1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 112 struct btrfs_fs_info *fs_info) 113 { 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 } 126 127 /* We can free old roots now. */ 128 spin_lock(&trans->dropped_roots_lock); 129 while (!list_empty(&trans->dropped_roots)) { 130 root = list_first_entry(&trans->dropped_roots, 131 struct btrfs_root, root_list); 132 list_del_init(&root->root_list); 133 spin_unlock(&trans->dropped_roots_lock); 134 btrfs_drop_and_free_fs_root(fs_info, root); 135 spin_lock(&trans->dropped_roots_lock); 136 } 137 spin_unlock(&trans->dropped_roots_lock); 138 up_write(&fs_info->commit_root_sem); 139 } 140 141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 142 unsigned int type) 143 { 144 if (type & TRANS_EXTWRITERS) 145 atomic_inc(&trans->num_extwriters); 146 } 147 148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 149 unsigned int type) 150 { 151 if (type & TRANS_EXTWRITERS) 152 atomic_dec(&trans->num_extwriters); 153 } 154 155 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 156 unsigned int type) 157 { 158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 159 } 160 161 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 162 { 163 return atomic_read(&trans->num_extwriters); 164 } 165 166 /* 167 * either allocate a new transaction or hop into the existing one 168 */ 169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 170 { 171 struct btrfs_transaction *cur_trans; 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 174 spin_lock(&fs_info->trans_lock); 175 loop: 176 /* The file system has been taken offline. No new transactions. */ 177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 178 spin_unlock(&fs_info->trans_lock); 179 return -EROFS; 180 } 181 182 cur_trans = fs_info->running_transaction; 183 if (cur_trans) { 184 if (cur_trans->aborted) { 185 spin_unlock(&fs_info->trans_lock); 186 return cur_trans->aborted; 187 } 188 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 189 spin_unlock(&fs_info->trans_lock); 190 return -EBUSY; 191 } 192 atomic_inc(&cur_trans->use_count); 193 atomic_inc(&cur_trans->num_writers); 194 extwriter_counter_inc(cur_trans, type); 195 spin_unlock(&fs_info->trans_lock); 196 return 0; 197 } 198 spin_unlock(&fs_info->trans_lock); 199 200 /* 201 * If we are ATTACH, we just want to catch the current transaction, 202 * and commit it. If there is no transaction, just return ENOENT. 203 */ 204 if (type == TRANS_ATTACH) 205 return -ENOENT; 206 207 /* 208 * JOIN_NOLOCK only happens during the transaction commit, so 209 * it is impossible that ->running_transaction is NULL 210 */ 211 BUG_ON(type == TRANS_JOIN_NOLOCK); 212 213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 214 if (!cur_trans) 215 return -ENOMEM; 216 217 spin_lock(&fs_info->trans_lock); 218 if (fs_info->running_transaction) { 219 /* 220 * someone started a transaction after we unlocked. Make sure 221 * to redo the checks above 222 */ 223 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 224 goto loop; 225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 226 spin_unlock(&fs_info->trans_lock); 227 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 228 return -EROFS; 229 } 230 231 atomic_set(&cur_trans->num_writers, 1); 232 extwriter_counter_init(cur_trans, type); 233 init_waitqueue_head(&cur_trans->writer_wait); 234 init_waitqueue_head(&cur_trans->commit_wait); 235 cur_trans->state = TRANS_STATE_RUNNING; 236 /* 237 * One for this trans handle, one so it will live on until we 238 * commit the transaction. 239 */ 240 atomic_set(&cur_trans->use_count, 2); 241 cur_trans->have_free_bgs = 0; 242 cur_trans->start_time = get_seconds(); 243 cur_trans->dirty_bg_run = 0; 244 245 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 246 247 cur_trans->delayed_refs.href_root = RB_ROOT; 248 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 249 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 250 251 /* 252 * although the tree mod log is per file system and not per transaction, 253 * the log must never go across transaction boundaries. 254 */ 255 smp_mb(); 256 if (!list_empty(&fs_info->tree_mod_seq_list)) 257 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 258 "creating a fresh transaction\n"); 259 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 260 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 261 "creating a fresh transaction\n"); 262 atomic64_set(&fs_info->tree_mod_seq, 0); 263 264 spin_lock_init(&cur_trans->delayed_refs.lock); 265 266 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 267 INIT_LIST_HEAD(&cur_trans->pending_chunks); 268 INIT_LIST_HEAD(&cur_trans->switch_commits); 269 INIT_LIST_HEAD(&cur_trans->pending_ordered); 270 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 271 INIT_LIST_HEAD(&cur_trans->io_bgs); 272 INIT_LIST_HEAD(&cur_trans->dropped_roots); 273 mutex_init(&cur_trans->cache_write_mutex); 274 cur_trans->num_dirty_bgs = 0; 275 spin_lock_init(&cur_trans->dirty_bgs_lock); 276 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 277 spin_lock_init(&cur_trans->deleted_bgs_lock); 278 spin_lock_init(&cur_trans->dropped_roots_lock); 279 list_add_tail(&cur_trans->list, &fs_info->trans_list); 280 extent_io_tree_init(&cur_trans->dirty_pages, 281 fs_info->btree_inode->i_mapping); 282 fs_info->generation++; 283 cur_trans->transid = fs_info->generation; 284 fs_info->running_transaction = cur_trans; 285 cur_trans->aborted = 0; 286 spin_unlock(&fs_info->trans_lock); 287 288 return 0; 289 } 290 291 /* 292 * this does all the record keeping required to make sure that a reference 293 * counted root is properly recorded in a given transaction. This is required 294 * to make sure the old root from before we joined the transaction is deleted 295 * when the transaction commits 296 */ 297 static int record_root_in_trans(struct btrfs_trans_handle *trans, 298 struct btrfs_root *root) 299 { 300 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 301 root->last_trans < trans->transid) { 302 WARN_ON(root == root->fs_info->extent_root); 303 WARN_ON(root->commit_root != root->node); 304 305 /* 306 * see below for IN_TRANS_SETUP usage rules 307 * we have the reloc mutex held now, so there 308 * is only one writer in this function 309 */ 310 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 311 312 /* make sure readers find IN_TRANS_SETUP before 313 * they find our root->last_trans update 314 */ 315 smp_wmb(); 316 317 spin_lock(&root->fs_info->fs_roots_radix_lock); 318 if (root->last_trans == trans->transid) { 319 spin_unlock(&root->fs_info->fs_roots_radix_lock); 320 return 0; 321 } 322 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 323 (unsigned long)root->root_key.objectid, 324 BTRFS_ROOT_TRANS_TAG); 325 spin_unlock(&root->fs_info->fs_roots_radix_lock); 326 root->last_trans = trans->transid; 327 328 /* this is pretty tricky. We don't want to 329 * take the relocation lock in btrfs_record_root_in_trans 330 * unless we're really doing the first setup for this root in 331 * this transaction. 332 * 333 * Normally we'd use root->last_trans as a flag to decide 334 * if we want to take the expensive mutex. 