xref: /openbmc/linux/fs/btrfs/transaction.c (revision 575a75d6fabf6e1217204deca79aea26d6670a12)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 					 struct btrfs_fs_info *fs_info)
113 {
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		atomic_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 		return -EROFS;
229 	}
230 
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	atomic_set(&cur_trans->use_count, 2);
242 	atomic_set(&cur_trans->pending_ordered, 0);
243 	cur_trans->flags = 0;
244 	cur_trans->start_time = get_seconds();
245 
246 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
247 
248 	cur_trans->delayed_refs.href_root = RB_ROOT;
249 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
250 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
251 
252 	/*
253 	 * although the tree mod log is per file system and not per transaction,
254 	 * the log must never go across transaction boundaries.
255 	 */
256 	smp_mb();
257 	if (!list_empty(&fs_info->tree_mod_seq_list))
258 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
259 			"creating a fresh transaction\n");
260 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
261 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
262 			"creating a fresh transaction\n");
263 	atomic64_set(&fs_info->tree_mod_seq, 0);
264 
265 	spin_lock_init(&cur_trans->delayed_refs.lock);
266 
267 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
268 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
269 	INIT_LIST_HEAD(&cur_trans->switch_commits);
270 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
271 	INIT_LIST_HEAD(&cur_trans->io_bgs);
272 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
273 	mutex_init(&cur_trans->cache_write_mutex);
274 	cur_trans->num_dirty_bgs = 0;
275 	spin_lock_init(&cur_trans->dirty_bgs_lock);
276 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
277 	spin_lock_init(&cur_trans->dropped_roots_lock);
278 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
279 	extent_io_tree_init(&cur_trans->dirty_pages,
280 			     fs_info->btree_inode->i_mapping);
281 	fs_info->generation++;
282 	cur_trans->transid = fs_info->generation;
283 	fs_info->running_transaction = cur_trans;
284 	cur_trans->aborted = 0;
285 	spin_unlock(&fs_info->trans_lock);
286 
287 	return 0;
288 }
289 
290 /*
291  * this does all the record keeping required to make sure that a reference
292  * counted root is properly recorded in a given transaction.  This is required
293  * to make sure the old root from before we joined the transaction is deleted
294  * when the transaction commits
295  */
296 static int record_root_in_trans(struct btrfs_trans_handle *trans,
297 			       struct btrfs_root *root)
298 {
299 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
300 	    root->last_trans < trans->transid) {
301 		WARN_ON(root == root->fs_info->extent_root);
302 		WARN_ON(root->commit_root != root->node);
303 
304 		/*
305 		 * see below for IN_TRANS_SETUP usage rules
306 		 * we have the reloc mutex held now, so there
307 		 * is only one writer in this function
308 		 */
309 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
310 
311 		/* make sure readers find IN_TRANS_SETUP before
312 		 * they find our root->last_trans update
313 		 */
314 		smp_wmb();
315 
316 		spin_lock(&root->fs_info->fs_roots_radix_lock);
317 		if (root->last_trans == trans->transid) {
318 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
319 			return 0;
320 		}
321 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
322 			   (unsigned long)root->root_key.objectid,
323 			   BTRFS_ROOT_TRANS_TAG);
324 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
325 		root->last_trans = trans->transid;
326 
327 		/* this is pretty tricky.  We don't want to
328 		 * take the relocation lock in btrfs_record_root_in_trans
329 		 * unless we're really doing the first setup for this root in
330 		 * this transaction.
331 		 *
332 		 * Normally we'd use root->last_trans as a flag to decide
333 		 * if we want to take the expensive mutex.
334 		 *
335 		 * But, we have to set root->last_trans before we
336 		 * init the relocation root, otherwise, we trip over warnings
337 		 * in ctree.c.  The solution used here is to flag ourselves
338 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
339 		 * fixing up the reloc trees and everyone must wait.
340 		 *
341 		 * When this is zero, they can trust root->last_trans and fly
342 		 * through btrfs_record_root_in_trans without having to take the
343 		 * lock.  smp_wmb() makes sure that all the writes above are
344 		 * done before we pop in the zero below
345 		 */
346 		btrfs_init_reloc_root(trans, root);
347 		smp_mb__before_atomic();
348 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
349 	}
350 	return 0;
351 }
352 
353 
354 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
355 			    struct btrfs_root *root)
356 {
357 	struct btrfs_transaction *cur_trans = trans->transaction;
358 
359 	/* Add ourselves to the transaction dropped list */
360 	spin_lock(&cur_trans->dropped_roots_lock);
361 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
362 	spin_unlock(&cur_trans->dropped_roots_lock);
363 
364 	/* Make sure we don't try to update the root at commit time */
365 	spin_lock(&root->fs_info->fs_roots_radix_lock);
366 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
367 			     (unsigned long)root->root_key.objectid,
368 			     BTRFS_ROOT_TRANS_TAG);
369 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
370 }
371 
372 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
373 			       struct btrfs_root *root)
374 {
375 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
376 		return 0;
377 
378 	/*
379 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
380 	 * and barriers
381 	 */
382 	smp_rmb();
383 	if (root->last_trans == trans->transid &&
384 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
385 		return 0;
386 
387 	mutex_lock(&root->fs_info->reloc_mutex);
388 	record_root_in_trans(trans, root);
389 	mutex_unlock(&root->fs_info->reloc_mutex);
390 
391 	return 0;
392 }
393 
394 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
395 {
396 	return (trans->state >= TRANS_STATE_BLOCKED &&
397 		trans->state < TRANS_STATE_UNBLOCKED &&
398 		!trans->aborted);
399 }
400 
401 /* wait for commit against the current transaction to become unblocked
402  * when this is done, it is safe to start a new transaction, but the current
403  * transaction might not be fully on disk.
404  */
405 static void wait_current_trans(struct btrfs_root *root)
406 {
407 	struct btrfs_transaction *cur_trans;
408 
409 	spin_lock(&root->fs_info->trans_lock);
410 	cur_trans = root->fs_info->running_transaction;
411 	if (cur_trans && is_transaction_blocked(cur_trans)) {
412 		atomic_inc(&cur_trans->use_count);
413 		spin_unlock(&root->fs_info->trans_lock);
414 
415 		wait_event(root->fs_info->transaction_wait,
416 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
417 			   cur_trans->aborted);
418 		btrfs_put_transaction(cur_trans);
419 	} else {
420 		spin_unlock(&root->fs_info->trans_lock);
421 	}
422 }
423 
424 static int may_wait_transaction(struct btrfs_root *root, int type)
425 {
426 	if (root->fs_info->log_root_recovering)
427 		return 0;
428 
429 	if (type == TRANS_USERSPACE)
430 		return 1;
431 
432 	if (type == TRANS_START &&
433 	    !atomic_read(&root->fs_info->open_ioctl_trans))
434 		return 1;
435 
436 	return 0;
437 }
438 
439 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
440 {
441 	if (!root->fs_info->reloc_ctl ||
442 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
443 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
444 	    root->reloc_root)
445 		return false;
446 
447 	return true;
448 }
449 
450 static struct btrfs_trans_handle *
451 start_transaction(struct btrfs_root *root, unsigned int num_items,
452 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
453 {
454 	struct btrfs_trans_handle *h;
455 	struct btrfs_transaction *cur_trans;
456 	u64 num_bytes = 0;
457 	u64 qgroup_reserved = 0;
458 	bool reloc_reserved = false;
459 	int ret;
460 
461 	/* Send isn't supposed to start transactions. */
462 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
463 
464 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
465 		return ERR_PTR(-EROFS);
466 
467 	if (current->journal_info) {
468 		WARN_ON(type & TRANS_EXTWRITERS);
469 		h = current->journal_info;
470 		h->use_count++;
471 		WARN_ON(h->use_count > 2);
472 		h->orig_rsv = h->block_rsv;
473 		h->block_rsv = NULL;
474 		goto got_it;
475 	}
476 
477 	/*
478 	 * Do the reservation before we join the transaction so we can do all
479 	 * the appropriate flushing if need be.
