1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/fs.h> 20 #include <linux/slab.h> 21 #include <linux/sched.h> 22 #include <linux/writeback.h> 23 #include <linux/pagemap.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include "ctree.h" 27 #include "disk-io.h" 28 #include "transaction.h" 29 #include "locking.h" 30 #include "tree-log.h" 31 #include "inode-map.h" 32 #include "volumes.h" 33 #include "dev-replace.h" 34 #include "qgroup.h" 35 36 #define BTRFS_ROOT_TRANS_TAG 0 37 38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = { 39 [TRANS_STATE_RUNNING] = 0U, 40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE | 41 __TRANS_START), 42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE | 43 __TRANS_START | 44 __TRANS_ATTACH), 45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE | 46 __TRANS_START | 47 __TRANS_ATTACH | 48 __TRANS_JOIN), 49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE | 50 __TRANS_START | 51 __TRANS_ATTACH | 52 __TRANS_JOIN | 53 __TRANS_JOIN_NOLOCK), 54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE | 55 __TRANS_START | 56 __TRANS_ATTACH | 57 __TRANS_JOIN | 58 __TRANS_JOIN_NOLOCK), 59 }; 60 61 void btrfs_put_transaction(struct btrfs_transaction *transaction) 62 { 63 WARN_ON(atomic_read(&transaction->use_count) == 0); 64 if (atomic_dec_and_test(&transaction->use_count)) { 65 BUG_ON(!list_empty(&transaction->list)); 66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root)); 67 if (transaction->delayed_refs.pending_csums) 68 printk(KERN_ERR "pending csums is %llu\n", 69 transaction->delayed_refs.pending_csums); 70 while (!list_empty(&transaction->pending_chunks)) { 71 struct extent_map *em; 72 73 em = list_first_entry(&transaction->pending_chunks, 74 struct extent_map, list); 75 list_del_init(&em->list); 76 free_extent_map(em); 77 } 78 kmem_cache_free(btrfs_transaction_cachep, transaction); 79 } 80 } 81 82 static void clear_btree_io_tree(struct extent_io_tree *tree) 83 { 84 spin_lock(&tree->lock); 85 /* 86 * Do a single barrier for the waitqueue_active check here, the state 87 * of the waitqueue should not change once clear_btree_io_tree is 88 * called. 89 */ 90 smp_mb(); 91 while (!RB_EMPTY_ROOT(&tree->state)) { 92 struct rb_node *node; 93 struct extent_state *state; 94 95 node = rb_first(&tree->state); 96 state = rb_entry(node, struct extent_state, rb_node); 97 rb_erase(&state->rb_node, &tree->state); 98 RB_CLEAR_NODE(&state->rb_node); 99 /* 100 * btree io trees aren't supposed to have tasks waiting for 101 * changes in the flags of extent states ever. 102 */ 103 ASSERT(!waitqueue_active(&state->wq)); 104 free_extent_state(state); 105 106 cond_resched_lock(&tree->lock); 107 } 108 spin_unlock(&tree->lock); 109 } 110 111 static noinline void switch_commit_roots(struct btrfs_transaction *trans, 112 struct btrfs_fs_info *fs_info) 113 { 114 struct btrfs_root *root, *tmp; 115 116 down_write(&fs_info->commit_root_sem); 117 list_for_each_entry_safe(root, tmp, &trans->switch_commits, 118 dirty_list) { 119 list_del_init(&root->dirty_list); 120 free_extent_buffer(root->commit_root); 121 root->commit_root = btrfs_root_node(root); 122 if (is_fstree(root->objectid)) 123 btrfs_unpin_free_ino(root); 124 clear_btree_io_tree(&root->dirty_log_pages); 125 } 126 127 /* We can free old roots now. */ 128 spin_lock(&trans->dropped_roots_lock); 129 while (!list_empty(&trans->dropped_roots)) { 130 root = list_first_entry(&trans->dropped_roots, 131 struct btrfs_root, root_list); 132 list_del_init(&root->root_list); 133 spin_unlock(&trans->dropped_roots_lock); 134 btrfs_drop_and_free_fs_root(fs_info, root); 135 spin_lock(&trans->dropped_roots_lock); 136 } 137 spin_unlock(&trans->dropped_roots_lock); 138 up_write(&fs_info->commit_root_sem); 139 } 140 141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans, 142 unsigned int type) 143 { 144 if (type & TRANS_EXTWRITERS) 145 atomic_inc(&trans->num_extwriters); 146 } 147 148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans, 149 unsigned int type) 150 { 151 if (type & TRANS_EXTWRITERS) 152 atomic_dec(&trans->num_extwriters); 153 } 154 155 static inline void extwriter_counter_init(struct btrfs_transaction *trans, 156 unsigned int type) 157 { 158 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0)); 159 } 160 161 static inline int extwriter_counter_read(struct btrfs_transaction *trans) 162 { 163 return atomic_read(&trans->num_extwriters); 164 } 165 166 /* 167 * either allocate a new transaction or hop into the existing one 168 */ 169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type) 170 { 171 struct btrfs_transaction *cur_trans; 172 struct btrfs_fs_info *fs_info = root->fs_info; 173 174 spin_lock(&fs_info->trans_lock); 175 loop: 176 /* The file system has been taken offline. No new transactions. */ 177 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 178 spin_unlock(&fs_info->trans_lock); 179 return -EROFS; 180 } 181 182 cur_trans = fs_info->running_transaction; 183 if (cur_trans) { 184 if (cur_trans->aborted) { 185 spin_unlock(&fs_info->trans_lock); 186 return cur_trans->aborted; 187 } 188 if (btrfs_blocked_trans_types[cur_trans->state] & type) { 189 spin_unlock(&fs_info->trans_lock); 190 return -EBUSY; 191 } 192 atomic_inc(&cur_trans->use_count); 193 atomic_inc(&cur_trans->num_writers); 194 extwriter_counter_inc(cur_trans, type); 195 spin_unlock(&fs_info->trans_lock); 196 return 0; 197 } 198 spin_unlock(&fs_info->trans_lock); 199 200 /* 201 * If we are ATTACH, we just want to catch the current transaction, 202 * and commit it. If there is no transaction, just return ENOENT. 203 */ 204 if (type == TRANS_ATTACH) 205 return -ENOENT; 206 207 /* 208 * JOIN_NOLOCK only happens during the transaction commit, so 209 * it is impossible that ->running_transaction is NULL 210 */ 211 BUG_ON(type == TRANS_JOIN_NOLOCK); 212 213 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS); 214 if (!cur_trans) 215 return -ENOMEM; 216 217 spin_lock(&fs_info->trans_lock); 218 if (fs_info->running_transaction) { 219 /* 220 * someone started a transaction after we unlocked. Make sure 221 * to redo the checks above 222 */ 223 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 224 goto loop; 225 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 226 spin_unlock(&fs_info->trans_lock); 227 kmem_cache_free(btrfs_transaction_cachep, cur_trans); 228 return -EROFS; 229 } 230 231 atomic_set(&cur_trans->num_writers, 1); 232 extwriter_counter_init(cur_trans, type); 233 init_waitqueue_head(&cur_trans->writer_wait); 234 init_waitqueue_head(&cur_trans->commit_wait); 235 init_waitqueue_head(&cur_trans->pending_wait); 236 cur_trans->state = TRANS_STATE_RUNNING; 237 /* 238 * One for this trans handle, one so it will live on until we 239 * commit the transaction. 240 */ 241 atomic_set(&cur_trans->use_count, 2); 242 cur_trans->have_free_bgs = 0; 243 atomic_set(&cur_trans->pending_ordered, 0); 244 cur_trans->start_time = get_seconds(); 245 cur_trans->dirty_bg_run = 0; 246 247 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs)); 248 249 cur_trans->delayed_refs.href_root = RB_ROOT; 250 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT; 251 atomic_set(&cur_trans->delayed_refs.num_entries, 0); 252 253 /* 254 * although the tree mod log is per file system and not per transaction, 255 * the log must never go across transaction boundaries. 