xref: /openbmc/linux/fs/btrfs/transaction.c (revision 729f7961729a94e15bcaeeb2a407efb570091ea6)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/writeback.h>
10 #include <linux/pagemap.h>
11 #include <linux/blkdev.h>
12 #include <linux/uuid.h>
13 #include "misc.h"
14 #include "ctree.h"
15 #include "disk-io.h"
16 #include "transaction.h"
17 #include "locking.h"
18 #include "tree-log.h"
19 #include "inode-map.h"
20 #include "volumes.h"
21 #include "dev-replace.h"
22 #include "qgroup.h"
23 #include "block-group.h"
24 #include "space-info.h"
25 
26 #define BTRFS_ROOT_TRANS_TAG 0
27 
28 /*
29  * Transaction states and transitions
30  *
31  * No running transaction (fs tree blocks are not modified)
32  * |
33  * | To next stage:
34  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35  * V
36  * Transaction N [[TRANS_STATE_RUNNING]]
37  * |
38  * | New trans handles can be attached to transaction N by calling all
39  * | start_transaction() variants.
40  * |
41  * | To next stage:
42  * |  Call btrfs_commit_transaction() on any trans handle attached to
43  * |  transaction N
44  * V
45  * Transaction N [[TRANS_STATE_COMMIT_START]]
46  * |
47  * | Will wait for previous running transaction to completely finish if there
48  * | is one
49  * |
50  * | Then one of the following happes:
51  * | - Wait for all other trans handle holders to release.
52  * |   The btrfs_commit_transaction() caller will do the commit work.
53  * | - Wait for current transaction to be committed by others.
54  * |   Other btrfs_commit_transaction() caller will do the commit work.
55  * |
56  * | At this stage, only btrfs_join_transaction*() variants can attach
57  * | to this running transaction.
58  * | All other variants will wait for current one to finish and attach to
59  * | transaction N+1.
60  * |
61  * | To next stage:
62  * |  Caller is chosen to commit transaction N, and all other trans handle
63  * |  haven been released.
64  * V
65  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66  * |
67  * | The heavy lifting transaction work is started.
68  * | From running delayed refs (modifying extent tree) to creating pending
69  * | snapshots, running qgroups.
70  * | In short, modify supporting trees to reflect modifications of subvolume
71  * | trees.
72  * |
73  * | At this stage, all start_transaction() calls will wait for this
74  * | transaction to finish and attach to transaction N+1.
75  * |
76  * | To next stage:
77  * |  Until all supporting trees are updated.
78  * V
79  * Transaction N [[TRANS_STATE_UNBLOCKED]]
80  * |						    Transaction N+1
81  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
82  * | need to write them back to disk and update	    |
83  * | super blocks.				    |
84  * |						    |
85  * | At this stage, new transaction is allowed to   |
86  * | start.					    |
87  * | All new start_transaction() calls will be	    |
88  * | attached to transid N+1.			    |
89  * |						    |
90  * | To next stage:				    |
91  * |  Until all tree blocks are super blocks are    |
92  * |  written to block devices			    |
93  * V						    |
94  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
95  *   All tree blocks and super blocks are written.  Transaction N+1
96  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
97  *   data structures will be cleaned up.	    | Life goes on
98  */
99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 	[TRANS_STATE_RUNNING]		= 0U,
101 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
102 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
103 					   __TRANS_ATTACH |
104 					   __TRANS_JOIN |
105 					   __TRANS_JOIN_NOSTART),
106 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
107 					   __TRANS_ATTACH |
108 					   __TRANS_JOIN |
109 					   __TRANS_JOIN_NOLOCK |
110 					   __TRANS_JOIN_NOSTART),
111 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
112 					   __TRANS_ATTACH |
113 					   __TRANS_JOIN |
114 					   __TRANS_JOIN_NOLOCK |
115 					   __TRANS_JOIN_NOSTART),
116 };
117 
118 void btrfs_put_transaction(struct btrfs_transaction *transaction)
119 {
120 	WARN_ON(refcount_read(&transaction->use_count) == 0);
121 	if (refcount_dec_and_test(&transaction->use_count)) {
122 		BUG_ON(!list_empty(&transaction->list));
123 		WARN_ON(!RB_EMPTY_ROOT(
124 				&transaction->delayed_refs.href_root.rb_root));
125 		WARN_ON(!RB_EMPTY_ROOT(
126 				&transaction->delayed_refs.dirty_extent_root));
127 		if (transaction->delayed_refs.pending_csums)
128 			btrfs_err(transaction->fs_info,
129 				  "pending csums is %llu",
130 				  transaction->delayed_refs.pending_csums);
131 		/*
132 		 * If any block groups are found in ->deleted_bgs then it's
133 		 * because the transaction was aborted and a commit did not
134 		 * happen (things failed before writing the new superblock
135 		 * and calling btrfs_finish_extent_commit()), so we can not
136 		 * discard the physical locations of the block groups.
137 		 */
138 		while (!list_empty(&transaction->deleted_bgs)) {
139 			struct btrfs_block_group *cache;
140 
141 			cache = list_first_entry(&transaction->deleted_bgs,
142 						 struct btrfs_block_group,
143 						 bg_list);
144 			list_del_init(&cache->bg_list);
145 			btrfs_unfreeze_block_group(cache);
146 			btrfs_put_block_group(cache);
147 		}
148 		WARN_ON(!list_empty(&transaction->dev_update_list));
149 		kfree(transaction);
150 	}
151 }
152 
153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154 {
155 	struct btrfs_transaction *cur_trans = trans->transaction;
156 	struct btrfs_fs_info *fs_info = trans->fs_info;
157 	struct btrfs_root *root, *tmp;
158 	struct btrfs_caching_control *caching_ctl, *next;
159 
160 	down_write(&fs_info->commit_root_sem);
161 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
162 				 dirty_list) {
163 		list_del_init(&root->dirty_list);
164 		free_extent_buffer(root->commit_root);
165 		root->commit_root = btrfs_root_node(root);
166 		if (is_fstree(root->root_key.objectid))
167 			btrfs_unpin_free_ino(root);
168 		extent_io_tree_release(&root->dirty_log_pages);
169 		btrfs_qgroup_clean_swapped_blocks(root);
170 	}
171 
172 	/* We can free old roots now. */
173 	spin_lock(&cur_trans->dropped_roots_lock);
174 	while (!list_empty(&cur_trans->dropped_roots)) {
175 		root = list_first_entry(&cur_trans->dropped_roots,
176 					struct btrfs_root, root_list);
177 		list_del_init(&root->root_list);
178 		spin_unlock(&cur_trans->dropped_roots_lock);
179 		btrfs_free_log(trans, root);
180 		btrfs_drop_and_free_fs_root(fs_info, root);
181 		spin_lock(&cur_trans->dropped_roots_lock);
182 	}
183 	spin_unlock(&cur_trans->dropped_roots_lock);
184 
185 	/*
186 	 * We have to update the last_byte_to_unpin under the commit_root_sem,
187 	 * at the same time we swap out the commit roots.
188 	 *
189 	 * This is because we must have a real view of the last spot the caching
190 	 * kthreads were while caching.  Consider the following views of the
191 	 * extent tree for a block group
192 	 *
193 	 * commit root
194 	 * +----+----+----+----+----+----+----+
195 	 * |\\\\|    |\\\\|\\\\|    |\\\\|\\\\|
196 	 * +----+----+----+----+----+----+----+
197 	 * 0    1    2    3    4    5    6    7
198 	 *
199 	 * new commit root
200 	 * +----+----+----+----+----+----+----+
201 	 * |    |    |    |\\\\|    |    |\\\\|
202 	 * +----+----+----+----+----+----+----+
203 	 * 0    1    2    3    4    5    6    7
204 	 *
205 	 * If the cache_ctl->progress was at 3, then we are only allowed to
206 	 * unpin [0,1) and [2,3], because the caching thread has already
207 	 * processed those extents.  We are not allowed to unpin [5,6), because
208 	 * the caching thread will re-start it's search from 3, and thus find
209 	 * the hole from [4,6) to add to the free space cache.
210 	 */
211 	spin_lock(&fs_info->block_group_cache_lock);
212 	list_for_each_entry_safe(caching_ctl, next,
213 				 &fs_info->caching_block_groups, list) {
214 		struct btrfs_block_group *cache = caching_ctl->block_group;
215 
216 		if (btrfs_block_group_done(cache)) {
217 			cache->last_byte_to_unpin = (u64)-1;
218 			list_del_init(&caching_ctl->list);
219 			btrfs_put_caching_control(caching_ctl);
220 		} else {
221 			cache->last_byte_to_unpin = caching_ctl->progress;
222 		}
223 	}
224 	spin_unlock(&fs_info->block_group_cache_lock);
225 	up_write(&fs_info->commit_root_sem);
226 }
227 
228 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
229 					 unsigned int type)
230 {
231 	if (type & TRANS_EXTWRITERS)
232 		atomic_inc(&trans->num_extwriters);
233 }
234 
235 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
236 					 unsigned int type)
237 {
238 	if (type & TRANS_EXTWRITERS)
239 		atomic_dec(&trans->num_extwriters);
240 }
241 
242 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
243 					  unsigned int type)
244 {
245 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
246 }
247 
248 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
249 {
250 	return atomic_read(&trans->num_extwriters);
251 }
252 
253 /*
254  * To be called after all the new block groups attached to the transaction
255  * handle have been created (btrfs_create_pending_block_groups()).
256  */
257 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
258 {
259 	struct btrfs_fs_info *fs_info = trans->fs_info;
260 
261 	if (!trans->chunk_bytes_reserved)
262 		return;
263 
264 	WARN_ON_ONCE(!list_empty(&trans->new_bgs));
265 
266 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
267 				trans->chunk_bytes_reserved, NULL);
268 	trans->chunk_bytes_reserved = 0;
269 }
270 
271 /*
272  * either allocate a new transaction or hop into the existing one
273  */
274 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
275 				     unsigned int type)
276 {
277 	struct btrfs_transaction *cur_trans;
278 
279 	spin_lock(&fs_info->trans_lock);
280 loop:
281 	/* The file system has been taken offline. No new transactions. */
282 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
283 		spin_unlock(&fs_info->trans_lock);
284 		return -EROFS;
285 	}
286 
287 	cur_trans = fs_info->running_transaction;
288 	if (cur_trans) {
289 		if (TRANS_ABORTED(cur_trans)) {
290 			spin_unlock(&fs_info->trans_lock);
291 			return cur_trans->aborted;
292 		}
293 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
294 			spin_unlock(&fs_info->trans_lock);
295 			return -EBUSY;
296 		}
297 		refcount_inc(&cur_trans->use_count);
298 		atomic_inc(&cur_trans->num_writers);
299 		extwriter_counter_inc(cur_trans, type);
300 		spin_unlock(&fs_info->trans_lock);
301 		return 0;
302 	}
303 	spin_unlock(&fs_info->trans_lock);
304 
305 	/*
306 	 * If we are ATTACH, we just want to catch the current transaction,
307 	 * and commit it. If there is no transaction, just return ENOENT.
