xref: /openbmc/linux/fs/btrfs/transaction.c (revision 161c3549b45aeef05451b6822d8aaaf39c7bedce)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include "ctree.h"
27 #include "disk-io.h"
28 #include "transaction.h"
29 #include "locking.h"
30 #include "tree-log.h"
31 #include "inode-map.h"
32 #include "volumes.h"
33 #include "dev-replace.h"
34 #include "qgroup.h"
35 
36 #define BTRFS_ROOT_TRANS_TAG 0
37 
38 static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 	[TRANS_STATE_RUNNING]		= 0U,
40 	[TRANS_STATE_BLOCKED]		= (__TRANS_USERSPACE |
41 					   __TRANS_START),
42 	[TRANS_STATE_COMMIT_START]	= (__TRANS_USERSPACE |
43 					   __TRANS_START |
44 					   __TRANS_ATTACH),
45 	[TRANS_STATE_COMMIT_DOING]	= (__TRANS_USERSPACE |
46 					   __TRANS_START |
47 					   __TRANS_ATTACH |
48 					   __TRANS_JOIN),
49 	[TRANS_STATE_UNBLOCKED]		= (__TRANS_USERSPACE |
50 					   __TRANS_START |
51 					   __TRANS_ATTACH |
52 					   __TRANS_JOIN |
53 					   __TRANS_JOIN_NOLOCK),
54 	[TRANS_STATE_COMPLETED]		= (__TRANS_USERSPACE |
55 					   __TRANS_START |
56 					   __TRANS_ATTACH |
57 					   __TRANS_JOIN |
58 					   __TRANS_JOIN_NOLOCK),
59 };
60 
61 void btrfs_put_transaction(struct btrfs_transaction *transaction)
62 {
63 	WARN_ON(atomic_read(&transaction->use_count) == 0);
64 	if (atomic_dec_and_test(&transaction->use_count)) {
65 		BUG_ON(!list_empty(&transaction->list));
66 		WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 		if (transaction->delayed_refs.pending_csums)
68 			printk(KERN_ERR "pending csums is %llu\n",
69 			       transaction->delayed_refs.pending_csums);
70 		while (!list_empty(&transaction->pending_chunks)) {
71 			struct extent_map *em;
72 
73 			em = list_first_entry(&transaction->pending_chunks,
74 					      struct extent_map, list);
75 			list_del_init(&em->list);
76 			free_extent_map(em);
77 		}
78 		kmem_cache_free(btrfs_transaction_cachep, transaction);
79 	}
80 }
81 
82 static void clear_btree_io_tree(struct extent_io_tree *tree)
83 {
84 	spin_lock(&tree->lock);
85 	/*
86 	 * Do a single barrier for the waitqueue_active check here, the state
87 	 * of the waitqueue should not change once clear_btree_io_tree is
88 	 * called.
89 	 */
90 	smp_mb();
91 	while (!RB_EMPTY_ROOT(&tree->state)) {
92 		struct rb_node *node;
93 		struct extent_state *state;
94 
95 		node = rb_first(&tree->state);
96 		state = rb_entry(node, struct extent_state, rb_node);
97 		rb_erase(&state->rb_node, &tree->state);
98 		RB_CLEAR_NODE(&state->rb_node);
99 		/*
100 		 * btree io trees aren't supposed to have tasks waiting for
101 		 * changes in the flags of extent states ever.
102 		 */
103 		ASSERT(!waitqueue_active(&state->wq));
104 		free_extent_state(state);
105 
106 		cond_resched_lock(&tree->lock);
107 	}
108 	spin_unlock(&tree->lock);
109 }
110 
111 static noinline void switch_commit_roots(struct btrfs_transaction *trans,
112 					 struct btrfs_fs_info *fs_info)
113 {
114 	struct btrfs_root *root, *tmp;
115 
116 	down_write(&fs_info->commit_root_sem);
117 	list_for_each_entry_safe(root, tmp, &trans->switch_commits,
118 				 dirty_list) {
119 		list_del_init(&root->dirty_list);
120 		free_extent_buffer(root->commit_root);
121 		root->commit_root = btrfs_root_node(root);
122 		if (is_fstree(root->objectid))
123 			btrfs_unpin_free_ino(root);
124 		clear_btree_io_tree(&root->dirty_log_pages);
125 	}
126 
127 	/* We can free old roots now. */
128 	spin_lock(&trans->dropped_roots_lock);
129 	while (!list_empty(&trans->dropped_roots)) {
130 		root = list_first_entry(&trans->dropped_roots,
131 					struct btrfs_root, root_list);
132 		list_del_init(&root->root_list);
133 		spin_unlock(&trans->dropped_roots_lock);
134 		btrfs_drop_and_free_fs_root(fs_info, root);
135 		spin_lock(&trans->dropped_roots_lock);
136 	}
137 	spin_unlock(&trans->dropped_roots_lock);
138 	up_write(&fs_info->commit_root_sem);
139 }
140 
141 static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
142 					 unsigned int type)
143 {
144 	if (type & TRANS_EXTWRITERS)
145 		atomic_inc(&trans->num_extwriters);
146 }
147 
148 static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
149 					 unsigned int type)
150 {
151 	if (type & TRANS_EXTWRITERS)
152 		atomic_dec(&trans->num_extwriters);
153 }
154 
155 static inline void extwriter_counter_init(struct btrfs_transaction *trans,
156 					  unsigned int type)
157 {
158 	atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
159 }
160 
161 static inline int extwriter_counter_read(struct btrfs_transaction *trans)
162 {
163 	return atomic_read(&trans->num_extwriters);
164 }
165 
166 /*
167  * either allocate a new transaction or hop into the existing one
168  */
169 static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
170 {
171 	struct btrfs_transaction *cur_trans;
172 	struct btrfs_fs_info *fs_info = root->fs_info;
173 
174 	spin_lock(&fs_info->trans_lock);
175 loop:
176 	/* The file system has been taken offline. No new transactions. */
177 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
178 		spin_unlock(&fs_info->trans_lock);
179 		return -EROFS;
180 	}
181 
182 	cur_trans = fs_info->running_transaction;
183 	if (cur_trans) {
184 		if (cur_trans->aborted) {
185 			spin_unlock(&fs_info->trans_lock);
186 			return cur_trans->aborted;
187 		}
188 		if (btrfs_blocked_trans_types[cur_trans->state] & type) {
189 			spin_unlock(&fs_info->trans_lock);
190 			return -EBUSY;
191 		}
192 		atomic_inc(&cur_trans->use_count);
193 		atomic_inc(&cur_trans->num_writers);
194 		extwriter_counter_inc(cur_trans, type);
195 		spin_unlock(&fs_info->trans_lock);
196 		return 0;
197 	}
198 	spin_unlock(&fs_info->trans_lock);
199 
200 	/*
201 	 * If we are ATTACH, we just want to catch the current transaction,
202 	 * and commit it. If there is no transaction, just return ENOENT.
203 	 */
204 	if (type == TRANS_ATTACH)
205 		return -ENOENT;
206 
207 	/*
208 	 * JOIN_NOLOCK only happens during the transaction commit, so
209 	 * it is impossible that ->running_transaction is NULL
210 	 */
211 	BUG_ON(type == TRANS_JOIN_NOLOCK);
212 
213 	cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
214 	if (!cur_trans)
215 		return -ENOMEM;
216 
217 	spin_lock(&fs_info->trans_lock);
218 	if (fs_info->running_transaction) {
219 		/*
220 		 * someone started a transaction after we unlocked.  Make sure
221 		 * to redo the checks above
222 		 */
223 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
224 		goto loop;
225 	} else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
226 		spin_unlock(&fs_info->trans_lock);
227 		kmem_cache_free(btrfs_transaction_cachep, cur_trans);
228 		return -EROFS;
229 	}
230 
231 	atomic_set(&cur_trans->num_writers, 1);
232 	extwriter_counter_init(cur_trans, type);
233 	init_waitqueue_head(&cur_trans->writer_wait);
234 	init_waitqueue_head(&cur_trans->commit_wait);
235 	init_waitqueue_head(&cur_trans->pending_wait);
236 	cur_trans->state = TRANS_STATE_RUNNING;
237 	/*
238 	 * One for this trans handle, one so it will live on until we
239 	 * commit the transaction.
240 	 */
241 	atomic_set(&cur_trans->use_count, 2);
242 	cur_trans->have_free_bgs = 0;
243 	atomic_set(&cur_trans->pending_ordered, 0);
244 	cur_trans->start_time = get_seconds();
245 	cur_trans->dirty_bg_run = 0;
246 
247 	memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
248 
249 	cur_trans->delayed_refs.href_root = RB_ROOT;
250 	cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
251 	atomic_set(&cur_trans->delayed_refs.num_entries, 0);
252 
253 	/*
254 	 * although the tree mod log is per file system and not per transaction,
255 	 * the log must never go across transaction boundaries.