256 */ 257 smp_mb(); 258 if (!list_empty(&fs_info->tree_mod_seq_list)) 259 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when " 260 "creating a fresh transaction\n"); 261 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log)) 262 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when " 263 "creating a fresh transaction\n"); 264 atomic64_set(&fs_info->tree_mod_seq, 0); 265 266 spin_lock_init(&cur_trans->delayed_refs.lock); 267 268 INIT_LIST_HEAD(&cur_trans->pending_snapshots); 269 INIT_LIST_HEAD(&cur_trans->pending_chunks); 270 INIT_LIST_HEAD(&cur_trans->switch_commits); 271 INIT_LIST_HEAD(&cur_trans->dirty_bgs); 272 INIT_LIST_HEAD(&cur_trans->io_bgs); 273 INIT_LIST_HEAD(&cur_trans->dropped_roots); 274 mutex_init(&cur_trans->cache_write_mutex); 275 cur_trans->num_dirty_bgs = 0; 276 spin_lock_init(&cur_trans->dirty_bgs_lock); 277 INIT_LIST_HEAD(&cur_trans->deleted_bgs); 278 spin_lock_init(&cur_trans->deleted_bgs_lock); 279 spin_lock_init(&cur_trans->dropped_roots_lock); 280 list_add_tail(&cur_trans->list, &fs_info->trans_list); 281 extent_io_tree_init(&cur_trans->dirty_pages, 282 fs_info->btree_inode->i_mapping); 283 fs_info->generation++; 284 cur_trans->transid = fs_info->generation; 285 fs_info->running_transaction = cur_trans; 286 cur_trans->aborted = 0; 287 spin_unlock(&fs_info->trans_lock); 288 289 return 0; 290 } 291 292 /* 293 * this does all the record keeping required to make sure that a reference 294 * counted root is properly recorded in a given transaction. This is required 295 * to make sure the old root from before we joined the transaction is deleted 296 * when the transaction commits 297 */ 298 static int record_root_in_trans(struct btrfs_trans_handle *trans, 299 struct btrfs_root *root) 300 { 301 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) && 302 root->last_trans < trans->transid) { 303 WARN_ON(root == root->fs_info->extent_root); 304 WARN_ON(root->commit_root != root->node); 305 306 /* 307 * see below for IN_TRANS_SETUP usage rules 308 * we have the reloc mutex held now, so there 309 * is only one writer in this function 310 */ 311 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 312 313 /* make sure readers find IN_TRANS_SETUP before 314 * they find our root->last_trans update 315 */ 316 smp_wmb(); 317 318 spin_lock(&root->fs_info->fs_roots_radix_lock); 319 if (root->last_trans == trans->transid) { 320 spin_unlock(&root->fs_info->fs_roots_radix_lock); 321 return 0; 322 } 323 radix_tree_tag_set(&root->fs_info->fs_roots_radix, 324 (unsigned long)root->root_key.objectid, 325 BTRFS_ROOT_TRANS_TAG); 326 spin_unlock(&root->fs_info->fs_roots_radix_lock); 327 root->last_trans = trans->transid; 328 329 /* this is pretty tricky. We don't want to 330 * take the relocation lock in btrfs_record_root_in_trans 331 * unless we're really doing the first setup for this root in 332 * this transaction. 333 * 334 * Normally we'd use root->last_trans as a flag to decide 335 * if we want to take the expensive mutex. 336 * 337 * But, we have to set root->last_trans before we 338 * init the relocation root, otherwise, we trip over warnings 339 * in ctree.c. The solution used here is to flag ourselves 340 * with root IN_TRANS_SETUP. When this is 1, we're still 341 * fixing up the reloc trees and everyone must wait. 342 * 343 * When this is zero, they can trust root->last_trans and fly 344 * through btrfs_record_root_in_trans without having to take the 345 * lock. smp_wmb() makes sure that all the writes above are 346 * done before we pop in the zero below 347 */ 348 btrfs_init_reloc_root(trans, root); 349 smp_mb__before_atomic(); 350 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state); 351 } 352 return 0; 353 } 354 355 356 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans, 357 struct btrfs_root *root) 358 { 359 struct btrfs_transaction *cur_trans = trans->transaction; 360 361 /* Add ourselves to the transaction dropped list */ 362 spin_lock(&cur_trans->dropped_roots_lock); 363 list_add_tail(&root->root_list, &cur_trans->dropped_roots); 364 spin_unlock(&cur_trans->dropped_roots_lock); 365 366 /* Make sure we don't try to update the root at commit time */ 367 spin_lock(&root->fs_info->fs_roots_radix_lock); 368 radix_tree_tag_clear(&root->fs_info->fs_roots_radix, 369 (unsigned long)root->root_key.objectid, 370 BTRFS_ROOT_TRANS_TAG); 371 spin_unlock(&root->fs_info->fs_roots_radix_lock); 372 } 373 374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans, 375 struct btrfs_root *root) 376 { 377 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 378 return 0; 379 380 /* 381 * see record_root_in_trans for comments about IN_TRANS_SETUP usage 382 * and barriers 383 */ 384 smp_rmb(); 385 if (root->last_trans == trans->transid && 386 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state)) 387 return 0; 388 389 mutex_lock(&root->fs_info->reloc_mutex); 390 record_root_in_trans(trans, root); 391 mutex_unlock(&root->fs_info->reloc_mutex); 392 393 return 0; 394 } 395 396 static inline int is_transaction_blocked(struct btrfs_transaction *trans) 397 { 398 return (trans->state >= TRANS_STATE_BLOCKED && 399 trans->state < TRANS_STATE_UNBLOCKED && 400 !trans->aborted); 401 } 402 403 /* wait for commit against the current transaction to become unblocked 404 * when this is done, it is safe to start a new transaction, but the current 405 * transaction might not be fully on disk. 406 */ 407 static void wait_current_trans(struct btrfs_root *root) 408 { 409 struct btrfs_transaction *cur_trans; 410 411 spin_lock(&root->fs_info->trans_lock); 412 cur_trans = root->fs_info->running_transaction; 413 if (cur_trans && is_transaction_blocked(cur_trans)) { 414 atomic_inc(&cur_trans->use_count); 415 spin_unlock(&root->fs_info->trans_lock); 416 417 wait_event(root->fs_info->transaction_wait, 418 cur_trans->state >= TRANS_STATE_UNBLOCKED || 419 cur_trans->aborted); 420 btrfs_put_transaction(cur_trans); 421 } else { 422 spin_unlock(&root->fs_info->trans_lock); 423 } 424 } 425 426 static int may_wait_transaction(struct btrfs_root *root, int type) 427 { 428 if (root->fs_info->log_root_recovering) 429 return 0; 430 431 if (type == TRANS_USERSPACE) 432 return 1; 433 434 if (type == TRANS_START && 435 !atomic_read(&root->fs_info->open_ioctl_trans)) 436 return 1; 437 438 return 0; 439 } 440 441 static inline bool need_reserve_reloc_root(struct btrfs_root *root) 442 { 443 if (!root->fs_info->reloc_ctl || 444 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) || 445 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID || 446 root->reloc_root) 447 return false; 448 449 return true; 450 } 451 452 static struct btrfs_trans_handle * 453 start_transaction(struct btrfs_root *root, unsigned int num_items, 454 unsigned int type, enum btrfs_reserve_flush_enum flush) 455 { 456 struct btrfs_trans_handle *h; 457 struct btrfs_transaction *cur_trans; 458 u64 num_bytes = 0; 459 u64 qgroup_reserved = 0; 460 bool reloc_reserved = false; 461 int ret; 462 463 /* Send isn't supposed to start transactions. */ 464 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB); 465 466 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) 467 return ERR_PTR(-EROFS); 468 469 if (current->journal_info) { 470 WARN_ON(type & TRANS_EXTWRITERS); 471 h = current->journal_info; 472 h->use_count++; 473 WARN_ON(h->use_count > 2); 474 h->orig_rsv = h->block_rsv; 475 h->block_rsv = NULL; 476 goto got_it; 477 } 478 479 /* 480 * Do the reservation before we join the transaction so we can do all 481 * the appropriate flushing if need be. 482 */ 483 if (num_items > 0 && root != root->fs_info->chunk_root) { 484 if (root->fs_info->quota_enabled && 485 is_fstree(root->root_key.objectid)) { 486 qgroup_reserved = num_items * root->nodesize; 487 ret = btrfs_qgroup_reserve(root, qgroup_reserved); 488 if (ret) 489 return ERR_PTR(ret); 490 } 491 492 num_bytes = btrfs_calc_trans_metadata_size(root, num_items); 493 /* 494 * Do the reservation for the relocation root creation 495 */ 496 if (need_reserve_reloc_root(root)) { 497 num_bytes += root->nodesize; 498 reloc_reserved = true; 499 } 500 501 ret = btrfs_block_rsv_add(root, 502 &root->fs_info->trans_block_rsv, 503 num_bytes, flush); 504 if (ret) 505 goto reserve_fail; 506 } 507 again: 508 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS); 509 if (!h) { 510 ret = -ENOMEM; 511 goto alloc_fail; 512 } 513 514 /* 515 * If we are JOIN_NOLOCK we're already committing a transaction and 516 * waiting on this guy, so we don't need to do the sb_start_intwrite 517 * because we're already holding a ref. We need this because we could 518 * have raced in and did an fsync() on a file which can kick a commit 519 * and then we deadlock with somebody doing a freeze. 520 * 521 * If we are ATTACH, it means we just want to catch the current 522 * transaction and commit it, so we needn't do sb_start_intwrite(). 