1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 35 #define BTRFS_ROOT_TRANS_TAG 0 36 37 void put_transaction(struct btrfs_transaction *transaction) 38 { 39 WARN_ON(atomic_read(&transaction->use_count) == 0); 40 if (atomic_dec_and_test(&transaction->use_count)) { 41 BUG_ON(!list_empty(&transaction->list)); 42 WARN_ON(transaction->delayed_refs.root.rb_node); 43 kmem_cache_free(btrfs_transaction_cachep, transaction); 44 } 45 } 46 47 static noinline void switch_commit_root(struct btrfs_root *root) 48 { 49 free_extent_buffer(root->commit_root); 50 root->commit_root = btrfs_root_node(root); 51 } 52 53 static inline int can_join_transaction(struct btrfs_transaction *trans, 54 int type) 55 { 56 return !(trans->in_commit && 57 type != TRANS_JOIN && 58 type != TRANS_JOIN_NOLOCK); 59 } 60 61 /* 62 * either allocate a new transaction or hop into the existing one 63 */ 64 static noinline int join_transaction(struct btrfs_root *root, int type) 65 { 66 struct btrfs_transaction *cur_trans; 67 struct btrfs_fs_info *fs_info = root->fs_info; 68 69 spin_lock(&fs_info->trans_lock); 70 loop: 71 /* The file system has been taken offline. No new transactions. */ 72 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 73 spin_unlock(&fs_info->trans_lock); 74 return -EROFS; 75 } 76 77 if (fs_info->trans_no_join) { 78 /* 79 * If we are JOIN_NOLOCK we're already committing a current 80 * transaction, we just need a handle to deal with something 81 * when committing the transaction, such as inode cache and 82 * space cache. It is a special case. 83 */ 84 if (type != TRANS_JOIN_NOLOCK) { 85 spin_unlock(&fs_info->trans_lock); 86 return -EBUSY; 87 } 88 } 89 90 cur_trans = fs_info->running_transaction; 91 if (cur_trans) { 92 if (cur_trans->aborted) { 93 spin_unlock(&fs_info->trans_lock); 94 return cur_trans->aborted; 95 } 96 if (!can_join_transaction(cur_trans, type)) { 97 spin_unlock(&fs_info->trans_lock); 98 return -EBUSY; 99 } 100 atomic_inc(&cur_trans->use_count); 101 atomic_inc(&cur_trans->num_writers); 102 cur_trans->num_joined++; 103 spin_unlock(&fs_info->trans_lock); 104 return 0; 105 } 106 spin_unlock(&fs_info->trans_lock); 107 108 /* 109 * If we are ATTACH, we just want to catch the current transaction, 110 * and commit it. If there is no transaction, just return ENOENT. 111 */ 112 if (type == TRANS_ATTACH) 113 return -ENOENT; 114 115 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 116 if (!cur_trans) 117 return -ENOMEM; 118 119 spin_lock(&fs_info->trans_lock); 120 if (fs_info->running_transaction) { 121 /* 122 * someone started a transaction after we unlocked. Make sure 123 * to redo the trans_no_join checks above 124 */ 125 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 126 cur_trans = fs_info->running_transaction; 127 goto loop; 128 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 129 spin_unlock(&fs_info->trans_lock); 130 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 131 return -EROFS; 132 } 133 134 atomic_set(&cur_trans->num_writers, 1); 135 cur_trans->num_joined = 0; 136 init_waitqueue_head(&cur_trans->writer_wait); 137 init_waitqueue_head(&cur_trans->commit_wait); 138 cur_trans->in_commit = 0; 139 cur_trans->blocked = 0; 140 /* 141 * One for this trans handle, one so it will live on until we 142 * commit the transaction. 143 */ 144 atomic_set(&cur_trans->use_count, 2); 145 cur_trans->commit_done = 0; 146 cur_trans->start_time = get_seconds(); 147 148 cur_trans->delayed_refs.root = RB_ROOT; 149 cur_trans->delayed_refs.num_entries = 0; 150 cur_trans->delayed_refs.num_heads_ready = 0; 151 cur_trans->delayed_refs.num_heads = 0; 152 cur_trans->delayed_refs.flushing = 0; 153 cur_trans->delayed_refs.run_delayed_start = 0; 154 155 /* 156 * although the tree mod log is per file system and not per transaction, 157 * the log must never go across transaction boundaries. 158 */ 159 smp_mb(); 160 if (!list_empty(&fs_info->tree_mod_seq_list)) 161 WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when " 162 "creating a fresh transaction\n"); 163 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 164 WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when " 165 "creating a fresh transaction\n"); 166 atomic_set(&fs_info->tree_mod_seq, 0); 167 168 spin_lock_init(&cur_trans->commit_lock); 169 spin_lock_init(&cur_trans->delayed_refs.lock); 170 atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0); 171 atomic_set(&cur_trans->delayed_refs.ref_seq, 0); 172 init_waitqueue_head(&cur_trans->delayed_refs.wait); 173 174 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 175 INIT_LIST_HEAD(&cur_trans->ordered_operations); 176 list_add_tail(&cur_trans->list, &fs_info->trans_list); 177 extent_io_tree_init(&cur_trans->dirty_pages, 178 fs_info->btree_inode->i_mapping); 179 fs_info->generation++; 180 cur_trans->transid = fs_info->generation; 181 fs_info->running_transaction = cur_trans; 182 cur_trans->aborted = 0; 183 spin_unlock(&fs_info->trans_lock); 184 185 return 0; 186 } 187 188 /* 189 * this does all the record keeping required to make sure that a reference 190 * counted root is properly recorded in a given transaction. This is required 191 * to make sure the old root from before we joined the transaction is deleted 192 * when the transaction commits 193 */ 194 static int record_root_in_trans(struct btrfs_trans_handle *trans, 195 struct btrfs_root *root) 196 { 197 if (root->ref_cows && root->last_trans < trans->transid) { 198 WARN_ON(root == root->fs_info->extent_root); 199 WARN_ON(root->commit_root != root->node); 200 201 /* 202 * see below for in_trans_setup usage rules 203 * we have the reloc mutex held now, so there 204 * is only one writer in this function 205 */ 206 root->in_trans_setup = 1; 207 208 /* make sure readers find in_trans_setup before 209 * they find our root->last_trans update 210 */ 211 smp_wmb(); 212 213 spin_lock(&root->fs_info->fs_roots_radix_lock); 214 if (root->last_trans == trans->transid) { 215 spin_unlock(&root->fs_info->fs_roots_radix_lock); 216 return 0; 217 } 218 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 219 (unsigned long)root->root_key.objectid, 220 BTRFS_ROOT_TRANS_TAG); 221 spin_unlock(&root->fs_info->fs_roots_radix_lock); 222 root->last_trans = trans->transid; 223 224 /* this is pretty tricky. We don't want to 225 * take the relocation lock in btrfs_record_root_in_trans 226 * unless we're really doing the first setup for this root in 227 * this transaction. 228 * 229 * Normally we'd use root->last_trans as a flag to decide 230 * if we want to take the expensive mutex. 