1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 void put_transaction(struct btrfs_transaction *transaction) 38 { 39 WARN_ON(atomic_read(&transaction->use_count) == 0); 40 if (atomic_dec_and_test(&transaction->use_count)) { 41 BUG_ON(!list_empty(&transaction->list)); 42 WARN_ON(transaction->delayed_refs.root.rb_node); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 /* 54 * either allocate a new transaction or hop into the existing one 55 */ 56 static noinline int join_transaction(struct btrfs_root *root, int type) 57 { 58 struct btrfs_transaction *cur_trans; 59 struct btrfs_fs_info *fs_info = root->fs_info; 60 61 spin_lock(&fs_info->trans_lock); 62 loop: 63 /* The file system has been taken offline. No new transactions. */ 64 if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 65 spin_unlock(&fs_info->trans_lock); 66 return -EROFS; 67 } 68 69 if (fs_info->trans_no_join) { 70 /* 71 * If we are JOIN_NOLOCK we're already committing a current 72 * transaction, we just need a handle to deal with something 73 * when committing the transaction, such as inode cache and 74 * space cache. It is a special case. 75 */ 76 if (type != TRANS_JOIN_NOLOCK) { 77 spin_unlock(&fs_info->trans_lock); 78 return -EBUSY; 79 } 80 } 81 82 cur_trans = fs_info->running_transaction; 83 if (cur_trans) { 84 if (cur_trans->aborted) { 85 spin_unlock(&fs_info->trans_lock); 86 return cur_trans->aborted; 87 } 88 atomic_inc(&cur_trans->use_count); 89 atomic_inc(&cur_trans->num_writers); 90 cur_trans->num_joined++; 91 spin_unlock(&fs_info->trans_lock); 92 return 0; 93 } 94 spin_unlock(&fs_info->trans_lock); 95 96 /* 97 * If we are ATTACH, we just want to catch the current transaction, 98 * and commit it. If there is no transaction, just return ENOENT. 99 */ 100 if (type == TRANS_ATTACH) 101 return -ENOENT; 102 103 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 104 if (!cur_trans) 105 return -ENOMEM; 106 107 spin_lock(&fs_info->trans_lock); 108 if (fs_info->running_transaction) { 109 /* 110 * someone started a transaction after we unlocked. Make sure 111 * to redo the trans_no_join checks above 112 */ 113 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 114 cur_trans = fs_info->running_transaction; 115 goto loop; 116 } else if (fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 117 spin_unlock(&fs_info->trans_lock); 118 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 119 return -EROFS; 120 } 121 122 atomic_set(&cur_trans->num_writers, 1); 123 cur_trans->num_joined = 0; 124 init_waitqueue_head(&cur_trans->writer_wait); 125 init_waitqueue_head(&cur_trans->commit_wait); 126 cur_trans->in_commit = 0; 127 cur_trans->blocked = 0; 128 /* 129 * One for this trans handle, one so it will live on until we 130 * commit the transaction. 131 */ 132 atomic_set(&cur_trans->use_count, 2); 133 cur_trans->commit_done = 0; 134 cur_trans->start_time = get_seconds(); 135 136 cur_trans->delayed_refs.root = RB_ROOT; 137 cur_trans->delayed_refs.num_entries = 0; 138 cur_trans->delayed_refs.num_heads_ready = 0; 139 cur_trans->delayed_refs.num_heads = 0; 140 cur_trans->delayed_refs.flushing = 0; 141 cur_trans->delayed_refs.run_delayed_start = 0; 142 143 /* 144 * although the tree mod log is per file system and not per transaction, 145 * the log must never go across transaction boundaries. 146 */ 147 smp_mb(); 148 if (!list_empty(&fs_info->tree_mod_seq_list)) 149 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 150 "creating a fresh transaction\n"); 151 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 152 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 153 "creating a fresh transaction\n"); 154 atomic_set(&fs_info->tree_mod_seq, 0); 155 156 spin_lock_init(&cur_trans->commit_lock); 157 spin_lock_init(&cur_trans->delayed_refs.lock); 158 159 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 160 list_add_tail(&cur_trans->list, &fs_info->trans_list); 161 extent_io_tree_init(&cur_trans->dirty_pages, 162 fs_info->btree_inode->i_mapping); 163 fs_info->generation++; 164 cur_trans->transid = fs_info->generation; 165 fs_info->running_transaction = cur_trans; 166 cur_trans->aborted = 0; 167 spin_unlock(&fs_info->trans_lock); 168 169 return 0; 170 } 171 172 /* 173 * this does all the record keeping required to make sure that a reference 174 * counted root is properly recorded in a given transaction. This is required 175 * to make sure the old root from before we joined the transaction is deleted 176 * when the transaction commits 177 */ 178 static int record_root_in_trans(struct btrfs_trans_handle *trans, 179 struct btrfs_root *root) 180 { 181 if (root->ref_cows && root->last_trans < trans->transid) { 182 WARN_ON(root == root->fs_info->extent_root); 183 WARN_ON(root->commit_root != root->node); 184 185 /* 186 * see below for in_trans_setup usage rules 187 * we have the reloc mutex held now, so there 188 * is only one writer in this function 189 */ 190 root->in_trans_setup = 1; 191 192 /* make sure readers find in_trans_setup before 193 * they find our root->last_trans update 194 */ 195 smp_wmb(); 196 197 spin_lock(&root->fs_info->fs_roots_radix_lock); 198 if (root->last_trans == trans->transid) { 199 spin_unlock(&root->fs_info->fs_roots_radix_lock); 200 return 0; 201 } 202 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 203 (unsigned long)root->root_key.objectid, 204 BTRFS_ROOT_TRANS_TAG); 205 spin_unlock(&root->fs_info->fs_roots_radix_lock); 206 root->last_trans = trans->transid; 207 208 /* this is pretty tricky. We don't want to 209 * take the relocation lock in btrfs_record_root_in_trans 210 * unless we're really doing the first setup for this root in 211 * this transaction. 212 * 213 * Normally we'd use root->last_trans as a flag to decide 214 * if we want to take the expensive mutex. 