480 	 */
481 	if (num_items > 0 && root != root->fs_info->chunk_root) {
482 		qgroup_reserved = num_items * root->nodesize;
483 		ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
484 		if (ret)
485 			return ERR_PTR(ret);
486 
487 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
488 		/*
489 		 * Do the reservation for the relocation root creation
490 		 */
491 		if (need_reserve_reloc_root(root)) {
492 			num_bytes += root->nodesize;
493 			reloc_reserved = true;
494 		}
495 
496 		ret = btrfs_block_rsv_add(root,
497 					  &root->fs_info->trans_block_rsv,
498 					  num_bytes, flush);
499 		if (ret)
500 			goto reserve_fail;
501 	}
502 again:
503 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
504 	if (!h) {
505 		ret = -ENOMEM;
506 		goto alloc_fail;
507 	}
508 
509 	/*
510 	 * If we are JOIN_NOLOCK we're already committing a transaction and
511 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
512 	 * because we're already holding a ref.  We need this because we could
513 	 * have raced in and did an fsync() on a file which can kick a commit
514 	 * and then we deadlock with somebody doing a freeze.
515 	 *
516 	 * If we are ATTACH, it means we just want to catch the current
517 	 * transaction and commit it, so we needn't do sb_start_intwrite().
518 	 */
519 	if (type & __TRANS_FREEZABLE)
520 		sb_start_intwrite(root->fs_info->sb);
521 
522 	if (may_wait_transaction(root, type))
523 		wait_current_trans(root);
524 
525 	do {
526 		ret = join_transaction(root, type);
527 		if (ret == -EBUSY) {
528 			wait_current_trans(root);
529 			if (unlikely(type == TRANS_ATTACH))
530 				ret = -ENOENT;
531 		}
532 	} while (ret == -EBUSY);
533 
534 	if (ret < 0) {
535 		/* We must get the transaction if we are JOIN_NOLOCK. */
536 		BUG_ON(type == TRANS_JOIN_NOLOCK);
537 		goto join_fail;
538 	}
539 
540 	cur_trans = root->fs_info->running_transaction;
541 
542 	h->transid = cur_trans->transid;
543 	h->transaction = cur_trans;
544 	h->root = root;
545 	h->use_count = 1;
546 
547 	h->type = type;
548 	h->can_flush_pending_bgs = true;
549 	INIT_LIST_HEAD(&h->qgroup_ref_list);
550 	INIT_LIST_HEAD(&h->new_bgs);
551 
552 	smp_mb();
553 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
554 	    may_wait_transaction(root, type)) {
555 		current->journal_info = h;
556 		btrfs_commit_transaction(h, root);
557 		goto again;
558 	}
559 
560 	if (num_bytes) {
561 		trace_btrfs_space_reservation(root->fs_info, "transaction",
562 					      h->transid, num_bytes, 1);
563 		h->block_rsv = &root->fs_info->trans_block_rsv;
564 		h->bytes_reserved = num_bytes;
565 		h->reloc_reserved = reloc_reserved;
566 	}
567 
568 got_it:
569 	btrfs_record_root_in_trans(h, root);
570 
571 	if (!current->journal_info && type != TRANS_USERSPACE)
572 		current->journal_info = h;
573 	return h;
574 
575 join_fail:
576 	if (type & __TRANS_FREEZABLE)
577 		sb_end_intwrite(root->fs_info->sb);
578 	kmem_cache_free(btrfs_trans_handle_cachep, h);
579 alloc_fail:
580 	if (num_bytes)
581 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
582 					num_bytes);
583 reserve_fail:
584 	btrfs_qgroup_free_meta(root, qgroup_reserved);
585 	return ERR_PTR(ret);
586 }
587 
588 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
589 						   unsigned int num_items)
590 {
591 	return start_transaction(root, num_items, TRANS_START,
592 				 BTRFS_RESERVE_FLUSH_ALL);
593 }
594 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
595 					struct btrfs_root *root,
596 					unsigned int num_items,
597 					int min_factor)
598 {
599 	struct btrfs_trans_handle *trans;
600 	u64 num_bytes;
601 	int ret;
602 
603 	trans = btrfs_start_transaction(root, num_items);
604 	if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
605 		return trans;
606 
607 	trans = btrfs_start_transaction(root, 0);
608 	if (IS_ERR(trans))
609 		return trans;
610 
611 	num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
612 	ret = btrfs_cond_migrate_bytes(root->fs_info,
613 				       &root->fs_info->trans_block_rsv,
614 				       num_bytes,
615 				       min_factor);
616 	if (ret) {
617 		btrfs_end_transaction(trans, root);
618 		return ERR_PTR(ret);
619 	}
620 
621 	trans->block_rsv = &root->fs_info->trans_block_rsv;
622 	trans->bytes_reserved = num_bytes;
623 
624 	return trans;
625 }
626 
627 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
628 					struct btrfs_root *root,
629 					unsigned int num_items)
630 {
631 	return start_transaction(root, num_items, TRANS_START,
632 				 BTRFS_RESERVE_FLUSH_LIMIT);
633 }
634 
635 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
636 {
637 	return start_transaction(root, 0, TRANS_JOIN,
638 				 BTRFS_RESERVE_NO_FLUSH);
639 }
640 
641 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
642 {
643 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
644 				 BTRFS_RESERVE_NO_FLUSH);
645 }
646 
647 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
648 {
649 	return start_transaction(root, 0, TRANS_USERSPACE,
650 				 BTRFS_RESERVE_NO_FLUSH);
651 }
652 
653 /*
654  * btrfs_attach_transaction() - catch the running transaction
655  *
656  * It is used when we want to commit the current the transaction, but
657  * don't want to start a new one.
658  *
659  * Note: If this function return -ENOENT, it just means there is no
660  * running transaction. But it is possible that the inactive transaction
661  * is still in the memory, not fully on disk. If you hope there is no
662  * inactive transaction in the fs when -ENOENT is returned, you should
663  * invoke
664  *     btrfs_attach_transaction_barrier()
665  */
666 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
667 {
668 	return start_transaction(root, 0, TRANS_ATTACH,
669 				 BTRFS_RESERVE_NO_FLUSH);
670 }
671 
672 /*
673  * btrfs_attach_transaction_barrier() - catch the running transaction
674  *
675  * It is similar to the above function, the differentia is this one
676  * will wait for all the inactive transactions until they fully
677  * complete.
