xref: /openbmc/linux/fs/btrfs/super.c (revision f420ee1e923b931eeef5e2928791e84b1197cab3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "compat.h"
46 #include "delayed-inode.h"
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "xattr.h"
53 #include "volumes.h"
54 #include "export.h"
55 #include "compression.h"
56 #include "rcu-string.h"
57 #include "dev-replace.h"
58 #include "free-space-cache.h"
59 #include "tests/btrfs-tests.h"
60 
61 #define CREATE_TRACE_POINTS
62 #include <trace/events/btrfs.h>
63 
64 static const struct super_operations btrfs_super_ops;
65 static struct file_system_type btrfs_fs_type;
66 
67 static const char *btrfs_decode_error(int errno)
68 {
69 	char *errstr = "unknown";
70 
71 	switch (errno) {
72 	case -EIO:
73 		errstr = "IO failure";
74 		break;
75 	case -ENOMEM:
76 		errstr = "Out of memory";
77 		break;
78 	case -EROFS:
79 		errstr = "Readonly filesystem";
80 		break;
81 	case -EEXIST:
82 		errstr = "Object already exists";
83 		break;
84 	case -ENOSPC:
85 		errstr = "No space left";
86 		break;
87 	case -ENOENT:
88 		errstr = "No such entry";
89 		break;
90 	}
91 
92 	return errstr;
93 }
94 
95 static void save_error_info(struct btrfs_fs_info *fs_info)
96 {
97 	/*
98 	 * today we only save the error info into ram.  Long term we'll
99 	 * also send it down to the disk
100 	 */
101 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
102 }
103 
104 /* btrfs handle error by forcing the filesystem readonly */
105 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
106 {
107 	struct super_block *sb = fs_info->sb;
108 
109 	if (sb->s_flags & MS_RDONLY)
110 		return;
111 
112 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
113 		sb->s_flags |= MS_RDONLY;
114 		btrfs_info(fs_info, "forced readonly");
115 		/*
116 		 * Note that a running device replace operation is not
117 		 * canceled here although there is no way to update
118 		 * the progress. It would add the risk of a deadlock,
119 		 * therefore the canceling is ommited. The only penalty
120 		 * is that some I/O remains active until the procedure
121 		 * completes. The next time when the filesystem is
122 		 * mounted writeable again, the device replace
123 		 * operation continues.
124 		 */
125 	}
126 }
127 
128 #ifdef CONFIG_PRINTK
129 /*
130  * __btrfs_std_error decodes expected errors from the caller and
131  * invokes the approciate error response.
132  */
133 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
134 		       unsigned int line, int errno, const char *fmt, ...)
135 {
136 	struct super_block *sb = fs_info->sb;
137 	const char *errstr;
138 
139 	/*
140 	 * Special case: if the error is EROFS, and we're already
141 	 * under MS_RDONLY, then it is safe here.
142 	 */
143 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
144   		return;
145 
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		printk(KERN_CRIT "BTRFS error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 
163 	/* Don't go through full error handling during mount */
164 	save_error_info(fs_info);
165 	if (sb->s_flags & MS_BORN)
166 		btrfs_handle_error(fs_info);
167 }
168 
169 static const char * const logtypes[] = {
170 	"emergency",
171 	"alert",
172 	"critical",
173 	"error",
174 	"warning",
175 	"notice",
176 	"info",
177 	"debug",
178 };
179 
180 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
181 {
182 	struct super_block *sb = fs_info->sb;
183 	char lvl[4];
184 	struct va_format vaf;
185 	va_list args;
186 	const char *type = logtypes[4];
187 	int kern_level;
188 
189 	va_start(args, fmt);
190 
191 	kern_level = printk_get_level(fmt);
192 	if (kern_level) {
193 		size_t size = printk_skip_level(fmt) - fmt;
194 		memcpy(lvl, fmt,  size);
195 		lvl[size] = '\0';
196 		fmt += size;
197 		type = logtypes[kern_level - '0'];
198 	} else
199 		*lvl = '\0';
200 
201 	vaf.fmt = fmt;
202 	vaf.va = &args;
203 
204 	printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
205 
206 	va_end(args);
207 }
208 
209 #else
210 
211 void __btrfs_std_error(struct btrfs_fs_info *fs_info, const char *function,
212 		       unsigned int line, int errno, const char *fmt, ...)
213 {
214 	struct super_block *sb = fs_info->sb;
215 
216 	/*
217 	 * Special case: if the error is EROFS, and we're already
218 	 * under MS_RDONLY, then it is safe here.
219 	 */
220 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
221 		return;
222 
223 	/* Don't go through full error handling during mount */
224 	if (sb->s_flags & MS_BORN) {
225 		save_error_info(fs_info);
226 		btrfs_handle_error(fs_info);
227 	}
228 }
229 #endif
230 
231 /*
232  * We only mark the transaction aborted and then set the file system read-only.
233  * This will prevent new transactions from starting or trying to join this
234  * one.
235  *
236  * This means that error recovery at the call site is limited to freeing
237  * any local memory allocations and passing the error code up without
238  * further cleanup. The transaction should complete as it normally would
239  * in the call path but will return -EIO.
240  *
241  * We'll complete the cleanup in btrfs_end_transaction and
242  * btrfs_commit_transaction.