256 	 */
257 	smp_mb();
258 	if (!list_empty(&fs_info->tree_mod_seq_list))
259 		WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
260 			"creating a fresh transaction\n");
261 	if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
262 		WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
263 			"creating a fresh transaction\n");
264 	atomic64_set(&fs_info->tree_mod_seq, 0);
265 
266 	spin_lock_init(&cur_trans->delayed_refs.lock);
267 
268 	INIT_LIST_HEAD(&cur_trans->pending_snapshots);
269 	INIT_LIST_HEAD(&cur_trans->pending_chunks);
270 	INIT_LIST_HEAD(&cur_trans->switch_commits);
271 	INIT_LIST_HEAD(&cur_trans->dirty_bgs);
272 	INIT_LIST_HEAD(&cur_trans->io_bgs);
273 	INIT_LIST_HEAD(&cur_trans->dropped_roots);
274 	mutex_init(&cur_trans->cache_write_mutex);
275 	cur_trans->num_dirty_bgs = 0;
276 	spin_lock_init(&cur_trans->dirty_bgs_lock);
277 	INIT_LIST_HEAD(&cur_trans->deleted_bgs);
278 	spin_lock_init(&cur_trans->deleted_bgs_lock);
279 	spin_lock_init(&cur_trans->dropped_roots_lock);
280 	list_add_tail(&cur_trans->list, &fs_info->trans_list);
281 	extent_io_tree_init(&cur_trans->dirty_pages,
282 			     fs_info->btree_inode->i_mapping);
283 	fs_info->generation++;
284 	cur_trans->transid = fs_info->generation;
285 	fs_info->running_transaction = cur_trans;
286 	cur_trans->aborted = 0;
287 	spin_unlock(&fs_info->trans_lock);
288 
289 	return 0;
290 }
291 
292 /*
293  * this does all the record keeping required to make sure that a reference
294  * counted root is properly recorded in a given transaction.  This is required
295  * to make sure the old root from before we joined the transaction is deleted
296  * when the transaction commits
297  */
298 static int record_root_in_trans(struct btrfs_trans_handle *trans,
299 			       struct btrfs_root *root)
300 {
301 	if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
302 	    root->last_trans < trans->transid) {
303 		WARN_ON(root == root->fs_info->extent_root);
304 		WARN_ON(root->commit_root != root->node);
305 
306 		/*
307 		 * see below for IN_TRANS_SETUP usage rules
308 		 * we have the reloc mutex held now, so there
309 		 * is only one writer in this function
310 		 */
311 		set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
312 
313 		/* make sure readers find IN_TRANS_SETUP before
314 		 * they find our root->last_trans update
315 		 */
316 		smp_wmb();
317 
318 		spin_lock(&root->fs_info->fs_roots_radix_lock);
319 		if (root->last_trans == trans->transid) {
320 			spin_unlock(&root->fs_info->fs_roots_radix_lock);
321 			return 0;
322 		}
323 		radix_tree_tag_set(&root->fs_info->fs_roots_radix,
324 			   (unsigned long)root->root_key.objectid,
325 			   BTRFS_ROOT_TRANS_TAG);
326 		spin_unlock(&root->fs_info->fs_roots_radix_lock);
327 		root->last_trans = trans->transid;
328 
329 		/* this is pretty tricky.  We don't want to
330 		 * take the relocation lock in btrfs_record_root_in_trans
331 		 * unless we're really doing the first setup for this root in
332 		 * this transaction.
333 		 *
334 		 * Normally we'd use root->last_trans as a flag to decide
335 		 * if we want to take the expensive mutex.
336 		 *
337 		 * But, we have to set root->last_trans before we
338 		 * init the relocation root, otherwise, we trip over warnings
339 		 * in ctree.c.  The solution used here is to flag ourselves
340 		 * with root IN_TRANS_SETUP.  When this is 1, we're still
341 		 * fixing up the reloc trees and everyone must wait.
342 		 *
343 		 * When this is zero, they can trust root->last_trans and fly
344 		 * through btrfs_record_root_in_trans without having to take the
345 		 * lock.  smp_wmb() makes sure that all the writes above are
346 		 * done before we pop in the zero below
347 		 */
348 		btrfs_init_reloc_root(trans, root);
349 		smp_mb__before_atomic();
350 		clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
351 	}
352 	return 0;
353 }
354 
355 
356 void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
357 			    struct btrfs_root *root)
358 {
359 	struct btrfs_transaction *cur_trans = trans->transaction;
360 
361 	/* Add ourselves to the transaction dropped list */
362 	spin_lock(&cur_trans->dropped_roots_lock);
363 	list_add_tail(&root->root_list, &cur_trans->dropped_roots);
364 	spin_unlock(&cur_trans->dropped_roots_lock);
365 
366 	/* Make sure we don't try to update the root at commit time */
367 	spin_lock(&root->fs_info->fs_roots_radix_lock);
368 	radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
369 			     (unsigned long)root->root_key.objectid,
370 			     BTRFS_ROOT_TRANS_TAG);
371 	spin_unlock(&root->fs_info->fs_roots_radix_lock);
372 }
373 
374 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
375 			       struct btrfs_root *root)
376 {
377 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
378 		return 0;
379 
380 	/*
381 	 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
382 	 * and barriers
383 	 */
384 	smp_rmb();
385 	if (root->last_trans == trans->transid &&
386 	    !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
387 		return 0;
388 
389 	mutex_lock(&root->fs_info->reloc_mutex);
390 	record_root_in_trans(trans, root);
391 	mutex_unlock(&root->fs_info->reloc_mutex);
392 
393 	return 0;
394 }
395 
396 static inline int is_transaction_blocked(struct btrfs_transaction *trans)
397 {
398 	return (trans->state >= TRANS_STATE_BLOCKED &&
399 		trans->state < TRANS_STATE_UNBLOCKED &&
400 		!trans->aborted);
401 }
402 
403 /* wait for commit against the current transaction to become unblocked
404  * when this is done, it is safe to start a new transaction, but the current
405  * transaction might not be fully on disk.
406  */
407 static void wait_current_trans(struct btrfs_root *root)
408 {
409 	struct btrfs_transaction *cur_trans;
410 
411 	spin_lock(&root->fs_info->trans_lock);
412 	cur_trans = root->fs_info->running_transaction;
413 	if (cur_trans && is_transaction_blocked(cur_trans)) {
414 		atomic_inc(&cur_trans->use_count);
415 		spin_unlock(&root->fs_info->trans_lock);
416 
417 		wait_event(root->fs_info->transaction_wait,
418 			   cur_trans->state >= TRANS_STATE_UNBLOCKED ||
419 			   cur_trans->aborted);
420 		btrfs_put_transaction(cur_trans);
421 	} else {
422 		spin_unlock(&root->fs_info->trans_lock);
423 	}
424 }
425 
426 static int may_wait_transaction(struct btrfs_root *root, int type)
427 {
428 	if (root->fs_info->log_root_recovering)
429 		return 0;
430 
431 	if (type == TRANS_USERSPACE)
432 		return 1;
433 
434 	if (type == TRANS_START &&
435 	    !atomic_read(&root->fs_info->open_ioctl_trans))
436 		return 1;
437 
438 	return 0;
439 }
440 
441 static inline bool need_reserve_reloc_root(struct btrfs_root *root)
442 {
443 	if (!root->fs_info->reloc_ctl ||
444 	    !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
445 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
446 	    root->reloc_root)
447 		return false;
448 
449 	return true;
450 }
451 
452 static struct btrfs_trans_handle *
453 start_transaction(struct btrfs_root *root, unsigned int num_items,
454 		  unsigned int type, enum btrfs_reserve_flush_enum flush)
455 {
456 	struct btrfs_trans_handle *h;
457 	struct btrfs_transaction *cur_trans;
458 	u64 num_bytes = 0;
459 	u64 qgroup_reserved = 0;
460 	bool reloc_reserved = false;
461 	int ret;
462 
463 	/* Send isn't supposed to start transactions. */
464 	ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
465 
466 	if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
467 		return ERR_PTR(-EROFS);
468 
469 	if (current->journal_info) {
470 		WARN_ON(type & TRANS_EXTWRITERS);
471 		h = current->journal_info;
472 		h->use_count++;
473 		WARN_ON(h->use_count > 2);
474 		h->orig_rsv = h->block_rsv;
475 		h->block_rsv = NULL;
476 		goto got_it;
477 	}
478 
479 	/*
480 	 * Do the reservation before we join the transaction so we can do all
481 	 * the appropriate flushing if need be.
482 	 */
483 	if (num_items > 0 && root != root->fs_info->chunk_root) {
484 		if (root->fs_info->quota_enabled &&
485 		    is_fstree(root->root_key.objectid)) {
486 			qgroup_reserved = num_items * root->nodesize;
487 			ret = btrfs_qgroup_reserve(root, qgroup_reserved);
488 			if (ret)
489 				return ERR_PTR(ret);
490 		}
491 
492 		num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
493 		/*
494 		 * Do the reservation for the relocation root creation
495 		 */
496 		if (need_reserve_reloc_root(root)) {
497 			num_bytes += root->nodesize;
498 			reloc_reserved = true;
499 		}
500 
501 		ret = btrfs_block_rsv_add(root,
502 					  &root->fs_info->trans_block_rsv,
503 					  num_bytes, flush);
504 		if (ret)
505 			goto reserve_fail;
506 	}
507 again:
508 	h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
509 	if (!h) {
510 		ret = -ENOMEM;
511 		goto alloc_fail;
512 	}
513 
514 	/*
515 	 * If we are JOIN_NOLOCK we're already committing a transaction and
516 	 * waiting on this guy, so we don't need to do the sb_start_intwrite
517 	 * because we're already holding a ref.  We need this because we could
518 	 * have raced in and did an fsync() on a file which can kick a commit
519 	 * and then we deadlock with somebody doing a freeze.
520 	 *
521 	 * If we are ATTACH, it means we just want to catch the current
522 	 * transaction and commit it, so we needn't do sb_start_intwrite().
