xref: /openbmc/linux/fs/btrfs/transaction.c (revision 7892b5afe4a1a00af25107e27357db30434ab876)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 /*
54  * either allocate a new transaction or hop into the existing one
55  */
56 static noinline int join_transaction(struct btrfs_root *root, int type)
57 {
58 	struct btrfs_transaction *cur_trans;
59 	struct btrfs_fs_info *fs_info = root->fs_info;
60 
61 	spin_lock(&fs_info->trans_lock);
62 loop:
63 	/* The file system has been taken offline. No new transactions. */
64 	if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
65 		spin_unlock(&fs_info->trans_lock);
66 		return -EROFS;
67 	}
68 
69 	if (fs_info->trans_no_join) {
70 		/*
71 		 * If we are JOIN_NOLOCK we're already committing a current
72 		 * transaction, we just need a handle to deal with something
73 		 * when committing the transaction, such as inode cache and
74 		 * space cache. It is a special case.
75 		 */
76 		if (type != TRANS_JOIN_NOLOCK) {
77 			spin_unlock(&fs_info->trans_lock);
78 			return -EBUSY;
79 		}
80 	}
81 
82 	cur_trans = fs_info->running_transaction;
83 	if (cur_trans) {
84 		if (cur_trans->aborted) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return cur_trans->aborted;
87 		}
88 		atomic_inc(&cur_trans->use_count);
89 		atomic_inc(&cur_trans->num_writers);
90 		cur_trans->num_joined++;
91 		spin_unlock(&fs_info->trans_lock);
92 		return 0;
93 	}
94 	spin_unlock(&fs_info->trans_lock);
95 
96 	/*
97 	 * If we are ATTACH, we just want to catch the current transaction,
98 	 * and commit it. If there is no transaction, just return ENOENT.
99 	 */
100 	if (type == TRANS_ATTACH)
101 		return -ENOENT;
102 
103 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
104 	if (!cur_trans)
105 		return -ENOMEM;
106 
107 	spin_lock(&fs_info->trans_lock);
108 	if (fs_info->running_transaction) {
109 		/*
110 		 * someone started a transaction after we unlocked.  Make sure
111 		 * to redo the trans_no_join checks above
112 		 */
113 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
114 		cur_trans = fs_info->running_transaction;
115 		goto loop;
116 	} else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
117 		spin_unlock(&fs_info->trans_lock);
118 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
119 		return -EROFS;
120 	}
121 
122 	atomic_set(&cur_trans->num_writers, 1);
123 	cur_trans->num_joined = 0;
124 	init_waitqueue_head(&cur_trans->writer_wait);
125 	init_waitqueue_head(&cur_trans->commit_wait);
126 	cur_trans->in_commit = 0;
127 	cur_trans->blocked = 0;
128 	/*
129 	 * One for this trans handle, one so it will live on until we
130 	 * commit the transaction.
131 	 */
132 	atomic_set(&cur_trans->use_count, 2);
133 	cur_trans->commit_done = 0;
134 	cur_trans->start_time = get_seconds();
135 
136 	cur_trans->delayed_refs.root = RB_ROOT;
137 	cur_trans->delayed_refs.num_entries = 0;
138 	cur_trans->delayed_refs.num_heads_ready = 0;
139 	cur_trans->delayed_refs.num_heads = 0;
140 	cur_trans->delayed_refs.flushing = 0;
141 	cur_trans->delayed_refs.run_delayed_start = 0;
142 
143 	/*
144 	 * although the tree mod log is per file system and not per transaction,
145 	 * the log must never go across transaction boundaries.
146 	 */
147 	smp_mb();
148 	if (!list_empty(&fs_info->tree_mod_seq_list))
149 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
150 			"creating a fresh transaction\n");
151 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
152 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
153 			"creating a fresh transaction\n");
154 	atomic_set(&fs_info->tree_mod_seq, 0);
155 
156 	spin_lock_init(&cur_trans->commit_lock);
157 	spin_lock_init(&cur_trans->delayed_refs.lock);
158 
159 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
160 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
161 	extent_io_tree_init(&cur_trans->dirty_pages,
162 			     fs_info->btree_inode->i_mapping);
163 	fs_info->generation++;
164 	cur_trans->transid = fs_info->generation;
165 	fs_info->running_transaction = cur_trans;
166 	cur_trans->aborted = 0;
167 	spin_unlock(&fs_info->trans_lock);
168 
169 	return 0;
170 }
171 
172 /*
173  * this does all the record keeping required to make sure that a reference
174  * counted root is properly recorded in a given transaction.  This is required
175  * to make sure the old root from before we joined the transaction is deleted
176  * when the transaction commits
177  */
178 static int record_root_in_trans(struct btrfs_trans_handle *trans,
179 			       struct btrfs_root *root)
180 {
181 	if (root->ref_cows && root->last_trans < trans->transid) {
182 		WARN_ON(root == root->fs_info->extent_root);
183 		WARN_ON(root->commit_root != root->node);
184 
185 		/*
186 		 * see below for in_trans_setup usage rules
187 		 * we have the reloc mutex held now, so there
188 		 * is only one writer in this function
189 		 */
190 		root->in_trans_setup = 1;
191 
192 		/* make sure readers find in_trans_setup before
193 		 * they find our root->last_trans update
194 		 */
195 		smp_wmb();
196 
197 		spin_lock(&root->fs_info->fs_roots_radix_lock);
198 		if (root->last_trans == trans->transid) {
199 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
200 			return 0;
201 		}
202 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
203 			   (unsigned long)root->root_key.objectid,
204 			   BTRFS_ROOT_TRANS_TAG);
205 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
206 		root->last_trans = trans->transid;
207 
208 		/* this is pretty tricky.  We don't want to
209 		 * take the relocation lock in btrfs_record_root_in_trans
210 		 * unless we're really doing the first setup for this root in
211 		 * this transaction.
212 		 *
213 		 * Normally we'd use root->last_trans as a flag to decide
214 		 * if we want to take the expensive mutex.
215 		 *
216 		 * But, we have to set root->last_trans before we
217 		 * init the relocation root, otherwise, we trip over warnings
218 		 * in ctree.c.  The solution used here is to flag ourselves
219 		 * with root->in_trans_setup.  When this is 1, we're still
220 		 * fixing up the reloc trees and everyone must wait.
221 		 *
222 		 * When this is zero, they can trust root->last_trans and fly
223 		 * through btrfs_record_root_in_trans without having to take the
224 		 * lock.  smp_wmb() makes sure that all the writes above are
225 		 * done before we pop in the zero below
226 		 */
227 		btrfs_init_reloc_root(trans, root);
228 		smp_wmb();
229 		root->in_trans_setup = 0;
230 	}
231 	return 0;
232 }
233 
234 
235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
236 			       struct btrfs_root *root)
237 {
238 	if (!root->ref_cows)
239 		return 0;
240 
241 	/*
242 	 * see record_root_in_trans for comments about in_trans_setup usage
243 	 * and barriers
244 	 */
245 	smp_rmb();
246 	if (root->last_trans == trans->transid &&
247 	    !root->in_trans_setup)
248 		return 0;
249 
250 	mutex_lock(&root->fs_info->reloc_mutex);
251 	record_root_in_trans(trans, root);
252 	mutex_unlock(&root->fs_info->reloc_mutex);
253 
254 	return 0;
255 }
256 
257 /* wait for commit against the current transaction to become unblocked
258  * when this is done, it is safe to start a new transaction, but the current
259  * transaction might not be fully on disk.