243  */
244 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
245 			       struct btrfs_root *root, const char *function,
246 			       unsigned int line, int errno)
247 {
248 	/*
249 	 * Report first abort since mount
250 	 */
251 	if (!test_and_set_bit(BTRFS_FS_STATE_TRANS_ABORTED,
252 				&root->fs_info->fs_state)) {
253 		WARN(1, KERN_DEBUG "btrfs: Transaction aborted (error %d)\n",
254 				errno);
255 	}
256 	trans->aborted = errno;
257 	/* Nothing used. The other threads that have joined this
258 	 * transaction may be able to continue. */
259 	if (!trans->blocks_used) {
260 		const char *errstr;
261 
262 		errstr = btrfs_decode_error(errno);
263 		btrfs_warn(root->fs_info,
264 		           "%s:%d: Aborting unused transaction(%s).",
265 		           function, line, errstr);
266 		return;
267 	}
268 	ACCESS_ONCE(trans->transaction->aborted) = errno;
269 	/* Wake up anybody who may be waiting on this transaction */
270 	wake_up(&root->fs_info->transaction_wait);
271 	wake_up(&root->fs_info->transaction_blocked_wait);
272 	__btrfs_std_error(root->fs_info, function, line, errno, NULL);
273 }
274 /*
275  * __btrfs_panic decodes unexpected, fatal errors from the caller,
276  * issues an alert, and either panics or BUGs, depending on mount options.
277  */
278 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
279 		   unsigned int line, int errno, const char *fmt, ...)
280 {
281 	char *s_id = "<unknown>";
282 	const char *errstr;
283 	struct va_format vaf = { .fmt = fmt };
284 	va_list args;
285 
286 	if (fs_info)
287 		s_id = fs_info->sb->s_id;
288 
289 	va_start(args, fmt);
290 	vaf.va = &args;
291 
292 	errstr = btrfs_decode_error(errno);
293 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
294 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
295 			s_id, function, line, &vaf, errno, errstr);
296 
297 	printk(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
298 	       s_id, function, line, &vaf, errno, errstr);
299 	va_end(args);
300 	/* Caller calls BUG() */
301 }
302 
303 static void btrfs_put_super(struct super_block *sb)
304 {
305 	(void)close_ctree(btrfs_sb(sb)->tree_root);
306 	/* FIXME: need to fix VFS to return error? */
307 	/* AV: return it _where_?  ->put_super() can be triggered by any number
308 	 * of async events, up to and including delivery of SIGKILL to the
309 	 * last process that kept it busy.  Or segfault in the aforementioned
310 	 * process...  Whom would you report that to?
311 	 */
312 }
313 
314 enum {
315 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
316 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
317 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
318 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
319 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
320 	Opt_space_cache, Opt_clear_cache, Opt_user_subvol_rm_allowed,
321 	Opt_enospc_debug, Opt_subvolrootid, Opt_defrag, Opt_inode_cache,
322 	Opt_no_space_cache, Opt_recovery, Opt_skip_balance,
323 	Opt_check_integrity, Opt_check_integrity_including_extent_data,
324 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
325 	Opt_commit_interval,
326 	Opt_err,
327 };
328 
329 static match_table_t tokens = {
330 	{Opt_degraded, "degraded"},
331 	{Opt_subvol, "subvol=%s"},
332 	{Opt_subvolid, "subvolid=%s"},
333 	{Opt_device, "device=%s"},
334 	{Opt_nodatasum, "nodatasum"},
335 	{Opt_nodatacow, "nodatacow"},
336 	{Opt_nobarrier, "nobarrier"},
337 	{Opt_max_inline, "max_inline=%s"},
338 	{Opt_alloc_start, "alloc_start=%s"},
339 	{Opt_thread_pool, "thread_pool=%d"},
340 	{Opt_compress, "compress"},
341 	{Opt_compress_type, "compress=%s"},
342 	{Opt_compress_force, "compress-force"},
343 	{Opt_compress_force_type, "compress-force=%s"},
344 	{Opt_ssd, "ssd"},
345 	{Opt_ssd_spread, "ssd_spread"},
346 	{Opt_nossd, "nossd"},
347 	{Opt_noacl, "noacl"},
348 	{Opt_notreelog, "notreelog"},
349 	{Opt_flushoncommit, "flushoncommit"},
350 	{Opt_ratio, "metadata_ratio=%d"},
351 	{Opt_discard, "discard"},
352 	{Opt_space_cache, "space_cache"},
353 	{Opt_clear_cache, "clear_cache"},
354 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
355 	{Opt_enospc_debug, "enospc_debug"},
356 	{Opt_subvolrootid, "subvolrootid=%d"},
357 	{Opt_defrag, "autodefrag"},
358 	{Opt_inode_cache, "inode_cache"},
359 	{Opt_no_space_cache, "nospace_cache"},
360 	{Opt_recovery, "recovery"},
361 	{Opt_skip_balance, "skip_balance"},
362 	{Opt_check_integrity, "check_int"},
363 	{Opt_check_integrity_including_extent_data, "check_int_data"},
364 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
365 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
366 	{Opt_fatal_errors, "fatal_errors=%s"},
367 	{Opt_commit_interval, "commit=%d"},
368 	{Opt_err, NULL},
369 };
370 
371 /*
372  * Regular mount options parser.  Everything that is needed only when
373  * reading in a new superblock is parsed here.
374  * XXX JDM: This needs to be cleaned up for remount.
