xref: /openbmc/linux/fs/btrfs/transaction.c (revision 19288951ffa8c67c9f40d2eed72ebc53071227c0)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/fs.h>
7 #include <linux/slab.h>
8 #include <linux/sched.h>
9 #include <linux/sched/mm.h>
10 #include <linux/writeback.h>
11 #include <linux/pagemap.h>
12 #include <linux/blkdev.h>
13 #include <linux/uuid.h>
14 #include <linux/timekeeping.h>
15 #include "misc.h"
16 #include "ctree.h"
17 #include "disk-io.h"
18 #include "transaction.h"
19 #include "locking.h"
20 #include "tree-log.h"
21 #include "volumes.h"
22 #include "dev-replace.h"
23 #include "qgroup.h"
24 #include "block-group.h"
25 #include "space-info.h"
26 #include "zoned.h"
27 #include "fs.h"
28 #include "accessors.h"
29 #include "extent-tree.h"
30 #include "root-tree.h"
31 #include "defrag.h"
32 #include "dir-item.h"
33 #include "uuid-tree.h"
34 #include "ioctl.h"
35 #include "relocation.h"
36 #include "scrub.h"
37 
38 static struct kmem_cache *btrfs_trans_handle_cachep;
39 
40 #define BTRFS_ROOT_TRANS_TAG 0
41 
42 /*
43  * Transaction states and transitions
44  *
45  * No running transaction (fs tree blocks are not modified)
46  * |
47  * | To next stage:
48  * |  Call start_transaction() variants. Except btrfs_join_transaction_nostart().
49  * V
50  * Transaction N [[TRANS_STATE_RUNNING]]
51  * |
52  * | New trans handles can be attached to transaction N by calling all
53  * | start_transaction() variants.
54  * |
55  * | To next stage:
56  * |  Call btrfs_commit_transaction() on any trans handle attached to
57  * |  transaction N
58  * V
59  * Transaction N [[TRANS_STATE_COMMIT_START]]
60  * |
61  * | Will wait for previous running transaction to completely finish if there
62  * | is one
63  * |
64  * | Then one of the following happes:
65  * | - Wait for all other trans handle holders to release.
66  * |   The btrfs_commit_transaction() caller will do the commit work.
67  * | - Wait for current transaction to be committed by others.
68  * |   Other btrfs_commit_transaction() caller will do the commit work.
69  * |
70  * | At this stage, only btrfs_join_transaction*() variants can attach
71  * | to this running transaction.
72  * | All other variants will wait for current one to finish and attach to
73  * | transaction N+1.
74  * |
75  * | To next stage:
76  * |  Caller is chosen to commit transaction N, and all other trans handle
77  * |  haven been released.
78  * V
79  * Transaction N [[TRANS_STATE_COMMIT_DOING]]
80  * |
81  * | The heavy lifting transaction work is started.
82  * | From running delayed refs (modifying extent tree) to creating pending
83  * | snapshots, running qgroups.
84  * | In short, modify supporting trees to reflect modifications of subvolume
85  * | trees.
86  * |
87  * | At this stage, all start_transaction() calls will wait for this
88  * | transaction to finish and attach to transaction N+1.
89  * |
90  * | To next stage:
91  * |  Until all supporting trees are updated.
92  * V
93  * Transaction N [[TRANS_STATE_UNBLOCKED]]
94  * |						    Transaction N+1
95  * | All needed trees are modified, thus we only    [[TRANS_STATE_RUNNING]]
96  * | need to write them back to disk and update	    |
97  * | super blocks.				    |
98  * |						    |
99  * | At this stage, new transaction is allowed to   |
100  * | start.					    |
101  * | All new start_transaction() calls will be	    |
102  * | attached to transid N+1.			    |
103  * |						    |
104  * | To next stage:				    |
105  * |  Until all tree blocks are super blocks are    |
106  * |  written to block devices			    |
107  * V						    |
108  * Transaction N [[TRANS_STATE_COMPLETED]]	    V
109  *   All tree blocks and super blocks are written.  Transaction N+1
110  *   This transaction is finished and all its	    [[TRANS_STATE_COMMIT_START]]
111  *   data structures will be cleaned up.	    | Life goes on
112  */
113 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
114 	[TRANS_STATE_RUNNING]		= 0U,
115 	[TRANS_STATE_COMMIT_START]	= (__TRANS_START | __TRANS_ATTACH),
116 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_START |
117 					   __TRANS_ATTACH |
118 					   __TRANS_JOIN |
119 					   __TRANS_JOIN_NOSTART),
120 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_START |
121 					   __TRANS_ATTACH |
122 					   __TRANS_JOIN |
123 					   __TRANS_JOIN_NOLOCK |
124 					   __TRANS_JOIN_NOSTART),
125 	[TRANS_STATE_SUPER_COMMITTED]	= (__TRANS_START |
126 					   __TRANS_ATTACH |
127 					   __TRANS_JOIN |
128 					   __TRANS_JOIN_NOLOCK |
129 					   __TRANS_JOIN_NOSTART),
130 	[TRANS_STATE_COMPLETED]		= (__TRANS_START |
131 					   __TRANS_ATTACH |
132 					   __TRANS_JOIN |
133 					   __TRANS_JOIN_NOLOCK |
134 					   __TRANS_JOIN_NOSTART),
135 };
136 
137 void btrfs_put_transaction(struct btrfs_transaction *transaction)
138 {
139 	WARN_ON(refcount_read(&transaction->use_count) == 0);
140 	if (refcount_dec_and_test(&transaction->use_count)) {
141 		BUG_ON(!list_empty(&transaction->list));
142 		WARN_ON(!RB_EMPTY_ROOT(
143 				&transaction->delayed_refs.href_root.rb_root));
144 		WARN_ON(!RB_EMPTY_ROOT(
145 				&transaction->delayed_refs.dirty_extent_root));
146 		if (transaction->delayed_refs.pending_csums)
147 			btrfs_err(transaction->fs_info,
148 				  "pending csums is %llu",
149 				  transaction->delayed_refs.pending_csums);
150 		/*
151 		 * If any block groups are found in ->deleted_bgs then it's
152 		 * because the transaction was aborted and a commit did not
153 		 * happen (things failed before writing the new superblock
154 		 * and calling btrfs_finish_extent_commit()), so we can not
155 		 * discard the physical locations of the block groups.
156 		 */
157 		while (!list_empty(&transaction->deleted_bgs)) {
158 			struct btrfs_block_group *cache;
159 
160 			cache = list_first_entry(&transaction->deleted_bgs,
161 						 struct btrfs_block_group,
162 						 bg_list);
163 			list_del_init(&cache->bg_list);
164 			btrfs_unfreeze_block_group(cache);
165 			btrfs_put_block_group(cache);
166 		}
167 		WARN_ON(!list_empty(&transaction->dev_update_list));
168 		kfree(transaction);
169 	}
170 }
171 
172 static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
173 {
174 	struct btrfs_transaction *cur_trans = trans->transaction;
175 	struct btrfs_fs_info *fs_info = trans->fs_info;
176 	struct btrfs_root *root, *tmp;
177 
178 	/*
179 	 * At this point no one can be using this transaction to modify any tree
180 	 * and no one can start another transaction to modify any tree either.
181 	 */
182 	ASSERT(cur_trans->state == TRANS_STATE_COMMIT_DOING);
183 
184 	down_write(&fs_info->commit_root_sem);
185 
186 	if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
187 		fs_info->last_reloc_trans = trans->transid;
188 
189 	list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
190 				 dirty_list) {
191 		list_del_init(&root->dirty_list);
192 		free_extent_buffer(root->commit_root);
193 		root->commit_root = btrfs_root_node(root);
194 		extent_io_tree_release(&root->dirty_log_pages);
195 		btrfs_qgroup_clean_swapped_blocks(root);
196 	}
197 
198 	/* We can free old roots now. */
199 	spin_lock(&cur_trans->dropped_roots_lock);
200 	while (!list_empty(&cur_trans->dropped_roots)) {
201 		root = list_first_entry(&cur_trans->dropped_roots,
202 					struct btrfs_root, root_list);
203 		list_del_init(&root->root_list);
204 		spin_unlock(&cur_trans->dropped_roots_lock);
205 		btrfs_free_log(trans, root);
206 		btrfs_drop_and_free_fs_root(fs_info, root);
207 		spin_lock(&cur_trans->dropped_roots_lock);
208 	}
209 	spin_unlock(&cur_trans->dropped_roots_lock);
210 
211 	up_write(&fs_info->commit_root_sem);
212 }
213 
214 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
215 					 unsigned int type)
216 {
217 	if (type & TRANS_EXTWRITERS)
218 		atomic_inc(&trans->num_extwriters);
219 }
220 
221 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
222 					 unsigned int type)
223 {
224 	if (type & TRANS_EXTWRITERS)
225 		atomic_dec(&trans->num_extwriters);
226 }
227 
228 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
229 					  unsigned int type)
230 {
231 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
232 }
233 
234 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
235 {
236 	return atomic_read(&trans->num_extwriters);
237 }
238 
239 /*
240  * To be called after doing the chunk btree updates right after allocating a new
241  * chunk (after btrfs_chunk_alloc_add_chunk_item() is called), when removing a
242  * chunk after all chunk btree updates and after finishing the second phase of
243  * chunk allocation (btrfs_create_pending_block_groups()) in case some block
244  * group had its chunk item insertion delayed to the second phase.
245  */
246 void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
247 {
248 	struct btrfs_fs_info *fs_info = trans->fs_info;
249 
250 	if (!trans->chunk_bytes_reserved)
251 		return;
252 
253 	btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
254 				trans->chunk_bytes_reserved, NULL);
255 	trans->chunk_bytes_reserved = 0;
256 }
257 
258 /*
259  * either allocate a new transaction or hop into the existing one
260  */
261 static noinline int join_transaction(struct btrfs_fs_info *fs_info,
262 				     unsigned int type)
263 {
264 	struct btrfs_transaction *cur_trans;
265 
266 	spin_lock(&fs_info->trans_lock);
267 loop:
268 	/* The file system has been taken offline. No new transactions. */
269 	if (BTRFS_FS_ERROR(fs_info)) {
270 		spin_unlock(&fs_info->trans_lock);
271 		return -EROFS;
272 	}
273 
274 	cur_trans = fs_info->running_transaction;
275 	if (cur_trans) {
276 		if (TRANS_ABORTED(cur_trans)) {
277 			spin_unlock(&fs_info->trans_lock);
278 			return cur_trans->aborted;
279 		}
280 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
281 			spin_unlock(&fs_info->trans_lock);
282 			return -EBUSY;
283 		}
284 		refcount_inc(&cur_trans->use_count);
285 		atomic_inc(&cur_trans->num_writers);
286 		extwriter_counter_inc(cur_trans, type);
287 		spin_unlock(&fs_info->trans_lock);
288 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
289 		btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
290 		return 0;
291 	}
292 	spin_unlock(&fs_info->trans_lock);
293 
294 	/*
295 	 * If we are ATTACH or TRANS_JOIN_NOSTART, we just want to catch the
296 	 * current transaction, and commit it. If there is no transaction, just
297 	 * return ENOENT.