215 * 216 * But, we have to set root->last_trans before we 217 * init the relocation root, otherwise, we trip over warnings 218 * in ctree.c. The solution used here is to flag ourselves 219 * with root->in_trans_setup. When this is 1, we're still 220 * fixing up the reloc trees and everyone must wait. 221 * 222 * When this is zero, they can trust root->last_trans and fly 223 * through btrfs_record_root_in_trans without having to take the 224 * lock. smp_wmb() makes sure that all the writes above are 225 * done before we pop in the zero below 226 */ 227 btrfs_init_reloc_root(trans, root); 228 smp_wmb(); 229 root->in_trans_setup = 0; 230 } 231 return 0; 232 } 233 234 235 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 236 struct btrfs_root *root) 237 { 238 if (!root->ref_cows) 239 return 0; 240 241 /* 242 * see record_root_in_trans for comments about in_trans_setup usage 243 * and barriers 244 */ 245 smp_rmb(); 246 if (root->last_trans == trans->transid && 247 !root->in_trans_setup) 248 return 0; 249 250 mutex_lock(&root->fs_info->reloc_mutex); 251 record_root_in_trans(trans, root); 252 mutex_unlock(&root->fs_info->reloc_mutex); 253 254 return 0; 255 } 256 257 /* wait for commit against the current transaction to become unblocked 258 * when this is done, it is safe to start a new transaction, but the current 259 * transaction might not be fully on disk. 260 */ 261 static void wait_current_trans(struct btrfs_root *root) 262 { 263 struct btrfs_transaction *cur_trans; 264 265 spin_lock(&root->fs_info->trans_lock); 266 cur_trans = root->fs_info->running_transaction; 267 if (cur_trans && cur_trans->blocked) { 268 atomic_inc(&cur_trans->use_count); 269 spin_unlock(&root->fs_info->trans_lock); 270 271 wait_event(root->fs_info->transaction_wait, 272 !cur_trans->blocked); 273 put_transaction(cur_trans); 274 } else { 275 spin_unlock(&root->fs_info->trans_lock); 276 } 277 } 278 279 static int may_wait_transaction(struct btrfs_root *root, int type) 280 { 281 if (root->fs_info->log_root_recovering) 282 return 0; 283 284 if (type == TRANS_USERSPACE) 285 return 1; 286 287 if (type == TRANS_START && 288 !atomic_read(&root->fs_info->open_ioctl_trans)) 289 return 1; 290 291 return 0; 292 } 293 294 static struct btrfs_trans_handle * 295 start_transaction(struct btrfs_root *root, u64 num_items, int type, 296 enum btrfs_reserve_flush_enum flush) 297 { 298 struct btrfs_trans_handle *h; 299 struct btrfs_transaction *cur_trans; 300 u64 num_bytes = 0; 301 int ret; 302 u64 qgroup_reserved = 0; 303 304 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) 305 return ERR_PTR(-EROFS); 306 307 if (current->journal_info) { 308 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 309 h = current->journal_info; 310 h->use_count++; 311 WARN_ON(h->use_count > 2); 312 h->orig_rsv = h->block_rsv; 313 h->block_rsv = NULL; 314 goto got_it; 315 } 316 317 /* 318 * Do the reservation before we join the transaction so we can do all 319 * the appropriate flushing if need be. 320 */ 321 if (num_items > 0 && root != root->fs_info->chunk_root) { 322 if (root->fs_info->quota_enabled && 323 is_fstree(root->root_key.objectid)) { 324 qgroup_reserved = num_items * root->leafsize; 325 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 326 if (ret) 327 return ERR_PTR(ret); 328 } 329 330 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 331 ret = btrfs_block_rsv_add(root, 332 &root->fs_info->trans_block_rsv, 333 num_bytes, flush); 334 if (ret) 335 goto reserve_fail; 336 } 337 again: 338 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 339 if (!h) { 340 ret = -ENOMEM; 341 goto alloc_fail; 342 } 343 344 /* 345 * If we are JOIN_NOLOCK we're already committing a transaction and 346 * waiting on this guy, so we don't need to do the sb_start_intwrite 347 * because we're already holding a ref. We need this because we could 348 * have raced in and did an fsync() on a file which can kick a commit 349 * and then we deadlock with somebody doing a freeze. 350 * 351 * If we are ATTACH, it means we just want to catch the current 352 * transaction and commit it, so we needn't do sb_start_intwrite(). 353 */ 354 if (type < TRANS_JOIN_NOLOCK) 355 sb_start_intwrite(root->fs_info->sb); 356 357 if (may_wait_transaction(root, type)) 358 wait_current_trans(root); 359 360 do { 361 ret = join_transaction(root, type); 362 if (ret == -EBUSY) 363 wait_current_trans(root); 364 } while (ret == -EBUSY); 365 366 if (ret < 0) { 367 /* We must get the transaction if we are JOIN_NOLOCK. */ 368 BUG_ON(type == TRANS_JOIN_NOLOCK); 369 goto join_fail; 370 } 371 372 cur_trans = root->fs_info->running_transaction; 373 374 h->transid = cur_trans->transid; 375 h->transaction = cur_trans; 376 h->blocks_used = 0; 377 h->bytes_reserved = 0; 378 h->root = root; 379 h->delayed_ref_updates = 0; 380 h->use_count = 1; 381 h->adding_csums = 0; 382 h->block_rsv = NULL; 383 h->orig_rsv = NULL; 384 h->aborted = 0; 385 h->qgroup_reserved = qgroup_reserved; 386 h->delayed_ref_elem.seq = 0; 387 h->type = type; 388 INIT_LIST_HEAD(&h->qgroup_ref_list); 389 INIT_LIST_HEAD(&h->new_bgs); 390 391 smp_mb(); 392 if (cur_trans->blocked && may_wait_transaction(root, type)) { 393 btrfs_commit_transaction(h, root); 394 goto again; 395 } 396 397 if (num_bytes) { 398 trace_btrfs_space_reservation(root->fs_info, "transaction", 399 h->transid, num_bytes, 1); 400 h->block_rsv = &root->fs_info->trans_block_rsv; 401 h->bytes_reserved = num_bytes; 402 } 403 404 got_it: 405 btrfs_record_root_in_trans(h, root); 406 407 if (!current->journal_info && type != TRANS_USERSPACE) 408 current->journal_info = h; 409 return h; 410 411 join_fail: 412 if (type < TRANS_JOIN_NOLOCK) 413 sb_end_intwrite(root->fs_info->sb); 414 kmem_cache_free(btrfs_trans_handle_cachep, h); 415 alloc_fail: 416 if (num_bytes) 417 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 418 num_bytes); 419 reserve_fail: 420 if (qgroup_reserved) 421 btrfs_qgroup_free(root, qgroup_reserved); 422 return ERR_PTR(ret); 423 } 424 425 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 426 int num_items) 427 { 428 return start_transaction(root, num_items, TRANS_START, 429 BTRFS_RESERVE_FLUSH_ALL); 430 } 431 432 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 433 struct btrfs_root *root, int num_items) 434 { 435 return start_transaction(root, num_items, TRANS_START, 436 BTRFS_RESERVE_FLUSH_LIMIT); 437 } 438 439 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 440 { 441 return start_transaction(root, 0, TRANS_JOIN, 0); 442 } 443 444 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 445 { 446 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 447 } 448 449 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 450 { 451 return start_transaction(root, 0, TRANS_USERSPACE, 0); 452 } 453 454 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 455 { 456 return start_transaction(root, 0, TRANS_ATTACH, 0); 457 } 458 459 /* wait for a transaction commit to be fully complete */ 460 static noinline void wait_for_commit(struct btrfs_root *root, 461 struct btrfs_transaction *commit) 462 { 463 wait_event(commit->commit_wait, commit->commit_done); 464 } 465 466 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 