xref: /openbmc/linux/fs/btrfs/transaction.c (revision 178260b2c14969f29ba39a78df74ed485abc6203)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 
35 #define BTRFS_ROOT_TRANS_TAG 0
36 
37 void put_transaction(struct btrfs_transaction *transaction)
38 {
39 	WARN_ON(atomic_read(&transaction->use_count) == 0);
40 	if (atomic_dec_and_test(&transaction->use_count)) {
41 		BUG_ON(!list_empty(&transaction->list));
42 		WARN_ON(transaction->delayed_refs.root.rb_node);
43 		kmem_cache_free(btrfs_transaction_cachep, transaction);
44 	}
45 }
46 
47 static noinline void switch_commit_root(struct btrfs_root *root)
48 {
49 	free_extent_buffer(root->commit_root);
50 	root->commit_root = btrfs_root_node(root);
51 }
52 
53 static inline int can_join_transaction(struct btrfs_transaction *trans,
54 				       int type)
55 {
56 	return !(trans->in_commit &&
57 		 type != TRANS_JOIN &&
58 		 type != TRANS_JOIN_NOLOCK);
59 }
60 
61 /*
62  * either allocate a new transaction or hop into the existing one
63  */
64 static noinline int join_transaction(struct btrfs_root *root, int type)
65 {
66 	struct btrfs_transaction *cur_trans;
67 	struct btrfs_fs_info *fs_info = root->fs_info;
68 
69 	spin_lock(&fs_info->trans_lock);
70 loop:
71 	/* The file system has been taken offline. No new transactions. */
72 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
73 		spin_unlock(&fs_info->trans_lock);
74 		return -EROFS;
75 	}
76 
77 	if (fs_info->trans_no_join) {
78 		/*
79 		 * If we are JOIN_NOLOCK we're already committing a current
80 		 * transaction, we just need a handle to deal with something
81 		 * when committing the transaction, such as inode cache and
82 		 * space cache. It is a special case.
83 		 */
84 		if (type != TRANS_JOIN_NOLOCK) {
85 			spin_unlock(&fs_info->trans_lock);
86 			return -EBUSY;
87 		}
88 	}
89 
90 	cur_trans = fs_info->running_transaction;
91 	if (cur_trans) {
92 		if (cur_trans->aborted) {
93 			spin_unlock(&fs_info->trans_lock);
94 			return cur_trans->aborted;
95 		}
96 		if (!can_join_transaction(cur_trans, type)) {
97 			spin_unlock(&fs_info->trans_lock);
98 			return -EBUSY;
99 		}
100 		atomic_inc(&cur_trans->use_count);
101 		atomic_inc(&cur_trans->num_writers);
102 		cur_trans->num_joined++;
103 		spin_unlock(&fs_info->trans_lock);
104 		return 0;
105 	}
106 	spin_unlock(&fs_info->trans_lock);
107 
108 	/*
109 	 * If we are ATTACH, we just want to catch the current transaction,
110 	 * and commit it. If there is no transaction, just return ENOENT.
111 	 */
112 	if (type == TRANS_ATTACH)
113 		return -ENOENT;
114 
115 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
116 	if (!cur_trans)
117 		return -ENOMEM;
118 
119 	spin_lock(&fs_info->trans_lock);
120 	if (fs_info->running_transaction) {
121 		/*
122 		 * someone started a transaction after we unlocked.  Make sure
123 		 * to redo the trans_no_join checks above
124 		 */
125 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
126 		cur_trans = fs_info->running_transaction;
127 		goto loop;
128 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
129 		spin_unlock(&fs_info->trans_lock);
130 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
131 		return -EROFS;
132 	}
133 
134 	atomic_set(&cur_trans->num_writers, 1);
135 	cur_trans->num_joined = 0;
136 	init_waitqueue_head(&cur_trans->writer_wait);
137 	init_waitqueue_head(&cur_trans->commit_wait);
138 	cur_trans->in_commit = 0;
139 	cur_trans->blocked = 0;
140 	/*
141 	 * One for this trans handle, one so it will live on until we
142 	 * commit the transaction.
143 	 */
144 	atomic_set(&cur_trans->use_count, 2);
145 	cur_trans->commit_done = 0;
146 	cur_trans->start_time = get_seconds();
147 
148 	cur_trans->delayed_refs.root = RB_ROOT;
149 	cur_trans->delayed_refs.num_entries = 0;
150 	cur_trans->delayed_refs.num_heads_ready = 0;
151 	cur_trans->delayed_refs.num_heads = 0;
152 	cur_trans->delayed_refs.flushing = 0;
153 	cur_trans->delayed_refs.run_delayed_start = 0;
154 
155 	/*
156 	 * although the tree mod log is per file system and not per transaction,
157 	 * the log must never go across transaction boundaries.
158 	 */
159 	smp_mb();
160 	if (!list_empty(&fs_info->tree_mod_seq_list))
161 		WARN(1, KERN_ERR "btrfs: tree_mod_seq_list not empty when "
162 			"creating a fresh transaction\n");
163 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
164 		WARN(1, KERN_ERR "btrfs: tree_mod_log rb tree not empty when "
165 			"creating a fresh transaction\n");
166 	atomic_set(&fs_info->tree_mod_seq, 0);
167 
168 	spin_lock_init(&cur_trans->commit_lock);
169 	spin_lock_init(&cur_trans->delayed_refs.lock);
170 
171 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
172 	INIT_LIST_HEAD(&cur_trans->ordered_operations);
173 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
174 	extent_io_tree_init(&cur_trans->dirty_pages,
175 			     fs_info->btree_inode->i_mapping);
176 	fs_info->generation++;
177 	cur_trans->transid = fs_info->generation;
178 	fs_info->running_transaction = cur_trans;
179 	cur_trans->aborted = 0;
180 	spin_unlock(&fs_info->trans_lock);
181 
182 	return 0;
183 }
184 
185 /*
186  * this does all the record keeping required to make sure that a reference
187  * counted root is properly recorded in a given transaction.  This is required
188  * to make sure the old root from before we joined the transaction is deleted
189  * when the transaction commits
190  */
191 static int record_root_in_trans(struct btrfs_trans_handle *trans,
192 			       struct btrfs_root *root)
193 {
194 	if (root->ref_cows && root->last_trans < trans->transid) {
195 		WARN_ON(root == root->fs_info->extent_root);
196 		WARN_ON(root->commit_root != root->node);
197 
198 		/*
199 		 * see below for in_trans_setup usage rules
200 		 * we have the reloc mutex held now, so there
201 		 * is only one writer in this function
202 		 */
203 		root->in_trans_setup = 1;
204 
205 		/* make sure readers find in_trans_setup before
206 		 * they find our root->last_trans update
207 		 */
208 		smp_wmb();
209 
210 		spin_lock(&root->fs_info->fs_roots_radix_lock);
211 		if (root->last_trans == trans->transid) {
212 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
213 			return 0;
214 		}
215 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
216 			   (unsigned long)root->root_key.objectid,
217 			   BTRFS_ROOT_TRANS_TAG);
218 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
219 		root->last_trans = trans->transid;
220 
221 		/* this is pretty tricky.  We don't want to
222 		 * take the relocation lock in btrfs_record_root_in_trans
223 		 * unless we're really doing the first setup for this root in
224 		 * this transaction.
225 		 *
226 		 * Normally we'd use root->last_trans as a flag to decide
227 		 * if we want to take the expensive mutex.
228 		 *
229 		 * But, we have to set root->last_trans before we
230 		 * init the relocation root, otherwise, we trip over warnings
231 		 * in ctree.c.  The solution used here is to flag ourselves
232 		 * with root->in_trans_setup.  When this is 1, we're still
233 		 * fixing up the reloc trees and everyone must wait.