523 */ 524 if (type & __TRANS_FREEZABLE) 525 sb_start_intwrite(root->fs_info->sb); 526 527 if (may_wait_transaction(root, type)) 528 wait_current_trans(root); 529 530 do { 531 ret = join_transaction(root, type); 532 if (ret == -EBUSY) { 533 wait_current_trans(root); 534 if (unlikely(type == TRANS_ATTACH)) 535 ret = -ENOENT; 536 } 537 } while (ret == -EBUSY); 538 539 if (ret < 0) { 540 /* We must get the transaction if we are JOIN_NOLOCK. */ 541 BUG_ON(type == TRANS_JOIN_NOLOCK); 542 goto join_fail; 543 } 544 545 cur_trans = root->fs_info->running_transaction; 546 547 h->transid = cur_trans->transid; 548 h->transaction = cur_trans; 549 h->root = root; 550 h->use_count = 1; 551 h->type = type; 552 h->can_flush_pending_bgs = true; 553 INIT_LIST_HEAD(&h->qgroup_ref_list); 554 INIT_LIST_HEAD(&h->new_bgs); 555 556 smp_mb(); 557 if (cur_trans->state >= TRANS_STATE_BLOCKED && 558 may_wait_transaction(root, type)) { 559 current->journal_info = h; 560 btrfs_commit_transaction(h, root); 561 goto again; 562 } 563 564 if (num_bytes) { 565 trace_btrfs_space_reservation(root->fs_info, "transaction", 566 h->transid, num_bytes, 1); 567 h->block_rsv = &root->fs_info->trans_block_rsv; 568 h->bytes_reserved = num_bytes; 569 h->reloc_reserved = reloc_reserved; 570 } 571 h->qgroup_reserved = qgroup_reserved; 572 573 got_it: 574 btrfs_record_root_in_trans(h, root); 575 576 if (!current->journal_info && type != TRANS_USERSPACE) 577 current->journal_info = h; 578 return h; 579 580 join_fail: 581 if (type & __TRANS_FREEZABLE) 582 sb_end_intwrite(root->fs_info->sb); 583 kmem_cache_free(btrfs_trans_handle_cachep, h); 584 alloc_fail: 585 if (num_bytes) 586 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv, 587 num_bytes); 588 reserve_fail: 589 if (qgroup_reserved) 590 btrfs_qgroup_free(root, qgroup_reserved); 591 return ERR_PTR(ret); 592 } 593 594 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root, 595 unsigned int num_items) 596 { 597 return start_transaction(root, num_items, TRANS_START, 598 BTRFS_RESERVE_FLUSH_ALL); 599 } 600 601 struct btrfs_trans_handle *btrfs_start_transaction_lflush( 602 struct btrfs_root *root, 603 unsigned int num_items) 604 { 605 return start_transaction(root, num_items, TRANS_START, 606 BTRFS_RESERVE_FLUSH_LIMIT); 607 } 608 609 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root) 610 { 611 return start_transaction(root, 0, TRANS_JOIN, 0); 612 } 613 614 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root) 615 { 616 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0); 617 } 618 619 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root) 620 { 621 return start_transaction(root, 0, TRANS_USERSPACE, 0); 622 } 623 624 /* 625 * btrfs_attach_transaction() - catch the running transaction 626 * 627 * It is used when we want to commit the current the transaction, but 628 * don't want to start a new one. 629 * 630 * Note: If this function return -ENOENT, it just means there is no 631 * running transaction. But it is possible that the inactive transaction 632 * is still in the memory, not fully on disk. If you hope there is no 633 * inactive transaction in the fs when -ENOENT is returned, you should 634 * invoke 635 * btrfs_attach_transaction_barrier() 636 */ 637 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root) 638 { 639 return start_transaction(root, 0, TRANS_ATTACH, 0); 640 } 641 642 /* 643 * btrfs_attach_transaction_barrier() - catch the running transaction 644 * 645 * It is similar to the above function, the differentia is this one 646 * will wait for all the inactive transactions until they fully 647 * complete. 648 */ 649 struct btrfs_trans_handle * 650 btrfs_attach_transaction_barrier(struct btrfs_root *root) 651 { 652 struct btrfs_trans_handle *trans; 653 654 trans = start_transaction(root, 0, TRANS_ATTACH, 0); 655 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT) 656 btrfs_wait_for_commit(root, 0); 657 658 return trans; 659 } 660 661 /* wait for a transaction commit to be fully complete */ 662 static noinline void wait_for_commit(struct btrfs_root *root, 663 struct btrfs_transaction *commit) 664 { 665 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED); 666 } 667 668 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid) 669 { 670 struct btrfs_transaction *cur_trans = NULL, *t; 671 int ret = 0; 672 673 if (transid) { 674 if (transid <= root->fs_info->last_trans_committed) 675 goto out; 676 677 /* find specified transaction */ 678 spin_lock(&root->fs_info->trans_lock); 679 list_for_each_entry(t, &root->fs_info->trans_list, list) { 680 if (t->transid == transid) { 681 cur_trans = t; 682 atomic_inc(&cur_trans->use_count); 683 ret = 0; 684 break; 685 } 686 if (t->transid > transid) { 687 ret = 0; 688 break; 689 } 690 } 691 spin_unlock(&root->fs_info->trans_lock); 692 693 /* 694 * The specified transaction doesn't exist, or we 695 * raced with btrfs_commit_transaction 696 */ 697 if (!cur_trans) { 698 if (transid > root->fs_info->last_trans_committed) 699 ret = -EINVAL; 700 goto out; 701 } 702 } else { 703 /* find newest transaction that is committing | committed */ 704 spin_lock(&root->fs_info->trans_lock); 705 list_for_each_entry_reverse(t, &root->fs_info->trans_list, 706 list) { 707 if (t->state >= TRANS_STATE_COMMIT_START) { 708 if (t->state == TRANS_STATE_COMPLETED) 709 break; 710 cur_trans = t; 711 atomic_inc(&cur_trans->use_count); 712 break; 713 } 714 } 715 spin_unlock(&root->fs_info->trans_lock); 716 if (!cur_trans) 717 goto out; /* nothing committing|committed */ 718 } 719 720 wait_for_commit(root, cur_trans); 721 btrfs_put_transaction(cur_trans); 722 out: 723 return ret; 724 } 725 726 void btrfs_throttle(struct btrfs_root *root) 727 { 728 if (!atomic_read(&root->fs_info->open_ioctl_trans)) 729 wait_current_trans(root); 730 } 731 732 static int should_end_transaction(struct btrfs_trans_handle *trans, 733 struct btrfs_root *root) 734 { 735 if (root->fs_info->global_block_rsv.space_info->full && 736 btrfs_check_space_for_delayed_refs(trans, root)) 737 return 1; 738 739 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5); 740 } 741 742 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans, 743 struct btrfs_root *root) 744 { 745 struct btrfs_transaction *cur_trans = trans->transaction; 746 int updates; 747 int err; 748 749 smp_mb(); 750 if (cur_trans->state >= TRANS_STATE_BLOCKED || 751 cur_trans->delayed_refs.flushing) 752 return 1; 753 754 updates = trans->delayed_ref_updates; 755 trans->delayed_ref_updates = 0; 756 if (updates) { 757 err = btrfs_run_delayed_refs(trans, root, updates * 2); 758 if (err) /* Error code will also eval true */ 759 return err; 760 } 761 762 return should_end_transaction(trans, root); 763 } 764 765 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans, 766 struct btrfs_root *root, int throttle) 767 { 768 struct btrfs_transaction *cur_trans = trans->transaction; 769 struct btrfs_fs_info *info = root->fs_info; 770 unsigned long cur = trans->delayed_ref_updates; 771 int lock = (trans->type != TRANS_JOIN_NOLOCK); 772 int err = 0; 773 int must_run_delayed_refs = 0; 774 775 if (trans->use_count > 1) { 776 trans->use_count--; 777 trans->block_rsv = trans->orig_rsv; 778 return 0; 779 } 780 781 btrfs_trans_release_metadata(trans, root); 782 trans->block_rsv = NULL; 783 784 if (!list_empty(&trans->new_bgs)) 785 btrfs_create_pending_block_groups(trans, root); 786 787 trans->delayed_ref_updates = 0; 788 if (!trans->sync) { 789 must_run_delayed_refs = 790 btrfs_should_throttle_delayed_refs(trans, root); 791 cur = max_t(unsigned long, cur, 32); 792 793 /* 794 * don't make the caller wait if they are from a NOLOCK 795 * or ATTACH transaction, it will deadlock with commit 796 */ 797 if (must_run_delayed_refs == 1 && 798 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH))) 799 must_run_delayed_refs = 2; 800 } 801 802 if (trans->qgroup_reserved) { 803 /* 804 * the same root has to be passed here between start_transaction 805 * and end_transaction. Subvolume quota depends on this. 806 */ 807 btrfs_qgroup_free(trans->root, trans->qgroup_reserved); 808 trans->qgroup_reserved = 0; 809 } 810 811 btrfs_trans_release_metadata(trans, root); 812 trans->block_rsv = NULL; 813 814 if (!list_empty(&trans->new_bgs)) 815 btrfs_create_pending_block_groups(trans, root); 816 817 btrfs_trans_release_chunk_metadata(trans); 818 819 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) && 820 should_end_transaction(trans, root) && 821 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) { 822 spin_lock(&info->trans_lock); 823 if (cur_trans->state == TRANS_STATE_RUNNING) 824 cur_trans->state = TRANS_STATE_BLOCKED; 825 spin_unlock(&info->trans_lock); 826 } 827 828 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) { 829 if (throttle) 830 return btrfs_commit_transaction(trans, root); 831 else 832 wake_up_process(info->transaction_kthread); 833 } 834 835 if (trans->type & __TRANS_FREEZABLE) 836 sb_end_intwrite(root->fs_info->sb); 837 838 WARN_ON(cur_trans != info->running_transaction); 839 WARN_ON(atomic_read(&cur_trans->num_writers) < 1); 840 atomic_dec(&cur_trans->num_writers); 841 extwriter_counter_dec(cur_trans, trans->type); 842 843 /* 844 * Make sure counter is updated before we wake up waiters. 