467 { 468 struct btrfs_transaction *cur_trans = NULL, *t; 469 int ret = 0; 470 471 if (transid) { 472 if (transid <= root->fs_info->last_trans_committed) 473 goto out; 474 475 ret = -EINVAL; 476 /* find specified transaction */ 477 spin_lock(&root->fs_info->trans_lock); 478 list_for_each_entry(t, &root->fs_info->trans_list, list) { 479 if (t->transid == transid) { 480 cur_trans = t; 481 atomic_inc(&cur_trans->use_count); 482 ret = 0; 483 break; 484 } 485 if (t->transid > transid) { 486 ret = 0; 487 break; 488 } 489 } 490 spin_unlock(&root->fs_info->trans_lock); 491 /* The specified transaction doesn't exist */ 492 if (!cur_trans) 493 goto out; 494 } else { 495 /* find newest transaction that is committing | committed */ 496 spin_lock(&root->fs_info->trans_lock); 497 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 498 list) { 499 if (t->in_commit) { 500 if (t->commit_done) 501 break; 502 cur_trans = t; 503 atomic_inc(&cur_trans->use_count); 504 break; 505 } 506 } 507 spin_unlock(&root->fs_info->trans_lock); 508 if (!cur_trans) 509 goto out; /* nothing committing|committed */ 510 } 511 512 wait_for_commit(root, cur_trans); 513 put_transaction(cur_trans); 514 out: 515 return ret; 516 } 517 518 void btrfs_throttle(struct btrfs_root *root) 519 { 520 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 521 wait_current_trans(root); 522 } 523 524 static int should_end_transaction(struct btrfs_trans_handle *trans, 525 struct btrfs_root *root) 526 { 527 int ret; 528 529 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 530 return ret ? 1 : 0; 531 } 532 533 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 534 struct btrfs_root *root) 535 { 536 struct btrfs_transaction *cur_trans = trans->transaction; 537 int updates; 538 int err; 539 540 smp_mb(); 541 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 542 return 1; 543 544 updates = trans->delayed_ref_updates; 545 trans->delayed_ref_updates = 0; 546 if (updates) { 547 err = btrfs_run_delayed_refs(trans, root, updates); 548 if (err) /* Error code will also eval true */ 549 return err; 550 } 551 552 return should_end_transaction(trans, root); 553 } 554 555 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 556 struct btrfs_root *root, int throttle) 557 { 558 struct btrfs_transaction *cur_trans = trans->transaction; 559 struct btrfs_fs_info *info = root->fs_info; 560 int count = 0; 561 int lock = (trans->type != TRANS_JOIN_NOLOCK); 562 int err = 0; 563 564 if (--trans->use_count) { 565 trans->block_rsv = trans->orig_rsv; 566 return 0; 567 } 568 569 /* 570 * do the qgroup accounting as early as possible 571 */ 572 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 573 574 btrfs_trans_release_metadata(trans, root); 575 trans->block_rsv = NULL; 576 /* 577 * the same root has to be passed to start_transaction and 578 * end_transaction. Subvolume quota depends on this. 579 */ 580 WARN_ON(trans->root != root); 581 582 if (trans->qgroup_reserved) { 583 btrfs_qgroup_free(root, trans->qgroup_reserved); 584 trans->qgroup_reserved = 0; 585 } 586 587 if (!list_empty(&trans->new_bgs)) 588 btrfs_create_pending_block_groups(trans, root); 589 590 while (count < 2) { 591 unsigned long cur = trans->delayed_ref_updates; 592 trans->delayed_ref_updates = 0; 593 if (cur && 594 trans->transaction->delayed_refs.num_heads_ready > 64) { 595 trans->delayed_ref_updates = 0; 596 btrfs_run_delayed_refs(trans, root, cur); 597 } else { 598 break; 599 } 600 count++; 601 } 602 btrfs_trans_release_metadata(trans, root); 603 trans->block_rsv = NULL; 604 605 if (!list_empty(&trans->new_bgs)) 606 btrfs_create_pending_block_groups(trans, root); 607 608 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 609 should_end_transaction(trans, root)) { 610 trans->transaction->blocked = 1; 611 smp_wmb(); 612 } 613 614 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 615 if (throttle) { 616 /* 617 * We may race with somebody else here so end up having 618 * to call end_transaction on ourselves again, so inc 619 * our use_count. 620 */ 621 trans->use_count++; 622 return btrfs_commit_transaction(trans, root); 623 } else { 624 wake_up_process(info->transaction_kthread); 625 } 626 } 627 628 if (trans->type < TRANS_JOIN_NOLOCK) 629 sb_end_intwrite(root->fs_info->sb); 630 631 WARN_ON(cur_trans != info->running_transaction); 632 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 633 atomic_dec(&cur_trans->num_writers); 634 635 smp_mb(); 636 if (waitqueue_active(&cur_trans->writer_wait)) 637 wake_up(&cur_trans->writer_wait); 638 put_transaction(cur_trans); 639 640 if (current->journal_info == trans) 641 current->journal_info = NULL; 642 643 if (throttle) 644 btrfs_run_delayed_iputs(root); 645 646 if (trans->aborted || 647 root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR) { 648 err = -EIO; 649 } 650 assert_qgroups_uptodate(trans); 651 652 kmem_cache_free(btrfs_trans_handle_cachep, trans); 653 return err; 654 } 655 656 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 657 struct btrfs_root *root) 658 { 659 int ret; 660 661 ret = __btrfs_end_transaction(trans, root, 0); 662 if (ret) 663 return ret; 664 return 0; 665 } 666 667 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 668 struct btrfs_root *root) 669 { 670 int ret; 671 672 ret = __btrfs_end_transaction(trans, root, 1); 673 if (ret) 674 return ret; 675 return 0; 676 } 677 678 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 679 struct btrfs_root *root) 680 { 681 return __btrfs_end_transaction(trans, root, 1); 682 } 683 684 /* 685 * when btree blocks are allocated, they have some corresponding bits set for 686 * them in one of two extent_io trees. This is used to make sure all of 687 * those extents are sent to disk but does not wait on them 688 */ 689 int btrfs_write_marked_extents(struct btrfs_root *root, 690 struct extent_io_tree *dirty_pages, int mark) 691 { 692 int err = 0; 693 int werr = 0; 694 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 695 struct extent_state *cached_state = NULL; 696 u64 start = 0; 697 u64 end; 698 699 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 700 mark, &cached_state)) { 701 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 702 mark, &cached_state, GFP_NOFS); 703 cached_state = NULL; 704 err = filemap_fdatawrite_range(mapping, start, end); 705 if (err) 706 werr = err; 707 cond_resched(); 708 start = end + 1; 709 } 710 if (err) 711 werr = err; 712 return werr; 713 } 714 715 /* 716 * when btree blocks are allocated, they have