234 		 *
235 		 * When this is zero, they can trust root->last_trans and fly
236 		 * through btrfs_record_root_in_trans without having to take the
237 		 * lock.  smp_wmb() makes sure that all the writes above are
238 		 * done before we pop in the zero below
239 		 */
240 		btrfs_init_reloc_root(trans, root);
241 		smp_wmb();
242 		root->in_trans_setup = 0;
243 	}
244 	return 0;
245 }
246 
247 
248 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
249 			       struct btrfs_root *root)
250 {
251 	if (!root->ref_cows)
252 		return 0;
253 
254 	/*
255 	 * see record_root_in_trans for comments about in_trans_setup usage
256 	 * and barriers
257 	 */
258 	smp_rmb();
259 	if (root->last_trans == trans->transid &&
260 	    !root->in_trans_setup)
261 		return 0;
262 
263 	mutex_lock(&root->fs_info->reloc_mutex);
264 	record_root_in_trans(trans, root);
265 	mutex_unlock(&root->fs_info->reloc_mutex);
266 
267 	return 0;
268 }
269 
270 /* wait for commit against the current transaction to become unblocked
271  * when this is done, it is safe to start a new transaction, but the current
272  * transaction might not be fully on disk.
273  */
274 static void wait_current_trans(struct btrfs_root *root)
275 {
276 	struct btrfs_transaction *cur_trans;
277 
278 	spin_lock(&root->fs_info->trans_lock);
279 	cur_trans = root->fs_info->running_transaction;
280 	if (cur_trans && cur_trans->blocked) {
281 		atomic_inc(&cur_trans->use_count);
282 		spin_unlock(&root->fs_info->trans_lock);
283 
284 		wait_event(root->fs_info->transaction_wait,
285 			   !cur_trans->blocked);
286 		put_transaction(cur_trans);
287 	} else {
288 		spin_unlock(&root->fs_info->trans_lock);
289 	}
290 }
291 
292 static int may_wait_transaction(struct btrfs_root *root, int type)
293 {
294 	if (root->fs_info->log_root_recovering)
295 		return 0;
296 
297 	if (type == TRANS_USERSPACE)
298 		return 1;
299 
300 	if (type == TRANS_START &&
301 	    !atomic_read(&root->fs_info->open_ioctl_trans))
302 		return 1;
303 
304 	return 0;
305 }
306 
307 static struct btrfs_trans_handle *
308 start_transaction(struct btrfs_root *root, u64 num_items, int type,
309 		  enum btrfs_reserve_flush_enum flush)
310 {
311 	struct btrfs_trans_handle *h;
312 	struct btrfs_transaction *cur_trans;
313 	u64 num_bytes = 0;
314 	int ret;
315 	u64 qgroup_reserved = 0;
316 
317 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
318 		return ERR_PTR(-EROFS);
319 
320 	if (current->journal_info) {
321 		WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
322 		h = current->journal_info;
323 		h->use_count++;
324 		WARN_ON(h->use_count > 2);
325 		h->orig_rsv = h->block_rsv;
326 		h->block_rsv = NULL;
327 		goto got_it;
328 	}
329 
330 	/*
331 	 * Do the reservation before we join the transaction so we can do all
332 	 * the appropriate flushing if need be.
333 	 */
334 	if (num_items > 0 && root != root->fs_info->chunk_root) {
335 		if (root->fs_info->quota_enabled &&
336 		    is_fstree(root->root_key.objectid)) {
337 			qgroup_reserved = num_items * root->leafsize;
338 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
339 			if (ret)
340 				return ERR_PTR(ret);
341 		}
342 
343 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
344 		ret = btrfs_block_rsv_add(root,
345 					  &root->fs_info->trans_block_rsv,
346 					  num_bytes, flush);
347 		if (ret)
348 			goto reserve_fail;
349 	}
350 again:
351 	h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
352 	if (!h) {
353 		ret = -ENOMEM;
354 		goto alloc_fail;
355 	}
356 
357 	/*
358 	 * If we are JOIN_NOLOCK we're already committing a transaction and
359 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
360 	 * because we're already holding a ref.  We need this because we could
361 	 * have raced in and did an fsync() on a file which can kick a commit
362 	 * and then we deadlock with somebody doing a freeze.
363 	 *
364 	 * If we are ATTACH, it means we just want to catch the current
365 	 * transaction and commit it, so we needn't do sb_start_intwrite().
366 	 */
367 	if (type < TRANS_JOIN_NOLOCK)
368 		sb_start_intwrite(root->fs_info->sb);
369 
370 	if (may_wait_transaction(root, type))
371 		wait_current_trans(root);
372 
373 	do {
374 		ret = join_transaction(root, type);
375 		if (ret == -EBUSY) {
376 			wait_current_trans(root);
377 			if (unlikely(type == TRANS_ATTACH))
378 				ret = -ENOENT;
379 		}
380 	} while (ret == -EBUSY);
381 
382 	if (ret < 0) {
383 		/* We must get the transaction if we are JOIN_NOLOCK. */
384 		BUG_ON(type == TRANS_JOIN_NOLOCK);
385 		goto join_fail;
386 	}
387 
388 	cur_trans = root->fs_info->running_transaction;
389 
390 	h->transid = cur_trans->transid;
391 	h->transaction = cur_trans;
392 	h->blocks_used = 0;
393 	h->bytes_reserved = 0;
394 	h->root = root;
395 	h->delayed_ref_updates = 0;
396 	h->use_count = 1;
397 	h->adding_csums = 0;
398 	h->block_rsv = NULL;
399 	h->orig_rsv = NULL;
400 	h->aborted = 0;
401 	h->qgroup_reserved = 0;
402 	h->delayed_ref_elem.seq = 0;
403 	h->type = type;
404 	h->allocating_chunk = false;
405 	INIT_LIST_HEAD(&h->qgroup_ref_list);
406 	INIT_LIST_HEAD(&h->new_bgs);
407 
408 	smp_mb();
409 	if (cur_trans->blocked && may_wait_transaction(root, type)) {
410 		btrfs_commit_transaction(h, root);
411 		goto again;
412 	}
413 
414 	if (num_bytes) {
415 		trace_btrfs_space_reservation(root->fs_info, "transaction",
416 					      h->transid, num_bytes, 1);
417 		h->block_rsv = &root->fs_info->trans_block_rsv;
418 		h->bytes_reserved = num_bytes;
419 	}
420 	h->qgroup_reserved = qgroup_reserved;
421 
422 got_it:
423 	btrfs_record_root_in_trans(h, root);
424 
425 	if (!current->journal_info && type != TRANS_USERSPACE)
426 		current->journal_info = h;
427 	return h;
428 
429 join_fail:
430 	if (type < TRANS_JOIN_NOLOCK)
431 		sb_end_intwrite(root->fs_info->sb);
432 	kmem_cache_free(btrfs_trans_handle_cachep, h);
433 alloc_fail:
434 	if (num_bytes)
435 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
436 					num_bytes);
437 reserve_fail:
438 	if (qgroup_reserved)
439 		btrfs_qgroup_free(root, qgroup_reserved);
440 	return ERR_PTR(ret);
441 }
442 
443 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
444 						   int num_items)
445 {
446 	return start_transaction(root, num_items, TRANS_START,
447 				 BTRFS_RESERVE_FLUSH_ALL);
448 }
449 
450 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
451 					struct btrfs_root *root, int num_items)
452 {
453 	return start_transaction(root, num_items, TRANS_START,
454 				 BTRFS_RESERVE_FLUSH_LIMIT);
455 }
456 
457 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
458 {
459 	return start_transaction(root, 0, TRANS_JOIN, 0);
460 }
461 
462 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
463 {
464 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
465 }
466 
467 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
468 {
469 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
470 }
471 
472 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
473 {
474 	return start_transaction(root, 0, TRANS_ATTACH, 0);
475 }
476 
477 /* wait for a transaction commit to be fully complete */
478 static noinline void wait_for_commit(struct btrfs_root *root,
479 				    struct btrfs_transaction *commit)
480 {
481 	wait_event(commit->commit_wait, commit->commit_done);
482 }
483 
484 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
485 {
486 	struct btrfs_transaction *cur_trans = NULL, *t;
487 	int ret = 0;
488 
489 	if (transid) {
490 		if (transid <= root->fs_info->last_trans_committed)
491 			goto out;
492 
493 		ret = -EINVAL;
494 		/* find specified transaction */
495 		spin_lock(&root->fs_info->trans_lock);
496 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
497 			if (t->transid == transid) {
498 				cur_trans = t;
499 				atomic_inc(&cur_trans->use_count);
500 				ret = 0;
501 				break;
502 			}
503 			if (t->transid > transid) {
504 				ret = 0;
505 				break;
506 			}
507 		}
508 		spin_unlock(&root->fs_info->trans_lock);
509 		/* The specified transaction doesn't exist */
510 		if (!cur_trans)
511 			goto out;
512 	} else {
513 		/* find newest transaction that is committing | committed */
