1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "inode-map.h" 20 #include "volumes.h" 21 #include "dev-replace.h" 22 #include "qgroup.h" 23 #include "block-group.h" 24 #include "space-info.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_COMPLETED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 }; 117 118 void btrfs_put_transaction(struct btrfs_transaction *transaction) 119 { 120 WARN_ON(refcount_read(&transaction->use_count) == 0); 121 if (refcount_dec_and_test(&transaction->use_count)) { 122 BUG_ON(!list_empty(&transaction->list)); 123 WARN_ON(!RB_EMPTY_ROOT( 124 &transaction->delayed_refs.href_root.rb_root)); 125 WARN_ON(!RB_EMPTY_ROOT( 126 &transaction->delayed_refs.dirty_extent_root)); 127 if (transaction->delayed_refs.pending_csums) 128 btrfs_err(transaction->fs_info, 129 "pending csums is %llu", 130 transaction->delayed_refs.pending_csums); 131 /* 132 * If any block groups are found in ->deleted_bgs then it's 133 * because the transaction was aborted and a commit did not 134 * happen (things failed before writing the new superblock 135 * and calling btrfs_finish_extent_commit()), so we can not 136 * discard the physical locations of the block groups. 137 */ 138 while (!list_empty(&transaction->deleted_bgs)) { 139 struct btrfs_block_group *cache; 140 141 cache = list_first_entry(&transaction->deleted_bgs, 142 struct btrfs_block_group, 143 bg_list); 144 list_del_init(&cache->bg_list); 145 btrfs_unfreeze_block_group(cache); 146 btrfs_put_block_group(cache); 147 } 148 WARN_ON(!list_empty(&transaction->dev_update_list)); 149 kfree(transaction); 150 } 151 } 152 153 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 154 { 155 struct btrfs_transaction *cur_trans = trans->transaction; 156 struct btrfs_fs_info *fs_info = trans->fs_info; 157 struct btrfs_root *root, *tmp; 158 struct btrfs_caching_control *caching_ctl, *next; 159 160 down_write(&fs_info->commit_root_sem); 161 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 162 dirty_list) { 163 list_del_init(&root->dirty_list); 164 free_extent_buffer(root->commit_root); 165 root->commit_root = btrfs_root_node(root); 166 if (is_fstree(root->root_key.objectid)) 167 btrfs_unpin_free_ino(root); 168 extent_io_tree_release(&root->dirty_log_pages); 169 btrfs_qgroup_clean_swapped_blocks(root); 170 } 171 172 /* We can free old roots now. */ 173 spin_lock(&cur_trans->dropped_roots_lock); 174 while (!list_empty(&cur_trans->dropped_roots)) { 175 root = list_first_entry(&cur_trans->dropped_roots, 176 struct btrfs_root, root_list); 177 list_del_init(&root->root_list); 178 spin_unlock(&cur_trans->dropped_roots_lock); 179 btrfs_free_log(trans, root); 180 btrfs_drop_and_free_fs_root(fs_info, root); 181 spin_lock(&cur_trans->dropped_roots_lock); 182 } 183 spin_unlock(&cur_trans->dropped_roots_lock); 184 185 /* 186 * We have to update the last_byte_to_unpin under the commit_root_sem, 187 * at the same time we swap out the commit roots. 188 * 189 * This is because we must have a real view of the last spot the caching 190 * kthreads were while caching. Consider the following views of the 191 * extent tree for a block group 192 * 193 * commit root 194 * +----+----+----+----+----+----+----+ 195 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 196 * +----+----+----+----+----+----+----+ 197 * 0 1 2 3 4 5 6 7 198 * 199 * new commit root 200 * +----+----+----+----+----+----+----+ 201 * | | | |\\\\| | |\\\\| 202 * +----+----+----+----+----+----+----+ 203 * 0 1 2 3 4 5 6 7 204 * 205 * If the cache_ctl->progress was at 3, then we are only allowed to 206 * unpin [0,1) and [2,3], because the caching thread has already 207 * processed those extents. We are not allowed to unpin [5,6), because 208 * the caching thread will re-start it's search from 3, and thus find 209 * the hole from [4,6) to add to the free space cache. 210 */ 211 spin_lock(&fs_info->block_group_cache_lock); 212 list_for_each_entry_safe(caching_ctl, next, 213 &fs_info->caching_block_groups, list) { 214 struct btrfs_block_group *cache = caching_ctl->block_group; 215 216 if (btrfs_block_group_done(cache)) { 217 cache->last_byte_to_unpin = (u64)-1; 218 list_del_init(&caching_ctl->list); 219 btrfs_put_caching_control(caching_ctl); 220 } else { 221 cache->last_byte_to_unpin = caching_ctl->progress; 222 } 223 } 224 spin_unlock(&fs_info->block_group_cache_lock); 225 up_write(&fs_info->commit_root_sem); 226 } 227 228 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 229 unsigned int type) 230 { 231 if (type & TRANS_EXTWRITERS) 232 atomic_inc(&trans->num_extwriters); 233 } 234 235 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 236 unsigned int type) 237 { 238 if (type & TRANS_EXTWRITERS) 239 atomic_dec(&trans->num_extwriters); 240 } 241 242 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 243 unsigned int type) 244 { 245 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 246 } 247 248 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 249 { 250 return atomic_read(&trans->num_extwriters); 251 } 252 253 /* 254 * To be called after all the new block groups attached to the transaction 255 * handle have been created (btrfs_create_pending_block_groups()). 256 */ 257 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 258 { 259 struct btrfs_fs_info *fs_info = trans->fs_info; 260 261 if (!trans->chunk_bytes_reserved) 262 return; 263 264 WARN_ON_ONCE(!list_empty(&trans->new_bgs)); 265 266 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 267 trans->chunk_bytes_reserved, NULL); 268 trans->chunk_bytes_reserved = 0; 269 } 270 271 /* 272 * either allocate a new transaction or hop into the existing one 273 */ 274 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 275 unsigned int type) 276 { 277 struct btrfs_transaction *cur_trans; 278 279 spin_lock(&fs_info->trans_lock); 280 loop: 281 /* The file system has been taken offline. No new transactions. */ 282 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 283 spin_unlock(&fs_info->trans_lock); 284 return -EROFS; 285 } 286 287 cur_trans = fs_info->running_transaction; 288 if (cur_trans) { 289 if (TRANS_ABORTED(cur_trans)) { 290 spin_unlock(&fs_info->trans_lock); 291 return cur_trans->aborted; 292 } 293 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 294 spin_unlock(&fs_info->trans_lock); 295 return -EBUSY; 296 } 297 refcount_inc(&cur_trans->use_count); 298 atomic_inc(&cur_trans->num_writers); 299 extwriter_counter_inc(cur_trans, type); 300 spin_unlock(&fs_info->trans_lock); 301 return 0; 302 } 303 spin_unlock(&fs_info->trans_lock); 304 305 /* 306 * If we are ATTACH, we just want to catch the current transaction, 307 * and commit it. If there is no transaction, just return ENOENT. 308 */ 309 if (type == TRANS_ATTACH) 310 return -ENOENT; 311 312 /* 313 * JOIN_NOLOCK only happens during the transaction commit, so 314 * it is impossible that ->running_transaction is NULL 315 */ 316 BUG_ON(type == TRANS_JOIN_NOLOCK); 317 318 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 319 if (!cur_trans) 320 return -ENOMEM; 321 322 spin_lock(&fs_info->trans_lock); 323 if (fs_info->running_transaction) { 324 /* 325 * someone started a transaction after we unlocked. Make sure 326 * to redo the checks above 327 */ 328 kfree(cur_trans); 329 goto loop; 330 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 331 spin_unlock(&fs_info->trans_lock); 332 kfree(cur_trans); 333 return -EROFS; 334 } 335 336 cur_trans->fs_info = fs_info; 337 atomic_set(&cur_trans->pending_ordered, 0); 338 init_waitqueue_head(&cur_trans->pending_wait); 339 atomic_set(&cur_trans->num_writers, 1); 340 extwriter_counter_init(cur_trans, type); 341 init_waitqueue_head(&cur_trans->writer_wait); 342 init_waitqueue_head(&cur_trans->commit_wait); 343 cur_trans->state = TRANS_STATE_RUNNING; 344 /* 345 * One for this trans handle, one so it will live on until we 346 * commit the transaction. 347 */ 348 refcount_set(&cur_trans->use_count, 2); 349 cur_trans->flags = 0; 350 cur_trans->start_time = ktime_get_seconds(); 351 352 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 353 354 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 355 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 356 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 357 358 /* 359 * although the tree mod log is per file system and not per transaction, 360 * the log must never go across transaction boundaries. 