375  */
376 int btrfs_parse_options(struct btrfs_root *root, char *options)
377 {
378 	struct btrfs_fs_info *info = root->fs_info;
379 	substring_t args[MAX_OPT_ARGS];
380 	char *p, *num, *orig = NULL;
381 	u64 cache_gen;
382 	int intarg;
383 	int ret = 0;
384 	char *compress_type;
385 	bool compress_force = false;
386 
387 	cache_gen = btrfs_super_cache_generation(root->fs_info->super_copy);
388 	if (cache_gen)
389 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
390 
391 	if (!options)
392 		goto out;
393 
394 	/*
395 	 * strsep changes the string, duplicate it because parse_options
396 	 * gets called twice
397 	 */
398 	options = kstrdup(options, GFP_NOFS);
399 	if (!options)
400 		return -ENOMEM;
401 
402 	orig = options;
403 
404 	while ((p = strsep(&options, ",")) != NULL) {
405 		int token;
406 		if (!*p)
407 			continue;
408 
409 		token = match_token(p, tokens, args);
410 		switch (token) {
411 		case Opt_degraded:
412 			printk(KERN_INFO "btrfs: allowing degraded mounts\n");
413 			btrfs_set_opt(info->mount_opt, DEGRADED);
414 			break;
415 		case Opt_subvol:
416 		case Opt_subvolid:
417 		case Opt_subvolrootid:
418 		case Opt_device:
419 			/*
420 			 * These are parsed by btrfs_parse_early_options
421 			 * and can be happily ignored here.
422 			 */
423 			break;
424 		case Opt_nodatasum:
425 			printk(KERN_INFO "btrfs: setting nodatasum\n");
426 			btrfs_set_opt(info->mount_opt, NODATASUM);
427 			break;
428 		case Opt_nodatacow:
429 			if (!btrfs_test_opt(root, COMPRESS) ||
430 				!btrfs_test_opt(root, FORCE_COMPRESS)) {
431 					printk(KERN_INFO "btrfs: setting nodatacow, compression disabled\n");
432 			} else {
433 				printk(KERN_INFO "btrfs: setting nodatacow\n");
434 			}
435 			info->compress_type = BTRFS_COMPRESS_NONE;
436 			btrfs_clear_opt(info->mount_opt, COMPRESS);
437 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
438 			btrfs_set_opt(info->mount_opt, NODATACOW);
439 			btrfs_set_opt(info->mount_opt, NODATASUM);
440 			break;
441 		case Opt_compress_force:
442 		case Opt_compress_force_type:
443 			compress_force = true;
444 			/* Fallthrough */
445 		case Opt_compress:
446 		case Opt_compress_type:
447 			if (token == Opt_compress ||
448 			    token == Opt_compress_force ||
449 			    strcmp(args[0].from, "zlib") == 0) {
450 				compress_type = "zlib";
451 				info->compress_type = BTRFS_COMPRESS_ZLIB;
452 				btrfs_set_opt(info->mount_opt, COMPRESS);
453 				btrfs_clear_opt(info->mount_opt, NODATACOW);
454 				btrfs_clear_opt(info->mount_opt, NODATASUM);
455 			} else if (strcmp(args[0].from, "lzo") == 0) {
456 				compress_type = "lzo";
457 				info->compress_type = BTRFS_COMPRESS_LZO;
458 				btrfs_set_opt(info->mount_opt, COMPRESS);
459 				btrfs_clear_opt(info->mount_opt, NODATACOW);
460 				btrfs_clear_opt(info->mount_opt, NODATASUM);
461 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
462 			} else if (strncmp(args[0].from, "no", 2) == 0) {
463 				compress_type = "no";
464 				info->compress_type = BTRFS_COMPRESS_NONE;
465 				btrfs_clear_opt(info->mount_opt, COMPRESS);
466 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
467 				compress_force = false;
468 			} else {
469 				ret = -EINVAL;
470 				goto out;
471 			}
472 
473 			if (compress_force) {
474 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
475 				pr_info("btrfs: force %s compression\n",
476 					compress_type);
477 			} else
478 				pr_info("btrfs: use %s compression\n",
479 					compress_type);
480 			break;
481 		case Opt_ssd:
482 			printk(KERN_INFO "btrfs: use ssd allocation scheme\n");
483 			btrfs_set_opt(info->mount_opt, SSD);
484 			break;
485 		case Opt_ssd_spread:
486 			printk(KERN_INFO "btrfs: use spread ssd "
487 			       "allocation scheme\n");
488 			btrfs_set_opt(info->mount_opt, SSD);
489 			btrfs_set_opt(info->mount_opt, SSD_SPREAD);
490 			break;
491 		case Opt_nossd:
492 			printk(KERN_INFO "btrfs: not using ssd allocation "
493 			       "scheme\n");
494 			btrfs_set_opt(info->mount_opt, NOSSD);
495 			btrfs_clear_opt(info->mount_opt, SSD);
496 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
497 			break;
498 		case Opt_nobarrier:
499 			printk(KERN_INFO "btrfs: turning off barriers\n");
500 			btrfs_set_opt(info->mount_opt, NOBARRIER);
501 			break;
502 		case Opt_thread_pool:
503 			ret = match_int(&args[0], &intarg);
504 			if (ret) {
505 				goto out;
506 			} else if (intarg > 0) {
507 				info->thread_pool_size = intarg;
508 			} else {
509 				ret = -EINVAL;
510 				goto out;
511 			}
512 			break;
513 		case Opt_max_inline:
514 			num = match_strdup(&args[0]);
515 			if (num) {
516 				info->max_inline = memparse(num, NULL);
517 				kfree(num);
518 
519 				if (info->max_inline) {
520 					info->max_inline = max_t(u64,
521 						info->max_inline,
522 						root->sectorsize);
523 				}
524 				printk(KERN_INFO "btrfs: max_inline at %llu\n",
525 					(unsigned long long)info->max_inline);
526 			} else {
527 				ret = -ENOMEM;
528 				goto out;
529 			}
530 			break;
531 		case Opt_alloc_start:
532 			num = match_strdup(&args[0]);
533 			if (num) {
534 				mutex_lock(&info->chunk_mutex);