678  */
679 struct btrfs_trans_handle *
680 btrfs_attach_transaction_barrier(struct btrfs_root *root)
681 {
682 	struct btrfs_trans_handle *trans;
683 
684 	trans = start_transaction(root, 0, TRANS_ATTACH,
685 				  BTRFS_RESERVE_NO_FLUSH);
686 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
687 		btrfs_wait_for_commit(root, 0);
688 
689 	return trans;
690 }
691 
692 /* wait for a transaction commit to be fully complete */
693 static noinline void wait_for_commit(struct btrfs_root *root,
694 				    struct btrfs_transaction *commit)
695 {
696 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
697 }
698 
699 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
700 {
701 	struct btrfs_transaction *cur_trans = NULL, *t;
702 	int ret = 0;
703 
704 	if (transid) {
705 		if (transid <= root->fs_info->last_trans_committed)
706 			goto out;
707 
708 		/* find specified transaction */
709 		spin_lock(&root->fs_info->trans_lock);
710 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
711 			if (t->transid == transid) {
712 				cur_trans = t;
713 				atomic_inc(&cur_trans->use_count);
714 				ret = 0;
715 				break;
716 			}
717 			if (t->transid > transid) {
718 				ret = 0;
719 				break;
720 			}
721 		}
722 		spin_unlock(&root->fs_info->trans_lock);
723 
724 		/*
725 		 * The specified transaction doesn't exist, or we
726 		 * raced with btrfs_commit_transaction
727 		 */
728 		if (!cur_trans) {
729 			if (transid > root->fs_info->last_trans_committed)
730 				ret = -EINVAL;
731 			goto out;
732 		}
733 	} else {
734 		/* find newest transaction that is committing | committed */
735 		spin_lock(&root->fs_info->trans_lock);
736 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
737 					    list) {
738 			if (t->state >= TRANS_STATE_COMMIT_START) {
739 				if (t->state == TRANS_STATE_COMPLETED)
740 					break;
741 				cur_trans = t;
742 				atomic_inc(&cur_trans->use_count);
743 				break;
744 			}
745 		}
746 		spin_unlock(&root->fs_info->trans_lock);
747 		if (!cur_trans)
748 			goto out;  /* nothing committing|committed */
749 	}
750 
751 	wait_for_commit(root, cur_trans);
752 	btrfs_put_transaction(cur_trans);
753 out:
754 	return ret;
755 }
756 
757 void btrfs_throttle(struct btrfs_root *root)
758 {
759 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
760 		wait_current_trans(root);
761 }
762 
763 static int should_end_transaction(struct btrfs_trans_handle *trans,
764 				  struct btrfs_root *root)
765 {
766 	if (root->fs_info->global_block_rsv.space_info->full &&
767 	    btrfs_check_space_for_delayed_refs(trans, root))
768 		return 1;
769 
770 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
771 }
772 
773 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
774 				 struct btrfs_root *root)
775 {
776 	struct btrfs_transaction *cur_trans = trans->transaction;
777 	int updates;
778 	int err;
779 
780 	smp_mb();
781 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
782 	    cur_trans->delayed_refs.flushing)
783 		return 1;
784 
785 	updates = trans->delayed_ref_updates;
786 	trans->delayed_ref_updates = 0;
787 	if (updates) {
788 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
789 		if (err) /* Error code will also eval true */
790 			return err;
791 	}
792 
793 	return should_end_transaction(trans, root);
794 }
795 
796 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
797 			  struct btrfs_root *root, int throttle)
798 {
799 	struct btrfs_transaction *cur_trans = trans->transaction;
800 	struct btrfs_fs_info *info = root->fs_info;
801 	unsigned long cur = trans->delayed_ref_updates;
802 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
803 	int err = 0;
804 	int must_run_delayed_refs = 0;
805 
806 	if (trans->use_count > 1) {
807 		trans->use_count--;
808 		trans->block_rsv = trans->orig_rsv;
809 		return 0;
810 	}
811 
812 	btrfs_trans_release_metadata(trans, root);
813 	trans->block_rsv = NULL;
814 
815 	if (!list_empty(&trans->new_bgs))
816 		btrfs_create_pending_block_groups(trans, root);
817 
818 	trans->delayed_ref_updates = 0;
819 	if (!trans->sync) {
820 		must_run_delayed_refs =
821 			btrfs_should_throttle_delayed_refs(trans, root);
822 		cur = max_t(unsigned long, cur, 32);
823 
824 		/*
825 		 * don't make the caller wait if they are from a NOLOCK
826 		 * or ATTACH transaction, it will deadlock with commit
827 		 */
828 		if (must_run_delayed_refs == 1 &&
829 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
830 			must_run_delayed_refs = 2;
831 	}
832 
833 	btrfs_trans_release_metadata(trans, root);
834 	trans->block_rsv = NULL;
835 
836 	if (!list_empty(&trans->new_bgs))
837 		btrfs_create_pending_block_groups(trans, root);
838 
839 	btrfs_trans_release_chunk_metadata(trans);
840 
841 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
842 	    should_end_transaction(trans, root) &&
843 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
844 		spin_lock(&info->trans_lock);
845 		if (cur_trans->state == TRANS_STATE_RUNNING)
846 			cur_trans->state = TRANS_STATE_BLOCKED;
847 		spin_unlock(&info->trans_lock);
848 	}
849 
850 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
851 		if (throttle)
852 			return btrfs_commit_transaction(trans, root);
853 		else
854 			wake_up_process(info->transaction_kthread);
855 	}
856 
857 	if (trans->type & __TRANS_FREEZABLE)
858 		sb_end_intwrite(root->fs_info->sb);
859 
860 	WARN_ON(cur_trans != info->running_transaction);
861 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
862 	atomic_dec(&cur_trans->num_writers);
863 	extwriter_counter_dec(cur_trans, trans->type);
864 
865 	/*
866 	 * Make sure counter is updated before we wake up waiters.
867 	 */
868 	smp_mb();
869 	if (waitqueue_active(&cur_trans->writer_wait))
870 		wake_up(&cur_trans->writer_wait);
871 	btrfs_put_transaction(cur_trans);
872 
873 	if (current->journal_info == trans)
874 		current->journal_info = NULL;
875 
876 	if (throttle)
877 		btrfs_run_delayed_iputs(root);
878 
879 	if (trans->aborted ||
880 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
881 		wake_up_process(info->transaction_kthread);
882 		err = -EIO;
883 	}
884 	assert_qgroups_uptodate(trans);
885 
886 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
887 	if (must_run_delayed_refs) {
888 		btrfs_async_run_delayed_refs(root, cur,
889 					     must_run_delayed_refs == 1);
890 	}
891 	return err;
892 }
893 
894 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
895 			  struct btrfs_root *root)
896 {
897 	return __btrfs_end_transaction(trans, root, 0);
898 }
899 
900 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
901 				   struct btrfs_root *root)
902 {
903 	return __btrfs_end_transaction(trans, root, 1);
904 }
905 
906 /*
907  * when btree blocks are allocated, they have some corresponding bits set for
908  * them in one of two extent_io trees.  This is used to make sure all of
909  * those extents are sent to disk but does not wait on them
910  */
911 int btrfs_write_marked_extents(struct btrfs_root *root,
912 			       struct extent_io_tree *dirty_pages, int mark)
913 {
914 	int err = 0;
915 	int werr = 0;
916 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
917 	struct extent_state *cached_state = NULL;
918 	u64 start = 0;
919 	u64 end;
920 
921 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
922 				      mark, &cached_state)) {
923 		bool wait_writeback = false;
924 
925 		err = convert_extent_bit(dirty_pages, start, end,
926 					 EXTENT_NEED_WAIT,
927 					 mark, &cached_state, GFP_NOFS);
928 		/*
929 		 * convert_extent_bit can return -ENOMEM, which is most of the
930 		 * time a temporary error. So when it happens, ignore the error
931 		 * and wait for writeback of this range to finish - because we
932 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
933 		 * to btrfs_wait_marked_extents() would not know that writeback
934 		 * for this range started and therefore wouldn't wait for it to
935 		 * finish - we don't want to commit a superblock that points to
936 		 * btree nodes/leafs for which writeback hasn't finished yet
937 		 * (and without errors).
938 		 * We cleanup any entries left in the io tree when committing
939 		 * the transaction (through clear_btree_io_tree()).
940 		 */
941 		if (err == -ENOMEM) {
942 			err = 0;
943 			wait_writeback = true;
944 		}
945 		if (!err)
946 			err = filemap_fdatawrite_range(mapping, start, end);
947 		if (err)
948 			werr = err;
949 		else if (wait_writeback)
950 			werr = filemap_fdatawait_range(mapping, start, end);
951 		free_extent_state(cached_state);
952 		cached_state = NULL;
953 		cond_resched();
954 		start = end + 1;
955 	}
956 	return werr;
957 }
958 
959 /*
960  * when btree blocks are allocated, they have some corresponding bits set for
961  * them in one of two extent_io trees.  This is used to make sure all of
962  * those extents are on disk for transaction or log commit.  We wait
963  * on all the pages and clear them from the dirty pages state tree
964  */
965 int btrfs_wait_marked_extents(struct btrfs_root *root,
966 			      struct extent_io_tree *dirty_pages, int mark)
967 {
968 	int err = 0;
969 	int werr = 0;
970 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
971 	struct extent_state *cached_state = NULL;
972 	u64 start = 0;
973 	u64 end;
974 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
975 	bool errors = false;
976 
977 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
978 				      EXTENT_NEED_WAIT, &cached_state)) {
979 		/*
980 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
981 		 * When committing the transaction, we'll remove any entries
982 		 * left in the io tree. For a log commit, we don't remove them
983 		 * after committing the log because the tree can be accessed
984 		 * concurrently - we do it only at transaction commit time when
985 		 * it's safe to do it (through clear_btree_io_tree()).