361 */ 362 smp_mb(); 363 if (!list_empty(&fs_info->tree_mod_seq_list)) 364 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 365 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 366 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 367 atomic64_set(&fs_info->tree_mod_seq, 0); 368 369 spin_lock_init(&cur_trans->delayed_refs.lock); 370 371 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 372 INIT_LIST_HEAD(&cur_trans->dev_update_list); 373 INIT_LIST_HEAD(&cur_trans->switch_commits); 374 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 375 INIT_LIST_HEAD(&cur_trans->io_bgs); 376 INIT_LIST_HEAD(&cur_trans->dropped_roots); 377 mutex_init(&cur_trans->cache_write_mutex); 378 spin_lock_init(&cur_trans->dirty_bgs_lock); 379 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 380 spin_lock_init(&cur_trans->dropped_roots_lock); 381 list_add_tail(&cur_trans->list, &fs_info->trans_list); 382 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 383 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 384 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 385 IO_TREE_FS_PINNED_EXTENTS, NULL); 386 fs_info->generation++; 387 cur_trans->transid = fs_info->generation; 388 fs_info->running_transaction = cur_trans; 389 cur_trans->aborted = 0; 390 spin_unlock(&fs_info->trans_lock); 391 392 return 0; 393 } 394 395 /* 396 * This does all the record keeping required to make sure that a shareable root 397 * is properly recorded in a given transaction. This is required to make sure 398 * the old root from before we joined the transaction is deleted when the 399 * transaction commits. 400 */ 401 static int record_root_in_trans(struct btrfs_trans_handle *trans, 402 struct btrfs_root *root, 403 int force) 404 { 405 struct btrfs_fs_info *fs_info = root->fs_info; 406 407 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 408 root->last_trans < trans->transid) || force) { 409 WARN_ON(root == fs_info->extent_root); 410 WARN_ON(!force && root->commit_root != root->node); 411 412 /* 413 * see below for IN_TRANS_SETUP usage rules 414 * we have the reloc mutex held now, so there 415 * is only one writer in this function 416 */ 417 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 418 419 /* make sure readers find IN_TRANS_SETUP before 420 * they find our root->last_trans update 421 */ 422 smp_wmb(); 423 424 spin_lock(&fs_info->fs_roots_radix_lock); 425 if (root->last_trans == trans->transid && !force) { 426 spin_unlock(&fs_info->fs_roots_radix_lock); 427 return 0; 428 } 429 radix_tree_tag_set(&fs_info->fs_roots_radix, 430 (unsigned long)root->root_key.objectid, 431 BTRFS_ROOT_TRANS_TAG); 432 spin_unlock(&fs_info->fs_roots_radix_lock); 433 root->last_trans = trans->transid; 434 435 /* this is pretty tricky. We don't want to 436 * take the relocation lock in btrfs_record_root_in_trans 437 * unless we're really doing the first setup for this root in 438 * this transaction. 439 * 440 * Normally we'd use root->last_trans as a flag to decide 441 * if we want to take the expensive mutex. 442 * 443 * But, we have to set root->last_trans before we 444 * init the relocation root, otherwise, we trip over warnings 445 * in ctree.c. The solution used here is to flag ourselves 446 * with root IN_TRANS_SETUP. When this is 1, we're still 447 * fixing up the reloc trees and everyone must wait. 448 * 449 * When this is zero, they can trust root->last_trans and fly 450 * through btrfs_record_root_in_trans without having to take the 451 * lock. smp_wmb() makes sure that all the writes above are 452 * done before we pop in the zero below 453 */ 454 btrfs_init_reloc_root(trans, root); 455 smp_mb__before_atomic(); 456 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 457 } 458 return 0; 459 } 460 461 462 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 463 struct btrfs_root *root) 464 { 465 struct btrfs_fs_info *fs_info = root->fs_info; 466 struct btrfs_transaction *cur_trans = trans->transaction; 467 468 /* Add ourselves to the transaction dropped list */ 469 spin_lock(&cur_trans->dropped_roots_lock); 470 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 471 spin_unlock(&cur_trans->dropped_roots_lock); 472 473 /* Make sure we don't try to update the root at commit time */ 474 spin_lock(&fs_info->fs_roots_radix_lock); 475 radix_tree_tag_clear(&fs_info->fs_roots_radix, 476 (unsigned long)root->root_key.objectid, 477 BTRFS_ROOT_TRANS_TAG); 478 spin_unlock(&fs_info->fs_roots_radix_lock); 479 } 480 481 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 482 struct btrfs_root *root) 483 { 484 struct btrfs_fs_info *fs_info = root->fs_info; 485 486 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 487 return 0; 488 489 /* 490 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 491 * and barriers 492 */ 493 smp_rmb(); 494 if (root->last_trans == trans->transid && 495 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 496 return 0; 497 498 mutex_lock(&fs_info->reloc_mutex); 499 record_root_in_trans(trans, root, 0); 500 mutex_unlock(&fs_info->reloc_mutex); 501 502 return 0; 503 } 504 505 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 506 { 507 return (trans->state >= TRANS_STATE_COMMIT_START && 508 trans->state < TRANS_STATE_UNBLOCKED && 509 !TRANS_ABORTED(trans)); 510 } 511 512 /* wait for commit against the current transaction to become unblocked 513 * when this is done, it is safe to start a new transaction, but the current 514 * transaction might not be fully on disk. 515 */ 516 static void wait_current_trans(struct btrfs_fs_info *fs_info) 517 { 518 struct btrfs_transaction *cur_trans; 519 520 spin_lock(&fs_info->trans_lock); 521 cur_trans = fs_info->running_transaction; 522 if (cur_trans && is_transaction_blocked(cur_trans)) { 523 refcount_inc(&cur_trans->use_count); 524 spin_unlock(&fs_info->trans_lock); 525 526 wait_event(fs_info->transaction_wait, 527 cur_trans->state >= TRANS_STATE_UNBLOCKED || 528 TRANS_ABORTED(cur_trans)); 529 btrfs_put_transaction(cur_trans); 530 } else { 531 spin_unlock(&fs_info->trans_lock); 532 } 533 } 534 535 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 536 { 537 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 538 return 0; 539 540 if (type == TRANS_START) 541 return 1; 542 543 return 0; 544 } 545 546 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 547 { 548 struct btrfs_fs_info *fs_info = root->fs_info; 549 550 if (!fs_info->reloc_ctl || 551 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 552 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 553 root->reloc_root) 554 return false; 555 556 return true; 557 } 558 559 static struct btrfs_trans_handle * 560 start_transaction(struct btrfs_root *root, unsigned int num_items, 561 unsigned int type, enum btrfs_reserve_flush_enum flush, 562 bool enforce_qgroups) 563 { 564 struct btrfs_fs_info *fs_info = root->fs_info; 565 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 566 struct btrfs_trans_handle *h; 567 struct btrfs_transaction *cur_trans; 568 u64 num_bytes = 0; 569 u64 qgroup_reserved = 0; 570 bool reloc_reserved = false; 571 bool do_chunk_alloc = false; 572 int ret; 573 574 /* Send isn't supposed to start transactions. */ 575 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 576 577 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) 578 return ERR_PTR(-EROFS); 579 580 if (current->journal_info) { 581 WARN_ON(type & TRANS_EXTWRITERS); 582 h = current->journal_info; 583 refcount_inc(&h->use_count); 584 WARN_ON(refcount_read(&h->use_count) > 2); 585 h->orig_rsv = h->block_rsv; 586 h->block_rsv = NULL; 587 goto got_it; 588 } 589 590 /* 591 * Do the reservation before we join the transaction so we can do all 592 * the appropriate flushing if need be. 593 */ 594 if (num_items && root != fs_info->chunk_root) { 595 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 596 u64 delayed_refs_bytes = 0; 597 598 qgroup_reserved = num_items * fs_info->nodesize; 599 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 600 enforce_qgroups); 601 if (ret) 602 return ERR_PTR(ret); 603 604 /* 605 * We want to reserve all the bytes we may need all at once, so 606 * we only do 1 enospc flushing cycle per transaction start. We 607 * accomplish this by simply assuming we'll do 2 x num_items 608 * worth of delayed refs updates in this trans handle, and 609 * refill that amount for whatever is missing in the reserve. 610 */ 611 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 612 if (flush == BTRFS_RESERVE_FLUSH_ALL && 613 delayed_refs_rsv->full == 0) { 614 delayed_refs_bytes = num_bytes; 615 num_bytes <<= 1; 616 } 617 618 /* 619 * Do the reservation for the relocation root creation 620 */ 621 if (need_reserve_reloc_root(root)) { 622 num_bytes += fs_info->nodesize; 623 reloc_reserved = true; 624 } 625 626 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush); 627 if (ret) 628 goto reserve_fail; 629 if (delayed_refs_bytes) { 630 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 631 delayed_refs_bytes); 632 num_bytes -= delayed_refs_bytes; 633 } 634 635 if (rsv->space_info->force_alloc) 636 do_chunk_alloc = true; 637 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 638 !delayed_refs_rsv->full) { 639 /* 640 * Some people call with btrfs_start_transaction(root, 0) 641 * because they can be throttled, but have some other mechanism 642 * for reserving space. We still want these guys to refill the 643 * delayed block_rsv so just add 1 items worth of reservation 644 * here. 645 */ 646 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 647 if (ret) 648 goto reserve_fail; 649 } 650 again: 651 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 652 if (!h) { 653 ret = -ENOMEM; 654 goto alloc_fail; 655 } 656 657 /* 658 * If we are JOIN_NOLOCK we're already committing a transaction and 659 * waiting on this guy, so we don't need to do the sb_start_intwrite 660 * because we're already holding a ref. We need this because we could 661 * have raced in and did an fsync() on a file which can kick a commit 662 * and then we deadlock with somebody doing a freeze. 