535 				info->alloc_start = memparse(num, NULL);
536 				mutex_unlock(&info->chunk_mutex);
537 				kfree(num);
538 				printk(KERN_INFO
539 					"btrfs: allocations start at %llu\n",
540 					(unsigned long long)info->alloc_start);
541 			} else {
542 				ret = -ENOMEM;
543 				goto out;
544 			}
545 			break;
546 		case Opt_noacl:
547 			root->fs_info->sb->s_flags &= ~MS_POSIXACL;
548 			break;
549 		case Opt_notreelog:
550 			printk(KERN_INFO "btrfs: disabling tree log\n");
551 			btrfs_set_opt(info->mount_opt, NOTREELOG);
552 			break;
553 		case Opt_flushoncommit:
554 			printk(KERN_INFO "btrfs: turning on flush-on-commit\n");
555 			btrfs_set_opt(info->mount_opt, FLUSHONCOMMIT);
556 			break;
557 		case Opt_ratio:
558 			ret = match_int(&args[0], &intarg);
559 			if (ret) {
560 				goto out;
561 			} else if (intarg >= 0) {
562 				info->metadata_ratio = intarg;
563 				printk(KERN_INFO "btrfs: metadata ratio %d\n",
564 				       info->metadata_ratio);
565 			} else {
566 				ret = -EINVAL;
567 				goto out;
568 			}
569 			break;
570 		case Opt_discard:
571 			btrfs_set_opt(info->mount_opt, DISCARD);
572 			break;
573 		case Opt_space_cache:
574 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
575 			break;
576 		case Opt_rescan_uuid_tree:
577 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
578 			break;
579 		case Opt_no_space_cache:
580 			printk(KERN_INFO "btrfs: disabling disk space caching\n");
581 			btrfs_clear_opt(info->mount_opt, SPACE_CACHE);
582 			break;
583 		case Opt_inode_cache:
584 			printk(KERN_INFO "btrfs: enabling inode map caching\n");
585 			btrfs_set_opt(info->mount_opt, INODE_MAP_CACHE);
586 			break;
587 		case Opt_clear_cache:
588 			printk(KERN_INFO "btrfs: force clearing of disk cache\n");
589 			btrfs_set_opt(info->mount_opt, CLEAR_CACHE);
590 			break;
591 		case Opt_user_subvol_rm_allowed:
592 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
593 			break;
594 		case Opt_enospc_debug:
595 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
596 			break;
597 		case Opt_defrag:
598 			printk(KERN_INFO "btrfs: enabling auto defrag\n");
599 			btrfs_set_opt(info->mount_opt, AUTO_DEFRAG);
600 			break;
601 		case Opt_recovery:
602 			printk(KERN_INFO "btrfs: enabling auto recovery\n");
603 			btrfs_set_opt(info->mount_opt, RECOVERY);
604 			break;
605 		case Opt_skip_balance:
606 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
607 			break;
608 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
609 		case Opt_check_integrity_including_extent_data:
610 			printk(KERN_INFO "btrfs: enabling check integrity"
611 			       " including extent data\n");
612 			btrfs_set_opt(info->mount_opt,
613 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
614 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
615 			break;
616 		case Opt_check_integrity:
617 			printk(KERN_INFO "btrfs: enabling check integrity\n");
618 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
619 			break;
620 		case Opt_check_integrity_print_mask:
621 			ret = match_int(&args[0], &intarg);
622 			if (ret) {
623 				goto out;
624 			} else if (intarg >= 0) {
625 				info->check_integrity_print_mask = intarg;
626 				printk(KERN_INFO "btrfs:"
627 				       " check_integrity_print_mask 0x%x\n",
628 				       info->check_integrity_print_mask);
629 			} else {
630 				ret = -EINVAL;
631 				goto out;
632 			}
633 			break;
634 #else
635 		case Opt_check_integrity_including_extent_data:
636 		case Opt_check_integrity:
637 		case Opt_check_integrity_print_mask:
638 			printk(KERN_ERR "btrfs: support for check_integrity*"
639 			       " not compiled in!\n");
640 			ret = -EINVAL;
641 			goto out;
642 #endif
643 		case Opt_fatal_errors:
644 			if (strcmp(args[0].from, "panic") == 0)
645 				btrfs_set_opt(info->mount_opt,
646 					      PANIC_ON_FATAL_ERROR);
647 			else if (strcmp(args[0].from, "bug") == 0)
648 				btrfs_clear_opt(info->mount_opt,
649 					      PANIC_ON_FATAL_ERROR);
650 			else {
651 				ret = -EINVAL;
652 				goto out;
653 			}
654 			break;
655 		case Opt_commit_interval:
656 			intarg = 0;
657 			ret = match_int(&args[0], &intarg);
658 			if (ret < 0) {
659 				printk(KERN_ERR
660 					"btrfs: invalid commit interval\n");
661 				ret = -EINVAL;
662 				goto out;
663 			}
664 			if (intarg > 0) {
665 				if (intarg > 300) {
666 					printk(KERN_WARNING
667 					    "btrfs: excessive commit interval %d\n",
668 							intarg);
669 				}
670 				info->commit_interval = intarg;
671 			} else {
672 				printk(KERN_INFO
673 				    "btrfs: using default commit interval %ds\n",
674 				    BTRFS_DEFAULT_COMMIT_INTERVAL);
675 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
676 			}
677 			break;
678 		case Opt_err:
679 			printk(KERN_INFO "btrfs: unrecognized mount option "
680 			       "'%s'\n", p);
681 			ret = -EINVAL;
682 			goto out;
683 		default:
684 			break;
685 		}
686 	}
687 out:
688 	if (!ret && btrfs_test_opt(root, SPACE_CACHE))
689 		printk(KERN_INFO "btrfs: disk space caching is enabled\n");
690 	kfree(orig);
691 	return ret;
692 }
693 
694 /*
695  * Parse mount options that are required early in the mount process.
