1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/fs.h> 7 #include <linux/slab.h> 8 #include <linux/sched.h> 9 #include <linux/writeback.h> 10 #include <linux/pagemap.h> 11 #include <linux/blkdev.h> 12 #include <linux/uuid.h> 13 #include "misc.h" 14 #include "ctree.h" 15 #include "disk-io.h" 16 #include "transaction.h" 17 #include "locking.h" 18 #include "tree-log.h" 19 #include "volumes.h" 20 #include "dev-replace.h" 21 #include "qgroup.h" 22 #include "block-group.h" 23 #include "space-info.h" 24 #include "zoned.h" 25 26 #define BTRFS_ROOT_TRANS_TAG 0 27 28 /* 29 * Transaction states and transitions 30 * 31 * No running transaction (fs tree blocks are not modified) 32 * | 33 * | To next stage: 34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart(). 35 * V 36 * Transaction N [[TRANS_STATE_RUNNING]] 37 * | 38 * | New trans handles can be attached to transaction N by calling all 39 * | start_transaction() variants. 40 * | 41 * | To next stage: 42 * | Call btrfs_commit_transaction() on any trans handle attached to 43 * | transaction N 44 * V 45 * Transaction N [[TRANS_STATE_COMMIT_START]] 46 * | 47 * | Will wait for previous running transaction to completely finish if there 48 * | is one 49 * | 50 * | Then one of the following happes: 51 * | - Wait for all other trans handle holders to release. 52 * | The btrfs_commit_transaction() caller will do the commit work. 53 * | - Wait for current transaction to be committed by others. 54 * | Other btrfs_commit_transaction() caller will do the commit work. 55 * | 56 * | At this stage, only btrfs_join_transaction*() variants can attach 57 * | to this running transaction. 58 * | All other variants will wait for current one to finish and attach to 59 * | transaction N+1. 60 * | 61 * | To next stage: 62 * | Caller is chosen to commit transaction N, and all other trans handle 63 * | haven been released. 64 * V 65 * Transaction N [[TRANS_STATE_COMMIT_DOING]] 66 * | 67 * | The heavy lifting transaction work is started. 68 * | From running delayed refs (modifying extent tree) to creating pending 69 * | snapshots, running qgroups. 70 * | In short, modify supporting trees to reflect modifications of subvolume 71 * | trees. 72 * | 73 * | At this stage, all start_transaction() calls will wait for this 74 * | transaction to finish and attach to transaction N+1. 75 * | 76 * | To next stage: 77 * | Until all supporting trees are updated. 78 * V 79 * Transaction N [[TRANS_STATE_UNBLOCKED]] 80 * | Transaction N+1 81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]] 82 * | need to write them back to disk and update | 83 * | super blocks. | 84 * | | 85 * | At this stage, new transaction is allowed to | 86 * | start. | 87 * | All new start_transaction() calls will be | 88 * | attached to transid N+1. | 89 * | | 90 * | To next stage: | 91 * | Until all tree blocks are super blocks are | 92 * | written to block devices | 93 * V | 94 * Transaction N [[TRANS_STATE_COMPLETED]] V 95 * All tree blocks and super blocks are written. Transaction N+1 96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]] 97 * data structures will be cleaned up. | Life goes on 98 */ 99 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 100 [TRANS_STATE_RUNNING] = 0U, 101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH), 102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START | 103 __TRANS_ATTACH | 104 __TRANS_JOIN | 105 __TRANS_JOIN_NOSTART), 106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START | 107 __TRANS_ATTACH | 108 __TRANS_JOIN | 109 __TRANS_JOIN_NOLOCK | 110 __TRANS_JOIN_NOSTART), 111 [TRANS_STATE_SUPER_COMMITTED] = (__TRANS_START | 112 __TRANS_ATTACH | 113 __TRANS_JOIN | 114 __TRANS_JOIN_NOLOCK | 115 __TRANS_JOIN_NOSTART), 116 [TRANS_STATE_COMPLETED] = (__TRANS_START | 117 __TRANS_ATTACH | 118 __TRANS_JOIN | 119 __TRANS_JOIN_NOLOCK | 120 __TRANS_JOIN_NOSTART), 121 }; 122 123 void btrfs_put_transaction(struct btrfs_transaction *transaction) 124 { 125 WARN_ON(refcount_read(&transaction->use_count) == 0); 126 if (refcount_dec_and_test(&transaction->use_count)) { 127 BUG_ON(!list_empty(&transaction->list)); 128 WARN_ON(!RB_EMPTY_ROOT( 129 &transaction->delayed_refs.href_root.rb_root)); 130 WARN_ON(!RB_EMPTY_ROOT( 131 &transaction->delayed_refs.dirty_extent_root)); 132 if (transaction->delayed_refs.pending_csums) 133 btrfs_err(transaction->fs_info, 134 "pending csums is %llu", 135 transaction->delayed_refs.pending_csums); 136 /* 137 * If any block groups are found in ->deleted_bgs then it's 138 * because the transaction was aborted and a commit did not 139 * happen (things failed before writing the new superblock 140 * and calling btrfs_finish_extent_commit()), so we can not 141 * discard the physical locations of the block groups. 142 */ 143 while (!list_empty(&transaction->deleted_bgs)) { 144 struct btrfs_block_group *cache; 145 146 cache = list_first_entry(&transaction->deleted_bgs, 147 struct btrfs_block_group, 148 bg_list); 149 list_del_init(&cache->bg_list); 150 btrfs_unfreeze_block_group(cache); 151 btrfs_put_block_group(cache); 152 } 153 WARN_ON(!list_empty(&transaction->dev_update_list)); 154 kfree(transaction); 155 } 156 } 157 158 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans) 159 { 160 struct btrfs_transaction *cur_trans = trans->transaction; 161 struct btrfs_fs_info *fs_info = trans->fs_info; 162 struct btrfs_root *root, *tmp; 163 struct btrfs_caching_control *caching_ctl, *next; 164 165 /* 166 * At this point no one can be using this transaction to modify any tree 167 * and no one can start another transaction to modify any tree either. 168 */ 169 ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING); 170 171 down_write(&fs_info->commit_root_sem); 172 173 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 174 fs_info->last_reloc_trans = trans->transid; 175 176 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits, 177 dirty_list) { 178 list_del_init(&root->dirty_list); 179 free_extent_buffer(root->commit_root); 180 root->commit_root = btrfs_root_node(root); 181 extent_io_tree_release(&root->dirty_log_pages); 182 btrfs_qgroup_clean_swapped_blocks(root); 183 } 184 185 /* We can free old roots now. */ 186 spin_lock(&cur_trans->dropped_roots_lock); 187 while (!list_empty(&cur_trans->dropped_roots)) { 188 root = list_first_entry(&cur_trans->dropped_roots, 189 struct btrfs_root, root_list); 190 list_del_init(&root->root_list); 191 spin_unlock(&cur_trans->dropped_roots_lock); 192 btrfs_free_log(trans, root); 193 btrfs_drop_and_free_fs_root(fs_info, root); 194 spin_lock(&cur_trans->dropped_roots_lock); 195 } 196 spin_unlock(&cur_trans->dropped_roots_lock); 197 198 /* 199 * We have to update the last_byte_to_unpin under the commit_root_sem, 200 * at the same time we swap out the commit roots. 201 * 202 * This is because we must have a real view of the last spot the caching 203 * kthreads were while caching. Consider the following views of the 204 * extent tree for a block group 205 * 206 * commit root 207 * +----+----+----+----+----+----+----+ 208 * |\\\\| |\\\\|\\\\| |\\\\|\\\\| 209 * +----+----+----+----+----+----+----+ 210 * 0 1 2 3 4 5 6 7 211 * 212 * new commit root 213 * +----+----+----+----+----+----+----+ 214 * | | | |\\\\| | |\\\\| 215 * +----+----+----+----+----+----+----+ 216 * 0 1 2 3 4 5 6 7 217 * 218 * If the cache_ctl->progress was at 3, then we are only allowed to 219 * unpin [0,1) and [2,3], because the caching thread has already 220 * processed those extents. We are not allowed to unpin [5,6), because 221 * the caching thread will re-start it's search from 3, and thus find 222 * the hole from [4,6) to add to the free space cache. 223 */ 224 spin_lock(&fs_info->block_group_cache_lock); 225 list_for_each_entry_safe(caching_ctl, next, 226 &fs_info->caching_block_groups, list) { 227 struct btrfs_block_group *cache = caching_ctl->block_group; 228 229 if (btrfs_block_group_done(cache)) { 230 cache->last_byte_to_unpin = (u64)-1; 231 list_del_init(&caching_ctl->list); 232 btrfs_put_caching_control(caching_ctl); 233 } else { 234 cache->last_byte_to_unpin = caching_ctl->progress; 235 } 236 } 237 spin_unlock(&fs_info->block_group_cache_lock); 238 up_write(&fs_info->commit_root_sem); 239 } 240 241 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 242 unsigned int type) 243 { 244 if (type & TRANS_EXTWRITERS) 245 atomic_inc(&trans->num_extwriters); 246 } 247 248 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 249 unsigned int type) 250 { 251 if (type & TRANS_EXTWRITERS) 252 atomic_dec(&trans->num_extwriters); 253 } 254 255 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 256 unsigned int type) 257 { 258 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 259 } 260 261 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 262 { 263 return atomic_read(&trans->num_extwriters); 264 } 265 266 /* 267 * To be called after doing the chunk btree updates right after allocating a new 268 * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a 269 * chunk after all chunk btree updates and after finishing the second phase of 270 * chunk allocation (btrfs_create_pending_block_groups()) in case some block 271 * group had its chunk item insertion delayed to the second phase. 272 */ 273 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans) 274 { 275 struct btrfs_fs_info *fs_info = trans->fs_info; 276 277 if (!trans->chunk_bytes_reserved) 278 return; 279 280 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv, 281 trans->chunk_bytes_reserved, NULL); 282 trans->chunk_bytes_reserved = 0; 283 } 284 285 /* 286 * either allocate a new transaction or hop into the existing one 287 */ 288 static noinline int join_transaction(struct btrfs_fs_info *fs_info, 289 unsigned int type) 290 { 291 struct btrfs_transaction *cur_trans; 292 293 spin_lock(&fs_info->trans_lock); 294 loop: 295 /* The file system has been taken offline. No new transactions. */ 296 if (BTRFS_FS_ERROR(fs_info)) { 297 spin_unlock(&fs_info->trans_lock); 298 return -EROFS; 299 } 300 301 cur_trans = fs_info->running_transaction; 302 if (cur_trans) { 303 if (TRANS_ABORTED(cur_trans)) { 304 spin_unlock(&fs_info->trans_lock); 305 return cur_trans->aborted; 306 } 307 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 308 spin_unlock(&fs_info->trans_lock); 309 return -EBUSY; 310 } 311 refcount_inc(&cur_trans->use_count); 312 atomic_inc(&cur_trans->num_writers); 313 extwriter_counter_inc(cur_trans, type); 314 spin_unlock(&fs_info->trans_lock); 315 return 0; 316 } 317 spin_unlock(&fs_info->trans_lock); 318 319 /* 320 * If we are ATTACH, we just want to catch the current transaction, 321 * and commit it. If there is no transaction, just return ENOENT. 