xref: /openbmc/linux/fs/btrfs/transaction.c (revision 7174109c6548c4db85a383b8ae9d01469cddd110)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 					 struct btrfs_fs_info *fs_info)
113 {
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		atomic_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 		return -EROFS;
229 	}
230 
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	cur_trans->state = TRANS_STATE_RUNNING;
236 	/*
237 	 * One for this trans handle, one so it will live on until we
238 	 * commit the transaction.
239 	 */
240 	atomic_set(&cur_trans->use_count, 2);
241 	cur_trans->have_free_bgs = 0;
242 	cur_trans->start_time = get_seconds();
243 	cur_trans->dirty_bg_run = 0;
244 
245 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
246 
247 	cur_trans->delayed_refs.href_root = RB_ROOT;
248 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
249 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
250 
251 	/*
252 	 * although the tree mod log is per file system and not per transaction,
253 	 * the log must never go across transaction boundaries.
254 	 */
255 	smp_mb();
256 	if (!list_empty(&fs_info->tree_mod_seq_list))
257 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
258 			"creating a fresh transaction\n");
259 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
260 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
261 			"creating a fresh transaction\n");
262 	atomic64_set(&fs_info->tree_mod_seq, 0);
263 
264 	spin_lock_init(&cur_trans->delayed_refs.lock);
265 
266 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
267 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
268 	INIT_LIST_HEAD(&cur_trans->switch_commits);
269 	INIT_LIST_HEAD(&cur_trans->pending_ordered);
270 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 	INIT_LIST_HEAD(&cur_trans->io_bgs);
272 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 	mutex_init(&cur_trans->cache_write_mutex);
274 	cur_trans->num_dirty_bgs = 0;
275 	spin_lock_init(&cur_trans->dirty_bgs_lock);
276 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 	spin_lock_init(&cur_trans->deleted_bgs_lock);
278 	spin_lock_init(&cur_trans->dropped_roots_lock);
279 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
280 	extent_io_tree_init(&cur_trans->dirty_pages,
281 			     fs_info->btree_inode->i_mapping);
282 	fs_info->generation++;
283 	cur_trans->transid = fs_info->generation;
284 	fs_info->running_transaction = cur_trans;
285 	cur_trans->aborted = 0;
286 	spin_unlock(&fs_info->trans_lock);
287 
288 	return 0;
289 }
290 
291 /*
292  * this does all the record keeping required to make sure that a reference
293  * counted root is properly recorded in a given transaction.  This is required
294  * to make sure the old root from before we joined the transaction is deleted
295  * when the transaction commits
296  */
297 static int record_root_in_trans(struct btrfs_trans_handle *trans,
298 			       struct btrfs_root *root)
299 {
300 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
301 	    root->last_trans < trans->transid) {
302 		WARN_ON(root == root->fs_info->extent_root);
303 		WARN_ON(root->commit_root != root->node);
304 
305 		/*
306 		 * see below for IN_TRANS_SETUP usage rules
307 		 * we have the reloc mutex held now, so there
308 		 * is only one writer in this function
309 		 */
310 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
311 
312 		/* make sure readers find IN_TRANS_SETUP before
313 		 * they find our root->last_trans update
314 		 */
315 		smp_wmb();
316 
317 		spin_lock(&root->fs_info->fs_roots_radix_lock);
318 		if (root->last_trans == trans->transid) {
319 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
320 			return 0;
321 		}
322 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
323 			   (unsigned long)root->root_key.objectid,
324 			   BTRFS_ROOT_TRANS_TAG);
325 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
326 		root->last_trans = trans->transid;
327 
328 		/* this is pretty tricky.  We don't want to
329 		 * take the relocation lock in btrfs_record_root_in_trans
330 		 * unless we're really doing the first setup for this root in
331 		 * this transaction.
332 		 *
333 		 * Normally we'd use root->last_trans as a flag to decide
334 		 * if we want to take the expensive mutex.
335 		 *
336 		 * But, we have to set root->last_trans before we
337 		 * init the relocation root, otherwise, we trip over warnings
338 		 * in ctree.c.  The solution used here is to flag ourselves
339 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
340 		 * fixing up the reloc trees and everyone must wait.
341 		 *
342 		 * When this is zero, they can trust root->last_trans and fly
343 		 * through btrfs_record_root_in_trans without having to take the
344 		 * lock.  smp_wmb() makes sure that all the writes above are
345 		 * done before we pop in the zero below
346 		 */
347 		btrfs_init_reloc_root(trans, root);
348 		smp_mb__before_atomic();
349 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
350 	}
351 	return 0;
352 }
353 
354 
355 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
356 			    struct btrfs_root *root)
357 {
358 	struct btrfs_transaction *cur_trans = trans->transaction;
359 
360 	/* Add ourselves to the transaction dropped list */
361 	spin_lock(&cur_trans->dropped_roots_lock);
362 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
363 	spin_unlock(&cur_trans->dropped_roots_lock);
364 
365 	/* Make sure we don't try to update the root at commit time */
366 	spin_lock(&root->fs_info->fs_roots_radix_lock);
367 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
368 			     (unsigned long)root->root_key.objectid,
369 			     BTRFS_ROOT_TRANS_TAG);
370 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
371 }
372 
373 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
374 			       struct btrfs_root *root)
375 {
376 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
377 		return 0;
378 
379 	/*
380 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
381 	 * and barriers
382 	 */
383 	smp_rmb();
384 	if (root->last_trans == trans->transid &&
385 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
386 		return 0;
387 
388 	mutex_lock(&root->fs_info->reloc_mutex);
389 	record_root_in_trans(trans, root);
390 	mutex_unlock(&root->fs_info->reloc_mutex);
391 
392 	return 0;
393 }
394 
395 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
396 {
397 	return (trans->state >= TRANS_STATE_BLOCKED &&
398 		trans->state < TRANS_STATE_UNBLOCKED &&
399 		!trans->aborted);
400 }
401 
402 /* wait for commit against the current transaction to become unblocked
403  * when this is done, it is safe to start a new transaction, but the current
404  * transaction might not be fully on disk.
405  */
406 static void wait_current_trans(struct btrfs_root *root)
407 {
408 	struct btrfs_transaction *cur_trans;
409 
410 	spin_lock(&root->fs_info->trans_lock);
411 	cur_trans = root->fs_info->running_transaction;
412 	if (cur_trans && is_transaction_blocked(cur_trans)) {
413 		atomic_inc(&cur_trans->use_count);
414 		spin_unlock(&root->fs_info->trans_lock);
415 
416 		wait_event(root->fs_info->transaction_wait,
417 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
418 			   cur_trans->aborted);
419 		btrfs_put_transaction(cur_trans);
420 	} else {
421 		spin_unlock(&root->fs_info->trans_lock);
422 	}
423 }
424 
425 static int may_wait_transaction(struct btrfs_root *root, int type)
426 {
427 	if (root->fs_info->log_root_recovering)
428 		return 0;
429 
430 	if (type == TRANS_USERSPACE)
431 		return 1;
432 
433 	if (type == TRANS_START &&
434 	    !atomic_read(&root->fs_info->open_ioctl_trans))
435 		return 1;
436 
437 	return 0;
438 }
439 
440 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
441 {
442 	if (!root->fs_info->reloc_ctl ||
443 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
444 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
445 	    root->reloc_root)
446 		return false;
447 
448 	return true;
449 }
450 
451 static struct btrfs_trans_handle *
452 start_transaction(struct btrfs_root *root, unsigned int num_items,
453 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
454 {
455 	struct btrfs_trans_handle *h;
456 	struct btrfs_transaction *cur_trans;
457 	u64 num_bytes = 0;
458 	u64 qgroup_reserved = 0;
459 	bool reloc_reserved = false;
460 	int ret;
461 
462 	/* Send isn't supposed to start transactions. */
463 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
464 
465 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
466 		return ERR_PTR(-EROFS);
467 
468 	if (current->journal_info) {
469 		WARN_ON(type & TRANS_EXTWRITERS);
470 		h = current->journal_info;
471 		h->use_count++;
472 		WARN_ON(h->use_count > 2);
473 		h->orig_rsv = h->block_rsv;
474 		h->block_rsv = NULL;
475 		goto got_it;
476 	}
477 
478 	/*
479 	 * Do the reservation before we join the transaction so we can do all
480 	 * the appropriate flushing if need be.
