EXTENTS); 382 fs_info->generation++; 383 cur_trans->transid = fs_info->generation; 384 fs_info->running_transaction = cur_trans; 385 cur_trans->aborted = 0; 386 spin_unlock(&fs_info->trans_lock); 387 388 return 0; 389 } 390 391 /* 392 * This does all the record keeping required to make sure that a shareable root 393 * is properly recorded in a given transaction. This is required to make sure 394 * the old root from before we joined the transaction is deleted when the 395 * transaction commits. 396 */ 397 static int record_root_in_trans(struct btrfs_trans_handle *trans, 398 struct btrfs_root *root, 399 int force) 400 { 401 struct btrfs_fs_info *fs_info = root->fs_info; 402 int ret = 0; 403 404 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 405 root->last_trans < trans->transid) || force) { 406 WARN_ON(!force && root->commit_root != root->node); 407 408 /* 409 * see below for IN_TRANS_SETUP usage rules 410 * we have the reloc mutex held now, so there 411 * is only one writer in this function 412 */ 413 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 414 415 /* make sure readers find IN_TRANS_SETUP before 416 * they find our root->last_trans update 417 */ 418 smp_wmb(); 419 420 spin_lock(&fs_info->fs_roots_radix_lock); 421 if (root->last_trans == trans->transid && !force) { 422 spin_unlock(&fs_info->fs_roots_radix_lock); 423 return 0; 424 } 425 radix_tree_tag_set(&fs_info->fs_roots_radix, 426 (unsigned long)root->root_key.objectid, 427 BTRFS_ROOT_TRANS_TAG); 428 spin_unlock(&fs_info->fs_roots_radix_lock); 429 root->last_trans = trans->transid; 430 431 /* this is pretty tricky. We don't want to 432 * take the relocation lock in btrfs_record_root_in_trans 433 * unless we're really doing the first setup for this root in 434 * this transaction. 435 * 436 * Normally we'd use root->last_trans as a flag to decide 437 * if we want to take the expensive mutex. 438 * 439 * But, we have to set root->last_trans before we 440 * init the relocation root, otherwise, we trip over warnings 441 * in ctree.c. The solution used here is to flag ourselves 442 * with root IN_TRANS_SETUP. When this is 1, we're still 443 * fixing up the reloc trees and everyone must wait. 444 * 445 * When this is zero, they can trust root->last_trans and fly 446 * through btrfs_record_root_in_trans without having to take the 447 * lock. smp_wmb() makes sure that all the writes above are 448 * done before we pop in the zero below 449 */ 450 ret = btrfs_init_reloc_root(trans, root); 451 smp_mb__before_atomic(); 452 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 453 } 454 return ret; 455 } 456 457 458 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 459 struct btrfs_root *root) 460 { 461 struct btrfs_fs_info *fs_info = root->fs_info; 462 struct btrfs_transaction *cur_trans = trans->transaction; 463 464 /* Add ourselves to the transaction dropped list */ 465 spin_lock(&cur_trans->dropped_roots_lock); 466 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 467 spin_unlock(&cur_trans->dropped_roots_lock); 468 469 /* Make sure we don't try to update the root at commit time */ 470 spin_lock(&fs_info->fs_roots_radix_lock); 471 radix_tree_tag_clear(&fs_info->fs_roots_radix, 472 (unsigned long)root->root_key.objectid, 473 BTRFS_ROOT_TRANS_TAG); 474 spin_unlock(&fs_info->fs_roots_radix_lock); 475 } 476 477 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 478 struct btrfs_root *root) 479 { 480 struct btrfs_fs_info *fs_info = root->fs_info; 481 int ret; 482 483 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 484 return 0; 485 486 /* 487 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 488 * and barriers 489 */ 490 smp_rmb(); 491 if (root->last_trans == trans->transid && 492 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 493 return 0; 494 495 mutex_lock(&fs_info->reloc_mutex); 496 ret = record_root_in_trans(trans, root, 0); 497 mutex_unlock(&fs_info->reloc_mutex); 498 499 return ret; 500 } 501 502 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 503 { 504 return (trans->state >= TRANS_STATE_COMMIT_START && 505 trans->state < TRANS_STATE_UNBLOCKED && 506 !TRANS_ABORTED(trans)); 507 } 508 509 /* wait for commit against the current transaction to become unblocked 510 * when this is done, it is safe to start a new transaction, but the current 511 * transaction might not be fully on disk. 512 */ 513 static void wait_current_trans(struct btrfs_fs_info *fs_info) 514 { 515 struct btrfs_transaction *cur_trans; 516 517 spin_lock(&fs_info->trans_lock); 518 cur_trans = fs_info->running_transaction; 519 if (cur_trans && is_transaction_blocked(cur_trans)) { 520 refcount_inc(&cur_trans->use_count); 521 spin_unlock(&fs_info->trans_lock); 522 523 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 524 wait_event(fs_info->transaction_wait, 525 cur_trans->state >= TRANS_STATE_UNBLOCKED || 526 TRANS_ABORTED(cur_trans)); 527 btrfs_put_transaction(cur_trans); 528 } else { 529 spin_unlock(&fs_info->trans_lock); 530 } 531 } 532 533 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 534 { 535 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 536 return 0; 537 538 if (type == TRANS_START) 539 return 1; 540 541 return 0; 542 } 543 544 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 545 { 546 struct btrfs_fs_info *fs_info = root->fs_info; 547 548 if (!fs_info->reloc_ctl || 549 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 550 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 551 root->reloc_root) 552 return false; 553 554 return true; 555 } 556 557 static struct btrfs_trans_handle * 558 start_transaction(struct btrfs_root *root, unsigned int num_items, 559 unsigned int type, enum btrfs_reserve_flush_enum flush, 560 bool enforce_qgroups) 561 { 562 struct btrfs_fs_info *fs_info = root->fs_info; 563 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 564 struct btrfs_trans_handle *h; 565 struct btrfs_transaction *cur_trans; 566 u64 num_bytes = 0; 567 u64 qgroup_reserved = 0; 568 bool reloc_reserved = false; 569 bool do_chunk_alloc = false; 570 int ret; 571 572 if (BTRFS_FS_ERROR(fs_info)) 573 return ERR_PTR(-EROFS); 574 575 if (current->journal_info) { 576 WARN_ON(type & TRANS_EXTWRITERS); 577 h = current->journal_info; 578 refcount_inc(&h->use_count); 579 WARN_ON(refcount_read(&h->use_count) > 2); 580 h->orig_rsv = h->block_rsv; 581 h->block_rsv = NULL; 582 goto got_it; 583 } 584 585 /* 586 * Do the reservation before we join the transaction so we can do all 587 * the appropriate flushing if need be. 588 */ 589 if (num_items && root != fs_info->chunk_root) { 590 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 591 u64 delayed_refs_bytes = 0; 592 593 qgroup_reserved = num_items * fs_info->nodesize; 594 /* 595 * Use prealloc for now, as there might be a currently running 596 * transaction that could free this reserved space prematurely 597 * by committing. 598 */ 599 ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved, 600 enforce_qgroups, false); 601 if (ret) 602 return ERR_PTR(ret); 603 604 /* 605 * We want to reserve all the bytes we may need all at once, so 606 * we only do 1 enospc flushing cycle per transaction start. We 607 * accomplish this by simply assuming we'll do num_items worth 608 * of delayed refs updates in this trans handle, and refill that 609 * amount for whatever is missing in the reserve. 610 */ 611 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 612 if (flush == BTRFS_RESERVE_FLUSH_ALL && 613 !btrfs_block_rsv_full(delayed_refs_rsv)) { 614 delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info, 615 num_items); 616 num_bytes += delayed_refs_bytes; 617 } 618 619 /* 620 * Do the reservation for the relocation root creation 621 */ 622 if (need_reserve_reloc_root(root)) { 623 num_bytes += fs_info->nodesize; 624 reloc_reserved = true; 625 } 626 627 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush); 628 if (ret) 629 goto reserve_fail; 630 if (delayed_refs_bytes) { 631 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 632 delayed_refs_bytes); 633 num_bytes -= delayed_refs_bytes; 634 } 635 636 if (rsv->space_info->force_alloc) 637 do_chunk_alloc = true; 638 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 639 !btrfs_block_rsv_full(delayed_refs_rsv)) { 640 /* 641 * Some people call with btrfs_start_transaction(root, 0) 642 * because they can be throttled, but have some other mechanism 643 * for reserving space. We still want these guys to refill the 644 * delayed block_rsv so just add 1 items worth of reservation 645 * here. 646 */ 647 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 648 if (ret) 649 goto reserve_fail; 650 } 651 again: 652 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 653 if (!h) { 654 ret = -ENOMEM; 655 goto alloc_fail; 656 } 657 658 /* 659 * If we are JOIN_NOLOCK we're already committing a transaction and 660 * waiting on this guy, so we don't need to do the sb_start_intwrite 661 * because we're already holding a ref. We need this because we could 662 * have raced in and did an fsync() on a file which can kick a commit 663 * and then we deadlock with somebody doing a freeze. 