xref: /openbmc/linux/fs/btrfs/transaction.c (revision 2382c5cc7ed0396b61a359765bf5ee125b0a2f46)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 				       int type)
55 {
56 	return !(trans->in_commit &&
57 		 type != TRANS_JOIN &&
58 		 type != TRANS_JOIN_NOLOCK);
59 }
60 
61 /*
62  * either allocate a new transaction or hop into the existing one
63  */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 	struct btrfs_transaction *cur_trans;
67 	struct btrfs_fs_info *fs_info = root->fs_info;
68 
69 	spin_lock(&fs_info->trans_lock);
70 loop:
71 	/* The file system has been taken offline. No new transactions. */
72 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 		spin_unlock(&fs_info->trans_lock);
74 		return -EROFS;
75 	}
76 
77 	if (fs_info->trans_no_join) {
78 		/*
79 		 * If we are JOIN_NOLOCK we're already committing a current
80 		 * transaction, we just need a handle to deal with something
81 		 * when committing the transaction, such as inode cache and
82 		 * space cache. It is a special case.
83 		 */
84 		if (type != TRANS_JOIN_NOLOCK) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return -EBUSY;
87 		}
88 	}
89 
90 	cur_trans = fs_info->running_transaction;
91 	if (cur_trans) {
92 		if (cur_trans->aborted) {
93 			spin_unlock(&fs_info->trans_lock);
94 			return cur_trans->aborted;
95 		}
96 		if (!can_join_transaction(cur_trans, type)) {
97 			spin_unlock(&fs_info->trans_lock);
98 			return -EBUSY;
99 		}
100 		atomic_inc(&cur_trans->use_count);
101 		atomic_inc(&cur_trans->num_writers);
102 		cur_trans->num_joined++;
103 		spin_unlock(&fs_info->trans_lock);
104 		return 0;
105 	}
106 	spin_unlock(&fs_info->trans_lock);
107 
108 	/*
109 	 * If we are ATTACH, we just want to catch the current transaction,
110 	 * and commit it. If there is no transaction, just return ENOENT.
111 	 */
112 	if (type == TRANS_ATTACH)
113 		return -ENOENT;
114 
115 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 	if (!cur_trans)
117 		return -ENOMEM;
118 
119 	spin_lock(&fs_info->trans_lock);
120 	if (fs_info->running_transaction) {
121 		/*
122 		 * someone started a transaction after we unlocked.  Make sure
123 		 * to redo the trans_no_join checks above
124 		 */
125 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 		cur_trans = fs_info->running_transaction;
127 		goto loop;
128 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
129 		spin_unlock(&fs_info->trans_lock);
130 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
131 		return -EROFS;
132 	}
133 
134 	atomic_set(&cur_trans->num_writers, 1);
135 	cur_trans->num_joined = 0;
136 	init_waitqueue_head(&cur_trans->writer_wait);
137 	init_waitqueue_head(&cur_trans->commit_wait);
138 	cur_trans->in_commit = 0;
139 	cur_trans->blocked = 0;
140 	/*
141 	 * One for this trans handle, one so it will live on until we
142 	 * commit the transaction.
143 	 */
144 	atomic_set(&cur_trans->use_count, 2);
145 	cur_trans->commit_done = 0;
146 	cur_trans->start_time = get_seconds();
147 
148 	cur_trans->delayed_refs.root = RB_ROOT;
149 	cur_trans->delayed_refs.num_entries = 0;
150 	cur_trans->delayed_refs.num_heads_ready = 0;
151 	cur_trans->delayed_refs.num_heads = 0;
152 	cur_trans->delayed_refs.flushing = 0;
153 	cur_trans->delayed_refs.run_delayed_start = 0;
154 
155 	/*
156 	 * although the tree mod log is per file system and not per transaction,
157 	 * the log must never go across transaction boundaries.
158 	 */
159 	smp_mb();
160 	if (!list_empty(&fs_info->tree_mod_seq_list))
161 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
162 			"creating a fresh transaction\n");
163 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
164 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
165 			"creating a fresh transaction\n");
166 	atomic_set(&fs_info->tree_mod_seq, 0);
167 
168 	spin_lock_init(&cur_trans->commit_lock);
169 	spin_lock_init(&cur_trans->delayed_refs.lock);
170 	atomic_set(&cur_trans->delayed_refs.procs_running_refs, 0);
171 	atomic_set(&cur_trans->delayed_refs.ref_seq, 0);
172 	init_waitqueue_head(&cur_trans->delayed_refs.wait);
173 
174 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
175 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
176 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
177 	extent_io_tree_init(&cur_trans->dirty_pages,
178 			     fs_info->btree_inode->i_mapping);
179 	fs_info->generation++;
180 	cur_trans->transid = fs_info->generation;
181 	fs_info->running_transaction = cur_trans;
182 	cur_trans->aborted = 0;
183 	spin_unlock(&fs_info->trans_lock);
184 
185 	return 0;
186 }
187 
188 /*
189  * this does all the record keeping required to make sure that a reference
190  * counted root is properly recorded in a given transaction.  This is required
191  * to make sure the old root from before we joined the transaction is deleted
192  * when the transaction commits
193  */
194 static int record_root_in_trans(struct btrfs_trans_handle *trans,
195 			       struct btrfs_root *root)
196 {
197 	if (root->ref_cows && root->last_trans < trans->transid) {
198 		WARN_ON(root == root->fs_info->extent_root);
199 		WARN_ON(root->commit_root != root->node);
200 
201 		/*
202 		 * see below for in_trans_setup usage rules
203 		 * we have the reloc mutex held now, so there
204 		 * is only one writer in this function
205 		 */
206 		root->in_trans_setup = 1;
207 
208 		/* make sure readers find in_trans_setup before
209 		 * they find our root->last_trans update
210 		 */
211 		smp_wmb();
212 
213 		spin_lock(&root->fs_info->fs_roots_radix_lock);
214 		if (root->last_trans == trans->transid) {
215 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
216 			return 0;
217 		}
218 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
219 			   (unsigned long)root->root_key.objectid,
220 			   BTRFS_ROOT_TRANS_TAG);
221 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
222 		root->last_trans = trans->transid;
223 
224 		/* this is pretty tricky.  We don't want to
225 		 * take the relocation lock in btrfs_record_root_in_trans
226 		 * unless we're really doing the first setup for this root in
227 		 * this transaction.
228 		 *
229 		 * Normally we'd use root->last_trans as a flag to decide
230 		 * if we want to take the expensive mutex.
231 		 *
232 		 * But, we have to set root->last_trans before we
233 		 * init the relocation root, otherwise, we trip over warnings
234 		 * in ctree.c.  The solution used here is to flag ourselves
235 		 * with root->in_trans_setup.  When this is 1, we're still
236 		 * fixing up the reloc trees and everyone must wait.
237 		 *
238 		 * When this is zero, they can trust root->last_trans and fly
239 		 * through btrfs_record_root_in_trans without having to take the
240 		 * lock.  smp_wmb() makes sure that all the writes above are
241 		 * done before we pop in the zero below
242 		 */
243 		btrfs_init_reloc_root(trans, root);
244 		smp_wmb();
245 		root->in_trans_setup = 0;
246 	}
247 	return 0;
248 }
249 
250 
251 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
252 			       struct btrfs_root *root)
253 {
254 	if (!root->ref_cows)
255 		return 0;
256 
257 	/*
258 	 * see record_root_in_trans for comments about in_trans_setup usage
259 	 * and barriers
260 	 */
261 	smp_rmb();
262 	if (root->last_trans == trans->transid &&
263 	    !root->in_trans_setup)
264 		return 0;
265 
266 	mutex_lock(&root->fs_info->reloc_mutex);
267 	record_root_in_trans(trans, root);
268 	mutex_unlock(&root->fs_info->reloc_mutex);
269 
270 	return 0;
271 }
272 
273 /* wait for commit against the current transaction to become unblocked
274  * when this is done, it is safe to start a new transaction, but the current
275  * transaction might not be fully on disk.