514 		spin_lock(&root->fs_info->trans_lock);
515 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
516 					    list) {
517 			if (t->in_commit) {
518 				if (t->commit_done)
519 					break;
520 				cur_trans = t;
521 				atomic_inc(&cur_trans->use_count);
522 				break;
523 			}
524 		}
525 		spin_unlock(&root->fs_info->trans_lock);
526 		if (!cur_trans)
527 			goto out;  /* nothing committing|committed */
528 	}
529 
530 	wait_for_commit(root, cur_trans);
531 	put_transaction(cur_trans);
532 out:
533 	return ret;
534 }
535 
536 void btrfs_throttle(struct btrfs_root *root)
537 {
538 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
539 		wait_current_trans(root);
540 }
541 
542 static int should_end_transaction(struct btrfs_trans_handle *trans,
543 				  struct btrfs_root *root)
544 {
545 	int ret;
546 
547 	ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
548 	return ret ? 1 : 0;
549 }
550 
551 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
552 				 struct btrfs_root *root)
553 {
554 	struct btrfs_transaction *cur_trans = trans->transaction;
555 	int updates;
556 	int err;
557 
558 	smp_mb();
559 	if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
560 		return 1;
561 
562 	updates = trans->delayed_ref_updates;
563 	trans->delayed_ref_updates = 0;
564 	if (updates) {
565 		err = btrfs_run_delayed_refs(trans, root, updates);
566 		if (err) /* Error code will also eval true */
567 			return err;
568 	}
569 
570 	return should_end_transaction(trans, root);
571 }
572 
573 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
574 			  struct btrfs_root *root, int throttle)
575 {
576 	struct btrfs_transaction *cur_trans = trans->transaction;
577 	struct btrfs_fs_info *info = root->fs_info;
578 	int count = 0;
579 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
580 	int err = 0;
581 
582 	if (--trans->use_count) {
583 		trans->block_rsv = trans->orig_rsv;
584 		return 0;
585 	}
586 
587 	/*
588 	 * do the qgroup accounting as early as possible
589 	 */
590 	err = btrfs_delayed_refs_qgroup_accounting(trans, info);
591 
592 	btrfs_trans_release_metadata(trans, root);
593 	trans->block_rsv = NULL;
594 	/*
595 	 * the same root has to be passed to start_transaction and
596 	 * end_transaction. Subvolume quota depends on this.
597 	 */
598 	WARN_ON(trans->root != root);
599 
600 	if (trans->qgroup_reserved) {
601 		btrfs_qgroup_free(root, trans->qgroup_reserved);
602 		trans->qgroup_reserved = 0;
603 	}
604 
605 	if (!list_empty(&trans->new_bgs))
606 		btrfs_create_pending_block_groups(trans, root);
607 
608 	while (count < 2) {
609 		unsigned long cur = trans->delayed_ref_updates;
610 		trans->delayed_ref_updates = 0;
611 		if (cur &&
612 		    trans->transaction->delayed_refs.num_heads_ready > 64) {
613 			trans->delayed_ref_updates = 0;
614 			btrfs_run_delayed_refs(trans, root, cur);
615 		} else {
616 			break;
617 		}
618 		count++;
619 	}
620 	btrfs_trans_release_metadata(trans, root);
621 	trans->block_rsv = NULL;
622 
623 	if (!list_empty(&trans->new_bgs))
624 		btrfs_create_pending_block_groups(trans, root);
625 
626 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
627 	    should_end_transaction(trans, root)) {
628 		trans->transaction->blocked = 1;
629 		smp_wmb();
630 	}
631 
632 	if (lock && cur_trans->blocked && !cur_trans->in_commit) {
633 		if (throttle) {
634 			/*
635 			 * We may race with somebody else here so end up having
636 			 * to call end_transaction on ourselves again, so inc
637 			 * our use_count.
638 			 */
639 			trans->use_count++;
640 			return btrfs_commit_transaction(trans, root);
641 		} else {
642 			wake_up_process(info->transaction_kthread);
643 		}
644 	}
645 
646 	if (trans->type < TRANS_JOIN_NOLOCK)
647 		sb_end_intwrite(root->fs_info->sb);
648 
649 	WARN_ON(cur_trans != info->running_transaction);
650 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
651 	atomic_dec(&cur_trans->num_writers);
652 
653 	smp_mb();
654 	if (waitqueue_active(&cur_trans->writer_wait))
655 		wake_up(&cur_trans->writer_wait);
656 	put_transaction(cur_trans);
657 
658 	if (current->journal_info == trans)
659 		current->journal_info = NULL;
660 
661 	if (throttle)
662 		btrfs_run_delayed_iputs(root);
663 
664 	if (trans->aborted ||
665 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
666 		err = -EIO;
667 	assert_qgroups_uptodate(trans);
668 
669 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
670 	return err;
671 }
672 
673 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
674 			  struct btrfs_root *root)
675 {
676 	int ret;
677 
678 	ret = __btrfs_end_transaction(trans, root, 0);
679 	if (ret)
680 		return ret;
681 	return 0;
682 }
683 
684 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
685 				   struct btrfs_root *root)
686 {
687 	int ret;
688 
689 	ret = __btrfs_end_transaction(trans, root, 1);
690 	if (ret)
691 		return ret;
692 	return 0;
693 }
694 
695 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
696 				struct btrfs_root *root)
697 {
698 	return __btrfs_end_transaction(trans, root, 1);
699 }
700 
701 /*
702  * when btree blocks are allocated, they have some corresponding bits set for
703  * them in one of two extent_io trees.  This is used to make sure all of
704  * those extents are sent to disk but does not wait on them
705  */
706 int btrfs_write_marked_extents(struct btrfs_root *root,
707 			       struct extent_io_tree *dirty_pages, int mark)
708 {
709 	int err = 0;
710 	int werr = 0;
711 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
712 	struct extent_state *cached_state = NULL;
713 	u64 start = 0;
714 	u64 end;
715 
716 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
717 				      mark, &cached_state)) {
718 		convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
719 				   mark, &cached_state, GFP_NOFS);
720 		cached_state = NULL;
721 		err = filemap_fdatawrite_range(mapping, start, end);
722 		if (err)
723 			werr = err;
724 		cond_resched();
725 		start = end + 1;
726 	}
727 	if (err)
728 		werr = err;
729 	return werr;
730 }
731 
732 /*
733  * when btree blocks are allocated, they have some corresponding bits set for
734  * them in one of two extent_io trees.  This is used to make sure all of
735  * those extents are on disk for transaction or log commit.  We wait
736  * on all the pages and clear them from the dirty pages state tree
737  */
738 int btrfs_wait_marked_extents(struct btrfs_root *root,
739 			      struct extent_io_tree *dirty_pages, int mark)
740 {
741 	int err = 0;
742 	int werr = 0;
743 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
744 	struct extent_state *cached_state = NULL;
745 	u64 start = 0;
746 	u64 end;
747 
748 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
749 				      EXTENT_NEED_WAIT, &cached_state)) {
750 		clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
751 				 0, 0, &cached_state, GFP_NOFS);
752 		err = filemap_fdatawait_range(mapping, start, end);
753 		if (err)
754 			werr = err;
755 		cond_resched();
756 		start = end + 1;
757 	}
758 	if (err)
759 		werr = err;
760 	return werr;
761 }
762 
763 /*
764  * when btree blocks are allocated, they have some corresponding bits set for
765  * them in one of two extent_io trees.  This is used to make sure all of
766  * those extents are on disk for transaction or log commit
767  */
768 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
769 				struct extent_io_tree *dirty_pages, int mark)
770 {
771 	int ret;
772 	int ret2;
773 
774 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
775 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
776 
777 	if (ret)
778 		return ret;
779 	if (ret2)
780 		return ret2;
781 	return 0;
782 }
783 
784 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
785 				     struct btrfs_root *root)
786 {
787 	if (!trans || !trans->transaction) {
788 		struct inode *btree_inode;
789 		btree_inode = root->fs_info->btree_inode;
790 		return filemap_write_and_wait(btree_inode->i_mapping);
791 	}
792 	return btrfs_write_and_wait_marked_extents(root,
793 					   &trans->transaction->dirty_pages,
794 					   EXTENT_DIRTY);
795 }
796 
797 /*
798  * this is used to update the root pointer in the tree of tree roots.