523 	 */
524 	if (type & __TRANS_FREEZABLE)
525 		sb_start_intwrite(root->fs_info->sb);
526 
527 	if (may_wait_transaction(root, type))
528 		wait_current_trans(root);
529 
530 	do {
531 		ret = join_transaction(root, type);
532 		if (ret == -EBUSY) {
533 			wait_current_trans(root);
534 			if (unlikely(type == TRANS_ATTACH))
535 				ret = -ENOENT;
536 		}
537 	} while (ret == -EBUSY);
538 
539 	if (ret < 0) {
540 		/* We must get the transaction if we are JOIN_NOLOCK. */
541 		BUG_ON(type == TRANS_JOIN_NOLOCK);
542 		goto join_fail;
543 	}
544 
545 	cur_trans = root->fs_info->running_transaction;
546 
547 	h->transid = cur_trans->transid;
548 	h->transaction = cur_trans;
549 	h->root = root;
550 	h->use_count = 1;
551 	h->type = type;
552 	h->can_flush_pending_bgs = true;
553 	INIT_LIST_HEAD(&h->qgroup_ref_list);
554 	INIT_LIST_HEAD(&h->new_bgs);
555 
556 	smp_mb();
557 	if (cur_trans->state >= TRANS_STATE_BLOCKED &&
558 	    may_wait_transaction(root, type)) {
559 		current->journal_info = h;
560 		btrfs_commit_transaction(h, root);
561 		goto again;
562 	}
563 
564 	if (num_bytes) {
565 		trace_btrfs_space_reservation(root->fs_info, "transaction",
566 					      h->transid, num_bytes, 1);
567 		h->block_rsv = &root->fs_info->trans_block_rsv;
568 		h->bytes_reserved = num_bytes;
569 		h->reloc_reserved = reloc_reserved;
570 	}
571 	h->qgroup_reserved = qgroup_reserved;
572 
573 got_it:
574 	btrfs_record_root_in_trans(h, root);
575 
576 	if (!current->journal_info && type != TRANS_USERSPACE)
577 		current->journal_info = h;
578 	return h;
579 
580 join_fail:
581 	if (type & __TRANS_FREEZABLE)
582 		sb_end_intwrite(root->fs_info->sb);
583 	kmem_cache_free(btrfs_trans_handle_cachep, h);
584 alloc_fail:
585 	if (num_bytes)
586 		btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
587 					num_bytes);
588 reserve_fail:
589 	if (qgroup_reserved)
590 		btrfs_qgroup_free(root, qgroup_reserved);
591 	return ERR_PTR(ret);
592 }
593 
594 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
595 						   unsigned int num_items)
596 {
597 	return start_transaction(root, num_items, TRANS_START,
598 				 BTRFS_RESERVE_FLUSH_ALL);
599 }
600 
601 struct btrfs_trans_handle *btrfs_start_transaction_lflush(
602 					struct btrfs_root *root,
603 					unsigned int num_items)
604 {
605 	return start_transaction(root, num_items, TRANS_START,
606 				 BTRFS_RESERVE_FLUSH_LIMIT);
607 }
608 
609 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
610 {
611 	return start_transaction(root, 0, TRANS_JOIN, 0);
612 }
613 
614 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
615 {
616 	return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
617 }
618 
619 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
620 {
621 	return start_transaction(root, 0, TRANS_USERSPACE, 0);
622 }
623 
624 /*
625  * btrfs_attach_transaction() - catch the running transaction
626  *
627  * It is used when we want to commit the current the transaction, but
628  * don't want to start a new one.
629  *
630  * Note: If this function return -ENOENT, it just means there is no
631  * running transaction. But it is possible that the inactive transaction
632  * is still in the memory, not fully on disk. If you hope there is no
633  * inactive transaction in the fs when -ENOENT is returned, you should
634  * invoke
635  *     btrfs_attach_transaction_barrier()
636  */
637 struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
638 {
639 	return start_transaction(root, 0, TRANS_ATTACH, 0);
640 }
641 
642 /*
643  * btrfs_attach_transaction_barrier() - catch the running transaction
644  *
645  * It is similar to the above function, the differentia is this one
646  * will wait for all the inactive transactions until they fully
647  * complete.
648  */
649 struct btrfs_trans_handle *
650 btrfs_attach_transaction_barrier(struct btrfs_root *root)
651 {
652 	struct btrfs_trans_handle *trans;
653 
654 	trans = start_transaction(root, 0, TRANS_ATTACH, 0);
655 	if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
656 		btrfs_wait_for_commit(root, 0);
657 
658 	return trans;
659 }
660 
661 /* wait for a transaction commit to be fully complete */
662 static noinline void wait_for_commit(struct btrfs_root *root,
663 				    struct btrfs_transaction *commit)
664 {
665 	wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
666 }
667 
668 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
669 {
670 	struct btrfs_transaction *cur_trans = NULL, *t;
671 	int ret = 0;
672 
673 	if (transid) {
674 		if (transid <= root->fs_info->last_trans_committed)
675 			goto out;
676 
677 		/* find specified transaction */
678 		spin_lock(&root->fs_info->trans_lock);
679 		list_for_each_entry(t, &root->fs_info->trans_list, list) {
680 			if (t->transid == transid) {
681 				cur_trans = t;
682 				atomic_inc(&cur_trans->use_count);
683 				ret = 0;
684 				break;
685 			}
686 			if (t->transid > transid) {
687 				ret = 0;
688 				break;
689 			}
690 		}
691 		spin_unlock(&root->fs_info->trans_lock);
692 
693 		/*
694 		 * The specified transaction doesn't exist, or we
695 		 * raced with btrfs_commit_transaction
696 		 */
697 		if (!cur_trans) {
698 			if (transid > root->fs_info->last_trans_committed)
699 				ret = -EINVAL;
700 			goto out;
701 		}
702 	} else {
703 		/* find newest transaction that is committing | committed */
704 		spin_lock(&root->fs_info->trans_lock);
705 		list_for_each_entry_reverse(t, &root->fs_info->trans_list,
706 					    list) {
707 			if (t->state >= TRANS_STATE_COMMIT_START) {
708 				if (t->state == TRANS_STATE_COMPLETED)
709 					break;
710 				cur_trans = t;
711 				atomic_inc(&cur_trans->use_count);
712 				break;
713 			}
714 		}
715 		spin_unlock(&root->fs_info->trans_lock);
716 		if (!cur_trans)
717 			goto out;  /* nothing committing|committed */
718 	}
719 
720 	wait_for_commit(root, cur_trans);
721 	btrfs_put_transaction(cur_trans);
722 out:
723 	return ret;
724 }
725 
726 void btrfs_throttle(struct btrfs_root *root)
727 {
728 	if (!atomic_read(&root->fs_info->open_ioctl_trans))
729 		wait_current_trans(root);
730 }
731 
732 static int should_end_transaction(struct btrfs_trans_handle *trans,
733 				  struct btrfs_root *root)
734 {
735 	if (root->fs_info->global_block_rsv.space_info->full &&
736 	    btrfs_check_space_for_delayed_refs(trans, root))
737 		return 1;
738 
739 	return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
740 }
741 
742 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
743 				 struct btrfs_root *root)
744 {
745 	struct btrfs_transaction *cur_trans = trans->transaction;
746 	int updates;
747 	int err;
748 
749 	smp_mb();
750 	if (cur_trans->state >= TRANS_STATE_BLOCKED ||
751 	    cur_trans->delayed_refs.flushing)
752 		return 1;
753 
754 	updates = trans->delayed_ref_updates;
755 	trans->delayed_ref_updates = 0;
756 	if (updates) {
757 		err = btrfs_run_delayed_refs(trans, root, updates * 2);
758 		if (err) /* Error code will also eval true */
759 			return err;
760 	}
761 
762 	return should_end_transaction(trans, root);
763 }
764 
765 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
766 			  struct btrfs_root *root, int throttle)
767 {
768 	struct btrfs_transaction *cur_trans = trans->transaction;
769 	struct btrfs_fs_info *info = root->fs_info;
770 	unsigned long cur = trans->delayed_ref_updates;
771 	int lock = (trans->type != TRANS_JOIN_NOLOCK);
772 	int err = 0;
773 	int must_run_delayed_refs = 0;
774 
775 	if (trans->use_count > 1) {
776 		trans->use_count--;
777 		trans->block_rsv = trans->orig_rsv;
778 		return 0;
779 	}
780 
781 	btrfs_trans_release_metadata(trans, root);
782 	trans->block_rsv = NULL;
783 
784 	if (!list_empty(&trans->new_bgs))
785 		btrfs_create_pending_block_groups(trans, root);
786 
787 	trans->delayed_ref_updates = 0;
788 	if (!trans->sync) {
789 		must_run_delayed_refs =
790 			btrfs_should_throttle_delayed_refs(trans, root);
791 		cur = max_t(unsigned long, cur, 32);
792 
793 		/*
794 		 * don't make the caller wait if they are from a NOLOCK
795 		 * or ATTACH transaction, it will deadlock with commit
796 		 */
797 		if (must_run_delayed_refs == 1 &&
798 		    (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
799 			must_run_delayed_refs = 2;
800 	}
801 
802 	if (trans->qgroup_reserved) {
803 		/*
804 		 * the same root has to be passed here between start_transaction
805 		 * and end_transaction. Subvolume quota depends on this.
806 		 */
807 		btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
808 		trans->qgroup_reserved = 0;
809 	}
810 
811 	btrfs_trans_release_metadata(trans, root);
812 	trans->block_rsv = NULL;
813 
814 	if (!list_empty(&trans->new_bgs))
815 		btrfs_create_pending_block_groups(trans, root);
816 
817 	btrfs_trans_release_chunk_metadata(trans);
818 
819 	if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
820 	    should_end_transaction(trans, root) &&
821 	    ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
822 		spin_lock(&info->trans_lock);
823 		if (cur_trans->state == TRANS_STATE_RUNNING)
824 			cur_trans->state = TRANS_STATE_BLOCKED;
825 		spin_unlock(&info->trans_lock);
826 	}
827 
828 	if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
829 		if (throttle)
830 			return btrfs_commit_transaction(trans, root);
831 		else
832 			wake_up_process(info->transaction_kthread);
833 	}
834 
835 	if (trans->type & __TRANS_FREEZABLE)
836 		sb_end_intwrite(root->fs_info->sb);
837 
838 	WARN_ON(cur_trans != info->running_transaction);
839 	WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
840 	atomic_dec(&cur_trans->num_writers);
841 	extwriter_counter_dec(cur_trans, trans->type);
842 
843 	/*
844 	 * Make sure counter is updated before we wake up waiters.