335 * 336 * But, we have to set root->last_trans before we 337 * init the relocation root, otherwise, we trip over warnings 338 * in ctree.c. The solution used here is to flag ourselves 339 * with root IN_TRANS_SETUP. When this is 1, we're still 340 * fixing up the reloc trees and everyone must wait. 341 * 342 * When this is zero, they can trust root->last_trans and fly 343 * through btrfs_record_root_in_trans without having to take the 344 * lock. smp_wmb() makes sure that all the writes above are 345 * done before we pop in the zero below 346 */ 347 btrfs_init_reloc_root(trans, root); 348 smp_mb__before_atomic(); 349 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 350 } 351 return 0; 352 } 353 354 355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 356 struct btrfs_root *root) 357 { 358 struct btrfs_transaction *cur_trans = trans->transaction; 359 360 /* Add ourselves to the transaction dropped list */ 361 spin_lock(&cur_trans->dropped_roots_lock); 362 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 363 spin_unlock(&cur_trans->dropped_roots_lock); 364 365 /* Make sure we don't try to update the root at commit time */ 366 spin_lock(&root->fs_info->fs_roots_radix_lock); 367 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 368 (unsigned long)root->root_key.objectid, 369 BTRFS_ROOT_TRANS_TAG); 370 spin_unlock(&root->fs_info->fs_roots_radix_lock); 371 } 372 373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 374 struct btrfs_root *root) 375 { 376 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 377 return 0; 378 379 /* 380 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 381 * and barriers 382 */ 383 smp_rmb(); 384 if (root->last_trans == trans->transid && 385 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 386 return 0; 387 388 mutex_lock(&root->fs_info->reloc_mutex); 389 record_root_in_trans(trans, root); 390 mutex_unlock(&root->fs_info->reloc_mutex); 391 392 return 0; 393 } 394 395 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 396 { 397 return (trans->state >= TRANS_STATE_BLOCKED && 398 trans->state < TRANS_STATE_UNBLOCKED && 399 !trans->aborted); 400 } 401 402 /* wait for commit against the current transaction to become unblocked 403 * when this is done, it is safe to start a new transaction, but the current 404 * transaction might not be fully on disk. 405 */ 406 static void wait_current_trans(struct btrfs_root *root) 407 { 408 struct btrfs_transaction *cur_trans; 409 410 spin_lock(&root->fs_info->trans_lock); 411 cur_trans = root->fs_info->running_transaction; 412 if (cur_trans && is_transaction_blocked(cur_trans)) { 413 atomic_inc(&cur_trans->use_count); 414 spin_unlock(&root->fs_info->trans_lock); 415 416 wait_event(root->fs_info->transaction_wait, 417 cur_trans->state >= TRANS_STATE_UNBLOCKED || 418 cur_trans->aborted); 419 btrfs_put_transaction(cur_trans); 420 } else { 421 spin_unlock(&root->fs_info->trans_lock); 422 } 423 } 424 425 static int may_wait_transaction(struct btrfs_root *root, int type) 426 { 427 if (root->fs_info->log_root_recovering) 428 return 0; 429 430 if (type == TRANS_USERSPACE) 431 return 1; 432 433 if (type == TRANS_START && 434 !atomic_read(&root->fs_info->open_ioctl_trans)) 435 return 1; 436 437 return 0; 438 } 439 440 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 441 { 442 if (!root->fs_info->reloc_ctl || 443 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 444 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 445 root->reloc_root) 446 return false; 447 448 return true; 449 } 450 451 static struct btrfs_trans_handle * 452 start_transaction(struct btrfs_root *root, unsigned int num_items, 453 unsigned int type, enum btrfs_reserve_flush_enum flush) 454 { 455 struct btrfs_trans_handle *h; 456 struct btrfs_transaction *cur_trans; 457 u64 num_bytes = 0; 458 u64 qgroup_reserved = 0; 459 bool reloc_reserved = false; 460 int ret; 461 462 /* Send isn't supposed to start transactions. */ 463 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 464 465 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 466 return ERR_PTR(-EROFS); 467 468 if (current->journal_info) { 469 WARN_ON(type & TRANS_EXTWRITERS); 470 h = current->journal_info; 471 h->use_count++; 472 WARN_ON(h->use_count > 2); 473 h->orig_rsv = h->block_rsv; 474 h->block_rsv = NULL; 475 goto got_it; 476 } 477 478 /* 479 * Do the reservation before we join the transaction so we can do all 480 * the appropriate flushing if need be. 481 */ 482 if (num_items > 0 && root != root->fs_info->chunk_root) { 483 qgroup_reserved = num_items * root->nodesize; 484 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved); 485 if (ret) 486 return ERR_PTR(ret); 487 488 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 489 /* 490 * Do the reservation for the relocation root creation 491 */ 492 if (need_reserve_reloc_root(root)) { 493 num_bytes += root->nodesize; 494 reloc_reserved = true; 495 } 496 497 ret = btrfs_block_rsv_add(root, 498 &root->fs_info->trans_block_rsv, 499 num_bytes, flush); 500 if (ret) 501 goto reserve_fail; 502 } 503 again: 504 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 505 if (!h) { 506 ret = -ENOMEM; 507 goto alloc_fail; 508 } 509 510 /* 511 * If we are JOIN_NOLOCK we're already committing a transaction and 512 * waiting on this guy, so we don't need to do the sb_start_intwrite 513 * because we're already holding a ref. We need this because we could 514 * have raced in and did an fsync() on a file which can kick a commit 515 * and then we deadlock with somebody doing a freeze. 516 * 517 * If we are ATTACH, it means we just want to catch the current 518 * transaction and commit it, so we needn't do sb_start_intwrite(). 519 */ 520 if (type & __TRANS_FREEZABLE) 521 sb_start_intwrite(root->fs_info->sb); 522 523 if (may_wait_transaction(root, type)) 524 wait_current_trans(root); 525 526 do { 527 ret = join_transaction(root, type); 528 if (ret == -EBUSY) { 529 wait_current_trans(root); 530 if (unlikely(type == TRANS_ATTACH)) 531 ret = -ENOENT; 532 } 533 } while (ret == -EBUSY); 534 535 if (ret < 0) { 536 /* We must get the transaction if we are JOIN_NOLOCK. */ 537 BUG_ON(type == TRANS_JOIN_NOLOCK); 538 goto join_fail; 539 } 540 541 cur_trans = root->fs_info->running_transaction; 542 543 h->transid = cur_trans->transid; 544 h->transaction = cur_trans; 545 h->root = root; 546 h->use_count = 1; 547 548 h->type = type; 549 h->can_flush_pending_bgs = true; 550 INIT_LIST_HEAD(&h->qgroup_ref_list); 551 INIT_LIST_HEAD(&h->new_bgs); 552 INIT_LIST_HEAD(&h->ordered); 553 554 smp_mb(); 555 if (cur_trans->state >= TRANS_STATE_BLOCKED && 556 may_wait_transaction(root, type)) { 557 current->journal_info = h; 558 btrfs_commit_transaction(h, root); 559 goto again; 560 } 561 562 if (num_bytes) { 563 trace_btrfs_space_reservation(root->fs_info, "transaction", 564 h->transid, num_bytes, 1); 565 h->block_rsv = &root->fs_info->trans_block_rsv; 566 h->bytes_reserved = num_bytes; 567 h->reloc_reserved = reloc_reserved; 568 } 569 570 got_it: 571 btrfs_record_root_in_trans(h, root); 572 573 if (!current->journal_info && type != TRANS_USERSPACE) 574 current->journal_info = h; 575 return h; 576 577 join_fail: 578 if (type & __TRANS_FREEZABLE) 579 sb_end_intwrite(root->fs_info->sb); 580 kmem_cache_free(btrfs_trans_handle_cachep, h); 581 alloc_fail: 582 if (num_bytes) 583 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 584 num_bytes); 585 reserve_fail: 586 btrfs_qgroup_free_meta(root, qgroup_reserved); 587 return ERR_PTR(ret); 588 } 589 590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 591 unsigned int num_items) 592 { 593 return start_transaction(root, num_items, TRANS_START, 594 BTRFS_RESERVE_FLUSH_ALL); 595 } 596 597 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 598 struct btrfs_root *root, 599 unsigned int num_items) 600 { 601 return start_transaction(root, num_items, TRANS_START, 602 BTRFS_RESERVE_FLUSH_LIMIT); 603 } 604 605 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 606 { 607 return start_transaction(root, 0, TRANS_JOIN, 0); 608 } 609 610 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 611 { 612 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 613 } 614 615 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 616 { 617 return start_transaction(root, 0, TRANS_USERSPACE, 0); 618 } 619 620 /* 621 * btrfs_attach_transaction() - catch the running transaction 622 * 623 * It is used when we want to commit the current the transaction, but 624 * don't want to start a new one. 625 * 626 * Note: If this function return -ENOENT, it just means there is no 627 * running transaction. But it is possible that the inactive transaction 628 * is still in the memory, not fully on disk. If you hope there is no 629 * inactive transaction in the fs when -ENOENT is returned, you should 630 * invoke 631 * btrfs_attach_transaction_barrier() 632 */ 633 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 634 { 635 return start_transaction(root, 0, TRANS_ATTACH, 0); 636 } 637 638 /* 639 * btrfs_attach_transaction_barrier() - catch the running transaction 640 * 641 * It is similar to the above function, the differentia is this one 642 * will wait for all the inactive transactions until they fully 643 * complete. 