663 * 664 * If we are ATTACH, it means we just want to catch the current 665 * transaction and commit it, so we needn't do sb_start_intwrite(). 666 */ 667 if (type & __TRANS_FREEZABLE) 668 sb_start_intwrite(fs_info->sb); 669 670 if (may_wait_transaction(fs_info, type)) 671 wait_current_trans(fs_info); 672 673 do { 674 ret = join_transaction(fs_info, type); 675 if (ret == -EBUSY) { 676 wait_current_trans(fs_info); 677 if (unlikely(type == TRANS_ATTACH || 678 type == TRANS_JOIN_NOSTART)) 679 ret = -ENOENT; 680 } 681 } while (ret == -EBUSY); 682 683 if (ret < 0) 684 goto join_fail; 685 686 cur_trans = fs_info->running_transaction; 687 688 h->transid = cur_trans->transid; 689 h->transaction = cur_trans; 690 h->root = root; 691 refcount_set(&h->use_count, 1); 692 h->fs_info = root->fs_info; 693 694 h->type = type; 695 h->can_flush_pending_bgs = true; 696 INIT_LIST_HEAD(&h->new_bgs); 697 698 smp_mb(); 699 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 700 may_wait_transaction(fs_info, type)) { 701 current->journal_info = h; 702 btrfs_commit_transaction(h); 703 goto again; 704 } 705 706 if (num_bytes) { 707 trace_btrfs_space_reservation(fs_info, "transaction", 708 h->transid, num_bytes, 1); 709 h->block_rsv = &fs_info->trans_block_rsv; 710 h->bytes_reserved = num_bytes; 711 h->reloc_reserved = reloc_reserved; 712 } 713 714 got_it: 715 if (!current->journal_info) 716 current->journal_info = h; 717 718 /* 719 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 720 * ALLOC_FORCE the first run through, and then we won't allocate for 721 * anybody else who races in later. We don't care about the return 722 * value here. 723 */ 724 if (do_chunk_alloc && num_bytes) { 725 u64 flags = h->block_rsv->space_info->flags; 726 727 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 728 CHUNK_ALLOC_NO_FORCE); 729 } 730 731 /* 732 * btrfs_record_root_in_trans() needs to alloc new extents, and may 733 * call btrfs_join_transaction() while we're also starting a 734 * transaction. 735 * 736 * Thus it need to be called after current->journal_info initialized, 737 * or we can deadlock. 738 */ 739 btrfs_record_root_in_trans(h, root); 740 741 return h; 742 743 join_fail: 744 if (type & __TRANS_FREEZABLE) 745 sb_end_intwrite(fs_info->sb); 746 kmem_cache_free(btrfs_trans_handle_cachep, h); 747 alloc_fail: 748 if (num_bytes) 749 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 750 num_bytes, NULL); 751 reserve_fail: 752 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 753 return ERR_PTR(ret); 754 } 755 756 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 757 unsigned int num_items) 758 { 759 return start_transaction(root, num_items, TRANS_START, 760 BTRFS_RESERVE_FLUSH_ALL, true); 761 } 762 763 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 764 struct btrfs_root *root, 765 unsigned int num_items) 766 { 767 return start_transaction(root, num_items, TRANS_START, 768 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 769 } 770 771 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 772 { 773 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 774 true); 775 } 776 777 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 778 { 779 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 780 BTRFS_RESERVE_NO_FLUSH, true); 781 } 782 783 /* 784 * Similar to regular join but it never starts a transaction when none is 785 * running or after waiting for the current one to finish. 786 */ 787 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 788 { 789 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 790 BTRFS_RESERVE_NO_FLUSH, true); 791 } 792 793 /* 794 * btrfs_attach_transaction() - catch the running transaction 795 * 796 * It is used when we want to commit the current the transaction, but 797 * don't want to start a new one. 798 * 799 * Note: If this function return -ENOENT, it just means there is no 800 * running transaction. But it is possible that the inactive transaction 801 * is still in the memory, not fully on disk. If you hope there is no 802 * inactive transaction in the fs when -ENOENT is returned, you should 803 * invoke 804 * btrfs_attach_transaction_barrier() 805 */ 806 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 807 { 808 return start_transaction(root, 0, TRANS_ATTACH, 809 BTRFS_RESERVE_NO_FLUSH, true); 810 } 811 812 /* 813 * btrfs_attach_transaction_barrier() - catch the running transaction 814 * 815 * It is similar to the above function, the difference is this one 816 * will wait for all the inactive transactions until they fully 817 * complete. 818 */ 819 struct btrfs_trans_handle * 820 btrfs_attach_transaction_barrier(struct btrfs_root *root) 821 { 822 struct btrfs_trans_handle *trans; 823 824 trans = start_transaction(root, 0, TRANS_ATTACH, 825 BTRFS_RESERVE_NO_FLUSH, true); 826 if (trans == ERR_PTR(-ENOENT)) 827 btrfs_wait_for_commit(root->fs_info, 0); 828 829 return trans; 830 } 831 832 /* wait for a transaction commit to be fully complete */ 833 static noinline void wait_for_commit(struct btrfs_transaction *commit) 834 { 835 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 836 } 837 838 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 839 { 840 struct btrfs_transaction *cur_trans = NULL, *t; 841 int ret = 0; 842 843 if (transid) { 844 if (transid <= fs_info->last_trans_committed) 845 goto out; 846 847 /* find specified transaction */ 848 spin_lock(&fs_info->trans_lock); 849 list_for_each_entry(t, &fs_info->trans_list, list) { 850 if (t->transid == transid) { 851 cur_trans = t; 852 refcount_inc(&cur_trans->use_count); 853 ret = 0; 854 break; 855 } 856 if (t->transid > transid) { 857 ret = 0; 858 break; 859 } 860 } 861 spin_unlock(&fs_info->trans_lock); 862 863 /* 864 * The specified transaction doesn't exist, or we 865 * raced with btrfs_commit_transaction 866 */ 867 if (!cur_trans) { 868 if (transid > fs_info->last_trans_committed) 869 ret = -EINVAL; 870 goto out; 871 } 872 } else { 873 /* find newest transaction that is committing | committed */ 874 spin_lock(&fs_info->trans_lock); 875 list_for_each_entry_reverse(t, &fs_info->trans_list, 876 list) { 877 if (t->state >= TRANS_STATE_COMMIT_START) { 878 if (t->state == TRANS_STATE_COMPLETED) 879 break; 880 cur_trans = t; 881 refcount_inc(&cur_trans->use_count); 882 break; 883 } 884 } 885 spin_unlock(&fs_info->trans_lock); 886 if (!cur_trans) 887 goto out; /* nothing committing|committed */ 888 } 889 890 wait_for_commit(cur_trans); 891 btrfs_put_transaction(cur_trans); 892 out: 893 return ret; 894 } 895 896 void btrfs_throttle(struct btrfs_fs_info *fs_info) 897 { 898 wait_current_trans(fs_info); 899 } 900 901 static int should_end_transaction(struct btrfs_trans_handle *trans) 902 { 903 struct btrfs_fs_info *fs_info = trans->fs_info; 904 905 if (btrfs_check_space_for_delayed_refs(fs_info)) 906 return 1; 907 908 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 909 } 910 911 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 912 { 913 struct btrfs_transaction *cur_trans = trans->transaction; 914 915 smp_mb(); 916 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 917 cur_trans->delayed_refs.flushing) 918 return 1; 919 920 return should_end_transaction(trans); 921 } 922 923 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 924 925 { 926 struct btrfs_fs_info *fs_info = trans->fs_info; 927 928 if (!trans->block_rsv) { 929 ASSERT(!trans->bytes_reserved); 930 return; 931 } 932 933 if (!trans->bytes_reserved) 934 return; 935 936 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 937 trace_btrfs_space_reservation(fs_info, "transaction", 938 trans->transid, trans->bytes_reserved, 0); 939 btrfs_block_rsv_release(fs_info, trans->block_rsv, 940 trans->bytes_reserved, NULL); 941 trans->bytes_reserved = 0; 942 } 943 944 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 945 int throttle) 946 { 947 struct btrfs_fs_info *info = trans->fs_info; 948 struct btrfs_transaction *cur_trans = trans->transaction; 949 int err = 0; 950 951 if (refcount_read(&trans->use_count) > 1) { 952 refcount_dec(&trans->use_count); 953 trans->block_rsv = trans->orig_rsv; 954 return 0; 955 } 956 957 btrfs_trans_release_metadata(trans); 958 trans->block_rsv = NULL; 959 960 btrfs_create_pending_block_groups(trans); 961 962 btrfs_trans_release_chunk_metadata(trans); 963 964 if (trans->type & __TRANS_FREEZABLE) 965 sb_end_intwrite(info->sb); 966 967 WARN_ON(cur_trans != info->running_transaction); 968 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 969 atomic_dec(&cur_trans->num_writers); 970 extwriter_counter_dec(cur_trans, trans->type); 971 972 cond_wake_up(&cur_trans->writer_wait); 973 btrfs_put_transaction(cur_trans); 974 975 if (current->journal_info == trans) 976 current->journal_info = NULL; 977 978 if (throttle) 979 btrfs_run_delayed_iputs(info); 980 981 if (TRANS_ABORTED(trans) || 982 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) { 983 wake_up_process(info->transaction_kthread); 984 if (TRANS_ABORTED(trans)) 985 err = trans->aborted; 986 else 987 err = -EROFS; 988 } 989 990 kmem_cache_free(btrfs_trans_handle_cachep, trans); 