276  */
277 static void wait_current_trans(struct btrfs_root *root)
278 {
279 	struct btrfs_transaction *cur_trans;
280 
281 	spin_lock(&root->fs_info->trans_lock);
282 	cur_trans = root->fs_info->running_transaction;
283 	if (cur_trans && cur_trans->blocked) {
284 		atomic_inc(&cur_trans->use_count);
285 		spin_unlock(&root->fs_info->trans_lock);
286 
287 		wait_event(root->fs_info->transaction_wait,
288 			   !cur_trans->blocked);
289 		put_transaction(cur_trans);
290 	} else {
291 		spin_unlock(&root->fs_info->trans_lock);
292 	}
293 }
294 
295 static int may_wait_transaction(struct btrfs_root *root, int type)
296 {
297 	if (root->fs_info->log_root_recovering)
298 		return 0;
299 
300 	if (type == TRANS_USERSPACE)
301 		return 1;
302 
303 	if (type == TRANS_START &&
304 	    !atomic_read(&root->fs_info->open_ioctl_trans))
305 		return 1;
306 
307 	return 0;
308 }
309 
310 static struct btrfs_trans_handle *
311 start_transaction(struct btrfs_root *root, u64 num_items, int type,
312 		  enum btrfs_reserve_flush_enum flush)
313 {
314 	struct btrfs_trans_handle *h;
315 	struct btrfs_transaction *cur_trans;
316 	u64 num_bytes = 0;
317 	int ret;
318 	u64 qgroup_reserved = 0;
319 
320 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
321 		return ERR_PTR(-EROFS);
322 
323 	if (current->journal_info) {
324 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
325 		h = current->journal_info;
326 		h->use_count++;
327 		WARN_ON(h->use_count > 2);
328 		h->orig_rsv = h->block_rsv;
329 		h->block_rsv = NULL;
330 		goto got_it;
331 	}
332 
333 	/*
334 	 * Do the reservation before we join the transaction so we can do all
335 	 * the appropriate flushing if need be.
336 	 */
337 	if (num_items > 0 && root != root->fs_info->chunk_root) {
338 		if (root->fs_info->quota_enabled &&
339 		    is_fstree(root->root_key.objectid)) {
340 			qgroup_reserved = num_items * root->leafsize;
341 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
342 			if (ret)
343 				return ERR_PTR(ret);
344 		}
345 
346 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
347 		ret = btrfs_block_rsv_add(root,
348 					  &root->fs_info->trans_block_rsv,
349 					  num_bytes, flush);
350 		if (ret)
351 			goto reserve_fail;
352 	}
353 again:
354 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
355 	if (!h) {
356 		ret = -ENOMEM;
357 		goto alloc_fail;
358 	}
359 
360 	/*
361 	 * If we are JOIN_NOLOCK we're already committing a transaction and
362 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
363 	 * because we're already holding a ref.  We need this because we could
364 	 * have raced in and did an fsync() on a file which can kick a commit
365 	 * and then we deadlock with somebody doing a freeze.
366 	 *
367 	 * If we are ATTACH, it means we just want to catch the current
368 	 * transaction and commit it, so we needn't do sb_start_intwrite().
369 	 */
370 	if (type < TRANS_JOIN_NOLOCK)
371 		sb_start_intwrite(root->fs_info->sb);
372 
373 	if (may_wait_transaction(root, type))
374 		wait_current_trans(root);
375 
376 	do {
377 		ret = join_transaction(root, type);
378 		if (ret == -EBUSY) {
379 			wait_current_trans(root);
380 			if (unlikely(type == TRANS_ATTACH))
381 				ret = -ENOENT;
382 		}
383 	} while (ret == -EBUSY);
384 
385 	if (ret < 0) {
386 		/* We must get the transaction if we are JOIN_NOLOCK. */
387 		BUG_ON(type == TRANS_JOIN_NOLOCK);
388 		goto join_fail;
389 	}
390 
391 	cur_trans = root->fs_info->running_transaction;
392 
393 	h->transid = cur_trans->transid;
394 	h->transaction = cur_trans;
395 	h->blocks_used = 0;
396 	h->bytes_reserved = 0;
397 	h->root = root;
398 	h->delayed_ref_updates = 0;
399 	h->use_count = 1;
400 	h->adding_csums = 0;
401 	h->block_rsv = NULL;
402 	h->orig_rsv = NULL;
403 	h->aborted = 0;
404 	h->qgroup_reserved = 0;
405 	h->delayed_ref_elem.seq = 0;
406 	h->type = type;
407 	h->allocating_chunk = false;
408 	INIT_LIST_HEAD(&h->qgroup_ref_list);
409 	INIT_LIST_HEAD(&h->new_bgs);
410 
411 	smp_mb();
412 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
413 		btrfs_commit_transaction(h, root);
414 		goto again;
415 	}
416 
417 	if (num_bytes) {
418 		trace_btrfs_space_reservation(root->fs_info, "transaction",
419 					      h->transid, num_bytes, 1);
420 		h->block_rsv = &root->fs_info->trans_block_rsv;
421 		h->bytes_reserved = num_bytes;
422 	}
423 	h->qgroup_reserved = qgroup_reserved;
424 
425 got_it:
426 	btrfs_record_root_in_trans(h, root);
427 
428 	if (!current->journal_info && type != TRANS_USERSPACE)
429 		current->journal_info = h;
430 	return h;
431 
432 join_fail:
433 	if (type < TRANS_JOIN_NOLOCK)
434 		sb_end_intwrite(root->fs_info->sb);
435 	kmem_cache_free(btrfs_trans_handle_cachep, h);
436 alloc_fail:
437 	if (num_bytes)
438 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
439 					num_bytes);
440 reserve_fail:
441 	if (qgroup_reserved)
442 		btrfs_qgroup_free(root, qgroup_reserved);
443 	return ERR_PTR(ret);
444 }
445 
446 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
447 						   int num_items)
448 {
449 	return start_transaction(root, num_items, TRANS_START,
450 				 BTRFS_RESERVE_FLUSH_ALL);
451 }
452 
453 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
454 					struct btrfs_root *root, int num_items)
455 {
456 	return start_transaction(root, num_items, TRANS_START,
457 				 BTRFS_RESERVE_FLUSH_LIMIT);
458 }
459 
460 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
461 {
462 	return start_transaction(root, 0, TRANS_JOIN, 0);
463 }
464 
465 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
466 {
467 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
468 }
469 
470 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
471 {
472 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
473 }
474 
475 /*
476  * btrfs_attach_transaction() - catch the running transaction
477  *
478  * It is used when we want to commit the current the transaction, but
479  * don't want to start a new one.
480  *
481  * Note: If this function return -ENOENT, it just means there is no
482  * running transaction. But it is possible that the inactive transaction
483  * is still in the memory, not fully on disk. If you hope there is no
484  * inactive transaction in the fs when -ENOENT is returned, you should
485  * invoke
486  *     btrfs_attach_transaction_barrier()
487  */
488 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
489 {
490 	return start_transaction(root, 0, TRANS_ATTACH, 0);
491 }
492 
493 /*
494  * btrfs_attach_transaction() - catch the running transaction
495  *
496  * It is similar to the above function, the differentia is this one
497  * will wait for all the inactive transactions until they fully
498  * complete.