298 	 */
299 	if (type == TRANS_ATTACH || type == TRANS_JOIN_NOSTART)
300 		return -ENOENT;
301 
302 	/*
303 	 * JOIN_NOLOCK only happens during the transaction commit, so
304 	 * it is impossible that ->running_transaction is NULL
305 	 */
306 	BUG_ON(type == TRANS_JOIN_NOLOCK);
307 
308 	cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
309 	if (!cur_trans)
310 		return -ENOMEM;
311 
312 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_writers);
313 	btrfs_lockdep_acquire(fs_info, btrfs_trans_num_extwriters);
314 
315 	spin_lock(&fs_info->trans_lock);
316 	if (fs_info->running_transaction) {
317 		/*
318 		 * someone started a transaction after we unlocked.  Make sure
319 		 * to redo the checks above
320 		 */
321 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
322 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
323 		kfree(cur_trans);
324 		goto loop;
325 	} else if (BTRFS_FS_ERROR(fs_info)) {
326 		spin_unlock(&fs_info->trans_lock);
327 		btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
328 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
329 		kfree(cur_trans);
330 		return -EROFS;
331 	}
332 
333 	cur_trans->fs_info = fs_info;
334 	atomic_set(&cur_trans->pending_ordered, 0);
335 	init_waitqueue_head(&cur_trans->pending_wait);
336 	atomic_set(&cur_trans->num_writers, 1);
337 	extwriter_counter_init(cur_trans, type);
338 	init_waitqueue_head(&cur_trans->writer_wait);
339 	init_waitqueue_head(&cur_trans->commit_wait);
340 	cur_trans->state = TRANS_STATE_RUNNING;
341 	/*
342 	 * One for this trans handle, one so it will live on until we
343 	 * commit the transaction.
344 	 */
345 	refcount_set(&cur_trans->use_count, 2);
346 	cur_trans->flags = 0;
347 	cur_trans->start_time = ktime_get_seconds();
348 
349 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
350 
351 	cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
352 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
353 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
354 
355 	/*
356 	 * although the tree mod log is per file system and not per transaction,
357 	 * the log must never go across transaction boundaries.
358 	 */
359 	smp_mb();
360 	if (!list_empty(&fs_info->tree_mod_seq_list))
361 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
362 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
363 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
364 	atomic64_set(&fs_info->tree_mod_seq, 0);
365 
366 	spin_lock_init(&cur_trans->delayed_refs.lock);
367 
368 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
369 	INIT_LIST_HEAD(&cur_trans->dev_update_list);
370 	INIT_LIST_HEAD(&cur_trans->switch_commits);
371 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
372 	INIT_LIST_HEAD(&cur_trans->io_bgs);
373 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
374 	mutex_init(&cur_trans->cache_write_mutex);
375 	spin_lock_init(&cur_trans->dirty_bgs_lock);
376 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
377 	spin_lock_init(&cur_trans->dropped_roots_lock);
378 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
379 	extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
380 			IO_TREE_TRANS_DIRTY_PAGES);
381 	extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
382 			IO_TREE_FS_PINNED_EXTENTS);
383 	fs_info->generation++;
384 	cur_trans->transid = fs_info->generation;
385 	fs_info->running_transaction = cur_trans;
386 	cur_trans->aborted = 0;
387 	spin_unlock(&fs_info->trans_lock);
388 
389 	return 0;
390 }
391 
392 /*
393  * This does all the record keeping required to make sure that a shareable root
394  * is properly recorded in a given transaction.  This is required to make sure
395  * the old root from before we joined the transaction is deleted when the
396  * transaction commits.
397  */
398 static int record_root_in_trans(struct btrfs_trans_handle *trans,
399 			       struct btrfs_root *root,
400 			       int force)
401 {
402 	struct btrfs_fs_info *fs_info = root->fs_info;
403 	int ret = 0;
404 
405 	if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
406 	    root->last_trans < trans->transid) || force) {
407 		WARN_ON(!force && root->commit_root != root->node);
408 
409 		/*
410 		 * see below for IN_TRANS_SETUP usage rules
411 		 * we have the reloc mutex held now, so there
412 		 * is only one writer in this function
413 		 */
414 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
415 
416 		/* make sure readers find IN_TRANS_SETUP before
417 		 * they find our root->last_trans update
418 		 */
419 		smp_wmb();
420 
421 		spin_lock(&fs_info->fs_roots_radix_lock);
422 		if (root->last_trans == trans->transid && !force) {
423 			spin_unlock(&fs_info->fs_roots_radix_lock);
424 			return 0;
425 		}
426 		radix_tree_tag_set(&fs_info->fs_roots_radix,
427 				   (unsigned long)root->root_key.objectid,
428 				   BTRFS_ROOT_TRANS_TAG);
429 		spin_unlock(&fs_info->fs_roots_radix_lock);
430 		root->last_trans = trans->transid;
431 
432 		/* this is pretty tricky.  We don't want to
433 		 * take the relocation lock in btrfs_record_root_in_trans
434 		 * unless we're really doing the first setup for this root in
435 		 * this transaction.
436 		 *
437 		 * Normally we'd use root->last_trans as a flag to decide
438 		 * if we want to take the expensive mutex.
439 		 *
440 		 * But, we have to set root->last_trans before we
441 		 * init the relocation root, otherwise, we trip over warnings
442 		 * in ctree.c.  The solution used here is to flag ourselves
443 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
444 		 * fixing up the reloc trees and everyone must wait.
445 		 *
446 		 * When this is zero, they can trust root->last_trans and fly
447 		 * through btrfs_record_root_in_trans without having to take the
448 		 * lock.  smp_wmb() makes sure that all the writes above are
449 		 * done before we pop in the zero below
450 		 */
451 		ret = btrfs_init_reloc_root(trans, root);
452 		smp_mb__before_atomic();
453 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
454 	}
455 	return ret;
456 }
457 
458 
459 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
460 			    struct btrfs_root *root)
461 {
462 	struct btrfs_fs_info *fs_info = root->fs_info;
463 	struct btrfs_transaction *cur_trans = trans->transaction;
464 
465 	/* Add ourselves to the transaction dropped list */
466 	spin_lock(&cur_trans->dropped_roots_lock);
467 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
468 	spin_unlock(&cur_trans->dropped_roots_lock);
469 
470 	/* Make sure we don't try to update the root at commit time */
471 	spin_lock(&fs_info->fs_roots_radix_lock);
472 	radix_tree_tag_clear(&fs_info->fs_roots_radix,
473 			     (unsigned long)root->root_key.objectid,
474 			     BTRFS_ROOT_TRANS_TAG);
475 	spin_unlock(&fs_info->fs_roots_radix_lock);
476 }
477 
478 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
479 			       struct btrfs_root *root)
480 {
481 	struct btrfs_fs_info *fs_info = root->fs_info;
482 	int ret;
483 
484 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
485 		return 0;
486 
487 	/*
488 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
489 	 * and barriers
490 	 */
491 	smp_rmb();
492 	if (root->last_trans == trans->transid &&
493 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
494 		return 0;
495 
496 	mutex_lock(&fs_info->reloc_mutex);
497 	ret = record_root_in_trans(trans, root, 0);
498 	mutex_unlock(&fs_info->reloc_mutex);
499 
500 	return ret;
501 }
502 
503 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
504 {
505 	return (trans->state >= TRANS_STATE_COMMIT_START &&
506 		trans->state < TRANS_STATE_UNBLOCKED &&
507 		!TRANS_ABORTED(trans));
508 }
509 
510 /* wait for commit against the current transaction to become unblocked
511  * when this is done, it is safe to start a new transaction, but the current
512  * transaction might not be fully on disk.
513  */
514 static void wait_current_trans(struct btrfs_fs_info *fs_info)
515 {
516 	struct btrfs_transaction *cur_trans;
517 
518 	spin_lock(&fs_info->trans_lock);
519 	cur_trans = fs_info->running_transaction;
520 	if (cur_trans && is_transaction_blocked(cur_trans)) {
521 		refcount_inc(&cur_trans->use_count);
522 		spin_unlock(&fs_info->trans_lock);
523 
524 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
525 		wait_event(fs_info->transaction_wait,
526 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
527 			   TRANS_ABORTED(cur_trans));
528 		btrfs_put_transaction(cur_trans);
529 	} else {
530 		spin_unlock(&fs_info->trans_lock);
531 	}
532 }
533 
534 static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
535 {
536 	if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
537 		return 0;
538 
539 	if (type == TRANS_START)
540 		return 1;
541 
542 	return 0;
543 }
544 
545 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
546 {
547 	struct btrfs_fs_info *fs_info = root->fs_info;
548 
549 	if (!fs_info->reloc_ctl ||
550 	    !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
551 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
552 	    root->reloc_root)
553 		return false;
554 
555 	return true;
556 }
557 
558 static struct btrfs_trans_handle *
559 start_transaction(struct btrfs_root *root, unsigned int num_items,
560 		  unsigned int type, enum btrfs_reserve_flush_enum flush,
561 		  bool enforce_qgroups)
562 {
563 	struct btrfs_fs_info *fs_info = root->fs_info;
564 	struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
565 	struct btrfs_trans_handle *h;
566 	struct btrfs_transaction *cur_trans;
567 	u64 num_bytes = 0;
568 	u64 qgroup_reserved = 0;
569 	bool reloc_reserved = false;
570 	bool do_chunk_alloc = false;
571 	int ret;
572 
573 	if (BTRFS_FS_ERROR(fs_info))
574 		return ERR_PTR(-EROFS);
575 
576 	if (current->journal_info) {
577 		WARN_ON(type & TRANS_EXTWRITERS);
578 		h = current->journal_info;
579 		refcount_inc(&h->use_count);
580 		WARN_ON(refcount_read(&h->use_count) > 2);
581 		h->orig_rsv = h->block_rsv;
582 		h->block_rsv = NULL;
583 		goto got_it;
584 	}
585 
586 	/*
587 	 * Do the reservation before we join the transaction so we can do all
588 	 * the appropriate flushing if need be.
589 	 */
590 	if (num_items && root != fs_info->chunk_root) {
591 		struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
592 		u64 delayed_refs_bytes = 0;
593 
594 		qgroup_reserved = num_items * fs_info->nodesize;
595 		/*
596 		 * Use prealloc for now, as there might be a currently running
597 		 * transaction that could free this reserved space prematurely
598 		 * by committing.
599 		 */
600 		ret = btrfs_qgroup_reserve_meta_prealloc(root, qgroup_reserved,
601 							 enforce_qgroups, false);
602 		if (ret)
603 			return ERR_PTR(ret);
604 
605 		/*
606 		 * We want to reserve all the bytes we may need all at once, so
607 		 * we only do 1 enospc flushing cycle per transaction start.  We
608 		 * accomplish this by simply assuming we'll do num_items worth
609 		 * of delayed refs updates in this trans handle, and refill that
610 		 * amount for whatever is missing in the reserve.
611 		 */
612 		num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
613 		if (flush == BTRFS_RESERVE_FLUSH_ALL &&
614 		    !btrfs_block_rsv_full(delayed_refs_rsv)) {
615 			delayed_refs_bytes = btrfs_calc_delayed_ref_bytes(fs_info,
616 									  num_items);
617 			num_bytes += delayed_refs_bytes;
618 		}
619 
620 		/*
621 		 * Do the reservation for the relocation root creation
622 		 */
623 		if (need_reserve_reloc_root(root)) {
624 			num_bytes += fs_info->nodesize;
625 			reloc_reserved = true;
626 		}
627 
628 		ret = btrfs_block_rsv_add(fs_info, rsv, num_bytes, flush);
629 		if (ret)
630 			goto reserve_fail;
631 		if (delayed_refs_bytes) {
632 			btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
633 							  delayed_refs_bytes);
634 			num_bytes -= delayed_refs_bytes;
635 		}
636 
637 		if (rsv->space_info->force_alloc)
638 			do_chunk_alloc = true;
639 	} else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
640 		   !btrfs_block_rsv_full(delayed_refs_rsv)) {
641 		/*
642 		 * Some people call with btrfs_start_transaction(root, 0)
643 		 * because they can be throttled, but have some other mechanism
644 		 * for reserving space.  We still want these guys to refill the
645 		 * delayed block_rsv so just add 1 items worth of reservation
646 		 * here.
647 		 */
648 		ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
649 		if (ret)
650 			goto reserve_fail;
651 	}
652 again:
653 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
654 	if (!h) {
655 		ret = -ENOMEM;
656 		goto alloc_fail;
657 	}
658 
659 	/*
660 	 * If we are JOIN_NOLOCK we're already committing a transaction and
661 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
662 	 * because we're already holding a ref.  We need this because we could
663 	 * have raced in and did an fsync() on a file which can kick a commit
664 	 * and then we deadlock with somebody doing a freeze.