991 return err; 992 } 993 994 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 995 { 996 return __btrfs_end_transaction(trans, 0); 997 } 998 999 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1000 { 1001 return __btrfs_end_transaction(trans, 1); 1002 } 1003 1004 /* 1005 * when btree blocks are allocated, they have some corresponding bits set for 1006 * them in one of two extent_io trees. This is used to make sure all of 1007 * those extents are sent to disk but does not wait on them 1008 */ 1009 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1010 struct extent_io_tree *dirty_pages, int mark) 1011 { 1012 int err = 0; 1013 int werr = 0; 1014 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1015 struct extent_state *cached_state = NULL; 1016 u64 start = 0; 1017 u64 end; 1018 1019 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1020 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1021 mark, &cached_state)) { 1022 bool wait_writeback = false; 1023 1024 err = convert_extent_bit(dirty_pages, start, end, 1025 EXTENT_NEED_WAIT, 1026 mark, &cached_state); 1027 /* 1028 * convert_extent_bit can return -ENOMEM, which is most of the 1029 * time a temporary error. So when it happens, ignore the error 1030 * and wait for writeback of this range to finish - because we 1031 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1032 * to __btrfs_wait_marked_extents() would not know that 1033 * writeback for this range started and therefore wouldn't 1034 * wait for it to finish - we don't want to commit a 1035 * superblock that points to btree nodes/leafs for which 1036 * writeback hasn't finished yet (and without errors). 1037 * We cleanup any entries left in the io tree when committing 1038 * the transaction (through extent_io_tree_release()). 1039 */ 1040 if (err == -ENOMEM) { 1041 err = 0; 1042 wait_writeback = true; 1043 } 1044 if (!err) 1045 err = filemap_fdatawrite_range(mapping, start, end); 1046 if (err) 1047 werr = err; 1048 else if (wait_writeback) 1049 werr = filemap_fdatawait_range(mapping, start, end); 1050 free_extent_state(cached_state); 1051 cached_state = NULL; 1052 cond_resched(); 1053 start = end + 1; 1054 } 1055 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1056 return werr; 1057 } 1058 1059 /* 1060 * when btree blocks are allocated, they have some corresponding bits set for 1061 * them in one of two extent_io trees. This is used to make sure all of 1062 * those extents are on disk for transaction or log commit. We wait 1063 * on all the pages and clear them from the dirty pages state tree 1064 */ 1065 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1066 struct extent_io_tree *dirty_pages) 1067 { 1068 int err = 0; 1069 int werr = 0; 1070 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1071 struct extent_state *cached_state = NULL; 1072 u64 start = 0; 1073 u64 end; 1074 1075 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1076 EXTENT_NEED_WAIT, &cached_state)) { 1077 /* 1078 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1079 * When committing the transaction, we'll remove any entries 1080 * left in the io tree. For a log commit, we don't remove them 1081 * after committing the log because the tree can be accessed 1082 * concurrently - we do it only at transaction commit time when 1083 * it's safe to do it (through extent_io_tree_release()). 1084 */ 1085 err = clear_extent_bit(dirty_pages, start, end, 1086 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1087 if (err == -ENOMEM) 1088 err = 0; 1089 if (!err) 1090 err = filemap_fdatawait_range(mapping, start, end); 1091 if (err) 1092 werr = err; 1093 free_extent_state(cached_state); 1094 cached_state = NULL; 1095 cond_resched(); 1096 start = end + 1; 1097 } 1098 if (err) 1099 werr = err; 1100 return werr; 1101 } 1102 1103 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1104 struct extent_io_tree *dirty_pages) 1105 { 1106 bool errors = false; 1107 int err; 1108 1109 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1110 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1111 errors = true; 1112 1113 if (errors && !err) 1114 err = -EIO; 1115 return err; 1116 } 1117 1118 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1119 { 1120 struct btrfs_fs_info *fs_info = log_root->fs_info; 1121 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1122 bool errors = false; 1123 int err; 1124 1125 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1126 1127 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1128 if ((mark & EXTENT_DIRTY) && 1129 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1130 errors = true; 1131 1132 if ((mark & EXTENT_NEW) && 1133 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1134 errors = true; 1135 1136 if (errors && !err) 1137 err = -EIO; 1138 return err; 1139 } 1140 1141 /* 1142 * When btree blocks are allocated the corresponding extents are marked dirty. 1143 * This function ensures such extents are persisted on disk for transaction or 1144 * log commit. 1145 * 1146 * @trans: transaction whose dirty pages we'd like to write 1147 */ 1148 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1149 { 1150 int ret; 1151 int ret2; 1152 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1153 struct btrfs_fs_info *fs_info = trans->fs_info; 1154 struct blk_plug plug; 1155 1156 blk_start_plug(&plug); 1157 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1158 blk_finish_plug(&plug); 1159 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1160 1161 extent_io_tree_release(&trans->transaction->dirty_pages); 1162 1163 if (ret) 1164 return ret; 1165 else if (ret2) 1166 return ret2; 1167 else 1168 return 0; 1169 } 1170 1171 /* 1172 * this is used to update the root pointer in the tree of tree roots. 1173 * 1174 * But, in the case of the extent allocation tree, updating the root 1175 * pointer may allocate blocks which may change the root of the extent 1176 * allocation tree. 1177 * 1178 * So, this loops and repeats and makes sure the cowonly root didn't 1179 * change while the root pointer was being updated in the metadata. 1180 */ 1181 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1182 struct btrfs_root *root) 1183 { 1184 int ret; 1185 u64 old_root_bytenr; 1186 u64 old_root_used; 1187 struct btrfs_fs_info *fs_info = root->fs_info; 1188 struct btrfs_root *tree_root = fs_info->tree_root; 1189 1190 old_root_used = btrfs_root_used(&root->root_item); 1191 1192 while (1) { 1193 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1194 if (old_root_bytenr == root->node->start && 1195 old_root_used == btrfs_root_used(&root->root_item)) 1196 break; 1197 1198 btrfs_set_root_node(&root->root_item, root->node); 1199 ret = btrfs_update_root(trans, tree_root, 1200 &root->root_key, 1201 &root->root_item); 1202 if (ret) 1203 return ret; 1204 1205 old_root_used = btrfs_root_used(&root->root_item); 1206 } 1207 1208 return 0; 1209 } 1210 1211 /* 1212 * update all the cowonly tree roots on disk 1213 * 1214 * The error handling in this function may not be obvious. Any of the 1215 * failures will cause the file system to go offline. We still need 1216 * to clean up the delayed refs. 1217 */ 1218 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1219 { 1220 struct btrfs_fs_info *fs_info = trans->fs_info; 1221 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1222 struct list_head *io_bgs = &trans->transaction->io_bgs; 1223 struct list_head *next; 1224 struct extent_buffer *eb; 1225 int ret; 1226 1227 eb = btrfs_lock_root_node(fs_info->tree_root); 1228 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1229 0, &eb, BTRFS_NESTING_COW); 1230 btrfs_tree_unlock(eb); 1231 free_extent_buffer(eb); 1232 1233 if (ret) 1234 return ret; 1235 1236 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1237 if (ret) 1238 return ret; 1239 1240 ret = btrfs_run_dev_stats(trans); 1241 if (ret) 1242 return ret; 1243 ret = btrfs_run_dev_replace(trans); 1244 if (ret) 1245 return ret; 1246 ret = btrfs_run_qgroups(trans); 1247 if (ret) 1248 return ret; 1249 1250 ret = btrfs_setup_space_cache(trans); 1251 if (ret) 1252 return ret; 1253 1254 /* run_qgroups might have added some more refs */ 1255 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1256 if (ret) 1257 return ret; 1258 again: 1259 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1260 struct btrfs_root *root; 1261 next = fs_info->dirty_cowonly_roots.next; 1262 list_del_init(next); 1263 root = list_entry(next, struct btrfs_root, dirty_list); 1264 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1265 1266 if (root != fs_info->extent_root) 1267 list_add_tail(&root->dirty_list, 1268 &trans->transaction->switch_commits); 1269 ret = update_cowonly_root(trans, root); 1270 if (ret) 1271 return ret; 1272 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1273 if (ret) 1274 return ret; 1275 } 1276 1277 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1278 ret = btrfs_write_dirty_block_groups(trans); 1279 if (ret) 1280 return ret; 1281 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1282 if (ret) 1283 return ret; 1284 } 1285 1286 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1287 goto again; 1288 1289 