308 	 */
309 	if (type == TRANS_ATTACH)
310 		return -ENOENT;
311 
312 	/*
313 	 * JOIN_NOLOCK only happens during the transaction commit, so
314 	 * it is impossible that ->running_transaction is NULL
315 	 */
316 	BUG_ON(type == TRANS_JOIN_NOLOCK);
317 
318 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
319 	if (!cur_trans)
320 		return -ENOMEM;
321 
322 	spin_lock(&fs_info->trans_lock);
323 	if (fs_info->running_transaction) {
324 		/*
325 		 * someone started a transaction after we unlocked.  Make sure
326 		 * to redo the checks above
327 		 */
328 		kfree(cur_trans);
329 		goto loop;
330 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
331 		spin_unlock(&fs_info->trans_lock);
332 		kfree(cur_trans);
333 		return -EROFS;
334 	}
335 
336 	cur_trans->fs_info = fs_info;
337 	atomic_set(&cur_trans->pending_ordered, 0);
338 	init_waitqueue_head(&cur_trans->pending_wait);
339 	atomic_set(&cur_trans->num_writers, 1);
340 	extwriter_counter_init(cur_trans, type);
341 	init_waitqueue_head(&cur_trans->writer_wait);
342 	init_waitqueue_head(&cur_trans->commit_wait);
343 	cur_trans->state = TRANS_STATE_RUNNING;
344 	/*
345 	 * One for this trans handle, one so it will live on until we
346 	 * commit the transaction.
347 	 */
348 	refcount_set(&cur_trans->use_count, 2);
349 	cur_trans->flags = 0;
350 	cur_trans->start_time = ktime_get_seconds();
351 
352 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
353 
354 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
355 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
356 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
357 
358 	/*
359 	 * although the tree mod log is per file system and not per transaction,
360 	 * the log must never go across transaction boundaries.
361 	 */
362 	smp_mb();
363 	if (!list_empty(&fs_info->tree_mod_seq_list))
364 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
365 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
366 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
367 	atomic64_set(&fs_info->tree_mod_seq, 0);
368 
369 	spin_lock_init(&cur_trans->delayed_refs.lock);
370 
371 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
372 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
373 	INIT_LIST_HEAD(&cur_trans->switch_commits);
374 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
375 	INIT_LIST_HEAD(&cur_trans->io_bgs);
376 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
377 	mutex_init(&cur_trans->cache_write_mutex);
378 	spin_lock_init(&cur_trans->dirty_bgs_lock);
379 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
380 	spin_lock_init(&cur_trans->dropped_roots_lock);
381 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
382 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
383 			IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
384 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
385 			IO_TREE_FS_PINNED_EXTENTS, NULL);
386 	fs_info->generation++;
387 	cur_trans->transid = fs_info->generation;
388 	fs_info->running_transaction = cur_trans;
389 	cur_trans->aborted = 0;
390 	spin_unlock(&fs_info->trans_lock);
391 
392 	return 0;
393 }
394 
395 /*
396  * This does all the record keeping required to make sure that a shareable root
397  * is properly recorded in a given transaction.  This is required to make sure
398  * the old root from before we joined the transaction is deleted when the
399  * transaction commits.
400  */
401 static int record_root_in_trans(struct btrfs_trans_handle *trans,
402 			       struct btrfs_root *root,
403 			       int force)
404 {
405 	struct btrfs_fs_info *fs_info = root->fs_info;
406 
407 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
408 	    root->last_trans < trans->transid) || force) {
409 		WARN_ON(root == fs_info->extent_root);
410 		WARN_ON(!force && root->commit_root != root->node);
411 
412 		/*
413 		 * see below for IN_TRANS_SETUP usage rules
414 		 * we have the reloc mutex held now, so there
415 		 * is only one writer in this function
416 		 */
417 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
418 
419 		/* make sure readers find IN_TRANS_SETUP before
420 		 * they find our root->last_trans update
421 		 */
422 		smp_wmb();
423 
424 		spin_lock(&fs_info->fs_roots_radix_lock);
425 		if (root->last_trans == trans->transid && !force) {
426 			spin_unlock(&fs_info->fs_roots_radix_lock);
427 			return 0;
428 		}
429 		radix_tree_tag_set(&fs_info->fs_roots_radix,
430 				   (unsigned long)root->root_key.objectid,
431 				   BTRFS_ROOT_TRANS_TAG);
432 		spin_unlock(&fs_info->fs_roots_radix_lock);
433 		root->last_trans = trans->transid;
434 
435 		/* this is pretty tricky.  We don't want to
436 		 * take the relocation lock in btrfs_record_root_in_trans
437 		 * unless we're really doing the first setup for this root in
438 		 * this transaction.
439 		 *
440 		 * Normally we'd use root->last_trans as a flag to decide
441 		 * if we want to take the expensive mutex.
442 		 *
443 		 * But, we have to set root->last_trans before we
444 		 * init the relocation root, otherwise, we trip over warnings
445 		 * in ctree.c.  The solution used here is to flag ourselves
446 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
447 		 * fixing up the reloc trees and everyone must wait.
448 		 *
449 		 * When this is zero, they can trust root->last_trans and fly
450 		 * through btrfs_record_root_in_trans without having to take the
451 		 * lock.  smp_wmb() makes sure that all the writes above are
452 		 * done before we pop in the zero below
453 		 */
454 		btrfs_init_reloc_root(trans, root);
455 		smp_mb__before_atomic();
456 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
457 	}
458 	return 0;
459 }
460 
461 
462 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
463 			    struct btrfs_root *root)
464 {
465 	struct btrfs_fs_info *fs_info = root->fs_info;
466 	struct btrfs_transaction *cur_trans = trans->transaction;
467 
468 	/* Add ourselves to the transaction dropped list */
469 	spin_lock(&cur_trans->dropped_roots_lock);
470 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
471 	spin_unlock(&cur_trans->dropped_roots_lock);
472 
473 	/* Make sure we don't try to update the root at commit time */
474 	spin_lock(&fs_info->fs_roots_radix_lock);
475 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
476 			     (unsigned long)root->root_key.objectid,
477 			     BTRFS_ROOT_TRANS_TAG);
478 	spin_unlock(&fs_info->fs_roots_radix_lock);
479 }
480 
481 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
482 			       struct btrfs_root *root)
483 {
484 	struct btrfs_fs_info *fs_info = root->fs_info;
485 
486 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
487 		return 0;
488 
489 	/*
490 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
491 	 * and barriers
492 	 */
493 	smp_rmb();
494 	if (root->last_trans == trans->transid &&
495 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
496 		return 0;
497 
498 	mutex_lock(&fs_info->reloc_mutex);
499 	record_root_in_trans(trans, root, 0);
500 	mutex_unlock(&fs_info->reloc_mutex);
501 
502 	return 0;
503 }
504 
505 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
506 {
507 	return (trans->state >= TRANS_STATE_COMMIT_START &&
508 		trans->state < TRANS_STATE_UNBLOCKED &&
509 		!TRANS_ABORTED(trans));
510 }
511 
512 /* wait for commit against the current transaction to become unblocked
513  * when this is done, it is safe to start a new transaction, but the current
514  * transaction might not be fully on disk.
515  */
516 static void wait_current_trans(struct btrfs_fs_info *fs_info)
517 {
518 	struct btrfs_transaction *cur_trans;
519 
520 	spin_lock(&fs_info->trans_lock);
521 	cur_trans = fs_info->running_transaction;
522 	if (cur_trans && is_transaction_blocked(cur_trans)) {
523 		refcount_inc(&cur_trans->use_count);
524 		spin_unlock(&fs_info->trans_lock);
525 
526 		wait_event(fs_info->transaction_wait,
527 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
528 			   TRANS_ABORTED(cur_trans));
529 		btrfs_put_transaction(cur_trans);
530 	} else {
531 		spin_unlock(&fs_info->trans_lock);
532 	}
533 }
534 
535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
536 {
537 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
538 		return 0;
539 
540 	if (type == TRANS_START)
541 		return 1;
542 
543 	return 0;
544 }
545 
546 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
547 {
548 	struct btrfs_fs_info *fs_info = root->fs_info;
549 
550 	if (!fs_info->reloc_ctl ||
551 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
552 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
553 	    root->reloc_root)
554 		return false;
555 
556 	return true;
557 }
558 
559 static struct btrfs_trans_handle *
560 start_transaction(struct btrfs_root *root, unsigned int num_items,
561 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
562 		  bool enforce_qgroups)
563 {
564 	struct btrfs_fs_info *fs_info = root->fs_info;
565 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
566 	struct btrfs_trans_handle *h;
567 	struct btrfs_transaction *cur_trans;
568 	u64 num_bytes = 0;
569 	u64 qgroup_reserved = 0;
570 	bool reloc_reserved = false;
571 	bool do_chunk_alloc = false;
572 	int ret;
573 
574 	/* Send isn't supposed to start transactions. */
575 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
576 
577 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
578 		return ERR_PTR(-EROFS);
579 
580 	if (current->journal_info) {
581 		WARN_ON(type & TRANS_EXTWRITERS);
582 		h = current->journal_info;
583 		refcount_inc(&h->use_count);
584 		WARN_ON(refcount_read(&h->use_count) > 2);
585 		h->orig_rsv = h->block_rsv;
586 		h->block_rsv = NULL;
587 		goto got_it;
588 	}
589 
590 	/*
591 	 * Do the reservation before we join the transaction so we can do all
592 	 * the appropriate flushing if need be.