665 	 *
666 	 * If we are ATTACH, it means we just want to catch the current
667 	 * transaction and commit it, so we needn't do sb_start_intwrite().
668 	 */
669 	if (type & __TRANS_FREEZABLE)
670 		sb_start_intwrite(fs_info->sb);
671 
672 	if (may_wait_transaction(fs_info, type))
673 		wait_current_trans(fs_info);
674 
675 	do {
676 		ret = join_transaction(fs_info, type);
677 		if (ret == -EBUSY) {
678 			wait_current_trans(fs_info);
679 			if (unlikely(type == TRANS_ATTACH ||
680 				     type == TRANS_JOIN_NOSTART))
681 				ret = -ENOENT;
682 		}
683 	} while (ret == -EBUSY);
684 
685 	if (ret < 0)
686 		goto join_fail;
687 
688 	cur_trans = fs_info->running_transaction;
689 
690 	h->transid = cur_trans->transid;
691 	h->transaction = cur_trans;
692 	refcount_set(&h->use_count, 1);
693 	h->fs_info = root->fs_info;
694 
695 	h->type = type;
696 	INIT_LIST_HEAD(&h->new_bgs);
697 
698 	smp_mb();
699 	if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
700 	    may_wait_transaction(fs_info, type)) {
701 		current->journal_info = h;
702 		btrfs_commit_transaction(h);
703 		goto again;
704 	}
705 
706 	if (num_bytes) {
707 		trace_btrfs_space_reservation(fs_info, "transaction",
708 					      h->transid, num_bytes, 1);
709 		h->block_rsv = &fs_info->trans_block_rsv;
710 		h->bytes_reserved = num_bytes;
711 		h->reloc_reserved = reloc_reserved;
712 	}
713 
714 	/*
715 	 * Now that we have found a transaction to be a part of, convert the
716 	 * qgroup reservation from prealloc to pertrans. A different transaction
717 	 * can't race in and free our pertrans out from under us.
718 	 */
719 	if (qgroup_reserved)
720 		btrfs_qgroup_convert_reserved_meta(root, qgroup_reserved);
721 
722 got_it:
723 	if (!current->journal_info)
724 		current->journal_info = h;
725 
726 	/*
727 	 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
728 	 * ALLOC_FORCE the first run through, and then we won't allocate for
729 	 * anybody else who races in later.  We don't care about the return
730 	 * value here.
731 	 */
732 	if (do_chunk_alloc && num_bytes) {
733 		u64 flags = h->block_rsv->space_info->flags;
734 
735 		btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
736 				  CHUNK_ALLOC_NO_FORCE);
737 	}
738 
739 	/*
740 	 * btrfs_record_root_in_trans() needs to alloc new extents, and may
741 	 * call btrfs_join_transaction() while we're also starting a
742 	 * transaction.
743 	 *
744 	 * Thus it need to be called after current->journal_info initialized,
745 	 * or we can deadlock.
746 	 */
747 	ret = btrfs_record_root_in_trans(h, root);
748 	if (ret) {
749 		/*
750 		 * The transaction handle is fully initialized and linked with
751 		 * other structures so it needs to be ended in case of errors,
752 		 * not just freed.
753 		 */
754 		btrfs_end_transaction(h);
755 		return ERR_PTR(ret);
756 	}
757 
758 	return h;
759 
760 join_fail:
761 	if (type & __TRANS_FREEZABLE)
762 		sb_end_intwrite(fs_info->sb);
763 	kmem_cache_free(btrfs_trans_handle_cachep, h);
764 alloc_fail:
765 	if (num_bytes)
766 		btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
767 					num_bytes, NULL);
768 reserve_fail:
769 	btrfs_qgroup_free_meta_prealloc(root, qgroup_reserved);
770 	return ERR_PTR(ret);
771 }
772 
773 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
774 						   unsigned int num_items)
775 {
776 	return start_transaction(root, num_items, TRANS_START,
777 				 BTRFS_RESERVE_FLUSH_ALL, true);
778 }
779 
780 struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
781 					struct btrfs_root *root,
782 					unsigned int num_items)
783 {
784 	return start_transaction(root, num_items, TRANS_START,
785 				 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
786 }
787 
788 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
789 {
790 	return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
791 				 true);
792 }
793 
794 struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
795 {
796 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
797 				 BTRFS_RESERVE_NO_FLUSH, true);
798 }
799 
800 /*
801  * Similar to regular join but it never starts a transaction when none is
802  * running or when there's a running one at a state >= TRANS_STATE_UNBLOCKED.
803  * This is similar to btrfs_attach_transaction() but it allows the join to
804  * happen if the transaction commit already started but it's not yet in the
805  * "doing" phase (the state is < TRANS_STATE_COMMIT_DOING).
806  */
807 struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
808 {
809 	return start_transaction(root, 0, TRANS_JOIN_NOSTART,
810 				 BTRFS_RESERVE_NO_FLUSH, true);
811 }
812 
813 /*
814  * btrfs_attach_transaction() - catch the running transaction
815  *
816  * It is used when we want to commit the current the transaction, but
817  * don't want to start a new one.
818  *
819  * Note: If this function return -ENOENT, it just means there is no
820  * running transaction. But it is possible that the inactive transaction
821  * is still in the memory, not fully on disk. If you hope there is no
822  * inactive transaction in the fs when -ENOENT is returned, you should
823  * invoke
824  *     btrfs_attach_transaction_barrier()
825  */
826 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
827 {
828 	return start_transaction(root, 0, TRANS_ATTACH,
829 				 BTRFS_RESERVE_NO_FLUSH, true);
830 }
831 
832 /*
833  * btrfs_attach_transaction_barrier() - catch the running transaction
834  *
835  * It is similar to the above function, the difference is this one
836  * will wait for all the inactive transactions until they fully
837  * complete.
838  */
839 struct btrfs_trans_handle *
840 btrfs_attach_transaction_barrier(struct btrfs_root *root)
841 {
842 	struct btrfs_trans_handle *trans;
843 
844 	trans = start_transaction(root, 0, TRANS_ATTACH,
845 				  BTRFS_RESERVE_NO_FLUSH, true);
846 	if (trans == ERR_PTR(-ENOENT)) {
847 		int ret;
848 
849 		ret = btrfs_wait_for_commit(root->fs_info, 0);
850 		if (ret)
851 			return ERR_PTR(ret);
852 	}
853 
854 	return trans;
855 }
856 
857 /* Wait for a transaction commit to reach at least the given state. */
858 static noinline void wait_for_commit(struct btrfs_transaction *commit,
859 				     const enum btrfs_trans_state min_state)
860 {
861 	struct btrfs_fs_info *fs_info = commit->fs_info;
862 	u64 transid = commit->transid;
863 	bool put = false;
864 
865 	/*
866 	 * At the moment this function is called with min_state either being
867 	 * TRANS_STATE_COMPLETED or TRANS_STATE_SUPER_COMMITTED.
868 	 */
869 	if (min_state == TRANS_STATE_COMPLETED)
870 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
871 	else
872 		btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
873 
874 	while (1) {
875 		wait_event(commit->commit_wait, commit->state >= min_state);
876 		if (put)
877 			btrfs_put_transaction(commit);
878 
879 		if (min_state < TRANS_STATE_COMPLETED)
880 			break;
881 
882 		/*
883 		 * A transaction isn't really completed until all of the
884 		 * previous transactions are completed, but with fsync we can
885 		 * end up with SUPER_COMMITTED transactions before a COMPLETED
886 		 * transaction. Wait for those.
887 		 */
888 
889 		spin_lock(&fs_info->trans_lock);
890 		commit = list_first_entry_or_null(&fs_info->trans_list,
891 						  struct btrfs_transaction,
892 						  list);
893 		if (!commit || commit->transid > transid) {
894 			spin_unlock(&fs_info->trans_lock);
895 			break;
896 		}
897 		refcount_inc(&commit->use_count);
898 		put = true;
899 		spin_unlock(&fs_info->trans_lock);
900 	}
901 }
902 
903 int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
904 {
905 	struct btrfs_transaction *cur_trans = NULL, *t;
906 	int ret = 0;
907 
908 	if (transid) {
909 		if (transid <= fs_info->last_trans_committed)
910 			goto out;
911 
912 		/* find specified transaction */
913 		spin_lock(&fs_info->trans_lock);
914 		list_for_each_entry(t, &fs_info->trans_list, list) {
915 			if (t->transid == transid) {
916 				cur_trans = t;
917 				refcount_inc(&cur_trans->use_count);
918 				ret = 0;
919 				break;
920 			}
921 			if (t->transid > transid) {
922 				ret = 0;
923 				break;
924 			}
925 		}
926 		spin_unlock(&fs_info->trans_lock);
927 
928 		/*
929 		 * The specified transaction doesn't exist, or we
930 		 * raced with btrfs_commit_transaction
931 		 */
932 		if (!cur_trans) {
933 			if (transid > fs_info->last_trans_committed)
934 				ret = -EINVAL;
935 			goto out;
936 		}
937 	} else {
938 		/* find newest transaction that is committing | committed */
939 		spin_lock(&fs_info->trans_lock);
940 		list_for_each_entry_reverse(t, &fs_info->trans_list,
941 					    list) {
942 			if (t->state >= TRANS_STATE_COMMIT_START) {
943 				if (t->state == TRANS_STATE_COMPLETED)
944 					break;
945 				cur_trans = t;
946 				refcount_inc(&cur_trans->use_count);
947 				break;
948 			}
949 		}
950 		spin_unlock(&fs_info->trans_lock);
951 		if (!cur_trans)
952 			goto out;  /* nothing committing|committed */
953 	}
954 
955 	wait_for_commit(cur_trans, TRANS_STATE_COMPLETED);
956 	ret = cur_trans->aborted;
957 	btrfs_put_transaction(cur_trans);
958 out:
959 	return ret;
960 }
961 
962 void btrfs_throttle(struct btrfs_fs_info *fs_info)
963 {
964 	wait_current_trans(fs_info);
965 }
966 
967 bool btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
968 {
969 	struct btrfs_transaction *cur_trans = trans->transaction;
970 
971 	if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
972 	    test_bit(BTRFS_DELAYED_REFS_FLUSHING, &cur_trans->delayed_refs.flags))
973 		return true;
974 
975 	if (btrfs_check_space_for_delayed_refs(trans->fs_info))
976 		return true;
977 
978 	return !!btrfs_block_rsv_check(&trans->fs_info->global_block_rsv, 50);
979 }
980 
981 static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
982 
983 {
984 	struct btrfs_fs_info *fs_info = trans->fs_info;
985 
986 	if (!trans->block_rsv) {
987 		ASSERT(!trans->bytes_reserved);
988 		return;
989 	}
990 
991 	if (!trans->bytes_reserved)
992 		return;
993 
994 	ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
995 	trace_btrfs_space_reservation(fs_info, "transaction",
996 				      trans->transid, trans->bytes_reserved, 0);
997 	btrfs_block_rsv_release(fs_info, trans->block_rsv,
998 				trans->bytes_reserved, NULL);
999 	trans->bytes_reserved = 0;
1000 }
1001 
1002 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
1003 				   int throttle)
1004 {
1005 	struct btrfs_fs_info *info = trans->fs_info;
1006 	struct btrfs_transaction *cur_trans = trans->transaction;
1007 	int err = 0;
1008 
1009 	if (refcount_read(&trans->use_count) > 1) {
1010 		refcount_dec(&trans->use_count);
1011 		trans->block_rsv = trans->orig_rsv;
1012 		return 0;
1013 	}
1014 
1015 	btrfs_trans_release_metadata(trans);
1016 	trans->block_rsv = NULL;
1017 
1018 	btrfs_create_pending_block_groups(trans);
1019 
1020 	btrfs_trans_release_chunk_metadata(trans);
1021 
1022 	if (trans->type & __TRANS_FREEZABLE)
1023 		sb_end_intwrite(info->sb);
1024 
1025 	WARN_ON(cur_trans != info->running_transaction);
1026 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
1027 	atomic_dec(&cur_trans->num_writers);
1028 	extwriter_counter_dec(cur_trans, trans->type);
1029 
1030 	cond_wake_up(&cur_trans->writer_wait);
1031 
1032 	btrfs_lockdep_release(info, btrfs_trans_num_extwriters);
1033 	btrfs_lockdep_release(info, btrfs_trans_num_writers);
1034 
1035 	btrfs_put_transaction(cur_trans);
1036 
1037 	if (current->journal_info == trans)
1038 		current->journal_info = NULL;
1039 
1040 	if (throttle)
1041 		btrfs_run_delayed_iputs(info);
1042 
1043 	if (TRANS_ABORTED(trans) || BTRFS_FS_ERROR(info)) {
1044 		wake_up_process(info->transaction_kthread);
1045 		if (TRANS_ABORTED(trans))
1046 			err = trans->aborted;
1047 		else
1048 			err = -EROFS;
1049 	}
1050 
1051 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1052 	return err;
1053 }
1054 
1055 int btrfs_end_transaction(struct btrfs_trans_handle *trans)
1056 {
1057 	return __btrfs_end_transaction(trans, 0);
1058 }
1059 
1060 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
1061 {
1062 	return __btrfs_end_transaction(trans, 1);
1063 }
1064 
1065 /*
1066  * when btree blocks are allocated, they have some corresponding bits set for
1067  * them in one of two extent_io trees.  This is used to make sure all of
1068  * those extents are sent to disk but does not wait on them
1069  */
1070 int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
1071 			       struct extent_io_tree *dirty_pages, int mark)
1072 {
1073 	int err = 0;
1074 	int werr = 0;
1075 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1076 	struct extent_state *cached_state = NULL;
1077 	u64 start = 0;
1078 	u64 end;
1079 
1080 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1081 				     mark, &cached_state)) {
1082 		bool wait_writeback = false;
1083 
1084 		err = convert_extent_bit(dirty_pages, start, end,
1085 					 EXTENT_NEED_WAIT,
1086 					 mark, &cached_state);
1087 		/*
1088 		 * convert_extent_bit can return -ENOMEM, which is most of the
1089 		 * time a temporary error. So when it happens, ignore the error
1090 		 * and wait for writeback of this range to finish - because we
1091 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
1092 		 * to __btrfs_wait_marked_extents() would not know that
1093 		 * writeback for this range started and therefore wouldn't
1094 		 * wait for it to finish - we don't want to commit a
1095 		 * superblock that points to btree nodes/leafs for which
1096 		 * writeback hasn't finished yet (and without errors).