list_add_tail(&fs_info->extent_root->dirty_list, 1290 &trans->transaction->switch_commits); 1291 1292 /* Update dev-replace pointer once everything is committed */ 1293 fs_info->dev_replace.committed_cursor_left = 1294 fs_info->dev_replace.cursor_left_last_write_of_item; 1295 1296 return 0; 1297 } 1298 1299 /* 1300 * dead roots are old snapshots that need to be deleted. This allocates 1301 * a dirty root struct and adds it into the list of dead roots that need to 1302 * be deleted 1303 */ 1304 void btrfs_add_dead_root(struct btrfs_root *root) 1305 { 1306 struct btrfs_fs_info *fs_info = root->fs_info; 1307 1308 spin_lock(&fs_info->trans_lock); 1309 if (list_empty(&root->root_list)) { 1310 btrfs_grab_root(root); 1311 list_add_tail(&root->root_list, &fs_info->dead_roots); 1312 } 1313 spin_unlock(&fs_info->trans_lock); 1314 } 1315 1316 /* 1317 * update all the cowonly tree roots on disk 1318 */ 1319 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1320 { 1321 struct btrfs_fs_info *fs_info = trans->fs_info; 1322 struct btrfs_root *gang[8]; 1323 int i; 1324 int ret; 1325 int err = 0; 1326 1327 spin_lock(&fs_info->fs_roots_radix_lock); 1328 while (1) { 1329 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1330 (void **)gang, 0, 1331 ARRAY_SIZE(gang), 1332 BTRFS_ROOT_TRANS_TAG); 1333 if (ret == 0) 1334 break; 1335 for (i = 0; i < ret; i++) { 1336 struct btrfs_root *root = gang[i]; 1337 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1338 (unsigned long)root->root_key.objectid, 1339 BTRFS_ROOT_TRANS_TAG); 1340 spin_unlock(&fs_info->fs_roots_radix_lock); 1341 1342 btrfs_free_log(trans, root); 1343 btrfs_update_reloc_root(trans, root); 1344 1345 btrfs_save_ino_cache(root, trans); 1346 1347 /* see comments in should_cow_block() */ 1348 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1349 smp_mb__after_atomic(); 1350 1351 if (root->commit_root != root->node) { 1352 list_add_tail(&root->dirty_list, 1353 &trans->transaction->switch_commits); 1354 btrfs_set_root_node(&root->root_item, 1355 root->node); 1356 } 1357 1358 err = btrfs_update_root(trans, fs_info->tree_root, 1359 &root->root_key, 1360 &root->root_item); 1361 spin_lock(&fs_info->fs_roots_radix_lock); 1362 if (err) 1363 break; 1364 btrfs_qgroup_free_meta_all_pertrans(root); 1365 } 1366 } 1367 spin_unlock(&fs_info->fs_roots_radix_lock); 1368 return err; 1369 } 1370 1371 /* 1372 * defrag a given btree. 1373 * Every leaf in the btree is read and defragged. 1374 */ 1375 int btrfs_defrag_root(struct btrfs_root *root) 1376 { 1377 struct btrfs_fs_info *info = root->fs_info; 1378 struct btrfs_trans_handle *trans; 1379 int ret; 1380 1381 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1382 return 0; 1383 1384 while (1) { 1385 trans = btrfs_start_transaction(root, 0); 1386 if (IS_ERR(trans)) 1387 return PTR_ERR(trans); 1388 1389 ret = btrfs_defrag_leaves(trans, root); 1390 1391 btrfs_end_transaction(trans); 1392 btrfs_btree_balance_dirty(info); 1393 cond_resched(); 1394 1395 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1396 break; 1397 1398 if (btrfs_defrag_cancelled(info)) { 1399 btrfs_debug(info, "defrag_root cancelled"); 1400 ret = -EAGAIN; 1401 break; 1402 } 1403 } 1404 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1405 return ret; 1406 } 1407 1408 /* 1409 * Do all special snapshot related qgroup dirty hack. 1410 * 1411 * Will do all needed qgroup inherit and dirty hack like switch commit 1412 * roots inside one transaction and write all btree into disk, to make 1413 * qgroup works. 1414 */ 1415 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1416 struct btrfs_root *src, 1417 struct btrfs_root *parent, 1418 struct btrfs_qgroup_inherit *inherit, 1419 u64 dst_objectid) 1420 { 1421 struct btrfs_fs_info *fs_info = src->fs_info; 1422 int ret; 1423 1424 /* 1425 * Save some performance in the case that qgroups are not 1426 * enabled. If this check races with the ioctl, rescan will 1427 * kick in anyway. 1428 */ 1429 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1430 return 0; 1431 1432 /* 1433 * Ensure dirty @src will be committed. Or, after coming 1434 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1435 * recorded root will never be updated again, causing an outdated root 1436 * item. 1437 */ 1438 record_root_in_trans(trans, src, 1); 1439 1440 /* 1441 * We are going to commit transaction, see btrfs_commit_transaction() 1442 * comment for reason locking tree_log_mutex 1443 */ 1444 mutex_lock(&fs_info->tree_log_mutex); 1445 1446 ret = commit_fs_roots(trans); 1447 if (ret) 1448 goto out; 1449 ret = btrfs_qgroup_account_extents(trans); 1450 if (ret < 0) 1451 goto out; 1452 1453 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1454 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1455 inherit); 1456 if (ret < 0) 1457 goto out; 1458 1459 /* 1460 * Now we do a simplified commit transaction, which will: 1461 * 1) commit all subvolume and extent tree 1462 * To ensure all subvolume and extent tree have a valid 1463 * commit_root to accounting later insert_dir_item() 1464 * 2) write all btree blocks onto disk 1465 * This is to make sure later btree modification will be cowed 1466 * Or commit_root can be populated and cause wrong qgroup numbers 1467 * In this simplified commit, we don't really care about other trees 1468 * like chunk and root tree, as they won't affect qgroup. 1469 * And we don't write super to avoid half committed status. 1470 */ 1471 ret = commit_cowonly_roots(trans); 1472 if (ret) 1473 goto out; 1474 switch_commit_roots(trans); 1475 ret = btrfs_write_and_wait_transaction(trans); 1476 if (ret) 1477 btrfs_handle_fs_error(fs_info, ret, 1478 "Error while writing out transaction for qgroup"); 1479 1480 out: 1481 mutex_unlock(&fs_info->tree_log_mutex); 1482 1483 /* 1484 * Force parent root to be updated, as we recorded it before so its 1485 * last_trans == cur_transid. 1486 * Or it won't be committed again onto disk after later 1487 * insert_dir_item() 1488 */ 1489 if (!ret) 1490 record_root_in_trans(trans, parent, 1); 1491 return ret; 1492 } 1493 1494 /* 1495 * new snapshots need to be created at a very specific time in the 1496 * transaction commit. This does the actual creation. 1497 * 1498 * Note: 1499 * If the error which may affect the commitment of the current transaction 1500 * happens, we should return the error number. If the error which just affect 1501 * the creation of the pending snapshots, just return 0. 1502 */ 1503 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1504 struct btrfs_pending_snapshot *pending) 1505 { 1506 1507 struct btrfs_fs_info *fs_info = trans->fs_info; 1508 struct btrfs_key key; 1509 struct btrfs_root_item *new_root_item; 1510 struct btrfs_root *tree_root = fs_info->tree_root; 1511 struct btrfs_root *root = pending->root; 1512 struct btrfs_root *parent_root; 1513 struct btrfs_block_rsv *rsv; 1514 struct inode *parent_inode; 1515 struct btrfs_path *path; 1516 struct btrfs_dir_item *dir_item; 1517 struct dentry *dentry; 1518 struct extent_buffer *tmp; 1519 struct extent_buffer *old; 1520 struct timespec64 cur_time; 1521 int ret = 0; 1522 u64 to_reserve = 0; 1523 u64 index = 0; 1524 u64 objectid; 1525 u64 root_flags; 1526 1527 ASSERT(pending->path); 1528 path = pending->path; 1529 1530 ASSERT(pending->root_item); 1531 new_root_item = pending->root_item; 1532 1533 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1534 if (pending->error) 1535 goto no_free_objectid; 1536 1537 /* 1538 * Make qgroup to skip current new snapshot's qgroupid, as it is 1539 * accounted by later btrfs_qgroup_inherit(). 1540 */ 1541 btrfs_set_skip_qgroup(trans, objectid); 1542 1543 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1544 1545 if (to_reserve > 0) { 1546 pending->error = btrfs_block_rsv_add(root, 1547 &pending->block_rsv, 1548 to_reserve, 1549 BTRFS_RESERVE_NO_FLUSH); 1550 if (pending->error) 1551 goto clear_skip_qgroup; 1552 } 1553 1554 key.objectid = objectid; 1555 key.offset = (u64)-1; 1556 key.type = BTRFS_ROOT_ITEM_KEY; 1557 1558 rsv = trans->block_rsv; 1559 trans->block_rsv = &pending->block_rsv; 1560 trans->bytes_reserved = trans->block_rsv->reserved; 1561 trace_btrfs_space_reservation(fs_info, "transaction", 1562 trans->transid, 1563 trans->bytes_reserved, 1); 1564 dentry = pending->dentry; 1565 parent_inode = pending->dir; 1566 parent_root = BTRFS_I(parent_inode)->root; 1567 record_root_in_trans(trans, parent_root, 0); 1568 1569 cur_time = current_time(parent_inode); 1570 1571 /* 1572 * insert the directory item 1573 */ 1574 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1575 BUG_ON(ret); /* -ENOMEM */ 1576 1577 /* check if there is a file/dir which has the same name. */ 1578 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1579 btrfs_ino(BTRFS_I(parent_inode)), 1580 dentry->d_name.name, 1581 dentry->d_name.len, 0); 1582 if (dir_item != NULL && !IS_ERR(dir_item)) { 1583 pending->error = -EEXIST; 1584 goto dir_item_existed; 1585 } else if (IS_ERR(dir_item)) { 1586 ret = PTR_ERR(dir_item); 1587 btrfs_abort_transaction(trans, ret); 1588 goto fail; 1589 } 1590 btrfs_release_path(path); 1591 1592 /* 1593 * pull in the delayed directory update 1594 * and the delayed inode