845 */ 846 smp_mb(); 847 if (waitqueue_active(&cur_trans->writer_wait)) 848 wake_up(&cur_trans->writer_wait); 849 btrfs_put_transaction(cur_trans); 850 851 if (current->journal_info == trans) 852 current->journal_info = NULL; 853 854 if (throttle) 855 btrfs_run_delayed_iputs(root); 856 857 if (trans->aborted || 858 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) { 859 wake_up_process(info->transaction_kthread); 860 err = -EIO; 861 } 862 assert_qgroups_uptodate(trans); 863 864 kmem_cache_free(btrfs_trans_handle_cachep, trans); 865 if (must_run_delayed_refs) { 866 btrfs_async_run_delayed_refs(root, cur, 867 must_run_delayed_refs == 1); 868 } 869 return err; 870 } 871 872 int btrfs_end_transaction(struct btrfs_trans_handle *trans, 873 struct btrfs_root *root) 874 { 875 return __btrfs_end_transaction(trans, root, 0); 876 } 877 878 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans, 879 struct btrfs_root *root) 880 { 881 return __btrfs_end_transaction(trans, root, 1); 882 } 883 884 /* 885 * when btree blocks are allocated, they have some corresponding bits set for 886 * them in one of two extent_io trees. This is used to make sure all of 887 * those extents are sent to disk but does not wait on them 888 */ 889 int btrfs_write_marked_extents(struct btrfs_root *root, 890 struct extent_io_tree *dirty_pages, int mark) 891 { 892 int err = 0; 893 int werr = 0; 894 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 895 struct extent_state *cached_state = NULL; 896 u64 start = 0; 897 u64 end; 898 899 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 900 mark, &cached_state)) { 901 bool wait_writeback = false; 902 903 err = convert_extent_bit(dirty_pages, start, end, 904 EXTENT_NEED_WAIT, 905 mark, &cached_state, GFP_NOFS); 906 /* 907 * convert_extent_bit can return -ENOMEM, which is most of the 908 * time a temporary error. So when it happens, ignore the error 909 * and wait for writeback of this range to finish - because we 910 * failed to set the bit EXTENT_NEED_WAIT for the range, a call 911 * to btrfs_wait_marked_extents() would not know that writeback 912 * for this range started and therefore wouldn't wait for it to 913 * finish - we don't want to commit a superblock that points to 914 * btree nodes/leafs for which writeback hasn't finished yet 915 * (and without errors). 916 * We cleanup any entries left in the io tree when committing 917 * the transaction (through clear_btree_io_tree()). 918 */ 919 if (err == -ENOMEM) { 920 err = 0; 921 wait_writeback = true; 922 } 923 if (!err) 924 err = filemap_fdatawrite_range(mapping, start, end); 925 if (err) 926 werr = err; 927 else if (wait_writeback) 928 werr = filemap_fdatawait_range(mapping, start, end); 929 free_extent_state(cached_state); 930 cached_state = NULL; 931 cond_resched(); 932 start = end + 1; 933 } 934 return werr; 935 } 936 937 /* 938 * when btree blocks are allocated, they have some corresponding bits set for 939 * them in one of two extent_io trees. This is used to make sure all of 940 * those extents are on disk for transaction or log commit. We wait 941 * on all the pages and clear them from the dirty pages state tree 942 */ 943 int btrfs_wait_marked_extents(struct btrfs_root *root, 944 struct extent_io_tree *dirty_pages, int mark) 945 { 946 int err = 0; 947 int werr = 0; 948 struct address_space *mapping = root->fs_info->btree_inode->i_mapping; 949 struct extent_state *cached_state = NULL; 950 u64 start = 0; 951 u64 end; 952 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 953 bool errors = false; 954 955 while (!find_first_extent_bit(dirty_pages, start, &start, &end, 956 EXTENT_NEED_WAIT, &cached_state)) { 957 /* 958 * Ignore -ENOMEM errors returned by clear_extent_bit(). 959 * When committing the transaction, we'll remove any entries 960 * left in the io tree. For a log commit, we don't remove them 961 * after committing the log because the tree can be accessed 962 * concurrently - we do it only at transaction commit time when 963 * it's safe to do it (through clear_btree_io_tree()). 964 */ 965 err = clear_extent_bit(dirty_pages, start, end, 966 EXTENT_NEED_WAIT, 967 0, 0, &cached_state, GFP_NOFS); 968 if (err == -ENOMEM) 969 err = 0; 970 if (!err) 971 err = filemap_fdatawait_range(mapping, start, end); 972 if (err) 973 werr = err; 974 free_extent_state(cached_state); 975 cached_state = NULL; 976 cond_resched(); 977 start = end + 1; 978 } 979 if (err) 980 werr = err; 981 982 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) { 983 if ((mark & EXTENT_DIRTY) && 984 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, 985 &btree_ino->runtime_flags)) 986 errors = true; 987 988 if ((mark & EXTENT_NEW) && 989 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, 990 &btree_ino->runtime_flags)) 991 errors = true; 992 } else { 993 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR, 994 &btree_ino->runtime_flags)) 995 errors = true; 996 } 997 998 if (errors && !werr) 999 werr = -EIO; 1000 1001 return werr; 1002 } 1003 1004 /* 1005 * when btree blocks are allocated, they have some corresponding bits set for 1006 * them in one of two extent_io trees. This is used to make sure all of 1007 * those extents are on disk for transaction or log commit 1008 */ 1009 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root, 1010 struct extent_io_tree *dirty_pages, int mark) 1011 { 1012 int ret; 1013 int ret2; 1014 struct blk_plug plug; 1015 1016 blk_start_plug(&plug); 1017 ret = btrfs_write_marked_extents(root, dirty_pages, mark); 1018 blk_finish_plug(&plug); 1019 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark); 1020 1021 if (ret) 1022 return ret; 1023 if (ret2) 1024 return ret2; 1025 return 0; 1026 } 1027 1028 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans, 1029 struct btrfs_root *root) 1030 { 1031 int ret; 1032 1033 ret = btrfs_write_and_wait_marked_extents(root, 1034 &trans->transaction->dirty_pages, 1035 EXTENT_DIRTY); 1036 clear_btree_io_tree(&trans->transaction->dirty_pages); 1037 1038 return ret; 1039 } 1040 1041 /* 1042 * this is used to update the root pointer in the tree of tree roots. 1043 * 1044 * But, in the case of the extent allocation tree, updating the root 1045 * pointer may allocate blocks which may change the root of the extent 1046 * allocation tree. 1047 * 1048 * So, this loops and repeats and makes sure the cowonly root didn't 1049 * change while the root pointer was being updated in the metadata. 1050 */ 1051 static int update_cowonly_root(struct btrfs_trans_handle *trans, 1052 struct btrfs_root *root) 1053 { 1054 int ret; 1055 u64 old_root_bytenr; 1056 u64 old_root_used; 1057 struct btrfs_root *tree_root = root->fs_info->tree_root; 1058 1059 old_root_used = btrfs_root_used(&root->root_item); 1060 1061 while (1) { 1062 old_root_bytenr = btrfs_root_bytenr(&root->root_item); 1063 if (old_root_bytenr == root->node->start && 1064 old_root_used == btrfs_root_used(&root->root_item)) 1065 break; 1066 1067 btrfs_set_root_node(&root->root_item, root->node); 1068 ret = btrfs_update_root(trans, tree_root, 1069 &root->root_key, 1070 &root->root_item); 1071 if (ret) 1072 return ret; 1073 1074 old_root_used = btrfs_root_used(&root->root_item); 1075 } 1076 1077 return 0; 1078 } 1079 1080 /* 1081 * update all the cowonly tree roots on disk 1082 * 1083 * The error handling in this function may not be obvious. Any of the 1084 * failures will cause the file system to go offline. We still need 1085 * to clean up the delayed refs. 1086 */ 1087 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans, 1088 struct btrfs_root *root) 1089 { 1090 struct btrfs_fs_info *fs_info = root->fs_info; 1091 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs; 1092 struct list_head *io_bgs = &trans->transaction->io_bgs; 1093 struct list_head *next; 1094 struct extent_buffer *eb; 1095 int ret; 1096 1097 eb = btrfs_lock_root_node(fs_info->tree_root); 1098 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 1099 0, &eb); 1100 btrfs_tree_unlock(eb); 1101 free_extent_buffer(eb); 1102 1103 if (ret) 1104 return ret; 1105 1106 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1107 if (ret) 1108 return ret; 1109 1110 ret = btrfs_run_dev_stats(trans, root->fs_info); 1111 if (ret) 1112 return ret; 1113 ret = btrfs_run_dev_replace(trans, root->fs_info); 1114 if (ret) 1115 return ret; 1116 ret = btrfs_run_qgroups(trans, root->fs_info); 1117 if (ret) 1118 return ret; 1119 1120 ret = btrfs_setup_space_cache(trans, root); 1121 if (ret) 1122 return ret; 1123 1124 /* run_qgroups might have added some more refs */ 1125 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1126 if (ret) 1127 return ret; 1128 again: 1129 while (!list_empty(&fs_info->dirty_cowonly_roots)) { 1130 next = fs_info->dirty_cowonly_roots.next; 1131 list_del_init(next); 1132 root = list_entry(next, struct btrfs_root, dirty_list); 1133 clear_bit(BTRFS_ROOT_DIRTY, &root->state); 