481 	 */
482 	if (num_items > 0 && root != root->fs_info->chunk_root) {
483 		qgroup_reserved = num_items * root->nodesize;
484 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
485 		if (ret)
486 			return ERR_PTR(ret);
487 
488 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
489 		/*
490 		 * Do the reservation for the relocation root creation
491 		 */
492 		if (need_reserve_reloc_root(root)) {
493 			num_bytes += root->nodesize;
494 			reloc_reserved = true;
495 		}
496 
497 		ret = btrfs_block_rsv_add(root,
498 					  &root->fs_info->trans_block_rsv,
499 					  num_bytes, flush);
500 		if (ret)
501 			goto reserve_fail;
502 	}
503 again:
504 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
505 	if (!h) {
506 		ret = -ENOMEM;
507 		goto alloc_fail;
508 	}
509 
510 	/*
511 	 * If we are JOIN_NOLOCK we're already committing a transaction and
512 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
513 	 * because we're already holding a ref.  We need this because we could
514 	 * have raced in and did an fsync() on a file which can kick a commit
515 	 * and then we deadlock with somebody doing a freeze.
516 	 *
517 	 * If we are ATTACH, it means we just want to catch the current
518 	 * transaction and commit it, so we needn't do sb_start_intwrite().
519 	 */
520 	if (type & __TRANS_FREEZABLE)
521 		sb_start_intwrite(root->fs_info->sb);
522 
523 	if (may_wait_transaction(root, type))
524 		wait_current_trans(root);
525 
526 	do {
527 		ret = join_transaction(root, type);
528 		if (ret == -EBUSY) {
529 			wait_current_trans(root);
530 			if (unlikely(type == TRANS_ATTACH))
531 				ret = -ENOENT;
532 		}
533 	} while (ret == -EBUSY);
534 
535 	if (ret < 0) {
536 		/* We must get the transaction if we are JOIN_NOLOCK. */
537 		BUG_ON(type == TRANS_JOIN_NOLOCK);
538 		goto join_fail;
539 	}
540 
541 	cur_trans = root->fs_info->running_transaction;
542 
543 	h->transid = cur_trans->transid;
544 	h->transaction = cur_trans;
545 	h->root = root;
546 	h->use_count = 1;
547 
548 	h->type = type;
549 	h->can_flush_pending_bgs = true;
550 	INIT_LIST_HEAD(&h->qgroup_ref_list);
551 	INIT_LIST_HEAD(&h->new_bgs);
552 	INIT_LIST_HEAD(&h->ordered);
553 
554 	smp_mb();
555 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
556 	    may_wait_transaction(root, type)) {
557 		current->journal_info = h;
558 		btrfs_commit_transaction(h, root);
559 		goto again;
560 	}
561 
562 	if (num_bytes) {
563 		trace_btrfs_space_reservation(root->fs_info, "transaction",
564 					      h->transid, num_bytes, 1);
565 		h->block_rsv = &root->fs_info->trans_block_rsv;
566 		h->bytes_reserved = num_bytes;
567 		h->reloc_reserved = reloc_reserved;
568 	}
569 
570 got_it:
571 	btrfs_record_root_in_trans(h, root);
572 
573 	if (!current->journal_info && type != TRANS_USERSPACE)
574 		current->journal_info = h;
575 	return h;
576 
577 join_fail:
578 	if (type & __TRANS_FREEZABLE)
579 		sb_end_intwrite(root->fs_info->sb);
580 	kmem_cache_free(btrfs_trans_handle_cachep, h);
581 alloc_fail:
582 	if (num_bytes)
583 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
584 					num_bytes);
585 reserve_fail:
586 	btrfs_qgroup_free_meta(root, qgroup_reserved);
587 	return ERR_PTR(ret);
588 }
589 
590 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
591 						   unsigned int num_items)
592 {
593 	return start_transaction(root, num_items, TRANS_START,
594 				 BTRFS_RESERVE_FLUSH_ALL);
595 }
596 
597 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
598 					struct btrfs_root *root,
599 					unsigned int num_items)
600 {
601 	return start_transaction(root, num_items, TRANS_START,
602 				 BTRFS_RESERVE_FLUSH_LIMIT);
603 }
604 
605 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
606 {
607 	return start_transaction(root, 0, TRANS_JOIN, 0);
608 }
609 
610 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
611 {
612 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
613 }
614 
615 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
616 {
617 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
618 }
619 
620 /*
621  * btrfs_attach_transaction() - catch the running transaction
622  *
623  * It is used when we want to commit the current the transaction, but
624  * don't want to start a new one.
625  *
626  * Note: If this function return -ENOENT, it just means there is no
627  * running transaction. But it is possible that the inactive transaction
628  * is still in the memory, not fully on disk. If you hope there is no
629  * inactive transaction in the fs when -ENOENT is returned, you should
630  * invoke
631  *     btrfs_attach_transaction_barrier()
632  */
633 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
634 {
635 	return start_transaction(root, 0, TRANS_ATTACH, 0);
636 }
637 
638 /*
639  * btrfs_attach_transaction_barrier() - catch the running transaction
640  *
641  * It is similar to the above function, the differentia is this one
642  * will wait for all the inactive transactions until they fully
643  * complete.
644  */
645 struct btrfs_trans_handle *
646 btrfs_attach_transaction_barrier(struct btrfs_root *root)
647 {
648 	struct btrfs_trans_handle *trans;
649 
650 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
651 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
652 		btrfs_wait_for_commit(root, 0);
653 
654 	return trans;
655 }
656 
657 /* wait for a transaction commit to be fully complete */
658 static noinline void wait_for_commit(struct btrfs_root *root,
659 				    struct btrfs_transaction *commit)
660 {
661 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
662 }
663 
664 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
665 {
666 	struct btrfs_transaction *cur_trans = NULL, *t;
667 	int ret = 0;
668 
669 	if (transid) {
670 		if (transid <= root->fs_info->last_trans_committed)
671 			goto out;
672 
673 		/* find specified transaction */
674 		spin_lock(&root->fs_info->trans_lock);
675 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
676 			if (t->transid == transid) {
677 				cur_trans = t;
678 				atomic_inc(&cur_trans->use_count);
679 				ret = 0;
680 				break;
681 			}
682 			if (t->transid > transid) {
683 				ret = 0;
684 				break;
685 			}
686 		}
687 		spin_unlock(&root->fs_info->trans_lock);
688 
689 		/*
690 		 * The specified transaction doesn't exist, or we
691 		 * raced with btrfs_commit_transaction
692 		 */
693 		if (!cur_trans) {
694 			if (transid > root->fs_info->last_trans_committed)
695 				ret = -EINVAL;
696 			goto out;
697 		}
698 	} else {
699 		/* find newest transaction that is committing | committed */
700 		spin_lock(&root->fs_info->trans_lock);
701 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
702 					    list) {
703 			if (t->state >= TRANS_STATE_COMMIT_START) {
704 				if (t->state == TRANS_STATE_COMPLETED)
705 					break;
706 				cur_trans = t;
707 				atomic_inc(&cur_trans->use_count);
708 				break;
709 			}
710 		}
711 		spin_unlock(&root->fs_info->trans_lock);
712 		if (!cur_trans)
713 			goto out;  /* nothing committing|committed */
714 	}
715 
716 	wait_for_commit(root, cur_trans);
717 	btrfs_put_transaction(cur_trans);
718 out:
719 	return ret;
720 }
721 
722 void btrfs_throttle(struct btrfs_root *root)
723 {
724 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
725 		wait_current_trans(root);
726 }
727 
728 static int should_end_transaction(struct btrfs_trans_handle *trans,
729 				  struct btrfs_root *root)
730 {
731 	if (root->fs_info->global_block_rsv.space_info->full &&
732 	    btrfs_check_space_for_delayed_refs(trans, root))
733 		return 1;
734 
735 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
736 }
737 
738 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
739 				 struct btrfs_root *root)
740 {
741 	struct btrfs_transaction *cur_trans = trans->transaction;
742 	int updates;
743 	int err;
744 
745 	smp_mb();
746 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
747 	    cur_trans->delayed_refs.flushing)
748 		return 1;
749 
750 	updates = trans->delayed_ref_updates;
751 	trans->delayed_ref_updates = 0;
752 	if (updates) {
753 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
754 		if (err) /* Error code will also eval true */
755 			return err;
756 	}
757 
758 	return should_end_transaction(trans, root);
759 }
760 
761 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
762 			  struct btrfs_root *root, int throttle)
763 {
764 	struct btrfs_transaction *cur_trans = trans->transaction;
765 	struct btrfs_fs_info *info = root->fs_info;
766 	unsigned long cur = trans->delayed_ref_updates;
767 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