664 * 665 * If we are ATTACH, it means we just want to catch the current 666 * transaction and commit it, so we needn't do sb_start_intwrite(). 667 */ 668 if (type & __TRANS_FREEZABLE) 669 sb_start_intwrite(fs_info->sb); 670 671 if (may_wait_transaction(fs_info, type)) 672 wait_current_trans(fs_info); 673 674 do { 675 ret = join_transaction(fs_info, type); 676 if (ret == -EBUSY) { 677 wait_current_trans(fs_info); 678 if (unlikely(type == TRANS_ATTACH || 679 type == TRANS_JOIN_NOSTART)) 680 ret = -ENOENT; 681 } 682 } while (ret == -EBUSY); 683 684 if (ret < 0) 685 goto join_fail; 686 687 cur_trans = fs_info->running_transaction; 688 689 h->transid = cur_trans->transid; 690 h->transaction = cur_trans; 691 refcount_set(&h->use_count, 1); 692 h->fs_info = root->fs_info; 693 694 h->type = type; 695 INIT_LIST_HEAD(&h->new_bgs); 696 697 smp_mb(); 698 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 699 may_wait_transaction(fs_info, type)) { 700 current->journal_info = h; 701 btrfs_commit_transaction(h); 702 goto again; 703 } 704 705 if (num_bytes) { 706 trace_btrfs_space_reservation(fs_info, "transaction", 707 h->transid, num_bytes, 1); 708 h->block_rsv = &fs_info->trans_block_rsv; 709 h->bytes_reserved = num_bytes; 710 h->reloc_reserved = reloc_reserved; 711 } 712 713 /* 714 * Now that we have found a transaction to be a part of, convert the 715 * qgroup reservation from prealloc to pertrans. A different transaction 716 * can't race in and free our pertrans out from under us. 717 */ 718 if (qgroup_reserved) 719 btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved); 720 721 got_it: 722 if (!current->journal_info) 723 current->journal_info = h; 724 725 /* 726 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 727 * ALLOC_FORCE the first run through, and then we won't allocate for 728 * anybody else who races in later. We don't care about the return 729 * value here. 730 */ 731 if (do_chunk_alloc && num_bytes) { 732 u64 flags = h->block_rsv->space_info->flags; 733 734 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 735 CHUNK_ALLOC_NO_FORCE); 736 } 737 738 /* 739 * btrfs_record_root_in_trans() needs to alloc new extents, and may 740 * call btrfs_join_transaction() while we're also starting a 741 * transaction. 742 * 743 * Thus it need to be called after current->journal_info initialized, 744 * or we can deadlock. 745 */ 746 ret = btrfs_record_root_in_trans(h, root); 747 if (ret) { 748 /* 749 * The transaction handle is fully initialized and linked with 750 * other structures so it needs to be ended in case of errors, 751 * not just freed. 752 */ 753 btrfs_end_transaction(h); 754 return ERR_PTR(ret); 755 } 756 757 return h; 758 759 join_fail: 760 if (type & __TRANS_FREEZABLE) 761 sb_end_intwrite(fs_info->sb); 762 kmem_cache_free(btrfs_trans_handle_cachep, h); 763 alloc_fail: 764 if (num_bytes) 765 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 766 num_bytes, NULL); 767 reserve_fail: 768 btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved); 769 return ERR_PTR(ret); 770 } 771 772 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 773 unsigned int num_items) 774 { 775 return start_transaction(root, num_items, TRANS_START, 776 BTRFS_RESERVE_FLUSH_ALL, true); 777 } 778 779 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 780 struct btrfs_root *root, 781 unsigned int num_items) 782 { 783 return start_transaction(root, num_items, TRANS_START, 784 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 785 } 786 787 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 788 { 789 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 790 true); 791 } 792 793 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 794 { 795 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 796 BTRFS_RESERVE_NO_FLUSH, true); 797 } 798 799 /* 800 * Similar to regular join but it never starts a transaction when none is 801 * running or after waiting for the current one to finish. 802 */ 803 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 804 { 805 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 806 BTRFS_RESERVE_NO_FLUSH, true); 807 } 808 809 /* 810 * btrfs_attach_transaction() - catch the running transaction 811 * 812 * It is used when we want to commit the current the transaction, but 813 * don't want to start a new one. 814 * 815 * Note: If this function return -ENOENT, it just means there is no 816 * running transaction. But it is possible that the inactive transaction 817 * is still in the memory, not fully on disk. If you hope there is no 818 * inactive transaction in the fs when -ENOENT is returned, you should 819 * invoke 820 * btrfs_attach_transaction_barrier() 821 */ 822 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 823 { 824 return start_transaction(root, 0, TRANS_ATTACH, 825 BTRFS_RESERVE_NO_FLUSH, true); 826 } 827 828 /* 829 * btrfs_attach_transaction_barrier() - catch the running transaction 830 * 831 * It is similar to the above function, the difference is this one 832 * will wait for all the inactive transactions until they fully 833 * complete. 834 */ 835 struct btrfs_trans_handle * 836 btrfs_attach_transaction_barrier(struct btrfs_root *root) 837 { 838 struct btrfs_trans_handle *trans; 839 840 trans = start_transaction(root, 0, TRANS_ATTACH, 841 BTRFS_RESERVE_NO_FLUSH, true); 842 if (trans == ERR_PTR(-ENOENT)) { 843 int ret; 844 845 ret = btrfs_wait_for_commit(root->fs_info, 0); 846 if (ret) 847 return ERR_PTR(ret); 848 } 849 850 return trans; 851 } 852 853 /* Wait for a transaction commit to reach at least the given state. */ 854 static noinline void wait_for_commit(struct btrfs_transaction *commit, 855 const enum btrfs_trans_state min_state) 856 { 857 struct btrfs_fs_info *fs_info = commit->fs_info; 858 u64 transid = commit->transid; 859 bool put = false; 860 861 /* 862 * At the moment this function is called with min_state either being 863 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED. 864 */ 865 if (min_state == TRANS_STATE_COMPLETED) 866 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 867 else 868 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 869 870 while (1) { 871 wait_event(commit->commit_wait, commit->state >= min_state); 872 if (put) 873 btrfs_put_transaction(commit); 874 875 if (min_state < TRANS_STATE_COMPLETED) 876 break; 877 878 /* 879 * A transaction isn't really completed until all of the 880 * previous transactions are completed, but with fsync we can 881 * end up with SUPER_COMMITTED transactions before a COMPLETED 882 * transaction. Wait for those. 883 */ 884 885 spin_lock(&fs_info->trans_lock); 886 commit = list_first_entry_or_null(&fs_info->trans_list, 887 struct btrfs_transaction, 888 list); 889 if (!commit || commit->transid > transid) { 890 spin_unlock(&fs_info->trans_lock); 891 break; 892 } 893 refcount_inc(&commit->use_count); 894 put = true; 895 spin_unlock(&fs_info->trans_lock); 896 } 897 } 898 899 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 900 { 901 struct btrfs_transaction *cur_trans = NULL, *t; 902 int ret = 0; 903 904 if (transid) { 905 if (transid <= fs_info->last_trans_committed) 906 goto out; 907 908 /* find specified transaction */ 909 spin_lock(&fs_info->trans_lock); 910 list_for_each_entry(t, &fs_info->trans_list, list) { 911 if (t->transid == transid) { 912 cur_trans = t; 913 refcount_inc(&cur_trans->use_count); 914 ret = 0; 915 break; 916 } 917 if (t->transid > transid) { 918 ret = 0; 919 break; 920 } 921 } 922 spin_unlock(&fs_info->trans_lock); 923 924 /* 925 * The specified transaction doesn't exist, or we 926 * raced with btrfs_commit_transaction 927 */ 928 if (!cur_trans) { 929 if (transid > fs_info->last_trans_committed) 930 ret = -EINVAL; 931 goto out; 932 } 933 } else { 934 /* find newest transaction that is committing | committed */ 935 spin_lock(&fs_info->trans_lock); 936 list_for_each_entry_reverse(t, &fs_info->trans_list, 937 list) { 938 if (t->state >= TRANS_STATE_COMMIT_START) { 939 if (t->state == TRANS_STATE_COMPLETED) 940 break; 941 cur_trans = t; 942 refcount_inc(&cur_trans->use_count); 943 break; 944 } 945 } 946 spin_unlock(&fs_info->trans_lock); 947 if (!cur_trans) 948 goto out; /* nothing committing|committed */ 949 } 950 951 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 952 ret = cur_trans->aborted; 953 btrfs_put_transaction(cur_trans); 954 out: 955 return ret; 956 } 957 958 void btrfs_throttle(struct btrfs_fs_info *fs_info) 959 { 960 wait_current_trans(fs_info); 961 } 962 963 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 964 { 965 struct btrfs_transaction *cur_trans = trans->transaction; 966 967 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 968 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 969 return true; 970 971 if (btrfs_check_space_for_delayed_refs(trans->fs_info)) 972 return true; 973 974 return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50); 975 } 976 977 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 978 979 { 980 struct btrfs_fs_info *fs_info = trans->fs_info; 981 982 if (!trans->block_rsv) { 