231 * 232 * But, we have to set root->last_trans before we 233 * init the relocation root, otherwise, we trip over warnings 234 * in ctree.c. The solution used here is to flag ourselves 235 * with root->in_trans_setup. When this is 1, we're still 236 * fixing up the reloc trees and everyone must wait. 237 * 238 * When this is zero, they can trust root->last_trans and fly 239 * through btrfs_record_root_in_trans without having to take the 240 * lock. smp_wmb() makes sure that all the writes above are 241 * done before we pop in the zero below 242 */ 243 btrfs_init_reloc_root(trans, root); 244 smp_wmb(); 245 root->in_trans_setup = 0; 246 } 247 return 0; 248 } 249 250 251 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 252 struct btrfs_root *root) 253 { 254 if (!root->ref_cows) 255 return 0; 256 257 /* 258 * see record_root_in_trans for comments about in_trans_setup usage 259 * and barriers 260 */ 261 smp_rmb(); 262 if (root->last_trans == trans->transid && 263 !root->in_trans_setup) 264 return 0; 265 266 mutex_lock(&root->fs_info->reloc_mutex); 267 record_root_in_trans(trans, root); 268 mutex_unlock(&root->fs_info->reloc_mutex); 269 270 return 0; 271 } 272 273 /* wait for commit against the current transaction to become unblocked 274 * when this is done, it is safe to start a new transaction, but the current 275 * transaction might not be fully on disk. 276 */ 277 static void wait_current_trans(struct btrfs_root *root) 278 { 279 struct btrfs_transaction *cur_trans; 280 281 spin_lock(&root->fs_info->trans_lock); 282 cur_trans = root->fs_info->running_transaction; 283 if (cur_trans && cur_trans->blocked) { 284 atomic_inc(&cur_trans->use_count); 285 spin_unlock(&root->fs_info->trans_lock); 286 287 wait_event(root->fs_info->transaction_wait, 288 !cur_trans->blocked); 289 put_transaction(cur_trans); 290 } else { 291 spin_unlock(&root->fs_info->trans_lock); 292 } 293 } 294 295 static int may_wait_transaction(struct btrfs_root *root, int type) 296 { 297 if (root->fs_info->log_root_recovering) 298 return 0; 299 300 if (type == TRANS_USERSPACE) 301 return 1; 302 303 if (type == TRANS_START && 304 !atomic_read(&root->fs_info->open_ioctl_trans)) 305 return 1; 306 307 return 0; 308 } 309 310 static struct btrfs_trans_handle * 311 start_transaction(struct btrfs_root *root, u64 num_items, int type, 312 enum btrfs_reserve_flush_enum flush) 313 { 314 struct btrfs_trans_handle *h; 315 struct btrfs_transaction *cur_trans; 316 u64 num_bytes = 0; 317 int ret; 318 u64 qgroup_reserved = 0; 319 320 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 321 return ERR_PTR(-EROFS); 322 323 if (current->journal_info) { 324 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK); 325 h = current->journal_info; 326 h->use_count++; 327 WARN_ON(h->use_count > 2); 328 h->orig_rsv = h->block_rsv; 329 h->block_rsv = NULL; 330 goto got_it; 331 } 332 333 /* 334 * Do the reservation before we join the transaction so we can do all 335 * the appropriate flushing if need be. 336 */ 337 if (num_items > 0 && root != root->fs_info->chunk_root) { 338 if (root->fs_info->quota_enabled && 339 is_fstree(root->root_key.objectid)) { 340 qgroup_reserved = num_items * root->leafsize; 341 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 342 if (ret) 343 return ERR_PTR(ret); 344 } 345 346 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 347 ret = btrfs_block_rsv_add(root, 348 &root->fs_info->trans_block_rsv, 349 num_bytes, flush); 350 if (ret) 351 goto reserve_fail; 352 } 353 again: 354 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS); 355 if (!h) { 356 ret = -ENOMEM; 357 goto alloc_fail; 358 } 359 360 /* 361 * If we are JOIN_NOLOCK we're already committing a transaction and 362 * waiting on this guy, so we don't need to do the sb_start_intwrite 363 * because we're already holding a ref. We need this because we could 364 * have raced in and did an fsync() on a file which can kick a commit 365 * and then we deadlock with somebody doing a freeze. 366 * 367 * If we are ATTACH, it means we just want to catch the current 368 * transaction and commit it, so we needn't do sb_start_intwrite(). 369 */ 370 if (type < TRANS_JOIN_NOLOCK) 371 sb_start_intwrite(root->fs_info->sb); 372 373 if (may_wait_transaction(root, type)) 374 wait_current_trans(root); 375 376 do { 377 ret = join_transaction(root, type); 378 if (ret == -EBUSY) { 379 wait_current_trans(root); 380 if (unlikely(type == TRANS_ATTACH)) 381 ret = -ENOENT; 382 } 383 } while (ret == -EBUSY); 384 385 if (ret < 0) { 386 /* We must get the transaction if we are JOIN_NOLOCK. */ 387 BUG_ON(type == TRANS_JOIN_NOLOCK); 388 goto join_fail; 389 } 390 391 cur_trans = root->fs_info->running_transaction; 392 393 h->transid = cur_trans->transid; 394 h->transaction = cur_trans; 395 h->blocks_used = 0; 396 h->bytes_reserved = 0; 397 h->root = root; 398 h->delayed_ref_updates = 0; 399 h->use_count = 1; 400 h->adding_csums = 0; 401 h->block_rsv = NULL; 402 h->orig_rsv = NULL; 403 h->aborted = 0; 404 h->qgroup_reserved = 0; 405 h->delayed_ref_elem.seq = 0; 406 h->type = type; 407 h->allocating_chunk = false; 408 INIT_LIST_HEAD(&h->qgroup_ref_list); 409 INIT_LIST_HEAD(&h->new_bgs); 410 411 smp_mb(); 412 if (cur_trans->blocked && may_wait_transaction(root, type)) { 413 btrfs_commit_transaction(h, root); 414 goto again; 415 } 416 417 if (num_bytes) { 418 trace_btrfs_space_reservation(root->fs_info, "transaction", 419 h->transid, num_bytes, 1); 420 h->block_rsv = &root->fs_info->trans_block_rsv; 421 h->bytes_reserved = num_bytes; 422 } 423 h->qgroup_reserved = qgroup_reserved; 424 425 got_it: 426 btrfs_record_root_in_trans(h, root); 427 428 if (!current->journal_info && type != TRANS_USERSPACE) 429 current->journal_info = h; 430 return h; 431 432 join_fail: 433 if (type < TRANS_JOIN_NOLOCK) 434 sb_end_intwrite(root->fs_info->sb); 435 kmem_cache_free(btrfs_trans_handle_cachep, h); 436 alloc_fail: 437 if (num_bytes) 438 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 439 num_bytes); 440 reserve_fail: 441 if (qgroup_reserved) 442 btrfs_qgroup_free(root, qgroup_reserved); 443 return ERR_PTR(ret); 444 } 445 446 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 447 int num_items) 448 { 449 return start_transaction(root, num_items, TRANS_START, 450 BTRFS_RESERVE_FLUSH_ALL); 451 } 452 453 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 454 struct btrfs_root *root, int num_items) 455 { 456 return start_transaction(root, num_items, TRANS_START, 457 BTRFS_RESERVE_FLUSH_LIMIT); 458 } 459 460 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 461 { 462 return start_transaction(root, 0, TRANS_JOIN, 0); 463 } 464 465 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 466 { 467 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 468 } 469 470 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 471 { 472 return start_transaction(root, 0, TRANS_USERSPACE, 0); 473 } 474 475 /* 476 * btrfs_attach_transaction() - catch the running transaction 477 * 478 * It is used when we want to commit the current the transaction, but 479 * don't want to start a new one. 480 * 481 * Note: If this function return -ENOENT, it just means there is no 482 * running transaction. But it is possible that the inactive transaction 483 * is still in the memory, not fully on disk. If you hope there is no 484 * inactive transaction in the fs when -ENOENT is returned, you should 485 * invoke 486 * btrfs_attach_transaction_barrier() 487 */ 488 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 489 { 490 return start_transaction(root, 0, TRANS_ATTACH, 0); 491 } 492 493 /* 494 * btrfs_attach_transaction() - catch the running transaction 495 * 496 * It is similar to the above function, the differentia is this one 497 * will wait for all the inactive transactions until they fully 498 * complete. 