593 	 */
594 	if (num_items && root != fs_info->chunk_root) {
595 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
596 		u64 delayed_refs_bytes = 0;
597 
598 		qgroup_reserved = num_items * fs_info->nodesize;
599 		ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
600 				enforce_qgroups);
601 		if (ret)
602 			return ERR_PTR(ret);
603 
604 		/*
605 		 * We want to reserve all the bytes we may need all at once, so
606 		 * we only do 1 enospc flushing cycle per transaction start.  We
607 		 * accomplish this by simply assuming we'll do 2 x num_items
608 		 * worth of delayed refs updates in this trans handle, and
609 		 * refill that amount for whatever is missing in the reserve.
610 		 */
611 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
612 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
613 		    delayed_refs_rsv->full == 0) {
614 			delayed_refs_bytes = num_bytes;
615 			num_bytes <<= 1;
616 		}
617 
618 		/*
619 		 * Do the reservation for the relocation root creation
620 		 */
621 		if (need_reserve_reloc_root(root)) {
622 			num_bytes += fs_info->nodesize;
623 			reloc_reserved = true;
624 		}
625 
626 		ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
627 		if (ret)
628 			goto reserve_fail;
629 		if (delayed_refs_bytes) {
630 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
631 							  delayed_refs_bytes);
632 			num_bytes -= delayed_refs_bytes;
633 		}
634 
635 		if (rsv->space_info->force_alloc)
636 			do_chunk_alloc = true;
637 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
638 		   !delayed_refs_rsv->full) {
639 		/*
640 		 * Some people call with btrfs_start_transaction(root, 0)
641 		 * because they can be throttled, but have some other mechanism
642 		 * for reserving space.  We still want these guys to refill the
643 		 * delayed block_rsv so just add 1 items worth of reservation
644 		 * here.
645 		 */
646 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
647 		if (ret)
648 			goto reserve_fail;
649 	}
650 again:
651 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
652 	if (!h) {
653 		ret = -ENOMEM;
654 		goto alloc_fail;
655 	}
656 
657 	/*
658 	 * If we are JOIN_NOLOCK we're already committing a transaction and
659 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
660 	 * because we're already holding a ref.  We need this because we could
661 	 * have raced in and did an fsync() on a file which can kick a commit
662 	 * and then we deadlock with somebody doing a freeze.
663 	 *
664 	 * If we are ATTACH, it means we just want to catch the current
665 	 * transaction and commit it, so we needn't do sb_start_intwrite().
666 	 */
667 	if (type & __TRANS_FREEZABLE)
668 		sb_start_intwrite(fs_info->sb);
669 
670 	if (may_wait_transaction(fs_info, type))
671 		wait_current_trans(fs_info);
672 
673 	do {
674 		ret = join_transaction(fs_info, type);
675 		if (ret == -EBUSY) {
676 			wait_current_trans(fs_info);
677 			if (unlikely(type == TRANS_ATTACH ||
678 				     type == TRANS_JOIN_NOSTART))
679 				ret = -ENOENT;
680 		}
681 	} while (ret == -EBUSY);
682 
683 	if (ret < 0)
684 		goto join_fail;
685 
686 	cur_trans = fs_info->running_transaction;
687 
688 	h->transid = cur_trans->transid;
689 	h->transaction = cur_trans;
690 	h->root = root;
691 	refcount_set(&h->use_count, 1);
692 	h->fs_info = root->fs_info;
693 
694 	h->type = type;
695 	h->can_flush_pending_bgs = true;
696 	INIT_LIST_HEAD(&h->new_bgs);
697 
698 	smp_mb();
699 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
700 	    may_wait_transaction(fs_info, type)) {
701 		current->journal_info = h;
702 		btrfs_commit_transaction(h);
703 		goto again;
704 	}
705 
706 	if (num_bytes) {
707 		trace_btrfs_space_reservation(fs_info, "transaction",
708 					      h->transid, num_bytes, 1);
709 		h->block_rsv = &fs_info->trans_block_rsv;
710 		h->bytes_reserved = num_bytes;
711 		h->reloc_reserved = reloc_reserved;
712 	}
713 
714 got_it:
715 	if (!current->journal_info)
716 		current->journal_info = h;
717 
718 	/*
719 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
720 	 * ALLOC_FORCE the first run through, and then we won't allocate for
721 	 * anybody else who races in later.  We don't care about the return
722 	 * value here.
723 	 */
724 	if (do_chunk_alloc && num_bytes) {
725 		u64 flags = h->block_rsv->space_info->flags;
726 
727 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
728 				  CHUNK_ALLOC_NO_FORCE);
729 	}
730 
731 	/*
732 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
733 	 * call btrfs_join_transaction() while we're also starting a
734 	 * transaction.
735 	 *
736 	 * Thus it need to be called after current->journal_info initialized,
737 	 * or we can deadlock.
738 	 */
739 	btrfs_record_root_in_trans(h, root);
740 
741 	return h;
742 
743 join_fail:
744 	if (type & __TRANS_FREEZABLE)
745 		sb_end_intwrite(fs_info->sb);
746 	kmem_cache_free(btrfs_trans_handle_cachep, h);
747 alloc_fail:
748 	if (num_bytes)
749 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
750 					num_bytes, NULL);
751 reserve_fail:
752 	btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
753 	return ERR_PTR(ret);
754 }
755 
756 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
757 						   unsigned int num_items)
758 {
759 	return start_transaction(root, num_items, TRANS_START,
760 				 BTRFS_RESERVE_FLUSH_ALL, true);
761 }
762 
763 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
764 					struct btrfs_root *root,
765 					unsigned int num_items)
766 {
767 	return start_transaction(root, num_items, TRANS_START,
768 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
769 }
770 
771 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
772 {
773 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
774 				 true);
775 }
776 
777 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
778 {
779 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
780 				 BTRFS_RESERVE_NO_FLUSH, true);
781 }
782 
783 /*
784  * Similar to regular join but it never starts a transaction when none is
785  * running or after waiting for the current one to finish.
786  */
787 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
788 {
789 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
790 				 BTRFS_RESERVE_NO_FLUSH, true);
791 }
792 
793 /*
794  * btrfs_attach_transaction() - catch the running transaction
795  *
796  * It is used when we want to commit the current the transaction, but
797  * don't want to start a new one.
798  *
799  * Note: If this function return -ENOENT, it just means there is no
800  * running transaction. But it is possible that the inactive transaction
801  * is still in the memory, not fully on disk. If you hope there is no
802  * inactive transaction in the fs when -ENOENT is returned, you should
803  * invoke
804  *     btrfs_attach_transaction_barrier()
805  */
806 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
807 {
808 	return start_transaction(root, 0, TRANS_ATTACH,
809 				 BTRFS_RESERVE_NO_FLUSH, true);
810 }
811 
812 /*
813  * btrfs_attach_transaction_barrier() - catch the running transaction
814  *
815  * It is similar to the above function, the difference is this one
816  * will wait for all the inactive transactions until they fully
817  * complete.
818  */
819 struct btrfs_trans_handle *
820 btrfs_attach_transaction_barrier(struct btrfs_root *root)
821 {
822 	struct btrfs_trans_handle *trans;
823 
824 	trans = start_transaction(root, 0, TRANS_ATTACH,
825 				  BTRFS_RESERVE_NO_FLUSH, true);
826 	if (trans == ERR_PTR(-ENOENT))
827 		btrfs_wait_for_commit(root->fs_info, 0);
828 
829 	return trans;
830 }
831 
832 /* wait for a transaction commit to be fully complete */
833 static noinline void wait_for_commit(struct btrfs_transaction *commit)
834 {
835 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
836 }
837 
838 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
839 {
840 	struct btrfs_transaction *cur_trans = NULL, *t;
841 	int ret = 0;
842 
843 	if (transid) {
844 		if (transid <= fs_info->last_trans_committed)
845 			goto out;
846 
847 		/* find specified transaction */
848 		spin_lock(&fs_info->trans_lock);
849 		list_for_each_entry(t, &fs_info->trans_list, list) {
850 			if (t->transid == transid) {
851 				cur_trans = t;
852 				refcount_inc(&cur_trans->use_count);
853 				ret = 0;
854 				break;
855 			}
856 			if (t->transid > transid) {
857 				ret = 0;
858 				break;
859 			}
860 		}
861 		spin_unlock(&fs_info->trans_lock);
862 
863 		/*
864 		 * The specified transaction doesn't exist, or we
865 		 * raced with btrfs_commit_transaction
866 		 */
867 		if (!cur_trans) {
868 			if (transid > fs_info->last_trans_committed)
869 				ret = -EINVAL;
870 			goto out;
871 		}
872 	} else {
873 		/* find newest transaction that is committing | committed */
874 		spin_lock(&fs_info->trans_lock);
875 		list_for_each_entry_reverse(t, &fs_info->trans_list,
876 					    list) {
877 			if (t->state >= TRANS_STATE_COMMIT_START) {
878 				if (t->state == TRANS_STATE_COMPLETED)
879 					break;
880 				cur_trans = t;
881 				refcount_inc(&cur_trans->use_count);
882 				break;
883 			}
884 		}
885 		spin_unlock(&fs_info->trans_lock);
886 		if (!cur_trans)
887 			goto out;  /* nothing committing|committed */
888 	}
889 
890 	wait_for_commit(cur_trans);
891 	btrfs_put_transaction(cur_trans);
892 out:
893 	return ret;
894 }
895 
896 void btrfs_throttle(struct btrfs_fs_info *fs_info)
897 {
898 	wait_current_trans(fs_info);
899 }
900 
901 static int should_end_transaction(struct btrfs_trans_handle *trans)
902 {
903 	struct btrfs_fs_info *fs_info = trans->fs_info;
904 
905 	if (btrfs_check_space_for_delayed_refs(fs_info))
906 		return 1;
907 
908 	return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
909 }
910 