768 	int err = 0;
769 	int must_run_delayed_refs = 0;
770 
771 	if (trans->use_count > 1) {
772 		trans->use_count--;
773 		trans->block_rsv = trans->orig_rsv;
774 		return 0;
775 	}
776 
777 	btrfs_trans_release_metadata(trans, root);
778 	trans->block_rsv = NULL;
779 
780 	if (!list_empty(&trans->new_bgs))
781 		btrfs_create_pending_block_groups(trans, root);
782 
783 	if (!list_empty(&trans->ordered)) {
784 		spin_lock(&info->trans_lock);
785 		list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
786 		spin_unlock(&info->trans_lock);
787 	}
788 
789 	trans->delayed_ref_updates = 0;
790 	if (!trans->sync) {
791 		must_run_delayed_refs =
792 			btrfs_should_throttle_delayed_refs(trans, root);
793 		cur = max_t(unsigned long, cur, 32);
794 
795 		/*
796 		 * don't make the caller wait if they are from a NOLOCK
797 		 * or ATTACH transaction, it will deadlock with commit
798 		 */
799 		if (must_run_delayed_refs == 1 &&
800 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
801 			must_run_delayed_refs = 2;
802 	}
803 
804 	btrfs_trans_release_metadata(trans, root);
805 	trans->block_rsv = NULL;
806 
807 	if (!list_empty(&trans->new_bgs))
808 		btrfs_create_pending_block_groups(trans, root);
809 
810 	btrfs_trans_release_chunk_metadata(trans);
811 
812 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
813 	    should_end_transaction(trans, root) &&
814 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
815 		spin_lock(&info->trans_lock);
816 		if (cur_trans->state == TRANS_STATE_RUNNING)
817 			cur_trans->state = TRANS_STATE_BLOCKED;
818 		spin_unlock(&info->trans_lock);
819 	}
820 
821 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
822 		if (throttle)
823 			return btrfs_commit_transaction(trans, root);
824 		else
825 			wake_up_process(info->transaction_kthread);
826 	}
827 
828 	if (trans->type & __TRANS_FREEZABLE)
829 		sb_end_intwrite(root->fs_info->sb);
830 
831 	WARN_ON(cur_trans != info->running_transaction);
832 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
833 	atomic_dec(&cur_trans->num_writers);
834 	extwriter_counter_dec(cur_trans, trans->type);
835 
836 	/*
837 	 * Make sure counter is updated before we wake up waiters.
838 	 */
839 	smp_mb();
840 	if (waitqueue_active(&cur_trans->writer_wait))
841 		wake_up(&cur_trans->writer_wait);
842 	btrfs_put_transaction(cur_trans);
843 
844 	if (current->journal_info == trans)
845 		current->journal_info = NULL;
846 
847 	if (throttle)
848 		btrfs_run_delayed_iputs(root);
849 
850 	if (trans->aborted ||
851 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
852 		wake_up_process(info->transaction_kthread);
853 		err = -EIO;
854 	}
855 	assert_qgroups_uptodate(trans);
856 
857 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
858 	if (must_run_delayed_refs) {
859 		btrfs_async_run_delayed_refs(root, cur,
860 					     must_run_delayed_refs == 1);
861 	}
862 	return err;
863 }
864 
865 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
866 			  struct btrfs_root *root)
867 {
868 	return __btrfs_end_transaction(trans, root, 0);
869 }
870 
871 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
872 				   struct btrfs_root *root)
873 {
874 	return __btrfs_end_transaction(trans, root, 1);
875 }
876 
877 /*
878  * when btree blocks are allocated, they have some corresponding bits set for
879  * them in one of two extent_io trees.  This is used to make sure all of
880  * those extents are sent to disk but does not wait on them
881  */
882 int btrfs_write_marked_extents(struct btrfs_root *root,
883 			       struct extent_io_tree *dirty_pages, int mark)
884 {
885 	int err = 0;
886 	int werr = 0;
887 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
888 	struct extent_state *cached_state = NULL;
889 	u64 start = 0;
890 	u64 end;
891 
892 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
893 				      mark, &cached_state)) {
894 		bool wait_writeback = false;
895 
896 		err = convert_extent_bit(dirty_pages, start, end,
897 					 EXTENT_NEED_WAIT,
898 					 mark, &cached_state, GFP_NOFS);
899 		/*
900 		 * convert_extent_bit can return -ENOMEM, which is most of the
901 		 * time a temporary error. So when it happens, ignore the error
902 		 * and wait for writeback of this range to finish - because we
903 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
904 		 * to btrfs_wait_marked_extents() would not know that writeback
905 		 * for this range started and therefore wouldn't wait for it to
906 		 * finish - we don't want to commit a superblock that points to
907 		 * btree nodes/leafs for which writeback hasn't finished yet
908 		 * (and without errors).
909 		 * We cleanup any entries left in the io tree when committing
910 		 * the transaction (through clear_btree_io_tree()).
911 		 */
912 		if (err == -ENOMEM) {
913 			err = 0;
914 			wait_writeback = true;
915 		}
916 		if (!err)
917 			err = filemap_fdatawrite_range(mapping, start, end);
918 		if (err)
919 			werr = err;
920 		else if (wait_writeback)
921 			werr = filemap_fdatawait_range(mapping, start, end);
922 		free_extent_state(cached_state);
923 		cached_state = NULL;
924 		cond_resched();
925 		start = end + 1;
926 	}
927 	return werr;
928 }
929 
930 /*
931  * when btree blocks are allocated, they have some corresponding bits set for
932  * them in one of two extent_io trees.  This is used to make sure all of
933  * those extents are on disk for transaction or log commit.  We wait
934  * on all the pages and clear them from the dirty pages state tree
935  */
936 int btrfs_wait_marked_extents(struct btrfs_root *root,
937 			      struct extent_io_tree *dirty_pages, int mark)
938 {
939 	int err = 0;
940 	int werr = 0;
941 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
942 	struct extent_state *cached_state = NULL;
943 	u64 start = 0;
944 	u64 end;
945 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
946 	bool errors = false;
947 
948 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
949 				      EXTENT_NEED_WAIT, &cached_state)) {
950 		/*
951 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
952 		 * When committing the transaction, we'll remove any entries
953 		 * left in the io tree. For a log commit, we don't remove them
954 		 * after committing the log because the tree can be accessed
955 		 * concurrently - we do it only at transaction commit time when
956 		 * it's safe to do it (through clear_btree_io_tree()).
957 		 */
958 		err = clear_extent_bit(dirty_pages, start, end,
959 				       EXTENT_NEED_WAIT,
960 				       0, 0, &cached_state, GFP_NOFS);
961 		if (err == -ENOMEM)
962 			err = 0;
963 		if (!err)
964 			err = filemap_fdatawait_range(mapping, start, end);
965 		if (err)
966 			werr = err;
967 		free_extent_state(cached_state);
968 		cached_state = NULL;
969 		cond_resched();
970 		start = end + 1;
971 	}
972 	if (err)
973 		werr = err;
974 
975 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
976 		if ((mark & EXTENT_DIRTY) &&
977 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
978 				       &btree_ino->runtime_flags))
979 			errors = true;
980 
981 		if ((mark & EXTENT_NEW) &&
982 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
983 				       &btree_ino->runtime_flags))
984 			errors = true;
985 	} else {
986 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
987 				       &btree_ino->runtime_flags))
988 			errors = true;
989 	}
990 
991 	if (errors && !werr)
992 		werr = -EIO;
993 
994 	return werr;
995 }
996 
997 /*
998  * when btree blocks are allocated, they have some corresponding bits set for
999  * them in one of two extent_io trees.  This is used to make sure all of
1000  * those extents are on disk for transaction or log commit
1001  */
1002 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1003 				struct extent_io_tree *dirty_pages, int mark)
1004 {
1005 	int ret;
1006 	int ret2;
1007 	struct blk_plug plug;
1008 
1009 	blk_start_plug(&plug);
1010 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1011 	blk_finish_plug(&plug);
1012 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1013 
1014 	if (ret)
1015 		return ret;
1016 	if (ret2)
1017 		return ret2;
1018 	return 0;
1019 }
1020 
1021 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1022 				     struct btrfs_root *root)
1023 {
1024 	int ret;
1025 
1026 	ret = btrfs_write_and_wait_marked_extents(root,
1027 					   &trans->transaction->dirty_pages,
1028 					   EXTENT_DIRTY);
1029 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1030 
1031 	return ret;
1032 }
1033 
1034 /*
1035  * this is used to update the root pointer in the tree of tree roots.