1097 		 * We cleanup any entries left in the io tree when committing
1098 		 * the transaction (through extent_io_tree_release()).
1099 		 */
1100 		if (err == -ENOMEM) {
1101 			err = 0;
1102 			wait_writeback = true;
1103 		}
1104 		if (!err)
1105 			err = filemap_fdatawrite_range(mapping, start, end);
1106 		if (err)
1107 			werr = err;
1108 		else if (wait_writeback)
1109 			werr = filemap_fdatawait_range(mapping, start, end);
1110 		free_extent_state(cached_state);
1111 		cached_state = NULL;
1112 		cond_resched();
1113 		start = end + 1;
1114 	}
1115 	return werr;
1116 }
1117 
1118 /*
1119  * when btree blocks are allocated, they have some corresponding bits set for
1120  * them in one of two extent_io trees.  This is used to make sure all of
1121  * those extents are on disk for transaction or log commit.  We wait
1122  * on all the pages and clear them from the dirty pages state tree
1123  */
1124 static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1125 				       struct extent_io_tree *dirty_pages)
1126 {
1127 	int err = 0;
1128 	int werr = 0;
1129 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
1130 	struct extent_state *cached_state = NULL;
1131 	u64 start = 0;
1132 	u64 end;
1133 
1134 	while (find_first_extent_bit(dirty_pages, start, &start, &end,
1135 				     EXTENT_NEED_WAIT, &cached_state)) {
1136 		/*
1137 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
1138 		 * When committing the transaction, we'll remove any entries
1139 		 * left in the io tree. For a log commit, we don't remove them
1140 		 * after committing the log because the tree can be accessed
1141 		 * concurrently - we do it only at transaction commit time when
1142 		 * it's safe to do it (through extent_io_tree_release()).
1143 		 */
1144 		err = clear_extent_bit(dirty_pages, start, end,
1145 				       EXTENT_NEED_WAIT, &cached_state);
1146 		if (err == -ENOMEM)
1147 			err = 0;
1148 		if (!err)
1149 			err = filemap_fdatawait_range(mapping, start, end);
1150 		if (err)
1151 			werr = err;
1152 		free_extent_state(cached_state);
1153 		cached_state = NULL;
1154 		cond_resched();
1155 		start = end + 1;
1156 	}
1157 	if (err)
1158 		werr = err;
1159 	return werr;
1160 }
1161 
1162 static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1163 		       struct extent_io_tree *dirty_pages)
1164 {
1165 	bool errors = false;
1166 	int err;
1167 
1168 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1169 	if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1170 		errors = true;
1171 
1172 	if (errors && !err)
1173 		err = -EIO;
1174 	return err;
1175 }
1176 
1177 int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1178 {
1179 	struct btrfs_fs_info *fs_info = log_root->fs_info;
1180 	struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1181 	bool errors = false;
1182 	int err;
1183 
1184 	ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1185 
1186 	err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1187 	if ((mark & EXTENT_DIRTY) &&
1188 	    test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1189 		errors = true;
1190 
1191 	if ((mark & EXTENT_NEW) &&
1192 	    test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1193 		errors = true;
1194 
1195 	if (errors && !err)
1196 		err = -EIO;
1197 	return err;
1198 }
1199 
1200 /*
1201  * When btree blocks are allocated the corresponding extents are marked dirty.
1202  * This function ensures such extents are persisted on disk for transaction or
1203  * log commit.
1204  *
1205  * @trans: transaction whose dirty pages we'd like to write
1206  */
1207 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1208 {
1209 	int ret;
1210 	int ret2;
1211 	struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1212 	struct btrfs_fs_info *fs_info = trans->fs_info;
1213 	struct blk_plug plug;
1214 
1215 	blk_start_plug(&plug);
1216 	ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1217 	blk_finish_plug(&plug);
1218 	ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1219 
1220 	extent_io_tree_release(&trans->transaction->dirty_pages);
1221 
1222 	if (ret)
1223 		return ret;
1224 	else if (ret2)
1225 		return ret2;
1226 	else
1227 		return 0;
1228 }
1229 
1230 /*
1231  * this is used to update the root pointer in the tree of tree roots.
1232  *
1233  * But, in the case of the extent allocation tree, updating the root
1234  * pointer may allocate blocks which may change the root of the extent
1235  * allocation tree.
1236  *
1237  * So, this loops and repeats and makes sure the cowonly root didn't
1238  * change while the root pointer was being updated in the metadata.
1239  */
1240 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1241 			       struct btrfs_root *root)
1242 {
1243 	int ret;
1244 	u64 old_root_bytenr;
1245 	u64 old_root_used;
1246 	struct btrfs_fs_info *fs_info = root->fs_info;
1247 	struct btrfs_root *tree_root = fs_info->tree_root;
1248 
1249 	old_root_used = btrfs_root_used(&root->root_item);
1250 
1251 	while (1) {
1252 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1253 		if (old_root_bytenr == root->node->start &&
1254 		    old_root_used == btrfs_root_used(&root->root_item))
1255 			break;
1256 
1257 		btrfs_set_root_node(&root->root_item, root->node);
1258 		ret = btrfs_update_root(trans, tree_root,
1259 					&root->root_key,
1260 					&root->root_item);
1261 		if (ret)
1262 			return ret;
1263 
1264 		old_root_used = btrfs_root_used(&root->root_item);
1265 	}
1266 
1267 	return 0;
1268 }
1269 
1270 /*
1271  * update all the cowonly tree roots on disk
1272  *
1273  * The error handling in this function may not be obvious. Any of the
1274  * failures will cause the file system to go offline. We still need
1275  * to clean up the delayed refs.
1276  */
1277 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1278 {
1279 	struct btrfs_fs_info *fs_info = trans->fs_info;
1280 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1281 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1282 	struct list_head *next;
1283 	struct extent_buffer *eb;
1284 	int ret;
1285 
1286 	/*
1287 	 * At this point no one can be using this transaction to modify any tree
1288 	 * and no one can start another transaction to modify any tree either.
1289 	 */
1290 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1291 
1292 	eb = btrfs_lock_root_node(fs_info->tree_root);
1293 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1294 			      0, &eb, BTRFS_NESTING_COW);
1295 	btrfs_tree_unlock(eb);
1296 	free_extent_buffer(eb);
1297 
1298 	if (ret)
1299 		return ret;
1300 
1301 	ret = btrfs_run_dev_stats(trans);
1302 	if (ret)
1303 		return ret;
1304 	ret = btrfs_run_dev_replace(trans);
1305 	if (ret)
1306 		return ret;
1307 	ret = btrfs_run_qgroups(trans);
1308 	if (ret)
1309 		return ret;
1310 
1311 	ret = btrfs_setup_space_cache(trans);
1312 	if (ret)
1313 		return ret;
1314 
1315 again:
1316 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1317 		struct btrfs_root *root;
1318 		next = fs_info->dirty_cowonly_roots.next;
1319 		list_del_init(next);
1320 		root = list_entry(next, struct btrfs_root, dirty_list);
1321 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1322 
1323 		list_add_tail(&root->dirty_list,
1324 			      &trans->transaction->switch_commits);
1325 		ret = update_cowonly_root(trans, root);
1326 		if (ret)
1327 			return ret;
1328 	}
1329 
1330 	/* Now flush any delayed refs generated by updating all of the roots */
1331 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1332 	if (ret)
1333 		return ret;
1334 
1335 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1336 		ret = btrfs_write_dirty_block_groups(trans);
1337 		if (ret)
1338 			return ret;
1339 
1340 		/*
1341 		 * We're writing the dirty block groups, which could generate
1342 		 * delayed refs, which could generate more dirty block groups,
1343 		 * so we want to keep this flushing in this loop to make sure
1344 		 * everything gets run.
1345 		 */
1346 		ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1347 		if (ret)
1348 			return ret;
1349 	}
1350 
1351 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1352 		goto again;
1353 
1354 	/* Update dev-replace pointer once everything is committed */
1355 	fs_info->dev_replace.committed_cursor_left =
1356 		fs_info->dev_replace.cursor_left_last_write_of_item;
1357 
1358 	return 0;
1359 }
1360 
1361 /*
1362  * If we had a pending drop we need to see if there are any others left in our
1363  * dead roots list, and if not clear our bit and wake any waiters.
1364  */
1365 void btrfs_maybe_wake_unfinished_drop(struct btrfs_fs_info *fs_info)
1366 {
1367 	/*
1368 	 * We put the drop in progress roots at the front of the list, so if the
1369 	 * first entry doesn't have UNFINISHED_DROP set we can wake everybody
1370 	 * up.
1371 	 */
1372 	spin_lock(&fs_info->trans_lock);
1373 	if (!list_empty(&fs_info->dead_roots)) {
1374 		struct btrfs_root *root = list_first_entry(&fs_info->dead_roots,
1375 							   struct btrfs_root,
1376 							   root_list);
1377 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state)) {
1378 			spin_unlock(&fs_info->trans_lock);
1379 			return;
1380 		}
1381 	}
1382 	spin_unlock(&fs_info->trans_lock);
1383 
1384 	btrfs_wake_unfinished_drop(fs_info);
1385 }
1386 
1387 /*
1388  * dead roots are old snapshots that need to be deleted.  This allocates
1389  * a dirty root struct and adds it into the list of dead roots that need to
1390  * be deleted
1391  */
1392 void btrfs_add_dead_root(struct btrfs_root *root)
1393 {
1394 	struct btrfs_fs_info *fs_info = root->fs_info;
1395 
1396 	spin_lock(&fs_info->trans_lock);
1397 	if (list_empty(&root->root_list)) {
1398 		btrfs_grab_root(root);
1399 
1400 		/* We want to process the partially complete drops first. */
1401 		if (test_bit(BTRFS_ROOT_UNFINISHED_DROP, &root->state))
1402 			list_add(&root->root_list, &fs_info->dead_roots);
1403 		else
1404 			list_add_tail(&root->root_list, &fs_info->dead_roots);
1405 	}
1406 	spin_unlock(&fs_info->trans_lock);
1407 }
1408 
1409 /*
1410  * Update each subvolume root and its relocation root, if it exists, in the tree
1411  * of tree roots. Also free log roots if they exist.