260  */
261 static void wait_current_trans(struct btrfs_root *root)
262 {
263 	struct btrfs_transaction *cur_trans;
264 
265 	spin_lock(&root->fs_info->trans_lock);
266 	cur_trans = root->fs_info->running_transaction;
267 	if (cur_trans && cur_trans->blocked) {
268 		atomic_inc(&cur_trans->use_count);
269 		spin_unlock(&root->fs_info->trans_lock);
270 
271 		wait_event(root->fs_info->transaction_wait,
272 			   !cur_trans->blocked);
273 		put_transaction(cur_trans);
274 	} else {
275 		spin_unlock(&root->fs_info->trans_lock);
276 	}
277 }
278 
279 static int may_wait_transaction(struct btrfs_root *root, int type)
280 {
281 	if (root->fs_info->log_root_recovering)
282 		return 0;
283 
284 	if (type == TRANS_USERSPACE)
285 		return 1;
286 
287 	if (type == TRANS_START &&
288 	    !atomic_read(&root->fs_info->open_ioctl_trans))
289 		return 1;
290 
291 	return 0;
292 }
293 
294 static struct btrfs_trans_handle *
295 start_transaction(struct btrfs_root *root, u64 num_items, int type,
296 		  enum btrfs_reserve_flush_enum flush)
297 {
298 	struct btrfs_trans_handle *h;
299 	struct btrfs_transaction *cur_trans;
300 	u64 num_bytes = 0;
301 	int ret;
302 	u64 qgroup_reserved = 0;
303 
304 	if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
305 		return ERR_PTR(-EROFS);
306 
307 	if (current->journal_info) {
308 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
309 		h = current->journal_info;
310 		h->use_count++;
311 		WARN_ON(h->use_count > 2);
312 		h->orig_rsv = h->block_rsv;
313 		h->block_rsv = NULL;
314 		goto got_it;
315 	}
316 
317 	/*
318 	 * Do the reservation before we join the transaction so we can do all
319 	 * the appropriate flushing if need be.
320 	 */
321 	if (num_items > 0 && root != root->fs_info->chunk_root) {
322 		if (root->fs_info->quota_enabled &&
323 		    is_fstree(root->root_key.objectid)) {
324 			qgroup_reserved = num_items * root->leafsize;
325 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
326 			if (ret)
327 				return ERR_PTR(ret);
328 		}
329 
330 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
331 		ret = btrfs_block_rsv_add(root,
332 					  &root->fs_info->trans_block_rsv,
333 					  num_bytes, flush);
334 		if (ret)
335 			goto reserve_fail;
336 	}
337 again:
338 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
339 	if (!h) {
340 		ret = -ENOMEM;
341 		goto alloc_fail;
342 	}
343 
344 	/*
345 	 * If we are JOIN_NOLOCK we're already committing a transaction and
346 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
347 	 * because we're already holding a ref.  We need this because we could
348 	 * have raced in and did an fsync() on a file which can kick a commit
349 	 * and then we deadlock with somebody doing a freeze.
350 	 *
351 	 * If we are ATTACH, it means we just want to catch the current
352 	 * transaction and commit it, so we needn't do sb_start_intwrite().
353 	 */
354 	if (type < TRANS_JOIN_NOLOCK)
355 		sb_start_intwrite(root->fs_info->sb);
356 
357 	if (may_wait_transaction(root, type))
358 		wait_current_trans(root);
359 
360 	do {
361 		ret = join_transaction(root, type);
362 		if (ret == -EBUSY)
363 			wait_current_trans(root);
364 	} while (ret == -EBUSY);
365 
366 	if (ret < 0) {
367 		/* We must get the transaction if we are JOIN_NOLOCK. */
368 		BUG_ON(type == TRANS_JOIN_NOLOCK);
369 		goto join_fail;
370 	}
371 
372 	cur_trans = root->fs_info->running_transaction;
373 
374 	h->transid = cur_trans->transid;
375 	h->transaction = cur_trans;
376 	h->blocks_used = 0;
377 	h->bytes_reserved = 0;
378 	h->root = root;
379 	h->delayed_ref_updates = 0;
380 	h->use_count = 1;
381 	h->adding_csums = 0;
382 	h->block_rsv = NULL;
383 	h->orig_rsv = NULL;
384 	h->aborted = 0;
385 	h->qgroup_reserved = qgroup_reserved;
386 	h->delayed_ref_elem.seq = 0;
387 	h->type = type;
388 	INIT_LIST_HEAD(&h->qgroup_ref_list);
389 	INIT_LIST_HEAD(&h->new_bgs);
390 
391 	smp_mb();
392 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
393 		btrfs_commit_transaction(h, root);
394 		goto again;
395 	}
396 
397 	if (num_bytes) {
398 		trace_btrfs_space_reservation(root->fs_info, "transaction",
399 					      h->transid, num_bytes, 1);
400 		h->block_rsv = &root->fs_info->trans_block_rsv;
401 		h->bytes_reserved = num_bytes;
402 	}
403 
404 got_it:
405 	btrfs_record_root_in_trans(h, root);
406 
407 	if (!current->journal_info && type != TRANS_USERSPACE)
408 		current->journal_info = h;
409 	return h;
410 
411 join_fail:
412 	if (type < TRANS_JOIN_NOLOCK)
413 		sb_end_intwrite(root->fs_info->sb);
414 	kmem_cache_free(btrfs_trans_handle_cachep, h);
415 alloc_fail:
416 	if (num_bytes)
417 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
418 					num_bytes);
419 reserve_fail:
420 	if (qgroup_reserved)
421 		btrfs_qgroup_free(root, qgroup_reserved);
422 	return ERR_PTR(ret);
423 }
424 
425 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
426 						   int num_items)
427 {
428 	return start_transaction(root, num_items, TRANS_START,
429 				 BTRFS_RESERVE_FLUSH_ALL);
430 }
431 
432 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
433 					struct btrfs_root *root, int num_items)
434 {
435 	return start_transaction(root, num_items, TRANS_START,
436 				 BTRFS_RESERVE_FLUSH_LIMIT);
437 }
438 
439 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
440 {
441 	return start_transaction(root, 0, TRANS_JOIN, 0);
442 }
443 
444 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
445 {
446 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
447 }
448 
449 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
450 {
451 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
452 }
453 
454 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
455 {
456 	return start_transaction(root, 0, TRANS_ATTACH, 0);
457 }
458 
459 /* wait for a transaction commit to be fully complete */
460 static noinline void wait_for_commit(struct btrfs_root *root,
461 				    struct btrfs_transaction *commit)
462 {
463 	wait_event(commit->commit_wait, commit->commit_done);
464 }
465 
466 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
467 {
468 	struct btrfs_transaction *cur_trans = NULL, *t;
469 	int ret = 0;
470 
471 	if (transid) {
472 		if (transid <= root->fs_info->last_trans_committed)
473 			goto out;
474 
475 		ret = -EINVAL;
476 		/* find specified transaction */
477 		spin_lock(&root->fs_info->trans_lock);
478 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
479 			if (t->transid == transid) {
480 				cur_trans = t;
481 				atomic_inc(&cur_trans->use_count);
482 				ret = 0;
483 				break;
484 			}
485 			if (t->transid > transid) {
486 				ret = 0;
487 				break;
488 			}
489 		}
490 		spin_unlock(&root->fs_info->trans_lock);
491 		/* The specified transaction doesn't exist */
492 		if (!cur_trans)
493 			goto out;
494 	} else {
495 		/* find newest transaction that is committing | committed */
496 		spin_lock(&root->fs_info->trans_lock);
497 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
498 					    list) {
499 			if (t->in_commit) {
500 				if (t->commit_done)
501 					break;
502 				cur_trans = t;
503 				atomic_inc(&cur_trans->use_count);
504 				break;
505 			}
506 		}
507 		spin_unlock(&root->fs_info->trans_lock);
508 		if (!cur_trans)
509 			goto out;  /* nothing committing|committed */
510 	}
511 
512 	wait_for_commit(root, cur_trans);
513 	put_transaction(cur_trans);
514 out:
515 	return ret;
516 }
517 
518 void btrfs_throttle(struct btrfs_root *root)
519 {
520 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