983 ASSERT(!trans->bytes_reserved); 984 return; 985 } 986 987 if (!trans->bytes_reserved) 988 return; 989 990 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 991 trace_btrfs_space_reservation(fs_info, "transaction", 992 trans->transid, trans->bytes_reserved, 0); 993 btrfs_block_rsv_release(fs_info, trans->block_rsv, 994 trans->bytes_reserved, NULL); 995 trans->bytes_reserved = 0; 996 } 997 998 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 999 int throttle) 1000 { 1001 struct btrfs_fs_info *info = trans->fs_info; 1002 struct btrfs_transaction *cur_trans = trans->transaction; 1003 int err = 0; 1004 1005 if (refcount_read(&trans->use_count) > 1) { 1006 refcount_dec(&trans->use_count); 1007 trans->block_rsv = trans->orig_rsv; 1008 return 0; 1009 } 1010 1011 btrfs_trans_release_metadata(trans); 1012 trans->block_rsv = NULL; 1013 1014 btrfs_create_pending_block_groups(trans); 1015 1016 btrfs_trans_release_chunk_metadata(trans); 1017 1018 if (trans->type & __TRANS_FREEZABLE) 1019 sb_end_intwrite(info->sb); 1020 1021 WARN_ON(cur_trans != info->running_transaction); 1022 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1023 atomic_dec(&cur_trans->num_writers); 1024 extwriter_counter_dec(cur_trans, trans->type); 1025 1026 cond_wake_up(&cur_trans->writer_wait); 1027 1028 btrfs_lockdep_release(info, btrfs_trans_num_extwriters); 1029 btrfs_lockdep_release(info, btrfs_trans_num_writers); 1030 1031 btrfs_put_transaction(cur_trans); 1032 1033 if (current->journal_info == trans) 1034 current->journal_info = NULL; 1035 1036 if (throttle) 1037 btrfs_run_delayed_iputs(info); 1038 1039 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1040 wake_up_process(info->transaction_kthread); 1041 if (TRANS_ABORTED(trans)) 1042 err = trans->aborted; 1043 else 1044 err = -EROFS; 1045 } 1046 1047 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1048 return err; 1049 } 1050 1051 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1052 { 1053 return __btrfs_end_transaction(trans, 0); 1054 } 1055 1056 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1057 { 1058 return __btrfs_end_transaction(trans, 1); 1059 } 1060 1061 /* 1062 * when btree blocks are allocated, they have some corresponding bits set for 1063 * them in one of two extent_io trees. This is used to make sure all of 1064 * those extents are sent to disk but does not wait on them 1065 */ 1066 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1067 struct extent_io_tree *dirty_pages, int mark) 1068 { 1069 int err = 0; 1070 int werr = 0; 1071 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1072 struct extent_state *cached_state = NULL; 1073 u64 start = 0; 1074 u64 end; 1075 1076 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1077 mark, &cached_state)) { 1078 bool wait_writeback = false; 1079 1080 err = convert_extent_bit(dirty_pages, start, end, 1081 EXTENT_NEED_WAIT, 1082 mark, &cached_state); 1083 /* 1084 * convert_extent_bit can return -ENOMEM, which is most of the 1085 * time a temporary error. So when it happens, ignore the error 1086 * and wait for writeback of this range to finish - because we 1087 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1088 * to __btrfs_wait_marked_extents() would not know that 1089 * writeback for this range started and therefore wouldn't 1090 * wait for it to finish - we don't want to commit a 1091 * superblock that points to btree nodes/leafs for which 1092 * writeback hasn't finished yet (and without errors). 1093 * We cleanup any entries left in the io tree when committing 1094 * the transaction (through extent_io_tree_release()). 1095 */ 1096 if (err == -ENOMEM) { 1097 err = 0; 1098 wait_writeback = true; 1099 } 1100 if (!err) 1101 err = filemap_fdatawrite_range(mapping, start, end); 1102 if (err) 1103 werr = err; 1104 else if (wait_writeback) 1105 werr = filemap_fdatawait_range(mapping, start, end); 1106 free_extent_state(cached_state); 1107 cached_state = NULL; 1108 cond_resched(); 1109 start = end + 1; 1110 } 1111 return werr; 1112 } 1113 1114 /* 1115 * when btree blocks are allocated, they have some corresponding bits set for 1116 * them in one of two extent_io trees. This is used to make sure all of 1117 * those extents are on disk for transaction or log commit. We wait 1118 * on all the pages and clear them from the dirty pages state tree 1119 */ 1120 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1121 struct extent_io_tree *dirty_pages) 1122 { 1123 int err = 0; 1124 int werr = 0; 1125 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1126 struct extent_state *cached_state = NULL; 1127 u64 start = 0; 1128 u64 end; 1129 1130 while (find_first_extent_bit(dirty_pages, start, &start, &end, 1131 EXTENT_NEED_WAIT, &cached_state)) { 1132 /* 1133 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1134 * When committing the transaction, we'll remove any entries 1135 * left in the io tree. For a log commit, we don't remove them 1136 * after committing the log because the tree can be accessed 1137 * concurrently - we do it only at transaction commit time when 1138 * it's safe to do it (through extent_io_tree_release()). 1139 */ 1140 err = clear_extent_bit(dirty_pages, start, end, 1141 EXTENT_NEED_WAIT, &cached_state); 1142 if (err == -ENOMEM) 1143 err = 0; 1144 if (!err) 1145 err = filemap_fdatawait_range(mapping, start, end); 1146 if (err) 1147 werr = err; 1148 free_extent_state(cached_state); 1149 cached_state = NULL; 1150 cond_resched(); 1151 start = end + 1; 1152 } 1153 if (err) 1154 werr = err; 1155 return werr; 1156 } 1157 1158 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1159 struct extent_io_tree *dirty_pages) 1160 { 1161 bool errors = false; 1162 int err; 1163 1164 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1165 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1166 errors = true; 1167 1168 if (errors && !err) 1169 err = -EIO; 1170 return err; 1171 } 1172 1173 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1174 { 1175 struct btrfs_fs_info *fs_info = log_root->fs_info; 1176 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1177 bool errors = false; 1178 int err; 1179 1180 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1181 1182 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1183 if ((mark & EXTENT_DIRTY) && 1184 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1185 errors = true; 1186 1187 if ((mark & EXTENT_NEW) && 1188 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1189 errors = true; 1190 1191 if (errors && !err) 1192 err = -EIO; 1193 return err; 1194 } 1195 1196 /* 1197 * When btree blocks are allocated the corresponding extents are marked dirty. 1198 * This function ensures such extents are persisted on disk for transaction or 1199 * log commit. 1200 * 1201 * @trans: transaction whose dirty pages we'd like to write 1202 */ 1203 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1204 { 1205 int ret; 1206 int ret2; 1207 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1208 struct btrfs_fs_info *fs_info = trans->fs_info; 1209 struct blk_plug plug; 1210 1211 blk_start_plug(&plug); 1212 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1213 blk_finish_plug(&plug); 1214 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1215 1216 extent_io_tree_release(&trans->transaction->dirty_pages); 1217 1218 if (ret) 1219 return ret; 1220 else if (ret2) 1221 return ret2; 1222 else 1223 return 0; 1224 } 1225 1226 /* 1227 * this is used to update the root pointer in the tree of tree roots. 1228 * 1229 * But, in the case of the extent allocation tree, updating the root 1230 * pointer may allocate blocks which may change the root of the extent 1231 * allocation tree. 1232 * 1233 * So, this loops and repeats and makes sure the cowonly root didn't 1234 * change while the root pointer was being updated in the metadata. 1235 */ 1236 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1237 struct btrfs_root *root) 1238 { 1239 int ret; 1240 u64 old_root_bytenr; 1241 u64 old_root_used; 1242 struct btrfs_fs_info *fs_info = root->fs_info; 1243 struct btrfs_root *tree_root = fs_info->tree_root; 1244 1245 old_root_used = btrfs_root_used(&root->root_item); 1246 1247 while (1) { 1248 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1249 if (old_root_bytenr == root->node->start && 1250 old_root_used == btrfs_root_used(&root->root_item)) 1251 break; 1252 1253 btrfs_set_root_node(&root->root_item, root->node); 1254 ret = btrfs_update_root(trans, tree_root, 1255 &root->root_key, 1256 &root->root_item); 1257 if (ret) 1258 return ret; 1259 1260 old_root_used = btrfs_root_used(&root->root_item); 1261 } 1262 1263 return 0; 1264 } 1265 1266 /* 1267 * update all the cowonly tree roots on disk 1268 * 1269 * The error handling in this function may not be obvious. Any of the 1270 * failures will cause the file system to go offline. We still need 1271 * to clean up the delayed refs. 1272 */ 1273 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1274 { 1275 struct btrfs_fs_info *fs_info = trans->fs_info; 1276 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1277 struct list_head *io_bgs = &trans->transaction->io_bgs; 1278 struct list_head *next; 1279 struct extent_buffer *eb; 1280 int ret; 1281 1282 /* 1283 * At this point no one can be using this transaction to modify any tree 1284 * and no one can start another transaction to modify any tree either. 