911 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
912 {
913 	struct btrfs_transaction *cur_trans = trans->transaction;
914 
915 	smp_mb();
916 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
917 	    cur_trans->delayed_refs.flushing)
918 		return 1;
919 
920 	return should_end_transaction(trans);
921 }
922 
923 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
924 
925 {
926 	struct btrfs_fs_info *fs_info = trans->fs_info;
927 
928 	if (!trans->block_rsv) {
929 		ASSERT(!trans->bytes_reserved);
930 		return;
931 	}
932 
933 	if (!trans->bytes_reserved)
934 		return;
935 
936 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
937 	trace_btrfs_space_reservation(fs_info, "transaction",
938 				      trans->transid, trans->bytes_reserved, 0);
939 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
940 				trans->bytes_reserved, NULL);
941 	trans->bytes_reserved = 0;
942 }
943 
944 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
945 				   int throttle)
946 {
947 	struct btrfs_fs_info *info = trans->fs_info;
948 	struct btrfs_transaction *cur_trans = trans->transaction;
949 	int err = 0;
950 
951 	if (refcount_read(&trans->use_count) > 1) {
952 		refcount_dec(&trans->use_count);
953 		trans->block_rsv = trans->orig_rsv;
954 		return 0;
955 	}
956 
957 	btrfs_trans_release_metadata(trans);
958 	trans->block_rsv = NULL;
959 
960 	btrfs_create_pending_block_groups(trans);
961 
962 	btrfs_trans_release_chunk_metadata(trans);
963 
964 	if (trans->type & __TRANS_FREEZABLE)
965 		sb_end_intwrite(info->sb);
966 
967 	WARN_ON(cur_trans != info->running_transaction);
968 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
969 	atomic_dec(&cur_trans->num_writers);
970 	extwriter_counter_dec(cur_trans, trans->type);
971 
972 	cond_wake_up(&cur_trans->writer_wait);
973 	btrfs_put_transaction(cur_trans);
974 
975 	if (current->journal_info == trans)
976 		current->journal_info = NULL;
977 
978 	if (throttle)
979 		btrfs_run_delayed_iputs(info);
980 
981 	if (TRANS_ABORTED(trans) ||
982 	    test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
983 		wake_up_process(info->transaction_kthread);
984 		if (TRANS_ABORTED(trans))
985 			err = trans->aborted;
986 		else
987 			err = -EROFS;
988 	}
989 
990 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
991 	return err;
992 }
993 
994 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
995 {
996 	return __btrfs_end_transaction(trans, 0);
997 }
998 
999 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1000 {
1001 	return __btrfs_end_transaction(trans, 1);
1002 }
1003 
1004 /*
1005  * when btree blocks are allocated, they have some corresponding bits set for
1006  * them in one of two extent_io trees.  This is used to make sure all of
1007  * those extents are sent to disk but does not wait on them
1008  */
1009 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1010 			       struct extent_io_tree *dirty_pages, int mark)
1011 {
1012 	int err = 0;
1013 	int werr = 0;
1014 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1015 	struct extent_state *cached_state = NULL;
1016 	u64 start = 0;
1017 	u64 end;
1018 
1019 	atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1020 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1021 				      mark, &cached_state)) {
1022 		bool wait_writeback = false;
1023 
1024 		err = convert_extent_bit(dirty_pages, start, end,
1025 					 EXTENT_NEED_WAIT,
1026 					 mark, &cached_state);
1027 		/*
1028 		 * convert_extent_bit can return -ENOMEM, which is most of the
1029 		 * time a temporary error. So when it happens, ignore the error
1030 		 * and wait for writeback of this range to finish - because we
1031 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1032 		 * to __btrfs_wait_marked_extents() would not know that
1033 		 * writeback for this range started and therefore wouldn't
1034 		 * wait for it to finish - we don't want to commit a
1035 		 * superblock that points to btree nodes/leafs for which
1036 		 * writeback hasn't finished yet (and without errors).
1037 		 * We cleanup any entries left in the io tree when committing
1038 		 * the transaction (through extent_io_tree_release()).
1039 		 */
1040 		if (err == -ENOMEM) {
1041 			err = 0;
1042 			wait_writeback = true;
1043 		}
1044 		if (!err)
1045 			err = filemap_fdatawrite_range(mapping, start, end);
1046 		if (err)
1047 			werr = err;
1048 		else if (wait_writeback)
1049 			werr = filemap_fdatawait_range(mapping, start, end);
1050 		free_extent_state(cached_state);
1051 		cached_state = NULL;
1052 		cond_resched();
1053 		start = end + 1;
1054 	}
1055 	atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1056 	return werr;
1057 }
1058 
1059 /*
1060  * when btree blocks are allocated, they have some corresponding bits set for
1061  * them in one of two extent_io trees.  This is used to make sure all of
1062  * those extents are on disk for transaction or log commit.  We wait
1063  * on all the pages and clear them from the dirty pages state tree
1064  */
1065 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1066 				       struct extent_io_tree *dirty_pages)
1067 {
1068 	int err = 0;
1069 	int werr = 0;
1070 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1071 	struct extent_state *cached_state = NULL;
1072 	u64 start = 0;
1073 	u64 end;
1074 
1075 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1076 				      EXTENT_NEED_WAIT, &cached_state)) {
1077 		/*
1078 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1079 		 * When committing the transaction, we'll remove any entries
1080 		 * left in the io tree. For a log commit, we don't remove them
1081 		 * after committing the log because the tree can be accessed
1082 		 * concurrently - we do it only at transaction commit time when
1083 		 * it's safe to do it (through extent_io_tree_release()).
1084 		 */
1085 		err = clear_extent_bit(dirty_pages, start, end,
1086 				       EXTENT_NEED_WAIT, 0, 0, &cached_state);
1087 		if (err == -ENOMEM)
1088 			err = 0;
1089 		if (!err)
1090 			err = filemap_fdatawait_range(mapping, start, end);
1091 		if (err)
1092 			werr = err;
1093 		free_extent_state(cached_state);
1094 		cached_state = NULL;
1095 		cond_resched();
1096 		start = end + 1;
1097 	}
1098 	if (err)
1099 		werr = err;
1100 	return werr;
1101 }
1102 
1103 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1104 		       struct extent_io_tree *dirty_pages)
1105 {
1106 	bool errors = false;
1107 	int err;
1108 
1109 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1110 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1111 		errors = true;
1112 
1113 	if (errors && !err)
1114 		err = -EIO;
1115 	return err;
1116 }
1117 
1118 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1119 {
1120 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1121 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1122 	bool errors = false;
1123 	int err;
1124 
1125 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1126 
1127 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1128 	if ((mark & EXTENT_DIRTY) &&
1129 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1130 		errors = true;
1131 
1132 	if ((mark & EXTENT_NEW) &&
1133 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1134 		errors = true;
1135 
1136 	if (errors && !err)
1137 		err = -EIO;
1138 	return err;
1139 }
1140 
1141 /*
1142  * When btree blocks are allocated the corresponding extents are marked dirty.
1143  * This function ensures such extents are persisted on disk for transaction or
1144  * log commit.
1145  *
1146  * @trans: transaction whose dirty pages we'd like to write
1147  */
1148 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1149 {
1150 	int ret;
1151 	int ret2;
1152 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1153 	struct btrfs_fs_info *fs_info = trans->fs_info;
1154 	struct blk_plug plug;
1155 
1156 	blk_start_plug(&plug);
1157 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1158 	blk_finish_plug(&plug);
1159 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1160 
1161 	extent_io_tree_release(&trans->transaction->dirty_pages);
1162 
1163 	if (ret)
1164 		return ret;
1165 	else if (ret2)
1166 		return ret2;
1167 	else
1168 		return 0;
1169 }
1170 
1171 /*
1172  * this is used to update the root pointer in the tree of tree roots.
1173  *
1174  * But, in the case of the extent allocation tree, updating the root
1175  * pointer may allocate blocks which may change the root of the extent
1176  * allocation tree.
1177  *
1178  * So, this loops and repeats and makes sure the cowonly root didn't
1179  * change while the root pointer was being updated in the metadata.
1180  */
1181 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1182 			       struct btrfs_root *root)
1183 {
1184 	int ret;
1185 	u64 old_root_bytenr;
1186 	u64 old_root_used;
1187 	struct btrfs_fs_info *fs_info = root->fs_info;
1188 	struct btrfs_root *tree_root = fs_info->tree_root;
1189 
1190 	old_root_used = btrfs_root_used(&root->root_item);
1191 
1192 	while (1) {
1193 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1194 		if (old_root_bytenr == root->node->start &&
1195 		    old_root_used == btrfs_root_used(&root->root_item))
1196 			break;
1197 
1198 		btrfs_set_root_node(&root->root_item, root->node);
1199 		ret = btrfs_update_root(trans, tree_root,
1200 					&root->root_key,
1201 					&root->root_item);
1202 		if (ret)
1203 			return ret;
1204 
1205 		old_root_used = btrfs_root_used(&root->root_item);
1206 	}
1207 
1208 	return 0;
1209 }
1210 
1211 /*
1212  * update all the cowonly tree roots on disk
1213  *
1214  * The error handling in this function may not be obvious. Any of the
1215  * failures will cause the file system to go offline. We still need
1216  * to clean up the delayed refs.