696  *
697  * All other options will be parsed on much later in the mount process and
698  * only when we need to allocate a new super block.
699  */
700 static int btrfs_parse_early_options(const char *options, fmode_t flags,
701 		void *holder, char **subvol_name, u64 *subvol_objectid,
702 		struct btrfs_fs_devices **fs_devices)
703 {
704 	substring_t args[MAX_OPT_ARGS];
705 	char *device_name, *opts, *orig, *p;
706 	char *num = NULL;
707 	int error = 0;
708 
709 	if (!options)
710 		return 0;
711 
712 	/*
713 	 * strsep changes the string, duplicate it because parse_options
714 	 * gets called twice
715 	 */
716 	opts = kstrdup(options, GFP_KERNEL);
717 	if (!opts)
718 		return -ENOMEM;
719 	orig = opts;
720 
721 	while ((p = strsep(&opts, ",")) != NULL) {
722 		int token;
723 		if (!*p)
724 			continue;
725 
726 		token = match_token(p, tokens, args);
727 		switch (token) {
728 		case Opt_subvol:
729 			kfree(*subvol_name);
730 			*subvol_name = match_strdup(&args[0]);
731 			if (!*subvol_name) {
732 				error = -ENOMEM;
733 				goto out;
734 			}
735 			break;
736 		case Opt_subvolid:
737 			num = match_strdup(&args[0]);
738 			if (num) {
739 				*subvol_objectid = memparse(num, NULL);
740 				kfree(num);
741 				/* we want the original fs_tree */
742 				if (!*subvol_objectid)
743 					*subvol_objectid =
744 						BTRFS_FS_TREE_OBJECTID;
745 			} else {
746 				error = -EINVAL;
747 				goto out;
748 			}
749 			break;
750 		case Opt_subvolrootid:
751 			printk(KERN_WARNING
752 				"btrfs: 'subvolrootid' mount option is deprecated and has no effect\n");
753 			break;
754 		case Opt_device:
755 			device_name = match_strdup(&args[0]);
756 			if (!device_name) {
757 				error = -ENOMEM;
758 				goto out;
759 			}
760 			error = btrfs_scan_one_device(device_name,
761 					flags, holder, fs_devices);
762 			kfree(device_name);
763 			if (error)
764 				goto out;
765 			break;
766 		default:
767 			break;
768 		}
769 	}
770 
771 out:
772 	kfree(orig);
773 	return error;
774 }
775 
776 static struct dentry *get_default_root(struct super_block *sb,
777 				       u64 subvol_objectid)
778 {
779 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
780 	struct btrfs_root *root = fs_info->tree_root;
781 	struct btrfs_root *new_root;
782 	struct btrfs_dir_item *di;
783 	struct btrfs_path *path;
784 	struct btrfs_key location;
785 	struct inode *inode;
786 	u64 dir_id;
787 	int new = 0;
788 
789 	/*
790 	 * We have a specific subvol we want to mount, just setup location and
791 	 * go look up the root.
792 	 */
793 	if (subvol_objectid) {
794 		location.objectid = subvol_objectid;
795 		location.type = BTRFS_ROOT_ITEM_KEY;
796 		location.offset = (u64)-1;
797 		goto find_root;
798 	}
799 
800 	path = btrfs_alloc_path();
801 	if (!path)
802 		return ERR_PTR(-ENOMEM);
803 	path->leave_spinning = 1;
804 
805 	/*
806 	 * Find the "default" dir item which points to the root item that we
807 	 * will mount by default if we haven't been given a specific subvolume
808 	 * to mount.
809 	 */
810 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
811 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
812 	if (IS_ERR(di)) {
813 		btrfs_free_path(path);
814 		return ERR_CAST(di);
815 	}
816 	if (!di) {
817 		/*
818 		 * Ok the default dir item isn't there.  This is weird since
819 		 * it's always been there, but don't freak out, just try and
820 		 * mount to root most subvolume.
821 		 */
822 		btrfs_free_path(path);
823 		dir_id = BTRFS_FIRST_FREE_OBJECTID;
824 		new_root = fs_info->fs_root;
825 		goto setup_root;
826 	}
827 
828 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
829 	btrfs_free_path(path);
830 
831 find_root:
832 	new_root = btrfs_read_fs_root_no_name(fs_info, &location);
833 	if (IS_ERR(new_root))
834 		return ERR_CAST(new_root);
835 
836 	dir_id = btrfs_root_dirid(&new_root->root_item);
837 setup_root:
838 	location.objectid = dir_id;
839 	location.type = BTRFS_INODE_ITEM_KEY;
840 	location.offset = 0;
841 
842 	inode = btrfs_iget(sb, &location, new_root, &new);
843 	if (IS_ERR(inode))
844 		return ERR_CAST(inode);
845 
846 	/*
847 	 * If we're just mounting the root most subvol put the inode and return
848 	 * a reference to the dentry.  We will have already gotten a reference
849 	 * to the inode in btrfs_fill_super so we're good to go.