521 		wait_current_trans(root);
522 }
523 
524 static int should_end_transaction(struct btrfs_trans_handle *trans,
525 				  struct btrfs_root *root)
526 {
527 	int ret;
528 
529 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
530 	return ret ? 1 : 0;
531 }
532 
533 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
534 				 struct btrfs_root *root)
535 {
536 	struct btrfs_transaction *cur_trans = trans->transaction;
537 	int updates;
538 	int err;
539 
540 	smp_mb();
541 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
542 		return 1;
543 
544 	updates = trans->delayed_ref_updates;
545 	trans->delayed_ref_updates = 0;
546 	if (updates) {
547 		err = btrfs_run_delayed_refs(trans, root, updates);
548 		if (err) /* Error code will also eval true */
549 			return err;
550 	}
551 
552 	return should_end_transaction(trans, root);
553 }
554 
555 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
556 			  struct btrfs_root *root, int throttle)
557 {
558 	struct btrfs_transaction *cur_trans = trans->transaction;
559 	struct btrfs_fs_info *info = root->fs_info;
560 	int count = 0;
561 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
562 	int err = 0;
563 
564 	if (--trans->use_count) {
565 		trans->block_rsv = trans->orig_rsv;
566 		return 0;
567 	}
568 
569 	/*
570 	 * do the qgroup accounting as early as possible
571 	 */
572 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
573 
574 	btrfs_trans_release_metadata(trans, root);
575 	trans->block_rsv = NULL;
576 	/*
577 	 * the same root has to be passed to start_transaction and
578 	 * end_transaction. Subvolume quota depends on this.
579 	 */
580 	WARN_ON(trans->root != root);
581 
582 	if (trans->qgroup_reserved) {
583 		btrfs_qgroup_free(root, trans->qgroup_reserved);
584 		trans->qgroup_reserved = 0;
585 	}
586 
587 	if (!list_empty(&trans->new_bgs))
588 		btrfs_create_pending_block_groups(trans, root);
589 
590 	while (count < 2) {
591 		unsigned long cur = trans->delayed_ref_updates;
592 		trans->delayed_ref_updates = 0;
593 		if (cur &&
594 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
595 			trans->delayed_ref_updates = 0;
596 			btrfs_run_delayed_refs(trans, root, cur);
597 		} else {
598 			break;
599 		}
600 		count++;
601 	}
602 	btrfs_trans_release_metadata(trans, root);
603 	trans->block_rsv = NULL;
604 
605 	if (!list_empty(&trans->new_bgs))
606 		btrfs_create_pending_block_groups(trans, root);
607 
608 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
609 	    should_end_transaction(trans, root)) {
610 		trans->transaction->blocked = 1;
611 		smp_wmb();
612 	}
613 
614 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
615 		if (throttle) {
616 			/*
617 			 * We may race with somebody else here so end up having
618 			 * to call end_transaction on ourselves again, so inc
619 			 * our use_count.
620 			 */
621 			trans->use_count++;
622 			return btrfs_commit_transaction(trans, root);
623 		} else {
624 			wake_up_process(info->transaction_kthread);
625 		}
626 	}
627 
628 	if (trans->type < TRANS_JOIN_NOLOCK)
629 		sb_end_intwrite(root->fs_info->sb);
630 
631 	WARN_ON(cur_trans != info->running_transaction);
632 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
633 	atomic_dec(&cur_trans->num_writers);
634 
635 	smp_mb();
636 	if (waitqueue_active(&cur_trans->writer_wait))
637 		wake_up(&cur_trans->writer_wait);
638 	put_transaction(cur_trans);
639 
640 	if (current->journal_info == trans)
641 		current->journal_info = NULL;
642 
643 	if (throttle)
644 		btrfs_run_delayed_iputs(root);
645 
646 	if (trans->aborted ||
647 	    root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) {
648 		err = -EIO;
649 	}
650 	assert_qgroups_uptodate(trans);
651 
652 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
653 	return err;
654 }
655 
656 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
657 			  struct btrfs_root *root)
658 {
659 	int ret;
660 
661 	ret = __btrfs_end_transaction(trans, root, 0);
662 	if (ret)
663 		return ret;
664 	return 0;
665 }
666 
667 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
668 				   struct btrfs_root *root)
669 {
670 	int ret;
671 
672 	ret = __btrfs_end_transaction(trans, root, 1);
673 	if (ret)
674 		return ret;
675 	return 0;
676 }
677 
678 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
679 				struct btrfs_root *root)
680 {
681 	return __btrfs_end_transaction(trans, root, 1);
682 }
683 
684 /*
685  * when btree blocks are allocated, they have some corresponding bits set for
686  * them in one of two extent_io trees.  This is used to make sure all of
687  * those extents are sent to disk but does not wait on them
688  */
689 int btrfs_write_marked_extents(struct btrfs_root *root,
690 			       struct extent_io_tree *dirty_pages, int mark)
691 {
692 	int err = 0;
693 	int werr = 0;
694 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
695 	struct extent_state *cached_state = NULL;
696 	u64 start = 0;
697 	u64 end;
698 
699 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
700 				      mark, &cached_state)) {
701 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
702 				   mark, &cached_state, GFP_NOFS);
703 		cached_state = NULL;
704 		err = filemap_fdatawrite_range(mapping, start, end);
705 		if (err)
706 			werr = err;
707 		cond_resched();
708 		start = end + 1;
709 	}
710 	if (err)
711 		werr = err;
712 	return werr;
713 }
714 
715 /*
716  * when btree blocks are allocated, they have some corresponding bits set for
717  * them in one of two extent_io trees.  This is used to make sure all of
718  * those extents are on disk for transaction or log commit.  We wait
719  * on all the pages and clear them from the dirty pages state tree
720  */
721 int btrfs_wait_marked_extents(struct btrfs_root *root,
722 			      struct extent_io_tree *dirty_pages, int mark)
723 {
724 	int err = 0;
725 	int werr = 0;
726 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
727 	struct extent_state *cached_state = NULL;
728 	u64 start = 0;
729 	u64 end;
730 
731 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
732 				      EXTENT_NEED_WAIT, &cached_state)) {
733 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
734 				 0, 0, &cached_state, GFP_NOFS);
735 		err = filemap_fdatawait_range(mapping, start, end);
736 		if (err)
737 			werr = err;
738 		cond_resched();
739 		start = end + 1;
740 	}
741 	if (err)
742 		werr = err;
743 	return werr;
744 }
745 
746 /*
747  * when btree blocks are allocated, they have some corresponding bits set for
748  * them in one of two extent_io trees.  This is used to make sure all of
749  * those extents are on disk for transaction or log commit
750  */
751 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
752 				struct extent_io_tree *dirty_pages, int mark)
753 {
754 	int ret;
755 	int ret2;
756 
757 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
758 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
759 
760 	if (ret)
761 		return ret;
762 	if (ret2)
763 		return ret2;
764 	return 0;
765 }
766 
767 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
768 				     struct btrfs_root *root)
769 {
770 	if (!trans || !trans->transaction) {
771 		struct inode *btree_inode;
772 		btree_inode = root->fs_info->btree_inode;
773 		return filemap_write_and_wait(btree_inode->i_mapping);
774 	}
775 	return btrfs_write_and_wait_marked_extents(root,
776 					   &trans->transaction->dirty_pages,
777 					   EXTENT_DIRTY);
778 }
779 
780 /*
781  * this is used to update the root pointer in the tree of tree roots.