644 */ 645 struct btrfs_trans_handle * 646 btrfs_attach_transaction_barrier(struct btrfs_root *root) 647 { 648 struct btrfs_trans_handle *trans; 649 650 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 651 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 652 btrfs_wait_for_commit(root, 0); 653 654 return trans; 655 } 656 657 /* wait for a transaction commit to be fully complete */ 658 static noinline void wait_for_commit(struct btrfs_root *root, 659 struct btrfs_transaction *commit) 660 { 661 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 662 } 663 664 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 665 { 666 struct btrfs_transaction *cur_trans = NULL, *t; 667 int ret = 0; 668 669 if (transid) { 670 if (transid <= root->fs_info->last_trans_committed) 671 goto out; 672 673 /* find specified transaction */ 674 spin_lock(&root->fs_info->trans_lock); 675 list_for_each_entry(t, &root->fs_info->trans_list, list) { 676 if (t->transid == transid) { 677 cur_trans = t; 678 atomic_inc(&cur_trans->use_count); 679 ret = 0; 680 break; 681 } 682 if (t->transid > transid) { 683 ret = 0; 684 break; 685 } 686 } 687 spin_unlock(&root->fs_info->trans_lock); 688 689 /* 690 * The specified transaction doesn't exist, or we 691 * raced with btrfs_commit_transaction 692 */ 693 if (!cur_trans) { 694 if (transid > root->fs_info->last_trans_committed) 695 ret = -EINVAL; 696 goto out; 697 } 698 } else { 699 /* find newest transaction that is committing | committed */ 700 spin_lock(&root->fs_info->trans_lock); 701 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 702 list) { 703 if (t->state >= TRANS_STATE_COMMIT_START) { 704 if (t->state == TRANS_STATE_COMPLETED) 705 break; 706 cur_trans = t; 707 atomic_inc(&cur_trans->use_count); 708 break; 709 } 710 } 711 spin_unlock(&root->fs_info->trans_lock); 712 if (!cur_trans) 713 goto out; /* nothing committing|committed */ 714 } 715 716 wait_for_commit(root, cur_trans); 717 btrfs_put_transaction(cur_trans); 718 out: 719 return ret; 720 } 721 722 void btrfs_throttle(struct btrfs_root *root) 723 { 724 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 725 wait_current_trans(root); 726 } 727 728 static int should_end_transaction(struct btrfs_trans_handle *trans, 729 struct btrfs_root *root) 730 { 731 if (root->fs_info->global_block_rsv.space_info->full && 732 btrfs_check_space_for_delayed_refs(trans, root)) 733 return 1; 734 735 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 736 } 737 738 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 739 struct btrfs_root *root) 740 { 741 struct btrfs_transaction *cur_trans = trans->transaction; 742 int updates; 743 int err; 744 745 smp_mb(); 746 if (cur_trans->state >= TRANS_STATE_BLOCKED || 747 cur_trans->delayed_refs.flushing) 748 return 1; 749 750 updates = trans->delayed_ref_updates; 751 trans->delayed_ref_updates = 0; 752 if (updates) { 753 err = btrfs_run_delayed_refs(trans, root, updates * 2); 754 if (err) /* Error code will also eval true */ 755 return err; 756 } 757 758 return should_end_transaction(trans, root); 759 } 760 761 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 762 struct btrfs_root *root, int throttle) 763 { 764 struct btrfs_transaction *cur_trans = trans->transaction; 765 struct btrfs_fs_info *info = root->fs_info; 766 unsigned long cur = trans->delayed_ref_updates; 767 int lock = (trans->type != TRANS_JOIN_NOLOCK); 768 int err = 0; 769 int must_run_delayed_refs = 0; 770 771 if (trans->use_count > 1) { 772 trans->use_count--; 773 trans->block_rsv = trans->orig_rsv; 774 return 0; 775 } 776 777 btrfs_trans_release_metadata(trans, root); 778 trans->block_rsv = NULL; 779 780 if (!list_empty(&trans->new_bgs)) 781 btrfs_create_pending_block_groups(trans, root); 782 783 if (!list_empty(&trans->ordered)) { 784 spin_lock(&info->trans_lock); 785 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 786 spin_unlock(&info->trans_lock); 787 } 788 789 trans->delayed_ref_updates = 0; 790 if (!trans->sync) { 791 must_run_delayed_refs = 792 btrfs_should_throttle_delayed_refs(trans, root); 793 cur = max_t(unsigned long, cur, 32); 794 795 /* 796 * don't make the caller wait if they are from a NOLOCK 797 * or ATTACH transaction, it will deadlock with commit 798 */ 799 if (must_run_delayed_refs == 1 && 800 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 801 must_run_delayed_refs = 2; 802 } 803 804 btrfs_trans_release_metadata(trans, root); 805 trans->block_rsv = NULL; 806 807 if (!list_empty(&trans->new_bgs)) 808 btrfs_create_pending_block_groups(trans, root); 809 810 btrfs_trans_release_chunk_metadata(trans); 811 812 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 813 should_end_transaction(trans, root) && 814 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 815 spin_lock(&info->trans_lock); 816 if (cur_trans->state == TRANS_STATE_RUNNING) 817 cur_trans->state = TRANS_STATE_BLOCKED; 818 spin_unlock(&info->trans_lock); 819 } 820 821 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 822 if (throttle) 823 return btrfs_commit_transaction(trans, root); 824 else 825 wake_up_process(info->transaction_kthread); 826 } 827 828 if (trans->type & __TRANS_FREEZABLE) 829 sb_end_intwrite(root->fs_info->sb); 830 831 WARN_ON(cur_trans != info->running_transaction); 832 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 833 atomic_dec(&cur_trans->num_writers); 834 extwriter_counter_dec(cur_trans, trans->type); 835 836 /* 837 * Make sure counter is updated before we wake up waiters. 838 */ 839 smp_mb(); 840 if (waitqueue_active(&cur_trans->writer_wait)) 841 wake_up(&cur_trans->writer_wait); 842 btrfs_put_transaction(cur_trans); 843 844 if (current->journal_info == trans) 845 current->journal_info = NULL; 846 847 if (throttle) 848 btrfs_run_delayed_iputs(root); 849 850 if (trans->aborted || 851 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 852 wake_up_process(info->transaction_kthread); 853 err = -EIO; 854 } 855 assert_qgroups_uptodate(trans); 856 857 kmem_cache_free(btrfs_trans_handle_cachep, trans); 858 if (must_run_delayed_refs) { 859 btrfs_async_run_delayed_refs(root, cur, 860 must_run_delayed_refs == 1); 861 } 862 return err; 863 } 864 865 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 866 struct btrfs_root *root) 867 { 868 return __btrfs_end_transaction(trans, root, 0); 869 } 870 871 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 872 struct btrfs_root *root) 873 { 874 return __btrfs_end_transaction(trans, root, 1); 875 } 876 877 /* 878 * when btree blocks are allocated, they have some corresponding bits set for 879 * them in one of two extent_io trees. This is used to make sure all of 880 * those extents are sent to disk but does not wait on them 881 */ 882 int btrfs_write_marked_extents(struct btrfs_root *root, 883 struct extent_io_tree *dirty_pages, int mark) 884 { 885 int err = 0; 886 int werr = 0; 887 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 888 struct extent_state *cached_state = NULL; 889 u64 start = 0; 890 u64 end; 891 892 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 893 mark, &cached_state)) { 894 bool wait_writeback = false; 895 896 err = convert_extent_bit(dirty_pages, start, end, 897 EXTENT_NEED_WAIT, 898 mark, &cached_state, GFP_NOFS); 899 /* 900 * convert_extent_bit can return -ENOMEM, which is most of the 901 * time a temporary error. So when it happens, ignore the error 902 * and wait for writeback of this range to finish - because we 903 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 904 * to btrfs_wait_marked_extents() would not know that writeback 905 * for this range started and therefore wouldn't wait for it to 906 * finish - we don't want to commit a superblock that points to 907 * btree nodes/leafs for which writeback hasn't finished yet 908 * (and without errors). 909 * We cleanup any entries left in the io tree when committing 910 * the transaction (through clear_btree_io_tree()). 