986 		 */
987 		err = clear_extent_bit(dirty_pages, start, end,
988 				       EXTENT_NEED_WAIT,
989 				       0, 0, &cached_state, GFP_NOFS);
990 		if (err == -ENOMEM)
991 			err = 0;
992 		if (!err)
993 			err = filemap_fdatawait_range(mapping, start, end);
994 		if (err)
995 			werr = err;
996 		free_extent_state(cached_state);
997 		cached_state = NULL;
998 		cond_resched();
999 		start = end + 1;
1000 	}
1001 	if (err)
1002 		werr = err;
1003 
1004 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1005 		if ((mark & EXTENT_DIRTY) &&
1006 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1007 				       &btree_ino->runtime_flags))
1008 			errors = true;
1009 
1010 		if ((mark & EXTENT_NEW) &&
1011 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1012 				       &btree_ino->runtime_flags))
1013 			errors = true;
1014 	} else {
1015 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1016 				       &btree_ino->runtime_flags))
1017 			errors = true;
1018 	}
1019 
1020 	if (errors && !werr)
1021 		werr = -EIO;
1022 
1023 	return werr;
1024 }
1025 
1026 /*
1027  * when btree blocks are allocated, they have some corresponding bits set for
1028  * them in one of two extent_io trees.  This is used to make sure all of
1029  * those extents are on disk for transaction or log commit
1030  */
1031 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1032 				struct extent_io_tree *dirty_pages, int mark)
1033 {
1034 	int ret;
1035 	int ret2;
1036 	struct blk_plug plug;
1037 
1038 	blk_start_plug(&plug);
1039 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1040 	blk_finish_plug(&plug);
1041 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1042 
1043 	if (ret)
1044 		return ret;
1045 	if (ret2)
1046 		return ret2;
1047 	return 0;
1048 }
1049 
1050 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1051 				     struct btrfs_root *root)
1052 {
1053 	int ret;
1054 
1055 	ret = btrfs_write_and_wait_marked_extents(root,
1056 					   &trans->transaction->dirty_pages,
1057 					   EXTENT_DIRTY);
1058 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1059 
1060 	return ret;
1061 }
1062 
1063 /*
1064  * this is used to update the root pointer in the tree of tree roots.
1065  *
1066  * But, in the case of the extent allocation tree, updating the root
1067  * pointer may allocate blocks which may change the root of the extent
1068  * allocation tree.
1069  *
1070  * So, this loops and repeats and makes sure the cowonly root didn't
1071  * change while the root pointer was being updated in the metadata.
1072  */
1073 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1074 			       struct btrfs_root *root)
1075 {
1076 	int ret;
1077 	u64 old_root_bytenr;
1078 	u64 old_root_used;
1079 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1080 
1081 	old_root_used = btrfs_root_used(&root->root_item);
1082 
1083 	while (1) {
1084 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1085 		if (old_root_bytenr == root->node->start &&
1086 		    old_root_used == btrfs_root_used(&root->root_item))
1087 			break;
1088 
1089 		btrfs_set_root_node(&root->root_item, root->node);
1090 		ret = btrfs_update_root(trans, tree_root,
1091 					&root->root_key,
1092 					&root->root_item);
1093 		if (ret)
1094 			return ret;
1095 
1096 		old_root_used = btrfs_root_used(&root->root_item);
1097 	}
1098 
1099 	return 0;
1100 }
1101 
1102 /*
1103  * update all the cowonly tree roots on disk
1104  *
1105  * The error handling in this function may not be obvious. Any of the
1106  * failures will cause the file system to go offline. We still need
1107  * to clean up the delayed refs.
1108  */
1109 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1110 					 struct btrfs_root *root)
1111 {
1112 	struct btrfs_fs_info *fs_info = root->fs_info;
1113 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1114 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1115 	struct list_head *next;
1116 	struct extent_buffer *eb;
1117 	int ret;
1118 
1119 	eb = btrfs_lock_root_node(fs_info->tree_root);
1120 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1121 			      0, &eb);
1122 	btrfs_tree_unlock(eb);
1123 	free_extent_buffer(eb);
1124 
1125 	if (ret)
1126 		return ret;
1127 
1128 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1129 	if (ret)
1130 		return ret;
1131 
1132 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1133 	if (ret)
1134 		return ret;
1135 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1136 	if (ret)
1137 		return ret;
1138 	ret = btrfs_run_qgroups(trans, root->fs_info);
1139 	if (ret)
1140 		return ret;
1141 
1142 	ret = btrfs_setup_space_cache(trans, root);
1143 	if (ret)
1144 		return ret;
1145 
1146 	/* run_qgroups might have added some more refs */
1147 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1148 	if (ret)
1149 		return ret;
1150 again:
1151 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1152 		next = fs_info->dirty_cowonly_roots.next;
1153 		list_del_init(next);
1154 		root = list_entry(next, struct btrfs_root, dirty_list);
1155 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1156 
1157 		if (root != fs_info->extent_root)
1158 			list_add_tail(&root->dirty_list,
1159 				      &trans->transaction->switch_commits);
1160 		ret = update_cowonly_root(trans, root);
1161 		if (ret)
1162 			return ret;
1163 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1164 		if (ret)
1165 			return ret;
1166 	}
1167 
1168 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1169 		ret = btrfs_write_dirty_block_groups(trans, root);
1170 		if (ret)
1171 			return ret;
1172 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1173 		if (ret)
1174 			return ret;
1175 	}
1176 
1177 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1178 		goto again;
1179 
1180 	list_add_tail(&fs_info->extent_root->dirty_list,
1181 		      &trans->transaction->switch_commits);
1182 	btrfs_after_dev_replace_commit(fs_info);
1183 
1184 	return 0;
1185 }
1186 
1187 /*
1188  * dead roots are old snapshots that need to be deleted.  This allocates
1189  * a dirty root struct and adds it into the list of dead roots that need to
1190  * be deleted
1191  */
1192 void btrfs_add_dead_root(struct btrfs_root *root)
1193 {
1194 	spin_lock(&root->fs_info->trans_lock);
1195 	if (list_empty(&root->root_list))
1196 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1197 	spin_unlock(&root->fs_info->trans_lock);
1198 }
1199 
1200 /*
1201  * update all the cowonly tree roots on disk
1202  */
1203 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1204 				    struct btrfs_root *root)
1205 {
1206 	struct btrfs_root *gang[8];
1207 	struct btrfs_fs_info *fs_info = root->fs_info;
1208 	int i;
1209 	int ret;
1210 	int err = 0;
1211 
1212 	spin_lock(&fs_info->fs_roots_radix_lock);
1213 	while (1) {
1214 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1215 						 (void **)gang, 0,
1216 						 ARRAY_SIZE(gang),
1217 						 BTRFS_ROOT_TRANS_TAG);
1218 		if (ret == 0)
1219 			break;
1220 		for (i = 0; i < ret; i++) {
1221 			root = gang[i];
1222 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1223 					(unsigned long)root->root_key.objectid,
1224 					BTRFS_ROOT_TRANS_TAG);
1225 			spin_unlock(&fs_info->fs_roots_radix_lock);
1226 
1227 			btrfs_free_log(trans, root);
1228 			btrfs_update_reloc_root(trans, root);
1229 			btrfs_orphan_commit_root(trans, root);
1230 
1231 			btrfs_save_ino_cache(root, trans);
1232 
1233 			/* see comments in should_cow_block() */
1234 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1235 			smp_mb__after_atomic();
1236 
1237 			if (root->commit_root != root->node) {
1238 				list_add_tail(&root->dirty_list,
1239 					&trans->transaction->switch_commits);
1240 				btrfs_set_root_node(&root->root_item,
1241 						    root->node);
1242 			}
1243 
1244 			err = btrfs_update_root(trans, fs_info->tree_root,
1245 						&root->root_key,
1246 						&root->root_item);
1247 			spin_lock(&fs_info->fs_roots_radix_lock);
1248 			if (err)
1249 				break;
1250 			btrfs_qgroup_free_meta_all(root);
1251 		}
1252 	}
1253 	spin_unlock(&fs_info->fs_roots_radix_lock);
1254 	return err;
1255 }
1256 
1257 /*
1258  * defrag a given btree.
1259  * Every leaf in the btree is read and defragged.
1260  */
1261 int btrfs_defrag_root(struct btrfs_root *root)
1262 {
1263 	struct btrfs_fs_info *info = root->fs_info;
1264 	struct btrfs_trans_handle *trans;
1265 	int ret;
1266 
1267 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1268 		return 0;
1269 
1270 	while (1) {
1271 		trans = btrfs_start_transaction(root, 0);
1272 		if (IS_ERR(trans))
1273 			return PTR_ERR(trans);
1274 
1275 		ret = btrfs_defrag_leaves(trans, root);
1276 
1277 		btrfs_end_transaction(trans, root);
1278 		btrfs_btree_balance_dirty(info->tree_root);
1279 		cond_resched();
1280 
1281 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1282 			break;
1283 
1284 		if (btrfs_defrag_cancelled(root->fs_info)) {
1285 			pr_debug("BTRFS: defrag_root cancelled\n");
1286 			ret = -EAGAIN;
1287 			break;
1288 		}
1289 	}
1290 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1291 	return ret;
1292 }
1293 
1294 /*
1295  * new snapshots need to be created at a very specific time in the
1296  * transaction commit.  This does the actual creation.