782  *
783  * But, in the case of the extent allocation tree, updating the root
784  * pointer may allocate blocks which may change the root of the extent
785  * allocation tree.
786  *
787  * So, this loops and repeats and makes sure the cowonly root didn't
788  * change while the root pointer was being updated in the metadata.
789  */
790 static int update_cowonly_root(struct btrfs_trans_handle *trans,
791 			       struct btrfs_root *root)
792 {
793 	int ret;
794 	u64 old_root_bytenr;
795 	u64 old_root_used;
796 	struct btrfs_root *tree_root = root->fs_info->tree_root;
797 
798 	old_root_used = btrfs_root_used(&root->root_item);
799 	btrfs_write_dirty_block_groups(trans, root);
800 
801 	while (1) {
802 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
803 		if (old_root_bytenr == root->node->start &&
804 		    old_root_used == btrfs_root_used(&root->root_item))
805 			break;
806 
807 		btrfs_set_root_node(&root->root_item, root->node);
808 		ret = btrfs_update_root(trans, tree_root,
809 					&root->root_key,
810 					&root->root_item);
811 		if (ret)
812 			return ret;
813 
814 		old_root_used = btrfs_root_used(&root->root_item);
815 		ret = btrfs_write_dirty_block_groups(trans, root);
816 		if (ret)
817 			return ret;
818 	}
819 
820 	if (root != root->fs_info->extent_root)
821 		switch_commit_root(root);
822 
823 	return 0;
824 }
825 
826 /*
827  * update all the cowonly tree roots on disk
828  *
829  * The error handling in this function may not be obvious. Any of the
830  * failures will cause the file system to go offline. We still need
831  * to clean up the delayed refs.
832  */
833 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
834 					 struct btrfs_root *root)
835 {
836 	struct btrfs_fs_info *fs_info = root->fs_info;
837 	struct list_head *next;
838 	struct extent_buffer *eb;
839 	int ret;
840 
841 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
842 	if (ret)
843 		return ret;
844 
845 	eb = btrfs_lock_root_node(fs_info->tree_root);
846 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
847 			      0, &eb);
848 	btrfs_tree_unlock(eb);
849 	free_extent_buffer(eb);
850 
851 	if (ret)
852 		return ret;
853 
854 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
855 	if (ret)
856 		return ret;
857 
858 	ret = btrfs_run_dev_stats(trans, root->fs_info);
859 	WARN_ON(ret);
860 	ret = btrfs_run_dev_replace(trans, root->fs_info);
861 	WARN_ON(ret);
862 
863 	ret = btrfs_run_qgroups(trans, root->fs_info);
864 	BUG_ON(ret);
865 
866 	/* run_qgroups might have added some more refs */
867 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
868 	BUG_ON(ret);
869 
870 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
871 		next = fs_info->dirty_cowonly_roots.next;
872 		list_del_init(next);
873 		root = list_entry(next, struct btrfs_root, dirty_list);
874 
875 		ret = update_cowonly_root(trans, root);
876 		if (ret)
877 			return ret;
878 	}
879 
880 	down_write(&fs_info->extent_commit_sem);
881 	switch_commit_root(fs_info->extent_root);
882 	up_write(&fs_info->extent_commit_sem);
883 
884 	btrfs_after_dev_replace_commit(fs_info);
885 
886 	return 0;
887 }
888 
889 /*
890  * dead roots are old snapshots that need to be deleted.  This allocates
891  * a dirty root struct and adds it into the list of dead roots that need to
892  * be deleted
893  */
894 int btrfs_add_dead_root(struct btrfs_root *root)
895 {
896 	spin_lock(&root->fs_info->trans_lock);
897 	list_add(&root->root_list, &root->fs_info->dead_roots);
898 	spin_unlock(&root->fs_info->trans_lock);
899 	return 0;
900 }
901 
902 /*
903  * update all the cowonly tree roots on disk
904  */
905 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
906 				    struct btrfs_root *root)
907 {
908 	struct btrfs_root *gang[8];
909 	struct btrfs_fs_info *fs_info = root->fs_info;
910 	int i;
911 	int ret;
912 	int err = 0;
913 
914 	spin_lock(&fs_info->fs_roots_radix_lock);
915 	while (1) {
916 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
917 						 (void **)gang, 0,
918 						 ARRAY_SIZE(gang),
919 						 BTRFS_ROOT_TRANS_TAG);
920 		if (ret == 0)
921 			break;
922 		for (i = 0; i < ret; i++) {
923 			root = gang[i];
924 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
925 					(unsigned long)root->root_key.objectid,
926 					BTRFS_ROOT_TRANS_TAG);
927 			spin_unlock(&fs_info->fs_roots_radix_lock);
928 
929 			btrfs_free_log(trans, root);
930 			btrfs_update_reloc_root(trans, root);
931 			btrfs_orphan_commit_root(trans, root);
932 
933 			btrfs_save_ino_cache(root, trans);
934 
935 			/* see comments in should_cow_block() */
936 			root->force_cow = 0;
937 			smp_wmb();
938 
939 			if (root->commit_root != root->node) {
940 				mutex_lock(&root->fs_commit_mutex);
941 				switch_commit_root(root);
942 				btrfs_unpin_free_ino(root);
943 				mutex_unlock(&root->fs_commit_mutex);
944 
945 				btrfs_set_root_node(&root->root_item,
946 						    root->node);
947 			}
948 
949 			err = btrfs_update_root(trans, fs_info->tree_root,
950 						&root->root_key,
951 						&root->root_item);
952 			spin_lock(&fs_info->fs_roots_radix_lock);
953 			if (err)
954 				break;
955 		}
956 	}
957 	spin_unlock(&fs_info->fs_roots_radix_lock);
958 	return err;
959 }
960 
961 /*
962  * defrag a given btree.  If cacheonly == 1, this won't read from the disk,
963  * otherwise every leaf in the btree is read and defragged.