911 */ 912 if (err == -ENOMEM) { 913 err = 0; 914 wait_writeback = true; 915 } 916 if (!err) 917 err = filemap_fdatawrite_range(mapping, start, end); 918 if (err) 919 werr = err; 920 else if (wait_writeback) 921 werr = filemap_fdatawait_range(mapping, start, end); 922 free_extent_state(cached_state); 923 cached_state = NULL; 924 cond_resched(); 925 start = end + 1; 926 } 927 return werr; 928 } 929 930 /* 931 * when btree blocks are allocated, they have some corresponding bits set for 932 * them in one of two extent_io trees. This is used to make sure all of 933 * those extents are on disk for transaction or log commit. We wait 934 * on all the pages and clear them from the dirty pages state tree 935 */ 936 int btrfs_wait_marked_extents(struct btrfs_root *root, 937 struct extent_io_tree *dirty_pages, int mark) 938 { 939 int err = 0; 940 int werr = 0; 941 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 942 struct extent_state *cached_state = NULL; 943 u64 start = 0; 944 u64 end; 945 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 946 bool errors = false; 947 948 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 949 EXTENT_NEED_WAIT, &cached_state)) { 950 /* 951 * Ignore -ENOMEM errors returned by clear_extent_bit(). 952 * When committing the transaction, we'll remove any entries 953 * left in the io tree. For a log commit, we don't remove them 954 * after committing the log because the tree can be accessed 955 * concurrently - we do it only at transaction commit time when 956 * it's safe to do it (through clear_btree_io_tree()). 957 */ 958 err = clear_extent_bit(dirty_pages, start, end, 959 EXTENT_NEED_WAIT, 960 0, 0, &cached_state, GFP_NOFS); 961 if (err == -ENOMEM) 962 err = 0; 963 if (!err) 964 err = filemap_fdatawait_range(mapping, start, end); 965 if (err) 966 werr = err; 967 free_extent_state(cached_state); 968 cached_state = NULL; 969 cond_resched(); 970 start = end + 1; 971 } 972 if (err) 973 werr = err; 974 975 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 976 if ((mark & EXTENT_DIRTY) && 977 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 978 &btree_ino->runtime_flags)) 979 errors = true; 980 981 if ((mark & EXTENT_NEW) && 982 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 983 &btree_ino->runtime_flags)) 984 errors = true; 985 } else { 986 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 987 &btree_ino->runtime_flags)) 988 errors = true; 989 } 990 991 if (errors && !werr) 992 werr = -EIO; 993 994 return werr; 995 } 996 997 /* 998 * when btree blocks are allocated, they have some corresponding bits set for 999 * them in one of two extent_io trees. This is used to make sure all of 1000 * those extents are on disk for transaction or log commit 1001 */ 1002 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1003 struct extent_io_tree *dirty_pages, int mark) 1004 { 1005 int ret; 1006 int ret2; 1007 struct blk_plug plug; 1008 1009 blk_start_plug(&plug); 1010 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1011 blk_finish_plug(&plug); 1012 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1013 1014 if (ret) 1015 return ret; 1016 if (ret2) 1017 return ret2; 1018 return 0; 1019 } 1020 1021 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1022 struct btrfs_root *root) 1023 { 1024 int ret; 1025 1026 ret = btrfs_write_and_wait_marked_extents(root, 1027 &trans->transaction->dirty_pages, 1028 EXTENT_DIRTY); 1029 clear_btree_io_tree(&trans->transaction->dirty_pages); 1030 1031 return ret; 1032 } 1033 1034 /* 1035 * this is used to update the root pointer in the tree of tree roots. 1036 * 1037 * But, in the case of the extent allocation tree, updating the root 1038 * pointer may allocate blocks which may change the root of the extent 1039 * allocation tree. 1040 * 1041 * So, this loops and repeats and makes sure the cowonly root didn't 1042 * change while the root pointer was being updated in the metadata. 1043 */ 1044 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1045 struct btrfs_root *root) 1046 { 1047 int ret; 1048 u64 old_root_bytenr; 1049 u64 old_root_used; 1050 struct btrfs_root *tree_root = root->fs_info->tree_root; 1051 1052 old_root_used = btrfs_root_used(&root->root_item); 1053 1054 while (1) { 1055 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1056 if (old_root_bytenr == root->node->start && 1057 old_root_used == btrfs_root_used(&root->root_item)) 1058 break; 1059 1060 btrfs_set_root_node(&root->root_item, root->node); 1061 ret = btrfs_update_root(trans, tree_root, 1062 &root->root_key, 1063 &root->root_item); 1064 if (ret) 1065 return ret; 1066 1067 old_root_used = btrfs_root_used(&root->root_item); 1068 } 1069 1070 return 0; 1071 } 1072 1073 /* 1074 * update all the cowonly tree roots on disk 1075 * 1076 * The error handling in this function may not be obvious. Any of the 1077 * failures will cause the file system to go offline. We still need 1078 * to clean up the delayed refs. 1079 */ 1080 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1081 struct btrfs_root *root) 1082 { 1083 struct btrfs_fs_info *fs_info = root->fs_info; 1084 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1085 struct list_head *io_bgs = &trans->transaction->io_bgs; 1086 struct list_head *next; 1087 struct extent_buffer *eb; 1088 int ret; 1089 1090 eb = btrfs_lock_root_node(fs_info->tree_root); 1091 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1092 0, &eb); 1093 btrfs_tree_unlock(eb); 1094 free_extent_buffer(eb); 1095 1096 if (ret) 1097 return ret; 1098 1099 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1100 if (ret) 1101 return ret; 1102 1103 ret = btrfs_run_dev_stats(trans, root->fs_info); 1104 if (ret) 1105 return ret; 1106 ret = btrfs_run_dev_replace(trans, root->fs_info); 1107 if (ret) 1108 return ret; 1109 ret = btrfs_run_qgroups(trans, root->fs_info); 1110 if (ret) 1111 return ret; 1112 1113 ret = btrfs_setup_space_cache(trans, root); 1114 if (ret) 1115 return ret; 1116 1117 /* run_qgroups might have added some more refs */ 1118 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1119 if (ret) 1120 return ret; 1121 again: 1122 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1123 next = fs_info->dirty_cowonly_roots.next; 1124 list_del_init(next); 1125 root = list_entry(next, struct btrfs_root, dirty_list); 1126 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1127 1128 if (root != fs_info->extent_root) 1129 list_add_tail(&root->dirty_list, 1130 &trans->transaction->switch_commits); 1131 ret = update_cowonly_root(trans, root); 1132 if (ret) 1133 return ret; 1134 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1135 if (ret) 1136 return ret; 1137 } 1138 1139 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1140 ret = btrfs_write_dirty_block_groups(trans, root); 1141 if (ret) 1142 return ret; 1143 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1144 if (ret) 1145 return ret; 1146 } 1147 1148 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1149 goto again; 1150 1151 list_add_tail(&fs_info->extent_root->dirty_list, 1152 &trans->transaction->switch_commits); 1153 btrfs_after_dev_replace_commit(fs_info); 1154 1155 return 0; 1156 } 1157 1158 /* 1159 * dead roots are old snapshots that need to be deleted. This allocates 1160 * a dirty root struct and adds it into the list of dead roots that need to 1161 * be deleted 1162 */ 1163 void btrfs_add_dead_root(struct btrfs_root *root) 1164 { 1165 spin_lock(&root->fs_info->trans_lock); 1166 if (list_empty(&root->root_list)) 1167 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1168 spin_unlock(&root->fs_info->trans_lock); 1169 } 1170 1171 /* 1172 * update all the cowonly tree roots on disk 1173 */ 1174 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1175 struct btrfs_root *root) 1176 { 1177 struct btrfs_root *gang[8]; 1178 struct btrfs_fs_info *fs_info = root->fs_info; 1179 int i; 1180 int ret; 1181 int err = 0; 1182 1183 spin_lock(&fs_info->fs_roots_radix_lock); 1184 while (1) { 1185 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1186 (void **)gang, 0, 1187 ARRAY_SIZE(gang), 1188 BTRFS_ROOT_TRANS_TAG); 1189 if (ret == 0) 1190 break; 1191 for (i = 0; i < ret; i++) { 1192 root = gang[i]; 1193 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1194 (unsigned long)root->root_key.objectid, 1195 BTRFS_ROOT_TRANS_TAG); 1196 spin_unlock(&fs_info->fs_roots_radix_lock); 1197 1198 btrfs_free_log(trans, root); 1199 btrfs_update_reloc_root(trans, root); 1200 btrfs_orphan_commit_root(trans, root); 1201 1202 btrfs_save_ino_cache(root, trans); 1203 1204 /* see comments in should_cow_block() */ 1205 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1206 smp_mb__after_atomic(); 1207 1208 if (root->commit_root != root->node) { 1209 list_add_tail(&root->dirty_list, 1210 &trans->transaction->switch_commits); 1211 btrfs_set_root_node(&root->root_item, 1212 root->node); 1213 } 1214 1215 err = btrfs_update_root(trans, fs_info->tree_root, 1216 &root->root_key, 1217 &root->root_item); 1218 spin_lock(&fs_info->fs_roots_radix_lock); 1219 if (err) 1220 break; 1221 btrfs_qgroup_free_meta_all(root); 1222 } 1223 } 1224 spin_unlock(&fs_info->fs_roots_radix_lock); 1225 return err; 1226 } 1227 1228 /* 1229 * defrag a given btree. 