499 */ 500 struct btrfs_trans_handle * 501 btrfs_attach_transaction_barrier(struct btrfs_root *root) 502 { 503 struct btrfs_trans_handle *trans; 504 505 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 506 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 507 btrfs_wait_for_commit(root, 0); 508 509 return trans; 510 } 511 512 /* wait for a transaction commit to be fully complete */ 513 static noinline void wait_for_commit(struct btrfs_root *root, 514 struct btrfs_transaction *commit) 515 { 516 wait_event(commit->commit_wait, commit->commit_done); 517 } 518 519 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 520 { 521 struct btrfs_transaction *cur_trans = NULL, *t; 522 int ret = 0; 523 524 if (transid) { 525 if (transid <= root->fs_info->last_trans_committed) 526 goto out; 527 528 ret = -EINVAL; 529 /* find specified transaction */ 530 spin_lock(&root->fs_info->trans_lock); 531 list_for_each_entry(t, &root->fs_info->trans_list, list) { 532 if (t->transid == transid) { 533 cur_trans = t; 534 atomic_inc(&cur_trans->use_count); 535 ret = 0; 536 break; 537 } 538 if (t->transid > transid) { 539 ret = 0; 540 break; 541 } 542 } 543 spin_unlock(&root->fs_info->trans_lock); 544 /* The specified transaction doesn't exist */ 545 if (!cur_trans) 546 goto out; 547 } else { 548 /* find newest transaction that is committing | committed */ 549 spin_lock(&root->fs_info->trans_lock); 550 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 551 list) { 552 if (t->in_commit) { 553 if (t->commit_done) 554 break; 555 cur_trans = t; 556 atomic_inc(&cur_trans->use_count); 557 break; 558 } 559 } 560 spin_unlock(&root->fs_info->trans_lock); 561 if (!cur_trans) 562 goto out; /* nothing committing|committed */ 563 } 564 565 wait_for_commit(root, cur_trans); 566 put_transaction(cur_trans); 567 out: 568 return ret; 569 } 570 571 void btrfs_throttle(struct btrfs_root *root) 572 { 573 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 574 wait_current_trans(root); 575 } 576 577 static int should_end_transaction(struct btrfs_trans_handle *trans, 578 struct btrfs_root *root) 579 { 580 int ret; 581 582 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 583 return ret ? 1 : 0; 584 } 585 586 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 587 struct btrfs_root *root) 588 { 589 struct btrfs_transaction *cur_trans = trans->transaction; 590 int updates; 591 int err; 592 593 smp_mb(); 594 if (cur_trans->blocked || cur_trans->delayed_refs.flushing) 595 return 1; 596 597 updates = trans->delayed_ref_updates; 598 trans->delayed_ref_updates = 0; 599 if (updates) { 600 err = btrfs_run_delayed_refs(trans, root, updates); 601 if (err) /* Error code will also eval true */ 602 return err; 603 } 604 605 return should_end_transaction(trans, root); 606 } 607 608 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 609 struct btrfs_root *root, int throttle) 610 { 611 struct btrfs_transaction *cur_trans = trans->transaction; 612 struct btrfs_fs_info *info = root->fs_info; 613 int count = 0; 614 int lock = (trans->type != TRANS_JOIN_NOLOCK); 615 int err = 0; 616 617 if (--trans->use_count) { 618 trans->block_rsv = trans->orig_rsv; 619 return 0; 620 } 621 622 /* 623 * do the qgroup accounting as early as possible 624 */ 625 err = btrfs_delayed_refs_qgroup_accounting(trans, info); 626 627 btrfs_trans_release_metadata(trans, root); 628 trans->block_rsv = NULL; 629 /* 630 * the same root has to be passed to start_transaction and 631 * end_transaction. Subvolume quota depends on this. 632 */ 633 WARN_ON(trans->root != root); 634 635 if (trans->qgroup_reserved) { 636 btrfs_qgroup_free(root, trans->qgroup_reserved); 637 trans->qgroup_reserved = 0; 638 } 639 640 if (!list_empty(&trans->new_bgs)) 641 btrfs_create_pending_block_groups(trans, root); 642 643 while (count < 1) { 644 unsigned long cur = trans->delayed_ref_updates; 645 trans->delayed_ref_updates = 0; 646 if (cur && 647 trans->transaction->delayed_refs.num_heads_ready > 64) { 648 trans->delayed_ref_updates = 0; 649 btrfs_run_delayed_refs(trans, root, cur); 650 } else { 651 break; 652 } 653 count++; 654 } 655 656 btrfs_trans_release_metadata(trans, root); 657 trans->block_rsv = NULL; 658 659 if (!list_empty(&trans->new_bgs)) 660 btrfs_create_pending_block_groups(trans, root); 661 662 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 663 should_end_transaction(trans, root)) { 664 trans->transaction->blocked = 1; 665 smp_wmb(); 666 } 667 668 if (lock && cur_trans->blocked && !cur_trans->in_commit) { 669 if (throttle) { 670 /* 671 * We may race with somebody else here so end up having 672 * to call end_transaction on ourselves again, so inc 673 * our use_count. 674 */ 675 trans->use_count++; 676 return btrfs_commit_transaction(trans, root); 677 } else { 678 wake_up_process(info->transaction_kthread); 679 } 680 } 681 682 if (trans->type < TRANS_JOIN_NOLOCK) 683 sb_end_intwrite(root->fs_info->sb); 684 685 WARN_ON(cur_trans != info->running_transaction); 686 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 687 atomic_dec(&cur_trans->num_writers); 688 689 smp_mb(); 690 if (waitqueue_active(&cur_trans->writer_wait)) 691 wake_up(&cur_trans->writer_wait); 692 put_transaction(cur_trans); 693 694 if (current->journal_info == trans) 695 current->journal_info = NULL; 696 697 if (throttle) 698 btrfs_run_delayed_iputs(root); 699 700 if (trans->aborted || 701 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 702 err = -EIO; 703 assert_qgroups_uptodate(trans); 704 705 kmem_cache_free(btrfs_trans_handle_cachep, trans); 706 return err; 707 } 708 709 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 710 struct btrfs_root *root) 711 { 712 int ret; 713 714 ret = __btrfs_end_transaction(trans, root, 0); 715 if (ret) 716 return ret; 717 return 0; 718 } 719 720 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 721 struct btrfs_root *root) 722 { 723 int ret; 724 725 ret = __btrfs_end_transaction(trans, root, 1); 726 if (ret) 727 return ret; 728 return 0; 729 } 730 731 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans, 732 struct btrfs_root *root) 733 { 734 return __btrfs_end_transaction(trans, root, 1); 735 } 736 737 /* 