845 	 */
846 	smp_mb();
847 	if (waitqueue_active(&cur_trans->writer_wait))
848 		wake_up(&cur_trans->writer_wait);
849 	btrfs_put_transaction(cur_trans);
850 
851 	if (current->journal_info == trans)
852 		current->journal_info = NULL;
853 
854 	if (throttle)
855 		btrfs_run_delayed_iputs(root);
856 
857 	if (trans->aborted ||
858 	    test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
859 		wake_up_process(info->transaction_kthread);
860 		err = -EIO;
861 	}
862 	assert_qgroups_uptodate(trans);
863 
864 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
865 	if (must_run_delayed_refs) {
866 		btrfs_async_run_delayed_refs(root, cur,
867 					     must_run_delayed_refs == 1);
868 	}
869 	return err;
870 }
871 
872 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
873 			  struct btrfs_root *root)
874 {
875 	return __btrfs_end_transaction(trans, root, 0);
876 }
877 
878 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
879 				   struct btrfs_root *root)
880 {
881 	return __btrfs_end_transaction(trans, root, 1);
882 }
883 
884 /*
885  * when btree blocks are allocated, they have some corresponding bits set for
886  * them in one of two extent_io trees.  This is used to make sure all of
887  * those extents are sent to disk but does not wait on them
888  */
889 int btrfs_write_marked_extents(struct btrfs_root *root,
890 			       struct extent_io_tree *dirty_pages, int mark)
891 {
892 	int err = 0;
893 	int werr = 0;
894 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
895 	struct extent_state *cached_state = NULL;
896 	u64 start = 0;
897 	u64 end;
898 
899 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
900 				      mark, &cached_state)) {
901 		bool wait_writeback = false;
902 
903 		err = convert_extent_bit(dirty_pages, start, end,
904 					 EXTENT_NEED_WAIT,
905 					 mark, &cached_state, GFP_NOFS);
906 		/*
907 		 * convert_extent_bit can return -ENOMEM, which is most of the
908 		 * time a temporary error. So when it happens, ignore the error
909 		 * and wait for writeback of this range to finish - because we
910 		 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
911 		 * to btrfs_wait_marked_extents() would not know that writeback
912 		 * for this range started and therefore wouldn't wait for it to
913 		 * finish - we don't want to commit a superblock that points to
914 		 * btree nodes/leafs for which writeback hasn't finished yet
915 		 * (and without errors).
916 		 * We cleanup any entries left in the io tree when committing
917 		 * the transaction (through clear_btree_io_tree()).
918 		 */
919 		if (err == -ENOMEM) {
920 			err = 0;
921 			wait_writeback = true;
922 		}
923 		if (!err)
924 			err = filemap_fdatawrite_range(mapping, start, end);
925 		if (err)
926 			werr = err;
927 		else if (wait_writeback)
928 			werr = filemap_fdatawait_range(mapping, start, end);
929 		free_extent_state(cached_state);
930 		cached_state = NULL;
931 		cond_resched();
932 		start = end + 1;
933 	}
934 	return werr;
935 }
936 
937 /*
938  * when btree blocks are allocated, they have some corresponding bits set for
939  * them in one of two extent_io trees.  This is used to make sure all of
940  * those extents are on disk for transaction or log commit.  We wait
941  * on all the pages and clear them from the dirty pages state tree
942  */
943 int btrfs_wait_marked_extents(struct btrfs_root *root,
944 			      struct extent_io_tree *dirty_pages, int mark)
945 {
946 	int err = 0;
947 	int werr = 0;
948 	struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
949 	struct extent_state *cached_state = NULL;
950 	u64 start = 0;
951 	u64 end;
952 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
953 	bool errors = false;
954 
955 	while (!find_first_extent_bit(dirty_pages, start, &start, &end,
956 				      EXTENT_NEED_WAIT, &cached_state)) {
957 		/*
958 		 * Ignore -ENOMEM errors returned by clear_extent_bit().
959 		 * When committing the transaction, we'll remove any entries
960 		 * left in the io tree. For a log commit, we don't remove them
961 		 * after committing the log because the tree can be accessed
962 		 * concurrently - we do it only at transaction commit time when
963 		 * it's safe to do it (through clear_btree_io_tree()).
964 		 */
965 		err = clear_extent_bit(dirty_pages, start, end,
966 				       EXTENT_NEED_WAIT,
967 				       0, 0, &cached_state, GFP_NOFS);
968 		if (err == -ENOMEM)
969 			err = 0;
970 		if (!err)
971 			err = filemap_fdatawait_range(mapping, start, end);
972 		if (err)
973 			werr = err;
974 		free_extent_state(cached_state);
975 		cached_state = NULL;
976 		cond_resched();
977 		start = end + 1;
978 	}
979 	if (err)
980 		werr = err;
981 
982 	if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
983 		if ((mark & EXTENT_DIRTY) &&
984 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
985 				       &btree_ino->runtime_flags))
986 			errors = true;
987 
988 		if ((mark & EXTENT_NEW) &&
989 		    test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
990 				       &btree_ino->runtime_flags))
991 			errors = true;
992 	} else {
993 		if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
994 				       &btree_ino->runtime_flags))
995 			errors = true;
996 	}
997 
998 	if (errors && !werr)
999 		werr = -EIO;
1000 
1001 	return werr;
1002 }
1003 
1004 /*
1005  * when btree blocks are allocated, they have some corresponding bits set for
1006  * them in one of two extent_io trees.  This is used to make sure all of
1007  * those extents are on disk for transaction or log commit
1008  */
1009 static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1010 				struct extent_io_tree *dirty_pages, int mark)
1011 {
1012 	int ret;
1013 	int ret2;
1014 	struct blk_plug plug;
1015 
1016 	blk_start_plug(&plug);
1017 	ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1018 	blk_finish_plug(&plug);
1019 	ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1020 
1021 	if (ret)
1022 		return ret;
1023 	if (ret2)
1024 		return ret2;
1025 	return 0;
1026 }
1027 
1028 static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1029 				     struct btrfs_root *root)
1030 {
1031 	int ret;
1032 
1033 	ret = btrfs_write_and_wait_marked_extents(root,
1034 					   &trans->transaction->dirty_pages,
1035 					   EXTENT_DIRTY);
1036 	clear_btree_io_tree(&trans->transaction->dirty_pages);
1037 
1038 	return ret;
1039 }
1040 
1041 /*
1042  * this is used to update the root pointer in the tree of tree roots.
1043  *
1044  * But, in the case of the extent allocation tree, updating the root
1045  * pointer may allocate blocks which may change the root of the extent
1046  * allocation tree.
1047  *
1048  * So, this loops and repeats and makes sure the cowonly root didn't
1049  * change while the root pointer was being updated in the metadata.
1050  */
1051 static int update_cowonly_root(struct btrfs_trans_handle *trans,
1052 			       struct btrfs_root *root)
1053 {
1054 	int ret;
1055 	u64 old_root_bytenr;
1056 	u64 old_root_used;
1057 	struct btrfs_root *tree_root = root->fs_info->tree_root;
1058 
1059 	old_root_used = btrfs_root_used(&root->root_item);
1060 
1061 	while (1) {
1062 		old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1063 		if (old_root_bytenr == root->node->start &&
1064 		    old_root_used == btrfs_root_used(&root->root_item))
1065 			break;
1066 
1067 		btrfs_set_root_node(&root->root_item, root->node);
1068 		ret = btrfs_update_root(trans, tree_root,
1069 					&root->root_key,
1070 					&root->root_item);
1071 		if (ret)
1072 			return ret;
1073 
1074 		old_root_used = btrfs_root_used(&root->root_item);
1075 	}
1076 
1077 	return 0;
1078 }
1079 
1080 /*
1081  * update all the cowonly tree roots on disk
1082  *
1083  * The error handling in this function may not be obvious. Any of the
1084  * failures will cause the file system to go offline. We still need
1085  * to clean up the delayed refs.