1297  *
1298  * Note:
1299  * If the error which may affect the commitment of the current transaction
1300  * happens, we should return the error number. If the error which just affect
1301  * the creation of the pending snapshots, just return 0.
1302  */
1303 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1304 				   struct btrfs_fs_info *fs_info,
1305 				   struct btrfs_pending_snapshot *pending)
1306 {
1307 	struct btrfs_key key;
1308 	struct btrfs_root_item *new_root_item;
1309 	struct btrfs_root *tree_root = fs_info->tree_root;
1310 	struct btrfs_root *root = pending->root;
1311 	struct btrfs_root *parent_root;
1312 	struct btrfs_block_rsv *rsv;
1313 	struct inode *parent_inode;
1314 	struct btrfs_path *path;
1315 	struct btrfs_dir_item *dir_item;
1316 	struct dentry *dentry;
1317 	struct extent_buffer *tmp;
1318 	struct extent_buffer *old;
1319 	struct timespec cur_time = CURRENT_TIME;
1320 	int ret = 0;
1321 	u64 to_reserve = 0;
1322 	u64 index = 0;
1323 	u64 objectid;
1324 	u64 root_flags;
1325 	uuid_le new_uuid;
1326 
1327 	path = btrfs_alloc_path();
1328 	if (!path) {
1329 		pending->error = -ENOMEM;
1330 		return 0;
1331 	}
1332 
1333 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1334 	if (!new_root_item) {
1335 		pending->error = -ENOMEM;
1336 		goto root_item_alloc_fail;
1337 	}
1338 
1339 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1340 	if (pending->error)
1341 		goto no_free_objectid;
1342 
1343 	/*
1344 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1345 	 * accounted by later btrfs_qgroup_inherit().
1346 	 */
1347 	btrfs_set_skip_qgroup(trans, objectid);
1348 
1349 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1350 
1351 	if (to_reserve > 0) {
1352 		pending->error = btrfs_block_rsv_add(root,
1353 						     &pending->block_rsv,
1354 						     to_reserve,
1355 						     BTRFS_RESERVE_NO_FLUSH);
1356 		if (pending->error)
1357 			goto clear_skip_qgroup;
1358 	}
1359 
1360 	key.objectid = objectid;
1361 	key.offset = (u64)-1;
1362 	key.type = BTRFS_ROOT_ITEM_KEY;
1363 
1364 	rsv = trans->block_rsv;
1365 	trans->block_rsv = &pending->block_rsv;
1366 	trans->bytes_reserved = trans->block_rsv->reserved;
1367 
1368 	dentry = pending->dentry;
1369 	parent_inode = pending->dir;
1370 	parent_root = BTRFS_I(parent_inode)->root;
1371 	record_root_in_trans(trans, parent_root);
1372 
1373 	/*
1374 	 * insert the directory item
1375 	 */
1376 	ret = btrfs_set_inode_index(parent_inode, &index);
1377 	BUG_ON(ret); /* -ENOMEM */
1378 
1379 	/* check if there is a file/dir which has the same name. */
1380 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1381 					 btrfs_ino(parent_inode),
1382 					 dentry->d_name.name,
1383 					 dentry->d_name.len, 0);
1384 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1385 		pending->error = -EEXIST;
1386 		goto dir_item_existed;
1387 	} else if (IS_ERR(dir_item)) {
1388 		ret = PTR_ERR(dir_item);
1389 		btrfs_abort_transaction(trans, root, ret);
1390 		goto fail;
1391 	}
1392 	btrfs_release_path(path);
1393 
1394 	/*
1395 	 * pull in the delayed directory update
1396 	 * and the delayed inode item
1397 	 * otherwise we corrupt the FS during
1398 	 * snapshot
1399 	 */
1400 	ret = btrfs_run_delayed_items(trans, root);
1401 	if (ret) {	/* Transaction aborted */
1402 		btrfs_abort_transaction(trans, root, ret);
1403 		goto fail;
1404 	}
1405 
1406 	record_root_in_trans(trans, root);
1407 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1408 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1409 	btrfs_check_and_init_root_item(new_root_item);
1410 
1411 	root_flags = btrfs_root_flags(new_root_item);
1412 	if (pending->readonly)
1413 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1414 	else
1415 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1416 	btrfs_set_root_flags(new_root_item, root_flags);
1417 
1418 	btrfs_set_root_generation_v2(new_root_item,
1419 			trans->transid);
1420 	uuid_le_gen(&new_uuid);
1421 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1422 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1423 			BTRFS_UUID_SIZE);
1424 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1425 		memset(new_root_item->received_uuid, 0,
1426 		       sizeof(new_root_item->received_uuid));
1427 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1428 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1429 		btrfs_set_root_stransid(new_root_item, 0);
1430 		btrfs_set_root_rtransid(new_root_item, 0);
1431 	}
1432 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1433 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1434 	btrfs_set_root_otransid(new_root_item, trans->transid);
1435 
1436 	old = btrfs_lock_root_node(root);
1437 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1438 	if (ret) {
1439 		btrfs_tree_unlock(old);
1440 		free_extent_buffer(old);
1441 		btrfs_abort_transaction(trans, root, ret);
1442 		goto fail;
1443 	}
1444 
1445 	btrfs_set_lock_blocking(old);
1446 
1447 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1448 	/* clean up in any case */
1449 	btrfs_tree_unlock(old);
1450 	free_extent_buffer(old);
1451 	if (ret) {
1452 		btrfs_abort_transaction(trans, root, ret);
1453 		goto fail;
1454 	}
1455 	/* see comments in should_cow_block() */
1456 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1457 	smp_wmb();
1458 
1459 	btrfs_set_root_node(new_root_item, tmp);
1460 	/* record when the snapshot was created in key.offset */
1461 	key.offset = trans->transid;
1462 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1463 	btrfs_tree_unlock(tmp);
1464 	free_extent_buffer(tmp);
1465 	if (ret) {
1466 		btrfs_abort_transaction(trans, root, ret);
1467 		goto fail;
1468 	}
1469 
1470 	/*
1471 	 * insert root back/forward references
1472 	 */
1473 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1474 				 parent_root->root_key.objectid,
1475 				 btrfs_ino(parent_inode), index,
1476 				 dentry->d_name.name, dentry->d_name.len);
1477 	if (ret) {
1478 		btrfs_abort_transaction(trans, root, ret);
1479 		goto fail;
1480 	}
1481 
1482 	key.offset = (u64)-1;
1483 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1484 	if (IS_ERR(pending->snap)) {
1485 		ret = PTR_ERR(pending->snap);
1486 		btrfs_abort_transaction(trans, root, ret);
1487 		goto fail;
1488 	}
1489 
1490 	ret = btrfs_reloc_post_snapshot(trans, pending);
1491 	if (ret) {
1492 		btrfs_abort_transaction(trans, root, ret);
1493 		goto fail;
1494 	}
1495 
1496 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1497 	if (ret) {
1498 		btrfs_abort_transaction(trans, root, ret);
1499 		goto fail;
1500 	}
1501 
1502 	ret = btrfs_insert_dir_item(trans, parent_root,
1503 				    dentry->d_name.name, dentry->d_name.len,
1504 				    parent_inode, &key,
1505 				    BTRFS_FT_DIR, index);
1506 	/* We have check then name at the beginning, so it is impossible. */
1507 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1508 	if (ret) {
1509 		btrfs_abort_transaction(trans, root, ret);
1510 		goto fail;
1511 	}
1512 
1513 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1514 					 dentry->d_name.len * 2);
1515 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1516 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1517 	if (ret) {