322 */ 323 if (type == TRANS_ATTACH) 324 return -ENOENT; 325 326 /* 327 * JOIN_NOLOCK only happens during the transaction commit, so 328 * it is impossible that ->running_transaction is NULL 329 */ 330 BUG_ON(type == TRANS_JOIN_NOLOCK); 331 332 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS); 333 if (!cur_trans) 334 return -ENOMEM; 335 336 spin_lock(&fs_info->trans_lock); 337 if (fs_info->running_transaction) { 338 /* 339 * someone started a transaction after we unlocked. Make sure 340 * to redo the checks above 341 */ 342 kfree(cur_trans); 343 goto loop; 344 } else if (BTRFS_FS_ERROR(fs_info)) { 345 spin_unlock(&fs_info->trans_lock); 346 kfree(cur_trans); 347 return -EROFS; 348 } 349 350 cur_trans->fs_info = fs_info; 351 atomic_set(&cur_trans->pending_ordered, 0); 352 init_waitqueue_head(&cur_trans->pending_wait); 353 atomic_set(&cur_trans->num_writers, 1); 354 extwriter_counter_init(cur_trans, type); 355 init_waitqueue_head(&cur_trans->writer_wait); 356 init_waitqueue_head(&cur_trans->commit_wait); 357 cur_trans->state = TRANS_STATE_RUNNING; 358 /* 359 * One for this trans handle, one so it will live on until we 360 * commit the transaction. 361 */ 362 refcount_set(&cur_trans->use_count, 2); 363 cur_trans->flags = 0; 364 cur_trans->start_time = ktime_get_seconds(); 365 366 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 367 368 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED; 369 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 370 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 371 372 /* 373 * although the tree mod log is per file system and not per transaction, 374 * the log must never go across transaction boundaries. 375 */ 376 smp_mb(); 377 if (!list_empty(&fs_info->tree_mod_seq_list)) 378 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n"); 379 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 380 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n"); 381 atomic64_set(&fs_info->tree_mod_seq, 0); 382 383 spin_lock_init(&cur_trans->delayed_refs.lock); 384 385 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 386 INIT_LIST_HEAD(&cur_trans->dev_update_list); 387 INIT_LIST_HEAD(&cur_trans->switch_commits); 388 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 389 INIT_LIST_HEAD(&cur_trans->io_bgs); 390 INIT_LIST_HEAD(&cur_trans->dropped_roots); 391 mutex_init(&cur_trans->cache_write_mutex); 392 spin_lock_init(&cur_trans->dirty_bgs_lock); 393 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 394 spin_lock_init(&cur_trans->dropped_roots_lock); 395 INIT_LIST_HEAD(&cur_trans->releasing_ebs); 396 spin_lock_init(&cur_trans->releasing_ebs_lock); 397 list_add_tail(&cur_trans->list, &fs_info->trans_list); 398 extent_io_tree_init(fs_info, &cur_trans->dirty_pages, 399 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode); 400 extent_io_tree_init(fs_info, &cur_trans->pinned_extents, 401 IO_TREE_FS_PINNED_EXTENTS, NULL); 402 fs_info->generation++; 403 cur_trans->transid = fs_info->generation; 404 fs_info->running_transaction = cur_trans; 405 cur_trans->aborted = 0; 406 spin_unlock(&fs_info->trans_lock); 407 408 return 0; 409 } 410 411 /* 412 * This does all the record keeping required to make sure that a shareable root 413 * is properly recorded in a given transaction. This is required to make sure 414 * the old root from before we joined the transaction is deleted when the 415 * transaction commits. 416 */ 417 static int record_root_in_trans(struct btrfs_trans_handle *trans, 418 struct btrfs_root *root, 419 int force) 420 { 421 struct btrfs_fs_info *fs_info = root->fs_info; 422 int ret = 0; 423 424 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) && 425 root->last_trans < trans->transid) || force) { 426 WARN_ON(!force && root->commit_root != root->node); 427 428 /* 429 * see below for IN_TRANS_SETUP usage rules 430 * we have the reloc mutex held now, so there 431 * is only one writer in this function 432 */ 433 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 434 435 /* make sure readers find IN_TRANS_SETUP before 436 * they find our root->last_trans update 437 */ 438 smp_wmb(); 439 440 spin_lock(&fs_info->fs_roots_radix_lock); 441 if (root->last_trans == trans->transid && !force) { 442 spin_unlock(&fs_info->fs_roots_radix_lock); 443 return 0; 444 } 445 radix_tree_tag_set(&fs_info->fs_roots_radix, 446 (unsigned long)root->root_key.objectid, 447 BTRFS_ROOT_TRANS_TAG); 448 spin_unlock(&fs_info->fs_roots_radix_lock); 449 root->last_trans = trans->transid; 450 451 /* this is pretty tricky. We don't want to 452 * take the relocation lock in btrfs_record_root_in_trans 453 * unless we're really doing the first setup for this root in 454 * this transaction. 455 * 456 * Normally we'd use root->last_trans as a flag to decide 457 * if we want to take the expensive mutex. 458 * 459 * But, we have to set root->last_trans before we 460 * init the relocation root, otherwise, we trip over warnings 461 * in ctree.c. The solution used here is to flag ourselves 462 * with root IN_TRANS_SETUP. When this is 1, we're still 463 * fixing up the reloc trees and everyone must wait. 464 * 465 * When this is zero, they can trust root->last_trans and fly 466 * through btrfs_record_root_in_trans without having to take the 467 * lock. smp_wmb() makes sure that all the writes above are 468 * done before we pop in the zero below 469 */ 470 ret = btrfs_init_reloc_root(trans, root); 471 smp_mb__before_atomic(); 472 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 473 } 474 return ret; 475 } 476 477 478 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 479 struct btrfs_root *root) 480 { 481 struct btrfs_fs_info *fs_info = root->fs_info; 482 struct btrfs_transaction *cur_trans = trans->transaction; 483 484 /* Add ourselves to the transaction dropped list */ 485 spin_lock(&cur_trans->dropped_roots_lock); 486 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 487 spin_unlock(&cur_trans->dropped_roots_lock); 488 489 /* Make sure we don't try to update the root at commit time */ 490 spin_lock(&fs_info->fs_roots_radix_lock); 491 radix_tree_tag_clear(&fs_info->fs_roots_radix, 492 (unsigned long)root->root_key.objectid, 493 BTRFS_ROOT_TRANS_TAG); 494 spin_unlock(&fs_info->fs_roots_radix_lock); 495 } 496 497 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 498 struct btrfs_root *root) 499 { 500 struct btrfs_fs_info *fs_info = root->fs_info; 501 int ret; 502 503 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 504 return 0; 505 506 /* 507 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 508 * and barriers 509 */ 510 smp_rmb(); 511 if (root->last_trans == trans->transid && 512 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 513 return 0; 514 515 mutex_lock(&fs_info->reloc_mutex); 516 ret = record_root_in_trans(trans, root, 0); 517 mutex_unlock(&fs_info->reloc_mutex); 518 519 return ret; 520 } 521 522 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 523 { 524 return (trans->state >= TRANS_STATE_COMMIT_START && 525 trans->state < TRANS_STATE_UNBLOCKED && 526 !TRANS_ABORTED(trans)); 527 } 528 529 /* wait for commit against the current transaction to become unblocked 530 * when this is done, it is safe to start a new transaction, but the current 531 * transaction might not be fully on disk. 532 */ 533 static void wait_current_trans(struct btrfs_fs_info *fs_info) 534 { 535 struct btrfs_transaction *cur_trans; 536 537 spin_lock(&fs_info->trans_lock); 538 cur_trans = fs_info->running_transaction; 539 if (cur_trans && is_transaction_blocked(cur_trans)) { 540 refcount_inc(&cur_trans->use_count); 541 spin_unlock(&fs_info->trans_lock); 542 543 wait_event(fs_info->transaction_wait, 544 cur_trans->state >= TRANS_STATE_UNBLOCKED || 545 TRANS_ABORTED(cur_trans)); 546 btrfs_put_transaction(cur_trans); 547 } else { 548 spin_unlock(&fs_info->trans_lock); 549 } 550 } 551 552 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type) 553 { 554 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags)) 555 return 0; 556 557 if (type == TRANS_START) 558 return 1; 559 560 return 0; 561 } 562 563 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 564 { 565 struct btrfs_fs_info *fs_info = root->fs_info; 566 567 if (!fs_info->reloc_ctl || 568 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) || 569 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 570 root->reloc_root) 571 return false; 572 573 return true; 574 } 575 576 static struct btrfs_trans_handle * 577 start_transaction(struct btrfs_root *root, unsigned int num_items, 578 unsigned int type, enum btrfs_reserve_flush_enum flush, 579 bool enforce_qgroups) 580 { 581 struct btrfs_fs_info *fs_info = root->fs_info; 582 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv; 583 struct btrfs_trans_handle *h; 584 struct btrfs_transaction *cur_trans; 585 u64 num_bytes = 0; 586 u64 qgroup_reserved = 0; 587 bool reloc_reserved = false; 588 bool do_chunk_alloc = false; 589 int ret; 590 591 if (BTRFS_FS_ERROR(fs_info)) 592 return ERR_PTR(-EROFS); 593 594 if (current->journal_info) { 595 WARN_ON(type & TRANS_EXTWRITERS); 596 h = current->journal_info; 597 refcount_inc(&h->use_count); 598 WARN_ON(refcount_read(&h->use_count) > 2); 599 h->orig_rsv = h->block_rsv; 600 h->block_rsv = NULL; 601 goto got_it; 602 } 603 604 /* 605 * Do the reservation before we join the transaction so we can do all 606 * the appropriate flushing if need be. 607 */ 608 if (num_items && root != fs_info->chunk_root) { 609 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv; 610 u64 delayed_refs_bytes = 0; 611 612 qgroup_reserved = num_items * fs_info->nodesize; 613 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved, 614 enforce_qgroups); 615 if (ret) 616 return ERR_PTR(ret); 617 618 /* 619 * We want to reserve all the bytes we may need all at once, so 620 * we only do 1 enospc flushing cycle per transaction start. We 621 * accomplish this by simply assuming we'll do 2 x num_items 622 * worth of delayed refs updates in this trans handle, and 623 * refill that amount for whatever is missing in the reserve. 