964  */
965 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
966 {
967 	struct btrfs_fs_info *info = root->fs_info;
968 	struct btrfs_trans_handle *trans;
969 	int ret;
970 
971 	if (xchg(&root->defrag_running, 1))
972 		return 0;
973 
974 	while (1) {
975 		trans = btrfs_start_transaction(root, 0);
976 		if (IS_ERR(trans))
977 			return PTR_ERR(trans);
978 
979 		ret = btrfs_defrag_leaves(trans, root, cacheonly);
980 
981 		btrfs_end_transaction(trans, root);
982 		btrfs_btree_balance_dirty(info->tree_root);
983 		cond_resched();
984 
985 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
986 			break;
987 	}
988 	root->defrag_running = 0;
989 	return ret;
990 }
991 
992 /*
993  * new snapshots need to be created at a very specific time in the
994  * transaction commit.  This does the actual creation
995  */
996 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
997 				   struct btrfs_fs_info *fs_info,
998 				   struct btrfs_pending_snapshot *pending)
999 {
1000 	struct btrfs_key key;
1001 	struct btrfs_root_item *new_root_item;
1002 	struct btrfs_root *tree_root = fs_info->tree_root;
1003 	struct btrfs_root *root = pending->root;
1004 	struct btrfs_root *parent_root;
1005 	struct btrfs_block_rsv *rsv;
1006 	struct inode *parent_inode;
1007 	struct btrfs_path *path;
1008 	struct btrfs_dir_item *dir_item;
1009 	struct dentry *parent;
1010 	struct dentry *dentry;
1011 	struct extent_buffer *tmp;
1012 	struct extent_buffer *old;
1013 	struct timespec cur_time = CURRENT_TIME;
1014 	int ret;
1015 	u64 to_reserve = 0;
1016 	u64 index = 0;
1017 	u64 objectid;
1018 	u64 root_flags;
1019 	uuid_le new_uuid;
1020 
1021 	path = btrfs_alloc_path();
1022 	if (!path) {
1023 		ret = pending->error = -ENOMEM;
1024 		goto path_alloc_fail;
1025 	}
1026 
1027 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1028 	if (!new_root_item) {
1029 		ret = pending->error = -ENOMEM;
1030 		goto root_item_alloc_fail;
1031 	}
1032 
1033 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1034 	if (ret) {
1035 		pending->error = ret;
1036 		goto no_free_objectid;
1037 	}
1038 
1039 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1040 
1041 	if (to_reserve > 0) {
1042 		ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1043 					  to_reserve,
1044 					  BTRFS_RESERVE_NO_FLUSH);
1045 		if (ret) {
1046 			pending->error = ret;
1047 			goto no_free_objectid;
1048 		}
1049 	}
1050 
1051 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1052 				   objectid, pending->inherit);
1053 	if (ret) {
1054 		pending->error = ret;
1055 		goto no_free_objectid;
1056 	}
1057 
1058 	key.objectid = objectid;
1059 	key.offset = (u64)-1;
1060 	key.type = BTRFS_ROOT_ITEM_KEY;
1061 
1062 	rsv = trans->block_rsv;
1063 	trans->block_rsv = &pending->block_rsv;
1064 
1065 	dentry = pending->dentry;
1066 	parent = dget_parent(dentry);
1067 	parent_inode = parent->d_inode;
1068 	parent_root = BTRFS_I(parent_inode)->root;
1069 	record_root_in_trans(trans, parent_root);
1070 
1071 	/*
1072 	 * insert the directory item
1073 	 */
1074 	ret = btrfs_set_inode_index(parent_inode, &index);
1075 	BUG_ON(ret); /* -ENOMEM */
1076 
1077 	/* check if there is a file/dir which has the same name. */
1078 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1079 					 btrfs_ino(parent_inode),
1080 					 dentry->d_name.name,
1081 					 dentry->d_name.len, 0);
1082 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1083 		pending->error = -EEXIST;
1084 		goto fail;
1085 	} else if (IS_ERR(dir_item)) {
1086 		ret = PTR_ERR(dir_item);
1087 		btrfs_abort_transaction(trans, root, ret);
1088 		goto fail;
1089 	}
1090 	btrfs_release_path(path);
1091 
1092 	/*
1093 	 * pull in the delayed directory update
1094 	 * and the delayed inode item
1095 	 * otherwise we corrupt the FS during
1096 	 * snapshot
1097 	 */
1098 	ret = btrfs_run_delayed_items(trans, root);
1099 	if (ret) {	/* Transaction aborted */
1100 		btrfs_abort_transaction(trans, root, ret);
1101 		goto fail;
1102 	}
1103 
1104 	record_root_in_trans(trans, root);
1105 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1106 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1107 	btrfs_check_and_init_root_item(new_root_item);
1108 
1109 	root_flags = btrfs_root_flags(new_root_item);
1110 	if (pending->readonly)
1111 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1112 	else
1113 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1114 	btrfs_set_root_flags(new_root_item, root_flags);
1115 
1116 	btrfs_set_root_generation_v2(new_root_item,
1117 			trans->transid);
1118 	uuid_le_gen(&new_uuid);
1119 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1120 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1121 			BTRFS_UUID_SIZE);
1122 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1123 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1124 	btrfs_set_root_otransid(new_root_item, trans->transid);
1125 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1126 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1127 	btrfs_set_root_stransid(new_root_item, 0);
1128 	btrfs_set_root_rtransid(new_root_item, 0);
1129 
1130 	old = btrfs_lock_root_node(root);
1131 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1132 	if (ret) {
1133 		btrfs_tree_unlock(old);
1134 		free_extent_buffer(old);
1135 		btrfs_abort_transaction(trans, root, ret);
1136 		goto fail;
1137 	}
1138 
1139 	btrfs_set_lock_blocking(old);
1140 
1141 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1142 	/* clean up in any case */
1143 	btrfs_tree_unlock(old);
1144 	free_extent_buffer(old);
1145 	if (ret) {
1146 		btrfs_abort_transaction(trans, root, ret);
1147 		goto fail;
1148 	}
1149 
1150 	/* see comments in should_cow_block() */
1151 	root->force_cow = 1;
1152 	smp_wmb();
1153 
1154 	btrfs_set_root_node(new_root_item, tmp);
1155 	/* record when the snapshot was created in key.offset */
1156 	key.offset = trans->transid;
1157 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1158 	btrfs_tree_unlock(tmp);
1159 	free_extent_buffer(tmp);
1160 	if (ret) {
1161 		btrfs_abort_transaction(trans, root, ret);
1162 		goto fail;
1163 	}
1164 
1165 	/*
1166 	 * insert root back/forward references
1167 	 */
1168 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1169 				 parent_root->root_key.objectid,
1170 				 btrfs_ino(parent_inode), index,
1171 				 dentry->d_name.name, dentry->d_name.len);
1172 	if (ret) {
1173 		btrfs_abort_transaction(trans, root, ret);
1174 		goto fail;
1175 	}
1176 
1177 	key.offset = (u64)-1;
1178 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1179 	if (IS_ERR(pending->snap)) {
1180 		ret = PTR_ERR(pending->snap);
1181 		btrfs_abort_transaction(trans, root, ret);
1182 		goto fail;
1183 	}
1184 
1185 	ret = btrfs_reloc_post_snapshot(trans, pending);
1186 	if (ret) {
1187 		btrfs_abort_transaction(trans, root, ret);
1188 		goto fail;
1189 	}
1190 
1191 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192 	if (ret) {
1193 		btrfs_abort_transaction(trans, root, ret);
1194 		goto fail;
1195 	}
1196 
1197 	ret = btrfs_insert_dir_item(trans, parent_root,
1198 				    dentry->d_name.name, dentry->d_name.len,
1199 				    parent_inode, &key,
1200 				    BTRFS_FT_DIR, index);
1201 	/* We have check then name at the beginning, so it is impossible. */