1134 1135 if (root != fs_info->extent_root) 1136 list_add_tail(&root->dirty_list, 1137 &trans->transaction->switch_commits); 1138 ret = update_cowonly_root(trans, root); 1139 if (ret) 1140 return ret; 1141 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1142 if (ret) 1143 return ret; 1144 } 1145 1146 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) { 1147 ret = btrfs_write_dirty_block_groups(trans, root); 1148 if (ret) 1149 return ret; 1150 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1151 if (ret) 1152 return ret; 1153 } 1154 1155 if (!list_empty(&fs_info->dirty_cowonly_roots)) 1156 goto again; 1157 1158 list_add_tail(&fs_info->extent_root->dirty_list, 1159 &trans->transaction->switch_commits); 1160 btrfs_after_dev_replace_commit(fs_info); 1161 1162 return 0; 1163 } 1164 1165 /* 1166 * dead roots are old snapshots that need to be deleted. This allocates 1167 * a dirty root struct and adds it into the list of dead roots that need to 1168 * be deleted 1169 */ 1170 void btrfs_add_dead_root(struct btrfs_root *root) 1171 { 1172 spin_lock(&root->fs_info->trans_lock); 1173 if (list_empty(&root->root_list)) 1174 list_add_tail(&root->root_list, &root->fs_info->dead_roots); 1175 spin_unlock(&root->fs_info->trans_lock); 1176 } 1177 1178 /* 1179 * update all the cowonly tree roots on disk 1180 */ 1181 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans, 1182 struct btrfs_root *root) 1183 { 1184 struct btrfs_root *gang[8]; 1185 struct btrfs_fs_info *fs_info = root->fs_info; 1186 int i; 1187 int ret; 1188 int err = 0; 1189 1190 spin_lock(&fs_info->fs_roots_radix_lock); 1191 while (1) { 1192 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix, 1193 (void **)gang, 0, 1194 ARRAY_SIZE(gang), 1195 BTRFS_ROOT_TRANS_TAG); 1196 if (ret == 0) 1197 break; 1198 for (i = 0; i < ret; i++) { 1199 root = gang[i]; 1200 radix_tree_tag_clear(&fs_info->fs_roots_radix, 1201 (unsigned long)root->root_key.objectid, 1202 BTRFS_ROOT_TRANS_TAG); 1203 spin_unlock(&fs_info->fs_roots_radix_lock); 1204 1205 btrfs_free_log(trans, root); 1206 btrfs_update_reloc_root(trans, root); 1207 btrfs_orphan_commit_root(trans, root); 1208 1209 btrfs_save_ino_cache(root, trans); 1210 1211 /* see comments in should_cow_block() */ 1212 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1213 smp_mb__after_atomic(); 1214 1215 if (root->commit_root != root->node) { 1216 list_add_tail(&root->dirty_list, 1217 &trans->transaction->switch_commits); 1218 btrfs_set_root_node(&root->root_item, 1219 root->node); 1220 } 1221 1222 err = btrfs_update_root(trans, fs_info->tree_root, 1223 &root->root_key, 1224 &root->root_item); 1225 spin_lock(&fs_info->fs_roots_radix_lock); 1226 if (err) 1227 break; 1228 } 1229 } 1230 spin_unlock(&fs_info->fs_roots_radix_lock); 1231 return err; 1232 } 1233 1234 /* 1235 * defrag a given btree. 1236 * Every leaf in the btree is read and defragged. 1237 */ 1238 int btrfs_defrag_root(struct btrfs_root *root) 1239 { 1240 struct btrfs_fs_info *info = root->fs_info; 1241 struct btrfs_trans_handle *trans; 1242 int ret; 1243 1244 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state)) 1245 return 0; 1246 1247 while (1) { 1248 trans = btrfs_start_transaction(root, 0); 1249 if (IS_ERR(trans)) 1250 return PTR_ERR(trans); 1251 1252 ret = btrfs_defrag_leaves(trans, root); 1253 1254 btrfs_end_transaction(trans, root); 1255 btrfs_btree_balance_dirty(info->tree_root); 1256 cond_resched(); 1257 1258 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN) 1259 break; 1260 1261 if (btrfs_defrag_cancelled(root->fs_info)) { 1262 pr_debug("BTRFS: defrag_root cancelled\n"); 1263 ret = -EAGAIN; 1264 break; 1265 } 1266 } 1267 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state); 1268 return ret; 1269 } 1270 1271 /* 1272 * new snapshots need to be created at a very specific time in the 1273 * transaction commit. This does the actual creation. 1274 * 1275 * Note: 1276 * If the error which may affect the commitment of the current transaction 1277 * happens, we should return the error number. If the error which just affect 1278 * the creation of the pending snapshots, just return 0. 1279 */ 1280 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans, 1281 struct btrfs_fs_info *fs_info, 1282 struct btrfs_pending_snapshot *pending) 1283 { 1284 struct btrfs_key key; 1285 struct btrfs_root_item *new_root_item; 1286 struct btrfs_root *tree_root = fs_info->tree_root; 1287 struct btrfs_root *root = pending->root; 1288 struct btrfs_root *parent_root; 1289 struct btrfs_block_rsv *rsv; 1290 struct inode *parent_inode; 1291 struct btrfs_path *path; 1292 struct btrfs_dir_item *dir_item; 1293 struct dentry *dentry; 1294 struct extent_buffer *tmp; 1295 struct extent_buffer *old; 1296 struct timespec cur_time = CURRENT_TIME; 1297 int ret = 0; 1298 u64 to_reserve = 0; 1299 u64 index = 0; 1300 u64 objectid; 1301 u64 root_flags; 1302 uuid_le new_uuid; 1303 1304 path = btrfs_alloc_path(); 1305 if (!path) { 1306 pending->error = -ENOMEM; 1307 return 0; 1308 } 1309 1310 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS); 1311 if (!new_root_item) { 1312 pending->error = -ENOMEM; 1313 goto root_item_alloc_fail; 1314 } 1315 1316 pending->error = btrfs_find_free_objectid(tree_root, &objectid); 1317 if (pending->error) 1318 goto no_free_objectid; 1319 1320 /* 1321 * Make qgroup to skip current new snapshot's qgroupid, as it is 1322 * accounted by later btrfs_qgroup_inherit(). 1323 */ 1324 btrfs_set_skip_qgroup(trans, objectid); 1325 1326 btrfs_reloc_pre_snapshot(pending, &to_reserve); 1327 1328 if (to_reserve > 0) { 1329 pending->error = btrfs_block_rsv_add(root, 1330 &pending->block_rsv, 1331 to_reserve, 1332 BTRFS_RESERVE_NO_FLUSH); 1333 if (pending->error) 1334 goto clear_skip_qgroup; 1335 } 1336 1337 key.objectid = objectid; 1338 key.offset = (u64)-1; 1339 key.type = BTRFS_ROOT_ITEM_KEY; 1340 1341 rsv = trans->block_rsv; 1342 trans->block_rsv = &pending->block_rsv; 1343 trans->bytes_reserved = trans->block_rsv->reserved; 1344 1345 dentry = pending->dentry; 1346 parent_inode = pending->dir; 1347 parent_root = BTRFS_I(parent_inode)->root; 1348 record_root_in_trans(trans, parent_root); 1349 1350 /* 1351 * insert the directory item 1352 */ 1353 ret = btrfs_set_inode_index(parent_inode, &index); 1354 BUG_ON(ret); /* -ENOMEM */ 1355 1356 /* check if there is a file/dir which has the same name. */ 1357 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path, 1358 btrfs_ino(parent_inode), 1359 dentry->d_name.name, 1360 dentry->d_name.len, 0); 1361 if (dir_item != NULL && !IS_ERR(dir_item)) { 1362 pending->error = -EEXIST; 1363 goto dir_item_existed; 1364 } else if (IS_ERR(dir_item)) { 1365 ret = PTR_ERR(dir_item); 1366 btrfs_abort_transaction(trans, root, ret); 1367 goto fail; 1368 } 1369 btrfs_release_path(path); 1370 1371 /* 1372 * pull in the delayed directory update 1373 * and the delayed inode item 1374 * otherwise we corrupt the FS during 1375 * snapshot 1376 */ 1377 ret = btrfs_run_delayed_items(trans, root); 1378 if (ret) { /* Transaction aborted */ 1379 btrfs_abort_transaction(trans, root, ret); 1380 goto fail; 1381 } 1382 1383 record_root_in_trans(trans, root); 1384 btrfs_set_root_last_snapshot(&root->root_item, trans->transid); 1385 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item)); 1386 btrfs_check_and_init_root_item(new_root_item); 1387 1388 root_flags = btrfs_root_flags(new_root_item); 1389 if (pending->readonly) 1390 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY; 1391 else 1392 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY; 1393 btrfs_set_root_flags(new_root_item, root_flags); 1394 1395 btrfs_set_root_generation_v2(new_root_item, 1396 trans->transid); 1397 uuid_le_gen(&new_uuid); 1398 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE); 1399 memcpy(new_root_item->parent_uuid, root->root_item.uuid, 1400 BTRFS_UUID_SIZE); 1401 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) { 1402 memset(new_root_item->received_uuid, 0, 1403 sizeof(new_root_item->received_uuid)); 1404 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime)); 1405 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime)); 1406 btrfs_set_root_stransid(new_root_item, 0); 1407 btrfs_set_root_rtransid(new_root_item, 0); 1408 } 1409 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec); 1410 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec); 1411 btrfs_set_root_otransid(new_root_item, trans->transid); 1412 1413 old = btrfs_lock_root_node(root); 1414 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old); 1415 if (ret) { 1416 