some corresponding bits set for 717 * them in one of two extent_io trees. This is used to make sure all of 718 * those extents are on disk for transaction or log commit. We wait 719 * on all the pages and clear them from the dirty pages state tree 720 */ 721 int btrfs_wait_marked_extents(struct btrfs_root *root, 722 struct extent_io_tree *dirty_pages, int mark) 723 { 724 int err = 0; 725 int werr = 0; 726 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 727 struct extent_state *cached_state = NULL; 728 u64 start = 0; 729 u64 end; 730 731 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 732 EXTENT_NEED_WAIT, &cached_state)) { 733 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 734 0, 0, &cached_state, GFP_NOFS); 735 err = filemap_fdatawait_range(mapping, start, end); 736 if (err) 737 werr = err; 738 cond_resched(); 739 start = end + 1; 740 } 741 if (err) 742 werr = err; 743 return werr; 744 } 745 746 /* 747 * when btree blocks are allocated, they have some corresponding bits set for 748 * them in one of two extent_io trees. This is used to make sure all of 749 * those extents are on disk for transaction or log commit 750 */ 751 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 752 struct extent_io_tree *dirty_pages, int mark) 753 { 754 int ret; 755 int ret2; 756 757 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 758 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 759 760 if (ret) 761 return ret; 762 if (ret2) 763 return ret2; 764 return 0; 765 } 766 767 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 768 struct btrfs_root *root) 769 { 770 if (!trans || !trans->transaction) { 771 struct inode *btree_inode; 772 btree_inode = root->fs_info->btree_inode; 773 return filemap_write_and_wait(btree_inode->i_mapping); 774 } 775 return btrfs_write_and_wait_marked_extents(root, 776 &trans->transaction->dirty_pages, 777 EXTENT_DIRTY); 778 } 779 780 /* 781 * this is used to update the root pointer in the tree of tree roots. 782 * 783 * But, in the case of the extent allocation tree, updating the root 784 * pointer may allocate blocks which may change the root of the extent 785 * allocation tree. 786 * 787 * So, this loops and repeats and makes sure the cowonly root didn't 788 * change while the root pointer was being updated in the metadata. 789 */ 790 static int update_cowonly_root(struct btrfs_trans_handle *trans, 791 struct btrfs_root *root) 792 { 793 int ret; 794 u64 old_root_bytenr; 795 u64 old_root_used; 796 struct btrfs_root *tree_root = root->fs_info->tree_root; 797 798 old_root_used = btrfs_root_used(&root->root_item); 799 btrfs_write_dirty_block_groups(trans, root); 800 801 while (1) { 802 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 803 if (old_root_bytenr == root->node->start && 804 old_root_used == btrfs_root_used(&root->root_item)) 805 break; 806 807 btrfs_set_root_node(&root->root_item, root->node); 808 ret = btrfs_update_root(trans, tree_root, 809 &root->root_key, 810 &root->root_item); 811 if (ret) 812 return ret; 813 814 old_root_used = btrfs_root_used(&root->root_item); 815 ret = btrfs_write_dirty_block_groups(trans, root); 816 if (ret) 817 return ret; 818 } 819 820 if (root != root->fs_info->extent_root) 821 switch_commit_root(root); 822 823 return 0; 824 } 825 826 /* 827 * update all the cowonly tree roots on disk 828 * 829 * The error handling in this function may not be obvious. Any of the 830 * failures will cause the file system to go offline. We still need 831 * to clean up the delayed refs. 832 */ 833 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 834 struct btrfs_root *root) 835 { 836 struct btrfs_fs_info *fs_info = root->fs_info; 837 struct list_head *next; 838 struct extent_buffer *eb; 839 int ret; 840 841 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 842 if (ret) 843 return ret; 844 845 eb = btrfs_lock_root_node(fs_info->tree_root); 846 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 847 0, &eb); 848 btrfs_tree_unlock(eb); 849 free_extent_buffer(eb); 850 851 if (ret) 852 return ret; 853 854 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 855 if (ret) 856 return ret; 857 858 ret = btrfs_run_dev_stats(trans, root->fs_info); 859 WARN_ON(ret); 860 ret = btrfs_run_dev_replace(trans, root->fs_info); 861 WARN_ON(ret); 862 863 ret = btrfs_run_qgroups(trans, root->fs_info); 864 BUG_ON(ret); 865 866 /* run_qgroups might have added some more refs */ 867 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 868 BUG_ON(ret); 869 870 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 871 next = fs_info->dirty_cowonly_roots.next; 872 list_del_init(next); 873 root = list_entry(next, struct btrfs_root, dirty_list); 874 875 ret = update_cowonly_root(trans, root); 876 if (ret) 877 return ret; 878 } 879 880 down_write(&fs_info->extent_commit_sem); 881 switch_commit_root(fs_info->extent_root); 882 up_write(&fs_info->extent_commit_sem); 883 884 btrfs_after_dev_replace_commit(fs_info); 885 886 return 0; 887 } 888 889 /* 890 * dead roots are old snapshots that need to be deleted. This allocates 891 * a dirty root struct and adds it into the list of dead roots that need to 892 * be deleted 893 */ 894 int btrfs_add_dead_root(struct btrfs_root *root) 895 { 896 spin_lock(&root->fs_info->trans_lock); 897 list_add(&root->root_list, &root->fs_info->dead_roots); 898 spin_unlock(&root->fs_info->trans_lock); 899 return 0; 900 } 901 902 /* 903 * update all the cowonly tree roots on disk 904 */ 905 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 906 struct btrfs_root *root) 907 { 908 struct btrfs_root *gang[8]; 909 struct btrfs_fs_info *fs_info = root->fs_info; 910 int i; 911 int ret; 912 int err = 0; 913 914 spin_lock(&fs_info->fs_roots_radix_lock); 915 while (1) { 916 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 917 (void **)gang, 0, 918 ARRAY_SIZE(gang), 919 BTRFS_ROOT_TRANS_TAG); 920 if (ret == 0) 921 break; 922 for (i = 0; i < ret; i++) { 923 root = gang[i]; 924 radix_tree_tag_clear(&fs_info->fs_roots_radix, 925 (unsigned long)root->root_key.objectid, 926 BTRFS_ROOT_TRANS_TAG); 927 spin_unlock(&fs_info->fs_roots_radix_lock); 928 929 btrfs_free_log(trans, root); 930 btrfs_update_reloc_root(trans, root); 931 btrfs_orphan_commit_root(trans, root); 932 933 btrfs_save_ino_cache(root, trans); 934 935 /* see comments in should_cow_block() */ 936 root->force_cow = 0; 937 smp_wmb(); 938 939 if (root->commit_root != root->node) { 940 mutex_lock(&root->fs_commit_mutex); 941 switch_commit_root(root); 942 btrfs_unpin_free_ino(root); 943 mutex_unlock(&root->fs_commit_mutex); 944 945 btrfs_set_root_node(&root->root_item, 946 root->node); 947 } 948 949 err = btrfs_update_root(trans, fs_info->tree_root, 950 &root->root_key, 951 &root->root_item); 952 spin_lock(&fs_info->fs_roots_radix_lock); 953 if (err) 954 break; 955 } 956 } 957 spin_unlock(&fs_info->fs_roots_radix_lock); 958 return err; 959 } 960 961 /* 962 * defrag a given btree. If cacheonly == 1, this won't read from the disk, 963 * otherwise every leaf in the btree is read and defragged. 