624 */ 625 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items); 626 if (flush == BTRFS_RESERVE_FLUSH_ALL && 627 delayed_refs_rsv->full == 0) { 628 delayed_refs_bytes = num_bytes; 629 num_bytes <<= 1; 630 } 631 632 /* 633 * Do the reservation for the relocation root creation 634 */ 635 if (need_reserve_reloc_root(root)) { 636 num_bytes += fs_info->nodesize; 637 reloc_reserved = true; 638 } 639 640 ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush); 641 if (ret) 642 goto reserve_fail; 643 if (delayed_refs_bytes) { 644 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv, 645 delayed_refs_bytes); 646 num_bytes -= delayed_refs_bytes; 647 } 648 649 if (rsv->space_info->force_alloc) 650 do_chunk_alloc = true; 651 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL && 652 !delayed_refs_rsv->full) { 653 /* 654 * Some people call with btrfs_start_transaction(root, 0) 655 * because they can be throttled, but have some other mechanism 656 * for reserving space. We still want these guys to refill the 657 * delayed block_rsv so just add 1 items worth of reservation 658 * here. 659 */ 660 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush); 661 if (ret) 662 goto reserve_fail; 663 } 664 again: 665 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 666 if (!h) { 667 ret = -ENOMEM; 668 goto alloc_fail; 669 } 670 671 /* 672 * If we are JOIN_NOLOCK we're already committing a transaction and 673 * waiting on this guy, so we don't need to do the sb_start_intwrite 674 * because we're already holding a ref. We need this because we could 675 * have raced in and did an fsync() on a file which can kick a commit 676 * and then we deadlock with somebody doing a freeze. 677 * 678 * If we are ATTACH, it means we just want to catch the current 679 * transaction and commit it, so we needn't do sb_start_intwrite(). 680 */ 681 if (type & __TRANS_FREEZABLE) 682 sb_start_intwrite(fs_info->sb); 683 684 if (may_wait_transaction(fs_info, type)) 685 wait_current_trans(fs_info); 686 687 do { 688 ret = join_transaction(fs_info, type); 689 if (ret == -EBUSY) { 690 wait_current_trans(fs_info); 691 if (unlikely(type == TRANS_ATTACH || 692 type == TRANS_JOIN_NOSTART)) 693 ret = -ENOENT; 694 } 695 } while (ret == -EBUSY); 696 697 if (ret < 0) 698 goto join_fail; 699 700 cur_trans = fs_info->running_transaction; 701 702 h->transid = cur_trans->transid; 703 h->transaction = cur_trans; 704 refcount_set(&h->use_count, 1); 705 h->fs_info = root->fs_info; 706 707 h->type = type; 708 INIT_LIST_HEAD(&h->new_bgs); 709 710 smp_mb(); 711 if (cur_trans->state >= TRANS_STATE_COMMIT_START && 712 may_wait_transaction(fs_info, type)) { 713 current->journal_info = h; 714 btrfs_commit_transaction(h); 715 goto again; 716 } 717 718 if (num_bytes) { 719 trace_btrfs_space_reservation(fs_info, "transaction", 720 h->transid, num_bytes, 1); 721 h->block_rsv = &fs_info->trans_block_rsv; 722 h->bytes_reserved = num_bytes; 723 h->reloc_reserved = reloc_reserved; 724 } 725 726 got_it: 727 if (!current->journal_info) 728 current->journal_info = h; 729 730 /* 731 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to 732 * ALLOC_FORCE the first run through, and then we won't allocate for 733 * anybody else who races in later. We don't care about the return 734 * value here. 735 */ 736 if (do_chunk_alloc && num_bytes) { 737 u64 flags = h->block_rsv->space_info->flags; 738 739 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags), 740 CHUNK_ALLOC_NO_FORCE); 741 } 742 743 /* 744 * btrfs_record_root_in_trans() needs to alloc new extents, and may 745 * call btrfs_join_transaction() while we're also starting a 746 * transaction. 747 * 748 * Thus it need to be called after current->journal_info initialized, 749 * or we can deadlock. 750 */ 751 ret = btrfs_record_root_in_trans(h, root); 752 if (ret) { 753 /* 754 * The transaction handle is fully initialized and linked with 755 * other structures so it needs to be ended in case of errors, 756 * not just freed. 757 */ 758 btrfs_end_transaction(h); 759 return ERR_PTR(ret); 760 } 761 762 return h; 763 764 join_fail: 765 if (type & __TRANS_FREEZABLE) 766 sb_end_intwrite(fs_info->sb); 767 kmem_cache_free(btrfs_trans_handle_cachep, h); 768 alloc_fail: 769 if (num_bytes) 770 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv, 771 num_bytes, NULL); 772 reserve_fail: 773 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved); 774 return ERR_PTR(ret); 775 } 776 777 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 778 unsigned int num_items) 779 { 780 return start_transaction(root, num_items, TRANS_START, 781 BTRFS_RESERVE_FLUSH_ALL, true); 782 } 783 784 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv( 785 struct btrfs_root *root, 786 unsigned int num_items) 787 { 788 return start_transaction(root, num_items, TRANS_START, 789 BTRFS_RESERVE_FLUSH_ALL_STEAL, false); 790 } 791 792 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 793 { 794 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH, 795 true); 796 } 797 798 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root) 799 { 800 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 801 BTRFS_RESERVE_NO_FLUSH, true); 802 } 803 804 /* 805 * Similar to regular join but it never starts a transaction when none is 806 * running or after waiting for the current one to finish. 807 */ 808 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root) 809 { 810 return start_transaction(root, 0, TRANS_JOIN_NOSTART, 811 BTRFS_RESERVE_NO_FLUSH, true); 812 } 813 814 /* 815 * btrfs_attach_transaction() - catch the running transaction 816 * 817 * It is used when we want to commit the current the transaction, but 818 * don't want to start a new one. 819 * 820 * Note: If this function return -ENOENT, it just means there is no 821 * running transaction. But it is possible that the inactive transaction 822 * is still in the memory, not fully on disk. If you hope there is no 823 * inactive transaction in the fs when -ENOENT is returned, you should 824 * invoke 825 * btrfs_attach_transaction_barrier() 826 */ 827 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 828 { 829 return start_transaction(root, 0, TRANS_ATTACH, 830 BTRFS_RESERVE_NO_FLUSH, true); 831 } 832 833 /* 834 * btrfs_attach_transaction_barrier() - catch the running transaction 835 * 836 * It is similar to the above function, the difference is this one 837 * will wait for all the inactive transactions until they fully 838 * complete. 839 */ 840 struct btrfs_trans_handle * 841 btrfs_attach_transaction_barrier(struct btrfs_root *root) 842 { 843 struct btrfs_trans_handle *trans; 844 845 trans = start_transaction(root, 0, TRANS_ATTACH, 846 BTRFS_RESERVE_NO_FLUSH, true); 847 if (trans == ERR_PTR(-ENOENT)) 848 btrfs_wait_for_commit(root->fs_info, 0); 849 850 return trans; 851 } 852 853 /* Wait for a transaction commit to reach at least the given state. */ 854 static noinline void wait_for_commit(struct btrfs_transaction *commit, 855 const enum btrfs_trans_state min_state) 856 { 857 struct btrfs_fs_info *fs_info = commit->fs_info; 858 u64 transid = commit->transid; 859 bool put = false; 860 861 while (1) { 862 wait_event(commit->commit_wait, commit->state >= min_state); 863 if (put) 864 btrfs_put_transaction(commit); 865 866 if (min_state < TRANS_STATE_COMPLETED) 867 break; 868 869 /* 870 * A transaction isn't really completed until all of the 871 * previous transactions are completed, but with fsync we can 872 * end up with SUPER_COMMITTED transactions before a COMPLETED 873 * transaction. Wait for those. 874 */ 875 876 spin_lock(&fs_info->trans_lock); 877 commit = list_first_entry_or_null(&fs_info->trans_list, 878 struct btrfs_transaction, 879 list); 880 if (!commit || commit->transid > transid) { 881 spin_unlock(&fs_info->trans_lock); 882 break; 883 } 884 refcount_inc(&commit->use_count); 885 put = true; 886 spin_unlock(&fs_info->trans_lock); 887 } 888 } 889 890 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid) 891 { 892 struct btrfs_transaction *cur_trans = NULL, *t; 893 int ret = 0; 894 895 if (transid) { 896 if (transid <= fs_info->last_trans_committed) 897 goto out; 898 899 /* find specified transaction */ 900 spin_lock(&fs_info->trans_lock); 901 list_for_each_entry(t, &fs_info->trans_list, list) { 902 if (t->transid == transid) { 903 cur_trans = t; 904 refcount_inc(&cur_trans->use_count); 905 ret = 0; 906 break; 907 } 908 if (t->transid > transid) { 909 ret = 0; 910 break; 911 } 912 } 913 spin_unlock(&fs_info->trans_lock); 914 915 /* 916 * The specified transaction doesn't exist, or we 917 * raced with btrfs_commit_transaction 918 */ 919 if (!cur_trans) { 920 if (transid > fs_info->last_trans_committed) 921 ret = -EINVAL; 922 goto out; 923 } 924 } else { 925 /* find newest transaction that is committing | committed */ 926 spin_lock(&fs_info->trans_lock); 927 list_for_each_entry_reverse(t, &fs_info->trans_list, 928 list) { 929 if (t->state >= TRANS_STATE_COMMIT_START) { 930 if (t->state == TRANS_STATE_COMPLETED) 931 break; 932 cur_trans = t; 933 refcount_inc(&cur_trans->use_count); 934 break; 935 } 936 } 937 spin_unlock(&fs_info->trans_lock); 938 if (!cur_trans) 939 goto out; /* nothing committing|committed */ 940 } 941 942 wait_for_commit(cur_trans, TRANS_STATE_COMPLETED); 943 btrfs_put_transaction(cur_trans); 944 out: 945 return ret; 946 } 947 948 void btrfs_throttle(struct btrfs_fs_info *fs_info) 949 { 950 