1412  */
1413 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1414 {
1415 	struct btrfs_fs_info *fs_info = trans->fs_info;
1416 	struct btrfs_root *gang[8];
1417 	int i;
1418 	int ret;
1419 
1420 	/*
1421 	 * At this point no one can be using this transaction to modify any tree
1422 	 * and no one can start another transaction to modify any tree either.
1423 	 */
1424 	ASSERT(trans->transaction->state == TRANS_STATE_COMMIT_DOING);
1425 
1426 	spin_lock(&fs_info->fs_roots_radix_lock);
1427 	while (1) {
1428 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1429 						 (void **)gang, 0,
1430 						 ARRAY_SIZE(gang),
1431 						 BTRFS_ROOT_TRANS_TAG);
1432 		if (ret == 0)
1433 			break;
1434 		for (i = 0; i < ret; i++) {
1435 			struct btrfs_root *root = gang[i];
1436 			int ret2;
1437 
1438 			/*
1439 			 * At this point we can neither have tasks logging inodes
1440 			 * from a root nor trying to commit a log tree.
1441 			 */
1442 			ASSERT(atomic_read(&root->log_writers) == 0);
1443 			ASSERT(atomic_read(&root->log_commit[0]) == 0);
1444 			ASSERT(atomic_read(&root->log_commit[1]) == 0);
1445 
1446 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1447 					(unsigned long)root->root_key.objectid,
1448 					BTRFS_ROOT_TRANS_TAG);
1449 			spin_unlock(&fs_info->fs_roots_radix_lock);
1450 
1451 			btrfs_free_log(trans, root);
1452 			ret2 = btrfs_update_reloc_root(trans, root);
1453 			if (ret2)
1454 				return ret2;
1455 
1456 			/* see comments in should_cow_block() */
1457 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1458 			smp_mb__after_atomic();
1459 
1460 			if (root->commit_root != root->node) {
1461 				list_add_tail(&root->dirty_list,
1462 					&trans->transaction->switch_commits);
1463 				btrfs_set_root_node(&root->root_item,
1464 						    root->node);
1465 			}
1466 
1467 			ret2 = btrfs_update_root(trans, fs_info->tree_root,
1468 						&root->root_key,
1469 						&root->root_item);
1470 			if (ret2)
1471 				return ret2;
1472 			spin_lock(&fs_info->fs_roots_radix_lock);
1473 			btrfs_qgroup_free_meta_all_pertrans(root);
1474 		}
1475 	}
1476 	spin_unlock(&fs_info->fs_roots_radix_lock);
1477 	return 0;
1478 }
1479 
1480 /*
1481  * defrag a given btree.
1482  * Every leaf in the btree is read and defragged.
1483  */
1484 int btrfs_defrag_root(struct btrfs_root *root)
1485 {
1486 	struct btrfs_fs_info *info = root->fs_info;
1487 	struct btrfs_trans_handle *trans;
1488 	int ret;
1489 
1490 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1491 		return 0;
1492 
1493 	while (1) {
1494 		trans = btrfs_start_transaction(root, 0);
1495 		if (IS_ERR(trans)) {
1496 			ret = PTR_ERR(trans);
1497 			break;
1498 		}
1499 
1500 		ret = btrfs_defrag_leaves(trans, root);
1501 
1502 		btrfs_end_transaction(trans);
1503 		btrfs_btree_balance_dirty(info);
1504 		cond_resched();
1505 
1506 		if (btrfs_fs_closing(info) || ret != -EAGAIN)
1507 			break;
1508 
1509 		if (btrfs_defrag_cancelled(info)) {
1510 			btrfs_debug(info, "defrag_root cancelled");
1511 			ret = -EAGAIN;
1512 			break;
1513 		}
1514 	}
1515 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1516 	return ret;
1517 }
1518 
1519 /*
1520  * Do all special snapshot related qgroup dirty hack.
1521  *
1522  * Will do all needed qgroup inherit and dirty hack like switch commit
1523  * roots inside one transaction and write all btree into disk, to make
1524  * qgroup works.
1525  */
1526 static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1527 				   struct btrfs_root *src,
1528 				   struct btrfs_root *parent,
1529 				   struct btrfs_qgroup_inherit *inherit,
1530 				   u64 dst_objectid)
1531 {
1532 	struct btrfs_fs_info *fs_info = src->fs_info;
1533 	int ret;
1534 
1535 	/*
1536 	 * Save some performance in the case that qgroups are not
1537 	 * enabled. If this check races with the ioctl, rescan will
1538 	 * kick in anyway.
1539 	 */
1540 	if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1541 		return 0;
1542 
1543 	/*
1544 	 * Ensure dirty @src will be committed.  Or, after coming
1545 	 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1546 	 * recorded root will never be updated again, causing an outdated root
1547 	 * item.
1548 	 */
1549 	ret = record_root_in_trans(trans, src, 1);
1550 	if (ret)
1551 		return ret;
1552 
1553 	/*
1554 	 * btrfs_qgroup_inherit relies on a consistent view of the usage for the
1555 	 * src root, so we must run the delayed refs here.
1556 	 *
1557 	 * However this isn't particularly fool proof, because there's no
1558 	 * synchronization keeping us from changing the tree after this point
1559 	 * before we do the qgroup_inherit, or even from making changes while
1560 	 * we're doing the qgroup_inherit.  But that's a problem for the future,
1561 	 * for now flush the delayed refs to narrow the race window where the
1562 	 * qgroup counters could end up wrong.
1563 	 */
1564 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1565 	if (ret) {
1566 		btrfs_abort_transaction(trans, ret);
1567 		return ret;
1568 	}
1569 
1570 	ret = commit_fs_roots(trans);
1571 	if (ret)
1572 		goto out;
1573 	ret = btrfs_qgroup_account_extents(trans);
1574 	if (ret < 0)
1575 		goto out;
1576 
1577 	/* Now qgroup are all updated, we can inherit it to new qgroups */
1578 	ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1579 				   inherit);
1580 	if (ret < 0)
1581 		goto out;
1582 
1583 	/*
1584 	 * Now we do a simplified commit transaction, which will:
1585 	 * 1) commit all subvolume and extent tree
1586 	 *    To ensure all subvolume and extent tree have a valid
1587 	 *    commit_root to accounting later insert_dir_item()
1588 	 * 2) write all btree blocks onto disk
1589 	 *    This is to make sure later btree modification will be cowed
1590 	 *    Or commit_root can be populated and cause wrong qgroup numbers
1591 	 * In this simplified commit, we don't really care about other trees
1592 	 * like chunk and root tree, as they won't affect qgroup.
1593 	 * And we don't write super to avoid half committed status.
1594 	 */
1595 	ret = commit_cowonly_roots(trans);
1596 	if (ret)
1597 		goto out;
1598 	switch_commit_roots(trans);
1599 	ret = btrfs_write_and_wait_transaction(trans);
1600 	if (ret)
1601 		btrfs_handle_fs_error(fs_info, ret,
1602 			"Error while writing out transaction for qgroup");
1603 
1604 out:
1605 	/*
1606 	 * Force parent root to be updated, as we recorded it before so its
1607 	 * last_trans == cur_transid.
1608 	 * Or it won't be committed again onto disk after later
1609 	 * insert_dir_item()
1610 	 */
1611 	if (!ret)
1612 		ret = record_root_in_trans(trans, parent, 1);
1613 	return ret;
1614 }
1615 
1616 /*
1617  * new snapshots need to be created at a very specific time in the
1618  * transaction commit.  This does the actual creation.
1619  *
1620  * Note:
1621  * If the error which may affect the commitment of the current transaction
1622  * happens, we should return the error number. If the error which just affect
1623  * the creation of the pending snapshots, just return 0.
1624  */
1625 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1626 				   struct btrfs_pending_snapshot *pending)
1627 {
1628 
1629 	struct btrfs_fs_info *fs_info = trans->fs_info;
1630 	struct btrfs_key key;
1631 	struct btrfs_root_item *new_root_item;
1632 	struct btrfs_root *tree_root = fs_info->tree_root;
1633 	struct btrfs_root *root = pending->root;
1634 	struct btrfs_root *parent_root;
1635 	struct btrfs_block_rsv *rsv;
1636 	struct inode *parent_inode = pending->dir;
1637 	struct btrfs_path *path;
1638 	struct btrfs_dir_item *dir_item;
1639 	struct extent_buffer *tmp;
1640 	struct extent_buffer *old;
1641 	struct timespec64 cur_time;
1642 	int ret = 0;
1643 	u64 to_reserve = 0;
1644 	u64 index = 0;
1645 	u64 objectid;
1646 	u64 root_flags;
1647 	unsigned int nofs_flags;
1648 	struct fscrypt_name fname;
1649 
1650 	ASSERT(pending->path);
1651 	path = pending->path;
1652 
1653 	ASSERT(pending->root_item);
1654 	new_root_item = pending->root_item;
1655 
1656 	/*
1657 	 * We're inside a transaction and must make sure that any potential
1658 	 * allocations with GFP_KERNEL in fscrypt won't recurse back to
1659 	 * filesystem.
1660 	 */
1661 	nofs_flags = memalloc_nofs_save();
1662 	pending->error = fscrypt_setup_filename(parent_inode,
1663 						&pending->dentry->d_name, 0,
1664 						&fname);
1665 	memalloc_nofs_restore(nofs_flags);
1666 	if (pending->error)
1667 		goto free_pending;
1668 
1669 	pending->error = btrfs_get_free_objectid(tree_root, &objectid);
1670 	if (pending->error)
1671 		goto free_fname;
1672 
1673 	/*
1674 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1675 	 * accounted by later btrfs_qgroup_inherit().