1086  */
1087 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1088 					 struct btrfs_root *root)
1089 {
1090 	struct btrfs_fs_info *fs_info = root->fs_info;
1091 	struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1092 	struct list_head *io_bgs = &trans->transaction->io_bgs;
1093 	struct list_head *next;
1094 	struct extent_buffer *eb;
1095 	int ret;
1096 
1097 	eb = btrfs_lock_root_node(fs_info->tree_root);
1098 	ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1099 			      0, &eb);
1100 	btrfs_tree_unlock(eb);
1101 	free_extent_buffer(eb);
1102 
1103 	if (ret)
1104 		return ret;
1105 
1106 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1107 	if (ret)
1108 		return ret;
1109 
1110 	ret = btrfs_run_dev_stats(trans, root->fs_info);
1111 	if (ret)
1112 		return ret;
1113 	ret = btrfs_run_dev_replace(trans, root->fs_info);
1114 	if (ret)
1115 		return ret;
1116 	ret = btrfs_run_qgroups(trans, root->fs_info);
1117 	if (ret)
1118 		return ret;
1119 
1120 	ret = btrfs_setup_space_cache(trans, root);
1121 	if (ret)
1122 		return ret;
1123 
1124 	/* run_qgroups might have added some more refs */
1125 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1126 	if (ret)
1127 		return ret;
1128 again:
1129 	while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1130 		next = fs_info->dirty_cowonly_roots.next;
1131 		list_del_init(next);
1132 		root = list_entry(next, struct btrfs_root, dirty_list);
1133 		clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1134 
1135 		if (root != fs_info->extent_root)
1136 			list_add_tail(&root->dirty_list,
1137 				      &trans->transaction->switch_commits);
1138 		ret = update_cowonly_root(trans, root);
1139 		if (ret)
1140 			return ret;
1141 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1142 		if (ret)
1143 			return ret;
1144 	}
1145 
1146 	while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1147 		ret = btrfs_write_dirty_block_groups(trans, root);
1148 		if (ret)
1149 			return ret;
1150 		ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1151 		if (ret)
1152 			return ret;
1153 	}
1154 
1155 	if (!list_empty(&fs_info->dirty_cowonly_roots))
1156 		goto again;
1157 
1158 	list_add_tail(&fs_info->extent_root->dirty_list,
1159 		      &trans->transaction->switch_commits);
1160 	btrfs_after_dev_replace_commit(fs_info);
1161 
1162 	return 0;
1163 }
1164 
1165 /*
1166  * dead roots are old snapshots that need to be deleted.  This allocates
1167  * a dirty root struct and adds it into the list of dead roots that need to
1168  * be deleted
1169  */
1170 void btrfs_add_dead_root(struct btrfs_root *root)
1171 {
1172 	spin_lock(&root->fs_info->trans_lock);
1173 	if (list_empty(&root->root_list))
1174 		list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1175 	spin_unlock(&root->fs_info->trans_lock);
1176 }
1177 
1178 /*
1179  * update all the cowonly tree roots on disk
1180  */
1181 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1182 				    struct btrfs_root *root)
1183 {
1184 	struct btrfs_root *gang[8];
1185 	struct btrfs_fs_info *fs_info = root->fs_info;
1186 	int i;
1187 	int ret;
1188 	int err = 0;
1189 
1190 	spin_lock(&fs_info->fs_roots_radix_lock);
1191 	while (1) {
1192 		ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1193 						 (void **)gang, 0,
1194 						 ARRAY_SIZE(gang),
1195 						 BTRFS_ROOT_TRANS_TAG);
1196 		if (ret == 0)
1197 			break;
1198 		for (i = 0; i < ret; i++) {
1199 			root = gang[i];
1200 			radix_tree_tag_clear(&fs_info->fs_roots_radix,
1201 					(unsigned long)root->root_key.objectid,
1202 					BTRFS_ROOT_TRANS_TAG);
1203 			spin_unlock(&fs_info->fs_roots_radix_lock);
1204 
1205 			btrfs_free_log(trans, root);
1206 			btrfs_update_reloc_root(trans, root);
1207 			btrfs_orphan_commit_root(trans, root);
1208 
1209 			btrfs_save_ino_cache(root, trans);
1210 
1211 			/* see comments in should_cow_block() */
1212 			clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1213 			smp_mb__after_atomic();
1214 
1215 			if (root->commit_root != root->node) {
1216 				list_add_tail(&root->dirty_list,
1217 					&trans->transaction->switch_commits);
1218 				btrfs_set_root_node(&root->root_item,
1219 						    root->node);
1220 			}
1221 
1222 			err = btrfs_update_root(trans, fs_info->tree_root,
1223 						&root->root_key,
1224 						&root->root_item);
1225 			spin_lock(&fs_info->fs_roots_radix_lock);
1226 			if (err)
1227 				break;
1228 		}
1229 	}
1230 	spin_unlock(&fs_info->fs_roots_radix_lock);
1231 	return err;
1232 }
1233 
1234 /*
1235  * defrag a given btree.
1236  * Every leaf in the btree is read and defragged.
1237  */
1238 int btrfs_defrag_root(struct btrfs_root *root)
1239 {
1240 	struct btrfs_fs_info *info = root->fs_info;
1241 	struct btrfs_trans_handle *trans;
1242 	int ret;
1243 
1244 	if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1245 		return 0;
1246 
1247 	while (1) {
1248 		trans = btrfs_start_transaction(root, 0);
1249 		if (IS_ERR(trans))
1250 			return PTR_ERR(trans);
1251 
1252 		ret = btrfs_defrag_leaves(trans, root);
1253 
1254 		btrfs_end_transaction(trans, root);
1255 		btrfs_btree_balance_dirty(info->tree_root);
1256 		cond_resched();
1257 
1258 		if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1259 			break;
1260 
1261 		if (btrfs_defrag_cancelled(root->fs_info)) {
1262 			pr_debug("BTRFS: defrag_root cancelled\n");
1263 			ret = -EAGAIN;
1264 			break;
1265 		}
1266 	}
1267 	clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1268 	return ret;
1269 }
1270 
1271 /*
1272  * new snapshots need to be created at a very specific time in the
1273  * transaction commit.  This does the actual creation.
1274  *
1275  * Note:
1276  * If the error which may affect the commitment of the current transaction
1277  * happens, we should return the error number. If the error which just affect
1278  * the creation of the pending snapshots, just return 0.
1279  */
1280 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1281 				   struct btrfs_fs_info *fs_info,
1282 				   struct btrfs_pending_snapshot *pending)
1283 {
1284 	struct btrfs_key key;
1285 	struct btrfs_root_item *new_root_item;
1286 	struct btrfs_root *tree_root = fs_info->tree_root;
1287 	struct btrfs_root *root = pending->root;
1288 	struct btrfs_root *parent_root;
1289 	struct btrfs_block_rsv *rsv;
1290 	struct inode *parent_inode;
1291 	struct btrfs_path *path;
1292 	struct btrfs_dir_item *dir_item;
1293 	struct dentry *dentry;
1294 	struct extent_buffer *tmp;
1295 	struct extent_buffer *old;
1296 	struct timespec cur_time = CURRENT_TIME;
1297 	int ret = 0;
1298 	u64 to_reserve = 0;
1299 	u64 index = 0;
1300 	u64 objectid;
1301 	u64 root_flags;
1302 	uuid_le new_uuid;
1303 
1304 	path = btrfs_alloc_path();
1305 	if (!path) {
1306 		pending->error = -ENOMEM;
1307 		return 0;
1308 	}
1309 
1310 	new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1311 	if (!new_root_item) {
1312 		pending->error = -ENOMEM;
1313 		goto root_item_alloc_fail;
1314 	}
1315 
1316 	pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1317 	if (pending->error)
1318 		goto no_free_objectid;
1319 
1320 	/*
1321 	 * Make qgroup to skip current new snapshot's qgroupid, as it is
1322 	 * accounted by later btrfs_qgroup_inherit().
1323 	 */
1324 	btrfs_set_skip_qgroup(trans, objectid);
1325 
1326 	btrfs_reloc_pre_snapshot(pending, &to_reserve);
1327 
1328 	if (to_reserve > 0) {
1329 		pending->error = btrfs_block_rsv_add(root,
1330 						     &pending->block_rsv,
1331 						     to_reserve,
1332 						     BTRFS_RESERVE_NO_FLUSH);
1333 		if (pending->error)
1334 			goto clear_skip_qgroup;
1335 	}
1336 
1337 	key.objectid = objectid;
1338 	key.offset = (u64)-1;
1339 	key.type = BTRFS_ROOT_ITEM_KEY;
1340 
1341 	rsv = trans->block_rsv;
1342 	trans->block_rsv = &pending->block_rsv;
1343 	trans->bytes_reserved = trans->block_rsv->reserved;
1344 
1345 	dentry = pending->dentry;
1346 	parent_inode = pending->dir;
1347 	parent_root = BTRFS_I(parent_inode)->root;
1348 	record_root_in_trans(trans, parent_root);
1349 
1350 	/*
1351 	 * insert the directory item
1352 	 */
1353 	ret = btrfs_set_inode_index(parent_inode, &index);
1354 	BUG_ON(ret); /* -ENOMEM */
1355 
1356 	/* check if there is a file/dir which has the same name. */
1357 	dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1358 					 btrfs_ino(parent_inode),
1359 					 dentry->d_name.name,
1360 					 dentry->d_name.len, 0);
1361 	if (dir_item != NULL && !IS_ERR(dir_item)) {
1362 		pending->error = -EEXIST;
1363 		goto dir_item_existed;
1364 	} else if (IS_ERR(dir_item)) {
1365 		ret = PTR_ERR(dir_item);
1366 		btrfs_abort_transaction(trans, root, ret);
1367 		goto fail;
1368 	}
1369 	btrfs_release_path(path);
1370 
1371 	/*
1372 	 * pull in the delayed directory update
1373 	 * and the delayed inode item
1374 	 * otherwise we corrupt the FS during
1375 	 * snapshot
1376 	 */
1377 	ret = btrfs_run_delayed_items(trans, root);
1378 	if (ret) {	/* Transaction aborted */
1379 		btrfs_abort_transaction(trans, root, ret);
1380 		goto fail;
1381 	}
1382 
1383 	record_root_in_trans(trans, root);
1384 	btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1385 	memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1386 	btrfs_check_and_init_root_item(new_root_item);
1387 
1388 	root_flags = btrfs_root_flags(new_root_item);
1389 	if (pending->readonly)
1390 		root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1391 	else
1392 		root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1393 	btrfs_set_root_flags(new_root_item, root_flags);
1394 
1395 	btrfs_set_root_generation_v2(new_root_item,
1396 			trans->transid);
1397 	uuid_le_gen(&new_uuid);
1398 	memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1399 	memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1400 			BTRFS_UUID_SIZE);
1401 	if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1402 		memset(new_root_item->received_uuid, 0,
1403 		       sizeof(new_root_item->received_uuid));
1404 		memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1405 		memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1406 		btrfs_set_root_stransid(new_root_item, 0);