1217  */
1218 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1219 {
1220 	struct btrfs_fs_info *fs_info = trans->fs_info;
1221 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1222 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1223 	struct list_head *next;
1224 	struct extent_buffer *eb;
1225 	int ret;
1226 
1227 	eb = btrfs_lock_root_node(fs_info->tree_root);
1228 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1229 			      0, &eb, BTRFS_NESTING_COW);
1230 	btrfs_tree_unlock(eb);
1231 	free_extent_buffer(eb);
1232 
1233 	if (ret)
1234 		return ret;
1235 
1236 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1237 	if (ret)
1238 		return ret;
1239 
1240 	ret = btrfs_run_dev_stats(trans);
1241 	if (ret)
1242 		return ret;
1243 	ret = btrfs_run_dev_replace(trans);
1244 	if (ret)
1245 		return ret;
1246 	ret = btrfs_run_qgroups(trans);
1247 	if (ret)
1248 		return ret;
1249 
1250 	ret = btrfs_setup_space_cache(trans);
1251 	if (ret)
1252 		return ret;
1253 
1254 	/* run_qgroups might have added some more refs */
1255 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1256 	if (ret)
1257 		return ret;
1258 again:
1259 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1260 		struct btrfs_root *root;
1261 		next = fs_info->dirty_cowonly_roots.next;
1262 		list_del_init(next);
1263 		root = list_entry(next, struct btrfs_root, dirty_list);
1264 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1265 
1266 		if (root != fs_info->extent_root)
1267 			list_add_tail(&root->dirty_list,
1268 				      &trans->transaction->switch_commits);
1269 		ret = update_cowonly_root(trans, root);
1270 		if (ret)
1271 			return ret;
1272 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1273 		if (ret)
1274 			return ret;
1275 	}
1276 
1277 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1278 		ret = btrfs_write_dirty_block_groups(trans);
1279 		if (ret)
1280 			return ret;
1281 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1282 		if (ret)
1283 			return ret;
1284 	}
1285 
1286 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1287 		goto again;
1288 
1289 	list_add_tail(&fs_info->extent_root->dirty_list,
1290 		      &trans->transaction->switch_commits);
1291 
1292 	/* Update dev-replace pointer once everything is committed */
1293 	fs_info->dev_replace.committed_cursor_left =
1294 		fs_info->dev_replace.cursor_left_last_write_of_item;
1295 
1296 	return 0;
1297 }
1298 
1299 /*
1300  * dead roots are old snapshots that need to be deleted.  This allocates
1301  * a dirty root struct and adds it into the list of dead roots that need to
1302  * be deleted
1303  */
1304 void btrfs_add_dead_root(struct btrfs_root *root)
1305 {
1306 	struct btrfs_fs_info *fs_info = root->fs_info;
1307 
1308 	spin_lock(&fs_info->trans_lock);
1309 	if (list_empty(&root->root_list)) {
1310 		btrfs_grab_root(root);
1311 		list_add_tail(&root->root_list, &fs_info->dead_roots);
1312 	}
1313 	spin_unlock(&fs_info->trans_lock);
1314 }
1315 
1316 /*
1317  * update all the cowonly tree roots on disk
1318  */
1319 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1320 {
1321 	struct btrfs_fs_info *fs_info = trans->fs_info;
1322 	struct btrfs_root *gang[8];
1323 	int i;
1324 	int ret;
1325 	int err = 0;
1326 
1327 	spin_lock(&fs_info->fs_roots_radix_lock);
1328 	while (1) {
1329 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1330 						 (void **)gang, 0,
1331 						 ARRAY_SIZE(gang),
1332 						 BTRFS_ROOT_TRANS_TAG);
1333 		if (ret == 0)
1334 			break;
1335 		for (i = 0; i < ret; i++) {
1336 			struct btrfs_root *root = gang[i];
1337 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1338 					(unsigned long)root->root_key.objectid,
1339 					BTRFS_ROOT_TRANS_TAG);
1340 			spin_unlock(&fs_info->fs_roots_radix_lock);
1341 
1342 			btrfs_free_log(trans, root);
1343 			btrfs_update_reloc_root(trans, root);
1344 
1345 			btrfs_save_ino_cache(root, trans);
1346 
1347 			/* see comments in should_cow_block() */
1348 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1349 			smp_mb__after_atomic();
1350 
1351 			if (root->commit_root != root->node) {
1352 				list_add_tail(&root->dirty_list,
1353 					&trans->transaction->switch_commits);
1354 				btrfs_set_root_node(&root->root_item,
1355 						    root->node);
1356 			}
1357 
1358 			err = btrfs_update_root(trans, fs_info->tree_root,
1359 						&root->root_key,
1360 						&root->root_item);
1361 			spin_lock(&fs_info->fs_roots_radix_lock);
1362 			if (err)
1363 				break;
1364 			btrfs_qgroup_free_meta_all_pertrans(root);
1365 		}
1366 	}
1367 	spin_unlock(&fs_info->fs_roots_radix_lock);
1368 	return err;
1369 }
1370 
1371 /*
1372  * defrag a given btree.
1373  * Every leaf in the btree is read and defragged.
1374  */
1375 int btrfs_defrag_root(struct btrfs_root *root)
1376 {
1377 	struct btrfs_fs_info *info = root->fs_info;
1378 	struct btrfs_trans_handle *trans;
1379 	int ret;
1380 
1381 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1382 		return 0;
1383 
1384 	while (1) {
1385 		trans = btrfs_start_transaction(root, 0);
1386 		if (IS_ERR(trans))
1387 			return PTR_ERR(trans);
1388 
1389 		ret = btrfs_defrag_leaves(trans, root);
1390 
1391 		btrfs_end_transaction(trans);
1392 		btrfs_btree_balance_dirty(info);
1393 		cond_resched();
1394 
1395 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1396 			break;
1397 
1398 		if (btrfs_defrag_cancelled(info)) {
1399 			btrfs_debug(info, "defrag_root cancelled");
1400 			ret = -EAGAIN;
1401 			break;
1402 		}
1403 	}
1404 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1405 	return ret;
1406 }
1407 
1408 /*
1409  * Do all special snapshot related qgroup dirty hack.
1410  *
1411  * Will do all needed qgroup inherit and dirty hack like switch commit
1412  * roots inside one transaction and write all btree into disk, to make
1413  * qgroup works.
1414  */
1415 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1416 				   struct btrfs_root *src,
1417 				   struct btrfs_root *parent,
1418 				   struct btrfs_qgroup_inherit *inherit,
1419 				   u64 dst_objectid)
1420 {
1421 	struct btrfs_fs_info *fs_info = src->fs_info;
1422 	int ret;
1423 
1424 	/*
1425 	 * Save some performance in the case that qgroups are not
1426 	 * enabled. If this check races with the ioctl, rescan will
1427 	 * kick in anyway.
1428 	 */
1429 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1430 		return 0;
1431 
1432 	/*
1433 	 * Ensure dirty @src will be committed.  Or, after coming
1434 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1435 	 * recorded root will never be updated again, causing an outdated root
1436 	 * item.
1437 	 */
1438 	record_root_in_trans(trans, src, 1);
1439 
1440 	/*
1441 	 * We are going to commit transaction, see btrfs_commit_transaction()
1442 	 * comment for reason locking tree_log_mutex
1443 	 */
1444 	mutex_lock(&fs_info->tree_log_mutex);
1445 
1446 	ret = commit_fs_roots(trans);
1447 	if (ret)
1448 		goto out;
1449 	ret = btrfs_qgroup_account_extents(trans);
1450 	if (ret < 0)
1451 		goto out;
1452 
1453 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1454 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1455 				   inherit);
1456 	if (ret < 0)
1457 		goto out;
1458 
1459 	/*
1460 	 * Now we do a simplified commit transaction, which will:
1461 	 * 1) commit all subvolume and extent tree
1462 	 *    To ensure all subvolume and extent tree have a valid
1463 	 *    commit_root to accounting later insert_dir_item()
1464 	 * 2) write all btree blocks onto disk
1465 	 *    This is to make sure later btree modification will be cowed
1466 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1467 	 * In this simplified commit, we don't really care about other trees
1468 	 * like chunk and root tree, as they won't affect qgroup.
1469 	 * And we don't write super to avoid half committed status.
1470 	 */
1471 	ret = commit_cowonly_roots(trans);
1472 	if (ret)
1473 		goto out;
1474 	switch_commit_roots(trans);
1475 	ret = btrfs_write_and_wait_transaction(trans);
1476 	if (ret)
1477 		btrfs_handle_fs_error(fs_info, ret,
1478 			"Error while writing out transaction for qgroup");
1479 
1480 out:
1481 	mutex_unlock(&fs_info->tree_log_mutex);
1482 
1483 	/*
1484 	 * Force parent root to be updated, as we recorded it before so its
1485 	 * last_trans == cur_transid.
1486 	 * Or it won't be committed again onto disk after later
1487 	 * insert_dir_item()
1488 	 */
1489 	if (!ret)
1490 		record_root_in_trans(trans, parent, 1);
1491 	return ret;
1492 }
1493 
1494 /*
1495  * new snapshots need to be created at a very specific time in the
1496  * transaction commit.  This does the actual creation.
1497  *
1498  * Note:
1499  * If the error which may affect the commitment of the current transaction
1500  * happens, we should return the error number. If the error which just affect
1501  * the creation of the pending snapshots, just return 0.
1502  */
1503 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1504 				   struct btrfs_pending_snapshot *pending)
1505 {
1506 
1507 	struct btrfs_fs_info *fs_info = trans->fs_info;
1508 	struct btrfs_key key;
1509 	struct btrfs_root_item *new_root_item;
1510 	struct btrfs_root *tree_root = fs_info->tree_root;
1511 	struct btrfs_root *root = pending->root;
1512 	struct btrfs_root *parent_root;
1513 	struct btrfs_block_rsv *rsv;
1514 	struct inode *parent_inode;
1515 	struct btrfs_path *path;
1516 	struct btrfs_dir_item *dir_item;
1517 	struct dentry *dentry;
1518 	struct extent_buffer *tmp;
1519 	struct extent_buffer *old;
1520 	struct timespec64 cur_time;
1521 	int ret = 0;
1522 	u64 to_reserve = 0;
1523 	u64 index = 0;
1524 	u64 objectid;
1525 	u64 root_flags;
1526 
1527 	ASSERT(pending->path);
1528 	path = pending->path;
1529 
1530 	ASSERT(pending->root_item);
1531 	new_root_item = pending->root_item;
1532 
1533 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1534 	if (pending->error)
1535 		goto no_free_objectid;
1536 
1537 	/*
1538 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1539 	 * accounted by later btrfs_qgroup_inherit().