738 * when btree blocks are allocated, they have some corresponding bits set for 739 * them in one of two extent_io trees. This is used to make sure all of 740 * those extents are sent to disk but does not wait on them 741 */ 742 int btrfs_write_marked_extents(struct btrfs_root *root, 743 struct extent_io_tree *dirty_pages, int mark) 744 { 745 int err = 0; 746 int werr = 0; 747 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 748 struct extent_state *cached_state = NULL; 749 u64 start = 0; 750 u64 end; 751 struct blk_plug plug; 752 753 blk_start_plug(&plug); 754 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 755 mark, &cached_state)) { 756 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 757 mark, &cached_state, GFP_NOFS); 758 cached_state = NULL; 759 err = filemap_fdatawrite_range(mapping, start, end); 760 if (err) 761 werr = err; 762 cond_resched(); 763 start = end + 1; 764 } 765 if (err) 766 werr = err; 767 blk_finish_plug(&plug); 768 return werr; 769 } 770 771 /* 772 * when btree blocks are allocated, they have some corresponding bits set for 773 * them in one of two extent_io trees. This is used to make sure all of 774 * those extents are on disk for transaction or log commit. We wait 775 * on all the pages and clear them from the dirty pages state tree 776 */ 777 int btrfs_wait_marked_extents(struct btrfs_root *root, 778 struct extent_io_tree *dirty_pages, int mark) 779 { 780 int err = 0; 781 int werr = 0; 782 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 783 struct extent_state *cached_state = NULL; 784 u64 start = 0; 785 u64 end; 786 787 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 788 EXTENT_NEED_WAIT, &cached_state)) { 789 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, 790 0, 0, &cached_state, GFP_NOFS); 791 err = filemap_fdatawait_range(mapping, start, end); 792 if (err) 793 werr = err; 794 cond_resched(); 795 start = end + 1; 796 } 797 if (err) 798 werr = err; 799 return werr; 800 } 801 802 /* 803 * when btree blocks are allocated, they have some corresponding bits set for 804 * them in one of two extent_io trees. This is used to make sure all of 805 * those extents are on disk for transaction or log commit 806 */ 807 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 808 struct extent_io_tree *dirty_pages, int mark) 809 { 810 int ret; 811 int ret2; 812 813 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 814 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 815 816 if (ret) 817 return ret; 818 if (ret2) 819 return ret2; 820 return 0; 821 } 822 823 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 824 struct btrfs_root *root) 825 { 826 if (!trans || !trans->transaction) { 827 struct inode *btree_inode; 828 btree_inode = root->fs_info->btree_inode; 829 return filemap_write_and_wait(btree_inode->i_mapping); 830 } 831 return btrfs_write_and_wait_marked_extents(root, 832 &trans->transaction->dirty_pages, 833 EXTENT_DIRTY); 834 } 835 836 /* 837 * this is used to update the root pointer in the tree of tree roots. 838 * 839 * But, in the case of the extent allocation tree, updating the root 840 * pointer may allocate blocks which may change the root of the extent 841 * allocation tree. 842 * 843 * So, this loops and repeats and makes sure the cowonly root didn't 844 * change while the root pointer was being updated in the metadata. 845 */ 846 static int update_cowonly_root(struct btrfs_trans_handle *trans, 847 struct btrfs_root *root) 848 { 849 int ret; 850 u64 old_root_bytenr; 851 u64 old_root_used; 852 struct btrfs_root *tree_root = root->fs_info->tree_root; 853 854 old_root_used = btrfs_root_used(&root->root_item); 855 btrfs_write_dirty_block_groups(trans, root); 856 857 while (1) { 858 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 859 if (old_root_bytenr == root->node->start && 860 old_root_used == btrfs_root_used(&root->root_item)) 861 break; 862 863 btrfs_set_root_node(&root->root_item, root->node); 864 ret = btrfs_update_root(trans, tree_root, 865 &root->root_key, 866 &root->root_item); 867 if (ret) 868 return ret; 869 870 old_root_used = btrfs_root_used(&root->root_item); 871 ret = btrfs_write_dirty_block_groups(trans, root); 872 if (ret) 873 return ret; 874 } 875 876 if (root != root->fs_info->extent_root) 877 switch_commit_root(root); 878 879 return 0; 880 } 881 882 /* 883 * update all the cowonly tree roots on disk 884 * 885 * The error handling in this function may not be obvious. Any of the 886 * failures will cause the file system to go offline. We still need 887 * to clean up the delayed refs. 888 */ 889 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 890 struct btrfs_root *root) 891 { 892 struct btrfs_fs_info *fs_info = root->fs_info; 893 struct list_head *next; 894 struct extent_buffer *eb; 895 int ret; 896 897 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 898 if (ret) 899 return ret; 900 901 eb = btrfs_lock_root_node(fs_info->tree_root); 902 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 903 0, &eb); 904 btrfs_tree_unlock(eb); 905 free_extent_buffer(eb); 906 907 if (ret) 908 return ret; 909 910 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 911 if (ret) 912 return ret; 913 914 ret = btrfs_run_dev_stats(trans, root->fs_info); 915 WARN_ON(ret); 916 ret = btrfs_run_dev_replace(trans, root->fs_info); 917 WARN_ON(ret); 918 919 ret = btrfs_run_qgroups(trans, root->fs_info); 920 BUG_ON(ret); 921 922 /* run_qgroups might have added some more refs */ 923 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 924 BUG_ON(ret); 925 926 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 927 next = fs_info->dirty_cowonly_roots.next; 928 list_del_init(next); 929 root = list_entry(next, struct btrfs_root, dirty_list); 930 931 ret = update_cowonly_root(trans, root); 932 if (ret) 933 return ret; 934 } 935 936 down_write(&fs_info->extent_commit_sem); 937 switch_commit_root(fs_info->extent_root); 938 up_write(&fs_info->extent_commit_sem); 939 940 btrfs_after_dev_replace_commit(fs_info); 941 942 return 0; 943 } 944 945 /* 946 * dead roots are old snapshots that need to be deleted. This allocates 947 * a dirty root struct and adds it into the list of dead roots that need to 948 * be deleted 949 */ 950 int btrfs_add_dead_root(struct btrfs_root *root) 951 { 952 spin_lock(&root->fs_info->trans_lock); 953 list_add(&root->root_list, &root->fs_info->dead_roots); 954 spin_unlock(&root->fs_info->trans_lock); 955 return 0; 956 } 957 958 /* 959 * update all the cowonly tree roots on disk 960 */ 961 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 962 struct btrfs_root *root) 963 { 964 struct btrfs_root *gang[8]; 965 struct btrfs_fs_info *fs_info = root->fs_info; 966 int i; 967 int ret; 968 int err = 0; 969 970 spin_lock(&fs_info->fs_roots_radix_lock); 971 while (1) { 972 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 