499  */
500 struct btrfs_trans_handle *
501 btrfs_attach_transaction_barrier(struct btrfs_root *root)
502 {
503 	struct btrfs_trans_handle *trans;
504 
505 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
506 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
507 		btrfs_wait_for_commit(root, 0);
508 
509 	return trans;
510 }
511 
512 /* wait for a transaction commit to be fully complete */
513 static noinline void wait_for_commit(struct btrfs_root *root,
514 				    struct btrfs_transaction *commit)
515 {
516 	wait_event(commit->commit_wait, commit->commit_done);
517 }
518 
519 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
520 {
521 	struct btrfs_transaction *cur_trans = NULL, *t;
522 	int ret = 0;
523 
524 	if (transid) {
525 		if (transid <= root->fs_info->last_trans_committed)
526 			goto out;
527 
528 		ret = -EINVAL;
529 		/* find specified transaction */
530 		spin_lock(&root->fs_info->trans_lock);
531 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
532 			if (t->transid == transid) {
533 				cur_trans = t;
534 				atomic_inc(&cur_trans->use_count);
535 				ret = 0;
536 				break;
537 			}
538 			if (t->transid > transid) {
539 				ret = 0;
540 				break;
541 			}
542 		}
543 		spin_unlock(&root->fs_info->trans_lock);
544 		/* The specified transaction doesn't exist */
545 		if (!cur_trans)
546 			goto out;
547 	} else {
548 		/* find newest transaction that is committing | committed */
549 		spin_lock(&root->fs_info->trans_lock);
550 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
551 					    list) {
552 			if (t->in_commit) {
553 				if (t->commit_done)
554 					break;
555 				cur_trans = t;
556 				atomic_inc(&cur_trans->use_count);
557 				break;
558 			}
559 		}
560 		spin_unlock(&root->fs_info->trans_lock);
561 		if (!cur_trans)
562 			goto out;  /* nothing committing|committed */
563 	}
564 
565 	wait_for_commit(root, cur_trans);
566 	put_transaction(cur_trans);
567 out:
568 	return ret;
569 }
570 
571 void btrfs_throttle(struct btrfs_root *root)
572 {
573 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
574 		wait_current_trans(root);
575 }
576 
577 static int should_end_transaction(struct btrfs_trans_handle *trans,
578 				  struct btrfs_root *root)
579 {
580 	int ret;
581 
582 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
583 	return ret ? 1 : 0;
584 }
585 
586 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
587 				 struct btrfs_root *root)
588 {
589 	struct btrfs_transaction *cur_trans = trans->transaction;
590 	int updates;
591 	int err;
592 
593 	smp_mb();
594 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
595 		return 1;
596 
597 	updates = trans->delayed_ref_updates;
598 	trans->delayed_ref_updates = 0;
599 	if (updates) {
600 		err = btrfs_run_delayed_refs(trans, root, updates);
601 		if (err) /* Error code will also eval true */
602 			return err;
603 	}
604 
605 	return should_end_transaction(trans, root);
606 }
607 
608 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
609 			  struct btrfs_root *root, int throttle)
610 {
611 	struct btrfs_transaction *cur_trans = trans->transaction;
612 	struct btrfs_fs_info *info = root->fs_info;
613 	int count = 0;
614 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
615 	int err = 0;
616 
617 	if (--trans->use_count) {
618 		trans->block_rsv = trans->orig_rsv;
619 		return 0;
620 	}
621 
622 	/*
623 	 * do the qgroup accounting as early as possible
624 	 */
625 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
626 
627 	btrfs_trans_release_metadata(trans, root);
628 	trans->block_rsv = NULL;
629 	/*
630 	 * the same root has to be passed to start_transaction and
631 	 * end_transaction. Subvolume quota depends on this.
632 	 */
633 	WARN_ON(trans->root != root);
634 
635 	if (trans->qgroup_reserved) {
636 		btrfs_qgroup_free(root, trans->qgroup_reserved);
637 		trans->qgroup_reserved = 0;
638 	}
639 
640 	if (!list_empty(&trans->new_bgs))
641 		btrfs_create_pending_block_groups(trans, root);
642 
643 	while (count < 1) {
644 		unsigned long cur = trans->delayed_ref_updates;
645 		trans->delayed_ref_updates = 0;
646 		if (cur &&
647 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
648 			trans->delayed_ref_updates = 0;
649 			btrfs_run_delayed_refs(trans, root, cur);
650 		} else {
651 			break;
652 		}
653 		count++;
654 	}
655 
656 	btrfs_trans_release_metadata(trans, root);
657 	trans->block_rsv = NULL;
658 
659 	if (!list_empty(&trans->new_bgs))
660 		btrfs_create_pending_block_groups(trans, root);
661 
662 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
663 	    should_end_transaction(trans, root)) {
664 		trans->transaction->blocked = 1;
665 		smp_wmb();
666 	}
667 
668 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
669 		if (throttle) {
670 			/*
671 			 * We may race with somebody else here so end up having
672 			 * to call end_transaction on ourselves again, so inc
673 			 * our use_count.
674 			 */
675 			trans->use_count++;
676 			return btrfs_commit_transaction(trans, root);
677 		} else {
678 			wake_up_process(info->transaction_kthread);
679 		}
680 	}
681 
682 	if (trans->type < TRANS_JOIN_NOLOCK)
683 		sb_end_intwrite(root->fs_info->sb);
684 
685 	WARN_ON(cur_trans != info->running_transaction);
686 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
687 	atomic_dec(&cur_trans->num_writers);
688 
689 	smp_mb();
690 	if (waitqueue_active(&cur_trans->writer_wait))
691 		wake_up(&cur_trans->writer_wait);
692 	put_transaction(cur_trans);
693 
694 	if (current->journal_info == trans)
695 		current->journal_info = NULL;
696 
697 	if (throttle)
698 		btrfs_run_delayed_iputs(root);
699 
700 	if (trans->aborted ||
701 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
702 		err = -EIO;
703 	assert_qgroups_uptodate(trans);
704 
705 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
706 	return err;
707 }
708 
709 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
710 			  struct btrfs_root *root)
711 {
712 	int ret;
713 
714 	ret = __btrfs_end_transaction(trans, root, 0);
715 	if (ret)
716 		return ret;
717 	return 0;
718 }
719 
720 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
721 				   struct btrfs_root *root)
722 {
723 	int ret;
724 
725 	ret = __btrfs_end_transaction(trans, root, 1);
726 	if (ret)
727 		return ret;
728 	return 0;
729 }
730 
731 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
732 				struct btrfs_root *root)
733 {
734 	return __btrfs_end_transaction(trans, root, 1);
735 }
736 
737 /*
738  * when btree blocks are allocated, they have some corresponding bits set for
739  * them in one of two extent_io trees.  This is used to make sure all of
740  * those extents are sent to disk but does not wait on them
741  */
742 int btrfs_write_marked_extents(struct btrfs_root *root,
743 			       struct extent_io_tree *dirty_pages, int mark)
744 {
745 	int err = 0;
746 	int werr = 0;
747 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
748 	struct extent_state *cached_state = NULL;
749 	u64 start = 0;
750 	u64 end;
751 	struct blk_plug plug;
752 
753 	blk_start_plug(&plug);
754 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
755 				      mark, &cached_state)) {
756 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
757 				   mark, &cached_state, GFP_NOFS);
758 		cached_state = NULL;
759 		err = filemap_fdatawrite_range(mapping, start, end);
760 		if (err)
761 			werr = err;
762 		cond_resched();
763 		start = end + 1;
764 	}
765 	if (err)
766 		werr = err;
767 	blk_finish_plug(&plug);
768 	return werr;
769 }
770 
771 /*
772  * when btree blocks are allocated, they have some corresponding bits set for
773  * them in one of two extent_io trees.  This is used to make sure all of
774  * those extents are on disk for transaction or log commit.  We wait
775  * on all the pages and clear them from the dirty pages state tree
776  */
777 int btrfs_wait_marked_extents(struct btrfs_root *root,
778 			      struct extent_io_tree *dirty_pages, int mark)
779 {
780 	int err = 0;
781 	int werr = 0;
782 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
783 	struct extent_state *cached_state = NULL;
784 	u64 start = 0;
785 	u64 end;
786 
787 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
788 				      EXTENT_NEED_WAIT, &cached_state)) {
789 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
790 				 0, 0, &cached_state, GFP_NOFS);
791 		err = filemap_fdatawait_range(mapping, start, end);
792 		if (err)
793 			werr = err;
794 		cond_resched();
795 		start = end + 1;
796 	}
797 	if (err)
798 		werr = err;
799 	return werr;
800 }
801 
802 /*
803  * when btree blocks are allocated, they have some corresponding bits set for
804  * them in one of two extent_io trees.  This is used to make sure all of
805  * those extents are on disk for transaction or log commit
806  */
807 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
808 				struct extent_io_tree *dirty_pages, int mark)
809 {
810 	int ret;
811 	int ret2;
812 
813 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
814 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
815 
816 	if (ret)
817 		return ret;
818 	if (ret2)
819 		return ret2;
820 	return 0;
821 }
822 
823 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
824 				     struct btrfs_root *root)
825 {
826 	if (!trans || !trans->transaction) {
827 		struct inode *btree_inode;
828 		btree_inode = root->fs_info->btree_inode;
829 		return filemap_write_and_wait(btree_inode->i_mapping);
830 	}
831 	return btrfs_write_and_wait_marked_extents(root,
832 					   &trans->transaction->dirty_pages,
833 					   EXTENT_DIRTY);
834 }
835 
836 /*
837  * this is used to update the root pointer in the tree of tree roots.