1540 	 */
1541 	btrfs_set_skip_qgroup(trans, objectid);
1542 
1543 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1544 
1545 	if (to_reserve > 0) {
1546 		pending->error = btrfs_block_rsv_add(root,
1547 						     &pending->block_rsv,
1548 						     to_reserve,
1549 						     BTRFS_RESERVE_NO_FLUSH);
1550 		if (pending->error)
1551 			goto clear_skip_qgroup;
1552 	}
1553 
1554 	key.objectid = objectid;
1555 	key.offset = (u64)-1;
1556 	key.type = BTRFS_ROOT_ITEM_KEY;
1557 
1558 	rsv = trans->block_rsv;
1559 	trans->block_rsv = &pending->block_rsv;
1560 	trans->bytes_reserved = trans->block_rsv->reserved;
1561 	trace_btrfs_space_reservation(fs_info, "transaction",
1562 				      trans->transid,
1563 				      trans->bytes_reserved, 1);
1564 	dentry = pending->dentry;
1565 	parent_inode = pending->dir;
1566 	parent_root = BTRFS_I(parent_inode)->root;
1567 	record_root_in_trans(trans, parent_root, 0);
1568 
1569 	cur_time = current_time(parent_inode);
1570 
1571 	/*
1572 	 * insert the directory item
1573 	 */
1574 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1575 	BUG_ON(ret); /* -ENOMEM */
1576 
1577 	/* check if there is a file/dir which has the same name. */
1578 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1579 					 btrfs_ino(BTRFS_I(parent_inode)),
1580 					 dentry->d_name.name,
1581 					 dentry->d_name.len, 0);
1582 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1583 		pending->error = -EEXIST;
1584 		goto dir_item_existed;
1585 	} else if (IS_ERR(dir_item)) {
1586 		ret = PTR_ERR(dir_item);
1587 		btrfs_abort_transaction(trans, ret);
1588 		goto fail;
1589 	}
1590 	btrfs_release_path(path);
1591 
1592 	/*
1593 	 * pull in the delayed directory update
1594 	 * and the delayed inode item
1595 	 * otherwise we corrupt the FS during
1596 	 * snapshot
1597 	 */
1598 	ret = btrfs_run_delayed_items(trans);
1599 	if (ret) {	/* Transaction aborted */
1600 		btrfs_abort_transaction(trans, ret);
1601 		goto fail;
1602 	}
1603 
1604 	record_root_in_trans(trans, root, 0);
1605 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1606 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1607 	btrfs_check_and_init_root_item(new_root_item);
1608 
1609 	root_flags = btrfs_root_flags(new_root_item);
1610 	if (pending->readonly)
1611 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1612 	else
1613 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1614 	btrfs_set_root_flags(new_root_item, root_flags);
1615 
1616 	btrfs_set_root_generation_v2(new_root_item,
1617 			trans->transid);
1618 	generate_random_guid(new_root_item->uuid);
1619 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1620 			BTRFS_UUID_SIZE);
1621 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1622 		memset(new_root_item->received_uuid, 0,
1623 		       sizeof(new_root_item->received_uuid));
1624 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1625 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1626 		btrfs_set_root_stransid(new_root_item, 0);
1627 		btrfs_set_root_rtransid(new_root_item, 0);
1628 	}
1629 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1630 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1631 	btrfs_set_root_otransid(new_root_item, trans->transid);
1632 
1633 	old = btrfs_lock_root_node(root);
1634 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1635 			      BTRFS_NESTING_COW);
1636 	if (ret) {
1637 		btrfs_tree_unlock(old);
1638 		free_extent_buffer(old);
1639 		btrfs_abort_transaction(trans, ret);
1640 		goto fail;
1641 	}
1642 
1643 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1644 	/* clean up in any case */
1645 	btrfs_tree_unlock(old);
1646 	free_extent_buffer(old);
1647 	if (ret) {
1648 		btrfs_abort_transaction(trans, ret);
1649 		goto fail;
1650 	}
1651 	/* see comments in should_cow_block() */
1652 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1653 	smp_wmb();
1654 
1655 	btrfs_set_root_node(new_root_item, tmp);
1656 	/* record when the snapshot was created in key.offset */
1657 	key.offset = trans->transid;
1658 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1659 	btrfs_tree_unlock(tmp);
1660 	free_extent_buffer(tmp);
1661 	if (ret) {
1662 		btrfs_abort_transaction(trans, ret);
1663 		goto fail;
1664 	}
1665 
1666 	/*
1667 	 * insert root back/forward references
1668 	 */
1669 	ret = btrfs_add_root_ref(trans, objectid,
1670 				 parent_root->root_key.objectid,
1671 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1672 				 dentry->d_name.name, dentry->d_name.len);
1673 	if (ret) {
1674 		btrfs_abort_transaction(trans, ret);
1675 		goto fail;
1676 	}
1677 
1678 	key.offset = (u64)-1;
1679 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1680 	if (IS_ERR(pending->snap)) {
1681 		ret = PTR_ERR(pending->snap);
1682 		pending->snap = NULL;
1683 		btrfs_abort_transaction(trans, ret);
1684 		goto fail;
1685 	}
1686 
1687 	ret = btrfs_reloc_post_snapshot(trans, pending);
1688 	if (ret) {
1689 		btrfs_abort_transaction(trans, ret);
1690 		goto fail;
1691 	}
1692 
1693 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1694 	if (ret) {
1695 		btrfs_abort_transaction(trans, ret);
1696 		goto fail;
1697 	}
1698 
1699 	/*
1700 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1701 	 * snapshot hack to do fast snapshot.
1702 	 * To co-operate with that hack, we do hack again.
1703 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1704 	 */
1705 	ret = qgroup_account_snapshot(trans, root, parent_root,
1706 				      pending->inherit, objectid);
1707 	if (ret < 0)
1708 		goto fail;
1709 
1710 	ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1711 				    dentry->d_name.len, BTRFS_I(parent_inode),
1712 				    &key, BTRFS_FT_DIR, index);
1713 	/* We have check then name at the beginning, so it is impossible. */
1714 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1715 	if (ret) {
1716 		btrfs_abort_transaction(trans, ret);
1717 		goto fail;
1718 	}
1719 
1720 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1721 					 dentry->d_name.len * 2);
1722 	parent_inode->i_mtime = parent_inode->i_ctime =
1723 		current_time(parent_inode);
1724 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1725 	if (ret) {
1726 		btrfs_abort_transaction(trans, ret);
1727 		goto fail;
1728 	}
1729 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1730 				  BTRFS_UUID_KEY_SUBVOL,
1731 				  objectid);
1732 	if (ret) {
1733 		btrfs_abort_transaction(trans, ret);
1734 		goto fail;
1735 	}
1736 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1737 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1738 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1739 					  objectid);
1740 		if (ret && ret != -EEXIST) {
1741 			btrfs_abort_transaction(trans, ret);
1742 			goto fail;
1743 		}
1744 	}
1745 
1746 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1747 	if (ret) {
1748 		btrfs_abort_transaction(trans, ret);
1749 		goto fail;
1750 	}
1751 
1752 fail:
1753 	pending->error = ret;
1754 dir_item_existed:
1755 	trans->block_rsv = rsv;
1756 	trans->bytes_reserved = 0;
1757 clear_skip_qgroup:
1758 	btrfs_clear_skip_qgroup(trans);
1759 no_free_objectid:
1760 	kfree(new_root_item);
1761 	pending->root_item = NULL;
1762 	btrfs_free_path(path);
1763 	pending->path = NULL;
1764 
1765 	return ret;
1766 }
1767 
1768 /*
1769  * create all the snapshots we've scheduled for creation
1770  */
1771 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1772 {
1773 	struct btrfs_pending_snapshot *pending, *next;
1774 	struct list_head *head = &trans->transaction->pending_snapshots;
1775 	int ret = 0;
1776 
1777 	list_for_each_entry_safe(pending, next, head, list) {
1778 		list_del(&pending->list);
1779 		ret = create_pending_snapshot(trans, pending);
1780 		if (ret)
1781 			break;
1782 	}
1783 	return ret;
1784 }
1785 
1786 static void update_super_roots(struct btrfs_fs_info *fs_info)
1787 {
1788 	struct btrfs_root_item *root_item;
1789 	struct btrfs_super_block *super;
1790 
1791 	super = fs_info->super_copy;
1792 
1793 	root_item = &fs_info->chunk_root->root_item;
1794 	super->chunk_root = root_item->bytenr;
1795 	super->chunk_root_generation = root_item->generation;
1796 	super->chunk_root_level = root_item->level;
1797 
1798 	root_item = &fs_info->tree_root->root_item;
1799 	super->root = root_item->bytenr;
1800 	super->generation = root_item->generation;
1801 	super->root_level = root_item->level;
1802 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1803 		super->cache_generation = root_item->generation;
1804 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1805 		super->uuid_tree_generation = root_item->generation;
1806 }
1807 
1808 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1809 {
1810 	struct btrfs_transaction *trans;
1811 	int ret = 0;
1812 
1813 	spin_lock(&info->trans_lock);
1814 	trans = info->running_transaction;
1815 	if (trans)
1816 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1817 	spin_unlock(&info->trans_lock);
1818 	return ret;
1819 }
1820 
1821 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1822 {
1823 	struct btrfs_transaction *trans;
1824 	int ret = 0;
1825 
1826 	spin_lock(&info->trans_lock);
1827 	trans = info->running_transaction;
1828 	if (trans)
1829 		ret = is_transaction_blocked(trans);
1830 	spin_unlock(&info->trans_lock);
1831 	return ret;
1832 }
1833 
1834 /*
1835  * wait for the current transaction commit to start and block subsequent
1836  * transaction joins
1837  */
1838 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1839 					    struct btrfs_transaction *trans)
1840 {
1841 	wait_event(fs_info->transaction_blocked_wait,
1842 		   trans->state >= TRANS_STATE_COMMIT_START ||
1843 		   TRANS_ABORTED(trans));
1844 }
1845 
1846 /*
1847  * wait for the current transaction to start and then become unblocked.
1848  * caller holds ref.
1849  */
1850 static void wait_current_trans_commit_start_and_unblock(
1851 					struct btrfs_fs_info *fs_info,
1852 					struct btrfs_transaction *trans)
1853 {
1854 	wait_event(fs_info->transaction_wait,
1855 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1856 		   TRANS_ABORTED(trans));
1857 }
1858 
1859 /*
1860  * commit transactions asynchronously. once btrfs_commit_transaction_async
1861  * returns, any subsequent transaction will not be allowed to join.
1862  */
1863 struct btrfs_async_commit {
1864 	struct btrfs_trans_handle *newtrans;
1865 	struct work_struct work;
1866 };
1867 
1868 static void do_async_commit(struct work_struct *work)
1869 {
1870 	struct btrfs_async_commit *ac =
1871 		container_of(work, struct btrfs_async_commit, work);
1872 
1873 	/*
1874 	 * We've got freeze protection passed with the transaction.
1875 	 * Tell lockdep about it.