973 (void **)gang, 0, 974 ARRAY_SIZE(gang), 975 BTRFS_ROOT_TRANS_TAG); 976 if (ret == 0) 977 break; 978 for (i = 0; i < ret; i++) { 979 root = gang[i]; 980 radix_tree_tag_clear(&fs_info->fs_roots_radix, 981 (unsigned long)root->root_key.objectid, 982 BTRFS_ROOT_TRANS_TAG); 983 spin_unlock(&fs_info->fs_roots_radix_lock); 984 985 btrfs_free_log(trans, root); 986 btrfs_update_reloc_root(trans, root); 987 btrfs_orphan_commit_root(trans, root); 988 989 btrfs_save_ino_cache(root, trans); 990 991 /* see comments in should_cow_block() */ 992 root->force_cow = 0; 993 smp_wmb(); 994 995 if (root->commit_root != root->node) { 996 mutex_lock(&root->fs_commit_mutex); 997 switch_commit_root(root); 998 btrfs_unpin_free_ino(root); 999 mutex_unlock(&root->fs_commit_mutex); 1000 1001 btrfs_set_root_node(&root->root_item, 1002 root->node); 1003 } 1004 1005 err = btrfs_update_root(trans, fs_info->tree_root, 1006 &root->root_key, 1007 &root->root_item); 1008 spin_lock(&fs_info->fs_roots_radix_lock); 1009 if (err) 1010 break; 1011 } 1012 } 1013 spin_unlock(&fs_info->fs_roots_radix_lock); 1014 return err; 1015 } 1016 1017 /* 1018 * defrag a given btree. 1019 * Every leaf in the btree is read and defragged. 1020 */ 1021 int btrfs_defrag_root(struct btrfs_root *root) 1022 { 1023 struct btrfs_fs_info *info = root->fs_info; 1024 struct btrfs_trans_handle *trans; 1025 int ret; 1026 1027 if (xchg(&root->defrag_running, 1)) 1028 return 0; 1029 1030 while (1) { 1031 trans = btrfs_start_transaction(root, 0); 1032 if (IS_ERR(trans)) 1033 return PTR_ERR(trans); 1034 1035 ret = btrfs_defrag_leaves(trans, root); 1036 1037 btrfs_end_transaction(trans, root); 1038 btrfs_btree_balance_dirty(info->tree_root); 1039 cond_resched(); 1040 1041 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1042 break; 1043 1044 if (btrfs_defrag_cancelled(root->fs_info)) { 1045 printk(KERN_DEBUG "btrfs: defrag_root cancelled\n"); 1046 ret = -EAGAIN; 1047 break; 1048 } 1049 } 1050 root->defrag_running = 0; 1051 return ret; 1052 } 1053 1054 /* 1055 * new snapshots need to be created at a very specific time in the 1056 * transaction commit. This does the actual creation 1057 */ 1058 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1059 struct btrfs_fs_info *fs_info, 1060 struct btrfs_pending_snapshot *pending) 1061 { 1062 struct btrfs_key key; 1063 struct btrfs_root_item *new_root_item; 1064 struct btrfs_root *tree_root = fs_info->tree_root; 1065 struct btrfs_root *root = pending->root; 1066 struct btrfs_root *parent_root; 1067 struct btrfs_block_rsv *rsv; 1068 struct inode *parent_inode; 1069 struct btrfs_path *path; 1070 struct btrfs_dir_item *dir_item; 1071 struct dentry *parent; 1072 struct dentry *dentry; 1073 struct extent_buffer *tmp; 1074 struct extent_buffer *old; 1075 struct timespec cur_time = CURRENT_TIME; 1076 int ret; 1077 u64 to_reserve = 0; 1078 u64 index = 0; 1079 u64 objectid; 1080 u64 root_flags; 1081 uuid_le new_uuid; 1082 1083 path = btrfs_alloc_path(); 1084 if (!path) { 1085 ret = pending->error = -ENOMEM; 1086 goto path_alloc_fail; 1087 } 1088 1089 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1090 if (!new_root_item) { 1091 ret = pending->error = -ENOMEM; 1092 goto root_item_alloc_fail; 1093 } 1094 1095 ret = btrfs_find_free_objectid(tree_root, &objectid); 1096 if (ret) { 1097 pending->error = ret; 1098 goto no_free_objectid; 1099 } 1100 1101 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve); 1102 1103 if (to_reserve > 0) { 1104 ret = btrfs_block_rsv_add(root, &pending->block_rsv, 1105 to_reserve, 1106 BTRFS_RESERVE_NO_FLUSH); 1107 if (ret) { 1108 pending->error = ret; 1109 goto no_free_objectid; 1110 } 1111 } 1112 1113 ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid, 1114 objectid, pending->inherit); 1115 if (ret) { 1116 pending->error = ret; 1117 goto no_free_objectid; 1118 } 1119 1120 key.objectid = objectid; 1121 key.offset = (u64)-1; 1122 key.type = BTRFS_ROOT_ITEM_KEY; 1123 1124 rsv = trans->block_rsv; 1125 trans->block_rsv = &pending->block_rsv; 1126 trans->bytes_reserved = trans->block_rsv->reserved; 1127 1128 dentry = pending->dentry; 1129 parent = dget_parent(dentry); 1130 parent_inode = parent->d_inode; 1131 parent_root = BTRFS_I(parent_inode)->root; 1132 record_root_in_trans(trans, parent_root); 1133 1134 /* 1135 * insert the directory item 1136 */ 1137 ret = btrfs_set_inode_index(parent_inode, &index); 1138 BUG_ON(ret); /* -ENOMEM */ 1139 1140 /* check if there is a file/dir which has the same name. */ 1141 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1142 btrfs_ino(parent_inode), 1143 dentry->d_name.name, 1144 dentry->d_name.len, 0); 1145 if (dir_item != NULL && !IS_ERR(dir_item)) { 1146 pending->error = -EEXIST; 1147 goto fail; 1148 } else if (IS_ERR(dir_item)) { 1149 ret = PTR_ERR(dir_item); 1150 btrfs_abort_transaction(trans, root, ret); 1151 goto fail; 1152 } 1153 btrfs_release_path(path); 1154 1155 /* 1156 * pull in the delayed directory update 1157 * and the delayed inode item 1158 * otherwise we corrupt the FS during 1159 * snapshot 1160 */ 1161 ret = btrfs_run_delayed_items(trans, root); 1162 if (ret) { /* Transaction aborted */ 1163 btrfs_abort_transaction(trans, root, ret); 1164 goto fail; 1165 } 1166 1167 record_root_in_trans(trans, root); 1168 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1169 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1170 btrfs_check_and_init_root_item(new_root_item); 1171 1172 root_flags = btrfs_root_flags(new_root_item); 1173 if (pending->readonly) 1174 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1175 else 1176 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1177 btrfs_set_root_flags(new_root_item, root_flags); 1178 1179 btrfs_set_root_generation_v2(new_root_item, 1180 trans->transid); 1181 uuid_le_gen(&new_uuid); 1182 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1183 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1184 BTRFS_UUID_SIZE); 1185 new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec); 1186 new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec); 1187 btrfs_set_root_otransid(new_root_item, trans->transid); 1188 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1189 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1190 btrfs_set_root_stransid(new_root_item, 0); 1191 btrfs_set_root_rtransid(new_root_item, 0); 1192 1193 old = btrfs_lock_root_node(root); 1194 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1195 if (ret) { 1196 btrfs_tree_unlock(old); 1197 free_extent_buffer(old); 1198 btrfs_abort_transaction(trans, root, ret); 1199 goto fail; 1200 } 1201 1202 btrfs_set_lock_blocking(old); 1203 1204 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1205 /* clean up in any case */ 1206 btrfs_tree_unlock(old); 1207 free_extent_buffer(old); 1208 if (ret) { 1209 btrfs_abort_transaction(trans, root, ret); 