1036  *
1037  * But, in the case of the extent allocation tree, updating the root
1038  * pointer may allocate blocks which may change the root of the extent
1039  * allocation tree.
1040  *
1041  * So, this loops and repeats and makes sure the cowonly root didn't
1042  * change while the root pointer was being updated in the metadata.
1043  */
1044 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1045 			       struct btrfs_root *root)
1046 {
1047 	int ret;
1048 	u64 old_root_bytenr;
1049 	u64 old_root_used;
1050 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1051 
1052 	old_root_used = btrfs_root_used(&root->root_item);
1053 
1054 	while (1) {
1055 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1056 		if (old_root_bytenr == root->node->start &&
1057 		    old_root_used == btrfs_root_used(&root->root_item))
1058 			break;
1059 
1060 		btrfs_set_root_node(&root->root_item, root->node);
1061 		ret = btrfs_update_root(trans, tree_root,
1062 					&root->root_key,
1063 					&root->root_item);
1064 		if (ret)
1065 			return ret;
1066 
1067 		old_root_used = btrfs_root_used(&root->root_item);
1068 	}
1069 
1070 	return 0;
1071 }
1072 
1073 /*
1074  * update all the cowonly tree roots on disk
1075  *
1076  * The error handling in this function may not be obvious. Any of the
1077  * failures will cause the file system to go offline. We still need
1078  * to clean up the delayed refs.
1079  */
1080 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1081 					 struct btrfs_root *root)
1082 {
1083 	struct btrfs_fs_info *fs_info = root->fs_info;
1084 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1085 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1086 	struct list_head *next;
1087 	struct extent_buffer *eb;
1088 	int ret;
1089 
1090 	eb = btrfs_lock_root_node(fs_info->tree_root);
1091 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1092 			      0, &eb);
1093 	btrfs_tree_unlock(eb);
1094 	free_extent_buffer(eb);
1095 
1096 	if (ret)
1097 		return ret;
1098 
1099 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1100 	if (ret)
1101 		return ret;
1102 
1103 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1104 	if (ret)
1105 		return ret;
1106 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1107 	if (ret)
1108 		return ret;
1109 	ret = btrfs_run_qgroups(trans, root->fs_info);
1110 	if (ret)
1111 		return ret;
1112 
1113 	ret = btrfs_setup_space_cache(trans, root);
1114 	if (ret)
1115 		return ret;
1116 
1117 	/* run_qgroups might have added some more refs */
1118 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1119 	if (ret)
1120 		return ret;
1121 again:
1122 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1123 		next = fs_info->dirty_cowonly_roots.next;
1124 		list_del_init(next);
1125 		root = list_entry(next, struct btrfs_root, dirty_list);
1126 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1127 
1128 		if (root != fs_info->extent_root)
1129 			list_add_tail(&root->dirty_list,
1130 				      &trans->transaction->switch_commits);
1131 		ret = update_cowonly_root(trans, root);
1132 		if (ret)
1133 			return ret;
1134 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1135 		if (ret)
1136 			return ret;
1137 	}
1138 
1139 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1140 		ret = btrfs_write_dirty_block_groups(trans, root);
1141 		if (ret)
1142 			return ret;
1143 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1144 		if (ret)
1145 			return ret;
1146 	}
1147 
1148 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1149 		goto again;
1150 
1151 	list_add_tail(&fs_info->extent_root->dirty_list,
1152 		      &trans->transaction->switch_commits);
1153 	btrfs_after_dev_replace_commit(fs_info);
1154 
1155 	return 0;
1156 }
1157 
1158 /*
1159  * dead roots are old snapshots that need to be deleted.  This allocates
1160  * a dirty root struct and adds it into the list of dead roots that need to
1161  * be deleted
1162  */
1163 void btrfs_add_dead_root(struct btrfs_root *root)
1164 {
1165 	spin_lock(&root->fs_info->trans_lock);
1166 	if (list_empty(&root->root_list))
1167 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1168 	spin_unlock(&root->fs_info->trans_lock);
1169 }
1170 
1171 /*
1172  * update all the cowonly tree roots on disk
1173  */
1174 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1175 				    struct btrfs_root *root)
1176 {
1177 	struct btrfs_root *gang[8];
1178 	struct btrfs_fs_info *fs_info = root->fs_info;
1179 	int i;
1180 	int ret;
1181 	int err = 0;
1182 
1183 	spin_lock(&fs_info->fs_roots_radix_lock);
1184 	while (1) {
1185 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1186 						 (void **)gang, 0,
1187 						 ARRAY_SIZE(gang),
1188 						 BTRFS_ROOT_TRANS_TAG);
1189 		if (ret == 0)
1190 			break;
1191 		for (i = 0; i < ret; i++) {
1192 			root = gang[i];
1193 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1194 					(unsigned long)root->root_key.objectid,
1195 					BTRFS_ROOT_TRANS_TAG);
1196 			spin_unlock(&fs_info->fs_roots_radix_lock);
1197 
1198 			btrfs_free_log(trans, root);
1199 			btrfs_update_reloc_root(trans, root);
1200 			btrfs_orphan_commit_root(trans, root);
1201 
1202 			btrfs_save_ino_cache(root, trans);
1203 
1204 			/* see comments in should_cow_block() */
1205 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1206 			smp_mb__after_atomic();
1207 
1208 			if (root->commit_root != root->node) {
1209 				list_add_tail(&root->dirty_list,
1210 					&trans->transaction->switch_commits);
1211 				btrfs_set_root_node(&root->root_item,
1212 						    root->node);
1213 			}
1214 
1215 			err = btrfs_update_root(trans, fs_info->tree_root,
1216 						&root->root_key,
1217 						&root->root_item);
1218 			spin_lock(&fs_info->fs_roots_radix_lock);
1219 			if (err)
1220 				break;
1221 			btrfs_qgroup_free_meta_all(root);
1222 		}
1223 	}
1224 	spin_unlock(&fs_info->fs_roots_radix_lock);
1225 	return err;
1226 }
1227 
1228 /*
1229  * defrag a given btree.
1230  * Every leaf in the btree is read and defragged.
1231  */
1232 int btrfs_defrag_root(struct btrfs_root *root)
1233 {
1234 	struct btrfs_fs_info *info = root->fs_info;
1235 	struct btrfs_trans_handle *trans;
1236 	int ret;
1237 
1238 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1239 		return 0;
1240 
1241 	while (1) {
1242 		trans = btrfs_start_transaction(root, 0);
1243 		if (IS_ERR(trans))
1244 			return PTR_ERR(trans);
1245 
1246 		ret = btrfs_defrag_leaves(trans, root);
1247 
1248 		btrfs_end_transaction(trans, root);
1249 		btrfs_btree_balance_dirty(info->tree_root);
1250 		cond_resched();
1251 
1252 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1253 			break;
1254 
1255 		if (btrfs_defrag_cancelled(root->fs_info)) {
1256 			pr_debug("BTRFS: defrag_root cancelled\n");
1257 			ret = -EAGAIN;
1258 			break;
1259 		}
1260 	}
1261 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1262 	return ret;
1263 }
1264 
1265 /*
1266  * new snapshots need to be created at a very specific time in the
1267  * transaction commit.  This does the actual creation.
1268  *
1269  * Note:
1270  * If the error which may affect the commitment of the current transaction
1271  * happens, we should return the error number. If the error which just affect
1272  * the creation of the pending snapshots, just return 0.