1202 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1203 	if (ret) {
1204 		btrfs_abort_transaction(trans, root, ret);
1205 		goto fail;
1206 	}
1207 
1208 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1209 					 dentry->d_name.len * 2);
1210 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1211 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1212 	if (ret)
1213 		btrfs_abort_transaction(trans, root, ret);
1214 fail:
1215 	dput(parent);
1216 	trans->block_rsv = rsv;
1217 no_free_objectid:
1218 	kfree(new_root_item);
1219 root_item_alloc_fail:
1220 	btrfs_free_path(path);
1221 path_alloc_fail:
1222 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1223 	return ret;
1224 }
1225 
1226 /*
1227  * create all the snapshots we've scheduled for creation
1228  */
1229 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1230 					     struct btrfs_fs_info *fs_info)
1231 {
1232 	struct btrfs_pending_snapshot *pending;
1233 	struct list_head *head = &trans->transaction->pending_snapshots;
1234 
1235 	list_for_each_entry(pending, head, list)
1236 		create_pending_snapshot(trans, fs_info, pending);
1237 	return 0;
1238 }
1239 
1240 static void update_super_roots(struct btrfs_root *root)
1241 {
1242 	struct btrfs_root_item *root_item;
1243 	struct btrfs_super_block *super;
1244 
1245 	super = root->fs_info->super_copy;
1246 
1247 	root_item = &root->fs_info->chunk_root->root_item;
1248 	super->chunk_root = root_item->bytenr;
1249 	super->chunk_root_generation = root_item->generation;
1250 	super->chunk_root_level = root_item->level;
1251 
1252 	root_item = &root->fs_info->tree_root->root_item;
1253 	super->root = root_item->bytenr;
1254 	super->generation = root_item->generation;
1255 	super->root_level = root_item->level;
1256 	if (btrfs_test_opt(root, SPACE_CACHE))
1257 		super->cache_generation = root_item->generation;
1258 }
1259 
1260 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1261 {
1262 	int ret = 0;
1263 	spin_lock(&info->trans_lock);
1264 	if (info->running_transaction)
1265 		ret = info->running_transaction->in_commit;
1266 	spin_unlock(&info->trans_lock);
1267 	return ret;
1268 }
1269 
1270 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1271 {
1272 	int ret = 0;
1273 	spin_lock(&info->trans_lock);
1274 	if (info->running_transaction)
1275 		ret = info->running_transaction->blocked;
1276 	spin_unlock(&info->trans_lock);
1277 	return ret;
1278 }
1279 
1280 /*
1281  * wait for the current transaction commit to start and block subsequent
1282  * transaction joins
1283  */
1284 static void wait_current_trans_commit_start(struct btrfs_root *root,
1285 					    struct btrfs_transaction *trans)
1286 {
1287 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1288 }
1289 
1290 /*
1291  * wait for the current transaction to start and then become unblocked.
1292  * caller holds ref.
1293  */
1294 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1295 					 struct btrfs_transaction *trans)
1296 {
1297 	wait_event(root->fs_info->transaction_wait,
1298 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1299 }
1300 
1301 /*
1302  * commit transactions asynchronously. once btrfs_commit_transaction_async
1303  * returns, any subsequent transaction will not be allowed to join.
1304  */
1305 struct btrfs_async_commit {
1306 	struct btrfs_trans_handle *newtrans;
1307 	struct btrfs_root *root;
1308 	struct work_struct work;
1309 };
1310 
1311 static void do_async_commit(struct work_struct *work)
1312 {
1313 	struct btrfs_async_commit *ac =
1314 		container_of(work, struct btrfs_async_commit, work);
1315 
1316 	/*
1317 	 * We've got freeze protection passed with the transaction.
1318 	 * Tell lockdep about it.
1319 	 */
1320 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1321 		rwsem_acquire_read(
1322 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1323 		     0, 1, _THIS_IP_);
1324 
1325 	current->journal_info = ac->newtrans;
1326 
1327 	btrfs_commit_transaction(ac->newtrans, ac->root);
1328 	kfree(ac);
1329 }
1330 
1331 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1332 				   struct btrfs_root *root,
1333 				   int wait_for_unblock)
1334 {
1335 	struct btrfs_async_commit *ac;
1336 	struct btrfs_transaction *cur_trans;
1337 
1338 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1339 	if (!ac)
1340 		return -ENOMEM;
1341 
1342 	INIT_WORK(&ac->work, do_async_commit);
1343 	ac->root = root;
1344 	ac->newtrans = btrfs_join_transaction(root);
1345 	if (IS_ERR(ac->newtrans)) {
1346 		int err = PTR_ERR(ac->newtrans);
1347 		kfree(ac);
1348 		return err;
1349 	}
1350 
1351 	/* take transaction reference */
1352 	cur_trans = trans->transaction;
1353 	atomic_inc(&cur_trans->use_count);
1354 
1355 	btrfs_end_transaction(trans, root);
1356 
1357 	/*
1358 	 * Tell lockdep we've released the freeze rwsem, since the
1359 	 * async commit thread will be the one to unlock it.
1360 	 */
1361 	if (trans->type < TRANS_JOIN_NOLOCK)
1362 		rwsem_release(
1363 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1364 			1, _THIS_IP_);
1365 
1366 	schedule_work(&ac->work);
1367 
1368 	/* wait for transaction to start and unblock */
1369 	if (wait_for_unblock)
1370 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1371 	else
1372 		wait_current_trans_commit_start(root, cur_trans);
1373 
1374 	if (current->journal_info == trans)
1375 		current->journal_info = NULL;
1376 
1377 	put_transaction(cur_trans);
1378 	return 0;
1379 }
1380 
1381 
1382 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1383 				struct btrfs_root *root, int err)
1384 {
1385 	struct btrfs_transaction *cur_trans = trans->transaction;
1386 
1387 	WARN_ON(trans->use_count > 1);
1388 
1389 	btrfs_abort_transaction(trans, root, err);
1390 
1391 	spin_lock(&root->fs_info->trans_lock);
1392 	list_del_init(&cur_trans->list);
1393 	if (cur_trans == root->fs_info->running_transaction) {
1394 		root->fs_info->running_transaction = NULL;
1395 		root->fs_info->trans_no_join = 0;
1396 	}
1397 	spin_unlock(&root->fs_info->trans_lock);
1398 
1399 	btrfs_cleanup_one_transaction(trans->transaction, root);
1400 
1401 	put_transaction(cur_trans);
1402 	put_transaction(cur_trans);
1403 
1404 	trace_btrfs_transaction_commit(root);
1405 
1406 	btrfs_scrub_continue(root);
1407 
1408 	if (current->journal_info == trans)
1409 		current->journal_info = NULL;
1410 
1411 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1412 }
1413 
1414 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1415 					  struct btrfs_root *root)
1416 {
1417 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1418 	int snap_pending = 0;
1419 	int ret;
1420 
1421 	if (!flush_on_commit) {
1422 		spin_lock(&root->fs_info->trans_lock);
1423 		if (!list_empty(&trans->transaction->pending_snapshots))
1424 			snap_pending = 1;
1425 		spin_unlock(&root->fs_info->trans_lock);
1426 	}
1427 
1428 	if (flush_on_commit || snap_pending) {
1429 		btrfs_start_delalloc_inodes(root, 1);
1430 		btrfs_wait_ordered_extents(root, 1);
1431 	}
1432 
1433 	ret = btrfs_run_delayed_items(trans, root);
1434 	if (ret)
1435 		return ret;
1436 
1437 	/*
1438 	 * running the delayed items may have added new refs. account
1439 	 * them now so that they hinder processing of more delayed refs
1440 	 * as little as possible.