1230 * Every leaf in the btree is read and defragged. 1231 */ 1232 int btrfs_defrag_root(struct btrfs_root *root) 1233 { 1234 struct btrfs_fs_info *info = root->fs_info; 1235 struct btrfs_trans_handle *trans; 1236 int ret; 1237 1238 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1239 return 0; 1240 1241 while (1) { 1242 trans = btrfs_start_transaction(root, 0); 1243 if (IS_ERR(trans)) 1244 return PTR_ERR(trans); 1245 1246 ret = btrfs_defrag_leaves(trans, root); 1247 1248 btrfs_end_transaction(trans, root); 1249 btrfs_btree_balance_dirty(info->tree_root); 1250 cond_resched(); 1251 1252 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1253 break; 1254 1255 if (btrfs_defrag_cancelled(root->fs_info)) { 1256 pr_debug("BTRFS: defrag_root cancelled\n"); 1257 ret = -EAGAIN; 1258 break; 1259 } 1260 } 1261 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1262 return ret; 1263 } 1264 1265 /* 1266 * new snapshots need to be created at a very specific time in the 1267 * transaction commit. This does the actual creation. 1268 * 1269 * Note: 1270 * If the error which may affect the commitment of the current transaction 1271 * happens, we should return the error number. If the error which just affect 1272 * the creation of the pending snapshots, just return 0. 1273 */ 1274 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1275 struct btrfs_fs_info *fs_info, 1276 struct btrfs_pending_snapshot *pending) 1277 { 1278 struct btrfs_key key; 1279 struct btrfs_root_item *new_root_item; 1280 struct btrfs_root *tree_root = fs_info->tree_root; 1281 struct btrfs_root *root = pending->root; 1282 struct btrfs_root *parent_root; 1283 struct btrfs_block_rsv *rsv; 1284 struct inode *parent_inode; 1285 struct btrfs_path *path; 1286 struct btrfs_dir_item *dir_item; 1287 struct dentry *dentry; 1288 struct extent_buffer *tmp; 1289 struct extent_buffer *old; 1290 struct timespec cur_time = CURRENT_TIME; 1291 int ret = 0; 1292 u64 to_reserve = 0; 1293 u64 index = 0; 1294 u64 objectid; 1295 u64 root_flags; 1296 uuid_le new_uuid; 1297 1298 path = btrfs_alloc_path(); 1299 if (!path) { 1300 pending->error = -ENOMEM; 1301 return 0; 1302 } 1303 1304 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1305 if (!new_root_item) { 1306 pending->error = -ENOMEM; 1307 goto root_item_alloc_fail; 1308 } 1309 1310 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1311 if (pending->error) 1312 goto no_free_objectid; 1313 1314 /* 1315 * Make qgroup to skip current new snapshot's qgroupid, as it is 1316 * accounted by later btrfs_qgroup_inherit(). 1317 */ 1318 btrfs_set_skip_qgroup(trans, objectid); 1319 1320 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1321 1322 if (to_reserve > 0) { 1323 pending->error = btrfs_block_rsv_add(root, 1324 &pending->block_rsv, 1325 to_reserve, 1326 BTRFS_RESERVE_NO_FLUSH); 1327 if (pending->error) 1328 goto clear_skip_qgroup; 1329 } 1330 1331 key.objectid = objectid; 1332 key.offset = (u64)-1; 1333 key.type = BTRFS_ROOT_ITEM_KEY; 1334 1335 rsv = trans->block_rsv; 1336 trans->block_rsv = &pending->block_rsv; 1337 trans->bytes_reserved = trans->block_rsv->reserved; 1338 1339 dentry = pending->dentry; 1340 parent_inode = pending->dir; 1341 parent_root = BTRFS_I(parent_inode)->root; 1342 record_root_in_trans(trans, parent_root); 1343 1344 /* 1345 * insert the directory item 1346 */ 1347 ret = btrfs_set_inode_index(parent_inode, &index); 1348 BUG_ON(ret); /* -ENOMEM */ 1349 1350 /* check if there is a file/dir which has the same name. */ 1351 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1352 btrfs_ino(parent_inode), 1353 dentry->d_name.name, 1354 dentry->d_name.len, 0); 1355 if (dir_item != NULL && !IS_ERR(dir_item)) { 1356 pending->error = -EEXIST; 1357 goto dir_item_existed; 1358 } else if (IS_ERR(dir_item)) { 1359 ret = PTR_ERR(dir_item); 1360 btrfs_abort_transaction(trans, root, ret); 1361 goto fail; 1362 } 1363 btrfs_release_path(path); 1364 1365 /* 1366 * pull in the delayed directory update 1367 * and the delayed inode item 1368 * otherwise we corrupt the FS during 1369 * snapshot 1370 */ 1371 ret = btrfs_run_delayed_items(trans, root); 1372 if (ret) { /* Transaction aborted */ 1373 btrfs_abort_transaction(trans, root, ret); 1374 goto fail; 1375 } 1376 1377 record_root_in_trans(trans, root); 1378 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1379 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1380 btrfs_check_and_init_root_item(new_root_item); 1381 1382 root_flags = btrfs_root_flags(new_root_item); 1383 if (pending->readonly) 1384 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1385 else 1386 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1387 btrfs_set_root_flags(new_root_item, root_flags); 1388 1389 btrfs_set_root_generation_v2(new_root_item, 1390 trans->transid); 1391 uuid_le_gen(&new_uuid); 1392 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1393 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1394 BTRFS_UUID_SIZE); 1395 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1396 memset(new_root_item->received_uuid, 0, 1397 sizeof(new_root_item->received_uuid)); 1398 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1399 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1400 btrfs_set_root_stransid(new_root_item, 0); 1401 btrfs_set_root_rtransid(new_root_item, 0); 1402 } 1403 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1404 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1405 btrfs_set_root_otransid(new_root_item, trans->transid); 1406 1407 old = btrfs_lock_root_node(root); 1408 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1409 if (ret) { 1410 btrfs_tree_unlock(old); 1411 free_extent_buffer(old); 1412 btrfs_abort_transaction(trans, root, ret); 1413 goto fail; 1414 } 1415 1416 btrfs_set_lock_blocking(old); 1417 1418 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1419 /* clean up in any case */ 1420 btrfs_tree_unlock(old); 1421 free_extent_buffer(old); 1422 if (ret) { 1423 btrfs_abort_transaction(trans, root, ret); 1424 goto fail; 1425 } 1426 /* see comments in should_cow_block() */ 1427 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1428 smp_wmb(); 1429 1430 btrfs_set_root_node(new_root_item, tmp); 1431 /* record when the snapshot was created in key.offset */ 1432 key.offset = trans->transid; 1433 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1434 btrfs_tree_unlock(tmp); 1435 free_extent_buffer(tmp); 1436 if (ret) { 1437 btrfs_abort_transaction(trans, root, ret); 1438 goto fail; 1439 } 1440 1441 /* 1442 * insert root back/forward references 1443 */ 1444 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1445 parent_root->root_key.objectid, 1446 btrfs_ino(parent_inode), index, 1447 dentry->d_name.name, dentry->d_name.len); 1448 if (ret) { 1449 btrfs_abort_transaction(trans, root, ret); 1450 goto fail; 1451 } 1452 1453 key.offset = (u64)-1; 1454 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1455 if (IS_ERR(pending->snap)) { 1456 ret = PTR_ERR(pending->snap); 1457 btrfs_abort_transaction(trans, root, ret); 1458 goto fail; 1459 } 1460 1461 ret = btrfs_reloc_post_snapshot(trans, pending); 