1273  */
1274 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1275 				   struct btrfs_fs_info *fs_info,
1276 				   struct btrfs_pending_snapshot *pending)
1277 {
1278 	struct btrfs_key key;
1279 	struct btrfs_root_item *new_root_item;
1280 	struct btrfs_root *tree_root = fs_info->tree_root;
1281 	struct btrfs_root *root = pending->root;
1282 	struct btrfs_root *parent_root;
1283 	struct btrfs_block_rsv *rsv;
1284 	struct inode *parent_inode;
1285 	struct btrfs_path *path;
1286 	struct btrfs_dir_item *dir_item;
1287 	struct dentry *dentry;
1288 	struct extent_buffer *tmp;
1289 	struct extent_buffer *old;
1290 	struct timespec cur_time = CURRENT_TIME;
1291 	int ret = 0;
1292 	u64 to_reserve = 0;
1293 	u64 index = 0;
1294 	u64 objectid;
1295 	u64 root_flags;
1296 	uuid_le new_uuid;
1297 
1298 	path = btrfs_alloc_path();
1299 	if (!path) {
1300 		pending->error = -ENOMEM;
1301 		return 0;
1302 	}
1303 
1304 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1305 	if (!new_root_item) {
1306 		pending->error = -ENOMEM;
1307 		goto root_item_alloc_fail;
1308 	}
1309 
1310 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1311 	if (pending->error)
1312 		goto no_free_objectid;
1313 
1314 	/*
1315 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1316 	 * accounted by later btrfs_qgroup_inherit().
1317 	 */
1318 	btrfs_set_skip_qgroup(trans, objectid);
1319 
1320 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1321 
1322 	if (to_reserve > 0) {
1323 		pending->error = btrfs_block_rsv_add(root,
1324 						     &pending->block_rsv,
1325 						     to_reserve,
1326 						     BTRFS_RESERVE_NO_FLUSH);
1327 		if (pending->error)
1328 			goto clear_skip_qgroup;
1329 	}
1330 
1331 	key.objectid = objectid;
1332 	key.offset = (u64)-1;
1333 	key.type = BTRFS_ROOT_ITEM_KEY;
1334 
1335 	rsv = trans->block_rsv;
1336 	trans->block_rsv = &pending->block_rsv;
1337 	trans->bytes_reserved = trans->block_rsv->reserved;
1338 
1339 	dentry = pending->dentry;
1340 	parent_inode = pending->dir;
1341 	parent_root = BTRFS_I(parent_inode)->root;
1342 	record_root_in_trans(trans, parent_root);
1343 
1344 	/*
1345 	 * insert the directory item
1346 	 */
1347 	ret = btrfs_set_inode_index(parent_inode, &index);
1348 	BUG_ON(ret); /* -ENOMEM */
1349 
1350 	/* check if there is a file/dir which has the same name. */
1351 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1352 					 btrfs_ino(parent_inode),
1353 					 dentry->d_name.name,
1354 					 dentry->d_name.len, 0);
1355 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1356 		pending->error = -EEXIST;
1357 		goto dir_item_existed;
1358 	} else if (IS_ERR(dir_item)) {
1359 		ret = PTR_ERR(dir_item);
1360 		btrfs_abort_transaction(trans, root, ret);
1361 		goto fail;
1362 	}
1363 	btrfs_release_path(path);
1364 
1365 	/*
1366 	 * pull in the delayed directory update
1367 	 * and the delayed inode item
1368 	 * otherwise we corrupt the FS during
1369 	 * snapshot
1370 	 */
1371 	ret = btrfs_run_delayed_items(trans, root);
1372 	if (ret) {	/* Transaction aborted */
1373 		btrfs_abort_transaction(trans, root, ret);
1374 		goto fail;
1375 	}
1376 
1377 	record_root_in_trans(trans, root);
1378 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1379 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1380 	btrfs_check_and_init_root_item(new_root_item);
1381 
1382 	root_flags = btrfs_root_flags(new_root_item);
1383 	if (pending->readonly)
1384 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1385 	else
1386 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1387 	btrfs_set_root_flags(new_root_item, root_flags);
1388 
1389 	btrfs_set_root_generation_v2(new_root_item,
1390 			trans->transid);
1391 	uuid_le_gen(&new_uuid);
1392 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1393 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1394 			BTRFS_UUID_SIZE);
1395 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1396 		memset(new_root_item->received_uuid, 0,
1397 		       sizeof(new_root_item->received_uuid));
1398 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1399 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1400 		btrfs_set_root_stransid(new_root_item, 0);
1401 		btrfs_set_root_rtransid(new_root_item, 0);
1402 	}
1403 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1404 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1405 	btrfs_set_root_otransid(new_root_item, trans->transid);
1406 
1407 	old = btrfs_lock_root_node(root);
1408 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1409 	if (ret) {
1410 		btrfs_tree_unlock(old);
1411 		free_extent_buffer(old);
1412 		btrfs_abort_transaction(trans, root, ret);
1413 		goto fail;
1414 	}
1415 
1416 	btrfs_set_lock_blocking(old);
1417 
1418 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1419 	/* clean up in any case */
1420 	btrfs_tree_unlock(old);
1421 	free_extent_buffer(old);
1422 	if (ret) {
1423 		btrfs_abort_transaction(trans, root, ret);
1424 		goto fail;
1425 	}
1426 	/* see comments in should_cow_block() */
1427 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1428 	smp_wmb();
1429 
1430 	btrfs_set_root_node(new_root_item, tmp);
1431 	/* record when the snapshot was created in key.offset */
1432 	key.offset = trans->transid;
1433 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1434 	btrfs_tree_unlock(tmp);
1435 	free_extent_buffer(tmp);
1436 	if (ret) {
1437 		btrfs_abort_transaction(trans, root, ret);
1438 		goto fail;
1439 	}
1440 
1441 	/*
1442 	 * insert root back/forward references
1443 	 */
1444 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1445 				 parent_root->root_key.objectid,
1446 				 btrfs_ino(parent_inode), index,
1447 				 dentry->d_name.name, dentry->d_name.len);
1448 	if (ret) {
1449 		btrfs_abort_transaction(trans, root, ret);
1450 		goto fail;
1451 	}
1452 
1453 	key.offset = (u64)-1;
1454 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1455 	if (IS_ERR(pending->snap)) {
1456 		ret = PTR_ERR(pending->snap);
1457 		btrfs_abort_transaction(trans, root, ret);
1458 		goto fail;
1459 	}
1460 
1461 	ret = btrfs_reloc_post_snapshot(trans, pending);
1462 	if (ret) {
1463 		btrfs_abort_transaction(trans, root, ret);
1464 		goto fail;
1465 	}
1466 
1467 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1468 	if (ret) {
1469 		btrfs_abort_transaction(trans, root, ret);
1470 		goto fail;
1471 	}
1472 
1473 	ret = btrfs_insert_dir_item(trans, parent_root,
1474 				    dentry->d_name.name, dentry->d_name.len,
1475 				    parent_inode, &key,
1476 				    BTRFS_FT_DIR, index);
1477 	/* We have check then name at the beginning, so it is impossible. */
1478 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1479 	if (ret) {
1480 		btrfs_abort_transaction(trans, root, ret);
1481 		goto fail;
1482 	}
1483 
1484 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1485 					 dentry->d_name.len * 2);
1486 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1487 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1488 	if (ret) {
1489 		btrfs_abort_transaction(trans, root, ret);
1490 		goto fail;
1491 	}
1492 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1493 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1494 	if (ret) {
1495 		btrfs_abort_transaction(trans, root, ret);
1496 		goto fail;
1497 	}
1498 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1499 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1500 					  new_root_item->received_uuid,
1501 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1502 					  objectid);
1503 		if (ret && ret != -EEXIST) {
1504 			btrfs_abort_transaction(trans, root, ret);
1505 			goto fail;
1506 		}
1507 	}
1508 
1509 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1510 	if (ret) {
1511 		btrfs_abort_transaction(trans, root, ret);
1512 		goto fail;
1513 	}
1514 
1515 	/*
1516 	 * account qgroup counters before qgroup_inherit()
1517 	 */
1518 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1519 	if (ret)
1520 		goto fail;
1521 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1522 	if (ret)
1523 		goto fail;
1524 	ret = btrfs_qgroup_inherit(trans, fs_info,
1525 				   root->root_key.objectid,
1526 				   objectid, pending->inherit);
1527 	if (ret) {
1528 		btrfs_abort_transaction(trans, root, ret);
1529 		goto fail;
1530 	}
1531 
1532 fail:
1533 	pending->error = ret;
1534 dir_item_existed:
1535 	trans->block_rsv = rsv;
1536 	trans->bytes_reserved = 0;
1537 clear_skip_qgroup:
1538 	btrfs_clear_skip_qgroup(trans);
1539 no_free_objectid:
1540 	kfree(new_root_item);
1541 root_item_alloc_fail:
1542 	btrfs_free_path(path);
1543 	return ret;
1544 }
1545 
1546 /*
1547  * create all the snapshots we've scheduled for creation
1548  */
1549 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1550 					     struct btrfs_fs_info *fs_info)
1551 {