838  *
839  * But, in the case of the extent allocation tree, updating the root
840  * pointer may allocate blocks which may change the root of the extent
841  * allocation tree.
842  *
843  * So, this loops and repeats and makes sure the cowonly root didn't
844  * change while the root pointer was being updated in the metadata.
845  */
846 static int update_cowonly_root(struct btrfs_trans_handle *trans,
847 			       struct btrfs_root *root)
848 {
849 	int ret;
850 	u64 old_root_bytenr;
851 	u64 old_root_used;
852 	struct btrfs_root *tree_root = root->fs_info->tree_root;
853 
854 	old_root_used = btrfs_root_used(&root->root_item);
855 	btrfs_write_dirty_block_groups(trans, root);
856 
857 	while (1) {
858 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
859 		if (old_root_bytenr == root->node->start &&
860 		    old_root_used == btrfs_root_used(&root->root_item))
861 			break;
862 
863 		btrfs_set_root_node(&root->root_item, root->node);
864 		ret = btrfs_update_root(trans, tree_root,
865 					&root->root_key,
866 					&root->root_item);
867 		if (ret)
868 			return ret;
869 
870 		old_root_used = btrfs_root_used(&root->root_item);
871 		ret = btrfs_write_dirty_block_groups(trans, root);
872 		if (ret)
873 			return ret;
874 	}
875 
876 	if (root != root->fs_info->extent_root)
877 		switch_commit_root(root);
878 
879 	return 0;
880 }
881 
882 /*
883  * update all the cowonly tree roots on disk
884  *
885  * The error handling in this function may not be obvious. Any of the
886  * failures will cause the file system to go offline. We still need
887  * to clean up the delayed refs.
888  */
889 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
890 					 struct btrfs_root *root)
891 {
892 	struct btrfs_fs_info *fs_info = root->fs_info;
893 	struct list_head *next;
894 	struct extent_buffer *eb;
895 	int ret;
896 
897 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
898 	if (ret)
899 		return ret;
900 
901 	eb = btrfs_lock_root_node(fs_info->tree_root);
902 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
903 			      0, &eb);
904 	btrfs_tree_unlock(eb);
905 	free_extent_buffer(eb);
906 
907 	if (ret)
908 		return ret;
909 
910 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
911 	if (ret)
912 		return ret;
913 
914 	ret = btrfs_run_dev_stats(trans, root->fs_info);
915 	WARN_ON(ret);
916 	ret = btrfs_run_dev_replace(trans, root->fs_info);
917 	WARN_ON(ret);
918 
919 	ret = btrfs_run_qgroups(trans, root->fs_info);
920 	BUG_ON(ret);
921 
922 	/* run_qgroups might have added some more refs */
923 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
924 	BUG_ON(ret);
925 
926 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
927 		next = fs_info->dirty_cowonly_roots.next;
928 		list_del_init(next);
929 		root = list_entry(next, struct btrfs_root, dirty_list);
930 
931 		ret = update_cowonly_root(trans, root);
932 		if (ret)
933 			return ret;
934 	}
935 
936 	down_write(&fs_info->extent_commit_sem);
937 	switch_commit_root(fs_info->extent_root);
938 	up_write(&fs_info->extent_commit_sem);
939 
940 	btrfs_after_dev_replace_commit(fs_info);
941 
942 	return 0;
943 }
944 
945 /*
946  * dead roots are old snapshots that need to be deleted.  This allocates
947  * a dirty root struct and adds it into the list of dead roots that need to
948  * be deleted
949  */
950 int btrfs_add_dead_root(struct btrfs_root *root)
951 {
952 	spin_lock(&root->fs_info->trans_lock);
953 	list_add(&root->root_list, &root->fs_info->dead_roots);
954 	spin_unlock(&root->fs_info->trans_lock);
955 	return 0;
956 }
957 
958 /*
959  * update all the cowonly tree roots on disk
960  */
961 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
962 				    struct btrfs_root *root)
963 {
964 	struct btrfs_root *gang[8];
965 	struct btrfs_fs_info *fs_info = root->fs_info;
966 	int i;
967 	int ret;
968 	int err = 0;
969 
970 	spin_lock(&fs_info->fs_roots_radix_lock);
971 	while (1) {
972 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
973 						 (void **)gang, 0,
974 						 ARRAY_SIZE(gang),
975 						 BTRFS_ROOT_TRANS_TAG);
976 		if (ret == 0)
977 			break;
978 		for (i = 0; i < ret; i++) {
979 			root = gang[i];
980 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
981 					(unsigned long)root->root_key.objectid,
982 					BTRFS_ROOT_TRANS_TAG);
983 			spin_unlock(&fs_info->fs_roots_radix_lock);
984 
985 			btrfs_free_log(trans, root);
986 			btrfs_update_reloc_root(trans, root);
987 			btrfs_orphan_commit_root(trans, root);
988 
989 			btrfs_save_ino_cache(root, trans);
990 
991 			/* see comments in should_cow_block() */
992 			root->force_cow = 0;
993 			smp_wmb();
994 
995 			if (root->commit_root != root->node) {
996 				mutex_lock(&root->fs_commit_mutex);
997 				switch_commit_root(root);
998 				btrfs_unpin_free_ino(root);
999 				mutex_unlock(&root->fs_commit_mutex);
1000 
1001 				btrfs_set_root_node(&root->root_item,
1002 						    root->node);
1003 			}
1004 
1005 			err = btrfs_update_root(trans, fs_info->tree_root,
1006 						&root->root_key,
1007 						&root->root_item);
1008 			spin_lock(&fs_info->fs_roots_radix_lock);
1009 			if (err)
1010 				break;
1011 		}
1012 	}
1013 	spin_unlock(&fs_info->fs_roots_radix_lock);
1014 	return err;
1015 }
1016 
1017 /*
1018  * defrag a given btree.