wait_current_trans(fs_info); 951 } 952 953 static bool should_end_transaction(struct btrfs_trans_handle *trans) 954 { 955 struct btrfs_fs_info *fs_info = trans->fs_info; 956 957 if (btrfs_check_space_for_delayed_refs(fs_info)) 958 return true; 959 960 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5); 961 } 962 963 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans) 964 { 965 struct btrfs_transaction *cur_trans = trans->transaction; 966 967 if (cur_trans->state >= TRANS_STATE_COMMIT_START || 968 test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags)) 969 return true; 970 971 return should_end_transaction(trans); 972 } 973 974 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans) 975 976 { 977 struct btrfs_fs_info *fs_info = trans->fs_info; 978 979 if (!trans->block_rsv) { 980 ASSERT(!trans->bytes_reserved); 981 return; 982 } 983 984 if (!trans->bytes_reserved) 985 return; 986 987 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv); 988 trace_btrfs_space_reservation(fs_info, "transaction", 989 trans->transid, trans->bytes_reserved, 0); 990 btrfs_block_rsv_release(fs_info, trans->block_rsv, 991 trans->bytes_reserved, NULL); 992 trans->bytes_reserved = 0; 993 } 994 995 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 996 int throttle) 997 { 998 struct btrfs_fs_info *info = trans->fs_info; 999 struct btrfs_transaction *cur_trans = trans->transaction; 1000 int err = 0; 1001 1002 if (refcount_read(&trans->use_count) > 1) { 1003 refcount_dec(&trans->use_count); 1004 trans->block_rsv = trans->orig_rsv; 1005 return 0; 1006 } 1007 1008 btrfs_trans_release_metadata(trans); 1009 trans->block_rsv = NULL; 1010 1011 btrfs_create_pending_block_groups(trans); 1012 1013 btrfs_trans_release_chunk_metadata(trans); 1014 1015 if (trans->type & __TRANS_FREEZABLE) 1016 sb_end_intwrite(info->sb); 1017 1018 WARN_ON(cur_trans != info->running_transaction); 1019 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 1020 atomic_dec(&cur_trans->num_writers); 1021 extwriter_counter_dec(cur_trans, trans->type); 1022 1023 cond_wake_up(&cur_trans->writer_wait); 1024 btrfs_put_transaction(cur_trans); 1025 1026 if (current->journal_info == trans) 1027 current->journal_info = NULL; 1028 1029 if (throttle) 1030 btrfs_run_delayed_iputs(info); 1031 1032 if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) { 1033 wake_up_process(info->transaction_kthread); 1034 if (TRANS_ABORTED(trans)) 1035 err = trans->aborted; 1036 else 1037 err = -EROFS; 1038 } 1039 1040 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1041 return err; 1042 } 1043 1044 int btrfs_end_transaction(struct btrfs_trans_handle *trans) 1045 { 1046 return __btrfs_end_transaction(trans, 0); 1047 } 1048 1049 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans) 1050 { 1051 return __btrfs_end_transaction(trans, 1); 1052 } 1053 1054 /* 1055 * when btree blocks are allocated, they have some corresponding bits set for 1056 * them in one of two extent_io trees. This is used to make sure all of 1057 * those extents are sent to disk but does not wait on them 1058 */ 1059 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info, 1060 struct extent_io_tree *dirty_pages, int mark) 1061 { 1062 int err = 0; 1063 int werr = 0; 1064 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1065 struct extent_state *cached_state = NULL; 1066 u64 start = 0; 1067 u64 end; 1068 1069 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1070 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1071 mark, &cached_state)) { 1072 bool wait_writeback = false; 1073 1074 err = convert_extent_bit(dirty_pages, start, end, 1075 EXTENT_NEED_WAIT, 1076 mark, &cached_state); 1077 /* 1078 * convert_extent_bit can return -ENOMEM, which is most of the 1079 * time a temporary error. So when it happens, ignore the error 1080 * and wait for writeback of this range to finish - because we 1081 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 1082 * to __btrfs_wait_marked_extents() would not know that 1083 * writeback for this range started and therefore wouldn't 1084 * wait for it to finish - we don't want to commit a 1085 * superblock that points to btree nodes/leafs for which 1086 * writeback hasn't finished yet (and without errors). 1087 * We cleanup any entries left in the io tree when committing 1088 * the transaction (through extent_io_tree_release()). 1089 */ 1090 if (err == -ENOMEM) { 1091 err = 0; 1092 wait_writeback = true; 1093 } 1094 if (!err) 1095 err = filemap_fdatawrite_range(mapping, start, end); 1096 if (err) 1097 werr = err; 1098 else if (wait_writeback) 1099 werr = filemap_fdatawait_range(mapping, start, end); 1100 free_extent_state(cached_state); 1101 cached_state = NULL; 1102 cond_resched(); 1103 start = end + 1; 1104 } 1105 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers); 1106 return werr; 1107 } 1108 1109 /* 1110 * when btree blocks are allocated, they have some corresponding bits set for 1111 * them in one of two extent_io trees. This is used to make sure all of 1112 * those extents are on disk for transaction or log commit. We wait 1113 * on all the pages and clear them from the dirty pages state tree 1114 */ 1115 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info, 1116 struct extent_io_tree *dirty_pages) 1117 { 1118 int err = 0; 1119 int werr = 0; 1120 struct address_space *mapping = fs_info->btree_inode->i_mapping; 1121 struct extent_state *cached_state = NULL; 1122 u64 start = 0; 1123 u64 end; 1124 1125 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 1126 EXTENT_NEED_WAIT, &cached_state)) { 1127 /* 1128 * Ignore -ENOMEM errors returned by clear_extent_bit(). 1129 * When committing the transaction, we'll remove any entries 1130 * left in the io tree. For a log commit, we don't remove them 1131 * after committing the log because the tree can be accessed 1132 * concurrently - we do it only at transaction commit time when 1133 * it's safe to do it (through extent_io_tree_release()). 1134 */ 1135 err = clear_extent_bit(dirty_pages, start, end, 1136 EXTENT_NEED_WAIT, 0, 0, &cached_state); 1137 if (err == -ENOMEM) 1138 err = 0; 1139 if (!err) 1140 err = filemap_fdatawait_range(mapping, start, end); 1141 if (err) 1142 werr = err; 1143 free_extent_state(cached_state); 1144 cached_state = NULL; 1145 cond_resched(); 1146 start = end + 1; 1147 } 1148 if (err) 1149 werr = err; 1150 return werr; 1151 } 1152 1153 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info, 1154 struct extent_io_tree *dirty_pages) 1155 { 1156 bool errors = false; 1157 int err; 1158 1159 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1160 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags)) 1161 errors = true; 1162 1163 if (errors && !err) 1164 err = -EIO; 1165 return err; 1166 } 1167 1168 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark) 1169 { 1170 struct btrfs_fs_info *fs_info = log_root->fs_info; 1171 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages; 1172 bool errors = false; 1173 int err; 1174 1175 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID); 1176 1177 err = __btrfs_wait_marked_extents(fs_info, dirty_pages); 1178 if ((mark & EXTENT_DIRTY) && 1179 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags)) 1180 errors = true; 1181 1182 if ((mark & EXTENT_NEW) && 1183 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags)) 1184 errors = true; 1185 1186 if (errors && !err) 1187 err = -EIO; 1188 return err; 1189 } 1190 1191 /* 1192 * When btree blocks are allocated the corresponding extents are marked dirty. 1193 * This function ensures such extents are persisted on disk for transaction or 1194 * log commit. 1195 * 1196 * @trans: transaction whose dirty pages we'd like to write 1197 */ 1198 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans) 1199 { 1200 int ret; 1201 int ret2; 1202 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages; 1203 struct btrfs_fs_info *fs_info = trans->fs_info; 1204 struct blk_plug plug; 1205 1206 blk_start_plug(&plug); 1207 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY); 1208 blk_finish_plug(&plug); 1209 ret2 = btrfs_wait_extents(fs_info, dirty_pages); 1210 1211 extent_io_tree_release(&trans->transaction->dirty_pages); 1212 1213 if (ret) 1214 return ret; 1215 else if (ret2) 1216 return ret2; 1217 else 1218 return 0; 1219 } 1220 1221 /* 1222 * this is used to update the root pointer in the tree of tree roots. 1223 * 1224 * But, in the case of the extent allocation tree, updating the root 1225 * pointer may allocate blocks which may change the root of the extent 1226 * allocation tree. 1227 * 1228 * So, this loops and repeats and makes sure the cowonly root didn't 1229 * change while the root pointer was being updated in the metadata. 1230 */ 1231 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1232 struct btrfs_root *root) 1233 { 1234 int ret; 1235 u64 old_root_bytenr; 1236 u64 old_root_used; 1237 struct btrfs_fs_info *fs_info = root->fs_info; 1238 struct btrfs_root *tree_root = fs_info->tree_root; 1239 1240 old_root_used = btrfs_root_used(&root->root_item); 1241 1242 while (1) { 1243 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1244 if (old_root_bytenr == root->node->start && 1245 old_root_used == btrfs_root_used(&root->root_item)) 1246 break; 1247 1248 btrfs_set_root_node(&root->root_item, root->node); 1249 ret = btrfs_update_root(trans, tree_root, 1250 &root->root_key, 1251 &root->root_item); 1252 if (ret) 1253 return ret; 1254 1255 old_root_used = btrfs_root_used(&root->root_item); 1256 } 1257 1258 return 0; 1259 } 1260 1261 /* 1262 * update all the cowonly tree roots on disk 1263 * 1264 * The error handling in this function may not be obvious. Any of the 1265 * failures will cause the file system to go offline. We still need 1266 * to clean up the delayed refs. 1267 */ 1268 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans) 1269 { 1270 struct btrfs_fs_info *fs_info = trans->fs_info; 1271 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1272 struct list_head *io_bgs = &trans->transaction->io_bgs; 1273 struct list_head *next; 1274 struct extent_buffer *eb; 1275 int ret; 1276 1277 /* 1278 * At this point no one can be using this transaction to modify any tree 1279 * and no one can start another transaction to modify any tree either. 