btrfs_tree_unlock(old); 1417 free_extent_buffer(old); 1418 btrfs_abort_transaction(trans, root, ret); 1419 goto fail; 1420 } 1421 1422 btrfs_set_lock_blocking(old); 1423 1424 ret = btrfs_copy_root(trans, root, old, &tmp, objectid); 1425 /* clean up in any case */ 1426 btrfs_tree_unlock(old); 1427 free_extent_buffer(old); 1428 if (ret) { 1429 btrfs_abort_transaction(trans, root, ret); 1430 goto fail; 1431 } 1432 /* see comments in should_cow_block() */ 1433 set_bit(BTRFS_ROOT_FORCE_COW, &root->state); 1434 smp_wmb(); 1435 1436 btrfs_set_root_node(new_root_item, tmp); 1437 /* record when the snapshot was created in key.offset */ 1438 key.offset = trans->transid; 1439 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item); 1440 btrfs_tree_unlock(tmp); 1441 free_extent_buffer(tmp); 1442 if (ret) { 1443 btrfs_abort_transaction(trans, root, ret); 1444 goto fail; 1445 } 1446 1447 /* 1448 * insert root back/forward references 1449 */ 1450 ret = btrfs_add_root_ref(trans, tree_root, objectid, 1451 parent_root->root_key.objectid, 1452 btrfs_ino(parent_inode), index, 1453 dentry->d_name.name, dentry->d_name.len); 1454 if (ret) { 1455 btrfs_abort_transaction(trans, root, ret); 1456 goto fail; 1457 } 1458 1459 key.offset = (u64)-1; 1460 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key); 1461 if (IS_ERR(pending->snap)) { 1462 ret = PTR_ERR(pending->snap); 1463 btrfs_abort_transaction(trans, root, ret); 1464 goto fail; 1465 } 1466 1467 ret = btrfs_reloc_post_snapshot(trans, pending); 1468 if (ret) { 1469 btrfs_abort_transaction(trans, root, ret); 1470 goto fail; 1471 } 1472 1473 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1474 if (ret) { 1475 btrfs_abort_transaction(trans, root, ret); 1476 goto fail; 1477 } 1478 1479 ret = btrfs_insert_dir_item(trans, parent_root, 1480 dentry->d_name.name, dentry->d_name.len, 1481 parent_inode, &key, 1482 BTRFS_FT_DIR, index); 1483 /* We have check then name at the beginning, so it is impossible. */ 1484 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW); 1485 if (ret) { 1486 btrfs_abort_transaction(trans, root, ret); 1487 goto fail; 1488 } 1489 1490 btrfs_i_size_write(parent_inode, parent_inode->i_size + 1491 dentry->d_name.len * 2); 1492 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME; 1493 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode); 1494 if (ret) { 1495 btrfs_abort_transaction(trans, root, ret); 1496 goto fail; 1497 } 1498 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b, 1499 BTRFS_UUID_KEY_SUBVOL, objectid); 1500 if (ret) { 1501 btrfs_abort_transaction(trans, root, ret); 1502 goto fail; 1503 } 1504 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) { 1505 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, 1506 new_root_item->received_uuid, 1507 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 1508 objectid); 1509 if (ret && ret != -EEXIST) { 1510 btrfs_abort_transaction(trans, root, ret); 1511 goto fail; 1512 } 1513 } 1514 1515 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1516 if (ret) { 1517 btrfs_abort_transaction(trans, root, ret); 1518 goto fail; 1519 } 1520 1521 /* 1522 * account qgroup counters before qgroup_inherit() 1523 */ 1524 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info); 1525 if (ret) 1526 goto fail; 1527 ret = btrfs_qgroup_account_extents(trans, fs_info); 1528 if (ret) 1529 goto fail; 1530 ret = btrfs_qgroup_inherit(trans, fs_info, 1531 root->root_key.objectid, 1532 objectid, pending->inherit); 1533 if (ret) { 1534 btrfs_abort_transaction(trans, root, ret); 1535 goto fail; 1536 } 1537 1538 fail: 1539 pending->error = ret; 1540 dir_item_existed: 1541 trans->block_rsv = rsv; 1542 trans->bytes_reserved = 0; 1543 clear_skip_qgroup: 1544 btrfs_clear_skip_qgroup(trans); 1545 no_free_objectid: 1546 kfree(new_root_item); 1547 root_item_alloc_fail: 1548 btrfs_free_path(path); 1549 return ret; 1550 } 1551 1552 /* 1553 * create all the snapshots we've scheduled for creation 1554 */ 1555 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans, 1556 struct btrfs_fs_info *fs_info) 1557 { 1558 struct btrfs_pending_snapshot *pending, *next; 1559 struct list_head *head = &trans->transaction->pending_snapshots; 1560 int ret = 0; 1561 1562 list_for_each_entry_safe(pending, next, head, list) { 1563 list_del(&pending->list); 1564 ret = create_pending_snapshot(trans, fs_info, pending); 1565 if (ret) 1566 break; 1567 } 1568 return ret; 1569 } 1570 1571 static void update_super_roots(struct btrfs_root *root) 1572 { 1573 struct btrfs_root_item *root_item; 1574 struct btrfs_super_block *super; 1575 1576 super = root->fs_info->super_copy; 1577 1578 root_item = &root->fs_info->chunk_root->root_item; 1579 super->chunk_root = root_item->bytenr; 1580 super->chunk_root_generation = root_item->generation; 1581 super->chunk_root_level = root_item->level; 1582 1583 root_item = &root->fs_info->tree_root->root_item; 1584 super->root = root_item->bytenr; 1585 super->generation = root_item->generation; 1586 super->root_level = root_item->level; 1587 if (btrfs_test_opt(root, SPACE_CACHE)) 1588 super->cache_generation = root_item->generation; 1589 if (root->fs_info->update_uuid_tree_gen) 1590 super->uuid_tree_generation = root_item->generation; 1591 } 1592 1593 int btrfs_transaction_in_commit(struct btrfs_fs_info *info) 1594 { 1595 struct btrfs_transaction *trans; 1596 int ret = 0; 1597 1598 spin_lock(&info->trans_lock); 1599 trans = info->running_transaction; 1600 if (trans) 1601 ret = (trans->state >= TRANS_STATE_COMMIT_START); 1602 spin_unlock(&info->trans_lock); 1603 return ret; 1604 } 1605 1606 int btrfs_transaction_blocked(struct btrfs_fs_info *info) 1607 { 1608 struct btrfs_transaction *trans; 1609 int ret = 0; 1610 1611 spin_lock(&info->trans_lock); 1612 trans = info->running_transaction; 1613 if (trans) 1614 ret = is_transaction_blocked(trans); 1615 spin_unlock(&info->trans_lock); 1616 return ret; 1617 } 1618 1619 /* 1620 * wait for the current transaction commit to start and block subsequent 1621 * transaction joins 1622 */ 1623 static void wait_current_trans_commit_start(struct btrfs_root *root, 1624 struct btrfs_transaction *trans) 1625 { 1626 wait_event(root->fs_info->transaction_blocked_wait, 1627 trans->state >= TRANS_STATE_COMMIT_START || 1628 trans->aborted); 1629 } 1630 1631 /* 1632 * wait for the current transaction to start and then become unblocked. 1633 * caller holds ref. 1634 */ 1635 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root, 1636 struct btrfs_transaction *trans) 1637 { 1638 wait_event(root->fs_info->transaction_wait, 1639 trans->state >= TRANS_STATE_UNBLOCKED || 1640 trans->aborted); 1641 } 1642 1643 /* 1644 * commit transactions asynchronously. once btrfs_commit_transaction_async 1645 * returns, any subsequent transaction will not be allowed to join. 1646 */ 1647 struct btrfs_async_commit { 1648 struct btrfs_trans_handle *newtrans; 1649 struct btrfs_root *root; 1650 struct work_struct work; 1651 }; 1652 1653 static void do_async_commit(struct work_struct *work) 1654 { 1655 struct btrfs_async_commit *ac = 1656 container_of(work, struct btrfs_async_commit, work); 1657 1658 /* 1659 * We've got freeze protection passed with the transaction. 1660 * Tell lockdep about it. 1661 */ 1662 if (ac->newtrans->type & __TRANS_FREEZABLE) 1663 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS); 1664 1665 current->journal_info = ac->newtrans; 1666 1667 btrfs_commit_transaction(ac->newtrans, ac->root); 1668 kfree(ac); 1669 } 1670 1671 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans, 1672 struct btrfs_root *root, 1673 int wait_for_unblock) 1674 { 1675 struct btrfs_async_commit *ac; 1676 struct btrfs_transaction *cur_trans; 1677 1678 ac = kmalloc(sizeof(*ac), GFP_NOFS); 1679 if (!ac) 1680 return -ENOMEM; 1681 1682 INIT_WORK(&ac->work, do_async_commit); 1683 ac->root = root; 1684 ac->newtrans = btrfs_join_transaction(root); 1685 if (IS_ERR(ac->newtrans)) { 1686 int err = PTR_ERR(ac->newtrans); 1687 kfree(ac); 1688 return err; 1689 } 1690 1691 /* take transaction reference */ 1692 cur_trans = trans->transaction; 1693 atomic_inc(&cur_trans->use_count); 1694 1695 btrfs_end_transaction(trans, root); 1696 1697 /* 1698 * Tell lockdep we've released the freeze rwsem, since the 1699 * async commit thread will be the one to unlock it. 1700 */ 1701 if (ac->newtrans->type & __TRANS_FREEZABLE) 1702 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS); 1703 1704 schedule_work(&ac->work); 1705 1706 /* wait for transaction to start and unblock */ 1707 if (wait_for_unblock) 1708 wait_current_trans_commit_start_and_unblock(root, cur_trans); 1709 else 1710 wait_current_trans_commit_start(root, cur_trans); 1711 1712 if (current->journal_info == trans) 1713 current->journal_info = NULL; 1714 1715 btrfs_put_transaction(cur_trans); 1716 return 0; 1717 } 1718 1719 1720 static void cleanup_transaction(struct btrfs_trans_handle *trans, 1721 struct btrfs_root *root, int err) 1722 { 1723 struct btrfs_transaction *cur_trans = trans->transaction; 1724 DEFINE_WAIT(wait); 1725 1726 WARN_ON(trans->use_count > 1); 1727 1728 btrfs_abort_transaction(trans, root, err); 1729 1730 spin_lock(&root->fs_info->trans_lock); 1731 1732 /* 1733 * If the transaction is removed from the list, it means this 1734 * transaction has been committed successfully, so it is impossible 1735 * to call the cleanup function. 