1518 		btrfs_abort_transaction(trans, root, ret);
1519 		goto fail;
1520 	}
1521 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1522 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1523 	if (ret) {
1524 		btrfs_abort_transaction(trans, root, ret);
1525 		goto fail;
1526 	}
1527 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1528 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1529 					  new_root_item->received_uuid,
1530 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1531 					  objectid);
1532 		if (ret && ret != -EEXIST) {
1533 			btrfs_abort_transaction(trans, root, ret);
1534 			goto fail;
1535 		}
1536 	}
1537 
1538 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1539 	if (ret) {
1540 		btrfs_abort_transaction(trans, root, ret);
1541 		goto fail;
1542 	}
1543 
1544 	/*
1545 	 * account qgroup counters before qgroup_inherit()
1546 	 */
1547 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1548 	if (ret)
1549 		goto fail;
1550 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1551 	if (ret)
1552 		goto fail;
1553 	ret = btrfs_qgroup_inherit(trans, fs_info,
1554 				   root->root_key.objectid,
1555 				   objectid, pending->inherit);
1556 	if (ret) {
1557 		btrfs_abort_transaction(trans, root, ret);
1558 		goto fail;
1559 	}
1560 
1561 fail:
1562 	pending->error = ret;
1563 dir_item_existed:
1564 	trans->block_rsv = rsv;
1565 	trans->bytes_reserved = 0;
1566 clear_skip_qgroup:
1567 	btrfs_clear_skip_qgroup(trans);
1568 no_free_objectid:
1569 	kfree(new_root_item);
1570 root_item_alloc_fail:
1571 	btrfs_free_path(path);
1572 	return ret;
1573 }
1574 
1575 /*
1576  * create all the snapshots we've scheduled for creation
1577  */
1578 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1579 					     struct btrfs_fs_info *fs_info)
1580 {
1581 	struct btrfs_pending_snapshot *pending, *next;
1582 	struct list_head *head = &trans->transaction->pending_snapshots;
1583 	int ret = 0;
1584 
1585 	list_for_each_entry_safe(pending, next, head, list) {
1586 		list_del(&pending->list);
1587 		ret = create_pending_snapshot(trans, fs_info, pending);
1588 		if (ret)
1589 			break;
1590 	}
1591 	return ret;
1592 }
1593 
1594 static void update_super_roots(struct btrfs_root *root)
1595 {
1596 	struct btrfs_root_item *root_item;
1597 	struct btrfs_super_block *super;
1598 
1599 	super = root->fs_info->super_copy;
1600 
1601 	root_item = &root->fs_info->chunk_root->root_item;
1602 	super->chunk_root = root_item->bytenr;
1603 	super->chunk_root_generation = root_item->generation;
1604 	super->chunk_root_level = root_item->level;
1605 
1606 	root_item = &root->fs_info->tree_root->root_item;
1607 	super->root = root_item->bytenr;
1608 	super->generation = root_item->generation;
1609 	super->root_level = root_item->level;
1610 	if (btrfs_test_opt(root, SPACE_CACHE))
1611 		super->cache_generation = root_item->generation;
1612 	if (root->fs_info->update_uuid_tree_gen)
1613 		super->uuid_tree_generation = root_item->generation;
1614 }
1615 
1616 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1617 {
1618 	struct btrfs_transaction *trans;
1619 	int ret = 0;
1620 
1621 	spin_lock(&info->trans_lock);
1622 	trans = info->running_transaction;
1623 	if (trans)
1624 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1625 	spin_unlock(&info->trans_lock);
1626 	return ret;
1627 }
1628 
1629 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1630 {
1631 	struct btrfs_transaction *trans;
1632 	int ret = 0;
1633 
1634 	spin_lock(&info->trans_lock);
1635 	trans = info->running_transaction;
1636 	if (trans)
1637 		ret = is_transaction_blocked(trans);
1638 	spin_unlock(&info->trans_lock);
1639 	return ret;
1640 }
1641 
1642 /*
1643  * wait for the current transaction commit to start and block subsequent
1644  * transaction joins
1645  */
1646 static void wait_current_trans_commit_start(struct btrfs_root *root,
1647 					    struct btrfs_transaction *trans)
1648 {
1649 	wait_event(root->fs_info->transaction_blocked_wait,
1650 		   trans->state >= TRANS_STATE_COMMIT_START ||
1651 		   trans->aborted);
1652 }
1653 
1654 /*
1655  * wait for the current transaction to start and then become unblocked.
1656  * caller holds ref.
1657  */
1658 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1659 					 struct btrfs_transaction *trans)
1660 {
1661 	wait_event(root->fs_info->transaction_wait,
1662 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1663 		   trans->aborted);
1664 }
1665 
1666 /*
1667  * commit transactions asynchronously. once btrfs_commit_transaction_async
1668  * returns, any subsequent transaction will not be allowed to join.
1669  */
1670 struct btrfs_async_commit {
1671 	struct btrfs_trans_handle *newtrans;
1672 	struct btrfs_root *root;
1673 	struct work_struct work;
1674 };
1675 
1676 static void do_async_commit(struct work_struct *work)
1677 {
1678 	struct btrfs_async_commit *ac =
1679 		container_of(work, struct btrfs_async_commit, work);
1680 
1681 	/*
1682 	 * We've got freeze protection passed with the transaction.
1683 	 * Tell lockdep about it.
1684 	 */
1685 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1686 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1687 
1688 	current->journal_info = ac->newtrans;
1689 
1690 	btrfs_commit_transaction(ac->newtrans, ac->root);
1691 	kfree(ac);
1692 }
1693 
1694 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1695 				   struct btrfs_root *root,
1696 				   int wait_for_unblock)
1697 {
1698 	struct btrfs_async_commit *ac;
1699 	struct btrfs_transaction *cur_trans;
1700 
1701 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1702 	if (!ac)
1703 		return -ENOMEM;
1704 
1705 	INIT_WORK(&ac->work, do_async_commit);
1706 	ac->root = root;
1707 	ac->newtrans = btrfs_join_transaction(root);
1708 	if (IS_ERR(ac->newtrans)) {
1709 		int err = PTR_ERR(ac->newtrans);
1710 		kfree(ac);
1711 		return err;
1712 	}
1713 
1714 	/* take transaction reference */
1715 	cur_trans = trans->transaction;
1716 	atomic_inc(&cur_trans->use_count);
1717 
1718 	btrfs_end_transaction(trans, root);
1719 
1720 	/*
1721 	 * Tell lockdep we've released the freeze rwsem, since the
1722 	 * async commit thread will be the one to unlock it.
1723 	 */
1724 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1725 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1726 
1727 	schedule_work(&ac->work);
1728 
1729 	/* wait for transaction to start and unblock */
1730 	if (wait_for_unblock)
1731 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1732 	else
1733 		wait_current_trans_commit_start(root, cur_trans);
1734 
1735 	if (current->journal_info == trans)
1736 		current->journal_info = NULL;
1737 
1738 	btrfs_put_transaction(cur_trans);
1739 	return 0;
1740 }
1741 
1742 
1743 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1744 				struct btrfs_root *root, int err)
1745 {
1746 	struct btrfs_transaction *cur_trans = trans->transaction;
1747 	DEFINE_WAIT(wait);
1748 
1749 	WARN_ON(trans->use_count > 1);
1750 
1751 	btrfs_abort_transaction(trans, root, err);
1752 
1753 	spin_lock(&root->fs_info->trans_lock);
1754 
1755 	/*
1756 	 * If the transaction is removed from the list, it means this
1757 	 * transaction has been committed successfully, so it is impossible
1758 	 * to call the cleanup function.