1676 	 */
1677 	btrfs_set_skip_qgroup(trans, objectid);
1678 
1679 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1680 
1681 	if (to_reserve > 0) {
1682 		pending->error = btrfs_block_rsv_add(fs_info,
1683 						     &pending->block_rsv,
1684 						     to_reserve,
1685 						     BTRFS_RESERVE_NO_FLUSH);
1686 		if (pending->error)
1687 			goto clear_skip_qgroup;
1688 	}
1689 
1690 	key.objectid = objectid;
1691 	key.offset = (u64)-1;
1692 	key.type = BTRFS_ROOT_ITEM_KEY;
1693 
1694 	rsv = trans->block_rsv;
1695 	trans->block_rsv = &pending->block_rsv;
1696 	trans->bytes_reserved = trans->block_rsv->reserved;
1697 	trace_btrfs_space_reservation(fs_info, "transaction",
1698 				      trans->transid,
1699 				      trans->bytes_reserved, 1);
1700 	parent_root = BTRFS_I(parent_inode)->root;
1701 	ret = record_root_in_trans(trans, parent_root, 0);
1702 	if (ret)
1703 		goto fail;
1704 	cur_time = current_time(parent_inode);
1705 
1706 	/*
1707 	 * insert the directory item
1708 	 */
1709 	ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1710 	if (ret) {
1711 		btrfs_abort_transaction(trans, ret);
1712 		goto fail;
1713 	}
1714 
1715 	/* check if there is a file/dir which has the same name. */
1716 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1717 					 btrfs_ino(BTRFS_I(parent_inode)),
1718 					 &fname.disk_name, 0);
1719 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1720 		pending->error = -EEXIST;
1721 		goto dir_item_existed;
1722 	} else if (IS_ERR(dir_item)) {
1723 		ret = PTR_ERR(dir_item);
1724 		btrfs_abort_transaction(trans, ret);
1725 		goto fail;
1726 	}
1727 	btrfs_release_path(path);
1728 
1729 	/*
1730 	 * pull in the delayed directory update
1731 	 * and the delayed inode item
1732 	 * otherwise we corrupt the FS during
1733 	 * snapshot
1734 	 */
1735 	ret = btrfs_run_delayed_items(trans);
1736 	if (ret) {	/* Transaction aborted */
1737 		btrfs_abort_transaction(trans, ret);
1738 		goto fail;
1739 	}
1740 
1741 	ret = record_root_in_trans(trans, root, 0);
1742 	if (ret) {
1743 		btrfs_abort_transaction(trans, ret);
1744 		goto fail;
1745 	}
1746 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1747 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1748 	btrfs_check_and_init_root_item(new_root_item);
1749 
1750 	root_flags = btrfs_root_flags(new_root_item);
1751 	if (pending->readonly)
1752 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1753 	else
1754 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1755 	btrfs_set_root_flags(new_root_item, root_flags);
1756 
1757 	btrfs_set_root_generation_v2(new_root_item,
1758 			trans->transid);
1759 	generate_random_guid(new_root_item->uuid);
1760 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1761 			BTRFS_UUID_SIZE);
1762 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1763 		memset(new_root_item->received_uuid, 0,
1764 		       sizeof(new_root_item->received_uuid));
1765 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1766 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1767 		btrfs_set_root_stransid(new_root_item, 0);
1768 		btrfs_set_root_rtransid(new_root_item, 0);
1769 	}
1770 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1771 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1772 	btrfs_set_root_otransid(new_root_item, trans->transid);
1773 
1774 	old = btrfs_lock_root_node(root);
1775 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old,
1776 			      BTRFS_NESTING_COW);
1777 	if (ret) {
1778 		btrfs_tree_unlock(old);
1779 		free_extent_buffer(old);
1780 		btrfs_abort_transaction(trans, ret);
1781 		goto fail;
1782 	}
1783 
1784 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1785 	/* clean up in any case */
1786 	btrfs_tree_unlock(old);
1787 	free_extent_buffer(old);
1788 	if (ret) {
1789 		btrfs_abort_transaction(trans, ret);
1790 		goto fail;
1791 	}
1792 	/* see comments in should_cow_block() */
1793 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1794 	smp_wmb();
1795 
1796 	btrfs_set_root_node(new_root_item, tmp);
1797 	/* record when the snapshot was created in key.offset */
1798 	key.offset = trans->transid;
1799 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1800 	btrfs_tree_unlock(tmp);
1801 	free_extent_buffer(tmp);
1802 	if (ret) {
1803 		btrfs_abort_transaction(trans, ret);
1804 		goto fail;
1805 	}
1806 
1807 	/*
1808 	 * insert root back/forward references
1809 	 */
1810 	ret = btrfs_add_root_ref(trans, objectid,
1811 				 parent_root->root_key.objectid,
1812 				 btrfs_ino(BTRFS_I(parent_inode)), index,
1813 				 &fname.disk_name);
1814 	if (ret) {
1815 		btrfs_abort_transaction(trans, ret);
1816 		goto fail;
1817 	}
1818 
1819 	key.offset = (u64)-1;
1820 	pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1821 	if (IS_ERR(pending->snap)) {
1822 		ret = PTR_ERR(pending->snap);
1823 		pending->snap = NULL;
1824 		btrfs_abort_transaction(trans, ret);
1825 		goto fail;
1826 	}
1827 
1828 	ret = btrfs_reloc_post_snapshot(trans, pending);
1829 	if (ret) {
1830 		btrfs_abort_transaction(trans, ret);
1831 		goto fail;
1832 	}
1833 
1834 	/*
1835 	 * Do special qgroup accounting for snapshot, as we do some qgroup
1836 	 * snapshot hack to do fast snapshot.
1837 	 * To co-operate with that hack, we do hack again.
1838 	 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1839 	 */
1840 	ret = qgroup_account_snapshot(trans, root, parent_root,
1841 				      pending->inherit, objectid);
1842 	if (ret < 0)
1843 		goto fail;
1844 
1845 	ret = btrfs_insert_dir_item(trans, &fname.disk_name,
1846 				    BTRFS_I(parent_inode), &key, BTRFS_FT_DIR,
1847 				    index);
1848 	/* We have check then name at the beginning, so it is impossible. */
1849 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1850 	if (ret) {
1851 		btrfs_abort_transaction(trans, ret);
1852 		goto fail;
1853 	}
1854 
1855 	btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1856 						  fname.disk_name.len * 2);
1857 	parent_inode->i_mtime = current_time(parent_inode);
1858 	parent_inode->i_ctime = parent_inode->i_mtime;
1859 	ret = btrfs_update_inode_fallback(trans, parent_root, BTRFS_I(parent_inode));
1860 	if (ret) {
1861 		btrfs_abort_transaction(trans, ret);
1862 		goto fail;
1863 	}
1864 	ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1865 				  BTRFS_UUID_KEY_SUBVOL,
1866 				  objectid);
1867 	if (ret) {
1868 		btrfs_abort_transaction(trans, ret);
1869 		goto fail;
1870 	}
1871 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1872 		ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1873 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1874 					  objectid);
1875 		if (ret && ret != -EEXIST) {
1876 			btrfs_abort_transaction(trans, ret);
1877 			goto fail;
1878 		}
1879 	}
1880 
1881 fail:
1882 	pending->error = ret;
1883 dir_item_existed:
1884 	trans->block_rsv = rsv;
1885 	trans->bytes_reserved = 0;
1886 clear_skip_qgroup:
1887 	btrfs_clear_skip_qgroup(trans);
1888 free_fname:
1889 	fscrypt_free_filename(&fname);
1890 free_pending:
1891 	kfree(new_root_item);
1892 	pending->root_item = NULL;
1893 	btrfs_free_path(path);
1894 	pending->path = NULL;
1895 
1896 	return ret;
1897 }
1898 
1899 /*
1900  * create all the snapshots we've scheduled for creation
1901  */
1902 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1903 {
1904 	struct btrfs_pending_snapshot *pending, *next;
1905 	struct list_head *head = &trans->transaction->pending_snapshots;
1906 	int ret = 0;
1907 
1908 	list_for_each_entry_safe(pending, next, head, list) {
1909 		list_del(&pending->list);
1910 		ret = create_pending_snapshot(trans, pending);
1911 		if (ret)
1912 			break;
1913 	}
1914 	return ret;
1915 }
1916 
1917 static void update_super_roots(struct btrfs_fs_info *fs_info)
1918 {
1919 	struct btrfs_root_item *root_item;
1920 	struct btrfs_super_block *super;
1921 
1922 	super = fs_info->super_copy;
1923 
1924 	root_item = &fs_info->chunk_root->root_item;
1925 	super->chunk_root = root_item->bytenr;
1926 	super->chunk_root_generation = root_item->generation;
1927 	super->chunk_root_level = root_item->level;
1928 
1929 	root_item = &fs_info->tree_root->root_item;
1930 	super->root = root_item->bytenr;
1931 	super->generation = root_item->generation;
1932 	super->root_level = root_item->level;
1933 	if (btrfs_test_opt(fs_info, SPACE_CACHE))
1934 		super->cache_generation = root_item->generation;
1935 	else if (test_bit(BTRFS_FS_CLEANUP_SPACE_CACHE_V1, &fs_info->flags))
1936 		super->cache_generation = 0;
1937 	if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1938 		super->uuid_tree_generation = root_item->generation;
1939 }
1940 
1941 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1942 {
1943 	struct btrfs_transaction *trans;
1944 	int ret = 0;
1945 
1946 	spin_lock(&info->trans_lock);
1947 	trans = info->running_transaction;
1948 	if (trans)
1949 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1950 	spin_unlock(&info->trans_lock);
1951 	return ret;
1952 }
1953 
1954 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1955 {
1956 	struct btrfs_transaction *trans;
1957 	int ret = 0;
1958 
1959 	spin_lock(&info->trans_lock);
1960 	trans = info->running_transaction;
1961 	if (trans)
1962 		ret = is_transaction_blocked(trans);
1963 	spin_unlock(&info->trans_lock);
1964 	return ret;
1965 }
1966 
1967 void btrfs_commit_transaction_async(struct btrfs_trans_handle *trans)
1968 {
1969 	struct btrfs_fs_info *fs_info = trans->fs_info;
1970 	struct btrfs_transaction *cur_trans;
1971 
1972 	/* Kick the transaction kthread. */
1973 	set_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
1974 	wake_up_process(fs_info->transaction_kthread);
1975 
1976 	/* take transaction reference */
1977 	cur_trans = trans->transaction;
1978 	refcount_inc(&cur_trans->use_count);
1979 
1980 	btrfs_end_transaction(trans);
1981 
1982 	/*
1983 	 * Wait for the current transaction commit to start and block
1984 	 * subsequent transaction joins
1985 	 */
1986 	btrfs_might_wait_for_state(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
1987 	wait_event(fs_info->transaction_blocked_wait,
1988 		   cur_trans->state >= TRANS_STATE_COMMIT_START ||
1989 		   TRANS_ABORTED(cur_trans));
1990 	btrfs_put_transaction(cur_trans);
1991 }
1992 
1993 static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1994 {
1995 	struct btrfs_fs_info *fs_info = trans->fs_info;
1996 	struct btrfs_transaction *cur_trans = trans->transaction;
1997 
1998 	WARN_ON(refcount_read(&trans->use_count) > 1);
1999 
2000 	btrfs_abort_transaction(trans, err);
2001 
2002 	spin_lock(&fs_info->trans_lock);
2003 
2004 	/*
2005 	 * If the transaction is removed from the list, it means this
2006 	 * transaction has been committed successfully, so it is impossible
2007 	 * to call the cleanup function.
2008 	 */
2009 	BUG_ON(list_empty(&cur_trans->list));
2010 
2011 	if (cur_trans == fs_info->running_transaction) {
2012 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
2013 		spin_unlock(&fs_info->trans_lock);
2014 
2015 		/*
2016 		 * The thread has already released the lockdep map as reader
2017 		 * already in btrfs_commit_transaction().
2018 		 */
2019 		btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2020 		wait_event(cur_trans->writer_wait,
2021 			   atomic_read(&cur_trans->num_writers) == 1);
2022 
2023 		spin_lock(&fs_info->trans_lock);
2024 	}
2025 
2026 	/*
2027 	 * Now that we know no one else is still using the transaction we can
2028 	 * remove the transaction from the list of transactions. This avoids
2029 	 * the transaction kthread from cleaning up the transaction while some
2030 	 * other task is still using it, which could result in a use-after-free
2031 	 * on things like log trees, as it forces the transaction kthread to
2032 	 * wait for this transaction to be cleaned up by us.
2033 	 */
2034 	list_del_init(&cur_trans->list);
2035 
2036 	spin_unlock(&fs_info->trans_lock);
2037 
2038 	btrfs_cleanup_one_transaction(trans->transaction, fs_info);
2039 
2040 	spin_lock(&fs_info->trans_lock);
2041 	if (cur_trans == fs_info->running_transaction)
2042 		fs_info->running_transaction = NULL;
2043 	spin_unlock(&fs_info->trans_lock);
2044 
2045 	if (trans->type & __TRANS_FREEZABLE)
2046 		sb_end_intwrite(fs_info->sb);
2047 	btrfs_put_transaction(cur_trans);
2048 	btrfs_put_transaction(cur_trans);
2049 
2050 	trace_btrfs_transaction_commit(fs_info);
2051 
2052 	if (current->journal_info == trans)
2053 		current->journal_info = NULL;
2054 
2055 	/*
2056 	 * If relocation is running, we can't cancel scrub because that will
2057 	 * result in a deadlock. Before relocating a block group, relocation
2058 	 * pauses scrub, then starts and commits a transaction before unpausing
2059 	 * scrub. If the transaction commit is being done by the relocation
2060 	 * task or triggered by another task and the relocation task is waiting
2061 	 * for the commit, and we end up here due to an error in the commit
2062 	 * path, then calling btrfs_scrub_cancel() will deadlock, as we are
2063 	 * asking for scrub to stop while having it asked to be paused higher
2064 	 * above in relocation code.