850 	 */
851 	if (!new && sb->s_root->d_inode == inode) {
852 		iput(inode);
853 		return dget(sb->s_root);
854 	}
855 
856 	return d_obtain_alias(inode);
857 }
858 
859 static int btrfs_fill_super(struct super_block *sb,
860 			    struct btrfs_fs_devices *fs_devices,
861 			    void *data, int silent)
862 {
863 	struct inode *inode;
864 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
865 	struct btrfs_key key;
866 	int err;
867 
868 	sb->s_maxbytes = MAX_LFS_FILESIZE;
869 	sb->s_magic = BTRFS_SUPER_MAGIC;
870 	sb->s_op = &btrfs_super_ops;
871 	sb->s_d_op = &btrfs_dentry_operations;
872 	sb->s_export_op = &btrfs_export_ops;
873 	sb->s_xattr = btrfs_xattr_handlers;
874 	sb->s_time_gran = 1;
875 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
876 	sb->s_flags |= MS_POSIXACL;
877 #endif
878 	sb->s_flags |= MS_I_VERSION;
879 	err = open_ctree(sb, fs_devices, (char *)data);
880 	if (err) {
881 		printk("btrfs: open_ctree failed\n");
882 		return err;
883 	}
884 
885 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
886 	key.type = BTRFS_INODE_ITEM_KEY;
887 	key.offset = 0;
888 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
889 	if (IS_ERR(inode)) {
890 		err = PTR_ERR(inode);
891 		goto fail_close;
892 	}
893 
894 	sb->s_root = d_make_root(inode);
895 	if (!sb->s_root) {
896 		err = -ENOMEM;
897 		goto fail_close;
898 	}
899 
900 	save_mount_options(sb, data);
901 	cleancache_init_fs(sb);
902 	sb->s_flags |= MS_ACTIVE;
903 	return 0;
904 
905 fail_close:
906 	close_ctree(fs_info->tree_root);
907 	return err;
908 }
909 
910 int btrfs_sync_fs(struct super_block *sb, int wait)
911 {
912 	struct btrfs_trans_handle *trans;
913 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
914 	struct btrfs_root *root = fs_info->tree_root;
915 
916 	trace_btrfs_sync_fs(wait);
917 
918 	if (!wait) {
919 		filemap_flush(fs_info->btree_inode->i_mapping);
920 		return 0;
921 	}
922 
923 	btrfs_wait_all_ordered_extents(fs_info, 1);
924 
925 	trans = btrfs_attach_transaction_barrier(root);
926 	if (IS_ERR(trans)) {
927 		/* no transaction, don't bother */
928 		if (PTR_ERR(trans) == -ENOENT)
929 			return 0;
930 		return PTR_ERR(trans);
931 	}
932 	return btrfs_commit_transaction(trans, root);
933 }
934 
935 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
936 {
937 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
938 	struct btrfs_root *root = info->tree_root;
939 	char *compress_type;
940 
941 	if (btrfs_test_opt(root, DEGRADED))
942 		seq_puts(seq, ",degraded");
943 	if (btrfs_test_opt(root, NODATASUM))
944 		seq_puts(seq, ",nodatasum");
945 	if (btrfs_test_opt(root, NODATACOW))
946 		seq_puts(seq, ",nodatacow");
947 	if (btrfs_test_opt(root, NOBARRIER))
948 		seq_puts(seq, ",nobarrier");
949 	if (info->max_inline != 8192 * 1024)
950 		seq_printf(seq, ",max_inline=%llu",
951 			   (unsigned long long)info->max_inline);
952 	if (info->alloc_start != 0)
953 		seq_printf(seq, ",alloc_start=%llu",
954 			   (unsigned long long)info->alloc_start);
955 	if (info->thread_pool_size !=  min_t(unsigned long,
956 					     num_online_cpus() + 2, 8))
957 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
958 	if (btrfs_test_opt(root, COMPRESS)) {
959 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
960 			compress_type = "zlib";
961 		else
962 			compress_type = "lzo";
963 		if (btrfs_test_opt(root, FORCE_COMPRESS))
964 			seq_printf(seq, ",compress-force=%s", compress_type);
965 		else
966 			seq_printf(seq, ",compress=%s", compress_type);
967 	}
968 	if (btrfs_test_opt(root, NOSSD))
969 		seq_puts(seq, ",nossd");
970 	if (btrfs_test_opt(root, SSD_SPREAD))
971 		seq_puts(seq, ",ssd_spread");
972 	else if (btrfs_test_opt(root, SSD))
973 		seq_puts(seq, ",ssd");
974 	if (btrfs_test_opt(root, NOTREELOG))
975 		seq_puts(seq, ",notreelog");
976 	if (btrfs_test_opt(root, FLUSHONCOMMIT))
977 		seq_puts(seq, ",flushoncommit");
978 	if (btrfs_test_opt(root, DISCARD))
979 		seq_puts(seq, ",discard");
980 	if (!(root->fs_info->sb->s_flags & MS_POSIXACL))
981 		seq_puts(seq, ",noacl");
982 	if (btrfs_test_opt(root, SPACE_CACHE))
983 		seq_puts(seq, ",space_cache");
984 	else
985 		seq_puts(seq, ",nospace_cache");
986 	if (btrfs_test_opt(root, RESCAN_UUID_TREE))
987 		seq_puts(seq, ",rescan_uuid_tree");
988 	if (btrfs_test_opt(root, CLEAR_CACHE))
989 		seq_puts(seq, ",clear_cache");