799  *
800  * But, in the case of the extent allocation tree, updating the root
801  * pointer may allocate blocks which may change the root of the extent
802  * allocation tree.
803  *
804  * So, this loops and repeats and makes sure the cowonly root didn't
805  * change while the root pointer was being updated in the metadata.
806  */
807 static int update_cowonly_root(struct btrfs_trans_handle *trans,
808 			       struct btrfs_root *root)
809 {
810 	int ret;
811 	u64 old_root_bytenr;
812 	u64 old_root_used;
813 	struct btrfs_root *tree_root = root->fs_info->tree_root;
814 
815 	old_root_used = btrfs_root_used(&root->root_item);
816 	btrfs_write_dirty_block_groups(trans, root);
817 
818 	while (1) {
819 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
820 		if (old_root_bytenr == root->node->start &&
821 		    old_root_used == btrfs_root_used(&root->root_item))
822 			break;
823 
824 		btrfs_set_root_node(&root->root_item, root->node);
825 		ret = btrfs_update_root(trans, tree_root,
826 					&root->root_key,
827 					&root->root_item);
828 		if (ret)
829 			return ret;
830 
831 		old_root_used = btrfs_root_used(&root->root_item);
832 		ret = btrfs_write_dirty_block_groups(trans, root);
833 		if (ret)
834 			return ret;
835 	}
836 
837 	if (root != root->fs_info->extent_root)
838 		switch_commit_root(root);
839 
840 	return 0;
841 }
842 
843 /*
844  * update all the cowonly tree roots on disk
845  *
846  * The error handling in this function may not be obvious. Any of the
847  * failures will cause the file system to go offline. We still need
848  * to clean up the delayed refs.
849  */
850 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
851 					 struct btrfs_root *root)
852 {
853 	struct btrfs_fs_info *fs_info = root->fs_info;
854 	struct list_head *next;
855 	struct extent_buffer *eb;
856 	int ret;
857 
858 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
859 	if (ret)
860 		return ret;
861 
862 	eb = btrfs_lock_root_node(fs_info->tree_root);
863 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
864 			      0, &eb);
865 	btrfs_tree_unlock(eb);
866 	free_extent_buffer(eb);
867 
868 	if (ret)
869 		return ret;
870 
871 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
872 	if (ret)
873 		return ret;
874 
875 	ret = btrfs_run_dev_stats(trans, root->fs_info);
876 	WARN_ON(ret);
877 	ret = btrfs_run_dev_replace(trans, root->fs_info);
878 	WARN_ON(ret);
879 
880 	ret = btrfs_run_qgroups(trans, root->fs_info);
881 	BUG_ON(ret);
882 
883 	/* run_qgroups might have added some more refs */
884 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
885 	BUG_ON(ret);
886 
887 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
888 		next = fs_info->dirty_cowonly_roots.next;
889 		list_del_init(next);
890 		root = list_entry(next, struct btrfs_root, dirty_list);
891 
892 		ret = update_cowonly_root(trans, root);
893 		if (ret)
894 			return ret;
895 	}
896 
897 	down_write(&fs_info->extent_commit_sem);
898 	switch_commit_root(fs_info->extent_root);
899 	up_write(&fs_info->extent_commit_sem);
900 
901 	btrfs_after_dev_replace_commit(fs_info);
902 
903 	return 0;
904 }
905 
906 /*
907  * dead roots are old snapshots that need to be deleted.  This allocates
908  * a dirty root struct and adds it into the list of dead roots that need to
909  * be deleted
910  */
911 int btrfs_add_dead_root(struct btrfs_root *root)
912 {
913 	spin_lock(&root->fs_info->trans_lock);
914 	list_add(&root->root_list, &root->fs_info->dead_roots);
915 	spin_unlock(&root->fs_info->trans_lock);
916 	return 0;
917 }
918 
919 /*
920  * update all the cowonly tree roots on disk
921  */
922 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
923 				    struct btrfs_root *root)
924 {
925 	struct btrfs_root *gang[8];
926 	struct btrfs_fs_info *fs_info = root->fs_info;
927 	int i;
928 	int ret;
929 	int err = 0;
930 
931 	spin_lock(&fs_info->fs_roots_radix_lock);
932 	while (1) {
933 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
934 						 (void **)gang, 0,
935 						 ARRAY_SIZE(gang),
936 						 BTRFS_ROOT_TRANS_TAG);
937 		if (ret == 0)
938 			break;
939 		for (i = 0; i < ret; i++) {
940 			root = gang[i];
941 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
942 					(unsigned long)root->root_key.objectid,
943 					BTRFS_ROOT_TRANS_TAG);
944 			spin_unlock(&fs_info->fs_roots_radix_lock);
945 
946 			btrfs_free_log(trans, root);
947 			btrfs_update_reloc_root(trans, root);
948 			btrfs_orphan_commit_root(trans, root);
949 
950 			btrfs_save_ino_cache(root, trans);
951 
952 			/* see comments in should_cow_block() */
953 			root->force_cow = 0;
954 			smp_wmb();
955 
956 			if (root->commit_root != root->node) {
957 				mutex_lock(&root->fs_commit_mutex);
958 				switch_commit_root(root);
959 				btrfs_unpin_free_ino(root);
960 				mutex_unlock(&root->fs_commit_mutex);
961 
962 				btrfs_set_root_node(&root->root_item,
963 						    root->node);
964 			}
965 
966 			err = btrfs_update_root(trans, fs_info->tree_root,
967 						&root->root_key,
968 						&root->root_item);
969 			spin_lock(&fs_info->fs_roots_radix_lock);
970 			if (err)
971 				break;
972 		}
973 	}
974 	spin_unlock(&fs_info->fs_roots_radix_lock);
975 	return err;
976 }
977 
978 /*
979  * defrag a given btree.