item 1595 * otherwise we corrupt the FS during 1596 * snapshot 1597 */ 1598 ret = btrfs_run_delayed_items(trans); 1599 if (ret) { /* Transaction aborted */ 1600 btrfs_abort_transaction(trans, ret); 1601 goto fail; 1602 } 1603 1604 record_root_in_trans(trans, root, 0); 1605 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1606 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1607 btrfs_check_and_init_root_item(new_root_item); 1608 1609 root_flags = btrfs_root_flags(new_root_item); 1610 if (pending->readonly) 1611 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1612 else 1613 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1614 btrfs_set_root_flags(new_root_item, root_flags); 1615 1616 btrfs_set_root_generation_v2(new_root_item, 1617 trans->transid); 1618 generate_random_guid(new_root_item->uuid); 1619 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1620 BTRFS_UUID_SIZE); 1621 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1622 memset(new_root_item->received_uuid, 0, 1623 sizeof(new_root_item->received_uuid)); 1624 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1625 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1626 btrfs_set_root_stransid(new_root_item, 0); 1627 btrfs_set_root_rtransid(new_root_item, 0); 1628 } 1629 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1630 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1631 btrfs_set_root_otransid(new_root_item, trans->transid); 1632 1633 old = btrfs_lock_root_node(root); 1634 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1635 BTRFS_NESTING_COW); 1636 if (ret) { 1637 btrfs_tree_unlock(old); 1638 free_extent_buffer(old); 1639 btrfs_abort_transaction(trans, ret); 1640 goto fail; 1641 } 1642 1643 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1644 /* clean up in any case */ 1645 btrfs_tree_unlock(old); 1646 free_extent_buffer(old); 1647 if (ret) { 1648 btrfs_abort_transaction(trans, ret); 1649 goto fail; 1650 } 1651 /* see comments in should_cow_block() */ 1652 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1653 smp_wmb(); 1654 1655 btrfs_set_root_node(new_root_item, tmp); 1656 /* record when the snapshot was created in key.offset */ 1657 key.offset = trans->transid; 1658 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1659 btrfs_tree_unlock(tmp); 1660 free_extent_buffer(tmp); 1661 if (ret) { 1662 btrfs_abort_transaction(trans, ret); 1663 goto fail; 1664 } 1665 1666 /* 1667 * insert root back/forward references 1668 */ 1669 ret = btrfs_add_root_ref(trans, objectid, 1670 parent_root->root_key.objectid, 1671 btrfs_ino(BTRFS_I(parent_inode)), index, 1672 dentry->d_name.name, dentry->d_name.len); 1673 if (ret) { 1674 btrfs_abort_transaction(trans, ret); 1675 goto fail; 1676 } 1677 1678 key.offset = (u64)-1; 1679 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1680 if (IS_ERR(pending->snap)) { 1681 ret = PTR_ERR(pending->snap); 1682 pending->snap = NULL; 1683 btrfs_abort_transaction(trans, ret); 1684 goto fail; 1685 } 1686 1687 ret = btrfs_reloc_post_snapshot(trans, pending); 1688 if (ret) { 1689 btrfs_abort_transaction(trans, ret); 1690 goto fail; 1691 } 1692 1693 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1694 if (ret) { 1695 btrfs_abort_transaction(trans, ret); 1696 goto fail; 1697 } 1698 1699 /* 1700 * Do special qgroup accounting for snapshot, as we do some qgroup 1701 * snapshot hack to do fast snapshot. 1702 * To co-operate with that hack, we do hack again. 1703 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1704 */ 1705 ret = qgroup_account_snapshot(trans, root, parent_root, 1706 pending->inherit, objectid); 1707 if (ret < 0) 1708 goto fail; 1709 1710 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1711 dentry->d_name.len, BTRFS_I(parent_inode), 1712 &key, BTRFS_FT_DIR, index); 1713 /* We have check then name at the beginning, so it is impossible. */ 1714 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1715 if (ret) { 1716 btrfs_abort_transaction(trans, ret); 1717 goto fail; 1718 } 1719 1720 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1721 dentry->d_name.len * 2); 1722 parent_inode->i_mtime = parent_inode->i_ctime = 1723 current_time(parent_inode); 1724 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1725 if (ret) { 1726 btrfs_abort_transaction(trans, ret); 1727 goto fail; 1728 } 1729 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1730 BTRFS_UUID_KEY_SUBVOL, 1731 objectid); 1732 if (ret) { 1733 btrfs_abort_transaction(trans, ret); 1734 goto fail; 1735 } 1736 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1737 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1738 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1739 objectid); 1740 if (ret && ret != -EEXIST) { 1741 btrfs_abort_transaction(trans, ret); 1742 goto fail; 1743 } 1744 } 1745 1746 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1747 if (ret) { 1748 btrfs_abort_transaction(trans, ret); 1749 goto fail; 1750 } 1751 1752 fail: 1753 pending->error = ret; 1754 dir_item_existed: 1755 trans->block_rsv = rsv; 1756 trans->bytes_reserved = 0; 1757 clear_skip_qgroup: 1758 btrfs_clear_skip_qgroup(trans); 1759 no_free_objectid: 1760 kfree(new_root_item); 1761 pending->root_item = NULL; 1762 btrfs_free_path(path); 1763 pending->path = NULL; 1764 1765 return ret; 1766 } 1767 1768 /* 1769 * create all the snapshots we've scheduled for creation 1770 */ 1771 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1772 { 1773 struct btrfs_pending_snapshot *pending, *next; 1774 struct list_head *head = &trans->transaction->pending_snapshots; 1775 int ret = 0; 1776 1777 list_for_each_entry_safe(pending, next, head, list) { 1778 list_del(&pending->list); 1779 ret = create_pending_snapshot(trans, pending); 1780 if (ret) 1781 break; 1782 } 1783 return ret; 1784 } 1785 1786 static void update_super_roots(struct btrfs_fs_info *fs_info) 1787 { 1788 struct btrfs_root_item *root_item; 1789 struct btrfs_super_block *super; 1790 1791 super = fs_info->super_copy; 1792 1793 root_item = &fs_info->chunk_root->root_item; 1794 super->chunk_root = root_item->bytenr; 1795 super->chunk_root_generation = root_item->generation; 1796 super->chunk_root_level = root_item->level; 1797 1798 root_item = &fs_info->tree_root->root_item; 1799 super->root = root_item->bytenr; 1800 super->generation = root_item->generation; 1801 super->root_level = root_item->level; 1802 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1803 super->cache_generation = root_item->generation; 1804 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1805 super->uuid_tree_generation = root_item->generation; 1806 } 1807 1808 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1809 { 1810 struct btrfs_transaction *trans; 1811 int ret = 0; 1812 1813 spin_lock(&info->trans_lock); 1814 trans = info->running_transaction; 1815 if (trans) 1816 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1817 spin_unlock(&info->trans_lock); 1818 return ret; 1819 } 1820 1821 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1822 { 1823 struct btrfs_transaction *trans; 1824 int ret = 0; 1825 1826 spin_lock(&info->trans_lock); 1827 trans = info->running_transaction; 1828 if (trans) 1829 ret = is_transaction_blocked(trans); 1830 spin_unlock(&info->trans_lock); 1831 return ret; 1832 } 1833 1834 /* 1835 * wait for the current transaction commit to start and block subsequent 1836 * transaction joins 1837 */ 1838 static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info, 1839 struct btrfs_transaction *trans) 1840 { 1841 wait_event(fs_info->transaction_blocked_wait, 1842 trans->state >= TRANS_STATE_COMMIT_START || 1843 TRANS_ABORTED(trans)); 1844 } 1845 1846 /* 1847 * wait for the current transaction to start and then become unblocked. 1848 * caller holds ref. 1849 */ 1850 static void wait_current_trans_commit_start_and_unblock( 1851 struct btrfs_fs_info *fs_info, 1852 struct btrfs_transaction *trans) 1853 { 1854 wait_event(fs_info->transaction_wait, 1855 trans->state >= TRANS_STATE_UNBLOCKED || 1856 TRANS_ABORTED(trans)); 1857 } 1858 1859 /* 1860 * commit transactions asynchronously. once btrfs_commit_transaction_async 1861 * returns, any subsequent transaction will not be allowed to join. 1862 */ 1863 struct btrfs_async_commit { 1864 struct btrfs_trans_handle *newtrans; 1865 struct work_struct work; 1866 }; 1867 1868 static void do_async_commit(struct work_struct *work) 1869 { 1870 struct btrfs_async_commit *ac = 1871 container_of(work, struct btrfs_async_commit, work); 1872 1873 /* 1874 * We've got freeze protection passed with the transaction. 