1407 		btrfs_set_root_rtransid(new_root_item, 0);
1408 	}
1409 	btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1410 	btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1411 	btrfs_set_root_otransid(new_root_item, trans->transid);
1412 
1413 	old = btrfs_lock_root_node(root);
1414 	ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1415 	if (ret) {
1416 		btrfs_tree_unlock(old);
1417 		free_extent_buffer(old);
1418 		btrfs_abort_transaction(trans, root, ret);
1419 		goto fail;
1420 	}
1421 
1422 	btrfs_set_lock_blocking(old);
1423 
1424 	ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1425 	/* clean up in any case */
1426 	btrfs_tree_unlock(old);
1427 	free_extent_buffer(old);
1428 	if (ret) {
1429 		btrfs_abort_transaction(trans, root, ret);
1430 		goto fail;
1431 	}
1432 	/* see comments in should_cow_block() */
1433 	set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1434 	smp_wmb();
1435 
1436 	btrfs_set_root_node(new_root_item, tmp);
1437 	/* record when the snapshot was created in key.offset */
1438 	key.offset = trans->transid;
1439 	ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1440 	btrfs_tree_unlock(tmp);
1441 	free_extent_buffer(tmp);
1442 	if (ret) {
1443 		btrfs_abort_transaction(trans, root, ret);
1444 		goto fail;
1445 	}
1446 
1447 	/*
1448 	 * insert root back/forward references
1449 	 */
1450 	ret = btrfs_add_root_ref(trans, tree_root, objectid,
1451 				 parent_root->root_key.objectid,
1452 				 btrfs_ino(parent_inode), index,
1453 				 dentry->d_name.name, dentry->d_name.len);
1454 	if (ret) {
1455 		btrfs_abort_transaction(trans, root, ret);
1456 		goto fail;
1457 	}
1458 
1459 	key.offset = (u64)-1;
1460 	pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1461 	if (IS_ERR(pending->snap)) {
1462 		ret = PTR_ERR(pending->snap);
1463 		btrfs_abort_transaction(trans, root, ret);
1464 		goto fail;
1465 	}
1466 
1467 	ret = btrfs_reloc_post_snapshot(trans, pending);
1468 	if (ret) {
1469 		btrfs_abort_transaction(trans, root, ret);
1470 		goto fail;
1471 	}
1472 
1473 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1474 	if (ret) {
1475 		btrfs_abort_transaction(trans, root, ret);
1476 		goto fail;
1477 	}
1478 
1479 	ret = btrfs_insert_dir_item(trans, parent_root,
1480 				    dentry->d_name.name, dentry->d_name.len,
1481 				    parent_inode, &key,
1482 				    BTRFS_FT_DIR, index);
1483 	/* We have check then name at the beginning, so it is impossible. */
1484 	BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1485 	if (ret) {
1486 		btrfs_abort_transaction(trans, root, ret);
1487 		goto fail;
1488 	}
1489 
1490 	btrfs_i_size_write(parent_inode, parent_inode->i_size +
1491 					 dentry->d_name.len * 2);
1492 	parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1493 	ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1494 	if (ret) {
1495 		btrfs_abort_transaction(trans, root, ret);
1496 		goto fail;
1497 	}
1498 	ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1499 				  BTRFS_UUID_KEY_SUBVOL, objectid);
1500 	if (ret) {
1501 		btrfs_abort_transaction(trans, root, ret);
1502 		goto fail;
1503 	}
1504 	if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1505 		ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1506 					  new_root_item->received_uuid,
1507 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1508 					  objectid);
1509 		if (ret && ret != -EEXIST) {
1510 			btrfs_abort_transaction(trans, root, ret);
1511 			goto fail;
1512 		}
1513 	}
1514 
1515 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1516 	if (ret) {
1517 		btrfs_abort_transaction(trans, root, ret);
1518 		goto fail;
1519 	}
1520 
1521 	/*
1522 	 * account qgroup counters before qgroup_inherit()
1523 	 */
1524 	ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1525 	if (ret)
1526 		goto fail;
1527 	ret = btrfs_qgroup_account_extents(trans, fs_info);
1528 	if (ret)
1529 		goto fail;
1530 	ret = btrfs_qgroup_inherit(trans, fs_info,
1531 				   root->root_key.objectid,
1532 				   objectid, pending->inherit);
1533 	if (ret) {
1534 		btrfs_abort_transaction(trans, root, ret);
1535 		goto fail;
1536 	}
1537 
1538 fail:
1539 	pending->error = ret;
1540 dir_item_existed:
1541 	trans->block_rsv = rsv;
1542 	trans->bytes_reserved = 0;
1543 clear_skip_qgroup:
1544 	btrfs_clear_skip_qgroup(trans);
1545 no_free_objectid:
1546 	kfree(new_root_item);
1547 root_item_alloc_fail:
1548 	btrfs_free_path(path);
1549 	return ret;
1550 }
1551 
1552 /*
1553  * create all the snapshots we've scheduled for creation
1554  */
1555 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1556 					     struct btrfs_fs_info *fs_info)
1557 {
1558 	struct btrfs_pending_snapshot *pending, *next;
1559 	struct list_head *head = &trans->transaction->pending_snapshots;
1560 	int ret = 0;
1561 
1562 	list_for_each_entry_safe(pending, next, head, list) {
1563 		list_del(&pending->list);
1564 		ret = create_pending_snapshot(trans, fs_info, pending);
1565 		if (ret)
1566 			break;
1567 	}
1568 	return ret;
1569 }
1570 
1571 static void update_super_roots(struct btrfs_root *root)
1572 {
1573 	struct btrfs_root_item *root_item;
1574 	struct btrfs_super_block *super;
1575 
1576 	super = root->fs_info->super_copy;
1577 
1578 	root_item = &root->fs_info->chunk_root->root_item;
1579 	super->chunk_root = root_item->bytenr;
1580 	super->chunk_root_generation = root_item->generation;
1581 	super->chunk_root_level = root_item->level;
1582 
1583 	root_item = &root->fs_info->tree_root->root_item;
1584 	super->root = root_item->bytenr;
1585 	super->generation = root_item->generation;
1586 	super->root_level = root_item->level;
1587 	if (btrfs_test_opt(root, SPACE_CACHE))
1588 		super->cache_generation = root_item->generation;
1589 	if (root->fs_info->update_uuid_tree_gen)
1590 		super->uuid_tree_generation = root_item->generation;
1591 }
1592 
1593 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1594 {
1595 	struct btrfs_transaction *trans;
1596 	int ret = 0;
1597 
1598 	spin_lock(&info->trans_lock);
1599 	trans = info->running_transaction;
1600 	if (trans)
1601 		ret = (trans->state >= TRANS_STATE_COMMIT_START);
1602 	spin_unlock(&info->trans_lock);
1603 	return ret;
1604 }
1605 
1606 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1607 {
1608 	struct btrfs_transaction *trans;
1609 	int ret = 0;
1610 
1611 	spin_lock(&info->trans_lock);
1612 	trans = info->running_transaction;
1613 	if (trans)
1614 		ret = is_transaction_blocked(trans);
1615 	spin_unlock(&info->trans_lock);
1616 	return ret;
1617 }
1618 
1619 /*
1620  * wait for the current transaction commit to start and block subsequent
1621  * transaction joins
1622  */
1623 static void wait_current_trans_commit_start(struct btrfs_root *root,
1624 					    struct btrfs_transaction *trans)
1625 {
1626 	wait_event(root->fs_info->transaction_blocked_wait,
1627 		   trans->state >= TRANS_STATE_COMMIT_START ||
1628 		   trans->aborted);
1629 }
1630 
1631 /*
1632  * wait for the current transaction to start and then become unblocked.
1633  * caller holds ref.
1634  */
1635 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1636 					 struct btrfs_transaction *trans)
1637 {
1638 	wait_event(root->fs_info->transaction_wait,
1639 		   trans->state >= TRANS_STATE_UNBLOCKED ||
1640 		   trans->aborted);
1641 }
1642 
1643 /*
1644  * commit transactions asynchronously. once btrfs_commit_transaction_async
1645  * returns, any subsequent transaction will not be allowed to join.
1646  */
1647 struct btrfs_async_commit {
1648 	struct btrfs_trans_handle *newtrans;
1649 	struct btrfs_root *root;
1650 	struct work_struct work;
1651 };
1652 
1653 static void do_async_commit(struct work_struct *work)
1654 {
1655 	struct btrfs_async_commit *ac =
1656 		container_of(work, struct btrfs_async_commit, work);
1657 
1658 	/*
1659 	 * We've got freeze protection passed with the transaction.
1660 	 * Tell lockdep about it.
1661 	 */
1662 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1663 		__sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1664 
1665 	current->journal_info = ac->newtrans;
1666 
1667 	btrfs_commit_transaction(ac->newtrans, ac->root);
1668 	kfree(ac);
1669 }
1670 
1671 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1672 				   struct btrfs_root *root,
1673 				   int wait_for_unblock)
1674 {
1675 	struct btrfs_async_commit *ac;
1676 	struct btrfs_transaction *cur_trans;
1677 
1678 	ac = kmalloc(sizeof(*ac), GFP_NOFS);
1679 	if (!ac)
1680 		return -ENOMEM;
1681 
1682 	INIT_WORK(&ac->work, do_async_commit);
1683 	ac->root = root;
1684 	ac->newtrans = btrfs_join_transaction(root);
1685 	if (IS_ERR(ac->newtrans)) {
1686 		int err = PTR_ERR(ac->newtrans);
1687 		kfree(ac);
1688 		return err;
1689 	}
1690 
1691 	/* take transaction reference */
1692 	cur_trans = trans->transaction;
1693 	atomic_inc(&cur_trans->use_count);
1694 
1695 	btrfs_end_transaction(trans, root);
1696 
1697 	/*
1698 	 * Tell lockdep we've released the freeze rwsem, since the
1699 	 * async commit thread will be the one to unlock it.
1700 	 */
1701 	if (ac->newtrans->type & __TRANS_FREEZABLE)
1702 		__sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1703 
1704 	schedule_work(&ac->work);
1705 
1706 	/* wait for transaction to start and unblock */
1707 	if (wait_for_unblock)
1708 		wait_current_trans_commit_start_and_unblock(root, cur_trans);
1709 	else
1710 		wait_current_trans_commit_start(root, cur_trans);
1711 
1712 	if (current->journal_info == trans)
1713 		current->journal_info = NULL;
1714 
1715 	btrfs_put_transaction(cur_trans);
1716 	return 0;
1717 }
1718 
1719 
1720 static void cleanup_transaction(struct btrfs_trans_handle *trans,
1721 				struct btrfs_root *root, int err)
1722 {
1723 	struct btrfs_transaction *cur_trans = trans->transaction;
1724 	DEFINE_WAIT(wait);
1725 
1726 	WARN_ON(trans->use_count > 1);
1727 
1728 	btrfs_abort_transaction(trans, root, err);
1729 
1730 	spin_lock(&root->fs_info->trans_lock);
1731 
1732 	/*
1733 	 * If the transaction is removed from the list, it means this
1734 	 * transaction has been committed successfully, so it is impossible
1735 	 * to call the cleanup function.