1759 	 */
1760 	BUG_ON(list_empty(&cur_trans->list));
1761 
1762 	list_del_init(&cur_trans->list);
1763 	if (cur_trans == root->fs_info->running_transaction) {
1764 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1765 		spin_unlock(&root->fs_info->trans_lock);
1766 		wait_event(cur_trans->writer_wait,
1767 			   atomic_read(&cur_trans->num_writers) == 1);
1768 
1769 		spin_lock(&root->fs_info->trans_lock);
1770 	}
1771 	spin_unlock(&root->fs_info->trans_lock);
1772 
1773 	btrfs_cleanup_one_transaction(trans->transaction, root);
1774 
1775 	spin_lock(&root->fs_info->trans_lock);
1776 	if (cur_trans == root->fs_info->running_transaction)
1777 		root->fs_info->running_transaction = NULL;
1778 	spin_unlock(&root->fs_info->trans_lock);
1779 
1780 	if (trans->type & __TRANS_FREEZABLE)
1781 		sb_end_intwrite(root->fs_info->sb);
1782 	btrfs_put_transaction(cur_trans);
1783 	btrfs_put_transaction(cur_trans);
1784 
1785 	trace_btrfs_transaction_commit(root);
1786 
1787 	if (current->journal_info == trans)
1788 		current->journal_info = NULL;
1789 	btrfs_scrub_cancel(root->fs_info);
1790 
1791 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1792 }
1793 
1794 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1795 {
1796 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1797 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1798 	return 0;
1799 }
1800 
1801 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1802 {
1803 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1804 		btrfs_wait_ordered_roots(fs_info, -1);
1805 }
1806 
1807 static inline void
1808 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1809 {
1810 	wait_event(cur_trans->pending_wait,
1811 		   atomic_read(&cur_trans->pending_ordered) == 0);
1812 }
1813 
1814 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1815 			     struct btrfs_root *root)
1816 {
1817 	struct btrfs_transaction *cur_trans = trans->transaction;
1818 	struct btrfs_transaction *prev_trans = NULL;
1819 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1820 	int ret;
1821 
1822 	/* Stop the commit early if ->aborted is set */
1823 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1824 		ret = cur_trans->aborted;
1825 		btrfs_end_transaction(trans, root);
1826 		return ret;
1827 	}
1828 
1829 	/* make a pass through all the delayed refs we have so far
1830 	 * any runnings procs may add more while we are here
1831 	 */
1832 	ret = btrfs_run_delayed_refs(trans, root, 0);
1833 	if (ret) {
1834 		btrfs_end_transaction(trans, root);
1835 		return ret;
1836 	}
1837 
1838 	btrfs_trans_release_metadata(trans, root);
1839 	trans->block_rsv = NULL;
1840 
1841 	cur_trans = trans->transaction;
1842 
1843 	/*
1844 	 * set the flushing flag so procs in this transaction have to
1845 	 * start sending their work down.
1846 	 */
1847 	cur_trans->delayed_refs.flushing = 1;
1848 	smp_wmb();
1849 
1850 	if (!list_empty(&trans->new_bgs))
1851 		btrfs_create_pending_block_groups(trans, root);
1852 
1853 	ret = btrfs_run_delayed_refs(trans, root, 0);
1854 	if (ret) {
1855 		btrfs_end_transaction(trans, root);
1856 		return ret;
1857 	}
1858 
1859 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1860 		int run_it = 0;
1861 
1862 		/* this mutex is also taken before trying to set
1863 		 * block groups readonly.  We need to make sure
1864 		 * that nobody has set a block group readonly
1865 		 * after a extents from that block group have been
1866 		 * allocated for cache files.  btrfs_set_block_group_ro
1867 		 * will wait for the transaction to commit if it
1868 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1869 		 *
1870 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1871 		 * only one process starts all the block group IO.  It wouldn't
1872 		 * hurt to have more than one go through, but there's no
1873 		 * real advantage to it either.
1874 		 */
1875 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1876 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1877 				      &cur_trans->flags))
1878 			run_it = 1;
1879 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1880 
1881 		if (run_it)
1882 			ret = btrfs_start_dirty_block_groups(trans, root);
1883 	}
1884 	if (ret) {
1885 		btrfs_end_transaction(trans, root);
1886 		return ret;
1887 	}
1888 
1889 	spin_lock(&root->fs_info->trans_lock);
1890 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1891 		spin_unlock(&root->fs_info->trans_lock);
1892 		atomic_inc(&cur_trans->use_count);
1893 		ret = btrfs_end_transaction(trans, root);
1894 
1895 		wait_for_commit(root, cur_trans);
1896 
1897 		if (unlikely(cur_trans->aborted))
1898 			ret = cur_trans->aborted;
1899 
1900 		btrfs_put_transaction(cur_trans);
1901 
1902 		return ret;
1903 	}
1904 
1905 	cur_trans->state = TRANS_STATE_COMMIT_START;
1906 	wake_up(&root->fs_info->transaction_blocked_wait);
1907 
1908 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1909 		prev_trans = list_entry(cur_trans->list.prev,
1910 					struct btrfs_transaction, list);
1911 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1912 			atomic_inc(&prev_trans->use_count);
1913 			spin_unlock(&root->fs_info->trans_lock);
1914 
1915 			wait_for_commit(root, prev_trans);
1916 			ret = prev_trans->aborted;
1917 
1918 			btrfs_put_transaction(prev_trans);
1919 			if (ret)
1920 				goto cleanup_transaction;
1921 		} else {
1922 			spin_unlock(&root->fs_info->trans_lock);
1923 		}
1924 	} else {
1925 		spin_unlock(&root->fs_info->trans_lock);
1926 	}
1927 
1928 	extwriter_counter_dec(cur_trans, trans->type);
1929 
1930 	ret = btrfs_start_delalloc_flush(root->fs_info);
1931 	if (ret)
1932 		goto cleanup_transaction;
1933 
1934 	ret = btrfs_run_delayed_items(trans, root);
1935 	if (ret)
1936 		goto cleanup_transaction;
1937 
1938 	wait_event(cur_trans->writer_wait,
1939 		   extwriter_counter_read(cur_trans) == 0);
1940 
1941 	/* some pending stuffs might be added after the previous flush. */
1942 	ret = btrfs_run_delayed_items(trans, root);
1943 	if (ret)
1944 		goto cleanup_transaction;
1945 
1946 	btrfs_wait_delalloc_flush(root->fs_info);
1947 
1948 	btrfs_wait_pending_ordered(cur_trans);
1949 
1950 	btrfs_scrub_pause(root);
1951 	/*
1952 	 * Ok now we need to make sure to block out any other joins while we
1953 	 * commit the transaction.  We could have started a join before setting
1954 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1955 	 */
1956 	spin_lock(&root->fs_info->trans_lock);
1957 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1958 	spin_unlock(&root->fs_info->trans_lock);
1959 	wait_event(cur_trans->writer_wait,
1960 		   atomic_read(&cur_trans->num_writers) == 1);
1961 
1962 	/* ->aborted might be set after the previous check, so check it */
1963 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1964 		ret = cur_trans->aborted;
1965 		goto scrub_continue;
1966 	}
1967 	/*
1968 	 * the reloc mutex makes sure that we stop
1969 	 * the balancing code from coming in and moving
1970 	 * extents around in the middle of the commit
1971 	 */
1972 	mutex_lock(&root->fs_info->reloc_mutex);
1973 
1974 	/*
1975 	 * We needn't worry about the delayed items because we will
1976 	 * deal with them in create_pending_snapshot(), which is the
1977 	 * core function of the snapshot creation.
1978 	 */
1979 	ret = create_pending_snapshots(trans, root->fs_info);
1980 	if (ret) {
1981 		mutex_unlock(&root->fs_info->reloc_mutex);
1982 		goto scrub_continue;
1983 	}
1984 
1985 	/*
1986 	 * We insert the dir indexes of the snapshots and update the inode
1987 	 * of the snapshots' parents after the snapshot creation, so there
1988 	 * are some delayed items which are not dealt with. Now deal with
1989 	 * them.
1990 	 *
1991 	 * We needn't worry that this operation will corrupt the snapshots,
1992 	 * because all the tree which are snapshoted will be forced to COW
1993 	 * the nodes and leaves.
1994 	 */
1995 	ret = btrfs_run_delayed_items(trans, root);
1996 	if (ret) {
1997 		mutex_unlock(&root->fs_info->reloc_mutex);
1998 		goto scrub_continue;
1999 	}
2000 
2001 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2002 	if (ret) {
2003 		mutex_unlock(&root->fs_info->reloc_mutex);
2004 		goto scrub_continue;
2005 	}
2006 
2007 	/* Reocrd old roots for later qgroup accounting */
2008 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2009 	if (ret) {
2010 		mutex_unlock(&root->fs_info->reloc_mutex);
2011 		goto scrub_continue;
2012 	}
2013 
2014 	/*
2015 	 * make sure none of the code above managed to slip in a
2016 	 * delayed item
2017 	 */
2018 	btrfs_assert_delayed_root_empty(root);
2019 
2020 	WARN_ON(cur_trans != trans->transaction);
2021 
2022 	/* btrfs_commit_tree_roots is responsible for getting the
2023 	 * various roots consistent with each other.  Every pointer
2024 	 * in the tree of tree roots has to point to the most up to date
2025 	 * root for every subvolume and other tree.  So, we have to keep
2026 	 * the tree logging code from jumping in and changing any
2027 	 * of the trees.