964 */ 965 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly) 966 { 967 struct btrfs_fs_info *info = root->fs_info; 968 struct btrfs_trans_handle *trans; 969 int ret; 970 971 if (xchg(&root->defrag_running, 1)) 972 return 0; 973 974 while (1) { 975 trans = btrfs_start_transaction(root, 0); 976 if (IS_ERR(trans)) 977 return PTR_ERR(trans); 978 979 ret = btrfs_defrag_leaves(trans, root, cacheonly); 980 981 btrfs_end_transaction(trans, root); 982 btrfs_btree_balance_dirty(info->tree_root); 983 cond_resched(); 984 985 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 986 break; 987 } 988 root->defrag_running = 0; 989 return ret; 990 } 991 992 /* 993 * new snapshots need to be created at a very specific time in the 994 * transaction commit. This does the actual creation 995 */ 996 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 997 struct btrfs_fs_info *fs_info, 998 struct btrfs_pending_snapshot *pending) 999 { 1000 struct btrfs_key key; 1001 struct btrfs_root_item *new_root_item; 1002 struct btrfs_root *tree_root = fs_info->tree_root; 1003 struct btrfs_root *root = pending->root; 1004 struct btrfs_root *parent_root; 1005 struct btrfs_block_rsv *rsv; 1006 struct inode *parent_inode; 1007 struct btrfs_path *path; 1008 struct btrfs_dir_item *dir_item; 1009 struct dentry *parent; 1010 struct dentry *dentry; 1011 struct extent_buffer *tmp; 1012 struct extent_buffer *old; 1013 struct timespec cur_time = CURRENT_TIME; 1014 int ret; 1015 u64 to_reserve = 0; 1016 u64 index = 0; 1017 u64 objectid; 1018 u64 root_flags; 1019 uuid_le new_uuid; 1020 1021 path = btrfs_alloc_path(); 1022 if (!path) { 1023 ret = pending->error = -ENOMEM; 1024 goto path_alloc_fail; 1025 } 1026 1027 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1028 if (!new_root_item) { 1029 ret = pending->error = -ENOMEM; 1030 goto root_item_alloc_fail; 1031 } 1032 1033 ret = btrfs_find_free_objectid(tree_root, &objectid); 1034 if (ret) { 1035 pending->error = ret; 1036 goto no_free_objectid; 1037 } 1038 1039 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1040 1041 if (to_reserve > 0) { 1042 ret = btrfs_block_rsv_add(root, &pending->block_rsv, 1043 to_reserve, 1044 BTRFS_RESERVE_NO_FLUSH); 1045 if (ret) { 1046 pending->error = ret; 1047 goto no_free_objectid; 1048 } 1049 } 1050 1051 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 1052 objectid, pending->inherit); 1053 if (ret) { 1054 pending->error = ret; 1055 goto no_free_objectid; 1056 } 1057 1058 key.objectid = objectid; 1059 key.offset = (u64)-1; 1060 key.type = BTRFS_ROOT_ITEM_KEY; 1061 1062 rsv = trans->block_rsv; 1063 trans->block_rsv = &pending->block_rsv; 1064 1065 dentry = pending->dentry; 1066 parent = dget_parent(dentry); 1067 parent_inode = parent->d_inode; 1068 parent_root = BTRFS_I(parent_inode)->root; 1069 record_root_in_trans(trans, parent_root); 1070 1071 /* 1072 * insert the directory item 1073 */ 1074 ret = btrfs_set_inode_index(parent_inode, &index); 1075 BUG_ON(ret); /* -ENOMEM */ 1076 1077 /* check if there is a file/dir which has the same name. */ 1078 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1079 btrfs_ino(parent_inode), 1080 dentry->d_name.name, 1081 dentry->d_name.len, 0); 1082 if (dir_item != NULL && !IS_ERR(dir_item)) { 1083 pending->error = -EEXIST; 1084 goto fail; 1085 } else if (IS_ERR(dir_item)) { 1086 ret = PTR_ERR(dir_item); 1087 btrfs_abort_transaction(trans, root, ret); 1088 goto fail; 1089 } 1090 btrfs_release_path(path); 1091 1092 /* 1093 * pull in the delayed directory update 1094 * and the delayed inode item 1095 * otherwise we corrupt the FS during 1096 * snapshot 1097 */ 1098 ret = btrfs_run_delayed_items(trans, root); 1099 if (ret) { /* Transaction aborted */ 1100 btrfs_abort_transaction(trans, root, ret); 1101 goto fail; 1102 } 1103 1104 record_root_in_trans(trans, root); 1105 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1106 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1107 btrfs_check_and_init_root_item(new_root_item); 1108 1109 root_flags = btrfs_root_flags(new_root_item); 1110 if (pending->readonly) 1111 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1112 else 1113 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1114 btrfs_set_root_flags(new_root_item, root_flags); 1115 1116 btrfs_set_root_generation_v2(new_root_item, 1117 trans->transid); 1118 uuid_le_gen(&new_uuid); 1119 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1120 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1121 BTRFS_UUID_SIZE); 1122 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1123 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1124 btrfs_set_root_otransid(new_root_item, trans->transid); 1125 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1126 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1127 btrfs_set_root_stransid(new_root_item, 0); 1128 btrfs_set_root_rtransid(new_root_item, 0); 1129 1130 old = btrfs_lock_root_node(root); 1131 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1132 if (ret) { 1133 btrfs_tree_unlock(old); 1134 free_extent_buffer(old); 1135 btrfs_abort_transaction(trans, root, ret); 1136 goto fail; 1137 } 1138 1139 btrfs_set_lock_blocking(old); 1140 1141 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1142 /* clean up in any case */ 1143 btrfs_tree_unlock(old); 1144 free_extent_buffer(old); 1145 if (ret) { 1146 btrfs_abort_transaction(trans, root, ret); 1147 goto fail; 1148 } 1149 1150 /* see comments in should_cow_block() */ 1151 root->force_cow = 1; 1152 smp_wmb(); 1153 1154 btrfs_set_root_node(new_root_item, tmp); 1155 /* record when the snapshot was created in key.offset */ 1156 key.offset = trans->transid; 1157 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1158 btrfs_tree_unlock(tmp); 1159 free_extent_buffer(tmp); 1160 if (ret) { 1161 btrfs_abort_transaction(trans, root, ret); 1162 goto fail; 1163 } 1164 1165 /* 1166 * insert root back/forward references 1167 */ 1168 