2065 	 */
2066 	if (!test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
2067 		btrfs_scrub_cancel(fs_info);
2068 
2069 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2070 }
2071 
2072 /*
2073  * Release reserved delayed ref space of all pending block groups of the
2074  * transaction and remove them from the list
2075  */
2076 static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
2077 {
2078        struct btrfs_fs_info *fs_info = trans->fs_info;
2079        struct btrfs_block_group *block_group, *tmp;
2080 
2081        list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
2082                btrfs_delayed_refs_rsv_release(fs_info, 1);
2083                list_del_init(&block_group->bg_list);
2084        }
2085 }
2086 
2087 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
2088 {
2089 	/*
2090 	 * We use try_to_writeback_inodes_sb() here because if we used
2091 	 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
2092 	 * Currently are holding the fs freeze lock, if we do an async flush
2093 	 * we'll do btrfs_join_transaction() and deadlock because we need to
2094 	 * wait for the fs freeze lock.  Using the direct flushing we benefit
2095 	 * from already being in a transaction and our join_transaction doesn't
2096 	 * have to re-take the fs freeze lock.
2097 	 *
2098 	 * Note that try_to_writeback_inodes_sb() will only trigger writeback
2099 	 * if it can read lock sb->s_umount. It will always be able to lock it,
2100 	 * except when the filesystem is being unmounted or being frozen, but in
2101 	 * those cases sync_filesystem() is called, which results in calling
2102 	 * writeback_inodes_sb() while holding a write lock on sb->s_umount.
2103 	 * Note that we don't call writeback_inodes_sb() directly, because it
2104 	 * will emit a warning if sb->s_umount is not locked.
2105 	 */
2106 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2107 		try_to_writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
2108 	return 0;
2109 }
2110 
2111 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
2112 {
2113 	if (btrfs_test_opt(fs_info, FLUSHONCOMMIT))
2114 		btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
2115 }
2116 
2117 /*
2118  * Add a pending snapshot associated with the given transaction handle to the
2119  * respective handle. This must be called after the transaction commit started
2120  * and while holding fs_info->trans_lock.
2121  * This serves to guarantee a caller of btrfs_commit_transaction() that it can
2122  * safely free the pending snapshot pointer in case btrfs_commit_transaction()
2123  * returns an error.
2124  */
2125 static void add_pending_snapshot(struct btrfs_trans_handle *trans)
2126 {
2127 	struct btrfs_transaction *cur_trans = trans->transaction;
2128 
2129 	if (!trans->pending_snapshot)
2130 		return;
2131 
2132 	lockdep_assert_held(&trans->fs_info->trans_lock);
2133 	ASSERT(cur_trans->state >= TRANS_STATE_COMMIT_START);
2134 
2135 	list_add(&trans->pending_snapshot->list, &cur_trans->pending_snapshots);
2136 }
2137 
2138 static void update_commit_stats(struct btrfs_fs_info *fs_info, ktime_t interval)
2139 {
2140 	fs_info->commit_stats.commit_count++;
2141 	fs_info->commit_stats.last_commit_dur = interval;
2142 	fs_info->commit_stats.max_commit_dur =
2143 			max_t(u64, fs_info->commit_stats.max_commit_dur, interval);
2144 	fs_info->commit_stats.total_commit_dur += interval;
2145 }
2146 
2147 int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2148 {
2149 	struct btrfs_fs_info *fs_info = trans->fs_info;
2150 	struct btrfs_transaction *cur_trans = trans->transaction;
2151 	struct btrfs_transaction *prev_trans = NULL;
2152 	int ret;
2153 	ktime_t start_time;
2154 	ktime_t interval;
2155 
2156 	ASSERT(refcount_read(&trans->use_count) == 1);
2157 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2158 
2159 	clear_bit(BTRFS_FS_NEED_TRANS_COMMIT, &fs_info->flags);
2160 
2161 	/* Stop the commit early if ->aborted is set */
2162 	if (TRANS_ABORTED(cur_trans)) {
2163 		ret = cur_trans->aborted;
2164 		goto lockdep_trans_commit_start_release;
2165 	}
2166 
2167 	btrfs_trans_release_metadata(trans);
2168 	trans->block_rsv = NULL;
2169 
2170 	/*
2171 	 * We only want one transaction commit doing the flushing so we do not
2172 	 * waste a bunch of time on lock contention on the extent root node.
2173 	 */
2174 	if (!test_and_set_bit(BTRFS_DELAYED_REFS_FLUSHING,
2175 			      &cur_trans->delayed_refs.flags)) {
2176 		/*
2177 		 * Make a pass through all the delayed refs we have so far.
2178 		 * Any running threads may add more while we are here.
2179 		 */
2180 		ret = btrfs_run_delayed_refs(trans, 0);
2181 		if (ret)
2182 			goto lockdep_trans_commit_start_release;
2183 	}
2184 
2185 	btrfs_create_pending_block_groups(trans);
2186 
2187 	if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2188 		int run_it = 0;
2189 
2190 		/* this mutex is also taken before trying to set
2191 		 * block groups readonly.  We need to make sure
2192 		 * that nobody has set a block group readonly
2193 		 * after a extents from that block group have been
2194 		 * allocated for cache files.  btrfs_set_block_group_ro
2195 		 * will wait for the transaction to commit if it
2196 		 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2197 		 *
2198 		 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2199 		 * only one process starts all the block group IO.  It wouldn't
2200 		 * hurt to have more than one go through, but there's no
2201 		 * real advantage to it either.
2202 		 */
2203 		mutex_lock(&fs_info->ro_block_group_mutex);
2204 		if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2205 				      &cur_trans->flags))
2206 			run_it = 1;
2207 		mutex_unlock(&fs_info->ro_block_group_mutex);
2208 
2209 		if (run_it) {
2210 			ret = btrfs_start_dirty_block_groups(trans);
2211 			if (ret)
2212 				goto lockdep_trans_commit_start_release;
2213 		}
2214 	}
2215 
2216 	spin_lock(&fs_info->trans_lock);
2217 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2218 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2219 
2220 		add_pending_snapshot(trans);
2221 
2222 		spin_unlock(&fs_info->trans_lock);
2223 		refcount_inc(&cur_trans->use_count);
2224 
2225 		if (trans->in_fsync)
2226 			want_state = TRANS_STATE_SUPER_COMMITTED;
2227 
2228 		btrfs_trans_state_lockdep_release(fs_info,
2229 						  BTRFS_LOCKDEP_TRANS_COMMIT_START);
2230 		ret = btrfs_end_transaction(trans);
2231 		wait_for_commit(cur_trans, want_state);
2232 
2233 		if (TRANS_ABORTED(cur_trans))
2234 			ret = cur_trans->aborted;
2235 
2236 		btrfs_put_transaction(cur_trans);
2237 
2238 		return ret;
2239 	}
2240 
2241 	cur_trans->state = TRANS_STATE_COMMIT_START;
2242 	wake_up(&fs_info->transaction_blocked_wait);
2243 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2244 
2245 	if (cur_trans->list.prev != &fs_info->trans_list) {
2246 		enum btrfs_trans_state want_state = TRANS_STATE_COMPLETED;
2247 
2248 		if (trans->in_fsync)
2249 			want_state = TRANS_STATE_SUPER_COMMITTED;
2250 
2251 		prev_trans = list_entry(cur_trans->list.prev,
2252 					struct btrfs_transaction, list);
2253 		if (prev_trans->state < want_state) {
2254 			refcount_inc(&prev_trans->use_count);
2255 			spin_unlock(&fs_info->trans_lock);
2256 
2257 			wait_for_commit(prev_trans, want_state);
2258 
2259 			ret = READ_ONCE(prev_trans->aborted);
2260 
2261 			btrfs_put_transaction(prev_trans);
2262 			if (ret)
2263 				goto lockdep_release;
2264 		} else {
2265 			spin_unlock(&fs_info->trans_lock);
2266 		}
2267 	} else {
2268 		spin_unlock(&fs_info->trans_lock);
2269 		/*
2270 		 * The previous transaction was aborted and was already removed
2271 		 * from the list of transactions at fs_info->trans_list. So we
2272 		 * abort to prevent writing a new superblock that reflects a
2273 		 * corrupt state (pointing to trees with unwritten nodes/leafs).
2274 		 */
2275 		if (BTRFS_FS_ERROR(fs_info)) {
2276 			ret = -EROFS;
2277 			goto lockdep_release;
2278 		}
2279 	}
2280 
2281 	/*
2282 	 * Get the time spent on the work done by the commit thread and not
2283 	 * the time spent waiting on a previous commit
2284 	 */
2285 	start_time = ktime_get_ns();
2286 
2287 	extwriter_counter_dec(cur_trans, trans->type);
2288 
2289 	ret = btrfs_start_delalloc_flush(fs_info);
2290 	if (ret)
2291 		goto lockdep_release;
2292 
2293 	ret = btrfs_run_delayed_items(trans);
2294 	if (ret)
2295 		goto lockdep_release;
2296 
2297 	/*
2298 	 * The thread has started/joined the transaction thus it holds the
2299 	 * lockdep map as a reader. It has to release it before acquiring the
2300 	 * lockdep map as a writer.
2301 	 */
2302 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2303 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_extwriters);
2304 	wait_event(cur_trans->writer_wait,
2305 		   extwriter_counter_read(cur_trans) == 0);
2306 
2307 	/* some pending stuffs might be added after the previous flush. */
2308 	ret = btrfs_run_delayed_items(trans);
2309 	if (ret) {
2310 		btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2311 		goto cleanup_transaction;
2312 	}
2313 
2314 	btrfs_wait_delalloc_flush(fs_info);
2315 
2316 	/*
2317 	 * Wait for all ordered extents started by a fast fsync that joined this
2318 	 * transaction. Otherwise if this transaction commits before the ordered
2319 	 * extents complete we lose logged data after a power failure.
2320 	 */
2321 	btrfs_might_wait_for_event(fs_info, btrfs_trans_pending_ordered);
2322 	wait_event(cur_trans->pending_wait,
2323 		   atomic_read(&cur_trans->pending_ordered) == 0);
2324 
2325 	btrfs_scrub_pause(fs_info);
2326 	/*
2327 	 * Ok now we need to make sure to block out any other joins while we
2328 	 * commit the transaction.  We could have started a join before setting
2329 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2330 	 */
2331 	spin_lock(&fs_info->trans_lock);
2332 	add_pending_snapshot(trans);
2333 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
2334 	spin_unlock(&fs_info->trans_lock);
2335 
2336 	/*
2337 	 * The thread has started/joined the transaction thus it holds the
2338 	 * lockdep map as a reader. It has to release it before acquiring the
2339 	 * lockdep map as a writer.
2340 	 */
2341 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2342 	btrfs_might_wait_for_event(fs_info, btrfs_trans_num_writers);
2343 	wait_event(cur_trans->writer_wait,
2344 		   atomic_read(&cur_trans->num_writers) == 1);
2345 
2346 	/*
2347 	 * Make lockdep happy by acquiring the state locks after
2348 	 * btrfs_trans_num_writers is released. If we acquired the state locks
2349 	 * before releasing the btrfs_trans_num_writers lock then lockdep would
2350 	 * complain because we did not follow the reverse order unlocking rule.
2351 	 */
2352 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2353 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2354 	btrfs_trans_state_lockdep_acquire(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2355 
2356 	/*
2357 	 * We've started the commit, clear the flag in case we were triggered to
2358 	 * do an async commit but somebody else started before the transaction
2359 	 * kthread could do the work.