1875 * Tell lockdep about it. 1876 */ 1877 if (ac->newtrans->type & __TRANS_FREEZABLE) 1878 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS); 1879 1880 current->journal_info = ac->newtrans; 1881 1882 btrfs_commit_transaction(ac->newtrans); 1883 kfree(ac); 1884 } 1885 1886 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1887 int wait_for_unblock) 1888 { 1889 struct btrfs_fs_info *fs_info = trans->fs_info; 1890 struct btrfs_async_commit *ac; 1891 struct btrfs_transaction *cur_trans; 1892 1893 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1894 if (!ac) 1895 return -ENOMEM; 1896 1897 INIT_WORK(&ac->work, do_async_commit); 1898 ac->newtrans = btrfs_join_transaction(trans->root); 1899 if (IS_ERR(ac->newtrans)) { 1900 int err = PTR_ERR(ac->newtrans); 1901 kfree(ac); 1902 return err; 1903 } 1904 1905 /* take transaction reference */ 1906 cur_trans = trans->transaction; 1907 refcount_inc(&cur_trans->use_count); 1908 1909 btrfs_end_transaction(trans); 1910 1911 /* 1912 * Tell lockdep we've released the freeze rwsem, since the 1913 * async commit thread will be the one to unlock it. 1914 */ 1915 if (ac->newtrans->type & __TRANS_FREEZABLE) 1916 __sb_writers_release(fs_info->sb, SB_FREEZE_FS); 1917 1918 schedule_work(&ac->work); 1919 1920 /* wait for transaction to start and unblock */ 1921 if (wait_for_unblock) 1922 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans); 1923 else 1924 wait_current_trans_commit_start(fs_info, cur_trans); 1925 1926 if (current->journal_info == trans) 1927 current->journal_info = NULL; 1928 1929 btrfs_put_transaction(cur_trans); 1930 return 0; 1931 } 1932 1933 1934 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1935 { 1936 struct btrfs_fs_info *fs_info = trans->fs_info; 1937 struct btrfs_transaction *cur_trans = trans->transaction; 1938 1939 WARN_ON(refcount_read(&trans->use_count) > 1); 1940 1941 btrfs_abort_transaction(trans, err); 1942 1943 spin_lock(&fs_info->trans_lock); 1944 1945 /* 1946 * If the transaction is removed from the list, it means this 1947 * transaction has been committed successfully, so it is impossible 1948 * to call the cleanup function. 1949 */ 1950 BUG_ON(list_empty(&cur_trans->list)); 1951 1952 list_del_init(&cur_trans->list); 1953 if (cur_trans == fs_info->running_transaction) { 1954 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1955 spin_unlock(&fs_info->trans_lock); 1956 wait_event(cur_trans->writer_wait, 1957 atomic_read(&cur_trans->num_writers) == 1); 1958 1959 spin_lock(&fs_info->trans_lock); 1960 } 1961 spin_unlock(&fs_info->trans_lock); 1962 1963 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 1964 1965 spin_lock(&fs_info->trans_lock); 1966 if (cur_trans == fs_info->running_transaction) 1967 fs_info->running_transaction = NULL; 1968 spin_unlock(&fs_info->trans_lock); 1969 1970 if (trans->type & __TRANS_FREEZABLE) 1971 sb_end_intwrite(fs_info->sb); 1972 btrfs_put_transaction(cur_trans); 1973 btrfs_put_transaction(cur_trans); 1974 1975 trace_btrfs_transaction_commit(trans->root); 1976 1977 if (current->journal_info == trans) 1978 current->journal_info = NULL; 1979 btrfs_scrub_cancel(fs_info); 1980 1981 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1982 } 1983 1984 /* 1985 * Release reserved delayed ref space of all pending block groups of the 1986 * transaction and remove them from the list 1987 */ 1988 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 1989 { 1990 struct btrfs_fs_info *fs_info = trans->fs_info; 1991 struct btrfs_block_group *block_group, *tmp; 1992 1993 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 1994 btrfs_delayed_refs_rsv_release(fs_info, 1); 1995 list_del_init(&block_group->bg_list); 1996 } 1997 } 1998 1999 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2000 { 2001 /* 2002 * We use writeback_inodes_sb here because if we used 2003 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2004 * Currently are holding the fs freeze lock, if we do an async flush 2005 * we'll do btrfs_join_transaction() and deadlock because we need to 2006 * wait for the fs freeze lock. Using the direct flushing we benefit 2007 * from already being in a transaction and our join_transaction doesn't 2008 * have to re-take the fs freeze lock. 2009 */ 2010 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2011 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2012 return 0; 2013 } 2014 2015 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2016 { 2017 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2018 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2019 } 2020 2021 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2022 { 2023 struct btrfs_fs_info *fs_info = trans->fs_info; 2024 struct btrfs_transaction *cur_trans = trans->transaction; 2025 struct btrfs_transaction *prev_trans = NULL; 2026 int ret; 2027 2028 ASSERT(refcount_read(&trans->use_count) == 1); 2029 2030 /* 2031 * Some places just start a transaction to commit it. We need to make 2032 * sure that if this commit fails that the abort code actually marks the 2033 * transaction as failed, so set trans->dirty to make the abort code do 2034 * the right thing. 2035 */ 2036 trans->dirty = true; 2037 2038 /* Stop the commit early if ->aborted is set */ 2039 if (TRANS_ABORTED(cur_trans)) { 2040 ret = cur_trans->aborted; 2041 btrfs_end_transaction(trans); 2042 return ret; 2043 } 2044 2045 btrfs_trans_release_metadata(trans); 2046 trans->block_rsv = NULL; 2047 2048 /* make a pass through all the delayed refs we have so far 2049 * any runnings procs may add more while we are here 2050 */ 2051 ret = btrfs_run_delayed_refs(trans, 0); 2052 if (ret) { 2053 btrfs_end_transaction(trans); 2054 return ret; 2055 } 2056 2057 cur_trans = trans->transaction; 2058 2059 /* 2060 * set the flushing flag so procs in this transaction have to 2061 * start sending their work down. 2062 */ 2063 cur_trans->delayed_refs.flushing = 1; 2064 smp_wmb(); 2065 2066 btrfs_create_pending_block_groups(trans); 2067 2068 ret = btrfs_run_delayed_refs(trans, 0); 2069 if (ret) { 2070 btrfs_end_transaction(trans); 2071 return ret; 2072 } 2073 2074 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2075 int run_it = 0; 2076 2077 /* this mutex is also taken before trying to set 2078 * block groups readonly. We need to make sure 2079 * that nobody has set a block group readonly 2080 * after a extents from that block group have been 2081 * allocated for cache files. btrfs_set_block_group_ro 2082 * will wait for the transaction to commit if it 2083 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2084 * 2085 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2086 * only one process starts all the block group IO. It wouldn't 2087 * hurt to have more than one go through, but there's no 2088 * real advantage to it either. 2089 */ 2090 mutex_lock(&fs_info->ro_block_group_mutex); 2091 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2092 &cur_trans->flags)) 2093 run_it = 1; 2094 mutex_unlock(&fs_info->ro_block_group_mutex); 2095 2096 if (run_it) { 2097 ret = btrfs_start_dirty_block_groups(trans); 2098 if (ret) { 2099 btrfs_end_transaction(trans); 2100 return ret; 2101 } 2102 } 2103 } 2104 2105 spin_lock(&fs_info->trans_lock); 2106 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2107 spin_unlock(&fs_info->trans_lock); 2108 refcount_inc(&cur_trans->use_count); 2109 ret = btrfs_end_transaction(trans); 2110 2111 wait_for_commit(cur_trans); 2112 2113 if (TRANS_ABORTED(cur_trans)) 2114 ret = cur_trans->aborted; 2115 2116 btrfs_put_transaction(cur_trans); 2117 2118 return ret; 2119 } 2120 2121 cur_trans->state = TRANS_STATE_COMMIT_START; 2122 wake_up(&fs_info->transaction_blocked_wait); 2123 2124 if (cur_trans->list.prev != &fs_info->trans_list) { 2125 prev_trans = list_entry(cur_trans->list.prev, 2126 struct btrfs_transaction, list); 2127 if (prev_trans->state != TRANS_STATE_COMPLETED) { 2128 refcount_inc(&prev_trans->use_count); 2129 spin_unlock(&fs_info->trans_lock); 2130 2131 wait_for_commit(prev_trans); 2132 ret = READ_ONCE(prev_trans->aborted); 2133 2134 btrfs_put_transaction(prev_trans); 2135 if (ret) 2136 goto cleanup_transaction; 2137 } else { 2138 spin_unlock(&fs_info->trans_lock); 2139 } 2140 } else { 2141 spin_unlock(&fs_info->trans_lock); 2142 /* 2143 * The previous transaction was aborted and was already removed 2144 * from the list of transactions at fs_info->trans_list. So we 2145 * abort to prevent writing a new superblock that reflects a 2146 * corrupt state (pointing to trees with unwritten nodes/leafs). 2147 */ 2148 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) { 2149 ret = -EROFS; 2150 goto cleanup_transaction; 2151 } 2152 } 2153 2154 extwriter_counter_dec(cur_trans, trans->type); 2155 2156 ret = btrfs_start_delalloc_flush(fs_info); 2157 if (ret) 2158 goto cleanup_transaction; 2159 2160 ret = btrfs_run_delayed_items(trans); 2161 if (ret) 2162 goto cleanup_transaction; 2163 2164 wait_event(cur_trans->writer_wait, 2165 extwriter_counter_read(cur_trans) == 0); 2166 2167 /* some pending stuffs might be added after the previous flush. */ 2168 ret = btrfs_run_delayed_items(trans); 2169 if (ret) 2170 goto cleanup_transaction; 2171 2172 btrfs_wait_delalloc_flush(fs_info); 2173 2174 /* 2175 * Wait for all ordered extents started by a fast fsync that joined this 2176 * transaction. Otherwise if this transaction commits before the ordered 2177 * extents complete we lose logged data after a power failure. 