1280 */ 1281 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1282 1283 eb = btrfs_lock_root_node(fs_info->tree_root); 1284 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1285 0, &eb, BTRFS_NESTING_COW); 1286 btrfs_tree_unlock(eb); 1287 free_extent_buffer(eb); 1288 1289 if (ret) 1290 return ret; 1291 1292 ret = btrfs_run_dev_stats(trans); 1293 if (ret) 1294 return ret; 1295 ret = btrfs_run_dev_replace(trans); 1296 if (ret) 1297 return ret; 1298 ret = btrfs_run_qgroups(trans); 1299 if (ret) 1300 return ret; 1301 1302 ret = btrfs_setup_space_cache(trans); 1303 if (ret) 1304 return ret; 1305 1306 again: 1307 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1308 struct btrfs_root *root; 1309 next = fs_info->dirty_cowonly_roots.next; 1310 list_del_init(next); 1311 root = list_entry(next, struct btrfs_root, dirty_list); 1312 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1313 1314 list_add_tail(&root->dirty_list, 1315 &trans->transaction->switch_commits); 1316 ret = update_cowonly_root(trans, root); 1317 if (ret) 1318 return ret; 1319 } 1320 1321 /* Now flush any delayed refs generated by updating all of the roots */ 1322 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1323 if (ret) 1324 return ret; 1325 1326 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1327 ret = btrfs_write_dirty_block_groups(trans); 1328 if (ret) 1329 return ret; 1330 1331 /* 1332 * We're writing the dirty block groups, which could generate 1333 * delayed refs, which could generate more dirty block groups, 1334 * so we want to keep this flushing in this loop to make sure 1335 * everything gets run. 1336 */ 1337 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1338 if (ret) 1339 return ret; 1340 } 1341 1342 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1343 goto again; 1344 1345 /* Update dev-replace pointer once everything is committed */ 1346 fs_info->dev_replace.committed_cursor_left = 1347 fs_info->dev_replace.cursor_left_last_write_of_item; 1348 1349 return 0; 1350 } 1351 1352 /* 1353 * If we had a pending drop we need to see if there are any others left in our 1354 * dead roots list, and if not clear our bit and wake any waiters. 1355 */ 1356 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info) 1357 { 1358 /* 1359 * We put the drop in progress roots at the front of the list, so if the 1360 * first entry doesn't have UNFINISHED_DROP set we can wake everybody 1361 * up. 1362 */ 1363 spin_lock(&fs_info->trans_lock); 1364 if (!list_empty(&fs_info->dead_roots)) { 1365 struct btrfs_root *root = list_first_entry(&fs_info->dead_roots, 1366 struct btrfs_root, 1367 root_list); 1368 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) { 1369 spin_unlock(&fs_info->trans_lock); 1370 return; 1371 } 1372 } 1373 spin_unlock(&fs_info->trans_lock); 1374 1375 btrfs_wake_unfinished_drop(fs_info); 1376 } 1377 1378 /* 1379 * dead roots are old snapshots that need to be deleted. This allocates 1380 * a dirty root struct and adds it into the list of dead roots that need to 1381 * be deleted 1382 */ 1383 void btrfs_add_dead_root(struct btrfs_root *root) 1384 { 1385 struct btrfs_fs_info *fs_info = root->fs_info; 1386 1387 spin_lock(&fs_info->trans_lock); 1388 if (list_empty(&root->root_list)) { 1389 btrfs_grab_root(root); 1390 1391 /* We want to process the partially complete drops first. */ 1392 if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) 1393 list_add(&root->root_list, &fs_info->dead_roots); 1394 else 1395 list_add_tail(&root->root_list, &fs_info->dead_roots); 1396 } 1397 spin_unlock(&fs_info->trans_lock); 1398 } 1399 1400 /* 1401 * Update each subvolume root and its relocation root, if it exists, in the tree 1402 * of tree roots. Also free log roots if they exist. 1403 */ 1404 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans) 1405 { 1406 struct btrfs_fs_info *fs_info = trans->fs_info; 1407 struct btrfs_root *gang[8]; 1408 int i; 1409 int ret; 1410 1411 /* 1412 * At this point no one can be using this transaction to modify any tree 1413 * and no one can start another transaction to modify any tree either. 1414 */ 1415 ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING); 1416 1417 spin_lock(&fs_info->fs_roots_radix_lock); 1418 while (1) { 1419 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1420 (void **)gang, 0, 1421 ARRAY_SIZE(gang), 1422 BTRFS_ROOT_TRANS_TAG); 1423 if (ret == 0) 1424 break; 1425 for (i = 0; i < ret; i++) { 1426 struct btrfs_root *root = gang[i]; 1427 int ret2; 1428 1429 /* 1430 * At this point we can neither have tasks logging inodes 1431 * from a root nor trying to commit a log tree. 1432 */ 1433 ASSERT(atomic_read(&root->log_writers) == 0); 1434 ASSERT(atomic_read(&root->log_commit[0]) == 0); 1435 ASSERT(atomic_read(&root->log_commit[1]) == 0); 1436 1437 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1438 (unsigned long)root->root_key.objectid, 1439 BTRFS_ROOT_TRANS_TAG); 1440 spin_unlock(&fs_info->fs_roots_radix_lock); 1441 1442 btrfs_free_log(trans, root); 1443 ret2 = btrfs_update_reloc_root(trans, root); 1444 if (ret2) 1445 return ret2; 1446 1447 /* see comments in should_cow_block() */ 1448 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1449 smp_mb__after_atomic(); 1450 1451 if (root->commit_root != root->node) { 1452 list_add_tail(&root->dirty_list, 1453 &trans->transaction->switch_commits); 1454 btrfs_set_root_node(&root->root_item, 1455 root->node); 1456 } 1457 1458 ret2 = btrfs_update_root(trans, fs_info->tree_root, 1459 &root->root_key, 1460 &root->root_item); 1461 if (ret2) 1462 return ret2; 1463 spin_lock(&fs_info->fs_roots_radix_lock); 1464 btrfs_qgroup_free_meta_all_pertrans(root); 1465 } 1466 } 1467 spin_unlock(&fs_info->fs_roots_radix_lock); 1468 return 0; 1469 } 1470 1471 /* 1472 * defrag a given btree. 1473 * Every leaf in the btree is read and defragged. 1474 */ 1475 int btrfs_defrag_root(struct btrfs_root *root) 1476 { 1477 struct btrfs_fs_info *info = root->fs_info; 1478 struct btrfs_trans_handle *trans; 1479 int ret; 1480 1481 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1482 return 0; 1483 1484 while (1) { 1485 trans = btrfs_start_transaction(root, 0); 1486 if (IS_ERR(trans)) { 1487 ret = PTR_ERR(trans); 1488 break; 1489 } 1490 1491 ret = btrfs_defrag_leaves(trans, root); 1492 1493 btrfs_end_transaction(trans); 1494 btrfs_btree_balance_dirty(info); 1495 cond_resched(); 1496 1497 if (btrfs_fs_closing(info) || ret != -EAGAIN) 1498 break; 1499 1500 if (btrfs_defrag_cancelled(info)) { 1501 btrfs_debug(info, "defrag_root cancelled"); 1502 ret = -EAGAIN; 1503 break; 1504 } 1505 } 1506 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1507 return ret; 1508 } 1509 1510 /* 1511 * Do all special snapshot related qgroup dirty hack. 1512 * 1513 * Will do all needed qgroup inherit and dirty hack like switch commit 1514 * roots inside one transaction and write all btree into disk, to make 1515 * qgroup works. 1516 */ 1517 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans, 1518 struct btrfs_root *src, 1519 struct btrfs_root *parent, 1520 struct btrfs_qgroup_inherit *inherit, 1521 u64 dst_objectid) 1522 { 1523 struct btrfs_fs_info *fs_info = src->fs_info; 1524 int ret; 1525 1526 /* 1527 * Save some performance in the case that qgroups are not 1528 * enabled. If this check races with the ioctl, rescan will 1529 * kick in anyway. 1530 */ 1531 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags)) 1532 return 0; 1533 1534 /* 1535 * Ensure dirty @src will be committed. Or, after coming 1536 * commit_fs_roots() and switch_commit_roots(), any dirty but not 1537 * recorded root will never be updated again, causing an outdated root 1538 * item. 1539 */ 1540 ret = record_root_in_trans(trans, src, 1); 1541 if (ret) 1542 return ret; 1543 1544 /* 1545 * btrfs_qgroup_inherit relies on a consistent view of the usage for the 1546 * src root, so we must run the delayed refs here. 1547 * 1548 * However this isn't particularly fool proof, because there's no 1549 * synchronization keeping us from changing the tree after this point 1550 * before we do the qgroup_inherit, or even from making changes while 1551 * we're doing the qgroup_inherit. But that's a problem for the future, 1552 * for now flush the delayed refs to narrow the race window where the 1553 * qgroup counters could end up wrong. 1554 */ 1555 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 1556 if (ret) { 1557 btrfs_abort_transaction(trans, ret); 1558 return ret; 1559 } 1560 1561 ret = commit_fs_roots(trans); 1562 if (ret) 1563 goto out; 1564 ret = btrfs_qgroup_account_extents(trans); 1565 if (ret < 0) 1566 goto out; 1567 1568 /* Now qgroup are all updated, we can inherit it to new qgroups */ 1569 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid, 1570 inherit); 1571 if (ret < 0) 1572 goto out; 1573 1574 /* 1575 * Now we do a simplified commit transaction, which will: 1576 * 1) commit all subvolume and extent tree 1577 * To ensure all subvolume and extent tree have a valid 1578 * commit_root to accounting later insert_dir_item() 1579 * 2) write all btree blocks onto disk 1580 * This is to make sure later btree modification will be cowed 1581 * Or commit_root can be populated and cause wrong qgroup numbers 1582 * In this simplified commit, we don't really care about other trees 1583 * like chunk and root tree, as they won't affect qgroup. 1584 * And we don't write super to avoid half committed status. 1585 */ 1586 ret = commit_cowonly_roots(trans); 1587 if (ret) 1588 goto out; 1589 switch_commit_roots(trans); 1590 ret = btrfs_write_and_wait_transaction(trans); 1591 if (ret) 1592 btrfs_handle_fs_error(fs_info, ret, 1593 "Error while writing out transaction for qgroup"); 1594 1595 out: 1596 /* 1597 * Force parent root to be updated, as we recorded it before so its 1598 * last_trans == cur_transid. 