2360 	 */
2361 	clear_bit(BTRFS_FS_COMMIT_TRANS, &fs_info->flags);
2362 
2363 	if (TRANS_ABORTED(cur_trans)) {
2364 		ret = cur_trans->aborted;
2365 		btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2366 		goto scrub_continue;
2367 	}
2368 	/*
2369 	 * the reloc mutex makes sure that we stop
2370 	 * the balancing code from coming in and moving
2371 	 * extents around in the middle of the commit
2372 	 */
2373 	mutex_lock(&fs_info->reloc_mutex);
2374 
2375 	/*
2376 	 * We needn't worry about the delayed items because we will
2377 	 * deal with them in create_pending_snapshot(), which is the
2378 	 * core function of the snapshot creation.
2379 	 */
2380 	ret = create_pending_snapshots(trans);
2381 	if (ret)
2382 		goto unlock_reloc;
2383 
2384 	/*
2385 	 * We insert the dir indexes of the snapshots and update the inode
2386 	 * of the snapshots' parents after the snapshot creation, so there
2387 	 * are some delayed items which are not dealt with. Now deal with
2388 	 * them.
2389 	 *
2390 	 * We needn't worry that this operation will corrupt the snapshots,
2391 	 * because all the tree which are snapshoted will be forced to COW
2392 	 * the nodes and leaves.
2393 	 */
2394 	ret = btrfs_run_delayed_items(trans);
2395 	if (ret)
2396 		goto unlock_reloc;
2397 
2398 	ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2399 	if (ret)
2400 		goto unlock_reloc;
2401 
2402 	/*
2403 	 * make sure none of the code above managed to slip in a
2404 	 * delayed item
2405 	 */
2406 	btrfs_assert_delayed_root_empty(fs_info);
2407 
2408 	WARN_ON(cur_trans != trans->transaction);
2409 
2410 	ret = commit_fs_roots(trans);
2411 	if (ret)
2412 		goto unlock_reloc;
2413 
2414 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2415 	 * safe to free the root of tree log roots
2416 	 */
2417 	btrfs_free_log_root_tree(trans, fs_info);
2418 
2419 	/*
2420 	 * Since fs roots are all committed, we can get a quite accurate
2421 	 * new_roots. So let's do quota accounting.
2422 	 */
2423 	ret = btrfs_qgroup_account_extents(trans);
2424 	if (ret < 0)
2425 		goto unlock_reloc;
2426 
2427 	ret = commit_cowonly_roots(trans);
2428 	if (ret)
2429 		goto unlock_reloc;
2430 
2431 	/*
2432 	 * The tasks which save the space cache and inode cache may also
2433 	 * update ->aborted, check it.
2434 	 */
2435 	if (TRANS_ABORTED(cur_trans)) {
2436 		ret = cur_trans->aborted;
2437 		goto unlock_reloc;
2438 	}
2439 
2440 	cur_trans = fs_info->running_transaction;
2441 
2442 	btrfs_set_root_node(&fs_info->tree_root->root_item,
2443 			    fs_info->tree_root->node);
2444 	list_add_tail(&fs_info->tree_root->dirty_list,
2445 		      &cur_trans->switch_commits);
2446 
2447 	btrfs_set_root_node(&fs_info->chunk_root->root_item,
2448 			    fs_info->chunk_root->node);
2449 	list_add_tail(&fs_info->chunk_root->dirty_list,
2450 		      &cur_trans->switch_commits);
2451 
2452 	if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) {
2453 		btrfs_set_root_node(&fs_info->block_group_root->root_item,
2454 				    fs_info->block_group_root->node);
2455 		list_add_tail(&fs_info->block_group_root->dirty_list,
2456 			      &cur_trans->switch_commits);
2457 	}
2458 
2459 	switch_commit_roots(trans);
2460 
2461 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2462 	ASSERT(list_empty(&cur_trans->io_bgs));
2463 	update_super_roots(fs_info);
2464 
2465 	btrfs_set_super_log_root(fs_info->super_copy, 0);
2466 	btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2467 	memcpy(fs_info->super_for_commit, fs_info->super_copy,
2468 	       sizeof(*fs_info->super_copy));
2469 
2470 	btrfs_commit_device_sizes(cur_trans);
2471 
2472 	clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2473 	clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2474 
2475 	btrfs_trans_release_chunk_metadata(trans);
2476 
2477 	/*
2478 	 * Before changing the transaction state to TRANS_STATE_UNBLOCKED and
2479 	 * setting fs_info->running_transaction to NULL, lock tree_log_mutex to
2480 	 * make sure that before we commit our superblock, no other task can
2481 	 * start a new transaction and commit a log tree before we commit our
2482 	 * superblock. Anyone trying to commit a log tree locks this mutex before
2483 	 * writing its superblock.
2484 	 */
2485 	mutex_lock(&fs_info->tree_log_mutex);
2486 
2487 	spin_lock(&fs_info->trans_lock);
2488 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2489 	fs_info->running_transaction = NULL;
2490 	spin_unlock(&fs_info->trans_lock);
2491 	mutex_unlock(&fs_info->reloc_mutex);
2492 
2493 	wake_up(&fs_info->transaction_wait);
2494 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2495 
2496 	/* If we have features changed, wake up the cleaner to update sysfs. */
2497 	if (test_bit(BTRFS_FS_FEATURE_CHANGED, &fs_info->flags) &&
2498 	    fs_info->cleaner_kthread)
2499 		wake_up_process(fs_info->cleaner_kthread);
2500 
2501 	ret = btrfs_write_and_wait_transaction(trans);
2502 	if (ret) {
2503 		btrfs_handle_fs_error(fs_info, ret,
2504 				      "Error while writing out transaction");
2505 		mutex_unlock(&fs_info->tree_log_mutex);
2506 		goto scrub_continue;
2507 	}
2508 
2509 	ret = write_all_supers(fs_info, 0);
2510 	/*
2511 	 * the super is written, we can safely allow the tree-loggers
2512 	 * to go about their business
2513 	 */
2514 	mutex_unlock(&fs_info->tree_log_mutex);
2515 	if (ret)
2516 		goto scrub_continue;
2517 
2518 	/*
2519 	 * We needn't acquire the lock here because there is no other task
2520 	 * which can change it.
2521 	 */
2522 	cur_trans->state = TRANS_STATE_SUPER_COMMITTED;
2523 	wake_up(&cur_trans->commit_wait);
2524 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2525 
2526 	btrfs_finish_extent_commit(trans);
2527 
2528 	if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2529 		btrfs_clear_space_info_full(fs_info);
2530 
2531 	fs_info->last_trans_committed = cur_trans->transid;
2532 	/*
2533 	 * We needn't acquire the lock here because there is no other task
2534 	 * which can change it.
2535 	 */
2536 	cur_trans->state = TRANS_STATE_COMPLETED;
2537 	wake_up(&cur_trans->commit_wait);
2538 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2539 
2540 	spin_lock(&fs_info->trans_lock);
2541 	list_del_init(&cur_trans->list);
2542 	spin_unlock(&fs_info->trans_lock);
2543 
2544 	btrfs_put_transaction(cur_trans);
2545 	btrfs_put_transaction(cur_trans);
2546 
2547 	if (trans->type & __TRANS_FREEZABLE)
2548 		sb_end_intwrite(fs_info->sb);
2549 
2550 	trace_btrfs_transaction_commit(fs_info);
2551 
2552 	interval = ktime_get_ns() - start_time;
2553 
2554 	btrfs_scrub_continue(fs_info);
2555 
2556 	if (current->journal_info == trans)
2557 		current->journal_info = NULL;
2558 
2559 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2560 
2561 	update_commit_stats(fs_info, interval);
2562 
2563 	return ret;
2564 
2565 unlock_reloc:
2566 	mutex_unlock(&fs_info->reloc_mutex);
2567 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_UNBLOCKED);
2568 scrub_continue:
2569 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_SUPER_COMMITTED);
2570 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMPLETED);
2571 	btrfs_scrub_continue(fs_info);
2572 cleanup_transaction:
2573 	btrfs_trans_release_metadata(trans);
2574 	btrfs_cleanup_pending_block_groups(trans);
2575 	btrfs_trans_release_chunk_metadata(trans);
2576 	trans->block_rsv = NULL;
2577 	btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2578 	if (current->journal_info == trans)
2579 		current->journal_info = NULL;
2580 	cleanup_transaction(trans, ret);
2581 
2582 	return ret;
2583 
2584 lockdep_release:
2585 	btrfs_lockdep_release(fs_info, btrfs_trans_num_extwriters);
2586 	btrfs_lockdep_release(fs_info, btrfs_trans_num_writers);
2587 	goto cleanup_transaction;
2588 
2589 lockdep_trans_commit_start_release:
2590 	btrfs_trans_state_lockdep_release(fs_info, BTRFS_LOCKDEP_TRANS_COMMIT_START);
2591 	btrfs_end_transaction(trans);
2592 	return ret;
2593 }
2594 
2595 /*
2596  * return < 0 if error
2597  * 0 if there are no more dead_roots at the time of call
2598  * 1 there are more to be processed, call me again
2599  *
2600  * The return value indicates there are certainly more snapshots to delete, but
2601  * if there comes a new one during processing, it may return 0. We don't mind,
2602  * because btrfs_commit_super will poke cleaner thread and it will process it a
2603  * few seconds later.
2604  */
2605 int btrfs_clean_one_deleted_snapshot(struct btrfs_fs_info *fs_info)
2606 {
2607 	struct btrfs_root *root;
2608 	int ret;
2609 
2610 	spin_lock(&fs_info->trans_lock);
2611 	if (list_empty(&fs_info->dead_roots)) {
2612 		spin_unlock(&fs_info->trans_lock);
2613 		return 0;
2614 	}
2615 	root = list_first_entry(&fs_info->dead_roots,
2616 			struct btrfs_root, root_list);
2617 	list_del_init(&root->root_list);
2618 	spin_unlock(&fs_info->trans_lock);
2619 
2620 	btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2621 
2622 	btrfs_kill_all_delayed_nodes(root);
2623 
2624 	if (btrfs_header_backref_rev(root->node) <
2625 			BTRFS_MIXED_BACKREF_REV)
2626 		ret = btrfs_drop_snapshot(root, 0, 0);
2627 	else
2628 		ret = btrfs_drop_snapshot(root, 1, 0);
2629 
2630 	btrfs_put_root(root);
2631 	return (ret < 0) ? 0 : 1;
2632 }
2633 
2634 /*
2635  * We only mark the transaction aborted and then set the file system read-only.
2636  * This will prevent new transactions from starting or trying to join this
2637  * one.
2638  *
2639  * This means that error recovery at the call site is limited to freeing
2640  * any local memory allocations and passing the error code up without
2641  * further cleanup. The transaction should complete as it normally would
2642  * in the call path but will return -EIO.
2643  *
2644  * We'll complete the cleanup in btrfs_end_transaction and
2645  * btrfs_commit_transaction.
2646  */
2647 void __cold __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
2648 				      const char *function,
2649 				      unsigned int line, int errno, bool first_hit)
2650 {
2651 	struct btrfs_fs_info *fs_info = trans->fs_info;
2652 
2653 	WRITE_ONCE(trans->aborted, errno);
2654 	WRITE_ONCE(trans->transaction->aborted, errno);
2655 	if (first_hit && errno == -ENOSPC)
2656 		btrfs_dump_space_info_for_trans_abort(fs_info);
2657 	/* Wake up anybody who may be waiting on this transaction */
2658 	wake_up(&fs_info->transaction_wait);
2659 	wake_up(&fs_info->transaction_blocked_wait);
2660 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
2661 }
2662 
2663 int __init btrfs_transaction_init(void)
2664 {
2665 	btrfs_trans_handle_cachep = kmem_cache_create("btrfs_trans_handle",
2666 			sizeof(struct btrfs_trans_handle), 0,
2667 			SLAB_TEMPORARY | SLAB_MEM_SPREAD, NULL);
2668 	if (!btrfs_trans_handle_cachep)
2669 		return -ENOMEM;
2670 	return 0;
2671 }
2672 
2673 void __cold btrfs_transaction_exit(void)
2674 {
2675 	kmem_cache_destroy(btrfs_trans_handle_cachep);
2676 }
2677