980  * Every leaf in the btree is read and defragged.
981  */
982 int btrfs_defrag_root(struct btrfs_root *root)
983 {
984 	struct btrfs_fs_info *info = root->fs_info;
985 	struct btrfs_trans_handle *trans;
986 	int ret;
987 
988 	if (xchg(&root->defrag_running, 1))
989 		return 0;
990 
991 	while (1) {
992 		trans = btrfs_start_transaction(root, 0);
993 		if (IS_ERR(trans))
994 			return PTR_ERR(trans);
995 
996 		ret = btrfs_defrag_leaves(trans, root);
997 
998 		btrfs_end_transaction(trans, root);
999 		btrfs_btree_balance_dirty(info->tree_root);
1000 		cond_resched();
1001 
1002 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1003 			break;
1004 
1005 		if (btrfs_defrag_cancelled(root->fs_info)) {
1006 			printk(KERN_DEBUG "btrfs: defrag_root cancelled\n");
1007 			ret = -EAGAIN;
1008 			break;
1009 		}
1010 	}
1011 	root->defrag_running = 0;
1012 	return ret;
1013 }
1014 
1015 /*
1016  * new snapshots need to be created at a very specific time in the
1017  * transaction commit.  This does the actual creation
1018  */
1019 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1020 				   struct btrfs_fs_info *fs_info,
1021 				   struct btrfs_pending_snapshot *pending)
1022 {
1023 	struct btrfs_key key;
1024 	struct btrfs_root_item *new_root_item;
1025 	struct btrfs_root *tree_root = fs_info->tree_root;
1026 	struct btrfs_root *root = pending->root;
1027 	struct btrfs_root *parent_root;
1028 	struct btrfs_block_rsv *rsv;
1029 	struct inode *parent_inode;
1030 	struct btrfs_path *path;
1031 	struct btrfs_dir_item *dir_item;
1032 	struct dentry *parent;
1033 	struct dentry *dentry;
1034 	struct extent_buffer *tmp;
1035 	struct extent_buffer *old;
1036 	struct timespec cur_time = CURRENT_TIME;
1037 	int ret;
1038 	u64 to_reserve = 0;
1039 	u64 index = 0;
1040 	u64 objectid;
1041 	u64 root_flags;
1042 	uuid_le new_uuid;
1043 
1044 	path = btrfs_alloc_path();
1045 	if (!path) {
1046 		ret = pending->error = -ENOMEM;
1047 		goto path_alloc_fail;
1048 	}
1049 
1050 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1051 	if (!new_root_item) {
1052 		ret = pending->error = -ENOMEM;
1053 		goto root_item_alloc_fail;
1054 	}
1055 
1056 	ret = btrfs_find_free_objectid(tree_root, &objectid);
1057 	if (ret) {
1058 		pending->error = ret;
1059 		goto no_free_objectid;
1060 	}
1061 
1062 	btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1063 
1064 	if (to_reserve > 0) {
1065 		ret = btrfs_block_rsv_add(root, &pending->block_rsv,
1066 					  to_reserve,
1067 					  BTRFS_RESERVE_NO_FLUSH);
1068 		if (ret) {
1069 			pending->error = ret;
1070 			goto no_free_objectid;
1071 		}
1072 	}
1073 
1074 	ret = btrfs_qgroup_inherit(trans, fs_info, root->root_key.objectid,
1075 				   objectid, pending->inherit);
1076 	if (ret) {
1077 		pending->error = ret;
1078 		goto no_free_objectid;
1079 	}
1080 
1081 	key.objectid = objectid;
1082 	key.offset = (u64)-1;
1083 	key.type = BTRFS_ROOT_ITEM_KEY;
1084 
1085 	rsv = trans->block_rsv;
1086 	trans->block_rsv = &pending->block_rsv;
1087 
1088 	dentry = pending->dentry;
1089 	parent = dget_parent(dentry);
1090 	parent_inode = parent->d_inode;
1091 	parent_root = BTRFS_I(parent_inode)->root;
1092 	record_root_in_trans(trans, parent_root);
1093 
1094 	/*
1095 	 * insert the directory item
1096 	 */
1097 	ret = btrfs_set_inode_index(parent_inode, &index);
1098 	BUG_ON(ret); /* -ENOMEM */
1099 
1100 	/* check if there is a file/dir which has the same name. */
1101 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1102 					 btrfs_ino(parent_inode),
1103 					 dentry->d_name.name,
1104 					 dentry->d_name.len, 0);
1105 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1106 		pending->error = -EEXIST;
1107 		goto fail;
1108 	} else if (IS_ERR(dir_item)) {
1109 		ret = PTR_ERR(dir_item);
1110 		btrfs_abort_transaction(trans, root, ret);
1111 		goto fail;
1112 	}
1113 	btrfs_release_path(path);
1114 
1115 	/*
1116 	 * pull in the delayed directory update
1117 	 * and the delayed inode item
1118 	 * otherwise we corrupt the FS during
1119 	 * snapshot
1120 	 */
1121 	ret = btrfs_run_delayed_items(trans, root);
1122 	if (ret) {	/* Transaction aborted */
1123 		btrfs_abort_transaction(trans, root, ret);
1124 		goto fail;
1125 	}
1126 
1127 	record_root_in_trans(trans, root);
1128 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1129 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1130 	btrfs_check_and_init_root_item(new_root_item);
1131 
1132 	root_flags = btrfs_root_flags(new_root_item);
1133 	if (pending->readonly)
1134 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1135 	else
1136 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1137 	btrfs_set_root_flags(new_root_item, root_flags);
1138 
1139 	btrfs_set_root_generation_v2(new_root_item,
1140 			trans->transid);
1141 	uuid_le_gen(&new_uuid);
1142 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1143 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1144 			BTRFS_UUID_SIZE);
1145 	new_root_item->otime.sec = cpu_to_le64(cur_time.tv_sec);
1146 	new_root_item->otime.nsec = cpu_to_le32(cur_time.tv_nsec);
1147 	btrfs_set_root_otransid(new_root_item, trans->transid);
1148 	memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1149 	memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1150 	btrfs_set_root_stransid(new_root_item, 0);
1151 	btrfs_set_root_rtransid(new_root_item, 0);
1152 
1153 	old = btrfs_lock_root_node(root);
1154 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1155 	if (ret) {
1156 		btrfs_tree_unlock(old);
1157 		free_extent_buffer(old);
1158 		btrfs_abort_transaction(trans, root, ret);
1159 		goto fail;
1160 	}
1161 
1162 	btrfs_set_lock_blocking(old);
1163 
1164 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1165 	/* clean up in any case */
1166 	btrfs_tree_unlock(old);
1167 	free_extent_buffer(old);
1168 	if (ret) {
1169 		btrfs_abort_transaction(trans, root, ret);
1170 		goto fail;
1171 	}
1172 
1173 	/* see comments in should_cow_block() */
1174 	root->force_cow = 1;
1175 	smp_wmb();
1176 
1177 	btrfs_set_root_node(new_root_item, tmp);
1178 	/* record when the snapshot was created in key.offset */
1179 	key.offset = trans->transid;
1180 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1181 	btrfs_tree_unlock(tmp);
1182 	free_extent_buffer(tmp);
1183 	if (ret) {
1184 		btrfs_abort_transaction(trans, root, ret);
1185 		goto fail;
1186 	}
1187 
1188 	/*
1189 	 * insert root back/forward references
1190 	 */
1191 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1192 				 parent_root->root_key.objectid,
1193 				 btrfs_ino(parent_inode), index,
1194 				 dentry->d_name.name, dentry->d_name.len);
1195 	if (ret) {
1196 		btrfs_abort_transaction(trans, root, ret);
1197 		goto fail;
1198 	}
1199 
1200 	key.offset = (u64)-1;
1201 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1202 	if (IS_ERR(pending->snap)) {
1203 		ret = PTR_ERR(pending->snap);
1204 		btrfs_abort_transaction(trans, root, ret);
1205 		goto fail;
1206 	}
1207 
1208 	ret = btrfs_reloc_post_snapshot(trans, pending);
1209 	if (ret) {
1210 		btrfs_abort_transaction(trans, root, ret);
1211 		goto fail;
1212 	}
1213 
1214 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1215 	if (ret) {
1216 		btrfs_abort_transaction(trans, root, ret);
1217 		goto fail;
1218 	}
1219 
1220 	ret = btrfs_insert_dir_item(trans, parent_root,
1221 				    dentry->d_name.name, dentry->d_name.len,
1222 				    parent_inode, &key,