1462 if (ret) { 1463 btrfs_abort_transaction(trans, root, ret); 1464 goto fail; 1465 } 1466 1467 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1468 if (ret) { 1469 btrfs_abort_transaction(trans, root, ret); 1470 goto fail; 1471 } 1472 1473 ret = btrfs_insert_dir_item(trans, parent_root, 1474 dentry->d_name.name, dentry->d_name.len, 1475 parent_inode, &key, 1476 BTRFS_FT_DIR, index); 1477 /* We have check then name at the beginning, so it is impossible. */ 1478 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1479 if (ret) { 1480 btrfs_abort_transaction(trans, root, ret); 1481 goto fail; 1482 } 1483 1484 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1485 dentry->d_name.len * 2); 1486 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1487 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1488 if (ret) { 1489 btrfs_abort_transaction(trans, root, ret); 1490 goto fail; 1491 } 1492 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1493 BTRFS_UUID_KEY_SUBVOL, objectid); 1494 if (ret) { 1495 btrfs_abort_transaction(trans, root, ret); 1496 goto fail; 1497 } 1498 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1499 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1500 new_root_item->received_uuid, 1501 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1502 objectid); 1503 if (ret && ret != -EEXIST) { 1504 btrfs_abort_transaction(trans, root, ret); 1505 goto fail; 1506 } 1507 } 1508 1509 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1510 if (ret) { 1511 btrfs_abort_transaction(trans, root, ret); 1512 goto fail; 1513 } 1514 1515 /* 1516 * account qgroup counters before qgroup_inherit() 1517 */ 1518 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1519 if (ret) 1520 goto fail; 1521 ret = btrfs_qgroup_account_extents(trans, fs_info); 1522 if (ret) 1523 goto fail; 1524 ret = btrfs_qgroup_inherit(trans, fs_info, 1525 root->root_key.objectid, 1526 objectid, pending->inherit); 1527 if (ret) { 1528 btrfs_abort_transaction(trans, root, ret); 1529 goto fail; 1530 } 1531 1532 fail: 1533 pending->error = ret; 1534 dir_item_existed: 1535 trans->block_rsv = rsv; 1536 trans->bytes_reserved = 0; 1537 clear_skip_qgroup: 1538 btrfs_clear_skip_qgroup(trans); 1539 no_free_objectid: 1540 kfree(new_root_item); 1541 root_item_alloc_fail: 1542 btrfs_free_path(path); 1543 return ret; 1544 } 1545 1546 /* 1547 * create all the snapshots we've scheduled for creation 1548 */ 1549 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1550 struct btrfs_fs_info *fs_info) 1551 { 1552 struct btrfs_pending_snapshot *pending, *next; 1553 struct list_head *head = &trans->transaction->pending_snapshots; 1554 int ret = 0; 1555 1556 list_for_each_entry_safe(pending, next, head, list) { 1557 list_del(&pending->list); 1558 ret = create_pending_snapshot(trans, fs_info, pending); 1559 if (ret) 1560 break; 1561 } 1562 return ret; 1563 } 1564 1565 static void update_super_roots(struct btrfs_root *root) 1566 { 1567 struct btrfs_root_item *root_item; 1568 struct btrfs_super_block *super; 1569 1570 super = root->fs_info->super_copy; 1571 1572 root_item = &root->fs_info->chunk_root->root_item; 1573 super->chunk_root = root_item->bytenr; 1574 super->chunk_root_generation = root_item->generation; 1575 super->chunk_root_level = root_item->level; 1576 1577 root_item = &root->fs_info->tree_root->root_item; 1578 super->root = root_item->bytenr; 1579 super->generation = root_item->generation; 1580 super->root_level = root_item->level; 1581 if (btrfs_test_opt(root, SPACE_CACHE)) 1582 super->cache_generation = root_item->generation; 1583 if (root->fs_info->update_uuid_tree_gen) 1584 super->uuid_tree_generation = root_item->generation; 1585 } 1586 1587 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1588 { 1589 struct btrfs_transaction *trans; 1590 int ret = 0; 1591 1592 spin_lock(&info->trans_lock); 1593 trans = info->running_transaction; 1594 if (trans) 1595 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1596 spin_unlock(&info->trans_lock); 1597 return ret; 1598 } 1599 1600 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1601 { 1602 struct btrfs_transaction *trans; 1603 int ret = 0; 1604 1605 spin_lock(&info->trans_lock); 1606 trans = info->running_transaction; 1607 if (trans) 1608 ret = is_transaction_blocked(trans); 1609 spin_unlock(&info->trans_lock); 1610 return ret; 1611 } 1612 1613 /* 1614 * wait for the current transaction commit to start and block subsequent 1615 * transaction joins 1616 */ 1617 static void wait_current_trans_commit_start(struct btrfs_root *root, 1618 struct btrfs_transaction *trans) 1619 { 1620 wait_event(root->fs_info->transaction_blocked_wait, 1621 trans->state >= TRANS_STATE_COMMIT_START || 1622 trans->aborted); 1623 } 1624 1625 /* 1626 * wait for the current transaction to start and then become unblocked. 1627 * caller holds ref. 1628 */ 1629 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1630 struct btrfs_transaction *trans) 1631 { 1632 wait_event(root->fs_info->transaction_wait, 1633 trans->state >= TRANS_STATE_UNBLOCKED || 1634 trans->aborted); 1635 } 1636 1637 /* 1638 * commit transactions asynchronously. once btrfs_commit_transaction_async 1639 * returns, any subsequent transaction will not be allowed to join. 1640 */ 1641 struct btrfs_async_commit { 1642 struct btrfs_trans_handle *newtrans; 1643 struct btrfs_root *root; 1644 struct work_struct work; 1645 }; 1646 1647 static void do_async_commit(struct work_struct *work) 1648 { 1649 struct btrfs_async_commit *ac = 1650 container_of(work, struct btrfs_async_commit, work); 1651 1652 /* 1653 * We've got freeze protection passed with the transaction. 1654 * Tell lockdep about it. 1655 */ 1656 if (ac->newtrans->type & __TRANS_FREEZABLE) 1657 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1658 1659 current->journal_info = ac->newtrans; 1660 1661 btrfs_commit_transaction(ac->newtrans, ac->root); 1662 kfree(ac); 1663 } 1664 1665 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1666 struct btrfs_root *root, 1667 int wait_for_unblock) 1668 { 1669 struct btrfs_async_commit *ac; 1670 struct btrfs_transaction *cur_trans; 1671 1672 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1673 if (!ac) 1674 return -ENOMEM; 1675 1676 INIT_WORK(&ac->work, do_async_commit); 1677 ac->root = root; 1678 ac->newtrans = btrfs_join_transaction(root); 1679 if (IS_ERR(ac->newtrans)) { 1680 int err = PTR_ERR(ac->newtrans); 1681 kfree(ac); 1682 return err; 1683 } 1684 1685 /* take transaction reference */ 1686 cur_trans = trans->transaction; 1687 atomic_inc(&cur_trans->use_count); 1688 1689 btrfs_end_transaction(trans, root); 1690 1691 /* 1692 * Tell lockdep we've released the freeze rwsem, since the 1693 * async commit thread will be the one to unlock it. 1694 */ 1695 if (ac->newtrans->type & __TRANS_FREEZABLE) 1696 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1697 1698 schedule_work(&ac->work); 1699 1700 /* wait for transaction to start and unblock */ 1701 if (wait_for_unblock) 1702 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1703 else 1704 wait_current_trans_commit_start(root, cur_trans); 1705 1706 if (current->journal_info == trans) 1707 current->journal_info = NULL; 1708 1709 btrfs_put_transaction(cur_trans); 1710 return 0; 1711 } 1712 1713 1714 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1715 struct btrfs_root *root, int err) 1716 { 1717 struct btrfs_transaction *cur_trans = trans->transaction; 1718 DEFINE_WAIT(wait); 1719 1720 WARN_ON(trans->use_count > 1); 1721 1722 btrfs_abort_transaction(trans, root, err); 1723 1724 spin_lock(&root->fs_info->trans_lock); 1725 1726 /* 1727 * If the transaction is removed from the list, it means this 1728 * transaction has been committed successfully, so it is impossible 1729 * to call the cleanup function. 