1599 * Or it won't be committed again onto disk after later 1600 * insert_dir_item() 1601 */ 1602 if (!ret) 1603 ret = record_root_in_trans(trans, parent, 1); 1604 return ret; 1605 } 1606 1607 /* 1608 * new snapshots need to be created at a very specific time in the 1609 * transaction commit. This does the actual creation. 1610 * 1611 * Note: 1612 * If the error which may affect the commitment of the current transaction 1613 * happens, we should return the error number. If the error which just affect 1614 * the creation of the pending snapshots, just return 0. 1615 */ 1616 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1617 struct btrfs_pending_snapshot *pending) 1618 { 1619 1620 struct btrfs_fs_info *fs_info = trans->fs_info; 1621 struct btrfs_key key; 1622 struct btrfs_root_item *new_root_item; 1623 struct btrfs_root *tree_root = fs_info->tree_root; 1624 struct btrfs_root *root = pending->root; 1625 struct btrfs_root *parent_root; 1626 struct btrfs_block_rsv *rsv; 1627 struct inode *parent_inode; 1628 struct btrfs_path *path; 1629 struct btrfs_dir_item *dir_item; 1630 struct dentry *dentry; 1631 struct extent_buffer *tmp; 1632 struct extent_buffer *old; 1633 struct timespec64 cur_time; 1634 int ret = 0; 1635 u64 to_reserve = 0; 1636 u64 index = 0; 1637 u64 objectid; 1638 u64 root_flags; 1639 1640 ASSERT(pending->path); 1641 path = pending->path; 1642 1643 ASSERT(pending->root_item); 1644 new_root_item = pending->root_item; 1645 1646 pending->error = btrfs_get_free_objectid(tree_root, &objectid); 1647 if (pending->error) 1648 goto no_free_objectid; 1649 1650 /* 1651 * Make qgroup to skip current new snapshot's qgroupid, as it is 1652 * accounted by later btrfs_qgroup_inherit(). 1653 */ 1654 btrfs_set_skip_qgroup(trans, objectid); 1655 1656 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1657 1658 if (to_reserve > 0) { 1659 pending->error = btrfs_block_rsv_add(fs_info, 1660 &pending->block_rsv, 1661 to_reserve, 1662 BTRFS_RESERVE_NO_FLUSH); 1663 if (pending->error) 1664 goto clear_skip_qgroup; 1665 } 1666 1667 key.objectid = objectid; 1668 key.offset = (u64)-1; 1669 key.type = BTRFS_ROOT_ITEM_KEY; 1670 1671 rsv = trans->block_rsv; 1672 trans->block_rsv = &pending->block_rsv; 1673 trans->bytes_reserved = trans->block_rsv->reserved; 1674 trace_btrfs_space_reservation(fs_info, "transaction", 1675 trans->transid, 1676 trans->bytes_reserved, 1); 1677 dentry = pending->dentry; 1678 parent_inode = pending->dir; 1679 parent_root = BTRFS_I(parent_inode)->root; 1680 ret = record_root_in_trans(trans, parent_root, 0); 1681 if (ret) 1682 goto fail; 1683 cur_time = current_time(parent_inode); 1684 1685 /* 1686 * insert the directory item 1687 */ 1688 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index); 1689 BUG_ON(ret); /* -ENOMEM */ 1690 1691 /* check if there is a file/dir which has the same name. */ 1692 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1693 btrfs_ino(BTRFS_I(parent_inode)), 1694 dentry->d_name.name, 1695 dentry->d_name.len, 0); 1696 if (dir_item != NULL && !IS_ERR(dir_item)) { 1697 pending->error = -EEXIST; 1698 goto dir_item_existed; 1699 } else if (IS_ERR(dir_item)) { 1700 ret = PTR_ERR(dir_item); 1701 btrfs_abort_transaction(trans, ret); 1702 goto fail; 1703 } 1704 btrfs_release_path(path); 1705 1706 /* 1707 * pull in the delayed directory update 1708 * and the delayed inode item 1709 * otherwise we corrupt the FS during 1710 * snapshot 1711 */ 1712 ret = btrfs_run_delayed_items(trans); 1713 if (ret) { /* Transaction aborted */ 1714 btrfs_abort_transaction(trans, ret); 1715 goto fail; 1716 } 1717 1718 ret = record_root_in_trans(trans, root, 0); 1719 if (ret) { 1720 btrfs_abort_transaction(trans, ret); 1721 goto fail; 1722 } 1723 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1724 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1725 btrfs_check_and_init_root_item(new_root_item); 1726 1727 root_flags = btrfs_root_flags(new_root_item); 1728 if (pending->readonly) 1729 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1730 else 1731 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1732 btrfs_set_root_flags(new_root_item, root_flags); 1733 1734 btrfs_set_root_generation_v2(new_root_item, 1735 trans->transid); 1736 generate_random_guid(new_root_item->uuid); 1737 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1738 BTRFS_UUID_SIZE); 1739 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1740 memset(new_root_item->received_uuid, 0, 1741 sizeof(new_root_item->received_uuid)); 1742 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1743 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1744 btrfs_set_root_stransid(new_root_item, 0); 1745 btrfs_set_root_rtransid(new_root_item, 0); 1746 } 1747 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1748 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1749 btrfs_set_root_otransid(new_root_item, trans->transid); 1750 1751 old = btrfs_lock_root_node(root); 1752 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old, 1753 BTRFS_NESTING_COW); 1754 if (ret) { 1755 btrfs_tree_unlock(old); 1756 free_extent_buffer(old); 1757 btrfs_abort_transaction(trans, ret); 1758 goto fail; 1759 } 1760 1761 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1762 /* clean up in any case */ 1763 btrfs_tree_unlock(old); 1764 free_extent_buffer(old); 1765 if (ret) { 1766 btrfs_abort_transaction(trans, ret); 1767 goto fail; 1768 } 1769 /* see comments in should_cow_block() */ 1770 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1771 smp_wmb(); 1772 1773 btrfs_set_root_node(new_root_item, tmp); 1774 /* record when the snapshot was created in key.offset */ 1775 key.offset = trans->transid; 1776 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1777 btrfs_tree_unlock(tmp); 1778 free_extent_buffer(tmp); 1779 if (ret) { 1780 btrfs_abort_transaction(trans, ret); 1781 goto fail; 1782 } 1783 1784 /* 1785 * insert root back/forward references 1786 */ 1787 ret = btrfs_add_root_ref(trans, objectid, 1788 parent_root->root_key.objectid, 1789 btrfs_ino(BTRFS_I(parent_inode)), index, 1790 dentry->d_name.name, dentry->d_name.len); 1791 if (ret) { 1792 btrfs_abort_transaction(trans, ret); 1793 goto fail; 1794 } 1795 1796 key.offset = (u64)-1; 1797 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev); 1798 if (IS_ERR(pending->snap)) { 1799 ret = PTR_ERR(pending->snap); 1800 pending->snap = NULL; 1801 btrfs_abort_transaction(trans, ret); 1802 goto fail; 1803 } 1804 1805 ret = btrfs_reloc_post_snapshot(trans, pending); 1806 if (ret) { 1807 btrfs_abort_transaction(trans, ret); 1808 goto fail; 1809 } 1810 1811 /* 1812 * Do special qgroup accounting for snapshot, as we do some qgroup 1813 * snapshot hack to do fast snapshot. 1814 * To co-operate with that hack, we do hack again. 1815 * Or snapshot will be greatly slowed down by a subtree qgroup rescan 1816 */ 1817 ret = qgroup_account_snapshot(trans, root, parent_root, 1818 pending->inherit, objectid); 1819 if (ret < 0) 1820 goto fail; 1821 1822 ret = btrfs_insert_dir_item(trans, dentry->d_name.name, 1823 dentry->d_name.len, BTRFS_I(parent_inode), 1824 &key, BTRFS_FT_DIR, index); 1825 /* We have check then name at the beginning, so it is impossible. */ 1826 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1827 if (ret) { 1828 btrfs_abort_transaction(trans, ret); 1829 goto fail; 1830 } 1831 1832 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size + 1833 dentry->d_name.len * 2); 1834 parent_inode->i_mtime = parent_inode->i_ctime = 1835 current_time(parent_inode); 1836 ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode)); 1837 if (ret) { 1838 btrfs_abort_transaction(trans, ret); 1839 goto fail; 1840 } 1841 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid, 1842 BTRFS_UUID_KEY_SUBVOL, 1843 objectid); 1844 if (ret) { 1845 btrfs_abort_transaction(trans, ret); 1846 goto fail; 1847 } 1848 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1849 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid, 1850 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1851 objectid); 1852 if (ret && ret != -EEXIST) { 1853 btrfs_abort_transaction(trans, ret); 1854 goto fail; 1855 } 1856 } 1857 1858 fail: 1859 pending->error = ret; 1860 dir_item_existed: 1861 trans->block_rsv = rsv; 1862 trans->bytes_reserved = 0; 1863 clear_skip_qgroup: 1864 btrfs_clear_skip_qgroup(trans); 1865 no_free_objectid: 1866 kfree(new_root_item); 1867 pending->root_item = NULL; 1868 btrfs_free_path(path); 1869 pending->path = NULL; 1870 1871 return ret; 1872 } 1873 1874 /* 1875 * create all the snapshots we've scheduled for creation 1876 */ 1877 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans) 1878 { 1879 struct btrfs_pending_snapshot *pending, *next; 1880 struct list_head *head = &trans->transaction->pending_snapshots; 1881 int ret = 0; 1882 1883 list_for_each_entry_safe(pending, next, head, list) { 1884 list_del(&pending->list); 1885 ret = create_pending_snapshot(trans, pending); 1886 if (ret) 1887 break; 1888 } 1889 return ret; 1890 } 1891 1892 static void update_super_roots(struct btrfs_fs_info *fs_info) 1893 { 1894 struct btrfs_root_item *root_item; 1895 struct btrfs_super_block *super; 1896 1897 super = fs_info->super_copy; 1898 1899 root_item = &fs_info->chunk_root->root_item; 1900 super->chunk_root = root_item->bytenr; 1901 super->chunk_root_generation = root_item->generation; 1902 super->chunk_root_level = root_item->level; 1903 1904 root_item = &fs_info->tree_root->root_item; 1905 super->root = root_item->bytenr; 1906 super->generation = root_item->generation; 1907 super->root_level = root_item->level; 1908 if (btrfs_test_opt(fs_info, SPACE_CACHE)) 1909 super->cache_generation = root_item->generation; 1910 else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags)) 1911 super->cache_generation = 0; 1912 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags)) 1913 super->uuid_tree_generation = root_item->generation; 1914 } 1915 1916 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1917 { 1918 struct btrfs_transaction *trans; 