1285 */ 1286 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1287 1288 eb = btrfs_lock_root_node(fs_info->tree_root); 1289 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1290 0, &eb, BTRFS_NESTING_COW); 1291 btrfs_tree_unlock(eb); 1292 free_extent_buffer(eb); 1293 1294 if (ret) 1295 return ret; 1296 1297 ret = btrfs_run_dev_stats(trans); 1298 if (ret) 1299 return ret; 1300 ret = btrfs_run_dev_replace(trans); 1301 if (ret) 1302 return ret; 1303 ret = btrfs_run_qgroups(trans); 1304 if (ret) 1305 return ret; 1306 1307 ret = btrfs_setup_space_cache(trans); 1308 if (ret) 1309 return ret; 1310 1311 again: 1312 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1313 struct btrfs_root *root; 1314 next = fs_info->dirty_cowonly_roots.next; 1315 list_del_init(next); 1316 root = list_entry(next, struct btrfs_root, dirty_list); 1317 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1318 1319 list_add_tail(&root->dirty_list, 1320 &trans->transaction->switch_commits); 1321 ret = update_cowonly_root(trans, root); 1322 if (ret) 1323 return ret; 1324 } 1325 1326 /* Now flush any delayed refs generated by updating all of the roots */ 1327 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1328 if (ret) 1329 return ret; 1330 1331 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1332 ret = btrfs_write_dirty_block_groups(trans); 1333 if (ret) 1334 return ret; 1335 1336 /* 1337 * We're writing the dirty block groups, which could generate 1338 * delayed refs, which could generate more dirty block groups, 1339 * so we want to keep this flushing in this loop to make sure 1340 * everything gets run. 1341 */ 1342 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1343 if (ret) 1344 return ret; 1345 } 1346 1347 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1348 goto again; 1349 1350 /* Update dev-replace pointer once everything is committed */ 1351 fs_info->dev_replace.committed_cursor_left = 1352 fs_info->dev_replace.cursor_left_last_write_of_item; 1353 1354 return 0; 1355 } 1356 1357 /* 1358 * If we had a pending drop we need to see if there are any others left in our 1359 * dead roots list, and if not clear our bit and wake any waiters. 1360 */ 1361 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1362 { 1363 /* 1364 * We put the drop in progress roots at the front of the list, so if the 1365 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1366 * up. 1367 */ 1368 spin_lock(&fs_info->trans_lock); 1369 if (!list_empty(&fs_info->dead_roots)) { 1370 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1371 struct btrfs_root, 1372 root_list); 1373 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1374 spin_unlock(&fs_info->trans_lock); 1375 return; 1376 } 1377 } 1378 spin_unlock(&fs_info->trans_lock); 1379 1380 btrfs_wake_unfinished_drop(fs_info); 1381 } 1382 1383 /* 1384 * dead roots are old snapshots that need to be deleted. This allocates 1385 * a dirty root struct and adds it into the list of dead roots that need to 1386 * be deleted 1387 */ 1388 void btrfs_add_dead_root(struct btrfs_root *root) 1389 { 1390 struct btrfs_fs_info *fs_info = root->fs_info; 1391 1392 spin_lock(&fs_info->trans_lock); 1393 if (list_empty(&root->root_list)) { 1394 btrfs_grab_root(root); 1395 1396 /* We want to process the partially complete drops first. */ 1397 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1398 list_add(&root->root_list, &fs_info->dead_roots); 1399 else 1400 list_add_tail(&root->root_list, &fs_info->dead_roots); 1401 } 1402 spin_unlock(&fs_info->trans_lock); 1403 } 1404 1405 /* 1406 * Update each subvolume root and its relocation root, if it exists, in the tree 1407 * of tree roots. Also free log roots if they exist. 1408 */ 1409 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1410 { 1411 struct btrfs_fs_info *fs_info = trans->fs_info; 1412 struct btrfs_root *gang[8]; 1413 int i; 1414 int ret; 1415 1416 /* 1417 * At this point no one can be using this transaction to modify any tree 1418 * and no one can start another transaction to modify any tree either. 1419 */ 1420 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1421 1422 spin_lock(&fs_info->fs_roots_radix_lock); 1423 while (1) { 1424 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1425 (void **)gang, 0, 1426 ARRAY_SIZE(gang), 1427 BTRFS_ROOT_TRANS_TAG); 1428 if (ret == 0) 1429 break; 1430 for (i = 0; i < ret; i++) { 1431 struct btrfs_root *root = gang[i]; 1432 int ret2; 1433 1434 /* 1435 * At this point we can neither have tasks logging inodes 1436 * from a root nor trying to commit a log tree. 1437 */ 1438 ASSERT(atomic_read(&root->log_writers) == 0); 1439 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1440 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1441 1442 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1443 (unsigned long)root->root_key.objectid, 1444 BTRFS_ROOT_TRANS_TAG); 1445 spin_unlock(&fs_info->fs_roots_radix_lock); 1446 1447 btrfs_free_log(trans, root); 1448 ret2 = btrfs_update_reloc_root(trans, root); 1449 if (ret2) 1450 return ret2; 1451 1452 /* see comments in should_cow_block() */ 1453 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1454 smp_mb__after_atomic(); 1455 1456 if (root->commit_root != root->node) { 1457 list_add_tail(&root->dirty_list, 1458 &trans->transaction->switch_commits); 1459 btrfs_set_root_node(&root->root_item, 1460 root->node); 1461 } 1462 1463 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1464 &root->root_key, 1465 &root->root_item); 1466 if (ret2) 1467 return ret2; 1468 spin_lock(&fs_info->fs_roots_radix_lock); 1469 btrfs_qgroup_free_meta_all_pertrans(root); 1470 } 1471 } 1472 spin_unlock(&fs_info->fs_roots_radix_lock); 1473 return 0; 1474 } 1475 1476 /* 1477 * defrag a given btree. 1478 * Every leaf in the btree is read and defragged. 1479 */ 1480 int btrfs_defrag_root(struct btrfs_root *root) 1481 { 1482 struct btrfs_fs_info *info = root->fs_info; 1483 struct btrfs_trans_handle *trans; 1484 int ret; 1485 1486 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1487 return 0; 1488 1489 while (1) { 1490 trans = btrfs_start_transaction(root, 0); 1491 if (IS_ERR(trans)) { 1492 ret = PTR_ERR(trans); 1493 break; 1494 } 1495 1496 ret = btrfs_defrag_leaves(trans, root); 1497 1498 btrfs_end_transaction(trans); 1499 btrfs_btree_balance_dirty(info); 1500 cond_resched(); 1501 1502 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1503 break; 1504 1505 if (btrfs_defrag_cancelled(info)) { 1506 btrfs_debug(info, "defrag_root cancelled"); 1507 ret = -EAGAIN; 1508 break; 1509 } 1510 } 1511 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1512 return ret; 1513 } 1514 1515 /* 1516 * Do all special snapshot related qgroup dirty hack. 1517 * 1518 * Will do all needed qgroup inherit and dirty hack like switch commit 1519 * roots inside one transaction and write all btree into disk, to make 1520 * qgroup works. 1521 */ 1522 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1523 struct btrfs_root *src, 1524 struct btrfs_root *parent, 1525 struct btrfs_qgroup_inherit *inherit, 1526 u64 dst_objectid) 1527 { 1528 struct btrfs_fs_info *fs_info = src->fs_info; 1529 int ret; 1530 1531 /* 1532 * Save some performance in the case that qgroups are not 1533 * enabled. If this check races with the ioctl, rescan will 1534 * kick in anyway. 1535 */ 1536 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1537 return 0; 1538 1539 /* 1540 * Ensure dirty @src will be committed. Or, after coming 1541 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1542 * recorded root will never be updated again, causing an outdated root 1543 * item. 1544 */ 1545 ret = record_root_in_trans(trans, src, 1); 1546 if (ret) 1547 return ret; 1548 1549 /* 1550 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1551 * src root, so we must run the delayed refs here. 1552 * 1553 * However this isn't particularly fool proof, because there's no 1554 * synchronization keeping us from changing the tree after this point 1555 * before we do the qgroup_inherit, or even from making changes while 1556 * we're doing the qgroup_inherit. But that's a problem for the future, 1557 * for now flush the delayed refs to narrow the race window where the 1558 * qgroup counters could end up wrong. 1559 */ 1560 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1561 if (ret) { 1562 btrfs_abort_transaction(trans, ret); 1563 return ret; 1564 } 1565 1566 ret = commit_fs_roots(trans); 1567 if (ret) 1568 goto out; 1569 ret = btrfs_qgroup_account_extents(trans); 1570 if (ret < 0) 1571 goto out; 1572 1573 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1574 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1575 inherit); 1576 if (ret < 0) 1577 goto out; 1578 1579 /* 1580 * Now we do a simplified commit transaction, which will: 1581 * 1) commit all subvolume and extent tree 1582 * To ensure all subvolume and extent tree have a valid 1583 * commit_root to accounting later insert_dir_item() 1584 * 2) write all btree blocks onto disk 1585 * This is to make sure later btree modification will be cowed 1586 * Or commit_root can be populated and cause wrong qgroup numbers 1587 * In this simplified commit, we don't really care about other trees 1588 * like chunk and root tree, as they won't affect qgroup. 