1736 */ 1737 BUG_ON(list_empty(&cur_trans->list)); 1738 1739 list_del_init(&cur_trans->list); 1740 if (cur_trans == root->fs_info->running_transaction) { 1741 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1742 spin_unlock(&root->fs_info->trans_lock); 1743 wait_event(cur_trans->writer_wait, 1744 atomic_read(&cur_trans->num_writers) == 1); 1745 1746 spin_lock(&root->fs_info->trans_lock); 1747 } 1748 spin_unlock(&root->fs_info->trans_lock); 1749 1750 btrfs_cleanup_one_transaction(trans->transaction, root); 1751 1752 spin_lock(&root->fs_info->trans_lock); 1753 if (cur_trans == root->fs_info->running_transaction) 1754 root->fs_info->running_transaction = NULL; 1755 spin_unlock(&root->fs_info->trans_lock); 1756 1757 if (trans->type & __TRANS_FREEZABLE) 1758 sb_end_intwrite(root->fs_info->sb); 1759 btrfs_put_transaction(cur_trans); 1760 btrfs_put_transaction(cur_trans); 1761 1762 trace_btrfs_transaction_commit(root); 1763 1764 if (current->journal_info == trans) 1765 current->journal_info = NULL; 1766 btrfs_scrub_cancel(root->fs_info); 1767 1768 kmem_cache_free(btrfs_trans_handle_cachep, trans); 1769 } 1770 1771 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info) 1772 { 1773 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1774 return btrfs_start_delalloc_roots(fs_info, 1, -1); 1775 return 0; 1776 } 1777 1778 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info) 1779 { 1780 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT)) 1781 btrfs_wait_ordered_roots(fs_info, -1); 1782 } 1783 1784 static inline void 1785 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans) 1786 { 1787 wait_event(cur_trans->pending_wait, 1788 atomic_read(&cur_trans->pending_ordered) == 0); 1789 } 1790 1791 int btrfs_commit_transaction(struct btrfs_trans_handle *trans, 1792 struct btrfs_root *root) 1793 { 1794 struct btrfs_transaction *cur_trans = trans->transaction; 1795 struct btrfs_transaction *prev_trans = NULL; 1796 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode); 1797 int ret; 1798 1799 /* Stop the commit early if ->aborted is set */ 1800 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1801 ret = cur_trans->aborted; 1802 btrfs_end_transaction(trans, root); 1803 return ret; 1804 } 1805 1806 /* make a pass through all the delayed refs we have so far 1807 * any runnings procs may add more while we are here 1808 */ 1809 ret = btrfs_run_delayed_refs(trans, root, 0); 1810 if (ret) { 1811 btrfs_end_transaction(trans, root); 1812 return ret; 1813 } 1814 1815 btrfs_trans_release_metadata(trans, root); 1816 trans->block_rsv = NULL; 1817 if (trans->qgroup_reserved) { 1818 btrfs_qgroup_free(root, trans->qgroup_reserved); 1819 trans->qgroup_reserved = 0; 1820 } 1821 1822 cur_trans = trans->transaction; 1823 1824 /* 1825 * set the flushing flag so procs in this transaction have to 1826 * start sending their work down. 1827 */ 1828 cur_trans->delayed_refs.flushing = 1; 1829 smp_wmb(); 1830 1831 if (!list_empty(&trans->new_bgs)) 1832 btrfs_create_pending_block_groups(trans, root); 1833 1834 ret = btrfs_run_delayed_refs(trans, root, 0); 1835 if (ret) { 1836 btrfs_end_transaction(trans, root); 1837 return ret; 1838 } 1839 1840 if (!cur_trans->dirty_bg_run) { 1841 int run_it = 0; 1842 1843 /* this mutex is also taken before trying to set 1844 * block groups readonly. We need to make sure 1845 * that nobody has set a block group readonly 1846 * after a extents from that block group have been 1847 * allocated for cache files. btrfs_set_block_group_ro 1848 * will wait for the transaction to commit if it 1849 * finds dirty_bg_run = 1 1850 * 1851 * The dirty_bg_run flag is also used to make sure only 1852 * one process starts all the block group IO. It wouldn't 1853 * hurt to have more than one go through, but there's no 1854 * real advantage to it either. 1855 */ 1856 mutex_lock(&root->fs_info->ro_block_group_mutex); 1857 if (!cur_trans->dirty_bg_run) { 1858 run_it = 1; 1859 cur_trans->dirty_bg_run = 1; 1860 } 1861 mutex_unlock(&root->fs_info->ro_block_group_mutex); 1862 1863 if (run_it) 1864 ret = btrfs_start_dirty_block_groups(trans, root); 1865 } 1866 if (ret) { 1867 btrfs_end_transaction(trans, root); 1868 return ret; 1869 } 1870 1871 spin_lock(&root->fs_info->trans_lock); 1872 if (cur_trans->state >= TRANS_STATE_COMMIT_START) { 1873 spin_unlock(&root->fs_info->trans_lock); 1874 atomic_inc(&cur_trans->use_count); 1875 ret = btrfs_end_transaction(trans, root); 1876 1877 wait_for_commit(root, cur_trans); 1878 1879 if (unlikely(cur_trans->aborted)) 1880 ret = cur_trans->aborted; 1881 1882 btrfs_put_transaction(cur_trans); 1883 1884 return ret; 1885 } 1886 1887 cur_trans->state = TRANS_STATE_COMMIT_START; 1888 wake_up(&root->fs_info->transaction_blocked_wait); 1889 1890 if (cur_trans->list.prev != &root->fs_info->trans_list) { 1891 prev_trans = list_entry(cur_trans->list.prev, 1892 struct btrfs_transaction, list); 1893 if (prev_trans->state != TRANS_STATE_COMPLETED) { 1894 atomic_inc(&prev_trans->use_count); 1895 spin_unlock(&root->fs_info->trans_lock); 1896 1897 wait_for_commit(root, prev_trans); 1898 ret = prev_trans->aborted; 1899 1900 btrfs_put_transaction(prev_trans); 1901 if (ret) 1902 goto cleanup_transaction; 1903 } else { 1904 spin_unlock(&root->fs_info->trans_lock); 1905 } 1906 } else { 1907 spin_unlock(&root->fs_info->trans_lock); 1908 } 1909 1910 extwriter_counter_dec(cur_trans, trans->type); 1911 1912 ret = btrfs_start_delalloc_flush(root->fs_info); 1913 if (ret) 1914 goto cleanup_transaction; 1915 1916 ret = btrfs_run_delayed_items(trans, root); 1917 if (ret) 1918 goto cleanup_transaction; 1919 1920 wait_event(cur_trans->writer_wait, 1921 extwriter_counter_read(cur_trans) == 0); 1922 1923 /* some pending stuffs might be added after the previous flush. */ 1924 ret = btrfs_run_delayed_items(trans, root); 1925 if (ret) 1926 goto cleanup_transaction; 1927 1928 btrfs_wait_delalloc_flush(root->fs_info); 1929 1930 btrfs_wait_pending_ordered(cur_trans); 1931 1932 btrfs_scrub_pause(root); 1933 /* 1934 * Ok now we need to make sure to block out any other joins while we 1935 * commit the transaction. We could have started a join before setting 1936 * COMMIT_DOING so make sure to wait for num_writers to == 1 again. 1937 */ 1938 spin_lock(&root->fs_info->trans_lock); 1939 cur_trans->state = TRANS_STATE_COMMIT_DOING; 1940 spin_unlock(&root->fs_info->trans_lock); 1941 wait_event(cur_trans->writer_wait, 1942 atomic_read(&cur_trans->num_writers) == 1); 1943 1944 /* ->aborted might be set after the previous check, so check it */ 1945 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 1946 ret = cur_trans->aborted; 1947 goto scrub_continue; 1948 } 1949 /* 1950 * the reloc mutex makes sure that we stop 1951 * the balancing code from coming in and moving 1952 * extents around in the middle of the commit 1953 */ 1954 mutex_lock(&root->fs_info->reloc_mutex); 1955 1956 /* 1957 * We needn't worry about the delayed items because we will 1958 * deal with them in create_pending_snapshot(), which is the 1959 * core function of the snapshot creation. 1960 */ 1961 ret = create_pending_snapshots(trans, root->fs_info); 1962 if (ret) { 1963 mutex_unlock(&root->fs_info->reloc_mutex); 1964 goto scrub_continue; 1965 } 1966 1967 /* 1968 * We insert the dir indexes of the snapshots and update the inode 1969 * of the snapshots' parents after the snapshot creation, so there 1970 * are some delayed items which are not dealt with. Now deal with 1971 * them. 1972 * 1973 * We needn't worry that this operation will corrupt the snapshots, 1974 * because all the tree which are snapshoted will be forced to COW 1975 * the nodes and leaves. 