1552 	struct btrfs_pending_snapshot *pending, *next;
1553 	struct list_head *head = &trans->transaction->pending_snapshots;
1554 	int ret = 0;
1555 
1556 	list_for_each_entry_safe(pending, next, head, list) {
1557 		list_del(&pending->list);
1558 		ret = create_pending_snapshot(trans, fs_info, pending);
1559 		if (ret)
1560 			break;
1561 	}
1562 	return ret;
1563 }
1564 
1565 static void update_super_roots(struct btrfs_root *root)
1566 {
1567 	struct btrfs_root_item *root_item;
1568 	struct btrfs_super_block *super;
1569 
1570 	super = root->fs_info->super_copy;
1571 
1572 	root_item = &root->fs_info->chunk_root->root_item;
1573 	super->chunk_root = root_item->bytenr;
1574 	super->chunk_root_generation = root_item->generation;
1575 	super->chunk_root_level = root_item->level;
1576 
1577 	root_item = &root->fs_info->tree_root->root_item;
1578 	super->root = root_item->bytenr;
1579 	super->generation = root_item->generation;
1580 	super->root_level = root_item->level;
1581 	if (btrfs_test_opt(root, SPACE_CACHE))
1582 		super->cache_generation = root_item->generation;
1583 	if (root->fs_info->update_uuid_tree_gen)
1584 		super->uuid_tree_generation = root_item->generation;
1585 }
1586 
1587 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1588 {
1589 	struct btrfs_transaction *trans;
1590 	int ret = 0;
1591 
1592 	spin_lock(&info->trans_lock);
1593 	trans = info->running_transaction;
1594 	if (trans)
1595 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1596 	spin_unlock(&info->trans_lock);
1597 	return ret;
1598 }
1599 
1600 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1601 {
1602 	struct btrfs_transaction *trans;
1603 	int ret = 0;
1604 
1605 	spin_lock(&info->trans_lock);
1606 	trans = info->running_transaction;
1607 	if (trans)
1608 		ret = is_transaction_blocked(trans);
1609 	spin_unlock(&info->trans_lock);
1610 	return ret;
1611 }
1612 
1613 /*
1614  * wait for the current transaction commit to start and block subsequent
1615  * transaction joins
1616  */
1617 static void wait_current_trans_commit_start(struct btrfs_root *root,
1618 					    struct btrfs_transaction *trans)
1619 {
1620 	wait_event(root->fs_info->transaction_blocked_wait,
1621 		   trans->state >= TRANS_STATE_COMMIT_START ||
1622 		   trans->aborted);
1623 }
1624 
1625 /*
1626  * wait for the current transaction to start and then become unblocked.
1627  * caller holds ref.
1628  */
1629 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1630 					 struct btrfs_transaction *trans)
1631 {
1632 	wait_event(root->fs_info->transaction_wait,
1633 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1634 		   trans->aborted);
1635 }
1636 
1637 /*
1638  * commit transactions asynchronously. once btrfs_commit_transaction_async
1639  * returns, any subsequent transaction will not be allowed to join.
1640  */
1641 struct btrfs_async_commit {
1642 	struct btrfs_trans_handle *newtrans;
1643 	struct btrfs_root *root;
1644 	struct work_struct work;
1645 };
1646 
1647 static void do_async_commit(struct work_struct *work)
1648 {
1649 	struct btrfs_async_commit *ac =
1650 		container_of(work, struct btrfs_async_commit, work);
1651 
1652 	/*
1653 	 * We've got freeze protection passed with the transaction.
1654 	 * Tell lockdep about it.
1655 	 */
1656 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1657 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1658 
1659 	current->journal_info = ac->newtrans;
1660 
1661 	btrfs_commit_transaction(ac->newtrans, ac->root);
1662 	kfree(ac);
1663 }
1664 
1665 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1666 				   struct btrfs_root *root,
1667 				   int wait_for_unblock)
1668 {
1669 	struct btrfs_async_commit *ac;
1670 	struct btrfs_transaction *cur_trans;
1671 
1672 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1673 	if (!ac)
1674 		return -ENOMEM;
1675 
1676 	INIT_WORK(&ac->work, do_async_commit);
1677 	ac->root = root;
1678 	ac->newtrans = btrfs_join_transaction(root);
1679 	if (IS_ERR(ac->newtrans)) {
1680 		int err = PTR_ERR(ac->newtrans);
1681 		kfree(ac);
1682 		return err;
1683 	}
1684 
1685 	/* take transaction reference */
1686 	cur_trans = trans->transaction;
1687 	atomic_inc(&cur_trans->use_count);
1688 
1689 	btrfs_end_transaction(trans, root);
1690 
1691 	/*
1692 	 * Tell lockdep we've released the freeze rwsem, since the
1693 	 * async commit thread will be the one to unlock it.
1694 	 */
1695 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1696 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1697 
1698 	schedule_work(&ac->work);
1699 
1700 	/* wait for transaction to start and unblock */
1701 	if (wait_for_unblock)
1702 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1703 	else
1704 		wait_current_trans_commit_start(root, cur_trans);
1705 
1706 	if (current->journal_info == trans)
1707 		current->journal_info = NULL;
1708 
1709 	btrfs_put_transaction(cur_trans);
1710 	return 0;
1711 }
1712 
1713 
1714 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1715 				struct btrfs_root *root, int err)
1716 {
1717 	struct btrfs_transaction *cur_trans = trans->transaction;
1718 	DEFINE_WAIT(wait);
1719 
1720 	WARN_ON(trans->use_count > 1);
1721 
1722 	btrfs_abort_transaction(trans, root, err);
1723 
1724 	spin_lock(&root->fs_info->trans_lock);
1725 
1726 	/*
1727 	 * If the transaction is removed from the list, it means this
1728 	 * transaction has been committed successfully, so it is impossible
1729 	 * to call the cleanup function.
1730 	 */
1731 	BUG_ON(list_empty(&cur_trans->list));
1732 
1733 	list_del_init(&cur_trans->list);
1734 	if (cur_trans == root->fs_info->running_transaction) {
1735 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1736 		spin_unlock(&root->fs_info->trans_lock);
1737 		wait_event(cur_trans->writer_wait,
1738 			   atomic_read(&cur_trans->num_writers) == 1);
1739 
1740 		spin_lock(&root->fs_info->trans_lock);
1741 	}
1742 	spin_unlock(&root->fs_info->trans_lock);
1743 
1744 	btrfs_cleanup_one_transaction(trans->transaction, root);
1745 
1746 	spin_lock(&root->fs_info->trans_lock);
1747 	if (cur_trans == root->fs_info->running_transaction)
1748 		root->fs_info->running_transaction = NULL;
1749 	spin_unlock(&root->fs_info->trans_lock);
1750 
1751 	if (trans->type & __TRANS_FREEZABLE)
1752 		sb_end_intwrite(root->fs_info->sb);
1753 	btrfs_put_transaction(cur_trans);
1754 	btrfs_put_transaction(cur_trans);
1755 
1756 	trace_btrfs_transaction_commit(root);
1757 
1758 	if (current->journal_info == trans)
1759 		current->journal_info = NULL;
1760 	btrfs_scrub_cancel(root->fs_info);
1761 
1762 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1763 }
1764 
1765 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1766 {
1767 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1768 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1769 	return 0;
1770 }
1771 
1772 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1773 {
1774 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1775 		btrfs_wait_ordered_roots(fs_info, -1);
1776 }
1777 
1778 static inline void
1779 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans,
1780 			   struct btrfs_fs_info *fs_info)
1781 {
1782 	struct btrfs_ordered_extent *ordered;
1783 
1784 	spin_lock(&fs_info->trans_lock);
1785 	while (!list_empty(&cur_trans->pending_ordered)) {
1786 		ordered = list_first_entry(&cur_trans->pending_ordered,
1787 					   struct btrfs_ordered_extent,
1788 					   trans_list);
1789 		list_del_init(&ordered->trans_list);
1790 		spin_unlock(&fs_info->trans_lock);
1791 
1792 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_COMPLETE,
1793 						   &ordered->flags));
1794 		btrfs_put_ordered_extent(ordered);
1795 		spin_lock(&fs_info->trans_lock);
1796 	}
1797 	spin_unlock(&fs_info->trans_lock);
1798 }
1799 
1800 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1801 			     struct btrfs_root *root)
1802 {
1803 	struct btrfs_transaction *cur_trans = trans->transaction;
1804 	struct btrfs_transaction *prev_trans = NULL;
1805 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1806 	int ret;
1807 
1808 	/* Stop the commit early if ->aborted is set */
1809 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1810 		ret = cur_trans->aborted;
1811 		btrfs_end_transaction(trans, root);
1812 		return ret;
1813 	}
1814 
1815 	/* make a pass through all the delayed refs we have so far
1816 	 * any runnings procs may add more while we are here
1817 	 */
1818 	ret = btrfs_run_delayed_refs(trans, root, 0);
1819 	if (ret) {
1820 		btrfs_end_transaction(trans, root);
1821 		return ret;
1822 	}
1823 
1824 	btrfs_trans_release_metadata(trans, root);
1825 	trans->block_rsv = NULL;
1826 
1827 	cur_trans = trans->transaction;
1828 
1829 	/*
1830 	 * set the flushing flag so procs in this transaction have to
1831 	 * start sending their work down.