1589 * And we don't write super to avoid half committed status. 1590 */ 1591 ret = commit_cowonly_roots(trans); 1592 if (ret) 1593 goto out; 1594 switch_commit_roots(trans); 1595 ret = btrfs_write_and_wait_transaction(trans); 1596 if (ret) 1597 btrfs_handle_fs_error(fs_info, ret, 1598 "Error while writing out transaction for qgroup"); 1599 1600 out: 1601 /* 1602 * Force parent root to be updated, as we recorded it before so its 1603 * last_trans == cur_transid. 1604 * Or it won't be committed again onto disk after later 1605 * insert_dir_item() 1606 */ 1607 if (!ret) 1608 ret = record_root_in_trans(trans, parent, 1); 1609 return ret; 1610 } 1611 1612 /* 1613 * new snapshots need to be created at a very specific time in the 1614 * transaction commit. This does the actual creation. 1615 * 1616 * Note: 1617 * If the error which may affect the commitment of the current transaction 1618 * happens, we should return the error number. If the error which just affect 1619 * the creation of the pending snapshots, just return 0. 1620 */ 1621 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1622 struct btrfs_pending_snapshot *pending) 1623 { 1624 1625 struct btrfs_fs_info *fs_info = trans->fs_info; 1626 struct btrfs_key key; 1627 struct btrfs_root_item *new_root_item; 1628 struct btrfs_root *tree_root = fs_info->tree_root; 1629 struct btrfs_root *root = pending->root; 1630 struct btrfs_root *parent_root; 1631 struct btrfs_block_rsv *rsv; 1632 struct inode *parent_inode = pending->dir; 1633 struct btrfs_path *path; 1634 struct btrfs_dir_item *dir_item; 1635 struct extent_buffer *tmp; 1636 struct extent_buffer *old; 1637 struct timespec64 cur_time; 1638 int ret = 0; 1639 u64 to_reserve = 0; 1640 u64 index = 0; 1641 u64 objectid; 1642 u64 root_flags; 1643 unsigned int nofs_flags; 1644 struct fscrypt_name fname; 1645 1646 ASSERT(pending->path); 1647 path = pending->path; 1648 1649 ASSERT(pending->root_item); 1650 new_root_item = pending->root_item; 1651 1652 /* 1653 * We're inside a transaction and must make sure that any potential 1654 * allocations with GFP_KERNEL in fscrypt won't recurse back to 1655 * filesystem. 1656 */ 1657 nofs_flags = memalloc_nofs_save(); 1658 pending->error = fscrypt_setup_filename(parent_inode, 1659 &pending->dentry->d_name, 0, 1660 &fname); 1661 memalloc_nofs_restore(nofs_flags); 1662 if (pending->error) 1663 goto free_pending; 1664 1665 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1666 if (pending->error) 1667 goto free_fname; 1668 1669 /* 1670 * Make qgroup to skip current new snapshot's qgroupid, as it is 1671 * accounted by later btrfs_qgroup_inherit(). 1672 */ 1673 btrfs_set_skip_qgroup(trans, objectid); 1674 1675 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1676 1677 if (to_reserve > 0) { 1678 pending->error = btrfs_block_rsv_add(fs_info, 1679 &pending->block_rsv, 1680 to_reserve, 1681 BTRFS_RESERVE_NO_FLUSH); 1682 if (pending->error) 1683 goto clear_skip_qgroup; 1684 } 1685 1686 key.objectid = objectid; 1687 key.offset = (u64)-1; 1688 key.type = BTRFS_ROOT_ITEM_KEY; 1689 1690 rsv = trans->block_rsv; 1691 trans->block_rsv = &pending->block_rsv; 1692 trans->bytes_reserved = trans->block_rsv->reserved; 1693 trace_btrfs_space_reservation(fs_info, "transaction", 1694 trans->transid, 1695 trans->bytes_reserved, 1); 1696 parent_root = BTRFS_I(parent_inode)->root; 1697 ret = record_root_in_trans(trans, parent_root, 0); 1698 if (ret) 1699 goto fail; 1700 cur_time = current_time(parent_inode); 1701 1702 /* 1703 * insert the directory item 1704 */ 1705 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1706 if (ret) { 1707 btrfs_abort_transaction(trans, ret); 1708 goto fail; 1709 } 1710 1711 /* check if there is a file/dir which has the same name. */ 1712 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1713 btrfs_ino(BTRFS_I(parent_inode)), 1714 &fname.disk_name, 0); 1715 if (dir_item != NULL && !IS_ERR(dir_item)) { 1716 pending->error = -EEXIST; 1717 goto dir_item_existed; 1718 } else if (IS_ERR(dir_item)) { 1719 ret = PTR_ERR(dir_item); 1720 btrfs_abort_transaction(trans, ret); 1721 goto fail; 1722 } 1723 btrfs_release_path(path); 1724 1725 /* 1726 * pull in the delayed directory update 1727 * and the delayed inode item 1728 * otherwise we corrupt the FS during 1729 * snapshot 1730 */ 1731 ret = btrfs_run_delayed_items(trans); 1732 if (ret) { /* Transaction aborted */ 1733 btrfs_abort_transaction(trans, ret); 1734 goto fail; 1735 } 1736 1737 ret = record_root_in_trans(trans, root, 0); 1738 if (ret) { 1739 btrfs_abort_transaction(trans, ret); 1740 goto fail; 1741 } 1742 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1743 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1744 btrfs_check_and_init_root_item(new_root_item); 1745 1746 root_flags = btrfs_root_flags(new_root_item); 1747 if (pending->readonly) 1748 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1749 else 1750 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1751 btrfs_set_root_flags(new_root_item, root_flags); 1752 1753 btrfs_set_root_generation_v2(new_root_item, 1754 trans->transid); 1755 generate_random_guid(new_root_item->uuid); 1756 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1757 BTRFS_UUID_SIZE); 1758 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1759 memset(new_root_item->received_uuid, 0, 1760 sizeof(new_root_item->received_uuid)); 1761 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1762 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1763 btrfs_set_root_stransid(new_root_item, 0); 1764 btrfs_set_root_rtransid(new_root_item, 0); 1765 } 1766 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1767 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1768 btrfs_set_root_otransid(new_root_item, trans->transid); 1769 1770 old = btrfs_lock_root_node(root); 1771 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1772 BTRFS_NESTING_COW); 1773 if (ret) { 1774 btrfs_tree_unlock(old); 1775 free_extent_buffer(old); 1776 btrfs_abort_transaction(trans, ret); 1777 goto fail; 1778 } 1779 1780 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1781 /* clean up in any case */ 1782 btrfs_tree_unlock(old); 1783 free_extent_buffer(old); 1784 if (ret) { 1785 btrfs_abort_transaction(trans, ret); 1786 goto fail; 1787 } 1788 /* see comments in should_cow_block() */ 1789 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1790 smp_wmb(); 1791 1792 btrfs_set_root_node(new_root_item, tmp); 1793 /* record when the snapshot was created in key.offset */ 1794 key.offset = trans->transid; 1795 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1796 btrfs_tree_unlock(tmp); 1797 free_extent_buffer(tmp); 1798 if (ret) { 1799 btrfs_abort_transaction(trans, ret); 1800 goto fail; 1801 } 1802 1803 /* 1804 * insert root back/forward references 1805 */ 1806 ret = btrfs_add_root_ref(trans, objectid, 1807 parent_root->root_key.objectid, 1808 btrfs_ino(BTRFS_I(parent_inode)), index, 1809 &fname.disk_name); 1810 if (ret) { 1811 btrfs_abort_transaction(trans, ret); 1812 goto fail; 1813 } 1814 1815 key.offset = (u64)-1; 1816 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1817 if (IS_ERR(pending->snap)) { 1818 ret = PTR_ERR(pending->snap); 1819 pending->snap = NULL; 1820 btrfs_abort_transaction(trans, ret); 1821 goto fail; 1822 } 1823 1824 ret = btrfs_reloc_post_snapshot(trans, pending); 1825 if (ret) { 1826 btrfs_abort_transaction(trans, ret); 1827 goto fail; 1828 } 1829 1830 /* 1831 * Do special qgroup accounting for snapshot, as we do some qgroup 1832 * snapshot hack to do fast snapshot. 1833 * To co-operate with that hack, we do hack again. 