1223 				    BTRFS_FT_DIR, index);
1224 	/* We have check then name at the beginning, so it is impossible. */
1225 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1226 	if (ret) {
1227 		btrfs_abort_transaction(trans, root, ret);
1228 		goto fail;
1229 	}
1230 
1231 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1232 					 dentry->d_name.len * 2);
1233 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1234 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1235 	if (ret)
1236 		btrfs_abort_transaction(trans, root, ret);
1237 fail:
1238 	dput(parent);
1239 	trans->block_rsv = rsv;
1240 no_free_objectid:
1241 	kfree(new_root_item);
1242 root_item_alloc_fail:
1243 	btrfs_free_path(path);
1244 path_alloc_fail:
1245 	btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
1246 	return ret;
1247 }
1248 
1249 /*
1250  * create all the snapshots we've scheduled for creation
1251  */
1252 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1253 					     struct btrfs_fs_info *fs_info)
1254 {
1255 	struct btrfs_pending_snapshot *pending;
1256 	struct list_head *head = &trans->transaction->pending_snapshots;
1257 
1258 	list_for_each_entry(pending, head, list)
1259 		create_pending_snapshot(trans, fs_info, pending);
1260 	return 0;
1261 }
1262 
1263 static void update_super_roots(struct btrfs_root *root)
1264 {
1265 	struct btrfs_root_item *root_item;
1266 	struct btrfs_super_block *super;
1267 
1268 	super = root->fs_info->super_copy;
1269 
1270 	root_item = &root->fs_info->chunk_root->root_item;
1271 	super->chunk_root = root_item->bytenr;
1272 	super->chunk_root_generation = root_item->generation;
1273 	super->chunk_root_level = root_item->level;
1274 
1275 	root_item = &root->fs_info->tree_root->root_item;
1276 	super->root = root_item->bytenr;
1277 	super->generation = root_item->generation;
1278 	super->root_level = root_item->level;
1279 	if (btrfs_test_opt(root, SPACE_CACHE))
1280 		super->cache_generation = root_item->generation;
1281 }
1282 
1283 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1284 {
1285 	int ret = 0;
1286 	spin_lock(&info->trans_lock);
1287 	if (info->running_transaction)
1288 		ret = info->running_transaction->in_commit;
1289 	spin_unlock(&info->trans_lock);
1290 	return ret;
1291 }
1292 
1293 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1294 {
1295 	int ret = 0;
1296 	spin_lock(&info->trans_lock);
1297 	if (info->running_transaction)
1298 		ret = info->running_transaction->blocked;
1299 	spin_unlock(&info->trans_lock);
1300 	return ret;
1301 }
1302 
1303 /*
1304  * wait for the current transaction commit to start and block subsequent
1305  * transaction joins
1306  */
1307 static void wait_current_trans_commit_start(struct btrfs_root *root,
1308 					    struct btrfs_transaction *trans)
1309 {
1310 	wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1311 }
1312 
1313 /*
1314  * wait for the current transaction to start and then become unblocked.
1315  * caller holds ref.
1316  */
1317 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1318 					 struct btrfs_transaction *trans)
1319 {
1320 	wait_event(root->fs_info->transaction_wait,
1321 		   trans->commit_done || (trans->in_commit && !trans->blocked));
1322 }
1323 
1324 /*
1325  * commit transactions asynchronously. once btrfs_commit_transaction_async
1326  * returns, any subsequent transaction will not be allowed to join.
1327  */
1328 struct btrfs_async_commit {
1329 	struct btrfs_trans_handle *newtrans;
1330 	struct btrfs_root *root;
1331 	struct work_struct work;
1332 };
1333 
1334 static void do_async_commit(struct work_struct *work)
1335 {
1336 	struct btrfs_async_commit *ac =
1337 		container_of(work, struct btrfs_async_commit, work);
1338 
1339 	/*
1340 	 * We've got freeze protection passed with the transaction.
1341 	 * Tell lockdep about it.
1342 	 */
1343 	if (ac->newtrans->type < TRANS_JOIN_NOLOCK)
1344 		rwsem_acquire_read(
1345 		     &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1346 		     0, 1, _THIS_IP_);
1347 
1348 	current->journal_info = ac->newtrans;
1349 
1350 	btrfs_commit_transaction(ac->newtrans, ac->root);
1351 	kfree(ac);
1352 }
1353 
1354 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1355 				   struct btrfs_root *root,
1356 				   int wait_for_unblock)
1357 {
1358 	struct btrfs_async_commit *ac;
1359 	struct btrfs_transaction *cur_trans;
1360 
1361 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1362 	if (!ac)
1363 		return -ENOMEM;
1364 
1365 	INIT_WORK(&ac->work, do_async_commit);
1366 	ac->root = root;
1367 	ac->newtrans = btrfs_join_transaction(root);
1368 	if (IS_ERR(ac->newtrans)) {
1369 		int err = PTR_ERR(ac->newtrans);
1370 		kfree(ac);
1371 		return err;
1372 	}
1373 
1374 	/* take transaction reference */
1375 	cur_trans = trans->transaction;
1376 	atomic_inc(&cur_trans->use_count);
1377 
1378 	btrfs_end_transaction(trans, root);
1379 
1380 	/*
1381 	 * Tell lockdep we've released the freeze rwsem, since the
1382 	 * async commit thread will be the one to unlock it.
1383 	 */
1384 	if (trans->type < TRANS_JOIN_NOLOCK)
1385 		rwsem_release(
1386 			&root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1387 			1, _THIS_IP_);
1388 
1389 	schedule_work(&ac->work);
1390 
1391 	/* wait for transaction to start and unblock */
1392 	if (wait_for_unblock)
1393 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1394 	else
1395 		wait_current_trans_commit_start(root, cur_trans);
1396 
1397 	if (current->journal_info == trans)
1398 		current->journal_info = NULL;
1399 
1400 	put_transaction(cur_trans);
1401 	return 0;
1402 }
1403 
1404 
1405 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1406 				struct btrfs_root *root, int err)
1407 {
1408 	struct btrfs_transaction *cur_trans = trans->transaction;
1409 
1410 	WARN_ON(trans->use_count > 1);
1411 
1412 	btrfs_abort_transaction(trans, root, err);
1413 
1414 	spin_lock(&root->fs_info->trans_lock);
1415 	list_del_init(&cur_trans->list);
1416 	if (cur_trans == root->fs_info->running_transaction) {
1417 		root->fs_info->running_transaction = NULL;
1418 		root->fs_info->trans_no_join = 0;
1419 	}
1420 	spin_unlock(&root->fs_info->trans_lock);
1421 
1422 	btrfs_cleanup_one_transaction(trans->transaction, root);
1423 
1424 	put_transaction(cur_trans);
1425 	put_transaction(cur_trans);
1426 
1427 	trace_btrfs_transaction_commit(root);
1428 
1429 	btrfs_scrub_continue(root);
1430 
1431 	if (current->journal_info == trans)
1432 		current->journal_info = NULL;
1433 
1434 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1435 }
1436 
1437 static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1438 					  struct btrfs_root *root)
1439 {
1440 	int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1441 	int snap_pending = 0;
1442 	int ret;
1443 
1444 	if (!flush_on_commit) {
1445 		spin_lock(&root->fs_info->trans_lock);
1446 		if (!list_empty(&trans->transaction->pending_snapshots))
1447 			snap_pending = 1;
1448 		spin_unlock(&root->fs_info->trans_lock);
1449 	}
1450 
1451 	if (flush_on_commit || snap_pending) {
1452 		ret = btrfs_start_delalloc_inodes(root, 1);
1453 		if (ret)
1454 			return ret;
1455 		btrfs_wait_ordered_extents(root, 1);
1456 	}
1457 
1458 	ret = btrfs_run_delayed_items(trans, root);
1459 	if (ret)
1460 		return ret;
1461 
1462 	/*
1463 	 * running the delayed items may have added new refs. account
1464 	 * them now so that they hinder processing of more delayed refs
1465 	 * as little as possible.