1210 goto fail; 1211 } 1212 1213 /* see comments in should_cow_block() */ 1214 root->force_cow = 1; 1215 smp_wmb(); 1216 1217 btrfs_set_root_node(new_root_item, tmp); 1218 /* record when the snapshot was created in key.offset */ 1219 key.offset = trans->transid; 1220 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1221 btrfs_tree_unlock(tmp); 1222 free_extent_buffer(tmp); 1223 if (ret) { 1224 btrfs_abort_transaction(trans, root, ret); 1225 goto fail; 1226 } 1227 1228 /* 1229 * insert root back/forward references 1230 */ 1231 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1232 parent_root->root_key.objectid, 1233 btrfs_ino(parent_inode), index, 1234 dentry->d_name.name, dentry->d_name.len); 1235 if (ret) { 1236 btrfs_abort_transaction(trans, root, ret); 1237 goto fail; 1238 } 1239 1240 key.offset = (u64)-1; 1241 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1242 if (IS_ERR(pending->snap)) { 1243 ret = PTR_ERR(pending->snap); 1244 btrfs_abort_transaction(trans, root, ret); 1245 goto fail; 1246 } 1247 1248 ret = btrfs_reloc_post_snapshot(trans, pending); 1249 if (ret) { 1250 btrfs_abort_transaction(trans, root, ret); 1251 goto fail; 1252 } 1253 1254 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1255 if (ret) { 1256 btrfs_abort_transaction(trans, root, ret); 1257 goto fail; 1258 } 1259 1260 ret = btrfs_insert_dir_item(trans, parent_root, 1261 dentry->d_name.name, dentry->d_name.len, 1262 parent_inode, &key, 1263 BTRFS_FT_DIR, index); 1264 /* We have check then name at the beginning, so it is impossible. */ 1265 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1266 if (ret) { 1267 btrfs_abort_transaction(trans, root, ret); 1268 goto fail; 1269 } 1270 1271 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1272 dentry->d_name.len * 2); 1273 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1274 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1275 if (ret) 1276 btrfs_abort_transaction(trans, root, ret); 1277 fail: 1278 dput(parent); 1279 trans->block_rsv = rsv; 1280 trans->bytes_reserved = 0; 1281 no_free_objectid: 1282 kfree(new_root_item); 1283 root_item_alloc_fail: 1284 btrfs_free_path(path); 1285 path_alloc_fail: 1286 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1); 1287 return ret; 1288 } 1289 1290 /* 1291 * create all the snapshots we've scheduled for creation 1292 */ 1293 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1294 struct btrfs_fs_info *fs_info) 1295 { 1296 struct btrfs_pending_snapshot *pending; 1297 struct list_head *head = &trans->transaction->pending_snapshots; 1298 1299 list_for_each_entry(pending, head, list) 1300 create_pending_snapshot(trans, fs_info, pending); 1301 return 0; 1302 } 1303 1304 static void update_super_roots(struct btrfs_root *root) 1305 { 1306 struct btrfs_root_item *root_item; 1307 struct btrfs_super_block *super; 1308 1309 super = root->fs_info->super_copy; 1310 1311 root_item = &root->fs_info->chunk_root->root_item; 1312 super->chunk_root = root_item->bytenr; 1313 super->chunk_root_generation = root_item->generation; 1314 super->chunk_root_level = root_item->level; 1315 1316 root_item = &root->fs_info->tree_root->root_item; 1317 super->root = root_item->bytenr; 1318 super->generation = root_item->generation; 1319 super->root_level = root_item->level; 1320 if (btrfs_test_opt(root, SPACE_CACHE)) 1321 super->cache_generation = root_item->generation; 1322 } 1323 1324 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1325 { 1326 int ret = 0; 1327 spin_lock(&info->trans_lock); 1328 if (info->running_transaction) 1329 ret = info->running_transaction->in_commit; 1330 spin_unlock(&info->trans_lock); 1331 return ret; 1332 } 1333 1334 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1335 { 1336 int ret = 0; 1337 spin_lock(&info->trans_lock); 1338 if (info->running_transaction) 1339 ret = info->running_transaction->blocked; 1340 spin_unlock(&info->trans_lock); 1341 return ret; 1342 } 1343 1344 /* 1345 * wait for the current transaction commit to start and block subsequent 1346 * transaction joins 1347 */ 1348 static void wait_current_trans_commit_start(struct btrfs_root *root, 1349 struct btrfs_transaction *trans) 1350 { 1351 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit); 1352 } 1353 1354 /* 1355 * wait for the current transaction to start and then become unblocked. 1356 * caller holds ref. 1357 */ 1358 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1359 struct btrfs_transaction *trans) 1360 { 1361 wait_event(root->fs_info->transaction_wait, 1362 trans->commit_done || (trans->in_commit && !trans->blocked)); 1363 } 1364 1365 /* 1366 * commit transactions asynchronously. once btrfs_commit_transaction_async 1367 * returns, any subsequent transaction will not be allowed to join. 1368 */ 1369 struct btrfs_async_commit { 1370 struct btrfs_trans_handle *newtrans; 1371 struct btrfs_root *root; 1372 struct work_struct work; 1373 }; 1374 1375 static void do_async_commit(struct work_struct *work) 1376 { 1377 struct btrfs_async_commit *ac = 1378 container_of(work, struct btrfs_async_commit, work); 1379 1380 /* 1381 * We've got freeze protection passed with the transaction. 1382 * Tell lockdep about it. 1383 */ 1384 if (ac->newtrans->type < TRANS_JOIN_NOLOCK) 1385 rwsem_acquire_read( 1386 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1387 0, 1, _THIS_IP_); 1388 1389 current->journal_info = ac->newtrans; 1390 1391 btrfs_commit_transaction(ac->newtrans, ac->root); 1392 kfree(ac); 1393 } 1394 1395 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1396 struct btrfs_root *root, 1397 int wait_for_unblock) 1398 { 1399 struct btrfs_async_commit *ac; 1400 struct btrfs_transaction *cur_trans; 1401 1402 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1403 if (!ac) 1404 return -ENOMEM; 1405 1406 INIT_WORK(&ac->work, do_async_commit); 1407 ac->root = root; 1408 ac->newtrans = btrfs_join_transaction(root); 1409 if (IS_ERR(ac->newtrans)) { 1410 int err = PTR_ERR(ac->newtrans); 1411 kfree(ac); 1412 return err; 1413 } 1414 1415 /* take transaction reference */ 1416 cur_trans = trans->transaction; 1417 atomic_inc(&cur_trans->use_count); 1418 1419 btrfs_end_transaction(trans, root); 1420 1421 /* 1422 * Tell lockdep we've released the freeze rwsem, since the 1423 * async commit thread will be the one to unlock it. 1424 */ 1425 if (trans->type < TRANS_JOIN_NOLOCK) 1426 rwsem_release( 1427 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1], 1428 1, _THIS_IP_); 1429 1430 schedule_work(&ac->work); 1431 1432 /* wait for transaction to start and unblock */ 1433 if (wait_for_unblock) 1434 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1435 else 1436 wait_current_trans_commit_start(root, cur_trans); 1437 1438 if (current->journal_info == trans) 1439 current->journal_info = NULL; 1440 1441 put_transaction(cur_trans); 