1976 */ 1977 ret = btrfs_run_delayed_items(trans, root); 1978 if (ret) { 1979 mutex_unlock(&root->fs_info->reloc_mutex); 1980 goto scrub_continue; 1981 } 1982 1983 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1); 1984 if (ret) { 1985 mutex_unlock(&root->fs_info->reloc_mutex); 1986 goto scrub_continue; 1987 } 1988 1989 /* Reocrd old roots for later qgroup accounting */ 1990 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info); 1991 if (ret) { 1992 mutex_unlock(&root->fs_info->reloc_mutex); 1993 goto scrub_continue; 1994 } 1995 1996 /* 1997 * make sure none of the code above managed to slip in a 1998 * delayed item 1999 */ 2000 btrfs_assert_delayed_root_empty(root); 2001 2002 WARN_ON(cur_trans != trans->transaction); 2003 2004 /* btrfs_commit_tree_roots is responsible for getting the 2005 * various roots consistent with each other. Every pointer 2006 * in the tree of tree roots has to point to the most up to date 2007 * root for every subvolume and other tree. So, we have to keep 2008 * the tree logging code from jumping in and changing any 2009 * of the trees. 2010 * 2011 * At this point in the commit, there can't be any tree-log 2012 * writers, but a little lower down we drop the trans mutex 2013 * and let new people in. By holding the tree_log_mutex 2014 * from now until after the super is written, we avoid races 2015 * with the tree-log code. 2016 */ 2017 mutex_lock(&root->fs_info->tree_log_mutex); 2018 2019 ret = commit_fs_roots(trans, root); 2020 if (ret) { 2021 mutex_unlock(&root->fs_info->tree_log_mutex); 2022 mutex_unlock(&root->fs_info->reloc_mutex); 2023 goto scrub_continue; 2024 } 2025 2026 /* 2027 * Since the transaction is done, we can apply the pending changes 2028 * before the next transaction. 2029 */ 2030 btrfs_apply_pending_changes(root->fs_info); 2031 2032 /* commit_fs_roots gets rid of all the tree log roots, it is now 2033 * safe to free the root of tree log roots 2034 */ 2035 btrfs_free_log_root_tree(trans, root->fs_info); 2036 2037 /* 2038 * Since fs roots are all committed, we can get a quite accurate 2039 * new_roots. So let's do quota accounting. 2040 */ 2041 ret = btrfs_qgroup_account_extents(trans, root->fs_info); 2042 if (ret < 0) { 2043 mutex_unlock(&root->fs_info->tree_log_mutex); 2044 mutex_unlock(&root->fs_info->reloc_mutex); 2045 goto scrub_continue; 2046 } 2047 2048 ret = commit_cowonly_roots(trans, root); 2049 if (ret) { 2050 mutex_unlock(&root->fs_info->tree_log_mutex); 2051 mutex_unlock(&root->fs_info->reloc_mutex); 2052 goto scrub_continue; 2053 } 2054 2055 /* 2056 * The tasks which save the space cache and inode cache may also 2057 * update ->aborted, check it. 2058 */ 2059 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) { 2060 ret = cur_trans->aborted; 2061 mutex_unlock(&root->fs_info->tree_log_mutex); 2062 mutex_unlock(&root->fs_info->reloc_mutex); 2063 goto scrub_continue; 2064 } 2065 2066 btrfs_prepare_extent_commit(trans, root); 2067 2068 cur_trans = root->fs_info->running_transaction; 2069 2070 btrfs_set_root_node(&root->fs_info->tree_root->root_item, 2071 root->fs_info->tree_root->node); 2072 list_add_tail(&root->fs_info->tree_root->dirty_list, 2073 &cur_trans->switch_commits); 2074 2075 btrfs_set_root_node(&root->fs_info->chunk_root->root_item, 2076 root->fs_info->chunk_root->node); 2077 list_add_tail(&root->fs_info->chunk_root->dirty_list, 2078 &cur_trans->switch_commits); 2079 2080 switch_commit_roots(cur_trans, root->fs_info); 2081 2082 assert_qgroups_uptodate(trans); 2083 ASSERT(list_empty(&cur_trans->dirty_bgs)); 2084 ASSERT(list_empty(&cur_trans->io_bgs)); 2085 update_super_roots(root); 2086 2087 btrfs_set_super_log_root(root->fs_info->super_copy, 0); 2088 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0); 2089 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy, 2090 sizeof(*root->fs_info->super_copy)); 2091 2092 btrfs_update_commit_device_size(root->fs_info); 2093 btrfs_update_commit_device_bytes_used(root, cur_trans); 2094 2095 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags); 2096 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags); 2097 2098 btrfs_trans_release_chunk_metadata(trans); 2099 2100 spin_lock(&root->fs_info->trans_lock); 2101 cur_trans->state = TRANS_STATE_UNBLOCKED; 2102 root->fs_info->running_transaction = NULL; 2103 spin_unlock(&root->fs_info->trans_lock); 2104 mutex_unlock(&root->fs_info->reloc_mutex); 2105 2106 wake_up(&root->fs_info->transaction_wait); 2107 2108 ret = btrfs_write_and_wait_transaction(trans, root); 2109 if (ret) { 2110 btrfs_std_error(root->fs_info, ret, 2111 "Error while writing out transaction"); 2112 mutex_unlock(&root->fs_info->tree_log_mutex); 2113 goto scrub_continue; 2114 } 2115 2116 ret = write_ctree_super(trans, root, 0); 2117 if (ret) { 2118 mutex_unlock(&root->fs_info->tree_log_mutex); 2119 goto scrub_continue; 2120 } 2121 2122 /* 2123 * the super is written, we can safely allow the tree-loggers 2124 * to go about their business 2125 */ 2126 mutex_unlock(&root->fs_info->tree_log_mutex); 2127 2128 btrfs_finish_extent_commit(trans, root); 2129 2130 if (cur_trans->have_free_bgs) 2131 btrfs_clear_space_info_full(root->fs_info); 2132 2133 root->fs_info->last_trans_committed = cur_trans->transid; 2134 /* 2135 * We needn't acquire the lock here because there is no other task 2136 * which can change it. 2137 */ 2138 cur_trans->state = TRANS_STATE_COMPLETED; 2139 wake_up(&cur_trans->commit_wait); 2140 2141 spin_lock(&root->fs_info->trans_lock); 2142 list_del_init(&cur_trans->list); 2143 spin_unlock(&root->fs_info->trans_lock); 2144 2145 btrfs_put_transaction(cur_trans); 2146 btrfs_put_transaction(cur_trans); 2147 2148 if (trans->type & __TRANS_FREEZABLE) 2149 sb_end_intwrite(root->fs_info->sb); 2150 2151 trace_btrfs_transaction_commit(root); 2152 2153 btrfs_scrub_continue(root); 2154 2155 if (current->journal_info == trans) 2156 current->journal_info = NULL; 2157 2158 kmem_cache_free(btrfs_trans_handle_cachep, trans); 2159 2160 if (current != root->fs_info->transaction_kthread && 2161 current != root->fs_info->cleaner_kthread) 2162 btrfs_run_delayed_iputs(root); 2163 2164 return ret; 2165 2166 scrub_continue: 2167 btrfs_scrub_continue(root); 2168 cleanup_transaction: 2169 btrfs_trans_release_metadata(trans, root); 2170 btrfs_trans_release_chunk_metadata(trans); 2171 trans->block_rsv = NULL; 2172 if (trans->qgroup_reserved) { 2173 btrfs_qgroup_free(root, trans->qgroup_reserved); 2174 trans->qgroup_reserved = 0; 2175 } 2176 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction."); 2177 if (current->journal_info == trans) 2178 current->journal_info = NULL; 2179 cleanup_transaction(trans, root, ret); 2180 2181 return ret; 2182 } 2183 2184 /* 2185 * return < 0 if error 2186 * 0 if there are no more dead_roots at the time of call 2187 * 1 there are more to be processed, call me again 2188 * 2189 * The return value indicates there are certainly more snapshots to delete, but 2190 * if there comes a new one during processing, it may return 0. We don't mind, 2191 * because btrfs_commit_super will poke cleaner thread and it will process it a 2192 * few seconds later. 2193 */ 2194 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root) 2195 { 2196 int ret; 2197 struct btrfs_fs_info *fs_info = root->fs_info; 2198 2199 spin_lock(&fs_info->trans_lock); 2200 if (list_empty(&fs_info->dead_roots)) { 2201 spin_unlock(&fs_info->trans_lock); 2202 return 0; 2203 } 2204 root = list_first_entry(&fs_info->dead_roots, 2205 struct btrfs_root, root_list); 2206 list_del_init(&root->root_list); 2207 spin_unlock(&fs_info->trans_lock); 2208 2209 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid); 2210 2211 btrfs_kill_all_delayed_nodes(root); 2212 2213 if (btrfs_header_backref_rev(root->node) < 2214 BTRFS_MIXED_BACKREF_REV) 2215 ret = btrfs_drop_snapshot(root, NULL, 0, 0); 2216 else 2217 ret = btrfs_drop_snapshot(root, NULL, 1, 0); 2218 2219 return (ret < 0) ? 0 : 1; 2220 } 2221 2222 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info) 2223 { 2224 unsigned long prev; 2225 unsigned long bit; 2226 2227 prev = xchg(&fs_info->pending_changes, 0); 2228 if (!prev) 2229 return; 2230 2231 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE; 2232 if (prev & bit) 2233 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2234 prev &= ~bit; 2235 2236 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE; 2237 if (prev & bit) 2238 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE); 2239 prev &= ~bit; 2240 2241 bit = 1 << BTRFS_PENDING_COMMIT; 2242 if (prev & bit) 2243 btrfs_debug(fs_info, "pending commit done"); 2244 prev &= ~bit; 2245 2246 if (prev) 2247 btrfs_warn(fs_info, 2248 "unknown pending changes left 0x%lx, ignoring", prev); 2249 } 2250