1466 	 */
1467 	btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1468 
1469 	/*
1470 	 * rename don't use btrfs_join_transaction, so, once we
1471 	 * set the transaction to blocked above, we aren't going
1472 	 * to get any new ordered operations.  We can safely run
1473 	 * it here and no for sure that nothing new will be added
1474 	 * to the list
1475 	 */
1476 	ret = btrfs_run_ordered_operations(trans, root, 1);
1477 
1478 	return ret;
1479 }
1480 
1481 /*
1482  * btrfs_transaction state sequence:
1483  *    in_commit = 0, blocked = 0  (initial)
1484  *    in_commit = 1, blocked = 1
1485  *    blocked = 0
1486  *    commit_done = 1
1487  */
1488 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1489 			     struct btrfs_root *root)
1490 {
1491 	unsigned long joined = 0;
1492 	struct btrfs_transaction *cur_trans = trans->transaction;
1493 	struct btrfs_transaction *prev_trans = NULL;
1494 	DEFINE_WAIT(wait);
1495 	int ret;
1496 	int should_grow = 0;
1497 	unsigned long now = get_seconds();
1498 
1499 	ret = btrfs_run_ordered_operations(trans, root, 0);
1500 	if (ret) {
1501 		btrfs_abort_transaction(trans, root, ret);
1502 		btrfs_end_transaction(trans, root);
1503 		return ret;
1504 	}
1505 
1506 	/* Stop the commit early if ->aborted is set */
1507 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1508 		ret = cur_trans->aborted;
1509 		btrfs_end_transaction(trans, root);
1510 		return ret;
1511 	}
1512 
1513 	/* make a pass through all the delayed refs we have so far
1514 	 * any runnings procs may add more while we are here
1515 	 */
1516 	ret = btrfs_run_delayed_refs(trans, root, 0);
1517 	if (ret) {
1518 		btrfs_end_transaction(trans, root);
1519 		return ret;
1520 	}
1521 
1522 	btrfs_trans_release_metadata(trans, root);
1523 	trans->block_rsv = NULL;
1524 
1525 	cur_trans = trans->transaction;
1526 
1527 	/*
1528 	 * set the flushing flag so procs in this transaction have to
1529 	 * start sending their work down.
1530 	 */
1531 	cur_trans->delayed_refs.flushing = 1;
1532 
1533 	if (!list_empty(&trans->new_bgs))
1534 		btrfs_create_pending_block_groups(trans, root);
1535 
1536 	ret = btrfs_run_delayed_refs(trans, root, 0);
1537 	if (ret) {
1538 		btrfs_end_transaction(trans, root);
1539 		return ret;
1540 	}
1541 
1542 	spin_lock(&cur_trans->commit_lock);
1543 	if (cur_trans->in_commit) {
1544 		spin_unlock(&cur_trans->commit_lock);
1545 		atomic_inc(&cur_trans->use_count);
1546 		ret = btrfs_end_transaction(trans, root);
1547 
1548 		wait_for_commit(root, cur_trans);
1549 
1550 		put_transaction(cur_trans);
1551 
1552 		return ret;
1553 	}
1554 
1555 	trans->transaction->in_commit = 1;
1556 	trans->transaction->blocked = 1;
1557 	spin_unlock(&cur_trans->commit_lock);
1558 	wake_up(&root->fs_info->transaction_blocked_wait);
1559 
1560 	spin_lock(&root->fs_info->trans_lock);
1561 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1562 		prev_trans = list_entry(cur_trans->list.prev,
1563 					struct btrfs_transaction, list);
1564 		if (!prev_trans->commit_done) {
1565 			atomic_inc(&prev_trans->use_count);
1566 			spin_unlock(&root->fs_info->trans_lock);
1567 
1568 			wait_for_commit(root, prev_trans);
1569 
1570 			put_transaction(prev_trans);
1571 		} else {
1572 			spin_unlock(&root->fs_info->trans_lock);
1573 		}
1574 	} else {
1575 		spin_unlock(&root->fs_info->trans_lock);
1576 	}
1577 
1578 	if (!btrfs_test_opt(root, SSD) &&
1579 	    (now < cur_trans->start_time || now - cur_trans->start_time < 1))
1580 		should_grow = 1;
1581 
1582 	do {
1583 		joined = cur_trans->num_joined;
1584 
1585 		WARN_ON(cur_trans != trans->transaction);
1586 
1587 		ret = btrfs_flush_all_pending_stuffs(trans, root);
1588 		if (ret)
1589 			goto cleanup_transaction;
1590 
1591 		prepare_to_wait(&cur_trans->writer_wait, &wait,
1592 				TASK_UNINTERRUPTIBLE);
1593 
1594 		if (atomic_read(&cur_trans->num_writers) > 1)
1595 			schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1596 		else if (should_grow)
1597 			schedule_timeout(1);
1598 
1599 		finish_wait(&cur_trans->writer_wait, &wait);
1600 	} while (atomic_read(&cur_trans->num_writers) > 1 ||
1601 		 (should_grow && cur_trans->num_joined != joined));
1602 
1603 	ret = btrfs_flush_all_pending_stuffs(trans, root);
1604 	if (ret)
1605 		goto cleanup_transaction;
1606 
1607 	/*
1608 	 * Ok now we need to make sure to block out any other joins while we
1609 	 * commit the transaction.  We could have started a join before setting
1610 	 * no_join so make sure to wait for num_writers to == 1 again.
1611 	 */
1612 	spin_lock(&root->fs_info->trans_lock);
1613 	root->fs_info->trans_no_join = 1;
1614 	spin_unlock(&root->fs_info->trans_lock);
1615 	wait_event(cur_trans->writer_wait,
1616 		   atomic_read(&cur_trans->num_writers) == 1);
1617 
1618 	/* ->aborted might be set after the previous check, so check it */
1619 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1620 		ret = cur_trans->aborted;
1621 		goto cleanup_transaction;
1622 	}
1623 	/*
1624 	 * the reloc mutex makes sure that we stop
1625 	 * the balancing code from coming in and moving
1626 	 * extents around in the middle of the commit
1627 	 */
1628 	mutex_lock(&root->fs_info->reloc_mutex);
1629 
1630 	/*
1631 	 * We needn't worry about the delayed items because we will
1632 	 * deal with them in create_pending_snapshot(), which is the
1633 	 * core function of the snapshot creation.