1442 return 0; 1443 } 1444 1445 1446 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1447 struct btrfs_root *root, int err) 1448 { 1449 struct btrfs_transaction *cur_trans = trans->transaction; 1450 1451 WARN_ON(trans->use_count > 1); 1452 1453 btrfs_abort_transaction(trans, root, err); 1454 1455 spin_lock(&root->fs_info->trans_lock); 1456 list_del_init(&cur_trans->list); 1457 if (cur_trans == root->fs_info->running_transaction) { 1458 root->fs_info->running_transaction = NULL; 1459 root->fs_info->trans_no_join = 0; 1460 } 1461 spin_unlock(&root->fs_info->trans_lock); 1462 1463 btrfs_cleanup_one_transaction(trans->transaction, root); 1464 1465 put_transaction(cur_trans); 1466 put_transaction(cur_trans); 1467 1468 trace_btrfs_transaction_commit(root); 1469 1470 btrfs_scrub_continue(root); 1471 1472 if (current->journal_info == trans) 1473 current->journal_info = NULL; 1474 1475 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1476 } 1477 1478 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans, 1479 struct btrfs_root *root) 1480 { 1481 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT); 1482 int snap_pending = 0; 1483 int ret; 1484 1485 if (!flush_on_commit) { 1486 spin_lock(&root->fs_info->trans_lock); 1487 if (!list_empty(&trans->transaction->pending_snapshots)) 1488 snap_pending = 1; 1489 spin_unlock(&root->fs_info->trans_lock); 1490 } 1491 1492 if (flush_on_commit || snap_pending) { 1493 ret = btrfs_start_delalloc_inodes(root, 1); 1494 if (ret) 1495 return ret; 1496 btrfs_wait_ordered_extents(root, 1); 1497 } 1498 1499 ret = btrfs_run_delayed_items(trans, root); 1500 if (ret) 1501 return ret; 1502 1503 /* 1504 * running the delayed items may have added new refs. account 1505 * them now so that they hinder processing of more delayed refs 1506 * as little as possible. 1507 */ 1508 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info); 1509 1510 /* 1511 * rename don't use btrfs_join_transaction, so, once we 1512 * set the transaction to blocked above, we aren't going 1513 * to get any new ordered operations. We can safely run 1514 * it here and no for sure that nothing new will be added 1515 * to the list 1516 */ 1517 ret = btrfs_run_ordered_operations(trans, root, 1); 1518 1519 return ret; 1520 } 1521 1522 /* 1523 * btrfs_transaction state sequence: 1524 * in_commit = 0, blocked = 0 (initial) 1525 * in_commit = 1, blocked = 1 1526 * blocked = 0 1527 * commit_done = 1 1528 */ 1529 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1530 struct btrfs_root *root) 1531 { 1532 unsigned long joined = 0; 1533 struct btrfs_transaction *cur_trans = trans->transaction; 1534 struct btrfs_transaction *prev_trans = NULL; 1535 DEFINE_WAIT(wait); 1536 int ret; 1537 int should_grow = 0; 1538 unsigned long now = get_seconds(); 1539 1540 ret = btrfs_run_ordered_operations(trans, root, 0); 1541 if (ret) { 1542 btrfs_abort_transaction(trans, root, ret); 1543 btrfs_end_transaction(trans, root); 1544 return ret; 1545 } 1546 1547 /* Stop the commit early if ->aborted is set */ 1548 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1549 ret = cur_trans->aborted; 1550 btrfs_end_transaction(trans, root); 1551 return ret; 1552 } 1553 1554 /* make a pass through all the delayed refs we have so far 1555 * any runnings procs may add more while we are here 1556 */ 1557 ret = btrfs_run_delayed_refs(trans, root, 0); 1558 if (ret) { 1559 btrfs_end_transaction(trans, root); 1560 return ret; 1561 } 1562 1563 btrfs_trans_release_metadata(trans, root); 1564 trans->block_rsv = NULL; 1565 if (trans->qgroup_reserved) { 1566 btrfs_qgroup_free(root, trans->qgroup_reserved); 1567 trans->qgroup_reserved = 0; 1568 } 1569 1570 cur_trans = trans->transaction; 1571 1572 /* 1573 * set the flushing flag so procs in this transaction have to 1574 * start sending their work down. 1575 */ 1576 cur_trans->delayed_refs.flushing = 1; 1577 1578 if (!list_empty(&trans->new_bgs)) 1579 btrfs_create_pending_block_groups(trans, root); 1580 1581 ret = btrfs_run_delayed_refs(trans, root, 0); 1582 if (ret) { 1583 btrfs_end_transaction(trans, root); 1584 return ret; 1585 } 1586 1587 spin_lock(&cur_trans->commit_lock); 1588 if (cur_trans->in_commit) { 1589 spin_unlock(&cur_trans->commit_lock); 1590 atomic_inc(&cur_trans->use_count); 1591 ret = btrfs_end_transaction(trans, root); 1592 1593 wait_for_commit(root, cur_trans); 1594 1595 put_transaction(cur_trans); 1596 1597 return ret; 1598 } 1599 1600 trans->transaction->in_commit = 1; 1601 trans->transaction->blocked = 1; 1602 spin_unlock(&cur_trans->commit_lock); 1603 wake_up(&root->fs_info->transaction_blocked_wait); 1604 1605 spin_lock(&root->fs_info->trans_lock); 1606 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1607 prev_trans = list_entry(cur_trans->list.prev, 1608 struct btrfs_transaction, list); 1609 if (!prev_trans->commit_done) { 1610 atomic_inc(&prev_trans->use_count); 1611 spin_unlock(&root->fs_info->trans_lock); 1612 1613 wait_for_commit(root, prev_trans); 1614 1615 put_transaction(prev_trans); 1616 } else { 1617 spin_unlock(&root->fs_info->trans_lock); 1618 } 1619 } else { 1620 spin_unlock(&root->fs_info->trans_lock); 1621 } 1622 1623 if (!btrfs_test_opt(root, SSD) && 1624 (now < cur_trans->start_time || now - cur_trans->start_time < 1)) 1625 should_grow = 1; 1626 1627 do { 1628 joined = cur_trans->num_joined; 1629 1630 WARN_ON(cur_trans != trans->transaction); 1631 1632 ret = btrfs_flush_all_pending_stuffs(trans, root); 1633 if (ret) 1634 goto cleanup_transaction; 1635 1636 prepare_to_wait(&cur_trans->writer_wait, &wait, 1637 TASK_UNINTERRUPTIBLE); 1638 1639 if (atomic_read(&cur_trans->num_writers) > 1) 1640 schedule_timeout(MAX_SCHEDULE_TIMEOUT); 1641 else if (should_grow) 1642 schedule_timeout(1); 1643 1644 finish_wait(&cur_trans->writer_wait, &wait); 1645 } while (atomic_read(&cur_trans->num_writers) > 1 || 1646 (should_grow && cur_trans->num_joined != joined)); 1647 1648 ret = btrfs_flush_all_pending_stuffs(trans, root); 1649 if (ret) 1650 goto cleanup_transaction; 1651 1652 /* 1653 * Ok now we need to make sure to block out any other joins while we 1654 * commit the transaction. We could have started a join before setting 1655 * no_join so make sure to wait for num_writers to == 1 again. 1656 */ 1657 spin_lock(&root->fs_info->trans_lock); 1658 root->fs_info->trans_no_join = 1; 1659 spin_unlock(&root->fs_info->trans_lock); 1660 wait_event(cur_trans->writer_wait, 1661 atomic_read(&cur_trans->num_writers) == 1); 1662 1663 /* ->aborted might be set after the previous check, so check it */ 1664 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1665 ret = cur_trans->aborted; 1666 goto cleanup_transaction; 1667 } 1668 /* 1669 * the reloc mutex makes sure that we stop 1670 * the balancing code from coming in and moving 1671 * extents around in the middle of the commit 1672 */ 1673 mutex_lock(&root->fs_info->reloc_mutex); 1674 1675 /* 1676 * We needn't worry about the delayed items because we will 1677 * deal with them in create_pending_snapshot(), which is the 1678 * core function of the snapshot creation. 