1919 int ret = 0; 1920 1921 spin_lock(&info->trans_lock); 1922 trans = info->running_transaction; 1923 if (trans) 1924 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1925 spin_unlock(&info->trans_lock); 1926 return ret; 1927 } 1928 1929 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1930 { 1931 struct btrfs_transaction *trans; 1932 int ret = 0; 1933 1934 spin_lock(&info->trans_lock); 1935 trans = info->running_transaction; 1936 if (trans) 1937 ret = is_transaction_blocked(trans); 1938 spin_unlock(&info->trans_lock); 1939 return ret; 1940 } 1941 1942 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans) 1943 { 1944 struct btrfs_fs_info *fs_info = trans->fs_info; 1945 struct btrfs_transaction *cur_trans; 1946 1947 /* Kick the transaction kthread. */ 1948 set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 1949 wake_up_process(fs_info->transaction_kthread); 1950 1951 /* take transaction reference */ 1952 cur_trans = trans->transaction; 1953 refcount_inc(&cur_trans->use_count); 1954 1955 btrfs_end_transaction(trans); 1956 1957 /* 1958 * Wait for the current transaction commit to start and block 1959 * subsequent transaction joins 1960 */ 1961 wait_event(fs_info->transaction_blocked_wait, 1962 cur_trans->state >= TRANS_STATE_COMMIT_START || 1963 TRANS_ABORTED(cur_trans)); 1964 btrfs_put_transaction(cur_trans); 1965 } 1966 1967 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err) 1968 { 1969 struct btrfs_fs_info *fs_info = trans->fs_info; 1970 struct btrfs_transaction *cur_trans = trans->transaction; 1971 1972 WARN_ON(refcount_read(&trans->use_count) > 1); 1973 1974 btrfs_abort_transaction(trans, err); 1975 1976 spin_lock(&fs_info->trans_lock); 1977 1978 /* 1979 * If the transaction is removed from the list, it means this 1980 * transaction has been committed successfully, so it is impossible 1981 * to call the cleanup function. 1982 */ 1983 BUG_ON(list_empty(&cur_trans->list)); 1984 1985 if (cur_trans == fs_info->running_transaction) { 1986 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1987 spin_unlock(&fs_info->trans_lock); 1988 wait_event(cur_trans->writer_wait, 1989 atomic_read(&cur_trans->num_writers) == 1); 1990 1991 spin_lock(&fs_info->trans_lock); 1992 } 1993 1994 /* 1995 * Now that we know no one else is still using the transaction we can 1996 * remove the transaction from the list of transactions. This avoids 1997 * the transaction kthread from cleaning up the transaction while some 1998 * other task is still using it, which could result in a use-after-free 1999 * on things like log trees, as it forces the transaction kthread to 2000 * wait for this transaction to be cleaned up by us. 2001 */ 2002 list_del_init(&cur_trans->list); 2003 2004 spin_unlock(&fs_info->trans_lock); 2005 2006 btrfs_cleanup_one_transaction(trans->transaction, fs_info); 2007 2008 spin_lock(&fs_info->trans_lock); 2009 if (cur_trans == fs_info->running_transaction) 2010 fs_info->running_transaction = NULL; 2011 spin_unlock(&fs_info->trans_lock); 2012 2013 if (trans->type & __TRANS_FREEZABLE) 2014 sb_end_intwrite(fs_info->sb); 2015 btrfs_put_transaction(cur_trans); 2016 btrfs_put_transaction(cur_trans); 2017 2018 trace_btrfs_transaction_commit(fs_info); 2019 2020 if (current->journal_info == trans) 2021 current->journal_info = NULL; 2022 btrfs_scrub_cancel(fs_info); 2023 2024 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2025 } 2026 2027 /* 2028 * Release reserved delayed ref space of all pending block groups of the 2029 * transaction and remove them from the list 2030 */ 2031 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans) 2032 { 2033 struct btrfs_fs_info *fs_info = trans->fs_info; 2034 struct btrfs_block_group *block_group, *tmp; 2035 2036 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) { 2037 btrfs_delayed_refs_rsv_release(fs_info, 1); 2038 list_del_init(&block_group->bg_list); 2039 } 2040 } 2041 2042 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 2043 { 2044 /* 2045 * We use try_to_writeback_inodes_sb() here because if we used 2046 * btrfs_start_delalloc_roots we would deadlock with fs freeze. 2047 * Currently are holding the fs freeze lock, if we do an async flush 2048 * we'll do btrfs_join_transaction() and deadlock because we need to 2049 * wait for the fs freeze lock. Using the direct flushing we benefit 2050 * from already being in a transaction and our join_transaction doesn't 2051 * have to re-take the fs freeze lock. 2052 * 2053 * Note that try_to_writeback_inodes_sb() will only trigger writeback 2054 * if it can read lock sb->s_umount. It will always be able to lock it, 2055 * except when the filesystem is being unmounted or being frozen, but in 2056 * those cases sync_filesystem() is called, which results in calling 2057 * writeback_inodes_sb() while holding a write lock on sb->s_umount. 2058 * Note that we don't call writeback_inodes_sb() directly, because it 2059 * will emit a warning if sb->s_umount is not locked. 2060 */ 2061 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2062 try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC); 2063 return 0; 2064 } 2065 2066 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 2067 { 2068 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) 2069 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 2070 } 2071 2072 /* 2073 * Add a pending snapshot associated with the given transaction handle to the 2074 * respective handle. This must be called after the transaction commit started 2075 * and while holding fs_info->trans_lock. 2076 * This serves to guarantee a caller of btrfs_commit_transaction() that it can 2077 * safely free the pending snapshot pointer in case btrfs_commit_transaction() 2078 * returns an error. 2079 */ 2080 static void add_pending_snapshot(struct btrfs_trans_handle *trans) 2081 { 2082 struct btrfs_transaction *cur_trans = trans->transaction; 2083 2084 if (!trans->pending_snapshot) 2085 return; 2086 2087 lockdep_assert_held(&trans->fs_info->trans_lock); 2088 ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START); 2089 2090 list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots); 2091 } 2092 2093 int btrfs_commit_transaction(struct btrfs_trans_handle *trans) 2094 { 2095 struct btrfs_fs_info *fs_info = trans->fs_info; 2096 struct btrfs_transaction *cur_trans = trans->transaction; 2097 struct btrfs_transaction *prev_trans = NULL; 2098 int ret; 2099 2100 ASSERT(refcount_read(&trans->use_count) == 1); 2101 2102 /* Stop the commit early if ->aborted is set */ 2103 if (TRANS_ABORTED(cur_trans)) { 2104 ret = cur_trans->aborted; 2105 btrfs_end_transaction(trans); 2106 return ret; 2107 } 2108 2109 btrfs_trans_release_metadata(trans); 2110 trans->block_rsv = NULL; 2111 2112 /* 2113 * We only want one transaction commit doing the flushing so we do not 2114 * waste a bunch of time on lock contention on the extent root node. 2115 */ 2116 if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING, 2117 &cur_trans->delayed_refs.flags)) { 2118 /* 2119 * Make a pass through all the delayed refs we have so far. 2120 * Any running threads may add more while we are here. 2121 */ 2122 ret = btrfs_run_delayed_refs(trans, 0); 2123 if (ret) { 2124 btrfs_end_transaction(trans); 2125 return ret; 2126 } 2127 } 2128 2129 btrfs_create_pending_block_groups(trans); 2130 2131 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) { 2132 int run_it = 0; 2133 2134 /* this mutex is also taken before trying to set 2135 * block groups readonly. We need to make sure 2136 * that nobody has set a block group readonly 2137 * after a extents from that block group have been 2138 * allocated for cache files. btrfs_set_block_group_ro 2139 * will wait for the transaction to commit if it 2140 * finds BTRFS_TRANS_DIRTY_BG_RUN set. 2141 * 2142 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure 2143 * only one process starts all the block group IO. It wouldn't 2144 * hurt to have more than one go through, but there's no 2145 * real advantage to it either. 2146 */ 2147 mutex_lock(&fs_info->ro_block_group_mutex); 2148 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN, 2149 &cur_trans->flags)) 2150 run_it = 1; 2151 mutex_unlock(&fs_info->ro_block_group_mutex); 2152 2153 if (run_it) { 2154 ret = btrfs_start_dirty_block_groups(trans); 2155 if (ret) { 2156 btrfs_end_transaction(trans); 2157 return ret; 2158 } 2159 } 2160 } 2161 2162 spin_lock(&fs_info->trans_lock); 2163 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 2164 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2165 2166 add_pending_snapshot(trans); 2167 2168 spin_unlock(&fs_info->trans_lock); 2169 refcount_inc(&cur_trans->use_count); 2170 2171 if (trans->in_fsync) 2172 want_state = TRANS_STATE_SUPER_COMMITTED; 2173 ret = btrfs_end_transaction(trans); 2174 wait_for_commit(cur_trans, want_state); 2175 2176 if (TRANS_ABORTED(cur_trans)) 2177 ret = cur_trans->aborted; 2178 2179 btrfs_put_transaction(cur_trans); 2180 2181 return ret; 2182 } 2183 2184 cur_trans->state = TRANS_STATE_COMMIT_START; 2185 wake_up(&fs_info->transaction_blocked_wait); 2186 2187 if (cur_trans->list.prev != &fs_info->trans_list) { 2188 enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED; 2189 2190 if (trans->in_fsync) 2191 want_state = TRANS_STATE_SUPER_COMMITTED; 2192 2193 prev_trans = list_entry(cur_trans->list.prev, 2194 struct btrfs_transaction, list); 2195 if (prev_trans->state < want_state) { 2196 refcount_inc(&prev_trans->use_count); 2197 spin_unlock(&fs_info->trans_lock); 2198 2199 wait_for_commit(prev_trans, want_state); 2200 2201 ret = READ_ONCE(prev_trans->aborted); 2202 2203 btrfs_put_transaction(prev_trans); 2204 if (ret) 2205 goto cleanup_transaction; 2206 } else { 2207 spin_unlock(&fs_info->trans_lock); 2208 } 2209 } else { 2210 spin_unlock(&fs_info->trans_lock); 2211 /* 2212 * The previous transaction was aborted and was already removed 2213 * from the list of transactions at fs_info->trans_list. So we 2214 * abort to prevent writing a new superblock that reflects a 2215 * corrupt state (pointing to trees with unwritten nodes/leafs). 