1834 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1835 */ 1836 ret = qgroup_account_snapshot(trans, root, parent_root, 1837 pending->inherit, objectid); 1838 if (ret < 0) 1839 goto fail; 1840 1841 ret = btrfs_insert_dir_item(trans, &fname.disk_name, 1842 BTRFS_I(parent_inode), &key, BTRFS_FT_DIR, 1843 index); 1844 /* We have check then name at the beginning, so it is impossible. */ 1845 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1846 if (ret) { 1847 btrfs_abort_transaction(trans, ret); 1848 goto fail; 1849 } 1850 1851 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1852 fname.disk_name.len * 2); 1853 parent_inode->i_mtime = current_time(parent_inode); 1854 parent_inode->i_ctime = parent_inode->i_mtime; 1855 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1856 if (ret) { 1857 btrfs_abort_transaction(trans, ret); 1858 goto fail; 1859 } 1860 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1861 BTRFS_UUID_KEY_SUBVOL, 1862 objectid); 1863 if (ret) { 1864 btrfs_abort_transaction(trans, ret); 1865 goto fail; 1866 } 1867 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1868 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1869 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1870 objectid); 1871 if (ret && ret != -EEXIST) { 1872 btrfs_abort_transaction(trans, ret); 1873 goto fail; 1874 } 1875 } 1876 1877 fail: 1878 pending->error = ret; 1879 dir_item_existed: 1880 trans->block_rsv = rsv; 1881 trans->bytes_reserved = 0; 1882 clear_skip_qgroup: 1883 btrfs_clear_skip_qgroup(trans); 1884 free_fname: 1885 fscrypt_free_filename(&fname); 1886 free_pending: 1887 kfree(new_root_item); 1888 pending->root_item = NULL; 1889 btrfs_free_path(path); 1890 pending->path = NULL; 1891 1892 return ret; 1893 } 1894 1895 /* 1896 * create all the snapshots we've scheduled for creation 1897 */ 1898 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1899 { 1900 struct btrfs_pending_snapshot *pending, *next; 1901 struct list_head *head = &trans->transaction->pending_snapshots; 1902 int ret = 0; 1903 1904 list_for_each_entry_safe(pending, next, head, list) { 1905 list_del(&pending->list); 1906 ret = create_pending_snapshot(trans, pending); 1907 if (ret) 1908 break; 1909 } 1910 return ret; 1911 } 1912 1913 static void update_super_roots(struct btrfs_fs_info *fs_info) 1914 { 1915 struct btrfs_root_item *root_item; 1916 struct btrfs_super_block *super; 1917 1918 super = fs_info->super_copy; 1919 1920 root_item = &fs_info->chunk_root->root_item; 1921 super->chunk_root = root_item->bytenr; 1922 super->chunk_root_generation = root_item->generation; 1923 super->chunk_root_level = root_item->level; 1924 1925 root_item = &fs_info->tree_root->root_item; 1926 super->root = root_item->bytenr; 1927 super->generation = root_item->generation; 1928 super->root_level = root_item->level; 1929 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1930 super->cache_generation = root_item->generation; 1931 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1932 super->cache_generation = 0; 1933 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1934 super->uuid_tree_generation = root_item->generation; 1935 } 1936 1937 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1938 { 1939 struct btrfs_transaction *trans; 1940 int ret = 0; 1941 1942 spin_lock(&info->trans_lock); 1943 trans = info->running_transaction; 1944 if (trans) 1945 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1946 spin_unlock(&info->trans_lock); 1947 return ret; 1948 } 1949 1950 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1951 { 1952 struct btrfs_transaction *trans; 1953 int ret = 0; 1954 1955 spin_lock(&info->trans_lock); 1956 trans = info->running_transaction; 1957 if (trans) 1958 ret = is_transaction_blocked(trans); 1959 spin_unlock(&info->trans_lock); 1960 return ret; 1961 } 1962 1963 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1964 { 1965 struct btrfs_fs_info *fs_info = trans->fs_info; 1966 struct btrfs_transaction *cur_trans; 1967 1968 /* Kick the transaction kthread. */ 1969 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1970 wake_up_process(fs_info->transaction_kthread); 1971 1972 /* take transaction reference */ 1973 cur_trans = trans->transaction; 1974 refcount_inc(&cur_trans->use_count); 1975 1976 btrfs_end_transaction(trans); 1977 1978 /* 1979 * Wait for the current transaction commit to start and block 1980 * subsequent transaction joins 1981 */ 1982 btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 1983 wait_event(fs_info->transaction_blocked_wait, 1984 cur_trans->state >= TRANS_STATE_COMMIT_START || 1985 TRANS_ABORTED(cur_trans)); 1986 btrfs_put_transaction(cur_trans); 1987 } 1988 1989 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1990 { 1991 struct btrfs_fs_info *fs_info = trans->fs_info; 1992 struct btrfs_transaction *cur_trans = trans->transaction; 1993 1994 WARN_ON(refcount_read(&trans->use_count) > 1); 1995 1996 btrfs_abort_transaction(trans, err); 1997 1998 spin_lock(&fs_info->trans_lock); 1999 2000 /* 2001 * If the transaction is removed from the list, it means this 2002 * transaction has been committed successfully, so it is impossible 2003 * to call the cleanup function. 2004 */ 2005 BUG_ON(list_empty(&cur_trans->list)); 2006 2007 if (cur_trans == fs_info->running_transaction) { 2008 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2009 spin_unlock(&fs_info->trans_lock); 2010 2011 /* 2012 * The thread has already released the lockdep map as reader 2013 * already in btrfs_commit_transaction(). 2014 */ 2015 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2016 wait_event(cur_trans->writer_wait, 2017 atomic_read(&cur_trans->num_writers) == 1); 2018 2019 spin_lock(&fs_info->trans_lock); 2020 } 2021 2022 /* 2023 * Now that we know no one else is still using the transaction we can 2024 * remove the transaction from the list of transactions. This avoids 2025 * the transaction kthread from cleaning up the transaction while some 2026 * other task is still using it, which could result in a use-after-free 2027 * on things like log trees, as it forces the transaction kthread to 2028 * wait for this transaction to be cleaned up by us. 2029 */ 2030 list_del_init(&cur_trans->list); 2031 2032 spin_unlock(&fs_info->trans_lock); 2033 2034 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2035 2036 spin_lock(&fs_info->trans_lock); 2037 if (cur_trans == fs_info->running_transaction) 2038 fs_info->running_transaction = NULL; 2039 spin_unlock(&fs_info->trans_lock); 2040 2041 if (trans->type & __TRANS_FREEZABLE) 2042 sb_end_intwrite(fs_info->sb); 2043 btrfs_put_transaction(cur_trans); 2044 btrfs_put_transaction(cur_trans); 2045 2046 trace_btrfs_transaction_commit(fs_info); 2047 2048 if (current->journal_info == trans) 2049 current->journal_info = NULL; 2050 2051 /* 2052 * If relocation is running, we can't cancel scrub because that will 2053 * result in a deadlock. Before relocating a block group, relocation 2054 * pauses scrub, then starts and commits a transaction before unpausing 2055 * scrub. If the transaction commit is being done by the relocation 2056 * task or triggered by another task and the relocation task is waiting 2057 * for the commit, and we end up here due to an error in the commit 2058 * path, then calling btrfs_scrub_cancel() will deadlock, as we are 2059 * asking for scrub to stop while having it asked to be paused higher 2060 * above in relocation code. 2061 */ 2062 if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 2063 btrfs_scrub_cancel(fs_info); 2064 2065 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2066 } 2067 2068 /* 2069 * Release reserved delayed ref space of all pending block groups of the 2070 * transaction and remove them from the list 2071 */ 2072 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2073 { 2074 struct btrfs_fs_info *fs_info = trans->fs_info; 2075 struct btrfs_block_group *block_group, *tmp; 2076 2077 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2078 btrfs_delayed_refs_rsv_release(fs_info, 1); 2079 list_del_init(&block_group->bg_list); 2080 } 2081 } 2082 2083 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2084 { 2085 /* 2086 * We use try_to_writeback_inodes_sb() here because if we used 2087 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2088 * Currently are holding the fs freeze lock, if we do an async flush 2089 * we'll do btrfs_join_transaction() and deadlock because we need to 2090 * wait for the fs freeze lock. Using the direct flushing we benefit 2091 * from already being in a transaction and our join_transaction doesn't 2092 * have to re-take the fs freeze lock. 2093 * 2094 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2095 * if it can read lock sb->s_umount. It will always be able to lock it, 2096 * except when the filesystem is being unmounted or being frozen, but in 2097 * those cases sync_filesystem() is called, which results in calling 2098 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2099 * Note that we don't call writeback_inodes_sb() directly, because it 2100 * will emit a warning if sb->s_umount is not locked. 2101 */ 2102 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2103 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2104 return 0; 2105 } 2106 2107 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2108 { 2109 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2110 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2111 } 2112 2113 /* 2114 * Add a pending snapshot associated with the given transaction handle to the 2115 * respective handle. This must be called after the transaction commit started 2116 * and while holding fs_info->trans_lock. 2117 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2118 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2119 * returns an error. 