2178 */ 2179 wait_event(cur_trans->pending_wait, 2180 atomic_read(&cur_trans->pending_ordered) == 0); 2181 2182 btrfs_scrub_pause(fs_info); 2183 /* 2184 * Ok now we need to make sure to block out any other joins while we 2185 * commit the transaction. We could have started a join before setting 2186 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2187 */ 2188 spin_lock(&fs_info->trans_lock); 2189 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2190 spin_unlock(&fs_info->trans_lock); 2191 wait_event(cur_trans->writer_wait, 2192 atomic_read(&cur_trans->num_writers) == 1); 2193 2194 if (TRANS_ABORTED(cur_trans)) { 2195 ret = cur_trans->aborted; 2196 goto scrub_continue; 2197 } 2198 /* 2199 * the reloc mutex makes sure that we stop 2200 * the balancing code from coming in and moving 2201 * extents around in the middle of the commit 2202 */ 2203 mutex_lock(&fs_info->reloc_mutex); 2204 2205 /* 2206 * We needn't worry about the delayed items because we will 2207 * deal with them in create_pending_snapshot(), which is the 2208 * core function of the snapshot creation. 2209 */ 2210 ret = create_pending_snapshots(trans); 2211 if (ret) 2212 goto unlock_reloc; 2213 2214 /* 2215 * We insert the dir indexes of the snapshots and update the inode 2216 * of the snapshots' parents after the snapshot creation, so there 2217 * are some delayed items which are not dealt with. Now deal with 2218 * them. 2219 * 2220 * We needn't worry that this operation will corrupt the snapshots, 2221 * because all the tree which are snapshoted will be forced to COW 2222 * the nodes and leaves. 2223 */ 2224 ret = btrfs_run_delayed_items(trans); 2225 if (ret) 2226 goto unlock_reloc; 2227 2228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2229 if (ret) 2230 goto unlock_reloc; 2231 2232 /* 2233 * make sure none of the code above managed to slip in a 2234 * delayed item 2235 */ 2236 btrfs_assert_delayed_root_empty(fs_info); 2237 2238 WARN_ON(cur_trans != trans->transaction); 2239 2240 /* btrfs_commit_tree_roots is responsible for getting the 2241 * various roots consistent with each other. Every pointer 2242 * in the tree of tree roots has to point to the most up to date 2243 * root for every subvolume and other tree. So, we have to keep 2244 * the tree logging code from jumping in and changing any 2245 * of the trees. 2246 * 2247 * At this point in the commit, there can't be any tree-log 2248 * writers, but a little lower down we drop the trans mutex 2249 * and let new people in. By holding the tree_log_mutex 2250 * from now until after the super is written, we avoid races 2251 * with the tree-log code. 2252 */ 2253 mutex_lock(&fs_info->tree_log_mutex); 2254 2255 ret = commit_fs_roots(trans); 2256 if (ret) 2257 goto unlock_tree_log; 2258 2259 /* 2260 * Since the transaction is done, we can apply the pending changes 2261 * before the next transaction. 2262 */ 2263 btrfs_apply_pending_changes(fs_info); 2264 2265 /* commit_fs_roots gets rid of all the tree log roots, it is now 2266 * safe to free the root of tree log roots 2267 */ 2268 btrfs_free_log_root_tree(trans, fs_info); 2269 2270 /* 2271 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates 2272 * new delayed refs. Must handle them or qgroup can be wrong. 2273 */ 2274 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2275 if (ret) 2276 goto unlock_tree_log; 2277 2278 /* 2279 * Since fs roots are all committed, we can get a quite accurate 2280 * new_roots. So let's do quota accounting. 2281 */ 2282 ret = btrfs_qgroup_account_extents(trans); 2283 if (ret < 0) 2284 goto unlock_tree_log; 2285 2286 ret = commit_cowonly_roots(trans); 2287 if (ret) 2288 goto unlock_tree_log; 2289 2290 /* 2291 * The tasks which save the space cache and inode cache may also 2292 * update ->aborted, check it. 2293 */ 2294 if (TRANS_ABORTED(cur_trans)) { 2295 ret = cur_trans->aborted; 2296 goto unlock_tree_log; 2297 } 2298 2299 cur_trans = fs_info->running_transaction; 2300 2301 btrfs_set_root_node(&fs_info->tree_root->root_item, 2302 fs_info->tree_root->node); 2303 list_add_tail(&fs_info->tree_root->dirty_list, 2304 &cur_trans->switch_commits); 2305 2306 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2307 fs_info->chunk_root->node); 2308 list_add_tail(&fs_info->chunk_root->dirty_list, 2309 &cur_trans->switch_commits); 2310 2311 switch_commit_roots(trans); 2312 2313 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2314 ASSERT(list_empty(&cur_trans->io_bgs)); 2315 update_super_roots(fs_info); 2316 2317 btrfs_set_super_log_root(fs_info->super_copy, 0); 2318 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2319 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2320 sizeof(*fs_info->super_copy)); 2321 2322 btrfs_commit_device_sizes(cur_trans); 2323 2324 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2325 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2326 2327 btrfs_trans_release_chunk_metadata(trans); 2328 2329 spin_lock(&fs_info->trans_lock); 2330 cur_trans->state = TRANS_STATE_UNBLOCKED; 2331 fs_info->running_transaction = NULL; 2332 spin_unlock(&fs_info->trans_lock); 2333 mutex_unlock(&fs_info->reloc_mutex); 2334 2335 wake_up(&fs_info->transaction_wait); 2336 2337 ret = btrfs_write_and_wait_transaction(trans); 2338 if (ret) { 2339 btrfs_handle_fs_error(fs_info, ret, 2340 "Error while writing out transaction"); 2341 /* 2342 * reloc_mutex has been unlocked, tree_log_mutex is still held 2343 * but we can't jump to unlock_tree_log causing double unlock 2344 */ 2345 mutex_unlock(&fs_info->tree_log_mutex); 2346 goto scrub_continue; 2347 } 2348 2349 ret = write_all_supers(fs_info, 0); 2350 /* 2351 * the super is written, we can safely allow the tree-loggers 2352 * to go about their business 2353 */ 2354 mutex_unlock(&fs_info->tree_log_mutex); 2355 if (ret) 2356 goto scrub_continue; 2357 2358 btrfs_finish_extent_commit(trans); 2359 2360 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2361 btrfs_clear_space_info_full(fs_info); 2362 2363 fs_info->last_trans_committed = cur_trans->transid; 2364 /* 2365 * We needn't acquire the lock here because there is no other task 2366 * which can change it. 2367 */ 2368 cur_trans->state = TRANS_STATE_COMPLETED; 2369 wake_up(&cur_trans->commit_wait); 2370 2371 spin_lock(&fs_info->trans_lock); 2372 list_del_init(&cur_trans->list); 2373 spin_unlock(&fs_info->trans_lock); 2374 2375 btrfs_put_transaction(cur_trans); 2376 btrfs_put_transaction(cur_trans); 2377 2378 if (trans->type & __TRANS_FREEZABLE) 2379 sb_end_intwrite(fs_info->sb); 2380 2381 trace_btrfs_transaction_commit(trans->root); 2382 2383 btrfs_scrub_continue(fs_info); 2384 2385 if (current->journal_info == trans) 2386 current->journal_info = NULL; 2387 2388 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2389 2390 return ret; 2391 2392 unlock_tree_log: 2393 mutex_unlock(&fs_info->tree_log_mutex); 2394 unlock_reloc: 2395 mutex_unlock(&fs_info->reloc_mutex); 2396 scrub_continue: 2397 btrfs_scrub_continue(fs_info); 2398 cleanup_transaction: 2399 btrfs_trans_release_metadata(trans); 2400 btrfs_cleanup_pending_block_groups(trans); 2401 btrfs_trans_release_chunk_metadata(trans); 2402 trans->block_rsv = NULL; 2403 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2404 if (current->journal_info == trans) 2405 current->journal_info = NULL; 2406 cleanup_transaction(trans, ret); 2407 2408 return ret; 2409 } 2410 2411 /* 2412 * return < 0 if error 2413 * 0 if there are no more dead_roots at the time of call 2414 * 1 there are more to be processed, call me again 2415 * 2416 * The return value indicates there are certainly more snapshots to delete, but 2417 * if there comes a new one during processing, it may return 0. We don't mind, 2418 * because btrfs_commit_super will poke cleaner thread and it will process it a 2419 * few seconds later. 2420 */ 2421 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2422 { 2423 int ret; 2424 struct btrfs_fs_info *fs_info = root->fs_info; 2425 2426 spin_lock(&fs_info->trans_lock); 2427 if (list_empty(&fs_info->dead_roots)) { 2428 spin_unlock(&fs_info->trans_lock); 2429 return 0; 2430 } 2431 root = list_first_entry(&fs_info->dead_roots, 2432 struct btrfs_root, root_list); 2433 list_del_init(&root->root_list); 2434 spin_unlock(&fs_info->trans_lock); 2435 2436 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2437 2438 btrfs_kill_all_delayed_nodes(root); 2439 if (root->ino_cache_inode) { 2440 iput(root->ino_cache_inode); 2441 root->ino_cache_inode = NULL; 2442 } 2443 2444 if (btrfs_header_backref_rev(root->node) < 2445 BTRFS_MIXED_BACKREF_REV) 2446 ret = btrfs_drop_snapshot(root, 0, 0); 2447 else 2448 ret = btrfs_drop_snapshot(root, 1, 0); 2449 2450 btrfs_put_root(root); 2451 return (ret < 0) ? 0 : 1; 2452 } 2453 2454 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2455 { 2456 unsigned long prev; 2457 unsigned long bit; 2458 2459 prev = xchg(&fs_info->pending_changes, 0); 2460 if (!prev) 2461 return; 2462 2463 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2464 if (prev & bit) 2465 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2466 prev &= ~bit; 2467 2468 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2469 if (prev & bit) 2470 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2471 prev &= ~bit; 2472 2473 bit = 1 << BTRFS_PENDING_COMMIT; 2474 if (prev & bit) 2475 btrfs_debug(fs_info, "pending commit done"); 2476 prev &= ~bit; 2477 2478 if (prev) 2479 btrfs_warn(fs_info, 2480 "unknown pending changes left 0x%lx, ignoring", prev); 2481 } 2482