1730 */ 1731 BUG_ON(list_empty(&cur_trans->list)); 1732 1733 list_del_init(&cur_trans->list); 1734 if (cur_trans == root->fs_info->running_transaction) { 1735 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1736 spin_unlock(&root->fs_info->trans_lock); 1737 wait_event(cur_trans->writer_wait, 1738 atomic_read(&cur_trans->num_writers) == 1); 1739 1740 spin_lock(&root->fs_info->trans_lock); 1741 } 1742 spin_unlock(&root->fs_info->trans_lock); 1743 1744 btrfs_cleanup_one_transaction(trans->transaction, root); 1745 1746 spin_lock(&root->fs_info->trans_lock); 1747 if (cur_trans == root->fs_info->running_transaction) 1748 root->fs_info->running_transaction = NULL; 1749 spin_unlock(&root->fs_info->trans_lock); 1750 1751 if (trans->type & __TRANS_FREEZABLE) 1752 sb_end_intwrite(root->fs_info->sb); 1753 btrfs_put_transaction(cur_trans); 1754 btrfs_put_transaction(cur_trans); 1755 1756 trace_btrfs_transaction_commit(root); 1757 1758 if (current->journal_info == trans) 1759 current->journal_info = NULL; 1760 btrfs_scrub_cancel(root->fs_info); 1761 1762 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1763 } 1764 1765 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1766 { 1767 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1768 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1769 return 0; 1770 } 1771 1772 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1773 { 1774 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1775 btrfs_wait_ordered_roots(fs_info, -1); 1776 } 1777 1778 static inline void 1779 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans, 1780 struct btrfs_fs_info *fs_info) 1781 { 1782 struct btrfs_ordered_extent *ordered; 1783 1784 spin_lock(&fs_info->trans_lock); 1785 while (!list_empty(&cur_trans->pending_ordered)) { 1786 ordered = list_first_entry(&cur_trans->pending_ordered, 1787 struct btrfs_ordered_extent, 1788 trans_list); 1789 list_del_init(&ordered->trans_list); 1790 spin_unlock(&fs_info->trans_lock); 1791 1792 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE, 1793 &ordered->flags)); 1794 btrfs_put_ordered_extent(ordered); 1795 spin_lock(&fs_info->trans_lock); 1796 } 1797 spin_unlock(&fs_info->trans_lock); 1798 } 1799 1800 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1801 struct btrfs_root *root) 1802 { 1803 struct btrfs_transaction *cur_trans = trans->transaction; 1804 struct btrfs_transaction *prev_trans = NULL; 1805 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1806 int ret; 1807 1808 /* Stop the commit early if ->aborted is set */ 1809 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1810 ret = cur_trans->aborted; 1811 btrfs_end_transaction(trans, root); 1812 return ret; 1813 } 1814 1815 /* make a pass through all the delayed refs we have so far 1816 * any runnings procs may add more while we are here 1817 */ 1818 ret = btrfs_run_delayed_refs(trans, root, 0); 1819 if (ret) { 1820 btrfs_end_transaction(trans, root); 1821 return ret; 1822 } 1823 1824 btrfs_trans_release_metadata(trans, root); 1825 trans->block_rsv = NULL; 1826 1827 cur_trans = trans->transaction; 1828 1829 /* 1830 * set the flushing flag so procs in this transaction have to 1831 * start sending their work down. 1832 */ 1833 cur_trans->delayed_refs.flushing = 1; 1834 smp_wmb(); 1835 1836 if (!list_empty(&trans->new_bgs)) 1837 btrfs_create_pending_block_groups(trans, root); 1838 1839 ret = btrfs_run_delayed_refs(trans, root, 0); 1840 if (ret) { 1841 btrfs_end_transaction(trans, root); 1842 return ret; 1843 } 1844 1845 if (!cur_trans->dirty_bg_run) { 1846 int run_it = 0; 1847 1848 /* this mutex is also taken before trying to set 1849 * block groups readonly. We need to make sure 1850 * that nobody has set a block group readonly 1851 * after a extents from that block group have been 1852 * allocated for cache files. btrfs_set_block_group_ro 1853 * will wait for the transaction to commit if it 1854 * finds dirty_bg_run = 1 1855 * 1856 * The dirty_bg_run flag is also used to make sure only 1857 * one process starts all the block group IO. It wouldn't 1858 * hurt to have more than one go through, but there's no 1859 * real advantage to it either. 1860 */ 1861 mutex_lock(&root->fs_info->ro_block_group_mutex); 1862 if (!cur_trans->dirty_bg_run) { 1863 run_it = 1; 1864 cur_trans->dirty_bg_run = 1; 1865 } 1866 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1867 1868 if (run_it) 1869 ret = btrfs_start_dirty_block_groups(trans, root); 1870 } 1871 if (ret) { 1872 btrfs_end_transaction(trans, root); 1873 return ret; 1874 } 1875 1876 spin_lock(&root->fs_info->trans_lock); 1877 list_splice_init(&trans->ordered, &cur_trans->pending_ordered); 1878 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1879 spin_unlock(&root->fs_info->trans_lock); 1880 atomic_inc(&cur_trans->use_count); 1881 ret = btrfs_end_transaction(trans, root); 1882 1883 wait_for_commit(root, cur_trans); 1884 1885 if (unlikely(cur_trans->aborted)) 1886 ret = cur_trans->aborted; 1887 1888 btrfs_put_transaction(cur_trans); 1889 1890 return ret; 1891 } 1892 1893 cur_trans->state = TRANS_STATE_COMMIT_START; 1894 wake_up(&root->fs_info->transaction_blocked_wait); 1895 1896 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1897 prev_trans = list_entry(cur_trans->list.prev, 1898 struct btrfs_transaction, list); 1899 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1900 atomic_inc(&prev_trans->use_count); 1901 spin_unlock(&root->fs_info->trans_lock); 1902 1903 wait_for_commit(root, prev_trans); 1904 ret = prev_trans->aborted; 1905 1906 btrfs_put_transaction(prev_trans); 1907 if (ret) 1908 goto cleanup_transaction; 1909 } else { 1910 spin_unlock(&root->fs_info->trans_lock); 1911 } 1912 } else { 1913 spin_unlock(&root->fs_info->trans_lock); 1914 } 1915 1916 extwriter_counter_dec(cur_trans, trans->type); 1917 1918 ret = btrfs_start_delalloc_flush(root->fs_info); 1919 if (ret) 1920 goto cleanup_transaction; 1921 1922 ret = btrfs_run_delayed_items(trans, root); 1923 if (ret) 1924 goto cleanup_transaction; 1925 1926 wait_event(cur_trans->writer_wait, 1927 extwriter_counter_read(cur_trans) == 0); 1928 1929 /* some pending stuffs might be added after the previous flush. */ 1930 ret = btrfs_run_delayed_items(trans, root); 1931 if (ret) 1932 goto cleanup_transaction; 1933 1934 btrfs_wait_delalloc_flush(root->fs_info); 1935 1936 btrfs_wait_pending_ordered(cur_trans, root->fs_info); 1937 1938 btrfs_scrub_pause(root); 1939 /* 1940 * Ok now we need to make sure to block out any other joins while we 1941 * commit the transaction. We could have started a join before setting 1942 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1943 */ 1944 spin_lock(&root->fs_info->trans_lock); 1945 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1946 spin_unlock(&root->fs_info->trans_lock); 1947 wait_event(cur_trans->writer_wait, 1948 atomic_read(&cur_trans->num_writers) == 1); 1949 1950 /* ->aborted might be set after the previous check, so check it */ 1951 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1952 ret = cur_trans->aborted; 1953 goto scrub_continue; 1954 } 1955 /* 1956 * the reloc mutex makes sure that we stop 1957 * the balancing code from coming in and moving 1958 * extents around in the middle of the commit 1959 */ 1960 mutex_lock(&root->fs_info->reloc_mutex); 1961 1962 /* 1963 * We needn't worry about the delayed items because we will 1964 * deal with them in create_pending_snapshot(), which is the 1965 * core function of the snapshot creation. 1966 */ 1967 ret = create_pending_snapshots(trans, root->fs_info); 1968 if (ret) { 1969 mutex_unlock(&root->fs_info->reloc_mutex); 1970 goto scrub_continue; 1971 } 1972 1973 /* 1974 * We insert the dir indexes of the snapshots and update the inode 1975 * of the snapshots' parents after the snapshot creation, so there 1976 * are some delayed items which are not dealt with. Now deal with 1977 * them. 1978 * 1979 * We needn't worry that this operation will corrupt the snapshots, 1980 * because all the tree which are snapshoted will be forced to COW 1981 * the nodes and leaves. 