1019  * Every leaf in the btree is read and defragged.
1020  */
1021 int btrfs_defrag_root(struct btrfs_root *root)
1022 {
1023 	struct btrfs_fs_info *info = root->fs_info;
1024 	struct btrfs_trans_handle *trans;
1025 	int ret;
1026 
1027 	if (xchg(&root->defrag_running, 1))
1028 		return 0;
1029 
1030 	while (1) {
1031 		trans = btrfs_start_transaction(root, 0);
1032 		if (IS_ERR(trans))
1033 			return PTR_ERR(trans);
1034 
1035 		ret = btrfs_defrag_leaves(trans, root);
1036 
1037 		btrfs_end_transaction(trans, root);
1038 		btrfs_btree_balance_dirty(info->tree_root);
1039 		cond_resched();
1040 
1041 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1042 			break;
1043 
1044 		if (btrfs_defrag_cancelled(root->fs_info)) {
1045 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1046 			ret = -EAGAIN;
1047 			break;
1048 		}
1049 	}
1050 	root->defrag_running = 0;
1051 	return ret;
1052 }
1053 
1054 /*
1055  * new snapshots need to be created at a very specific time in the
1056  * transaction commit.  This does the actual creation
1057  */
1058 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1059 				   struct btrfs_fs_info *fs_info,
1060 				   struct btrfs_pending_snapshot *pending)
1061 {
1062 	struct btrfs_key key;
1063 	struct btrfs_root_item *new_root_item;
1064 	struct btrfs_root *tree_root = fs_info->tree_root;
1065 	struct btrfs_root *root = pending->root;
1066 	struct btrfs_root *parent_root;
1067 	struct btrfs_block_rsv *rsv;
1068 	struct inode *parent_inode;
1069 	struct btrfs_path *path;
1070 	struct btrfs_dir_item *dir_item;
1071 	struct dentry *parent;
1072 	struct dentry *dentry;
1073 	struct extent_buffer *tmp;
1074 	struct extent_buffer *old;
1075 	struct timespec cur_time = CURRENT_TIME;
1076 	int ret;
1077 	u64 to_reserve = 0;
1078 	u64 index = 0;
1079 	u64 objectid;
1080 	u64 root_flags;
1081 	uuid_le new_uuid;
1082 
1083 	path = btrfs_alloc_path();
1084 	if (!path) {
1085 		ret = pending->error = -ENOMEM;
1086 		goto path_alloc_fail;
1087 	}
1088 
1089 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1090 	if (!new_root_item) {
1091 		ret = pending->error = -ENOMEM;
1092 		goto root_item_alloc_fail;
1093 	}
1094 
1095 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1096 	if (ret) {
1097 		pending->error = ret;
1098 		goto no_free_objectid;
1099 	}
1100 
1101 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1102 
1103 	if (to_reserve > 0) {
1104 		ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1105 					  to_reserve,
1106 					  BTRFS_RESERVE_NO_FLUSH);
1107 		if (ret) {
1108 			pending->error = ret;
1109 			goto no_free_objectid;
1110 		}
1111 	}
1112 
1113 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1114 				   objectid, pending->inherit);
1115 	if (ret) {
1116 		pending->error = ret;
1117 		goto no_free_objectid;
1118 	}
1119 
1120 	key.objectid = objectid;
1121 	key.offset = (u64)-1;
1122 	key.type = BTRFS_ROOT_ITEM_KEY;
1123 
1124 	rsv = trans->block_rsv;
1125 	trans->block_rsv = &pending->block_rsv;
1126 	trans->bytes_reserved = trans->block_rsv->reserved;
1127 
1128 	dentry = pending->dentry;
1129 	parent = dget_parent(dentry);
1130 	parent_inode = parent->d_inode;
1131 	parent_root = BTRFS_I(parent_inode)->root;
1132 	record_root_in_trans(trans, parent_root);
1133 
1134 	/*
1135 	 * insert the directory item
1136 	 */
1137 	ret = btrfs_set_inode_index(parent_inode, &index);
1138 	BUG_ON(ret); /* -ENOMEM */
1139 
1140 	/* check if there is a file/dir which has the same name. */
1141 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1142 					 btrfs_ino(parent_inode),
1143 					 dentry->d_name.name,
1144 					 dentry->d_name.len, 0);
1145 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1146 		pending->error = -EEXIST;
1147 		goto fail;
1148 	} else if (IS_ERR(dir_item)) {
1149 		ret = PTR_ERR(dir_item);
1150 		btrfs_abort_transaction(trans, root, ret);
1151 		goto fail;
1152 	}
1153 	btrfs_release_path(path);
1154 
1155 	/*
1156 	 * pull in the delayed directory update
1157 	 * and the delayed inode item
1158 	 * otherwise we corrupt the FS during
1159 	 * snapshot
1160 	 */
1161 	ret = btrfs_run_delayed_items(trans, root);
1162 	if (ret) {	/* Transaction aborted */
1163 		btrfs_abort_transaction(trans, root, ret);
1164 		goto fail;
1165 	}
1166 
1167 	record_root_in_trans(trans, root);
1168 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1169 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1170 	btrfs_check_and_init_root_item(new_root_item);
1171 
1172 	root_flags = btrfs_root_flags(new_root_item);
1173 	if (pending->readonly)
1174 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1175 	else
1176 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1177 	btrfs_set_root_flags(new_root_item, root_flags);
1178 
1179 	btrfs_set_root_generation_v2(new_root_item,
1180 			trans->transid);
1181 	uuid_le_gen(&new_uuid);
1182 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1183 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1184 			BTRFS_UUID_SIZE);
1185 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1186 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1187 	btrfs_set_root_otransid(new_root_item, trans->transid);
1188 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1189 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1190 	btrfs_set_root_stransid(new_root_item, 0);
1191 	btrfs_set_root_rtransid(new_root_item, 0);
1192 
1193 	old = btrfs_lock_root_node(root);
1194 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1195 	if (ret) {
1196 		btrfs_tree_unlock(old);
1197 		free_extent_buffer(old);
1198 		btrfs_abort_transaction(trans, root, ret);
1199 		goto fail;
1200 	}
1201 
1202 	btrfs_set_lock_blocking(old);
1203 
1204 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1205 	/* clean up in any case */
1206 	btrfs_tree_unlock(old);
1207 	free_extent_buffer(old);
1208 	if (ret) {
1209 		btrfs_abort_transaction(trans, root, ret);
1210 		goto fail;
1211 	}
1212 
1213 	/* see comments in should_cow_block() */
1214 	root->force_cow = 1;
1215 	smp_wmb();
1216 
1217 	btrfs_set_root_node(new_root_item, tmp);
1218 	/* record when the snapshot was created in key.offset */
1219 	key.offset = trans->transid;
1220 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1221 	btrfs_tree_unlock(tmp);
1222 	free_extent_buffer(tmp);
1223 	if (ret) {
1224 		btrfs_abort_transaction(trans, root, ret);
1225 		goto fail;
1226 	}
1227 
1228 	/*
1229 	 * insert root back/forward references
1230 	 */
1231 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1232 				 parent_root->root_key.objectid,
1233 				 btrfs_ino(parent_inode), index,
1234 				 dentry->d_name.name, dentry->d_name.len);
1235 	if (ret) {
1236 		btrfs_abort_transaction(trans, root, ret);
1237 		goto fail;
1238 	}
1239 
1240 	key.offset = (u64)-1;
1241 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1242 	if (IS_ERR(pending->snap)) {
1243 		ret = PTR_ERR(pending->snap);
1244 		btrfs_abort_transaction(trans, root, ret);
1245 		goto fail;
1246 	}
1247 
1248 	ret = btrfs_reloc_post_snapshot(trans, pending);
1249 	if (ret) {
1250 		btrfs_abort_transaction(trans, root, ret);
1251 		goto fail;
1252 	}
1253 
1254 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1255 	if (ret) {
1256 		btrfs_abort_transaction(trans, root, ret);
1257 		goto fail;
1258 	}
1259 
1260 	ret = btrfs_insert_dir_item(trans, parent_root,
1261 				    dentry->d_name.name, dentry->d_name.len,
1262 				    parent_inode, &key,