1634 	 */
1635 	ret = create_pending_snapshots(trans, root->fs_info);
1636 	if (ret) {
1637 		mutex_unlock(&root->fs_info->reloc_mutex);
1638 		goto cleanup_transaction;
1639 	}
1640 
1641 	/*
1642 	 * We insert the dir indexes of the snapshots and update the inode
1643 	 * of the snapshots' parents after the snapshot creation, so there
1644 	 * are some delayed items which are not dealt with. Now deal with
1645 	 * them.
1646 	 *
1647 	 * We needn't worry that this operation will corrupt the snapshots,
1648 	 * because all the tree which are snapshoted will be forced to COW
1649 	 * the nodes and leaves.
1650 	 */
1651 	ret = btrfs_run_delayed_items(trans, root);
1652 	if (ret) {
1653 		mutex_unlock(&root->fs_info->reloc_mutex);
1654 		goto cleanup_transaction;
1655 	}
1656 
1657 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1658 	if (ret) {
1659 		mutex_unlock(&root->fs_info->reloc_mutex);
1660 		goto cleanup_transaction;
1661 	}
1662 
1663 	/*
1664 	 * make sure none of the code above managed to slip in a
1665 	 * delayed item
1666 	 */
1667 	btrfs_assert_delayed_root_empty(root);
1668 
1669 	WARN_ON(cur_trans != trans->transaction);
1670 
1671 	btrfs_scrub_pause(root);
1672 	/* btrfs_commit_tree_roots is responsible for getting the
1673 	 * various roots consistent with each other.  Every pointer
1674 	 * in the tree of tree roots has to point to the most up to date
1675 	 * root for every subvolume and other tree.  So, we have to keep
1676 	 * the tree logging code from jumping in and changing any
1677 	 * of the trees.
1678 	 *
1679 	 * At this point in the commit, there can't be any tree-log
1680 	 * writers, but a little lower down we drop the trans mutex
1681 	 * and let new people in.  By holding the tree_log_mutex
1682 	 * from now until after the super is written, we avoid races
1683 	 * with the tree-log code.
1684 	 */
1685 	mutex_lock(&root->fs_info->tree_log_mutex);
1686 
1687 	ret = commit_fs_roots(trans, root);
1688 	if (ret) {
1689 		mutex_unlock(&root->fs_info->tree_log_mutex);
1690 		mutex_unlock(&root->fs_info->reloc_mutex);
1691 		goto cleanup_transaction;
1692 	}
1693 
1694 	/* commit_fs_roots gets rid of all the tree log roots, it is now
1695 	 * safe to free the root of tree log roots
1696 	 */
1697 	btrfs_free_log_root_tree(trans, root->fs_info);
1698 
1699 	ret = commit_cowonly_roots(trans, root);
1700 	if (ret) {
1701 		mutex_unlock(&root->fs_info->tree_log_mutex);
1702 		mutex_unlock(&root->fs_info->reloc_mutex);
1703 		goto cleanup_transaction;
1704 	}
1705 
1706 	/*
1707 	 * The tasks which save the space cache and inode cache may also
1708 	 * update ->aborted, check it.
1709 	 */
1710 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1711 		ret = cur_trans->aborted;
1712 		mutex_unlock(&root->fs_info->tree_log_mutex);
1713 		mutex_unlock(&root->fs_info->reloc_mutex);
1714 		goto cleanup_transaction;
1715 	}
1716 
1717 	btrfs_prepare_extent_commit(trans, root);
1718 
1719 	cur_trans = root->fs_info->running_transaction;
1720 
1721 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1722 			    root->fs_info->tree_root->node);
1723 	switch_commit_root(root->fs_info->tree_root);
1724 
1725 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1726 			    root->fs_info->chunk_root->node);
1727 	switch_commit_root(root->fs_info->chunk_root);
1728 
1729 	assert_qgroups_uptodate(trans);
1730 	update_super_roots(root);
1731 
1732 	if (!root->fs_info->log_root_recovering) {
1733 		btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1734 		btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1735 	}
1736 
1737 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1738 	       sizeof(*root->fs_info->super_copy));
1739 
1740 	trans->transaction->blocked = 0;
1741 	spin_lock(&root->fs_info->trans_lock);
1742 	root->fs_info->running_transaction = NULL;
1743 	root->fs_info->trans_no_join = 0;
1744 	spin_unlock(&root->fs_info->trans_lock);
1745 	mutex_unlock(&root->fs_info->reloc_mutex);
1746 
1747 	wake_up(&root->fs_info->transaction_wait);
1748 
1749 	ret = btrfs_write_and_wait_transaction(trans, root);
1750 	if (ret) {
1751 		btrfs_error(root->fs_info, ret,
1752 			    "Error while writing out transaction.");
1753 		mutex_unlock(&root->fs_info->tree_log_mutex);
1754 		goto cleanup_transaction;
1755 	}
1756 
1757 	ret = write_ctree_super(trans, root, 0);
1758 	if (ret) {
1759 		mutex_unlock(&root->fs_info->tree_log_mutex);
1760 		goto cleanup_transaction;
1761 	}
1762 
1763 	/*
1764 	 * the super is written, we can safely allow the tree-loggers
1765 	 * to go about their business
1766 	 */
1767 	mutex_unlock(&root->fs_info->tree_log_mutex);
1768 
1769 	btrfs_finish_extent_commit(trans, root);
1770 
1771 	cur_trans->commit_done = 1;
1772 
1773 	root->fs_info->last_trans_committed = cur_trans->transid;
1774 
1775 	wake_up(&cur_trans->commit_wait);
1776 
1777 	spin_lock(&root->fs_info->trans_lock);
1778 	list_del_init(&cur_trans->list);
1779 	spin_unlock(&root->fs_info->trans_lock);
1780 
1781 	put_transaction(cur_trans);
1782 	put_transaction(cur_trans);
1783 
1784 	if (trans->type < TRANS_JOIN_NOLOCK)
1785 		sb_end_intwrite(root->fs_info->sb);
1786 
1787 	trace_btrfs_transaction_commit(root);
1788 
1789 	btrfs_scrub_continue(root);
1790 
1791 	if (current->journal_info == trans)
1792 		current->journal_info = NULL;
1793 
1794 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1795 
1796 	if (current != root->fs_info->transaction_kthread)
1797 		btrfs_run_delayed_iputs(root);
1798 
1799 	return ret;
1800 
1801 cleanup_transaction:
1802 	btrfs_trans_release_metadata(trans, root);
1803 	trans->block_rsv = NULL;
1804 	btrfs_printk(root->fs_info, "Skipping commit of aborted transaction.\n");
1805 //	WARN_ON(1);
1806 	if (current->journal_info == trans)
1807 		current->journal_info = NULL;
1808 	cleanup_transaction(trans, root, ret);
1809 
1810 	return ret;
1811 }
1812 
1813 /*
1814  * interface function to delete all the snapshots we have scheduled for deletion
1815  */
1816 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1817 {
1818 	LIST_HEAD(list);
1819 	struct btrfs_fs_info *fs_info = root->fs_info;
1820 
1821 	spin_lock(&fs_info->trans_lock);
1822 	list_splice_init(&fs_info->dead_roots, &list);
1823 	spin_unlock(&fs_info->trans_lock);
1824 
1825 	while (!list_empty(&list)) {
1826 		int ret;
1827 
1828 		root = list_entry(list.next, struct btrfs_root, root_list);
1829 		list_del(&root->root_list);
1830 
1831 		btrfs_kill_all_delayed_nodes(root);
1832 
1833 		if (btrfs_header_backref_rev(root->node) <
1834 		    BTRFS_MIXED_BACKREF_REV)
1835 			ret = btrfs_drop_snapshot(root, NULL, 0, 0);
1836 		else
1837 			ret =btrfs_drop_snapshot(root, NULL, 1, 0);
1838 		BUG_ON(ret < 0);
1839 	}
1840 	return 0;
1841 }
1842