1876 	 */
1877 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1878 		__sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1879 
1880 	current->journal_info = ac->newtrans;
1881 
1882 	btrfs_commit_transaction(ac->newtrans);
1883 	kfree(ac);
1884 }
1885 
1886 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1887 				   int wait_for_unblock)
1888 {
1889 	struct btrfs_fs_info *fs_info = trans->fs_info;
1890 	struct btrfs_async_commit *ac;
1891 	struct btrfs_transaction *cur_trans;
1892 
1893 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1894 	if (!ac)
1895 		return -ENOMEM;
1896 
1897 	INIT_WORK(&ac->work, do_async_commit);
1898 	ac->newtrans = btrfs_join_transaction(trans->root);
1899 	if (IS_ERR(ac->newtrans)) {
1900 		int err = PTR_ERR(ac->newtrans);
1901 		kfree(ac);
1902 		return err;
1903 	}
1904 
1905 	/* take transaction reference */
1906 	cur_trans = trans->transaction;
1907 	refcount_inc(&cur_trans->use_count);
1908 
1909 	btrfs_end_transaction(trans);
1910 
1911 	/*
1912 	 * Tell lockdep we've released the freeze rwsem, since the
1913 	 * async commit thread will be the one to unlock it.
1914 	 */
1915 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1916 		__sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1917 
1918 	schedule_work(&ac->work);
1919 
1920 	/* wait for transaction to start and unblock */
1921 	if (wait_for_unblock)
1922 		wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1923 	else
1924 		wait_current_trans_commit_start(fs_info, cur_trans);
1925 
1926 	if (current->journal_info == trans)
1927 		current->journal_info = NULL;
1928 
1929 	btrfs_put_transaction(cur_trans);
1930 	return 0;
1931 }
1932 
1933 
1934 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1935 {
1936 	struct btrfs_fs_info *fs_info = trans->fs_info;
1937 	struct btrfs_transaction *cur_trans = trans->transaction;
1938 
1939 	WARN_ON(refcount_read(&trans->use_count) > 1);
1940 
1941 	btrfs_abort_transaction(trans, err);
1942 
1943 	spin_lock(&fs_info->trans_lock);
1944 
1945 	/*
1946 	 * If the transaction is removed from the list, it means this
1947 	 * transaction has been committed successfully, so it is impossible
1948 	 * to call the cleanup function.
1949 	 */
1950 	BUG_ON(list_empty(&cur_trans->list));
1951 
1952 	list_del_init(&cur_trans->list);
1953 	if (cur_trans == fs_info->running_transaction) {
1954 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1955 		spin_unlock(&fs_info->trans_lock);
1956 		wait_event(cur_trans->writer_wait,
1957 			   atomic_read(&cur_trans->num_writers) == 1);
1958 
1959 		spin_lock(&fs_info->trans_lock);
1960 	}
1961 	spin_unlock(&fs_info->trans_lock);
1962 
1963 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1964 
1965 	spin_lock(&fs_info->trans_lock);
1966 	if (cur_trans == fs_info->running_transaction)
1967 		fs_info->running_transaction = NULL;
1968 	spin_unlock(&fs_info->trans_lock);
1969 
1970 	if (trans->type & __TRANS_FREEZABLE)
1971 		sb_end_intwrite(fs_info->sb);
1972 	btrfs_put_transaction(cur_trans);
1973 	btrfs_put_transaction(cur_trans);
1974 
1975 	trace_btrfs_transaction_commit(trans->root);
1976 
1977 	if (current->journal_info == trans)
1978 		current->journal_info = NULL;
1979 	btrfs_scrub_cancel(fs_info);
1980 
1981 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1982 }
1983 
1984 /*
1985  * Release reserved delayed ref space of all pending block groups of the
1986  * transaction and remove them from the list
1987  */
1988 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1989 {
1990        struct btrfs_fs_info *fs_info = trans->fs_info;
1991        struct btrfs_block_group *block_group, *tmp;
1992 
1993        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1994                btrfs_delayed_refs_rsv_release(fs_info, 1);
1995                list_del_init(&block_group->bg_list);
1996        }
1997 }
1998 
1999 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2000 {
2001 	/*
2002 	 * We use writeback_inodes_sb here because if we used
2003 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2004 	 * Currently are holding the fs freeze lock, if we do an async flush
2005 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2006 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2007 	 * from already being in a transaction and our join_transaction doesn't
2008 	 * have to re-take the fs freeze lock.
2009 	 */
2010 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2011 		writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2012 	return 0;
2013 }
2014 
2015 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2016 {
2017 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2018 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2019 }
2020 
2021 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2022 {
2023 	struct btrfs_fs_info *fs_info = trans->fs_info;
2024 	struct btrfs_transaction *cur_trans = trans->transaction;
2025 	struct btrfs_transaction *prev_trans = NULL;
2026 	int ret;
2027 
2028 	ASSERT(refcount_read(&trans->use_count) == 1);
2029 
2030 	/*
2031 	 * Some places just start a transaction to commit it.  We need to make
2032 	 * sure that if this commit fails that the abort code actually marks the
2033 	 * transaction as failed, so set trans->dirty to make the abort code do
2034 	 * the right thing.
2035 	 */
2036 	trans->dirty = true;
2037 
2038 	/* Stop the commit early if ->aborted is set */
2039 	if (TRANS_ABORTED(cur_trans)) {
2040 		ret = cur_trans->aborted;
2041 		btrfs_end_transaction(trans);
2042 		return ret;
2043 	}
2044 
2045 	btrfs_trans_release_metadata(trans);
2046 	trans->block_rsv = NULL;
2047 
2048 	/* make a pass through all the delayed refs we have so far
2049 	 * any runnings procs may add more while we are here
2050 	 */
2051 	ret = btrfs_run_delayed_refs(trans, 0);
2052 	if (ret) {
2053 		btrfs_end_transaction(trans);
2054 		return ret;
2055 	}
2056 
2057 	cur_trans = trans->transaction;
2058 
2059 	/*
2060 	 * set the flushing flag so procs in this transaction have to
2061 	 * start sending their work down.
2062 	 */
2063 	cur_trans->delayed_refs.flushing = 1;
2064 	smp_wmb();
2065 
2066 	btrfs_create_pending_block_groups(trans);
2067 
2068 	ret = btrfs_run_delayed_refs(trans, 0);
2069 	if (ret) {
2070 		btrfs_end_transaction(trans);
2071 		return ret;
2072 	}
2073 
2074 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2075 		int run_it = 0;
2076 
2077 		/* this mutex is also taken before trying to set
2078 		 * block groups readonly.  We need to make sure
2079 		 * that nobody has set a block group readonly
2080 		 * after a extents from that block group have been
2081 		 * allocated for cache files.  btrfs_set_block_group_ro
2082 		 * will wait for the transaction to commit if it
2083 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2084 		 *
2085 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2086 		 * only one process starts all the block group IO.  It wouldn't
2087 		 * hurt to have more than one go through, but there's no
2088 		 * real advantage to it either.
2089 		 */
2090 		mutex_lock(&fs_info->ro_block_group_mutex);
2091 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2092 				      &cur_trans->flags))
2093 			run_it = 1;
2094 		mutex_unlock(&fs_info->ro_block_group_mutex);
2095 
2096 		if (run_it) {
2097 			ret = btrfs_start_dirty_block_groups(trans);
2098 			if (ret) {
2099 				btrfs_end_transaction(trans);
2100 				return ret;
2101 			}
2102 		}
2103 	}
2104 
2105 	spin_lock(&fs_info->trans_lock);
2106 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2107 		spin_unlock(&fs_info->trans_lock);
2108 		refcount_inc(&cur_trans->use_count);
2109 		ret = btrfs_end_transaction(trans);
2110 
2111 		wait_for_commit(cur_trans);
2112 
2113 		if (TRANS_ABORTED(cur_trans))
2114 			ret = cur_trans->aborted;
2115 
2116 		btrfs_put_transaction(cur_trans);
2117 
2118 		return ret;
2119 	}
2120 
2121 	cur_trans->state = TRANS_STATE_COMMIT_START;
2122 	wake_up(&fs_info->transaction_blocked_wait);
2123 
2124 	if (cur_trans->list.prev != &fs_info->trans_list) {
2125 		prev_trans = list_entry(cur_trans->list.prev,
2126 					struct btrfs_transaction, list);
2127 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
2128 			refcount_inc(&prev_trans->use_count);
2129 			spin_unlock(&fs_info->trans_lock);
2130 
2131 			wait_for_commit(prev_trans);
2132 			ret = READ_ONCE(prev_trans->aborted);
2133 
2134 			btrfs_put_transaction(prev_trans);
2135 			if (ret)
2136 				goto cleanup_transaction;
2137 		} else {
2138 			spin_unlock(&fs_info->trans_lock);
2139 		}
2140 	} else {
2141 		spin_unlock(&fs_info->trans_lock);
2142 		/*
2143 		 * The previous transaction was aborted and was already removed
2144 		 * from the list of transactions at fs_info->trans_list. So we
2145 		 * abort to prevent writing a new superblock that reflects a
2146 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2147 		 */
2148 		if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2149 			ret = -EROFS;
2150 			goto cleanup_transaction;
2151 		}
2152 	}
2153 
2154 	extwriter_counter_dec(cur_trans, trans->type);
2155 
2156 	ret = btrfs_start_delalloc_flush(fs_info);
2157 	if (ret)
2158 		goto cleanup_transaction;
2159 
2160 	ret = btrfs_run_delayed_items(trans);
2161 	if (ret)
2162 		goto cleanup_transaction;
2163 
2164 	wait_event(cur_trans->writer_wait,
2165 		   extwriter_counter_read(cur_trans) == 0);
2166 
2167 	/* some pending stuffs might be added after the previous flush. */
2168 	ret = btrfs_run_delayed_items(trans);
2169 	if (ret)
2170 		goto cleanup_transaction;
2171 
2172 	btrfs_wait_delalloc_flush(fs_info);
2173 
2174 	/*
2175 	 * Wait for all ordered extents started by a fast fsync that joined this
2176 	 * transaction. Otherwise if this transaction commits before the ordered
2177 	 * extents complete we lose logged data after a power failure.