1263 				    BTRFS_FT_DIR, index);
1264 	/* We have check then name at the beginning, so it is impossible. */
1265 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1266 	if (ret) {
1267 		btrfs_abort_transaction(trans, root, ret);
1268 		goto fail;
1269 	}
1270 
1271 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1272 					 dentry->d_name.len * 2);
1273 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1274 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1275 	if (ret)
1276 		btrfs_abort_transaction(trans, root, ret);
1277 fail:
1278 	dput(parent);
1279 	trans->block_rsv = rsv;
1280 	trans->bytes_reserved = 0;
1281 no_free_objectid:
1282 	kfree(new_root_item);
1283 root_item_alloc_fail:
1284 	btrfs_free_path(path);
1285 path_alloc_fail:
1286 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1287 	return ret;
1288 }
1289 
1290 /*
1291  * create all the snapshots we've scheduled for creation
1292  */
1293 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1294 					     struct btrfs_fs_info *fs_info)
1295 {
1296 	struct btrfs_pending_snapshot *pending;
1297 	struct list_head *head = &trans->transaction->pending_snapshots;
1298 
1299 	list_for_each_entry(pending, head, list)
1300 		create_pending_snapshot(trans, fs_info, pending);
1301 	return 0;
1302 }
1303 
1304 static void update_super_roots(struct btrfs_root *root)
1305 {
1306 	struct btrfs_root_item *root_item;
1307 	struct btrfs_super_block *super;
1308 
1309 	super = root->fs_info->super_copy;
1310 
1311 	root_item = &root->fs_info->chunk_root->root_item;
1312 	super->chunk_root = root_item->bytenr;
1313 	super->chunk_root_generation = root_item->generation;
1314 	super->chunk_root_level = root_item->level;
1315 
1316 	root_item = &root->fs_info->tree_root->root_item;
1317 	super->root = root_item->bytenr;
1318 	super->generation = root_item->generation;
1319 	super->root_level = root_item->level;
1320 	if (btrfs_test_opt(root, SPACE_CACHE))
1321 		super->cache_generation = root_item->generation;
1322 }
1323 
1324 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1325 {
1326 	int ret = 0;
1327 	spin_lock(&info->trans_lock);
1328 	if (info->running_transaction)
1329 		ret = info->running_transaction->in_commit;
1330 	spin_unlock(&info->trans_lock);
1331 	return ret;
1332 }
1333 
1334 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1335 {
1336 	int ret = 0;
1337 	spin_lock(&info->trans_lock);
1338 	if (info->running_transaction)
1339 		ret = info->running_transaction->blocked;
1340 	spin_unlock(&info->trans_lock);
1341 	return ret;
1342 }
1343 
1344 /*
1345  * wait for the current transaction commit to start and block subsequent
1346  * transaction joins
1347  */
1348 static void wait_current_trans_commit_start(struct btrfs_root *root,
1349 					    struct btrfs_transaction *trans)
1350 {
1351 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1352 }
1353 
1354 /*
1355  * wait for the current transaction to start and then become unblocked.
1356  * caller holds ref.
1357  */
1358 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1359 					 struct btrfs_transaction *trans)
1360 {
1361 	wait_event(root->fs_info->transaction_wait,
1362 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1363 }
1364 
1365 /*
1366  * commit transactions asynchronously. once btrfs_commit_transaction_async
1367  * returns, any subsequent transaction will not be allowed to join.
1368  */
1369 struct btrfs_async_commit {
1370 	struct btrfs_trans_handle *newtrans;
1371 	struct btrfs_root *root;
1372 	struct work_struct work;
1373 };
1374 
1375 static void do_async_commit(struct work_struct *work)
1376 {
1377 	struct btrfs_async_commit *ac =
1378 		container_of(work, struct btrfs_async_commit, work);
1379 
1380 	/*
1381 	 * We've got freeze protection passed with the transaction.
1382 	 * Tell lockdep about it.
1383 	 */
1384 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1385 		rwsem_acquire_read(
1386 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1387 		     0, 1, _THIS_IP_);
1388 
1389 	current->journal_info = ac->newtrans;
1390 
1391 	btrfs_commit_transaction(ac->newtrans, ac->root);
1392 	kfree(ac);
1393 }
1394 
1395 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1396 				   struct btrfs_root *root,
1397 				   int wait_for_unblock)
1398 {
1399 	struct btrfs_async_commit *ac;
1400 	struct btrfs_transaction *cur_trans;
1401 
1402 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1403 	if (!ac)
1404 		return -ENOMEM;
1405 
1406 	INIT_WORK(&ac->work, do_async_commit);
1407 	ac->root = root;
1408 	ac->newtrans = btrfs_join_transaction(root);
1409 	if (IS_ERR(ac->newtrans)) {
1410 		int err = PTR_ERR(ac->newtrans);
1411 		kfree(ac);
1412 		return err;
1413 	}
1414 
1415 	/* take transaction reference */
1416 	cur_trans = trans->transaction;
1417 	atomic_inc(&cur_trans->use_count);
1418 
1419 	btrfs_end_transaction(trans, root);
1420 
1421 	/*
1422 	 * Tell lockdep we've released the freeze rwsem, since the
1423 	 * async commit thread will be the one to unlock it.
1424 	 */
1425 	if (trans->type < TRANS_JOIN_NOLOCK)
1426 		rwsem_release(
1427 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1428 			1, _THIS_IP_);
1429 
1430 	schedule_work(&ac->work);
1431 
1432 	/* wait for transaction to start and unblock */
1433 	if (wait_for_unblock)
1434 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1435 	else
1436 		wait_current_trans_commit_start(root, cur_trans);
1437 
1438 	if (current->journal_info == trans)
1439 		current->journal_info = NULL;
1440 
1441 	put_transaction(cur_trans);
1442 	return 0;
1443 }
1444 
1445 
1446 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1447 				struct btrfs_root *root, int err)
1448 {
1449 	struct btrfs_transaction *cur_trans = trans->transaction;
1450 
1451 	WARN_ON(trans->use_count > 1);
1452 
1453 	btrfs_abort_transaction(trans, root, err);
1454 
1455 	spin_lock(&root->fs_info->trans_lock);
1456 	list_del_init(&cur_trans->list);
1457 	if (cur_trans == root->fs_info->running_transaction) {
1458 		root->fs_info->running_transaction = NULL;
1459 		root->fs_info->trans_no_join = 0;
1460 	}
1461 	spin_unlock(&root->fs_info->trans_lock);
1462 
1463 	btrfs_cleanup_one_transaction(trans->transaction, root);
1464 
1465 	put_transaction(cur_trans);
1466 	put_transaction(cur_trans);
1467 
1468 	trace_btrfs_transaction_commit(root);
1469 
1470 	btrfs_scrub_continue(root);
1471 
1472 	if (current->journal_info == trans)
1473 		current->journal_info = NULL;
1474 
1475 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1476 }
1477 
1478 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1479 					  struct btrfs_root *root)
1480 {
1481 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1482 	int snap_pending = 0;
1483 	int ret;
1484 
1485 	if (!flush_on_commit) {
1486 		spin_lock(&root->fs_info->trans_lock);
1487 		if (!list_empty(&trans->transaction->pending_snapshots))
1488 			snap_pending = 1;
1489 		spin_unlock(&root->fs_info->trans_lock);
1490 	}
1491 
1492 	if (flush_on_commit || snap_pending) {
1493 		ret = btrfs_start_delalloc_inodes(root, 1);
1494 		if (ret)
1495 			return ret;
1496 		btrfs_wait_ordered_extents(root, 1);
1497 	}
1498 
1499 	ret = btrfs_run_delayed_items(trans, root);
1500 	if (ret)
1501 		return ret;
1502 
1503 	/*
1504 	 * running the delayed items may have added new refs. account
1505 	 * them now so that they hinder processing of more delayed refs
1506 	 * as little as possible.