1736 	 */
1737 	BUG_ON(list_empty(&cur_trans->list));
1738 
1739 	list_del_init(&cur_trans->list);
1740 	if (cur_trans == root->fs_info->running_transaction) {
1741 		cur_trans->state = TRANS_STATE_COMMIT_DOING;
1742 		spin_unlock(&root->fs_info->trans_lock);
1743 		wait_event(cur_trans->writer_wait,
1744 			   atomic_read(&cur_trans->num_writers) == 1);
1745 
1746 		spin_lock(&root->fs_info->trans_lock);
1747 	}
1748 	spin_unlock(&root->fs_info->trans_lock);
1749 
1750 	btrfs_cleanup_one_transaction(trans->transaction, root);
1751 
1752 	spin_lock(&root->fs_info->trans_lock);
1753 	if (cur_trans == root->fs_info->running_transaction)
1754 		root->fs_info->running_transaction = NULL;
1755 	spin_unlock(&root->fs_info->trans_lock);
1756 
1757 	if (trans->type & __TRANS_FREEZABLE)
1758 		sb_end_intwrite(root->fs_info->sb);
1759 	btrfs_put_transaction(cur_trans);
1760 	btrfs_put_transaction(cur_trans);
1761 
1762 	trace_btrfs_transaction_commit(root);
1763 
1764 	if (current->journal_info == trans)
1765 		current->journal_info = NULL;
1766 	btrfs_scrub_cancel(root->fs_info);
1767 
1768 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
1769 }
1770 
1771 static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1772 {
1773 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1774 		return btrfs_start_delalloc_roots(fs_info, 1, -1);
1775 	return 0;
1776 }
1777 
1778 static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1779 {
1780 	if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1781 		btrfs_wait_ordered_roots(fs_info, -1);
1782 }
1783 
1784 static inline void
1785 btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1786 {
1787 	wait_event(cur_trans->pending_wait,
1788 		   atomic_read(&cur_trans->pending_ordered) == 0);
1789 }
1790 
1791 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1792 			     struct btrfs_root *root)
1793 {
1794 	struct btrfs_transaction *cur_trans = trans->transaction;
1795 	struct btrfs_transaction *prev_trans = NULL;
1796 	struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1797 	int ret;
1798 
1799 	/* Stop the commit early if ->aborted is set */
1800 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1801 		ret = cur_trans->aborted;
1802 		btrfs_end_transaction(trans, root);
1803 		return ret;
1804 	}
1805 
1806 	/* make a pass through all the delayed refs we have so far
1807 	 * any runnings procs may add more while we are here
1808 	 */
1809 	ret = btrfs_run_delayed_refs(trans, root, 0);
1810 	if (ret) {
1811 		btrfs_end_transaction(trans, root);
1812 		return ret;
1813 	}
1814 
1815 	btrfs_trans_release_metadata(trans, root);
1816 	trans->block_rsv = NULL;
1817 	if (trans->qgroup_reserved) {
1818 		btrfs_qgroup_free(root, trans->qgroup_reserved);
1819 		trans->qgroup_reserved = 0;
1820 	}
1821 
1822 	cur_trans = trans->transaction;
1823 
1824 	/*
1825 	 * set the flushing flag so procs in this transaction have to
1826 	 * start sending their work down.
1827 	 */
1828 	cur_trans->delayed_refs.flushing = 1;
1829 	smp_wmb();
1830 
1831 	if (!list_empty(&trans->new_bgs))
1832 		btrfs_create_pending_block_groups(trans, root);
1833 
1834 	ret = btrfs_run_delayed_refs(trans, root, 0);
1835 	if (ret) {
1836 		btrfs_end_transaction(trans, root);
1837 		return ret;
1838 	}
1839 
1840 	if (!cur_trans->dirty_bg_run) {
1841 		int run_it = 0;
1842 
1843 		/* this mutex is also taken before trying to set
1844 		 * block groups readonly.  We need to make sure
1845 		 * that nobody has set a block group readonly
1846 		 * after a extents from that block group have been
1847 		 * allocated for cache files.  btrfs_set_block_group_ro
1848 		 * will wait for the transaction to commit if it
1849 		 * finds dirty_bg_run = 1
1850 		 *
1851 		 * The dirty_bg_run flag is also used to make sure only
1852 		 * one process starts all the block group IO.  It wouldn't
1853 		 * hurt to have more than one go through, but there's no
1854 		 * real advantage to it either.
1855 		 */
1856 		mutex_lock(&root->fs_info->ro_block_group_mutex);
1857 		if (!cur_trans->dirty_bg_run) {
1858 			run_it = 1;
1859 			cur_trans->dirty_bg_run = 1;
1860 		}
1861 		mutex_unlock(&root->fs_info->ro_block_group_mutex);
1862 
1863 		if (run_it)
1864 			ret = btrfs_start_dirty_block_groups(trans, root);
1865 	}
1866 	if (ret) {
1867 		btrfs_end_transaction(trans, root);
1868 		return ret;
1869 	}
1870 
1871 	spin_lock(&root->fs_info->trans_lock);
1872 	if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1873 		spin_unlock(&root->fs_info->trans_lock);
1874 		atomic_inc(&cur_trans->use_count);
1875 		ret = btrfs_end_transaction(trans, root);
1876 
1877 		wait_for_commit(root, cur_trans);
1878 
1879 		if (unlikely(cur_trans->aborted))
1880 			ret = cur_trans->aborted;
1881 
1882 		btrfs_put_transaction(cur_trans);
1883 
1884 		return ret;
1885 	}
1886 
1887 	cur_trans->state = TRANS_STATE_COMMIT_START;
1888 	wake_up(&root->fs_info->transaction_blocked_wait);
1889 
1890 	if (cur_trans->list.prev != &root->fs_info->trans_list) {
1891 		prev_trans = list_entry(cur_trans->list.prev,
1892 					struct btrfs_transaction, list);
1893 		if (prev_trans->state != TRANS_STATE_COMPLETED) {
1894 			atomic_inc(&prev_trans->use_count);
1895 			spin_unlock(&root->fs_info->trans_lock);
1896 
1897 			wait_for_commit(root, prev_trans);
1898 			ret = prev_trans->aborted;
1899 
1900 			btrfs_put_transaction(prev_trans);
1901 			if (ret)
1902 				goto cleanup_transaction;
1903 		} else {
1904 			spin_unlock(&root->fs_info->trans_lock);
1905 		}
1906 	} else {
1907 		spin_unlock(&root->fs_info->trans_lock);
1908 	}
1909 
1910 	extwriter_counter_dec(cur_trans, trans->type);
1911 
1912 	ret = btrfs_start_delalloc_flush(root->fs_info);
1913 	if (ret)
1914 		goto cleanup_transaction;
1915 
1916 	ret = btrfs_run_delayed_items(trans, root);
1917 	if (ret)
1918 		goto cleanup_transaction;
1919 
1920 	wait_event(cur_trans->writer_wait,
1921 		   extwriter_counter_read(cur_trans) == 0);
1922 
1923 	/* some pending stuffs might be added after the previous flush. */
1924 	ret = btrfs_run_delayed_items(trans, root);
1925 	if (ret)
1926 		goto cleanup_transaction;
1927 
1928 	btrfs_wait_delalloc_flush(root->fs_info);
1929 
1930 	btrfs_wait_pending_ordered(cur_trans);
1931 
1932 	btrfs_scrub_pause(root);
1933 	/*
1934 	 * Ok now we need to make sure to block out any other joins while we
1935 	 * commit the transaction.  We could have started a join before setting
1936 	 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1937 	 */
1938 	spin_lock(&root->fs_info->trans_lock);
1939 	cur_trans->state = TRANS_STATE_COMMIT_DOING;
1940 	spin_unlock(&root->fs_info->trans_lock);
1941 	wait_event(cur_trans->writer_wait,
1942 		   atomic_read(&cur_trans->num_writers) == 1);
1943 
1944 	/* ->aborted might be set after the previous check, so check it */
1945 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1946 		ret = cur_trans->aborted;
1947 		goto scrub_continue;
1948 	}
1949 	/*
1950 	 * the reloc mutex makes sure that we stop
1951 	 * the balancing code from coming in and moving
1952 	 * extents around in the middle of the commit
1953 	 */
1954 	mutex_lock(&root->fs_info->reloc_mutex);
1955 
1956 	/*
1957 	 * We needn't worry about the delayed items because we will
1958 	 * deal with them in create_pending_snapshot(), which is the
1959 	 * core function of the snapshot creation.
1960 	 */
1961 	ret = create_pending_snapshots(trans, root->fs_info);
1962 	if (ret) {
1963 		mutex_unlock(&root->fs_info->reloc_mutex);
1964 		goto scrub_continue;
1965 	}
1966 
1967 	/*
1968 	 * We insert the dir indexes of the snapshots and update the inode
1969 	 * of the snapshots' parents after the snapshot creation, so there
1970 	 * are some delayed items which are not dealt with. Now deal with
1971 	 * them.
1972 	 *
1973 	 * We needn't worry that this operation will corrupt the snapshots,
1974 	 * because all the tree which are snapshoted will be forced to COW
1975 	 * the nodes and leaves.