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1169 parent_root->root_key.objectid, 1170 btrfs_ino(parent_inode), index, 1171 dentry->d_name.name, dentry->d_name.len); 1172 if (ret) { 1173 btrfs_abort_transaction(trans, root, ret); 1174 goto fail; 1175 } 1176 1177 key.offset = (u64)-1; 1178 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1179 if (IS_ERR(pending->snap)) { 1180 ret = PTR_ERR(pending->snap); 1181 btrfs_abort_transaction(trans, root, ret); 1182 goto fail; 1183 } 1184 1185 ret = btrfs_reloc_post_snapshot(trans, pending); 1186 if (ret) { 1187 btrfs_abort_transaction(trans, root, ret); 1188 goto fail; 1189 } 1190 1191 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1192 if (ret) { 1193 btrfs_abort_transaction(trans, root, ret); 1194 goto fail; 1195 } 1196 1197 ret = btrfs_insert_dir_item(trans, parent_root, 1198 dentry->d_name.name, dentry->d_name.len, 1199 parent_inode, &key, 1200 BTRFS_FT_DIR, index); 1201 /* We have check then name at the beginning, so it is impossible. */ 1202 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1203 if (ret) { 1204 btrfs_abort_transaction(trans, root, ret); 1205 goto fail; 1206 } 1207 1208 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1209 dentry->d_name.len * 2); 1210 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1211 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1212 if (ret) 1213 btrfs_abort_transaction(trans, root, ret); 1214 fail: 1215 dput(parent); 1216 trans->block_rsv = rsv; 1217 no_free_objectid: 1218 kfree(new_root_item); 1219 root_item_alloc_fail: 1220 btrfs_free_path(path); 1221 path_alloc_fail: 1222 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1223 return ret; 1224 } 1225 1226 /* 1227 * create all the snapshots we've scheduled for creation 1228 */ 1229 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1230 struct btrfs_fs_info *fs_info) 1231 { 1232 struct btrfs_pending_snapshot *pending; 1233 struct list_head *head = &trans->transaction->pending_snapshots; 1234 1235 list_for_each_entry(pending, head, list) 1236 create_pending_snapshot(trans, fs_info, pending); 1237 return 0; 1238 } 1239 1240 static void update_super_roots(struct btrfs_root *root) 1241 { 1242 struct btrfs_root_item *root_item; 1243 struct btrfs_super_block *super; 1244 1245 super = root->fs_info->super_copy; 1246 1247 root_item = &root->fs_info->chunk_root->root_item; 1248 super->chunk_root = root_item->bytenr; 1249 super->chunk_root_generation = root_item->generation; 1250 super->chunk_root_level = root_item->level; 1251 1252 root_item = &root->fs_info->tree_root->root_item; 1253 super->root = root_item->bytenr; 1254 super->generation = root_item->generation; 1255 super->root_level = root_item->level; 1256 if (btrfs_test_opt(root, SPACE_CACHE)) 1257 super->cache_generation = root_item->generation; 1258 } 1259 1260 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1261 { 1262 int ret = 0; 1263 spin_lock(&info->trans_lock); 1264 if (info->running_transaction) 1265 ret = info->running_transaction->in_commit; 1266 spin_unlock(&info->trans_lock); 1267 return ret; 1268 } 1269 1270 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1271 { 1272 int ret = 0; 1273 spin_lock(&info->trans_lock); 1274 if (info->running_transaction) 1275 ret = info->running_transaction->blocked; 1276 spin_unlock(&info->trans_lock); 1277 return ret; 1278 } 1279 1280 /* 1281 * wait for the current transaction commit to start and block subsequent 1282 * transaction joins 1283 */ 1284 static void wait_current_trans_commit_start(struct btrfs_root *root, 1285 struct btrfs_transaction *trans) 1286 { 1287 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1288 } 1289 1290 /* 1291 * wait for the current transaction to start and then become unblocked. 1292 * caller holds ref. 1293 */ 1294 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1295 struct btrfs_transaction *trans) 1296 { 1297 wait_event(root->fs_info->transaction_wait, 1298 trans->commit_done || (trans->in_commit && !trans->blocked)); 1299 } 1300 1301 /* 1302 * commit transactions asynchronously. once btrfs_commit_transaction_async 1303 * returns, any subsequent transaction will not be allowed to join. 1304 */ 1305 struct btrfs_async_commit { 1306 struct btrfs_trans_handle *newtrans; 1307 struct btrfs_root *root; 1308 struct work_struct work; 1309 }; 1310 1311 static void do_async_commit(struct work_struct *work) 1312 { 1313 struct btrfs_async_commit *ac = 1314 container_of(work, struct btrfs_async_commit, work); 1315 1316 /* 1317 * We've got freeze protection passed with the transaction. 1318 * Tell lockdep about it. 1319 */ 1320 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1321 rwsem_acquire_read( 1322 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1323 0, 1, _THIS_IP_); 1324 1325 current->journal_info = ac->newtrans; 1326 1327 btrfs_commit_transaction(ac->newtrans, ac->root); 1328 kfree(ac); 1329 } 1330 1331 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1332 struct btrfs_root *root, 1333 int wait_for_unblock) 1334 { 1335 struct btrfs_async_commit *ac; 1336 struct btrfs_transaction *cur_trans; 1337 1338 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1339 if (!ac) 1340 return -ENOMEM; 1341 1342 INIT_WORK(&ac->work, do_async_commit); 1343 ac->root = root; 1344 ac->newtrans = btrfs_join_transaction(root); 1345 if (IS_ERR(ac->newtrans)) { 1346 int err = PTR_ERR(ac->newtrans); 1347 kfree(ac); 1348 return err; 1349 } 1350 1351 /* take transaction reference */ 1352 cur_trans = trans->transaction; 1353 atomic_inc(&cur_trans->use_count); 1354 1355 btrfs_end_transaction(trans, root); 1356 1357 /* 1358 * Tell lockdep we've released the freeze rwsem, since the 1359 * async commit thread will be the one to unlock it. 1360 */ 1361 if (trans->type < TRANS_JOIN_NOLOCK) 1362 rwsem_release( 1363 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1364 1, _THIS_IP_); 1365 1366 schedule_work(&ac->work); 1367 1368 /* wait for transaction to start and unblock */ 1369 if (wait_for_unblock) 1370 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1371 else 1372 wait_current_trans_commit_start(root, cur_trans); 1373 1374 if (current->journal_info == trans) 1375 current->journal_info = NULL; 1376 1377 put_transaction(cur_trans); 1378 return 0; 1379 } 1380 1381 1382 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1383 struct btrfs_root *root, int err) 1384 { 1385 struct btrfs_transaction *cur_trans = trans->transaction; 1386 1387 WARN_ON(trans->use_count > 1); 1388 1389 btrfs_abort_transaction(trans, root, err); 1390 1391 spin_lock(&root->fs_info->trans_lock); 1392 list_del_init(&cur_trans->list); 1393 if (cur_trans == root->fs_info->running_transaction) { 1394 root->fs_info->running_transaction = NULL; 1395 root->fs_info->trans_no_join = 0; 1396 } 1397 spin_unlock(&root->fs_info->trans_lock); 1398 1399 btrfs_cleanup_one_transaction(trans->transaction, root); 1400 1401 put_transaction(cur_trans); 1402 put_transaction(cur_trans); 1403 1404 trace_btrfs_transaction_commit(root); 1405 1406 btrfs_scrub_continue(root); 1407 1408 if (current->journal_info == trans) 1409 current->journal_info = NULL; 1410 1411 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1412 } 1413 1414 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1415 struct btrfs_root *root) 1416 { 1417 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1418 int snap_pending = 0; 1419 int ret; 1420 1421 if (!flush_on_commit) { 1422 spin_lock(&root->fs_info->trans_lock); 1423 if (!list_empty(&trans->transaction->pending_snapshots)) 1424 snap_pending = 1; 1425 spin_unlock(&root->fs_info->trans_lock); 1426 } 1427 1428 if (flush_on_commit || snap_pending) { 1429 btrfs_start_delalloc_inodes(root, 1); 1430 btrfs_wait_ordered_extents(root, 1); 1431 } 1432 1433 ret = btrfs_run_delayed_items(trans, root); 1434 if (ret) 1435 return ret; 1436 1437 /* 1438 * running the delayed items may have added new refs. account 1439 * them now so that they hinder processing of more delayed refs 1440 * as little as possible. 1441 */ 1442 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1443 1444 /* 1445 * rename don't use btrfs_join_transaction, so, once we 1446 * set the transaction to blocked above, we aren't going 1447 * to get any new ordered operations. We can safely run 1448 * it here and no for sure that nothing new will be added 1449 * to the list 1450 */ 1451 btrfs_run_ordered_operations(root, 1); 1452 1453 return 0; 1454 } 1455 1456 /* 1457 * btrfs_transaction state sequence: 1458 * in_commit = 0, blocked = 0 (initial) 1459 * in_commit = 1, blocked = 1 1460 * blocked = 0 1461 * commit_done = 1 1462 */ 1463 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1464 struct btrfs_root *root) 1465 { 1466 unsigned long joined = 0; 1467 struct btrfs_transaction *cur_trans = trans->transaction; 1468 struct btrfs_transaction *prev_trans = NULL; 1469 DEFINE_WAIT(wait); 1470 int ret; 1471 int should_grow = 0; 1472 unsigned long now = get_seconds(); 1473 1474 ret = btrfs_run_ordered_operations(root, 0); 1475 if (ret) { 1476 btrfs_abort_transaction(trans, root, ret); 1477 goto cleanup_transaction; 1478 } 1479 1480 /* Stop the commit early if ->aborted is set */ 1481 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1482 ret = cur_trans->aborted; 1483 goto cleanup_transaction; 1484 } 1485 1486 /* make a pass through all the delayed refs we have so far 1487 * any runnings procs may add more while we are here 1488 */ 1489 ret = btrfs_run_delayed_refs(trans, root, 0); 1490 if (ret) 1491 goto cleanup_transaction; 1492 1493 btrfs_trans_release_metadata(trans, root); 1494 trans->block_rsv = NULL; 1495 1496 cur_trans = trans->transaction; 1497 1498 /* 1499 * set the flushing flag so procs in this transaction have to 1500 * start sending their work down. 1501 */ 1502 cur_trans->delayed_refs.flushing = 1; 1503 1504 if (!list_empty(&trans->new_bgs)) 1505 btrfs_create_pending_block_groups(trans, root); 1506 1507 ret = btrfs_run_delayed_refs(trans, root, 0); 1508 if (ret) 1509 goto cleanup_transaction; 1510 1511 spin_lock(&cur_trans->commit_lock); 1512 if (cur_trans->in_commit) { 1513 spin_unlock(&cur_trans->commit_lock); 1514 atomic_inc(&cur_trans->use_count); 1515 ret = btrfs_end_transaction(trans, root); 1516 1517 wait_for_commit(root, cur_trans); 1518 1519 put_transaction(cur_trans); 1520 1521 return ret; 1522 } 1523 1524 trans->transaction->in_commit = 1; 1525 trans->transaction->blocked = 1; 1526 spin_unlock(&cur_trans->commit_lock); 1527 wake_up(&root->fs_info->transaction_blocked_wait); 1528 1529 spin_lock(&root->fs_info->trans_lock); 1530 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1531 prev_trans = list_entry(cur_trans->list.prev, 1532 struct btrfs_transaction, list); 1533 if (!prev_trans->commit_done) { 1534 atomic_inc(&prev_trans->use_count); 1535 spin_unlock(&root->fs_info->trans_lock); 1536 1537 wait_for_commit(root, prev_trans); 1538 1539 put_transaction(prev_trans); 1540 } else { 1541 spin_unlock(&root->fs_info->trans_lock); 1542 } 1543 } else { 1544 spin_unlock(&root->fs_info->trans_lock); 1545 } 1546 1547 if (!btrfs_test_opt(root, SSD) && 1548 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1549 should_grow = 1; 1550 1551 do { 1552 joined = cur_trans->num_joined; 1553 1554 WARN_ON(cur_trans != trans->transaction); 1555 1556 ret = btrfs_flush_all_pending_stuffs(trans, root); 1557 if (ret) 1558 goto cleanup_transaction; 1559 1560 prepare_to_wait(&cur_trans->writer_wait, &wait, 1561 TASK_UNINTERRUPTIBLE); 1562 1563 if (atomic_read(&cur_trans->num_writers) > 1) 1564 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1565 else if (should_grow) 1566 schedule_timeout(1); 1567 1568 finish_wait(&cur_trans->writer_wait, &wait); 1569 } while (atomic_read(&cur_trans->num_writers) > 1 || 1570 (should_grow && cur_trans->num_joined != joined)); 1571 1572 ret = btrfs_flush_all_pending_stuffs(trans, root); 1573 if (ret) 1574 goto cleanup_transaction; 1575 1576 /* 1577 * Ok now we need to make sure to block out any other joins while we 1578 * commit the transaction. We could have started a join before setting 1579 * no_join so make sure to wait for num_writers to == 1 again. 1580 */ 1581 spin_lock(&root->fs_info->trans_lock); 1582 root->fs_info->trans_no_join = 1; 1583 spin_unlock(&root->fs_info->trans_lock); 1584 wait_event(cur_trans->writer_wait, 1585 atomic_read(&cur_trans->num_writers) == 1); 1586 1587 /* ->aborted might be set after the previous check, so check it */ 1588 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1589 ret = cur_trans->aborted; 1590 goto cleanup_transaction; 1591 } 1592 /* 1593 * the reloc mutex makes sure that we stop 1594 * the balancing code from coming in and moving 1595 * extents around in the middle of the commit 1596 */ 1597 mutex_lock(&root->fs_info->reloc_mutex); 1598 1599 /* 1600 * We needn't worry about the delayed items because we will 1601 * deal with them in create_pending_snapshot(), which is the 1602 * core function of the snapshot creation. 