1507 	 */
1508 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1509 
1510 	/*
1511 	 * rename don't use btrfs_join_transaction, so, once we
1512 	 * set the transaction to blocked above, we aren't going
1513 	 * to get any new ordered operations.  We can safely run
1514 	 * it here and no for sure that nothing new will be added
1515 	 * to the list
1516 	 */
1517 	ret = btrfs_run_ordered_operations(trans, root, 1);
1518 
1519 	return ret;
1520 }
1521 
1522 /*
1523  * btrfs_transaction state sequence:
1524  *    in_commit = 0, blocked = 0  (initial)
1525  *    in_commit = 1, blocked = 1
1526  *    blocked = 0
1527  *    commit_done = 1
1528  */
1529 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1530 			     struct btrfs_root *root)
1531 {
1532 	unsigned long joined = 0;
1533 	struct btrfs_transaction *cur_trans = trans->transaction;
1534 	struct btrfs_transaction *prev_trans = NULL;
1535 	DEFINE_WAIT(wait);
1536 	int ret;
1537 	int should_grow = 0;
1538 	unsigned long now = get_seconds();
1539 
1540 	ret = btrfs_run_ordered_operations(trans, root, 0);
1541 	if (ret) {
1542 		btrfs_abort_transaction(trans, root, ret);
1543 		btrfs_end_transaction(trans, root);
1544 		return ret;
1545 	}
1546 
1547 	/* Stop the commit early if ->aborted is set */
1548 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1549 		ret = cur_trans->aborted;
1550 		btrfs_end_transaction(trans, root);
1551 		return ret;
1552 	}
1553 
1554 	/* make a pass through all the delayed refs we have so far
1555 	 * any runnings procs may add more while we are here
1556 	 */
1557 	ret = btrfs_run_delayed_refs(trans, root, 0);
1558 	if (ret) {
1559 		btrfs_end_transaction(trans, root);
1560 		return ret;
1561 	}
1562 
1563 	btrfs_trans_release_metadata(trans, root);
1564 	trans->block_rsv = NULL;
1565 	if (trans->qgroup_reserved) {
1566 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1567 		trans->qgroup_reserved = 0;
1568 	}
1569 
1570 	cur_trans = trans->transaction;
1571 
1572 	/*
1573 	 * set the flushing flag so procs in this transaction have to
1574 	 * start sending their work down.
1575 	 */
1576 	cur_trans->delayed_refs.flushing = 1;
1577 
1578 	if (!list_empty(&trans->new_bgs))
1579 		btrfs_create_pending_block_groups(trans, root);
1580 
1581 	ret = btrfs_run_delayed_refs(trans, root, 0);
1582 	if (ret) {
1583 		btrfs_end_transaction(trans, root);
1584 		return ret;
1585 	}
1586 
1587 	spin_lock(&cur_trans->commit_lock);
1588 	if (cur_trans->in_commit) {
1589 		spin_unlock(&cur_trans->commit_lock);
1590 		atomic_inc(&cur_trans->use_count);
1591 		ret = btrfs_end_transaction(trans, root);
1592 
1593 		wait_for_commit(root, cur_trans);
1594 
1595 		put_transaction(cur_trans);
1596 
1597 		return ret;
1598 	}
1599 
1600 	trans->transaction->in_commit = 1;
1601 	trans->transaction->blocked = 1;
1602 	spin_unlock(&cur_trans->commit_lock);
1603 	wake_up(&root->fs_info->transaction_blocked_wait);
1604 
1605 	spin_lock(&root->fs_info->trans_lock);
1606 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1607 		prev_trans = list_entry(cur_trans->list.prev,
1608 					struct btrfs_transaction, list);
1609 		if (!prev_trans->commit_done) {
1610 			atomic_inc(&prev_trans->use_count);
1611 			spin_unlock(&root->fs_info->trans_lock);
1612 
1613 			wait_for_commit(root, prev_trans);
1614 
1615 			put_transaction(prev_trans);
1616 		} else {
1617 			spin_unlock(&root->fs_info->trans_lock);
1618 		}
1619 	} else {
1620 		spin_unlock(&root->fs_info->trans_lock);
1621 	}
1622 
1623 	if (!btrfs_test_opt(root, SSD) &&
1624 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1625 		should_grow = 1;
1626 
1627 	do {
1628 		joined = cur_trans->num_joined;
1629 
1630 		WARN_ON(cur_trans != trans->transaction);
1631 
1632 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1633 		if (ret)
1634 			goto cleanup_transaction;
1635 
1636 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1637 				TASK_UNINTERRUPTIBLE);
1638 
1639 		if (atomic_read(&cur_trans->num_writers) > 1)
1640 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1641 		else if (should_grow)
1642 			schedule_timeout(1);
1643 
1644 		finish_wait(&cur_trans->writer_wait, &wait);
1645 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1646 		 (should_grow && cur_trans->num_joined != joined));
1647 
1648 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1649 	if (ret)
1650 		goto cleanup_transaction;
1651 
1652 	/*
1653 	 * Ok now we need to make sure to block out any other joins while we
1654 	 * commit the transaction.  We could have started a join before setting
1655 	 * no_join so make sure to wait for num_writers to == 1 again.
1656 	 */
1657 	spin_lock(&root->fs_info->trans_lock);
1658 	root->fs_info->trans_no_join = 1;
1659 	spin_unlock(&root->fs_info->trans_lock);
1660 	wait_event(cur_trans->writer_wait,
1661 		   atomic_read(&cur_trans->num_writers) == 1);
1662 
1663 	/* ->aborted might be set after the previous check, so check it */
1664 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1665 		ret = cur_trans->aborted;
1666 		goto cleanup_transaction;
1667 	}
1668 	/*
1669 	 * the reloc mutex makes sure that we stop
1670 	 * the balancing code from coming in and moving
1671 	 * extents around in the middle of the commit
1672 	 */
1673 	mutex_lock(&root->fs_info->reloc_mutex);
1674 
1675 	/*
1676 	 * We needn't worry about the delayed items because we will
1677 	 * deal with them in create_pending_snapshot(), which is the
1678 	 * core function of the snapshot creation.