1832 	 */
1833 	cur_trans->delayed_refs.flushing = 1;
1834 	smp_wmb();
1835 
1836 	if (!list_empty(&trans->new_bgs))
1837 		btrfs_create_pending_block_groups(trans, root);
1838 
1839 	ret = btrfs_run_delayed_refs(trans, root, 0);
1840 	if (ret) {
1841 		btrfs_end_transaction(trans, root);
1842 		return ret;
1843 	}
1844 
1845 	if (!cur_trans->dirty_bg_run) {
1846 		int run_it = 0;
1847 
1848 		/* this mutex is also taken before trying to set
1849 		 * block groups readonly.  We need to make sure
1850 		 * that nobody has set a block group readonly
1851 		 * after a extents from that block group have been
1852 		 * allocated for cache files.  btrfs_set_block_group_ro
1853 		 * will wait for the transaction to commit if it
1854 		 * finds dirty_bg_run = 1
1855 		 *
1856 		 * The dirty_bg_run flag is also used to make sure only
1857 		 * one process starts all the block group IO.  It wouldn't
1858 		 * hurt to have more than one go through, but there's no
1859 		 * real advantage to it either.
1860 		 */
1861 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1862 		if (!cur_trans->dirty_bg_run) {
1863 			run_it = 1;
1864 			cur_trans->dirty_bg_run = 1;
1865 		}
1866 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1867 
1868 		if (run_it)
1869 			ret = btrfs_start_dirty_block_groups(trans, root);
1870 	}
1871 	if (ret) {
1872 		btrfs_end_transaction(trans, root);
1873 		return ret;
1874 	}
1875 
1876 	spin_lock(&root->fs_info->trans_lock);
1877 	list_splice_init(&trans->ordered, &cur_trans->pending_ordered);
1878 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1879 		spin_unlock(&root->fs_info->trans_lock);
1880 		atomic_inc(&cur_trans->use_count);
1881 		ret = btrfs_end_transaction(trans, root);
1882 
1883 		wait_for_commit(root, cur_trans);
1884 
1885 		if (unlikely(cur_trans->aborted))
1886 			ret = cur_trans->aborted;
1887 
1888 		btrfs_put_transaction(cur_trans);
1889 
1890 		return ret;
1891 	}
1892 
1893 	cur_trans->state = TRANS_STATE_COMMIT_START;
1894 	wake_up(&root->fs_info->transaction_blocked_wait);
1895 
1896 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1897 		prev_trans = list_entry(cur_trans->list.prev,
1898 					struct btrfs_transaction, list);
1899 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1900 			atomic_inc(&prev_trans->use_count);
1901 			spin_unlock(&root->fs_info->trans_lock);
1902 
1903 			wait_for_commit(root, prev_trans);
1904 			ret = prev_trans->aborted;
1905 
1906 			btrfs_put_transaction(prev_trans);
1907 			if (ret)
1908 				goto cleanup_transaction;
1909 		} else {
1910 			spin_unlock(&root->fs_info->trans_lock);
1911 		}
1912 	} else {
1913 		spin_unlock(&root->fs_info->trans_lock);
1914 	}
1915 
1916 	extwriter_counter_dec(cur_trans, trans->type);
1917 
1918 	ret = btrfs_start_delalloc_flush(root->fs_info);
1919 	if (ret)
1920 		goto cleanup_transaction;
1921 
1922 	ret = btrfs_run_delayed_items(trans, root);
1923 	if (ret)
1924 		goto cleanup_transaction;
1925 
1926 	wait_event(cur_trans->writer_wait,
1927 		   extwriter_counter_read(cur_trans) == 0);
1928 
1929 	/* some pending stuffs might be added after the previous flush. */
1930 	ret = btrfs_run_delayed_items(trans, root);
1931 	if (ret)
1932 		goto cleanup_transaction;
1933 
1934 	btrfs_wait_delalloc_flush(root->fs_info);
1935 
1936 	btrfs_wait_pending_ordered(cur_trans, root->fs_info);
1937 
1938 	btrfs_scrub_pause(root);
1939 	/*
1940 	 * Ok now we need to make sure to block out any other joins while we
1941 	 * commit the transaction.  We could have started a join before setting
1942 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1943 	 */
1944 	spin_lock(&root->fs_info->trans_lock);
1945 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1946 	spin_unlock(&root->fs_info->trans_lock);
1947 	wait_event(cur_trans->writer_wait,
1948 		   atomic_read(&cur_trans->num_writers) == 1);
1949 
1950 	/* ->aborted might be set after the previous check, so check it */
1951 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1952 		ret = cur_trans->aborted;
1953 		goto scrub_continue;
1954 	}
1955 	/*
1956 	 * the reloc mutex makes sure that we stop
1957 	 * the balancing code from coming in and moving
1958 	 * extents around in the middle of the commit
1959 	 */
1960 	mutex_lock(&root->fs_info->reloc_mutex);
1961 
1962 	/*
1963 	 * We needn't worry about the delayed items because we will
1964 	 * deal with them in create_pending_snapshot(), which is the
1965 	 * core function of the snapshot creation.
1966 	 */
1967 	ret = create_pending_snapshots(trans, root->fs_info);
1968 	if (ret) {
1969 		mutex_unlock(&root->fs_info->reloc_mutex);
1970 		goto scrub_continue;
1971 	}
1972 
1973 	/*
1974 	 * We insert the dir indexes of the snapshots and update the inode
1975 	 * of the snapshots' parents after the snapshot creation, so there
1976 	 * are some delayed items which are not dealt with. Now deal with
1977 	 * them.
1978 	 *
1979 	 * We needn't worry that this operation will corrupt the snapshots,
1980 	 * because all the tree which are snapshoted will be forced to COW
1981 	 * the nodes and leaves.
1982 	 */
1983 	ret = btrfs_run_delayed_items(trans, root);
1984 	if (ret) {
1985 		mutex_unlock(&root->fs_info->reloc_mutex);
1986 		goto scrub_continue;
1987 	}
1988 
1989 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1990 	if (ret) {
1991 		mutex_unlock(&root->fs_info->reloc_mutex);
1992 		goto scrub_continue;
1993 	}
1994 
1995 	/* Reocrd old roots for later qgroup accounting */
1996 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1997 	if (ret) {
1998 		mutex_unlock(&root->fs_info->reloc_mutex);
1999 		goto scrub_continue;
2000 	}
2001 
2002 	/*
2003 	 * make sure none of the code above managed to slip in a
2004 	 * delayed item
2005 	 */
2006 	btrfs_assert_delayed_root_empty(root);
2007 
2008 	WARN_ON(cur_trans != trans->transaction);
2009 
2010 	/* btrfs_commit_tree_roots is responsible for getting the
2011 	 * various roots consistent with each other.  Every pointer
2012 	 * in the tree of tree roots has to point to the most up to date
2013 	 * root for every subvolume and other tree.  So, we have to keep
2014 	 * the tree logging code from jumping in and changing any
2015 	 * of the trees.