1679 */ 1680 ret = create_pending_snapshots(trans, root->fs_info); 1681 if (ret) { 1682 mutex_unlock(&root->fs_info->reloc_mutex); 1683 goto cleanup_transaction; 1684 } 1685 1686 /* 1687 * We insert the dir indexes of the snapshots and update the inode 1688 * of the snapshots' parents after the snapshot creation, so there 1689 * are some delayed items which are not dealt with. Now deal with 1690 * them. 1691 * 1692 * We needn't worry that this operation will corrupt the snapshots, 1693 * because all the tree which are snapshoted will be forced to COW 1694 * the nodes and leaves. 1695 */ 1696 ret = btrfs_run_delayed_items(trans, root); 1697 if (ret) { 1698 mutex_unlock(&root->fs_info->reloc_mutex); 1699 goto cleanup_transaction; 1700 } 1701 1702 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1703 if (ret) { 1704 mutex_unlock(&root->fs_info->reloc_mutex); 1705 goto cleanup_transaction; 1706 } 1707 1708 /* 1709 * make sure none of the code above managed to slip in a 1710 * delayed item 1711 */ 1712 btrfs_assert_delayed_root_empty(root); 1713 1714 WARN_ON(cur_trans != trans->transaction); 1715 1716 btrfs_scrub_pause(root); 1717 /* btrfs_commit_tree_roots is responsible for getting the 1718 * various roots consistent with each other. Every pointer 1719 * in the tree of tree roots has to point to the most up to date 1720 * root for every subvolume and other tree. So, we have to keep 1721 * the tree logging code from jumping in and changing any 1722 * of the trees. 1723 * 1724 * At this point in the commit, there can't be any tree-log 1725 * writers, but a little lower down we drop the trans mutex 1726 * and let new people in. By holding the tree_log_mutex 1727 * from now until after the super is written, we avoid races 1728 * with the tree-log code. 1729 */ 1730 mutex_lock(&root->fs_info->tree_log_mutex); 1731 1732 ret = commit_fs_roots(trans, root); 1733 if (ret) { 1734 mutex_unlock(&root->fs_info->tree_log_mutex); 1735 mutex_unlock(&root->fs_info->reloc_mutex); 1736 goto cleanup_transaction; 1737 } 1738 1739 /* commit_fs_roots gets rid of all the tree log roots, it is now 1740 * safe to free the root of tree log roots 1741 */ 1742 btrfs_free_log_root_tree(trans, root->fs_info); 1743 1744 ret = commit_cowonly_roots(trans, root); 1745 if (ret) { 1746 mutex_unlock(&root->fs_info->tree_log_mutex); 1747 mutex_unlock(&root->fs_info->reloc_mutex); 1748 goto cleanup_transaction; 1749 } 1750 1751 /* 1752 * The tasks which save the space cache and inode cache may also 1753 * update ->aborted, check it. 1754 */ 1755 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1756 ret = cur_trans->aborted; 1757 mutex_unlock(&root->fs_info->tree_log_mutex); 1758 mutex_unlock(&root->fs_info->reloc_mutex); 1759 goto cleanup_transaction; 1760 } 1761 1762 btrfs_prepare_extent_commit(trans, root); 1763 1764 cur_trans = root->fs_info->running_transaction; 1765 1766 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 1767 root->fs_info->tree_root->node); 1768 switch_commit_root(root->fs_info->tree_root); 1769 1770 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 1771 root->fs_info->chunk_root->node); 1772 switch_commit_root(root->fs_info->chunk_root); 1773 1774 assert_qgroups_uptodate(trans); 1775 update_super_roots(root); 1776 1777 if (!root->fs_info->log_root_recovering) { 1778 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 1779 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 1780 } 1781 1782 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 1783 sizeof(*root->fs_info->super_copy)); 1784 1785 trans->transaction->blocked = 0; 1786 spin_lock(&root->fs_info->trans_lock); 1787 root->fs_info->running_transaction = NULL; 1788 root->fs_info->trans_no_join = 0; 1789 spin_unlock(&root->fs_info->trans_lock); 1790 mutex_unlock(&root->fs_info->reloc_mutex); 1791 1792 wake_up(&root->fs_info->transaction_wait); 1793 1794 ret = btrfs_write_and_wait_transaction(trans, root); 1795 if (ret) { 1796 btrfs_error(root->fs_info, ret, 1797 "Error while writing out transaction."); 1798 mutex_unlock(&root->fs_info->tree_log_mutex); 1799 goto cleanup_transaction; 1800 } 1801 1802 ret = write_ctree_super(trans, root, 0); 1803 if (ret) { 1804 mutex_unlock(&root->fs_info->tree_log_mutex); 1805 goto cleanup_transaction; 1806 } 1807 1808 /* 1809 * the super is written, we can safely allow the tree-loggers 1810 * to go about their business 1811 */ 1812 mutex_unlock(&root->fs_info->tree_log_mutex); 1813 1814 btrfs_finish_extent_commit(trans, root); 1815 1816 cur_trans->commit_done = 1; 1817 1818 root->fs_info->last_trans_committed = cur_trans->transid; 1819 1820 wake_up(&cur_trans->commit_wait); 1821 1822 spin_lock(&root->fs_info->trans_lock); 1823 list_del_init(&cur_trans->list); 1824 spin_unlock(&root->fs_info->trans_lock); 1825 1826 put_transaction(cur_trans); 1827 put_transaction(cur_trans); 1828 1829 if (trans->type < TRANS_JOIN_NOLOCK) 1830 sb_end_intwrite(root->fs_info->sb); 1831 1832 trace_btrfs_transaction_commit(root); 1833 1834 btrfs_scrub_continue(root); 1835 1836 if (current->journal_info == trans) 1837 current->journal_info = NULL; 1838 1839 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1840 1841 if (current != root->fs_info->transaction_kthread) 1842 btrfs_run_delayed_iputs(root); 1843 1844 return ret; 1845 1846 cleanup_transaction: 1847 btrfs_trans_release_metadata(trans, root); 1848 trans->block_rsv = NULL; 1849 if (trans->qgroup_reserved) { 1850 btrfs_qgroup_free(root, trans->qgroup_reserved); 1851 trans->qgroup_reserved = 0; 1852 } 1853 btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n"); 1854 // WARN_ON(1); 1855 if (current->journal_info == trans) 1856 current->journal_info = NULL; 1857 cleanup_transaction(trans, root, ret); 1858 1859 return ret; 1860 } 1861 1862 /* 1863 * interface function to delete all the snapshots we have scheduled for deletion 1864 */ 1865 int btrfs_clean_old_snapshots(struct btrfs_root *root) 1866 { 1867 LIST_HEAD(list); 1868 struct btrfs_fs_info *fs_info = root->fs_info; 1869 1870 spin_lock(&fs_info->trans_lock); 1871 list_splice_init(&fs_info->dead_roots, &list); 1872 spin_unlock(&fs_info->trans_lock); 1873 1874 while (!list_empty(&list)) { 1875 int ret; 1876 1877 root = list_entry(list.next, struct btrfs_root, root_list); 1878 list_del(&root->root_list); 1879 1880 btrfs_kill_all_delayed_nodes(root); 1881 1882 if (btrfs_header_backref_rev(root->node) < 1883 BTRFS_MIXED_BACKREF_REV) 1884 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 1885 else 1886 ret =btrfs_drop_snapshot(root, NULL, 1, 0); 1887 BUG_ON(ret < 0); 1888 } 1889 return 0; 1890 } 1891