2120 */ 2121 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2122 { 2123 struct btrfs_transaction *cur_trans = trans->transaction; 2124 2125 if (!trans->pending_snapshot) 2126 return; 2127 2128 lockdep_assert_held(&trans->fs_info->trans_lock); 2129 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START); 2130 2131 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2132 } 2133 2134 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval) 2135 { 2136 fs_info->commit_stats.commit_count++; 2137 fs_info->commit_stats.last_commit_dur = interval; 2138 fs_info->commit_stats.max_commit_dur = 2139 max_t(u64, fs_info->commit_stats.max_commit_dur, interval); 2140 fs_info->commit_stats.total_commit_dur += interval; 2141 } 2142 2143 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2144 { 2145 struct btrfs_fs_info *fs_info = trans->fs_info; 2146 struct btrfs_transaction *cur_trans = trans->transaction; 2147 struct btrfs_transaction *prev_trans = NULL; 2148 int ret; 2149 ktime_t start_time; 2150 ktime_t interval; 2151 2152 ASSERT(refcount_read(&trans->use_count) == 1); 2153 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 2154 2155 clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags); 2156 2157 /* Stop the commit early if ->aborted is set */ 2158 if (TRANS_ABORTED(cur_trans)) { 2159 ret = cur_trans->aborted; 2160 goto lockdep_trans_commit_start_release; 2161 } 2162 2163 btrfs_trans_release_metadata(trans); 2164 trans->block_rsv = NULL; 2165 2166 /* 2167 * We only want one transaction commit doing the flushing so we do not 2168 * waste a bunch of time on lock contention on the extent root node. 2169 */ 2170 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2171 &cur_trans->delayed_refs.flags)) { 2172 /* 2173 * Make a pass through all the delayed refs we have so far. 2174 * Any running threads may add more while we are here. 2175 */ 2176 ret = btrfs_run_delayed_refs(trans, 0); 2177 if (ret) 2178 goto lockdep_trans_commit_start_release; 2179 } 2180 2181 btrfs_create_pending_block_groups(trans); 2182 2183 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2184 int run_it = 0; 2185 2186 /* this mutex is also taken before trying to set 2187 * block groups readonly. We need to make sure 2188 * that nobody has set a block group readonly 2189 * after a extents from that block group have been 2190 * allocated for cache files. btrfs_set_block_group_ro 2191 * will wait for the transaction to commit if it 2192 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2193 * 2194 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2195 * only one process starts all the block group IO. It wouldn't 2196 * hurt to have more than one go through, but there's no 2197 * real advantage to it either. 2198 */ 2199 mutex_lock(&fs_info->ro_block_group_mutex); 2200 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2201 &cur_trans->flags)) 2202 run_it = 1; 2203 mutex_unlock(&fs_info->ro_block_group_mutex); 2204 2205 if (run_it) { 2206 ret = btrfs_start_dirty_block_groups(trans); 2207 if (ret) 2208 goto lockdep_trans_commit_start_release; 2209 } 2210 } 2211 2212 spin_lock(&fs_info->trans_lock); 2213 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2214 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2215 2216 add_pending_snapshot(trans); 2217 2218 spin_unlock(&fs_info->trans_lock); 2219 refcount_inc(&cur_trans->use_count); 2220 2221 if (trans->in_fsync) 2222 want_state = TRANS_STATE_SUPER_COMMITTED; 2223 2224 btrfs_trans_state_lockdep_release(fs_info, 2225 BTRFS_LOCKDEP_TRANS_COMMIT_START); 2226 ret = btrfs_end_transaction(trans); 2227 wait_for_commit(cur_trans, want_state); 2228 2229 if (TRANS_ABORTED(cur_trans)) 2230 ret = cur_trans->aborted; 2231 2232 btrfs_put_transaction(cur_trans); 2233 2234 return ret; 2235 } 2236 2237 cur_trans->state = TRANS_STATE_COMMIT_START; 2238 wake_up(&fs_info->transaction_blocked_wait); 2239 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 2240 2241 if (cur_trans->list.prev != &fs_info->trans_list) { 2242 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2243 2244 if (trans->in_fsync) 2245 want_state = TRANS_STATE_SUPER_COMMITTED; 2246 2247 prev_trans = list_entry(cur_trans->list.prev, 2248 struct btrfs_transaction, list); 2249 if (prev_trans->state < want_state) { 2250 refcount_inc(&prev_trans->use_count); 2251 spin_unlock(&fs_info->trans_lock); 2252 2253 wait_for_commit(prev_trans, want_state); 2254 2255 ret = READ_ONCE(prev_trans->aborted); 2256 2257 btrfs_put_transaction(prev_trans); 2258 if (ret) 2259 goto lockdep_release; 2260 } else { 2261 spin_unlock(&fs_info->trans_lock); 2262 } 2263 } else { 2264 spin_unlock(&fs_info->trans_lock); 2265 /* 2266 * The previous transaction was aborted and was already removed 2267 * from the list of transactions at fs_info->trans_list. So we 2268 * abort to prevent writing a new superblock that reflects a 2269 * corrupt state (pointing to trees with unwritten nodes/leafs). 2270 */ 2271 if (BTRFS_FS_ERROR(fs_info)) { 2272 ret = -EROFS; 2273 goto lockdep_release; 2274 } 2275 } 2276 2277 /* 2278 * Get the time spent on the work done by the commit thread and not 2279 * the time spent waiting on a previous commit 2280 */ 2281 start_time = ktime_get_ns(); 2282 2283 extwriter_counter_dec(cur_trans, trans->type); 2284 2285 ret = btrfs_start_delalloc_flush(fs_info); 2286 if (ret) 2287 goto lockdep_release; 2288 2289 ret = btrfs_run_delayed_items(trans); 2290 if (ret) 2291 goto lockdep_release; 2292 2293 /* 2294 * The thread has started/joined the transaction thus it holds the 2295 * lockdep map as a reader. It has to release it before acquiring the 2296 * lockdep map as a writer. 2297 */ 2298 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2299 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters); 2300 wait_event(cur_trans->writer_wait, 2301 extwriter_counter_read(cur_trans) == 0); 2302 2303 /* some pending stuffs might be added after the previous flush. */ 2304 ret = btrfs_run_delayed_items(trans); 2305 if (ret) { 2306 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2307 goto cleanup_transaction; 2308 } 2309 2310 btrfs_wait_delalloc_flush(fs_info); 2311 2312 /* 2313 * Wait for all ordered extents started by a fast fsync that joined this 2314 * transaction. Otherwise if this transaction commits before the ordered 2315 * extents complete we lose logged data after a power failure. 2316 */ 2317 btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered); 2318 wait_event(cur_trans->pending_wait, 2319 atomic_read(&cur_trans->pending_ordered) == 0); 2320 2321 btrfs_scrub_pause(fs_info); 2322 /* 2323 * Ok now we need to make sure to block out any other joins while we 2324 * commit the transaction. We could have started a join before setting 2325 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2326 */ 2327 spin_lock(&fs_info->trans_lock); 2328 add_pending_snapshot(trans); 2329 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2330 spin_unlock(&fs_info->trans_lock); 2331 2332 /* 2333 * The thread has started/joined the transaction thus it holds the 2334 * lockdep map as a reader. It has to release it before acquiring the 2335 * lockdep map as a writer. 2336 */ 2337 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2338 btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers); 2339 wait_event(cur_trans->writer_wait, 2340 atomic_read(&cur_trans->num_writers) == 1); 2341 2342 /* 2343 * Make lockdep happy by acquiring the state locks after 2344 * btrfs_trans_num_writers is released. If we acquired the state locks 2345 * before releasing the btrfs_trans_num_writers lock then lockdep would 2346 * complain because we did not follow the reverse order unlocking rule. 2347 */ 2348 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2349 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2350 btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2351 2352 /* 2353 * We've started the commit, clear the flag in case we were triggered to 2354 * do an async commit but somebody else started before the transaction 2355 * kthread could do the work. 2356 */ 2357 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2358 2359 if (TRANS_ABORTED(cur_trans)) { 2360 ret = cur_trans->aborted; 2361 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2362 goto scrub_continue; 2363 } 2364 /* 2365 * the reloc mutex makes sure that we stop 2366 * the balancing code from coming in and moving 2367 * extents around in the middle of the commit 2368 */ 2369 mutex_lock(&fs_info->reloc_mutex); 2370 2371 /* 2372 * We needn't worry about the delayed items because we will 2373 * deal with them in create_pending_snapshot(), which is the 2374 * core function of the snapshot creation. 2375 */ 2376 ret = create_pending_snapshots(trans); 2377 if (ret) 2378 goto unlock_reloc; 2379 2380 /* 2381 * We insert the dir indexes of the snapshots and update the inode 2382 * of the snapshots' parents after the snapshot creation, so there 2383 * are some delayed items which are not dealt with. Now deal with 2384 * them. 2385 * 2386 * We needn't worry that this operation will corrupt the snapshots, 2387 * because all the tree which are snapshoted will be forced to COW 2388 * the nodes and leaves. 