990 	if (btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
991 		seq_puts(seq, ",user_subvol_rm_allowed");
992 	if (btrfs_test_opt(root, ENOSPC_DEBUG))
993 		seq_puts(seq, ",enospc_debug");
994 	if (btrfs_test_opt(root, AUTO_DEFRAG))
995 		seq_puts(seq, ",autodefrag");
996 	if (btrfs_test_opt(root, INODE_MAP_CACHE))
997 		seq_puts(seq, ",inode_cache");
998 	if (btrfs_test_opt(root, SKIP_BALANCE))
999 		seq_puts(seq, ",skip_balance");
1000 	if (btrfs_test_opt(root, RECOVERY))
1001 		seq_puts(seq, ",recovery");
1002 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1003 	if (btrfs_test_opt(root, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1004 		seq_puts(seq, ",check_int_data");
1005 	else if (btrfs_test_opt(root, CHECK_INTEGRITY))
1006 		seq_puts(seq, ",check_int");
1007 	if (info->check_integrity_print_mask)
1008 		seq_printf(seq, ",check_int_print_mask=%d",
1009 				info->check_integrity_print_mask);
1010 #endif
1011 	if (info->metadata_ratio)
1012 		seq_printf(seq, ",metadata_ratio=%d",
1013 				info->metadata_ratio);
1014 	if (btrfs_test_opt(root, PANIC_ON_FATAL_ERROR))
1015 		seq_puts(seq, ",fatal_errors=panic");
1016 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1017 		seq_printf(seq, ",commit=%d", info->commit_interval);
1018 	return 0;
1019 }
1020 
1021 static int btrfs_test_super(struct super_block *s, void *data)
1022 {
1023 	struct btrfs_fs_info *p = data;
1024 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1025 
1026 	return fs_info->fs_devices == p->fs_devices;
1027 }
1028 
1029 static int btrfs_set_super(struct super_block *s, void *data)
1030 {
1031 	int err = set_anon_super(s, data);
1032 	if (!err)
1033 		s->s_fs_info = data;
1034 	return err;
1035 }
1036 
1037 /*
1038  * subvolumes are identified by ino 256
1039  */
1040 static inline int is_subvolume_inode(struct inode *inode)
1041 {
1042 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1043 		return 1;
1044 	return 0;
1045 }
1046 
1047 /*
1048  * This will strip out the subvol=%s argument for an argument string and add
1049  * subvolid=0 to make sure we get the actual tree root for path walking to the
1050  * subvol we want.
1051  */
1052 static char *setup_root_args(char *args)
1053 {
1054 	unsigned len = strlen(args) + 2 + 1;
1055 	char *src, *dst, *buf;
1056 
1057 	/*
1058 	 * We need the same args as before, but with this substitution:
1059 	 * s!subvol=[^,]+!subvolid=0!
1060 	 *
1061 	 * Since the replacement string is up to 2 bytes longer than the
1062 	 * original, allocate strlen(args) + 2 + 1 bytes.
1063 	 */
1064 
1065 	src = strstr(args, "subvol=");
1066 	/* This shouldn't happen, but just in case.. */
1067 	if (!src)
1068 		return NULL;
1069 
1070 	buf = dst = kmalloc(len, GFP_NOFS);
1071 	if (!buf)
1072 		return NULL;
1073 
1074 	/*
1075 	 * If the subvol= arg is not at the start of the string,
1076 	 * copy whatever precedes it into buf.
1077 	 */
1078 	if (src != args) {
1079 		*src++ = '\0';
1080 		strcpy(buf, args);
1081 		dst += strlen(args);
1082 	}
1083 
1084 	strcpy(dst, "subvolid=0");
1085 	dst += strlen("subvolid=0");
1086 
1087 	/*
1088 	 * If there is a "," after the original subvol=... string,
1089 	 * copy that suffix into our buffer.  Otherwise, we're done.
1090 	 */
1091 	src = strchr(src, ',');
1092 	if (src)
1093 		strcpy(dst, src);
1094 
1095 	return buf;
1096 }
1097 
1098 static struct dentry *mount_subvol(const char *subvol_name, int flags,
1099 				   const char *device_name, char *data)
1100 {
1101 	struct dentry *root;
1102 	struct vfsmount *mnt;
1103 	char *newargs;
1104 
1105 	newargs = setup_root_args(data);
1106 	if (!newargs)
1107 		return ERR_PTR(-ENOMEM);
1108 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name,
1109 			     newargs);
1110 	kfree(newargs);
1111 	if (IS_ERR(mnt))
1112 		return ERR_CAST(mnt);
1113 
1114 	root = mount_subtree(mnt, subvol_name);
1115 
1116 	if (!IS_ERR(root) && !is_subvolume_inode(root->d_inode)) {
1117 		struct super_block *s = root->d_sb;
1118 		dput(root);
1119 		root = ERR_PTR(-EINVAL);
1120 		deactivate_locked_super(s);
1121 		printk(KERN_ERR "btrfs: '%s' is not a valid subvolume\n",
1122 				subvol_name);
1123 	}
1124 
1125 	return root;
1126 }
1127 
1128 /*
1129  * Find a superblock for the given device / mount point.
1130  *
1131  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1132  *	  for multiple device setup.  Make sure to keep it in sync.