2216 */ 2217 if (BTRFS_FS_ERROR(fs_info)) { 2218 ret = -EROFS; 2219 goto cleanup_transaction; 2220 } 2221 } 2222 2223 extwriter_counter_dec(cur_trans, trans->type); 2224 2225 ret = btrfs_start_delalloc_flush(fs_info); 2226 if (ret) 2227 goto cleanup_transaction; 2228 2229 ret = btrfs_run_delayed_items(trans); 2230 if (ret) 2231 goto cleanup_transaction; 2232 2233 wait_event(cur_trans->writer_wait, 2234 extwriter_counter_read(cur_trans) == 0); 2235 2236 /* some pending stuffs might be added after the previous flush. */ 2237 ret = btrfs_run_delayed_items(trans); 2238 if (ret) 2239 goto cleanup_transaction; 2240 2241 btrfs_wait_delalloc_flush(fs_info); 2242 2243 /* 2244 * Wait for all ordered extents started by a fast fsync that joined this 2245 * transaction. Otherwise if this transaction commits before the ordered 2246 * extents complete we lose logged data after a power failure. 2247 */ 2248 wait_event(cur_trans->pending_wait, 2249 atomic_read(&cur_trans->pending_ordered) == 0); 2250 2251 btrfs_scrub_pause(fs_info); 2252 /* 2253 * Ok now we need to make sure to block out any other joins while we 2254 * commit the transaction. We could have started a join before setting 2255 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 2256 */ 2257 spin_lock(&fs_info->trans_lock); 2258 add_pending_snapshot(trans); 2259 cur_trans->state = TRANS_STATE_COMMIT_DOING; 2260 spin_unlock(&fs_info->trans_lock); 2261 wait_event(cur_trans->writer_wait, 2262 atomic_read(&cur_trans->num_writers) == 1); 2263 2264 /* 2265 * We've started the commit, clear the flag in case we were triggered to 2266 * do an async commit but somebody else started before the transaction 2267 * kthread could do the work. 2268 */ 2269 clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags); 2270 2271 if (TRANS_ABORTED(cur_trans)) { 2272 ret = cur_trans->aborted; 2273 goto scrub_continue; 2274 } 2275 /* 2276 * the reloc mutex makes sure that we stop 2277 * the balancing code from coming in and moving 2278 * extents around in the middle of the commit 2279 */ 2280 mutex_lock(&fs_info->reloc_mutex); 2281 2282 /* 2283 * We needn't worry about the delayed items because we will 2284 * deal with them in create_pending_snapshot(), which is the 2285 * core function of the snapshot creation. 2286 */ 2287 ret = create_pending_snapshots(trans); 2288 if (ret) 2289 goto unlock_reloc; 2290 2291 /* 2292 * We insert the dir indexes of the snapshots and update the inode 2293 * of the snapshots' parents after the snapshot creation, so there 2294 * are some delayed items which are not dealt with. Now deal with 2295 * them. 2296 * 2297 * We needn't worry that this operation will corrupt the snapshots, 2298 * because all the tree which are snapshoted will be forced to COW 2299 * the nodes and leaves. 2300 */ 2301 ret = btrfs_run_delayed_items(trans); 2302 if (ret) 2303 goto unlock_reloc; 2304 2305 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1); 2306 if (ret) 2307 goto unlock_reloc; 2308 2309 /* 2310 * make sure none of the code above managed to slip in a 2311 * delayed item 2312 */ 2313 btrfs_assert_delayed_root_empty(fs_info); 2314 2315 WARN_ON(cur_trans != trans->transaction); 2316 2317 ret = commit_fs_roots(trans); 2318 if (ret) 2319 goto unlock_reloc; 2320 2321 /* 2322 * Since the transaction is done, we can apply the pending changes 2323 * before the next transaction. 2324 */ 2325 btrfs_apply_pending_changes(fs_info); 2326 2327 /* commit_fs_roots gets rid of all the tree log roots, it is now 2328 * safe to free the root of tree log roots 2329 */ 2330 btrfs_free_log_root_tree(trans, fs_info); 2331 2332 /* 2333 * Since fs roots are all committed, we can get a quite accurate 2334 * new_roots. So let's do quota accounting. 2335 */ 2336 ret = btrfs_qgroup_account_extents(trans); 2337 if (ret < 0) 2338 goto unlock_reloc; 2339 2340 ret = commit_cowonly_roots(trans); 2341 if (ret) 2342 goto unlock_reloc; 2343 2344 /* 2345 * The tasks which save the space cache and inode cache may also 2346 * update ->aborted, check it. 2347 */ 2348 if (TRANS_ABORTED(cur_trans)) { 2349 ret = cur_trans->aborted; 2350 goto unlock_reloc; 2351 } 2352 2353 cur_trans = fs_info->running_transaction; 2354 2355 btrfs_set_root_node(&fs_info->tree_root->root_item, 2356 fs_info->tree_root->node); 2357 list_add_tail(&fs_info->tree_root->dirty_list, 2358 &cur_trans->switch_commits); 2359 2360 btrfs_set_root_node(&fs_info->chunk_root->root_item, 2361 fs_info->chunk_root->node); 2362 list_add_tail(&fs_info->chunk_root->dirty_list, 2363 &cur_trans->switch_commits); 2364 2365 switch_commit_roots(trans); 2366 2367 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2368 ASSERT(list_empty(&cur_trans->io_bgs)); 2369 update_super_roots(fs_info); 2370 2371 btrfs_set_super_log_root(fs_info->super_copy, 0); 2372 btrfs_set_super_log_root_level(fs_info->super_copy, 0); 2373 memcpy(fs_info->super_for_commit, fs_info->super_copy, 2374 sizeof(*fs_info->super_copy)); 2375 2376 btrfs_commit_device_sizes(cur_trans); 2377 2378 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags); 2379 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags); 2380 2381 btrfs_trans_release_chunk_metadata(trans); 2382 2383 /* 2384 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and 2385 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to 2386 * make sure that before we commit our superblock, no other task can 2387 * start a new transaction and commit a log tree before we commit our 2388 * superblock. Anyone trying to commit a log tree locks this mutex before 2389 * writing its superblock. 2390 */ 2391 mutex_lock(&fs_info->tree_log_mutex); 2392 2393 spin_lock(&fs_info->trans_lock); 2394 cur_trans->state = TRANS_STATE_UNBLOCKED; 2395 fs_info->running_transaction = NULL; 2396 spin_unlock(&fs_info->trans_lock); 2397 mutex_unlock(&fs_info->reloc_mutex); 2398 2399 wake_up(&fs_info->transaction_wait); 2400 2401 ret = btrfs_write_and_wait_transaction(trans); 2402 if (ret) { 2403 btrfs_handle_fs_error(fs_info, ret, 2404 "Error while writing out transaction"); 2405 mutex_unlock(&fs_info->tree_log_mutex); 2406 goto scrub_continue; 2407 } 2408 2409 /* 2410 * At this point, we should have written all the tree blocks allocated 2411 * in this transaction. So it's now safe to free the redirtyied extent 2412 * buffers. 2413 */ 2414 btrfs_free_redirty_list(cur_trans); 2415 2416 ret = write_all_supers(fs_info, 0); 2417 /* 2418 * the super is written, we can safely allow the tree-loggers 2419 * to go about their business 2420 */ 2421 mutex_unlock(&fs_info->tree_log_mutex); 2422 if (ret) 2423 goto scrub_continue; 2424 2425 /* 2426 * We needn't acquire the lock here because there is no other task 2427 * which can change it. 2428 */ 2429 cur_trans->state = TRANS_STATE_SUPER_COMMITTED; 2430 wake_up(&cur_trans->commit_wait); 2431 2432 btrfs_finish_extent_commit(trans); 2433 2434 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags)) 2435 btrfs_clear_space_info_full(fs_info); 2436 2437 fs_info->last_trans_committed = cur_trans->transid; 2438 /* 2439 * We needn't acquire the lock here because there is no other task 2440 * which can change it. 2441 */ 2442 cur_trans->state = TRANS_STATE_COMPLETED; 2443 wake_up(&cur_trans->commit_wait); 2444 2445 spin_lock(&fs_info->trans_lock); 2446 list_del_init(&cur_trans->list); 2447 spin_unlock(&fs_info->trans_lock); 2448 2449 btrfs_put_transaction(cur_trans); 2450 btrfs_put_transaction(cur_trans); 2451 2452 if (trans->type & __TRANS_FREEZABLE) 2453 sb_end_intwrite(fs_info->sb); 2454 2455 trace_btrfs_transaction_commit(fs_info); 2456 2457 btrfs_scrub_continue(fs_info); 2458 2459 if (current->journal_info == trans) 2460 current->journal_info = NULL; 2461 2462 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2463 2464 return ret; 2465 2466 unlock_reloc: 2467 mutex_unlock(&fs_info->reloc_mutex); 2468 scrub_continue: 2469 btrfs_scrub_continue(fs_info); 2470 cleanup_transaction: 2471 btrfs_trans_release_metadata(trans); 2472 btrfs_cleanup_pending_block_groups(trans); 2473 btrfs_trans_release_chunk_metadata(trans); 2474 trans->block_rsv = NULL; 2475 btrfs_warn(fs_info, "Skipping commit of aborted transaction."); 2476 if (current->journal_info == trans) 2477 current->journal_info = NULL; 2478 cleanup_transaction(trans, ret); 2479 2480 return ret; 2481 } 2482 2483 /* 2484 * return < 0 if error 2485 * 0 if there are no more dead_roots at the time of call 2486 * 1 there are more to be processed, call me again 2487 * 2488 * The return value indicates there are certainly more snapshots to delete, but 2489 * if there comes a new one during processing, it may return 0. We don't mind, 2490 * because btrfs_commit_super will poke cleaner thread and it will process it a 2491 * few seconds later. 2492 */ 2493 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2494 { 2495 int ret; 2496 struct btrfs_fs_info *fs_info = root->fs_info; 2497 2498 spin_lock(&fs_info->trans_lock); 2499 if (list_empty(&fs_info->dead_roots)) { 2500 spin_unlock(&fs_info->trans_lock); 2501 return 0; 2502 } 2503 root = list_first_entry(&fs_info->dead_roots, 2504 struct btrfs_root, root_list); 2505 list_del_init(&root->root_list); 2506 spin_unlock(&fs_info->trans_lock); 2507 2508 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid); 2509 2510 btrfs_kill_all_delayed_nodes(root); 2511 2512 if (btrfs_header_backref_rev(root->node) < 2513 BTRFS_MIXED_BACKREF_REV) 2514 ret = btrfs_drop_snapshot(root, 0, 0); 2515 else 2516 ret = btrfs_drop_snapshot(root, 1, 0); 2517 2518 btrfs_put_root(root); 2519 return (ret < 0) ? 0 : 1; 2520 } 2521 2522 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2523 { 2524 unsigned long prev; 2525 unsigned long bit; 2526 2527 prev = xchg(&fs_info->pending_changes, 0); 2528 if (!prev) 2529 return; 2530 2531 bit = 1 << BTRFS_PENDING_COMMIT; 2532 if (prev & bit) 2533 btrfs_debug(fs_info, "pending commit done"); 2534 prev &= ~bit; 2535 2536 if (prev) 2537 btrfs_warn(fs_info, 2538 "unknown pending changes left 0x%lx, ignoring", prev); 2539 } 2540