2016 	 *
2017 	 * At this point in the commit, there can't be any tree-log
2018 	 * writers, but a little lower down we drop the trans mutex
2019 	 * and let new people in.  By holding the tree_log_mutex
2020 	 * from now until after the super is written, we avoid races
2021 	 * with the tree-log code.
2022 	 */
2023 	mutex_lock(&root->fs_info->tree_log_mutex);
2024 
2025 	ret = commit_fs_roots(trans, root);
2026 	if (ret) {
2027 		mutex_unlock(&root->fs_info->tree_log_mutex);
2028 		mutex_unlock(&root->fs_info->reloc_mutex);
2029 		goto scrub_continue;
2030 	}
2031 
2032 	/*
2033 	 * Since the transaction is done, we can apply the pending changes
2034 	 * before the next transaction.
2035 	 */
2036 	btrfs_apply_pending_changes(root->fs_info);
2037 
2038 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2039 	 * safe to free the root of tree log roots
2040 	 */
2041 	btrfs_free_log_root_tree(trans, root->fs_info);
2042 
2043 	/*
2044 	 * Since fs roots are all committed, we can get a quite accurate
2045 	 * new_roots. So let's do quota accounting.
2046 	 */
2047 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2048 	if (ret < 0) {
2049 		mutex_unlock(&root->fs_info->tree_log_mutex);
2050 		mutex_unlock(&root->fs_info->reloc_mutex);
2051 		goto scrub_continue;
2052 	}
2053 
2054 	ret = commit_cowonly_roots(trans, root);
2055 	if (ret) {
2056 		mutex_unlock(&root->fs_info->tree_log_mutex);
2057 		mutex_unlock(&root->fs_info->reloc_mutex);
2058 		goto scrub_continue;
2059 	}
2060 
2061 	/*
2062 	 * The tasks which save the space cache and inode cache may also
2063 	 * update ->aborted, check it.
2064 	 */
2065 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2066 		ret = cur_trans->aborted;
2067 		mutex_unlock(&root->fs_info->tree_log_mutex);
2068 		mutex_unlock(&root->fs_info->reloc_mutex);
2069 		goto scrub_continue;
2070 	}
2071 
2072 	btrfs_prepare_extent_commit(trans, root);
2073 
2074 	cur_trans = root->fs_info->running_transaction;
2075 
2076 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2077 			    root->fs_info->tree_root->node);
2078 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2079 		      &cur_trans->switch_commits);
2080 
2081 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2082 			    root->fs_info->chunk_root->node);
2083 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2084 		      &cur_trans->switch_commits);
2085 
2086 	switch_commit_roots(cur_trans, root->fs_info);
2087 
2088 	assert_qgroups_uptodate(trans);
2089 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2090 	ASSERT(list_empty(&cur_trans->io_bgs));
2091 	update_super_roots(root);
2092 
2093 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2094 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2095 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2096 	       sizeof(*root->fs_info->super_copy));
2097 
2098 	btrfs_update_commit_device_size(root->fs_info);
2099 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2100 
2101 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2102 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2103 
2104 	btrfs_trans_release_chunk_metadata(trans);
2105 
2106 	spin_lock(&root->fs_info->trans_lock);
2107 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2108 	root->fs_info->running_transaction = NULL;
2109 	spin_unlock(&root->fs_info->trans_lock);
2110 	mutex_unlock(&root->fs_info->reloc_mutex);
2111 
2112 	wake_up(&root->fs_info->transaction_wait);
2113 
2114 	ret = btrfs_write_and_wait_transaction(trans, root);
2115 	if (ret) {
2116 		btrfs_std_error(root->fs_info, ret,
2117 			    "Error while writing out transaction");
2118 		mutex_unlock(&root->fs_info->tree_log_mutex);
2119 		goto scrub_continue;
2120 	}
2121 
2122 	ret = write_ctree_super(trans, root, 0);
2123 	if (ret) {
2124 		mutex_unlock(&root->fs_info->tree_log_mutex);
2125 		goto scrub_continue;
2126 	}
2127 
2128 	/*
2129 	 * the super is written, we can safely allow the tree-loggers
2130 	 * to go about their business
2131 	 */
2132 	mutex_unlock(&root->fs_info->tree_log_mutex);
2133 
2134 	btrfs_finish_extent_commit(trans, root);
2135 
2136 	if (cur_trans->have_free_bgs)
2137 		btrfs_clear_space_info_full(root->fs_info);
2138 
2139 	root->fs_info->last_trans_committed = cur_trans->transid;
2140 	/*
2141 	 * We needn't acquire the lock here because there is no other task
2142 	 * which can change it.
2143 	 */
2144 	cur_trans->state = TRANS_STATE_COMPLETED;
2145 	wake_up(&cur_trans->commit_wait);
2146 
2147 	spin_lock(&root->fs_info->trans_lock);
2148 	list_del_init(&cur_trans->list);
2149 	spin_unlock(&root->fs_info->trans_lock);
2150 
2151 	btrfs_put_transaction(cur_trans);
2152 	btrfs_put_transaction(cur_trans);
2153 
2154 	if (trans->type & __TRANS_FREEZABLE)
2155 		sb_end_intwrite(root->fs_info->sb);
2156 
2157 	trace_btrfs_transaction_commit(root);
2158 
2159 	btrfs_scrub_continue(root);
2160 
2161 	if (current->journal_info == trans)
2162 		current->journal_info = NULL;
2163 
2164 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2165 
2166 	if (current != root->fs_info->transaction_kthread &&
2167 	    current != root->fs_info->cleaner_kthread)
2168 		btrfs_run_delayed_iputs(root);
2169 
2170 	return ret;
2171 
2172 scrub_continue:
2173 	btrfs_scrub_continue(root);
2174 cleanup_transaction:
2175 	btrfs_trans_release_metadata(trans, root);
2176 	btrfs_trans_release_chunk_metadata(trans);
2177 	trans->block_rsv = NULL;
2178 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2179 	if (current->journal_info == trans)
2180 		current->journal_info = NULL;
2181 	cleanup_transaction(trans, root, ret);
2182 
2183 	return ret;
2184 }
2185 
2186 /*
2187  * return < 0 if error
2188  * 0 if there are no more dead_roots at the time of call
2189  * 1 there are more to be processed, call me again
2190  *
2191  * The return value indicates there are certainly more snapshots to delete, but
2192  * if there comes a new one during processing, it may return 0. We don't mind,
2193  * because btrfs_commit_super will poke cleaner thread and it will process it a
2194  * few seconds later.
2195  */
2196 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2197 {
2198 	int ret;
2199 	struct btrfs_fs_info *fs_info = root->fs_info;
2200 
2201 	spin_lock(&fs_info->trans_lock);
2202 	if (list_empty(&fs_info->dead_roots)) {
2203 		spin_unlock(&fs_info->trans_lock);
2204 		return 0;
2205 	}
2206 	root = list_first_entry(&fs_info->dead_roots,
2207 			struct btrfs_root, root_list);
2208 	list_del_init(&root->root_list);
2209 	spin_unlock(&fs_info->trans_lock);
2210 
2211 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2212 
2213 	btrfs_kill_all_delayed_nodes(root);
2214 
2215 	if (btrfs_header_backref_rev(root->node) <
2216 			BTRFS_MIXED_BACKREF_REV)
2217 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2218 	else
2219 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2220 
2221 	return (ret < 0) ? 0 : 1;
2222 }
2223 
2224 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2225 {
2226 	unsigned long prev;
2227 	unsigned long bit;
2228 
2229 	prev = xchg(&fs_info->pending_changes, 0);
2230 	if (!prev)
2231 		return;
2232 
2233 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2234 	if (prev & bit)
2235 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2236 	prev &= ~bit;
2237 
2238 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2239 	if (prev & bit)
2240 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2241 	prev &= ~bit;
2242 
2243 	bit = 1 << BTRFS_PENDING_COMMIT;
2244 	if (prev & bit)
2245 		btrfs_debug(fs_info, "pending commit done");
2246 	prev &= ~bit;
2247 
2248 	if (prev)
2249 		btrfs_warn(fs_info,
2250 			"unknown pending changes left 0x%lx, ignoring", prev);
2251 }
2252