1441 	 */
1442 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1443 
1444 	/*
1445 	 * rename don't use btrfs_join_transaction, so, once we
1446 	 * set the transaction to blocked above, we aren't going
1447 	 * to get any new ordered operations.  We can safely run
1448 	 * it here and no for sure that nothing new will be added
1449 	 * to the list
1450 	 */
1451 	btrfs_run_ordered_operations(root, 1);
1452 
1453 	return 0;
1454 }
1455 
1456 /*
1457  * btrfs_transaction state sequence:
1458  *    in_commit = 0, blocked = 0  (initial)
1459  *    in_commit = 1, blocked = 1
1460  *    blocked = 0
1461  *    commit_done = 1
1462  */
1463 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1464 			     struct btrfs_root *root)
1465 {
1466 	unsigned long joined = 0;
1467 	struct btrfs_transaction *cur_trans = trans->transaction;
1468 	struct btrfs_transaction *prev_trans = NULL;
1469 	DEFINE_WAIT(wait);
1470 	int ret;
1471 	int should_grow = 0;
1472 	unsigned long now = get_seconds();
1473 
1474 	ret = btrfs_run_ordered_operations(root, 0);
1475 	if (ret) {
1476 		btrfs_abort_transaction(trans, root, ret);
1477 		goto cleanup_transaction;
1478 	}
1479 
1480 	/* Stop the commit early if ->aborted is set */
1481 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1482 		ret = cur_trans->aborted;
1483 		goto cleanup_transaction;
1484 	}
1485 
1486 	/* make a pass through all the delayed refs we have so far
1487 	 * any runnings procs may add more while we are here
1488 	 */
1489 	ret = btrfs_run_delayed_refs(trans, root, 0);
1490 	if (ret)
1491 		goto cleanup_transaction;
1492 
1493 	btrfs_trans_release_metadata(trans, root);
1494 	trans->block_rsv = NULL;
1495 
1496 	cur_trans = trans->transaction;
1497 
1498 	/*
1499 	 * set the flushing flag so procs in this transaction have to
1500 	 * start sending their work down.
1501 	 */
1502 	cur_trans->delayed_refs.flushing = 1;
1503 
1504 	if (!list_empty(&trans->new_bgs))
1505 		btrfs_create_pending_block_groups(trans, root);
1506 
1507 	ret = btrfs_run_delayed_refs(trans, root, 0);
1508 	if (ret)
1509 		goto cleanup_transaction;
1510 
1511 	spin_lock(&cur_trans->commit_lock);
1512 	if (cur_trans->in_commit) {
1513 		spin_unlock(&cur_trans->commit_lock);
1514 		atomic_inc(&cur_trans->use_count);
1515 		ret = btrfs_end_transaction(trans, root);
1516 
1517 		wait_for_commit(root, cur_trans);
1518 
1519 		put_transaction(cur_trans);
1520 
1521 		return ret;
1522 	}
1523 
1524 	trans->transaction->in_commit = 1;
1525 	trans->transaction->blocked = 1;
1526 	spin_unlock(&cur_trans->commit_lock);
1527 	wake_up(&root->fs_info->transaction_blocked_wait);
1528 
1529 	spin_lock(&root->fs_info->trans_lock);
1530 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1531 		prev_trans = list_entry(cur_trans->list.prev,
1532 					struct btrfs_transaction, list);
1533 		if (!prev_trans->commit_done) {
1534 			atomic_inc(&prev_trans->use_count);
1535 			spin_unlock(&root->fs_info->trans_lock);
1536 
1537 			wait_for_commit(root, prev_trans);
1538 
1539 			put_transaction(prev_trans);
1540 		} else {
1541 			spin_unlock(&root->fs_info->trans_lock);
1542 		}
1543 	} else {
1544 		spin_unlock(&root->fs_info->trans_lock);
1545 	}
1546 
1547 	if (!btrfs_test_opt(root, SSD) &&
1548 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1549 		should_grow = 1;
1550 
1551 	do {
1552 		joined = cur_trans->num_joined;
1553 
1554 		WARN_ON(cur_trans != trans->transaction);
1555 
1556 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1557 		if (ret)
1558 			goto cleanup_transaction;
1559 
1560 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1561 				TASK_UNINTERRUPTIBLE);
1562 
1563 		if (atomic_read(&cur_trans->num_writers) > 1)
1564 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1565 		else if (should_grow)
1566 			schedule_timeout(1);
1567 
1568 		finish_wait(&cur_trans->writer_wait, &wait);
1569 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1570 		 (should_grow && cur_trans->num_joined != joined));
1571 
1572 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1573 	if (ret)
1574 		goto cleanup_transaction;
1575 
1576 	/*
1577 	 * Ok now we need to make sure to block out any other joins while we
1578 	 * commit the transaction.  We could have started a join before setting
1579 	 * no_join so make sure to wait for num_writers to == 1 again.
1580 	 */
1581 	spin_lock(&root->fs_info->trans_lock);
1582 	root->fs_info->trans_no_join = 1;
1583 	spin_unlock(&root->fs_info->trans_lock);
1584 	wait_event(cur_trans->writer_wait,
1585 		   atomic_read(&cur_trans->num_writers) == 1);
1586 
1587 	/* ->aborted might be set after the previous check, so check it */
1588 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1589 		ret = cur_trans->aborted;
1590 		goto cleanup_transaction;
1591 	}
1592 	/*
1593 	 * the reloc mutex makes sure that we stop
1594 	 * the balancing code from coming in and moving
1595 	 * extents around in the middle of the commit
1596 	 */
1597 	mutex_lock(&root->fs_info->reloc_mutex);
1598 
1599 	/*
1600 	 * We needn't worry about the delayed items because we will
1601 	 * deal with them in create_pending_snapshot(), which is the
1602 	 * core function of the snapshot creation.
1603 	 */
1604 	ret = create_pending_snapshots(trans, root->fs_info);
1605 	if (ret) {
1606 		mutex_unlock(&root->fs_info->reloc_mutex);
1607 		goto cleanup_transaction;
1608 	}
1609 
1610 	/*
1611 	 * We insert the dir indexes of the snapshots and update the inode
1612 	 * of the snapshots' parents after the snapshot creation, so there
1613 	 * are some delayed items which are not dealt with. Now deal with
1614 	 * them.