1976 	 */
1977 	ret = btrfs_run_delayed_items(trans, root);
1978 	if (ret) {
1979 		mutex_unlock(&root->fs_info->reloc_mutex);
1980 		goto scrub_continue;
1981 	}
1982 
1983 	ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1984 	if (ret) {
1985 		mutex_unlock(&root->fs_info->reloc_mutex);
1986 		goto scrub_continue;
1987 	}
1988 
1989 	/* Reocrd old roots for later qgroup accounting */
1990 	ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
1991 	if (ret) {
1992 		mutex_unlock(&root->fs_info->reloc_mutex);
1993 		goto scrub_continue;
1994 	}
1995 
1996 	/*
1997 	 * make sure none of the code above managed to slip in a
1998 	 * delayed item
1999 	 */
2000 	btrfs_assert_delayed_root_empty(root);
2001 
2002 	WARN_ON(cur_trans != trans->transaction);
2003 
2004 	/* btrfs_commit_tree_roots is responsible for getting the
2005 	 * various roots consistent with each other.  Every pointer
2006 	 * in the tree of tree roots has to point to the most up to date
2007 	 * root for every subvolume and other tree.  So, we have to keep
2008 	 * the tree logging code from jumping in and changing any
2009 	 * of the trees.
2010 	 *
2011 	 * At this point in the commit, there can't be any tree-log
2012 	 * writers, but a little lower down we drop the trans mutex
2013 	 * and let new people in.  By holding the tree_log_mutex
2014 	 * from now until after the super is written, we avoid races
2015 	 * with the tree-log code.
2016 	 */
2017 	mutex_lock(&root->fs_info->tree_log_mutex);
2018 
2019 	ret = commit_fs_roots(trans, root);
2020 	if (ret) {
2021 		mutex_unlock(&root->fs_info->tree_log_mutex);
2022 		mutex_unlock(&root->fs_info->reloc_mutex);
2023 		goto scrub_continue;
2024 	}
2025 
2026 	/*
2027 	 * Since the transaction is done, we can apply the pending changes
2028 	 * before the next transaction.
2029 	 */
2030 	btrfs_apply_pending_changes(root->fs_info);
2031 
2032 	/* commit_fs_roots gets rid of all the tree log roots, it is now
2033 	 * safe to free the root of tree log roots
2034 	 */
2035 	btrfs_free_log_root_tree(trans, root->fs_info);
2036 
2037 	/*
2038 	 * Since fs roots are all committed, we can get a quite accurate
2039 	 * new_roots. So let's do quota accounting.
2040 	 */
2041 	ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2042 	if (ret < 0) {
2043 		mutex_unlock(&root->fs_info->tree_log_mutex);
2044 		mutex_unlock(&root->fs_info->reloc_mutex);
2045 		goto scrub_continue;
2046 	}
2047 
2048 	ret = commit_cowonly_roots(trans, root);
2049 	if (ret) {
2050 		mutex_unlock(&root->fs_info->tree_log_mutex);
2051 		mutex_unlock(&root->fs_info->reloc_mutex);
2052 		goto scrub_continue;
2053 	}
2054 
2055 	/*
2056 	 * The tasks which save the space cache and inode cache may also
2057 	 * update ->aborted, check it.
2058 	 */
2059 	if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2060 		ret = cur_trans->aborted;
2061 		mutex_unlock(&root->fs_info->tree_log_mutex);
2062 		mutex_unlock(&root->fs_info->reloc_mutex);
2063 		goto scrub_continue;
2064 	}
2065 
2066 	btrfs_prepare_extent_commit(trans, root);
2067 
2068 	cur_trans = root->fs_info->running_transaction;
2069 
2070 	btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2071 			    root->fs_info->tree_root->node);
2072 	list_add_tail(&root->fs_info->tree_root->dirty_list,
2073 		      &cur_trans->switch_commits);
2074 
2075 	btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2076 			    root->fs_info->chunk_root->node);
2077 	list_add_tail(&root->fs_info->chunk_root->dirty_list,
2078 		      &cur_trans->switch_commits);
2079 
2080 	switch_commit_roots(cur_trans, root->fs_info);
2081 
2082 	assert_qgroups_uptodate(trans);
2083 	ASSERT(list_empty(&cur_trans->dirty_bgs));
2084 	ASSERT(list_empty(&cur_trans->io_bgs));
2085 	update_super_roots(root);
2086 
2087 	btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2088 	btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2089 	memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2090 	       sizeof(*root->fs_info->super_copy));
2091 
2092 	btrfs_update_commit_device_size(root->fs_info);
2093 	btrfs_update_commit_device_bytes_used(root, cur_trans);
2094 
2095 	clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2096 	clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2097 
2098 	btrfs_trans_release_chunk_metadata(trans);
2099 
2100 	spin_lock(&root->fs_info->trans_lock);
2101 	cur_trans->state = TRANS_STATE_UNBLOCKED;
2102 	root->fs_info->running_transaction = NULL;
2103 	spin_unlock(&root->fs_info->trans_lock);
2104 	mutex_unlock(&root->fs_info->reloc_mutex);
2105 
2106 	wake_up(&root->fs_info->transaction_wait);
2107 
2108 	ret = btrfs_write_and_wait_transaction(trans, root);
2109 	if (ret) {
2110 		btrfs_std_error(root->fs_info, ret,
2111 			    "Error while writing out transaction");
2112 		mutex_unlock(&root->fs_info->tree_log_mutex);
2113 		goto scrub_continue;
2114 	}
2115 
2116 	ret = write_ctree_super(trans, root, 0);
2117 	if (ret) {
2118 		mutex_unlock(&root->fs_info->tree_log_mutex);
2119 		goto scrub_continue;
2120 	}
2121 
2122 	/*
2123 	 * the super is written, we can safely allow the tree-loggers
2124 	 * to go about their business
2125 	 */
2126 	mutex_unlock(&root->fs_info->tree_log_mutex);
2127 
2128 	btrfs_finish_extent_commit(trans, root);
2129 
2130 	if (cur_trans->have_free_bgs)
2131 		btrfs_clear_space_info_full(root->fs_info);
2132 
2133 	root->fs_info->last_trans_committed = cur_trans->transid;
2134 	/*
2135 	 * We needn't acquire the lock here because there is no other task
2136 	 * which can change it.
2137 	 */
2138 	cur_trans->state = TRANS_STATE_COMPLETED;
2139 	wake_up(&cur_trans->commit_wait);
2140 
2141 	spin_lock(&root->fs_info->trans_lock);
2142 	list_del_init(&cur_trans->list);
2143 	spin_unlock(&root->fs_info->trans_lock);
2144 
2145 	btrfs_put_transaction(cur_trans);
2146 	btrfs_put_transaction(cur_trans);
2147 
2148 	if (trans->type & __TRANS_FREEZABLE)
2149 		sb_end_intwrite(root->fs_info->sb);
2150 
2151 	trace_btrfs_transaction_commit(root);
2152 
2153 	btrfs_scrub_continue(root);
2154 
2155 	if (current->journal_info == trans)
2156 		current->journal_info = NULL;
2157 
2158 	kmem_cache_free(btrfs_trans_handle_cachep, trans);
2159 
2160 	if (current != root->fs_info->transaction_kthread &&
2161 	    current != root->fs_info->cleaner_kthread)
2162 		btrfs_run_delayed_iputs(root);
2163 
2164 	return ret;
2165 
2166 scrub_continue:
2167 	btrfs_scrub_continue(root);
2168 cleanup_transaction:
2169 	btrfs_trans_release_metadata(trans, root);
2170 	btrfs_trans_release_chunk_metadata(trans);
2171 	trans->block_rsv = NULL;
2172 	if (trans->qgroup_reserved) {
2173 		btrfs_qgroup_free(root, trans->qgroup_reserved);
2174 		trans->qgroup_reserved = 0;
2175 	}
2176 	btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2177 	if (current->journal_info == trans)
2178 		current->journal_info = NULL;
2179 	cleanup_transaction(trans, root, ret);
2180 
2181 	return ret;
2182 }
2183 
2184 /*
2185  * return < 0 if error
2186  * 0 if there are no more dead_roots at the time of call
2187  * 1 there are more to be processed, call me again
2188  *
2189  * The return value indicates there are certainly more snapshots to delete, but
2190  * if there comes a new one during processing, it may return 0. We don't mind,
2191  * because btrfs_commit_super will poke cleaner thread and it will process it a
2192  * few seconds later.
2193  */
2194 int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2195 {
2196 	int ret;
2197 	struct btrfs_fs_info *fs_info = root->fs_info;
2198 
2199 	spin_lock(&fs_info->trans_lock);
2200 	if (list_empty(&fs_info->dead_roots)) {
2201 		spin_unlock(&fs_info->trans_lock);
2202 		return 0;
2203 	}
2204 	root = list_first_entry(&fs_info->dead_roots,
2205 			struct btrfs_root, root_list);
2206 	list_del_init(&root->root_list);
2207 	spin_unlock(&fs_info->trans_lock);
2208 
2209 	pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2210 
2211 	btrfs_kill_all_delayed_nodes(root);
2212 
2213 	if (btrfs_header_backref_rev(root->node) <
2214 			BTRFS_MIXED_BACKREF_REV)
2215 		ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2216 	else
2217 		ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2218 
2219 	return (ret < 0) ? 0 : 1;
2220 }
2221 
2222 void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2223 {
2224 	unsigned long prev;
2225 	unsigned long bit;
2226 
2227 	prev = xchg(&fs_info->pending_changes, 0);
2228 	if (!prev)
2229 		return;
2230 
2231 	bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2232 	if (prev & bit)
2233 		btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2234 	prev &= ~bit;
2235 
2236 	bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2237 	if (prev & bit)
2238 		btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2239 	prev &= ~bit;
2240 
2241 	bit = 1 << BTRFS_PENDING_COMMIT;
2242 	if (prev & bit)
2243 		btrfs_debug(fs_info, "pending commit done");
2244 	prev &= ~bit;
2245 
2246 	if (prev)
2247 		btrfs_warn(fs_info,
2248 			"unknown pending changes left 0x%lx, ignoring", prev);
2249 }
2250