1679 	 */
1680 	ret = create_pending_snapshots(trans, root->fs_info);
1681 	if (ret) {
1682 		mutex_unlock(&root->fs_info->reloc_mutex);
1683 		goto cleanup_transaction;
1684 	}
1685 
1686 	/*
1687 	 * We insert the dir indexes of the snapshots and update the inode
1688 	 * of the snapshots' parents after the snapshot creation, so there
1689 	 * are some delayed items which are not dealt with. Now deal with
1690 	 * them.
1691 	 *
1692 	 * We needn't worry that this operation will corrupt the snapshots,
1693 	 * because all the tree which are snapshoted will be forced to COW
1694 	 * the nodes and leaves.
1695 	 */
1696 	ret = btrfs_run_delayed_items(trans, root);
1697 	if (ret) {
1698 		mutex_unlock(&root->fs_info->reloc_mutex);
1699 		goto cleanup_transaction;
1700 	}
1701 
1702 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1703 	if (ret) {
1704 		mutex_unlock(&root->fs_info->reloc_mutex);
1705 		goto cleanup_transaction;
1706 	}
1707 
1708 	/*
1709 	 * make sure none of the code above managed to slip in a
1710 	 * delayed item
1711 	 */
1712 	btrfs_assert_delayed_root_empty(root);
1713 
1714 	WARN_ON(cur_trans != trans->transaction);
1715 
1716 	btrfs_scrub_pause(root);
1717 	/* btrfs_commit_tree_roots is responsible for getting the
1718 	 * various roots consistent with each other.  Every pointer
1719 	 * in the tree of tree roots has to point to the most up to date
1720 	 * root for every subvolume and other tree.  So, we have to keep
1721 	 * the tree logging code from jumping in and changing any
1722 	 * of the trees.
1723 	 *
1724 	 * At this point in the commit, there can't be any tree-log
1725 	 * writers, but a little lower down we drop the trans mutex
1726 	 * and let new people in.  By holding the tree_log_mutex
1727 	 * from now until after the super is written, we avoid races
1728 	 * with the tree-log code.
1729 	 */
1730 	mutex_lock(&root->fs_info->tree_log_mutex);
1731 
1732 	ret = commit_fs_roots(trans, root);
1733 	if (ret) {
1734 		mutex_unlock(&root->fs_info->tree_log_mutex);
1735 		mutex_unlock(&root->fs_info->reloc_mutex);
1736 		goto cleanup_transaction;
1737 	}
1738 
1739 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1740 	 * safe to free the root of tree log roots
1741 	 */
1742 	btrfs_free_log_root_tree(trans, root->fs_info);
1743 
1744 	ret = commit_cowonly_roots(trans, root);
1745 	if (ret) {
1746 		mutex_unlock(&root->fs_info->tree_log_mutex);
1747 		mutex_unlock(&root->fs_info->reloc_mutex);
1748 		goto cleanup_transaction;
1749 	}
1750 
1751 	/*
1752 	 * The tasks which save the space cache and inode cache may also
1753 	 * update ->aborted, check it.
1754 	 */
1755 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1756 		ret = cur_trans->aborted;
1757 		mutex_unlock(&root->fs_info->tree_log_mutex);
1758 		mutex_unlock(&root->fs_info->reloc_mutex);
1759 		goto cleanup_transaction;
1760 	}
1761 
1762 	btrfs_prepare_extent_commit(trans, root);
1763 
1764 	cur_trans = root->fs_info->running_transaction;
1765 
1766 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1767 			    root->fs_info->tree_root->node);
1768 	switch_commit_root(root->fs_info->tree_root);
1769 
1770 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1771 			    root->fs_info->chunk_root->node);
1772 	switch_commit_root(root->fs_info->chunk_root);
1773 
1774 	assert_qgroups_uptodate(trans);
1775 	update_super_roots(root);
1776 
1777 	if (!root->fs_info->log_root_recovering) {
1778 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1779 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1780 	}
1781 
1782 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1783 	       sizeof(*root->fs_info->super_copy));
1784 
1785 	trans->transaction->blocked = 0;
1786 	spin_lock(&root->fs_info->trans_lock);
1787 	root->fs_info->running_transaction = NULL;
1788 	root->fs_info->trans_no_join = 0;
1789 	spin_unlock(&root->fs_info->trans_lock);
1790 	mutex_unlock(&root->fs_info->reloc_mutex);
1791 
1792 	wake_up(&root->fs_info->transaction_wait);
1793 
1794 	ret = btrfs_write_and_wait_transaction(trans, root);
1795 	if (ret) {
1796 		btrfs_error(root->fs_info, ret,
1797 			    "Error while writing out transaction.");
1798 		mutex_unlock(&root->fs_info->tree_log_mutex);
1799 		goto cleanup_transaction;
1800 	}
1801 
1802 	ret = write_ctree_super(trans, root, 0);
1803 	if (ret) {
1804 		mutex_unlock(&root->fs_info->tree_log_mutex);
1805 		goto cleanup_transaction;
1806 	}
1807 
1808 	/*
1809 	 * the super is written, we can safely allow the tree-loggers
1810 	 * to go about their business
1811 	 */
1812 	mutex_unlock(&root->fs_info->tree_log_mutex);
1813 
1814 	btrfs_finish_extent_commit(trans, root);
1815 
1816 	cur_trans->commit_done = 1;
1817 
1818 	root->fs_info->last_trans_committed = cur_trans->transid;
1819 
1820 	wake_up(&cur_trans->commit_wait);
1821 
1822 	spin_lock(&root->fs_info->trans_lock);
1823 	list_del_init(&cur_trans->list);
1824 	spin_unlock(&root->fs_info->trans_lock);
1825 
1826 	put_transaction(cur_trans);
1827 	put_transaction(cur_trans);
1828 
1829 	if (trans->type < TRANS_JOIN_NOLOCK)
1830 		sb_end_intwrite(root->fs_info->sb);
1831 
1832 	trace_btrfs_transaction_commit(root);
1833 
1834 	btrfs_scrub_continue(root);
1835 
1836 	if (current->journal_info == trans)
1837 		current->journal_info = NULL;
1838 
1839 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1840 
1841 	if (current != root->fs_info->transaction_kthread)
1842 		btrfs_run_delayed_iputs(root);
1843 
1844 	return ret;
1845 
1846 cleanup_transaction:
1847 	btrfs_trans_release_metadata(trans, root);
1848 	trans->block_rsv = NULL;
1849 	if (trans->qgroup_reserved) {
1850 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1851 		trans->qgroup_reserved = 0;
1852 	}
1853 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1854 //	WARN_ON(1);
1855 	if (current->journal_info == trans)
1856 		current->journal_info = NULL;
1857 	cleanup_transaction(trans, root, ret);
1858 
1859 	return ret;
1860 }
1861 
1862 /*
1863  * interface function to delete all the snapshots we have scheduled for deletion
1864  */
1865 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1866 {
1867 	LIST_HEAD(list);
1868 	struct btrfs_fs_info *fs_info = root->fs_info;
1869 
1870 	spin_lock(&fs_info->trans_lock);
1871 	list_splice_init(&fs_info->dead_roots, &list);
1872 	spin_unlock(&fs_info->trans_lock);
1873 
1874 	while (!list_empty(&list)) {
1875 		int ret;
1876 
1877 		root = list_entry(list.next, struct btrfs_root, root_list);
1878 		list_del(&root->root_list);
1879 
1880 		btrfs_kill_all_delayed_nodes(root);
1881 
1882 		if (btrfs_header_backref_rev(root->node) <
1883 		    BTRFS_MIXED_BACKREF_REV)
1884 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1885 		else
1886 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1887 		BUG_ON(ret < 0);
1888 	}
1889 	return 0;
1890 }
1891