2178 	 */
2179 	wait_event(cur_trans->pending_wait,
2180 		   atomic_read(&cur_trans->pending_ordered) == 0);
2181 
2182 	btrfs_scrub_pause(fs_info);
2183 	/*
2184 	 * Ok now we need to make sure to block out any other joins while we
2185 	 * commit the transaction.  We could have started a join before setting
2186 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2187 	 */
2188 	spin_lock(&fs_info->trans_lock);
2189 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2190 	spin_unlock(&fs_info->trans_lock);
2191 	wait_event(cur_trans->writer_wait,
2192 		   atomic_read(&cur_trans->num_writers) == 1);
2193 
2194 	if (TRANS_ABORTED(cur_trans)) {
2195 		ret = cur_trans->aborted;
2196 		goto scrub_continue;
2197 	}
2198 	/*
2199 	 * the reloc mutex makes sure that we stop
2200 	 * the balancing code from coming in and moving
2201 	 * extents around in the middle of the commit
2202 	 */
2203 	mutex_lock(&fs_info->reloc_mutex);
2204 
2205 	/*
2206 	 * We needn't worry about the delayed items because we will
2207 	 * deal with them in create_pending_snapshot(), which is the
2208 	 * core function of the snapshot creation.
2209 	 */
2210 	ret = create_pending_snapshots(trans);
2211 	if (ret)
2212 		goto unlock_reloc;
2213 
2214 	/*
2215 	 * We insert the dir indexes of the snapshots and update the inode
2216 	 * of the snapshots' parents after the snapshot creation, so there
2217 	 * are some delayed items which are not dealt with. Now deal with
2218 	 * them.
2219 	 *
2220 	 * We needn't worry that this operation will corrupt the snapshots,
2221 	 * because all the tree which are snapshoted will be forced to COW
2222 	 * the nodes and leaves.
2223 	 */
2224 	ret = btrfs_run_delayed_items(trans);
2225 	if (ret)
2226 		goto unlock_reloc;
2227 
2228 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2229 	if (ret)
2230 		goto unlock_reloc;
2231 
2232 	/*
2233 	 * make sure none of the code above managed to slip in a
2234 	 * delayed item
2235 	 */
2236 	btrfs_assert_delayed_root_empty(fs_info);
2237 
2238 	WARN_ON(cur_trans != trans->transaction);
2239 
2240 	/* btrfs_commit_tree_roots is responsible for getting the
2241 	 * various roots consistent with each other.  Every pointer
2242 	 * in the tree of tree roots has to point to the most up to date
2243 	 * root for every subvolume and other tree.  So, we have to keep
2244 	 * the tree logging code from jumping in and changing any
2245 	 * of the trees.
2246 	 *
2247 	 * At this point in the commit, there can't be any tree-log
2248 	 * writers, but a little lower down we drop the trans mutex
2249 	 * and let new people in.  By holding the tree_log_mutex
2250 	 * from now until after the super is written, we avoid races
2251 	 * with the tree-log code.
2252 	 */
2253 	mutex_lock(&fs_info->tree_log_mutex);
2254 
2255 	ret = commit_fs_roots(trans);
2256 	if (ret)
2257 		goto unlock_tree_log;
2258 
2259 	/*
2260 	 * Since the transaction is done, we can apply the pending changes
2261 	 * before the next transaction.
2262 	 */
2263 	btrfs_apply_pending_changes(fs_info);
2264 
2265 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2266 	 * safe to free the root of tree log roots
2267 	 */
2268 	btrfs_free_log_root_tree(trans, fs_info);
2269 
2270 	/*
2271 	 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2272 	 * new delayed refs. Must handle them or qgroup can be wrong.
2273 	 */
2274 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2275 	if (ret)
2276 		goto unlock_tree_log;
2277 
2278 	/*
2279 	 * Since fs roots are all committed, we can get a quite accurate
2280 	 * new_roots. So let's do quota accounting.
2281 	 */
2282 	ret = btrfs_qgroup_account_extents(trans);
2283 	if (ret < 0)
2284 		goto unlock_tree_log;
2285 
2286 	ret = commit_cowonly_roots(trans);
2287 	if (ret)
2288 		goto unlock_tree_log;
2289 
2290 	/*
2291 	 * The tasks which save the space cache and inode cache may also
2292 	 * update ->aborted, check it.
2293 	 */
2294 	if (TRANS_ABORTED(cur_trans)) {
2295 		ret = cur_trans->aborted;
2296 		goto unlock_tree_log;
2297 	}
2298 
2299 	cur_trans = fs_info->running_transaction;
2300 
2301 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2302 			    fs_info->tree_root->node);
2303 	list_add_tail(&fs_info->tree_root->dirty_list,
2304 		      &cur_trans->switch_commits);
2305 
2306 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2307 			    fs_info->chunk_root->node);
2308 	list_add_tail(&fs_info->chunk_root->dirty_list,
2309 		      &cur_trans->switch_commits);
2310 
2311 	switch_commit_roots(trans);
2312 
2313 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2314 	ASSERT(list_empty(&cur_trans->io_bgs));
2315 	update_super_roots(fs_info);
2316 
2317 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2318 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2319 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2320 	       sizeof(*fs_info->super_copy));
2321 
2322 	btrfs_commit_device_sizes(cur_trans);
2323 
2324 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2325 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2326 
2327 	btrfs_trans_release_chunk_metadata(trans);
2328 
2329 	spin_lock(&fs_info->trans_lock);
2330 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2331 	fs_info->running_transaction = NULL;
2332 	spin_unlock(&fs_info->trans_lock);
2333 	mutex_unlock(&fs_info->reloc_mutex);
2334 
2335 	wake_up(&fs_info->transaction_wait);
2336 
2337 	ret = btrfs_write_and_wait_transaction(trans);
2338 	if (ret) {
2339 		btrfs_handle_fs_error(fs_info, ret,
2340 				      "Error while writing out transaction");
2341 		/*
2342 		 * reloc_mutex has been unlocked, tree_log_mutex is still held
2343 		 * but we can't jump to unlock_tree_log causing double unlock
2344 		 */
2345 		mutex_unlock(&fs_info->tree_log_mutex);
2346 		goto scrub_continue;
2347 	}
2348 
2349 	ret = write_all_supers(fs_info, 0);
2350 	/*
2351 	 * the super is written, we can safely allow the tree-loggers
2352 	 * to go about their business
2353 	 */
2354 	mutex_unlock(&fs_info->tree_log_mutex);
2355 	if (ret)
2356 		goto scrub_continue;
2357 
2358 	btrfs_finish_extent_commit(trans);
2359 
2360 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2361 		btrfs_clear_space_info_full(fs_info);
2362 
2363 	fs_info->last_trans_committed = cur_trans->transid;
2364 	/*
2365 	 * We needn't acquire the lock here because there is no other task
2366 	 * which can change it.
2367 	 */
2368 	cur_trans->state = TRANS_STATE_COMPLETED;
2369 	wake_up(&cur_trans->commit_wait);
2370 
2371 	spin_lock(&fs_info->trans_lock);
2372 	list_del_init(&cur_trans->list);
2373 	spin_unlock(&fs_info->trans_lock);
2374 
2375 	btrfs_put_transaction(cur_trans);
2376 	btrfs_put_transaction(cur_trans);
2377 
2378 	if (trans->type & __TRANS_FREEZABLE)
2379 		sb_end_intwrite(fs_info->sb);
2380 
2381 	trace_btrfs_transaction_commit(trans->root);
2382 
2383 	btrfs_scrub_continue(fs_info);
2384 
2385 	if (current->journal_info == trans)
2386 		current->journal_info = NULL;
2387 
2388 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2389 
2390 	return ret;
2391 
2392 unlock_tree_log:
2393 	mutex_unlock(&fs_info->tree_log_mutex);
2394 unlock_reloc:
2395 	mutex_unlock(&fs_info->reloc_mutex);
2396 scrub_continue:
2397 	btrfs_scrub_continue(fs_info);
2398 cleanup_transaction:
2399 	btrfs_trans_release_metadata(trans);
2400 	btrfs_cleanup_pending_block_groups(trans);
2401 	btrfs_trans_release_chunk_metadata(trans);
2402 	trans->block_rsv = NULL;
2403 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2404 	if (current->journal_info == trans)
2405 		current->journal_info = NULL;
2406 	cleanup_transaction(trans, ret);
2407 
2408 	return ret;
2409 }
2410 
2411 /*
2412  * return < 0 if error
2413  * 0 if there are no more dead_roots at the time of call
2414  * 1 there are more to be processed, call me again
2415  *
2416  * The return value indicates there are certainly more snapshots to delete, but
2417  * if there comes a new one during processing, it may return 0. We don't mind,
2418  * because btrfs_commit_super will poke cleaner thread and it will process it a
2419  * few seconds later.
2420  */
2421 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2422 {
2423 	int ret;
2424 	struct btrfs_fs_info *fs_info = root->fs_info;
2425 
2426 	spin_lock(&fs_info->trans_lock);
2427 	if (list_empty(&fs_info->dead_roots)) {
2428 		spin_unlock(&fs_info->trans_lock);
2429 		return 0;
2430 	}
2431 	root = list_first_entry(&fs_info->dead_roots,
2432 			struct btrfs_root, root_list);
2433 	list_del_init(&root->root_list);
2434 	spin_unlock(&fs_info->trans_lock);
2435 
2436 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2437 
2438 	btrfs_kill_all_delayed_nodes(root);
2439 	if (root->ino_cache_inode) {
2440 		iput(root->ino_cache_inode);
2441 		root->ino_cache_inode = NULL;
2442 	}
2443 
2444 	if (btrfs_header_backref_rev(root->node) <
2445 			BTRFS_MIXED_BACKREF_REV)
2446 		ret = btrfs_drop_snapshot(root, 0, 0);
2447 	else
2448 		ret = btrfs_drop_snapshot(root, 1, 0);
2449 
2450 	btrfs_put_root(root);
2451 	return (ret < 0) ? 0 : 1;
2452 }
2453 
2454 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2455 {
2456 	unsigned long prev;
2457 	unsigned long bit;
2458 
2459 	prev = xchg(&fs_info->pending_changes, 0);
2460 	if (!prev)
2461 		return;
2462 
2463 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2464 	if (prev & bit)
2465 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2466 	prev &= ~bit;
2467 
2468 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2469 	if (prev & bit)
2470 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2471 	prev &= ~bit;
2472 
2473 	bit = 1 << BTRFS_PENDING_COMMIT;
2474 	if (prev & bit)
2475 		btrfs_debug(fs_info, "pending commit done");
2476 	prev &= ~bit;
2477 
2478 	if (prev)
2479 		btrfs_warn(fs_info,
2480 			"unknown pending changes left 0x%lx, ignoring", prev);
2481 }
2482