1615 	 *
1616 	 * We needn't worry that this operation will corrupt the snapshots,
1617 	 * because all the tree which are snapshoted will be forced to COW
1618 	 * the nodes and leaves.
1619 	 */
1620 	ret = btrfs_run_delayed_items(trans, root);
1621 	if (ret) {
1622 		mutex_unlock(&root->fs_info->reloc_mutex);
1623 		goto cleanup_transaction;
1624 	}
1625 
1626 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1627 	if (ret) {
1628 		mutex_unlock(&root->fs_info->reloc_mutex);
1629 		goto cleanup_transaction;
1630 	}
1631 
1632 	/*
1633 	 * make sure none of the code above managed to slip in a
1634 	 * delayed item
1635 	 */
1636 	btrfs_assert_delayed_root_empty(root);
1637 
1638 	WARN_ON(cur_trans != trans->transaction);
1639 
1640 	btrfs_scrub_pause(root);
1641 	/* btrfs_commit_tree_roots is responsible for getting the
1642 	 * various roots consistent with each other.  Every pointer
1643 	 * in the tree of tree roots has to point to the most up to date
1644 	 * root for every subvolume and other tree.  So, we have to keep
1645 	 * the tree logging code from jumping in and changing any
1646 	 * of the trees.
1647 	 *
1648 	 * At this point in the commit, there can't be any tree-log
1649 	 * writers, but a little lower down we drop the trans mutex
1650 	 * and let new people in.  By holding the tree_log_mutex
1651 	 * from now until after the super is written, we avoid races
1652 	 * with the tree-log code.
1653 	 */
1654 	mutex_lock(&root->fs_info->tree_log_mutex);
1655 
1656 	ret = commit_fs_roots(trans, root);
1657 	if (ret) {
1658 		mutex_unlock(&root->fs_info->tree_log_mutex);
1659 		mutex_unlock(&root->fs_info->reloc_mutex);
1660 		goto cleanup_transaction;
1661 	}
1662 
1663 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1664 	 * safe to free the root of tree log roots
1665 	 */
1666 	btrfs_free_log_root_tree(trans, root->fs_info);
1667 
1668 	ret = commit_cowonly_roots(trans, root);
1669 	if (ret) {
1670 		mutex_unlock(&root->fs_info->tree_log_mutex);
1671 		mutex_unlock(&root->fs_info->reloc_mutex);
1672 		goto cleanup_transaction;
1673 	}
1674 
1675 	/*
1676 	 * The tasks which save the space cache and inode cache may also
1677 	 * update ->aborted, check it.
1678 	 */
1679 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1680 		ret = cur_trans->aborted;
1681 		mutex_unlock(&root->fs_info->tree_log_mutex);
1682 		mutex_unlock(&root->fs_info->reloc_mutex);
1683 		goto cleanup_transaction;
1684 	}
1685 
1686 	btrfs_prepare_extent_commit(trans, root);
1687 
1688 	cur_trans = root->fs_info->running_transaction;
1689 
1690 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1691 			    root->fs_info->tree_root->node);
1692 	switch_commit_root(root->fs_info->tree_root);
1693 
1694 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1695 			    root->fs_info->chunk_root->node);
1696 	switch_commit_root(root->fs_info->chunk_root);
1697 
1698 	assert_qgroups_uptodate(trans);
1699 	update_super_roots(root);
1700 
1701 	if (!root->fs_info->log_root_recovering) {
1702 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1703 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1704 	}
1705 
1706 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1707 	       sizeof(*root->fs_info->super_copy));
1708 
1709 	trans->transaction->blocked = 0;
1710 	spin_lock(&root->fs_info->trans_lock);
1711 	root->fs_info->running_transaction = NULL;
1712 	root->fs_info->trans_no_join = 0;
1713 	spin_unlock(&root->fs_info->trans_lock);
1714 	mutex_unlock(&root->fs_info->reloc_mutex);
1715 
1716 	wake_up(&root->fs_info->transaction_wait);
1717 
1718 	ret = btrfs_write_and_wait_transaction(trans, root);
1719 	if (ret) {
1720 		btrfs_error(root->fs_info, ret,
1721 			    "Error while writing out transaction.");
1722 		mutex_unlock(&root->fs_info->tree_log_mutex);
1723 		goto cleanup_transaction;
1724 	}
1725 
1726 	ret = write_ctree_super(trans, root, 0);
1727 	if (ret) {
1728 		mutex_unlock(&root->fs_info->tree_log_mutex);
1729 		goto cleanup_transaction;
1730 	}
1731 
1732 	/*
1733 	 * the super is written, we can safely allow the tree-loggers
1734 	 * to go about their business
1735 	 */
1736 	mutex_unlock(&root->fs_info->tree_log_mutex);
1737 
1738 	btrfs_finish_extent_commit(trans, root);
1739 
1740 	cur_trans->commit_done = 1;
1741 
1742 	root->fs_info->last_trans_committed = cur_trans->transid;
1743 
1744 	wake_up(&cur_trans->commit_wait);
1745 
1746 	spin_lock(&root->fs_info->trans_lock);
1747 	list_del_init(&cur_trans->list);
1748 	spin_unlock(&root->fs_info->trans_lock);
1749 
1750 	put_transaction(cur_trans);
1751 	put_transaction(cur_trans);
1752 
1753 	if (trans->type < TRANS_JOIN_NOLOCK)
1754 		sb_end_intwrite(root->fs_info->sb);
1755 
1756 	trace_btrfs_transaction_commit(root);
1757 
1758 	btrfs_scrub_continue(root);
1759 
1760 	if (current->journal_info == trans)
1761 		current->journal_info = NULL;
1762 
1763 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1764 
1765 	if (current != root->fs_info->transaction_kthread)
1766 		btrfs_run_delayed_iputs(root);
1767 
1768 	return ret;
1769 
1770 cleanup_transaction:
1771 	btrfs_trans_release_metadata(trans, root);
1772 	trans->block_rsv = NULL;
1773 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1774 //	WARN_ON(1);
1775 	if (current->journal_info == trans)
1776 		current->journal_info = NULL;
1777 	cleanup_transaction(trans, root, ret);
1778 
1779 	return ret;
1780 }
1781 
1782 /*
1783  * interface function to delete all the snapshots we have scheduled for deletion
1784  */
1785 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1786 {
1787 	LIST_HEAD(list);
1788 	struct btrfs_fs_info *fs_info = root->fs_info;
1789 
1790 	spin_lock(&fs_info->trans_lock);
1791 	list_splice_init(&fs_info->dead_roots, &list);
1792 	spin_unlock(&fs_info->trans_lock);
1793 
1794 	while (!list_empty(&list)) {
1795 		int ret;
1796 
1797 		root = list_entry(list.next, struct btrfs_root, root_list);
1798 		list_del(&root->root_list);
1799 
1800 		btrfs_kill_all_delayed_nodes(root);
1801 
1802 		if (btrfs_header_backref_rev(root->node) <
1803 		    BTRFS_MIXED_BACKREF_REV)
1804 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1805 		else
1806 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1807 		BUG_ON(ret < 0);
1808 	}
1809 	return 0;
1810 }
1811