1982 */ 1983 ret = btrfs_run_delayed_items(trans, root); 1984 if (ret) { 1985 mutex_unlock(&root->fs_info->reloc_mutex); 1986 goto scrub_continue; 1987 } 1988 1989 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1990 if (ret) { 1991 mutex_unlock(&root->fs_info->reloc_mutex); 1992 goto scrub_continue; 1993 } 1994 1995 /* Reocrd old roots for later qgroup accounting */ 1996 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 1997 if (ret) { 1998 mutex_unlock(&root->fs_info->reloc_mutex); 1999 goto scrub_continue; 2000 } 2001 2002 /* 2003 * make sure none of the code above managed to slip in a 2004 * delayed item 2005 */ 2006 btrfs_assert_delayed_root_empty(root); 2007 2008 WARN_ON(cur_trans != trans->transaction); 2009 2010 /* btrfs_commit_tree_roots is responsible for getting the 2011 * various roots consistent with each other. Every pointer 2012 * in the tree of tree roots has to point to the most up to date 2013 * root for every subvolume and other tree. So, we have to keep 2014 * the tree logging code from jumping in and changing any 2015 * of the trees. 2016 * 2017 * At this point in the commit, there can't be any tree-log 2018 * writers, but a little lower down we drop the trans mutex 2019 * and let new people in. By holding the tree_log_mutex 2020 * from now until after the super is written, we avoid races 2021 * with the tree-log code. 2022 */ 2023 mutex_lock(&root->fs_info->tree_log_mutex); 2024 2025 ret = commit_fs_roots(trans, root); 2026 if (ret) { 2027 mutex_unlock(&root->fs_info->tree_log_mutex); 2028 mutex_unlock(&root->fs_info->reloc_mutex); 2029 goto scrub_continue; 2030 } 2031 2032 /* 2033 * Since the transaction is done, we can apply the pending changes 2034 * before the next transaction. 2035 */ 2036 btrfs_apply_pending_changes(root->fs_info); 2037 2038 /* commit_fs_roots gets rid of all the tree log roots, it is now 2039 * safe to free the root of tree log roots 2040 */ 2041 btrfs_free_log_root_tree(trans, root->fs_info); 2042 2043 /* 2044 * Since fs roots are all committed, we can get a quite accurate 2045 * new_roots. So let's do quota accounting. 2046 */ 2047 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2048 if (ret < 0) { 2049 mutex_unlock(&root->fs_info->tree_log_mutex); 2050 mutex_unlock(&root->fs_info->reloc_mutex); 2051 goto scrub_continue; 2052 } 2053 2054 ret = commit_cowonly_roots(trans, root); 2055 if (ret) { 2056 mutex_unlock(&root->fs_info->tree_log_mutex); 2057 mutex_unlock(&root->fs_info->reloc_mutex); 2058 goto scrub_continue; 2059 } 2060 2061 /* 2062 * The tasks which save the space cache and inode cache may also 2063 * update ->aborted, check it. 2064 */ 2065 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2066 ret = cur_trans->aborted; 2067 mutex_unlock(&root->fs_info->tree_log_mutex); 2068 mutex_unlock(&root->fs_info->reloc_mutex); 2069 goto scrub_continue; 2070 } 2071 2072 btrfs_prepare_extent_commit(trans, root); 2073 2074 cur_trans = root->fs_info->running_transaction; 2075 2076 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2077 root->fs_info->tree_root->node); 2078 list_add_tail(&root->fs_info->tree_root->dirty_list, 2079 &cur_trans->switch_commits); 2080 2081 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2082 root->fs_info->chunk_root->node); 2083 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2084 &cur_trans->switch_commits); 2085 2086 switch_commit_roots(cur_trans, root->fs_info); 2087 2088 assert_qgroups_uptodate(trans); 2089 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2090 ASSERT(list_empty(&cur_trans->io_bgs)); 2091 update_super_roots(root); 2092 2093 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2094 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2095 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2096 sizeof(*root->fs_info->super_copy)); 2097 2098 btrfs_update_commit_device_size(root->fs_info); 2099 btrfs_update_commit_device_bytes_used(root, cur_trans); 2100 2101 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2102 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2103 2104 btrfs_trans_release_chunk_metadata(trans); 2105 2106 spin_lock(&root->fs_info->trans_lock); 2107 cur_trans->state = TRANS_STATE_UNBLOCKED; 2108 root->fs_info->running_transaction = NULL; 2109 spin_unlock(&root->fs_info->trans_lock); 2110 mutex_unlock(&root->fs_info->reloc_mutex); 2111 2112 wake_up(&root->fs_info->transaction_wait); 2113 2114 ret = btrfs_write_and_wait_transaction(trans, root); 2115 if (ret) { 2116 btrfs_std_error(root->fs_info, ret, 2117 "Error while writing out transaction"); 2118 mutex_unlock(&root->fs_info->tree_log_mutex); 2119 goto scrub_continue; 2120 } 2121 2122 ret = write_ctree_super(trans, root, 0); 2123 if (ret) { 2124 mutex_unlock(&root->fs_info->tree_log_mutex); 2125 goto scrub_continue; 2126 } 2127 2128 /* 2129 * the super is written, we can safely allow the tree-loggers 2130 * to go about their business 2131 */ 2132 mutex_unlock(&root->fs_info->tree_log_mutex); 2133 2134 btrfs_finish_extent_commit(trans, root); 2135 2136 if (cur_trans->have_free_bgs) 2137 btrfs_clear_space_info_full(root->fs_info); 2138 2139 root->fs_info->last_trans_committed = cur_trans->transid; 2140 /* 2141 * We needn't acquire the lock here because there is no other task 2142 * which can change it. 2143 */ 2144 cur_trans->state = TRANS_STATE_COMPLETED; 2145 wake_up(&cur_trans->commit_wait); 2146 2147 spin_lock(&root->fs_info->trans_lock); 2148 list_del_init(&cur_trans->list); 2149 spin_unlock(&root->fs_info->trans_lock); 2150 2151 btrfs_put_transaction(cur_trans); 2152 btrfs_put_transaction(cur_trans); 2153 2154 if (trans->type & __TRANS_FREEZABLE) 2155 sb_end_intwrite(root->fs_info->sb); 2156 2157 trace_btrfs_transaction_commit(root); 2158 2159 btrfs_scrub_continue(root); 2160 2161 if (current->journal_info == trans) 2162 current->journal_info = NULL; 2163 2164 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2165 2166 if (current != root->fs_info->transaction_kthread && 2167 current != root->fs_info->cleaner_kthread) 2168 btrfs_run_delayed_iputs(root); 2169 2170 return ret; 2171 2172 scrub_continue: 2173 btrfs_scrub_continue(root); 2174 cleanup_transaction: 2175 btrfs_trans_release_metadata(trans, root); 2176 btrfs_trans_release_chunk_metadata(trans); 2177 trans->block_rsv = NULL; 2178 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2179 if (current->journal_info == trans) 2180 current->journal_info = NULL; 2181 cleanup_transaction(trans, root, ret); 2182 2183 return ret; 2184 } 2185 2186 /* 2187 * return < 0 if error 2188 * 0 if there are no more dead_roots at the time of call 2189 * 1 there are more to be processed, call me again 2190 * 2191 * The return value indicates there are certainly more snapshots to delete, but 2192 * if there comes a new one during processing, it may return 0. We don't mind, 2193 * because btrfs_commit_super will poke cleaner thread and it will process it a 2194 * few seconds later. 2195 */ 2196 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2197 { 2198 int ret; 2199 struct btrfs_fs_info *fs_info = root->fs_info; 2200 2201 spin_lock(&fs_info->trans_lock); 2202 if (list_empty(&fs_info->dead_roots)) { 2203 spin_unlock(&fs_info->trans_lock); 2204 return 0; 2205 } 2206 root = list_first_entry(&fs_info->dead_roots, 2207 struct btrfs_root, root_list); 2208 list_del_init(&root->root_list); 2209 spin_unlock(&fs_info->trans_lock); 2210 2211 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2212 2213 btrfs_kill_all_delayed_nodes(root); 2214 2215 if (btrfs_header_backref_rev(root->node) < 2216 BTRFS_MIXED_BACKREF_REV) 2217 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2218 else 2219 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2220 2221 return (ret < 0) ? 0 : 1; 2222 } 2223 2224 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2225 { 2226 unsigned long prev; 2227 unsigned long bit; 2228 2229 prev = xchg(&fs_info->pending_changes, 0); 2230 if (!prev) 2231 return; 2232 2233 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2234 if (prev & bit) 2235 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2236 prev &= ~bit; 2237 2238 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2239 if (prev & bit) 2240 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2241 prev &= ~bit; 2242 2243 bit = 1 << BTRFS_PENDING_COMMIT; 2244 if (prev & bit) 2245 btrfs_debug(fs_info, "pending commit done"); 2246 prev &= ~bit; 2247 2248 if (prev) 2249 btrfs_warn(fs_info, 2250 "unknown pending changes left 0x%lx, ignoring", prev); 2251 } 2252