2389 */ 2390 ret = btrfs_run_delayed_items(trans); 2391 if (ret) 2392 goto unlock_reloc; 2393 2394 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2395 if (ret) 2396 goto unlock_reloc; 2397 2398 /* 2399 * make sure none of the code above managed to slip in a 2400 * delayed item 2401 */ 2402 btrfs_assert_delayed_root_empty(fs_info); 2403 2404 WARN_ON(cur_trans != trans->transaction); 2405 2406 ret = commit_fs_roots(trans); 2407 if (ret) 2408 goto unlock_reloc; 2409 2410 /* commit_fs_roots gets rid of all the tree log roots, it is now 2411 * safe to free the root of tree log roots 2412 */ 2413 btrfs_free_log_root_tree(trans, fs_info); 2414 2415 /* 2416 * Since fs roots are all committed, we can get a quite accurate 2417 * new_roots. So let's do quota accounting. 2418 */ 2419 ret = btrfs_qgroup_account_extents(trans); 2420 if (ret < 0) 2421 goto unlock_reloc; 2422 2423 ret = commit_cowonly_roots(trans); 2424 if (ret) 2425 goto unlock_reloc; 2426 2427 /* 2428 * The tasks which save the space cache and inode cache may also 2429 * update ->aborted, check it. 2430 */ 2431 if (TRANS_ABORTED(cur_trans)) { 2432 ret = cur_trans->aborted; 2433 goto unlock_reloc; 2434 } 2435 2436 cur_trans = fs_info->running_transaction; 2437 2438 btrfs_set_root_node(&fs_info->tree_root->root_item, 2439 fs_info->tree_root->node); 2440 list_add_tail(&fs_info->tree_root->dirty_list, 2441 &cur_trans->switch_commits); 2442 2443 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2444 fs_info->chunk_root->node); 2445 list_add_tail(&fs_info->chunk_root->dirty_list, 2446 &cur_trans->switch_commits); 2447 2448 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2449 btrfs_set_root_node(&fs_info->block_group_root->root_item, 2450 fs_info->block_group_root->node); 2451 list_add_tail(&fs_info->block_group_root->dirty_list, 2452 &cur_trans->switch_commits); 2453 } 2454 2455 switch_commit_roots(trans); 2456 2457 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2458 ASSERT(list_empty(&cur_trans->io_bgs)); 2459 update_super_roots(fs_info); 2460 2461 btrfs_set_super_log_root(fs_info->super_copy, 0); 2462 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2463 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2464 sizeof(*fs_info->super_copy)); 2465 2466 btrfs_commit_device_sizes(cur_trans); 2467 2468 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2469 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2470 2471 btrfs_trans_release_chunk_metadata(trans); 2472 2473 /* 2474 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2475 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2476 * make sure that before we commit our superblock, no other task can 2477 * start a new transaction and commit a log tree before we commit our 2478 * superblock. Anyone trying to commit a log tree locks this mutex before 2479 * writing its superblock. 2480 */ 2481 mutex_lock(&fs_info->tree_log_mutex); 2482 2483 spin_lock(&fs_info->trans_lock); 2484 cur_trans->state = TRANS_STATE_UNBLOCKED; 2485 fs_info->running_transaction = NULL; 2486 spin_unlock(&fs_info->trans_lock); 2487 mutex_unlock(&fs_info->reloc_mutex); 2488 2489 wake_up(&fs_info->transaction_wait); 2490 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2491 2492 /* If we have features changed, wake up the cleaner to update sysfs. */ 2493 if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) && 2494 fs_info->cleaner_kthread) 2495 wake_up_process(fs_info->cleaner_kthread); 2496 2497 ret = btrfs_write_and_wait_transaction(trans); 2498 if (ret) { 2499 btrfs_handle_fs_error(fs_info, ret, 2500 "Error while writing out transaction"); 2501 mutex_unlock(&fs_info->tree_log_mutex); 2502 goto scrub_continue; 2503 } 2504 2505 ret = write_all_supers(fs_info, 0); 2506 /* 2507 * the super is written, we can safely allow the tree-loggers 2508 * to go about their business 2509 */ 2510 mutex_unlock(&fs_info->tree_log_mutex); 2511 if (ret) 2512 goto scrub_continue; 2513 2514 /* 2515 * We needn't acquire the lock here because there is no other task 2516 * which can change it. 2517 */ 2518 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2519 wake_up(&cur_trans->commit_wait); 2520 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2521 2522 btrfs_finish_extent_commit(trans); 2523 2524 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2525 btrfs_clear_space_info_full(fs_info); 2526 2527 fs_info->last_trans_committed = cur_trans->transid; 2528 /* 2529 * We needn't acquire the lock here because there is no other task 2530 * which can change it. 2531 */ 2532 cur_trans->state = TRANS_STATE_COMPLETED; 2533 wake_up(&cur_trans->commit_wait); 2534 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2535 2536 spin_lock(&fs_info->trans_lock); 2537 list_del_init(&cur_trans->list); 2538 spin_unlock(&fs_info->trans_lock); 2539 2540 btrfs_put_transaction(cur_trans); 2541 btrfs_put_transaction(cur_trans); 2542 2543 if (trans->type & __TRANS_FREEZABLE) 2544 sb_end_intwrite(fs_info->sb); 2545 2546 trace_btrfs_transaction_commit(fs_info); 2547 2548 interval = ktime_get_ns() - start_time; 2549 2550 btrfs_scrub_continue(fs_info); 2551 2552 if (current->journal_info == trans) 2553 current->journal_info = NULL; 2554 2555 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2556 2557 update_commit_stats(fs_info, interval); 2558 2559 return ret; 2560 2561 unlock_reloc: 2562 mutex_unlock(&fs_info->reloc_mutex); 2563 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED); 2564 scrub_continue: 2565 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED); 2566 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED); 2567 btrfs_scrub_continue(fs_info); 2568 cleanup_transaction: 2569 btrfs_trans_release_metadata(trans); 2570 btrfs_cleanup_pending_block_groups(trans); 2571 btrfs_trans_release_chunk_metadata(trans); 2572 trans->block_rsv = NULL; 2573 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2574 if (current->journal_info == trans) 2575 current->journal_info = NULL; 2576 cleanup_transaction(trans, ret); 2577 2578 return ret; 2579 2580 lockdep_release: 2581 btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters); 2582 btrfs_lockdep_release(fs_info, btrfs_trans_num_writers); 2583 goto cleanup_transaction; 2584 2585 lockdep_trans_commit_start_release: 2586 btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START); 2587 btrfs_end_transaction(trans); 2588 return ret; 2589 } 2590 2591 /* 2592 * return < 0 if error 2593 * 0 if there are no more dead_roots at the time of call 2594 * 1 there are more to be processed, call me again 2595 * 2596 * The return value indicates there are certainly more snapshots to delete, but 2597 * if there comes a new one during processing, it may return 0. We don't mind, 2598 * because btrfs_commit_super will poke cleaner thread and it will process it a 2599 * few seconds later. 2600 */ 2601 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info) 2602 { 2603 struct btrfs_root *root; 2604 int ret; 2605 2606 spin_lock(&fs_info->trans_lock); 2607 if (list_empty(&fs_info->dead_roots)) { 2608 spin_unlock(&fs_info->trans_lock); 2609 return 0; 2610 } 2611 root = list_first_entry(&fs_info->dead_roots, 2612 struct btrfs_root, root_list); 2613 list_del_init(&root->root_list); 2614 spin_unlock(&fs_info->trans_lock); 2615 2616 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2617 2618 btrfs_kill_all_delayed_nodes(root); 2619 2620 if (btrfs_header_backref_rev(root->node) < 2621 BTRFS_MIXED_BACKREF_REV) 2622 ret = btrfs_drop_snapshot(root, 0, 0); 2623 else 2624 ret = btrfs_drop_snapshot(root, 1, 0); 2625 2626 btrfs_put_root(root); 2627 return (ret < 0) ? 0 : 1; 2628 } 2629 2630 /* 2631 * We only mark the transaction aborted and then set the file system read-only. 2632 * This will prevent new transactions from starting or trying to join this 2633 * one. 2634 * 2635 * This means that error recovery at the call site is limited to freeing 2636 * any local memory allocations and passing the error code up without 2637 * further cleanup. The transaction should complete as it normally would 2638 * in the call path but will return -EIO. 2639 * 2640 * We'll complete the cleanup in btrfs_end_transaction and 2641 * btrfs_commit_transaction. 2642 */ 2643 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 2644 const char *function, 2645 unsigned int line, int errno, bool first_hit) 2646 { 2647 struct btrfs_fs_info *fs_info = trans->fs_info; 2648 2649 WRITE_ONCE(trans->aborted, errno); 2650 WRITE_ONCE(trans->transaction->aborted, errno); 2651 if (first_hit && errno == -ENOSPC) 2652 btrfs_dump_space_info_for_trans_abort(fs_info); 2653 /* Wake up anybody who may be waiting on this transaction */ 2654 wake_up(&fs_info->transaction_wait); 2655 wake_up(&fs_info->transaction_blocked_wait); 2656 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 2657 } 2658 2659 int __init btrfs_transaction_init(void) 2660 { 2661 btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle", 2662 sizeof(struct btrfs_trans_handle), 0, 2663 SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL); 2664 if (!btrfs_trans_handle_cachep) 2665 return -ENOMEM; 2666 return 0; 2667 } 2668 2669 void __cold btrfs_transaction_exit(void) 2670 { 2671 kmem_cache_destroy(btrfs_trans_handle_cachep); 2672 } 2673