1603 */ 1604 ret = create_pending_snapshots(trans, root->fs_info); 1605 if (ret) { 1606 mutex_unlock(&root->fs_info->reloc_mutex); 1607 goto cleanup_transaction; 1608 } 1609 1610 /* 1611 * We insert the dir indexes of the snapshots and update the inode 1612 * of the snapshots' parents after the snapshot creation, so there 1613 * are some delayed items which are not dealt with. Now deal with 1614 * them. 1615 * 1616 * We needn't worry that this operation will corrupt the snapshots, 1617 * because all the tree which are snapshoted will be forced to COW 1618 * the nodes and leaves. 1619 */ 1620 ret = btrfs_run_delayed_items(trans, root); 1621 if (ret) { 1622 mutex_unlock(&root->fs_info->reloc_mutex); 1623 goto cleanup_transaction; 1624 } 1625 1626 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1627 if (ret) { 1628 mutex_unlock(&root->fs_info->reloc_mutex); 1629 goto cleanup_transaction; 1630 } 1631 1632 /* 1633 * make sure none of the code above managed to slip in a 1634 * delayed item 1635 */ 1636 btrfs_assert_delayed_root_empty(root); 1637 1638 WARN_ON(cur_trans != trans->transaction); 1639 1640 btrfs_scrub_pause(root); 1641 /* btrfs_commit_tree_roots is responsible for getting the 1642 * various roots consistent with each other. Every pointer 1643 * in the tree of tree roots has to point to the most up to date 1644 * root for every subvolume and other tree. So, we have to keep 1645 * the tree logging code from jumping in and changing any 1646 * of the trees. 1647 * 1648 * At this point in the commit, there can't be any tree-log 1649 * writers, but a little lower down we drop the trans mutex 1650 * and let new people in. By holding the tree_log_mutex 1651 * from now until after the super is written, we avoid races 1652 * with the tree-log code. 1653 */ 1654 mutex_lock(&root->fs_info->tree_log_mutex); 1655 1656 ret = commit_fs_roots(trans, root); 1657 if (ret) { 1658 mutex_unlock(&root->fs_info->tree_log_mutex); 1659 mutex_unlock(&root->fs_info->reloc_mutex); 1660 goto cleanup_transaction; 1661 } 1662 1663 /* commit_fs_roots gets rid of all the tree log roots, it is now 1664 * safe to free the root of tree log roots 1665 */ 1666 btrfs_free_log_root_tree(trans, root->fs_info); 1667 1668 ret = commit_cowonly_roots(trans, root); 1669 if (ret) { 1670 mutex_unlock(&root->fs_info->tree_log_mutex); 1671 mutex_unlock(&root->fs_info->reloc_mutex); 1672 goto cleanup_transaction; 1673 } 1674 1675 /* 1676 * The tasks which save the space cache and inode cache may also 1677 * update ->aborted, check it. 1678 */ 1679 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1680 ret = cur_trans->aborted; 1681 mutex_unlock(&root->fs_info->tree_log_mutex); 1682 mutex_unlock(&root->fs_info->reloc_mutex); 1683 goto cleanup_transaction; 1684 } 1685 1686 btrfs_prepare_extent_commit(trans, root); 1687 1688 cur_trans = root->fs_info->running_transaction; 1689 1690 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1691 root->fs_info->tree_root->node); 1692 switch_commit_root(root->fs_info->tree_root); 1693 1694 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1695 root->fs_info->chunk_root->node); 1696 switch_commit_root(root->fs_info->chunk_root); 1697 1698 assert_qgroups_uptodate(trans); 1699 update_super_roots(root); 1700 1701 if (!root->fs_info->log_root_recovering) { 1702 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1703 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1704 } 1705 1706 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1707 sizeof(*root->fs_info->super_copy)); 1708 1709 trans->transaction->blocked = 0; 1710 spin_lock(&root->fs_info->trans_lock); 1711 root->fs_info->running_transaction = NULL; 1712 root->fs_info->trans_no_join = 0; 1713 spin_unlock(&root->fs_info->trans_lock); 1714 mutex_unlock(&root->fs_info->reloc_mutex); 1715 1716 wake_up(&root->fs_info->transaction_wait); 1717 1718 ret = btrfs_write_and_wait_transaction(trans, root); 1719 if (ret) { 1720 btrfs_error(root->fs_info, ret, 1721 "Error while writing out transaction."); 1722 mutex_unlock(&root->fs_info->tree_log_mutex); 1723 goto cleanup_transaction; 1724 } 1725 1726 ret = write_ctree_super(trans, root, 0); 1727 if (ret) { 1728 mutex_unlock(&root->fs_info->tree_log_mutex); 1729 goto cleanup_transaction; 1730 } 1731 1732 /* 1733 * the super is written, we can safely allow the tree-loggers 1734 * to go about their business 1735 */ 1736 mutex_unlock(&root->fs_info->tree_log_mutex); 1737 1738 btrfs_finish_extent_commit(trans, root); 1739 1740 cur_trans->commit_done = 1; 1741 1742 root->fs_info->last_trans_committed = cur_trans->transid; 1743 1744 wake_up(&cur_trans->commit_wait); 1745 1746 spin_lock(&root->fs_info->trans_lock); 1747 list_del_init(&cur_trans->list); 1748 spin_unlock(&root->fs_info->trans_lock); 1749 1750 put_transaction(cur_trans); 1751 put_transaction(cur_trans); 1752 1753 if (trans->type < TRANS_JOIN_NOLOCK) 1754 sb_end_intwrite(root->fs_info->sb); 1755 1756 trace_btrfs_transaction_commit(root); 1757 1758 btrfs_scrub_continue(root); 1759 1760 if (current->journal_info == trans) 1761 current->journal_info = NULL; 1762 1763 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1764 1765 if (current != root->fs_info->transaction_kthread) 1766 btrfs_run_delayed_iputs(root); 1767 1768 return ret; 1769 1770 cleanup_transaction: 1771 btrfs_trans_release_metadata(trans, root); 1772 trans->block_rsv = NULL; 1773 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1774 // WARN_ON(1); 1775 if (current->journal_info == trans) 1776 current->journal_info = NULL; 1777 cleanup_transaction(trans, root, ret); 1778 1779 return ret; 1780 } 1781 1782 /* 1783 * interface function to delete all the snapshots we have scheduled for deletion 1784 */ 1785 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1786 { 1787 LIST_HEAD(list); 1788 struct btrfs_fs_info *fs_info = root->fs_info; 1789 1790 spin_lock(&fs_info->trans_lock); 1791 list_splice_init(&fs_info->dead_roots, &list); 1792 spin_unlock(&fs_info->trans_lock); 1793 1794 while (!list_empty(&list)) { 1795 int ret; 1796 1797 root = list_entry(list.next, struct btrfs_root, root_list); 1798 list_del(&root->root_list); 1799 1800 btrfs_kill_all_delayed_nodes(root); 1801 1802 if (btrfs_header_backref_rev(root->node) < 1803 BTRFS_MIXED_BACKREF_REV) 1804 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1805 else 1806 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1807 BUG_ON(ret < 0); 1808 } 1809 return 0; 1810 } 1811