2028 	 *
2029 	 * At this point in the commit, there can't be any tree-log
2030 	 * writers, but a little lower down we drop the trans mutex
2031 	 * and let new people in.  By holding the tree_log_mutex
2032 	 * from now until after the super is written, we avoid races
2033 	 * with the tree-log code.
2034 	 */
2035 	mutex_lock(&root->fs_info->tree_log_mutex);
2036 
2037 	ret = commit_fs_roots(trans, root);
2038 	if (ret) {
2039 		mutex_unlock(&root->fs_info->tree_log_mutex);
2040 		mutex_unlock(&root->fs_info->reloc_mutex);
2041 		goto scrub_continue;
2042 	}
2043 
2044 	/*
2045 	 * Since the transaction is done, we can apply the pending changes
2046 	 * before the next transaction.
2047 	 */
2048 	btrfs_apply_pending_changes(root->fs_info);
2049 
2050 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2051 	 * safe to free the root of tree log roots
2052 	 */
2053 	btrfs_free_log_root_tree(trans, root->fs_info);
2054 
2055 	/*
2056 	 * Since fs roots are all committed, we can get a quite accurate
2057 	 * new_roots. So let's do quota accounting.
2058 	 */
2059 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2060 	if (ret < 0) {
2061 		mutex_unlock(&root->fs_info->tree_log_mutex);
2062 		mutex_unlock(&root->fs_info->reloc_mutex);
2063 		goto scrub_continue;
2064 	}
2065 
2066 	ret = commit_cowonly_roots(trans, root);
2067 	if (ret) {
2068 		mutex_unlock(&root->fs_info->tree_log_mutex);
2069 		mutex_unlock(&root->fs_info->reloc_mutex);
2070 		goto scrub_continue;
2071 	}
2072 
2073 	/*
2074 	 * The tasks which save the space cache and inode cache may also
2075 	 * update ->aborted, check it.
2076 	 */
2077 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2078 		ret = cur_trans->aborted;
2079 		mutex_unlock(&root->fs_info->tree_log_mutex);
2080 		mutex_unlock(&root->fs_info->reloc_mutex);
2081 		goto scrub_continue;
2082 	}
2083 
2084 	btrfs_prepare_extent_commit(trans, root);
2085 
2086 	cur_trans = root->fs_info->running_transaction;
2087 
2088 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2089 			    root->fs_info->tree_root->node);
2090 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2091 		      &cur_trans->switch_commits);
2092 
2093 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2094 			    root->fs_info->chunk_root->node);
2095 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2096 		      &cur_trans->switch_commits);
2097 
2098 	switch_commit_roots(cur_trans, root->fs_info);
2099 
2100 	assert_qgroups_uptodate(trans);
2101 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2102 	ASSERT(list_empty(&cur_trans->io_bgs));
2103 	update_super_roots(root);
2104 
2105 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2106 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2107 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2108 	       sizeof(*root->fs_info->super_copy));
2109 
2110 	btrfs_update_commit_device_size(root->fs_info);
2111 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2112 
2113 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2114 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2115 
2116 	btrfs_trans_release_chunk_metadata(trans);
2117 
2118 	spin_lock(&root->fs_info->trans_lock);
2119 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2120 	root->fs_info->running_transaction = NULL;
2121 	spin_unlock(&root->fs_info->trans_lock);
2122 	mutex_unlock(&root->fs_info->reloc_mutex);
2123 
2124 	wake_up(&root->fs_info->transaction_wait);
2125 
2126 	ret = btrfs_write_and_wait_transaction(trans, root);
2127 	if (ret) {
2128 		btrfs_std_error(root->fs_info, ret,
2129 			    "Error while writing out transaction");
2130 		mutex_unlock(&root->fs_info->tree_log_mutex);
2131 		goto scrub_continue;
2132 	}
2133 
2134 	ret = write_ctree_super(trans, root, 0);
2135 	if (ret) {
2136 		mutex_unlock(&root->fs_info->tree_log_mutex);
2137 		goto scrub_continue;
2138 	}
2139 
2140 	/*
2141 	 * the super is written, we can safely allow the tree-loggers
2142 	 * to go about their business
2143 	 */
2144 	mutex_unlock(&root->fs_info->tree_log_mutex);
2145 
2146 	btrfs_finish_extent_commit(trans, root);
2147 
2148 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2149 		btrfs_clear_space_info_full(root->fs_info);
2150 
2151 	root->fs_info->last_trans_committed = cur_trans->transid;
2152 	/*
2153 	 * We needn't acquire the lock here because there is no other task
2154 	 * which can change it.
2155 	 */
2156 	cur_trans->state = TRANS_STATE_COMPLETED;
2157 	wake_up(&cur_trans->commit_wait);
2158 
2159 	spin_lock(&root->fs_info->trans_lock);
2160 	list_del_init(&cur_trans->list);
2161 	spin_unlock(&root->fs_info->trans_lock);
2162 
2163 	btrfs_put_transaction(cur_trans);
2164 	btrfs_put_transaction(cur_trans);
2165 
2166 	if (trans->type & __TRANS_FREEZABLE)
2167 		sb_end_intwrite(root->fs_info->sb);
2168 
2169 	trace_btrfs_transaction_commit(root);
2170 
2171 	btrfs_scrub_continue(root);
2172 
2173 	if (current->journal_info == trans)
2174 		current->journal_info = NULL;
2175 
2176 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2177 
2178 	if (current != root->fs_info->transaction_kthread &&
2179 	    current != root->fs_info->cleaner_kthread)
2180 		btrfs_run_delayed_iputs(root);
2181 
2182 	return ret;
2183 
2184 scrub_continue:
2185 	btrfs_scrub_continue(root);
2186 cleanup_transaction:
2187 	btrfs_trans_release_metadata(trans, root);
2188 	btrfs_trans_release_chunk_metadata(trans);
2189 	trans->block_rsv = NULL;
2190 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2191 	if (current->journal_info == trans)
2192 		current->journal_info = NULL;
2193 	cleanup_transaction(trans, root, ret);
2194 
2195 	return ret;
2196 }
2197 
2198 /*
2199  * return < 0 if error
2200  * 0 if there are no more dead_roots at the time of call
2201  * 1 there are more to be processed, call me again
2202  *
2203  * The return value indicates there are certainly more snapshots to delete, but
2204  * if there comes a new one during processing, it may return 0. We don't mind,
2205  * because btrfs_commit_super will poke cleaner thread and it will process it a
2206  * few seconds later.
2207  */
2208 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2209 {
2210 	int ret;
2211 	struct btrfs_fs_info *fs_info = root->fs_info;
2212 
2213 	spin_lock(&fs_info->trans_lock);
2214 	if (list_empty(&fs_info->dead_roots)) {
2215 		spin_unlock(&fs_info->trans_lock);
2216 		return 0;
2217 	}
2218 	root = list_first_entry(&fs_info->dead_roots,
2219 			struct btrfs_root, root_list);
2220 	list_del_init(&root->root_list);
2221 	spin_unlock(&fs_info->trans_lock);
2222 
2223 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2224 
2225 	btrfs_kill_all_delayed_nodes(root);
2226 
2227 	if (btrfs_header_backref_rev(root->node) <
2228 			BTRFS_MIXED_BACKREF_REV)
2229 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2230 	else
2231 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2232 
2233 	return (ret < 0) ? 0 : 1;
2234 }
2235 
2236 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2237 {
2238 	unsigned long prev;
2239 	unsigned long bit;
2240 
2241 	prev = xchg(&fs_info->pending_changes, 0);
2242 	if (!prev)
2243 		return;
2244 
2245 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2246 	if (prev & bit)
2247 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2248 	prev &= ~bit;
2249 
2250 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2251 	if (prev & bit)
2252 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2253 	prev &= ~bit;
2254 
2255 	bit = 1 << BTRFS_PENDING_COMMIT;
2256 	if (prev & bit)
2257 		btrfs_debug(fs_info, "pending commit done");
2258 	prev &= ~bit;
2259 
2260 	if (prev)
2261 		btrfs_warn(fs_info,
2262 			"unknown pending changes left 0x%lx, ignoring", prev);
2263 }
2264