1133  */
1134 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1135 		const char *device_name, void *data)
1136 {
1137 	struct block_device *bdev = NULL;
1138 	struct super_block *s;
1139 	struct dentry *root;
1140 	struct btrfs_fs_devices *fs_devices = NULL;
1141 	struct btrfs_fs_info *fs_info = NULL;
1142 	fmode_t mode = FMODE_READ;
1143 	char *subvol_name = NULL;
1144 	u64 subvol_objectid = 0;
1145 	int error = 0;
1146 
1147 	if (!(flags & MS_RDONLY))
1148 		mode |= FMODE_WRITE;
1149 
1150 	error = btrfs_parse_early_options(data, mode, fs_type,
1151 					  &subvol_name, &subvol_objectid,
1152 					  &fs_devices);
1153 	if (error) {
1154 		kfree(subvol_name);
1155 		return ERR_PTR(error);
1156 	}
1157 
1158 	if (subvol_name) {
1159 		root = mount_subvol(subvol_name, flags, device_name, data);
1160 		kfree(subvol_name);
1161 		return root;
1162 	}
1163 
1164 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1165 	if (error)
1166 		return ERR_PTR(error);
1167 
1168 	/*
1169 	 * Setup a dummy root and fs_info for test/set super.  This is because
1170 	 * we don't actually fill this stuff out until open_ctree, but we need
1171 	 * it for searching for existing supers, so this lets us do that and
1172 	 * then open_ctree will properly initialize everything later.
1173 	 */
1174 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1175 	if (!fs_info)
1176 		return ERR_PTR(-ENOMEM);
1177 
1178 	fs_info->fs_devices = fs_devices;
1179 
1180 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1181 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1182 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1183 		error = -ENOMEM;
1184 		goto error_fs_info;
1185 	}
1186 
1187 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1188 	if (error)
1189 		goto error_fs_info;
1190 
1191 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1192 		error = -EACCES;
1193 		goto error_close_devices;
1194 	}
1195 
1196 	bdev = fs_devices->latest_bdev;
1197 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1198 		 fs_info);
1199 	if (IS_ERR(s)) {
1200 		error = PTR_ERR(s);
1201 		goto error_close_devices;
1202 	}
1203 
1204 	if (s->s_root) {
1205 		btrfs_close_devices(fs_devices);
1206 		free_fs_info(fs_info);
1207 		if ((flags ^ s->s_flags) & MS_RDONLY)
1208 			error = -EBUSY;
1209 	} else {
1210 		char b[BDEVNAME_SIZE];
1211 
1212 		strlcpy(s->s_id, bdevname(bdev, b), sizeof(s->s_id));
1213 		btrfs_sb(s)->bdev_holder = fs_type;
1214 		error = btrfs_fill_super(s, fs_devices, data,
1215 					 flags & MS_SILENT ? 1 : 0);
1216 	}
1217 
1218 	root = !error ? get_default_root(s, subvol_objectid) : ERR_PTR(error);
1219 	if (IS_ERR(root))
1220 		deactivate_locked_super(s);
1221 
1222 	return root;
1223 
1224 error_close_devices:
1225 	btrfs_close_devices(fs_devices);
1226 error_fs_info:
1227 	free_fs_info(fs_info);
1228 	return ERR_PTR(error);
1229 }
1230 
1231 static void btrfs_set_max_workers(struct btrfs_workers *workers, int new_limit)
1232 {
1233 	spin_lock_irq(&workers->lock);
1234 	workers->max_workers = new_limit;
1235 	spin_unlock_irq(&workers->lock);
1236 }
1237 
1238 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1239 				     int new_pool_size, int old_pool_size)
1240 {
1241 	if (new_pool_size == old_pool_size)
1242 		return;
1243 
1244 	fs_info->thread_pool_size = new_pool_size;
1245 
1246 	printk(KERN_INFO "btrfs: resize thread pool %d -> %d\n",
1247 	       old_pool_size, new_pool_size);
1248 
1249 	btrfs_set_max_workers(&fs_info->generic_worker, new_pool_size);
1250 	btrfs_set_max_workers(&fs_info->workers, new_pool_size);
1251 	btrfs_set_max_workers(&fs_info->delalloc_workers, new_pool_size);
1252 	btrfs_set_max_workers(&fs_info->submit_workers, new_pool_size);
1253 	btrfs_set_max_workers(&fs_info->caching_workers, new_pool_size);
1254 	btrfs_set_max_workers(&fs_info->fixup_workers, new_pool_size);
1255 	btrfs_set_max_workers(&fs_info->endio_workers, new_pool_size);
1256 	btrfs_set_max_workers(&fs_info->endio_meta_workers, new_pool_size);
1257 	btrfs_set_max_workers(&fs_info->endio_meta_write_workers, new_pool_size);
1258 	btrfs_set_max_workers(&fs_info->endio_write_workers, new_pool_size);
1259 	btrfs_set_max_workers(&fs_info->endio_freespace_worker, new_pool_size);
1260 	btrfs_set_max_workers(&fs_info->delayed_workers, new_pool_size);
1261 	btrfs_set_max_workers(&fs_info->readahead_workers, new_pool_size);
1262 	btrfs_set_max_workers(&fs_info->scrub_wr_completion_workers,
1263 			      new_pool_size);
1264 }
1265 
1266 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1267 {
1268 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1269 }
1270 
1271 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1272 				       unsigned long old_opts, int flags)
1273 {
1274 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1275 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1276 	     (flags & MS_RDONLY))) {
1277 		/* wait for any defraggers to finish */
1278 		wait_event(fs_info->transaction_wait,
1279 			   (atomic_read(&fs_info->defrag_running) == 0));
1280 		if (flags & MS_RDONLY)
1281 			sync_filesystem(fs_info->sb);
1282 	}
1283 }
1284 
1285 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1286 					 unsigned long old_opts)
1287 {
1288 	/*
1289 	 * We need cleanup all defragable inodes if the autodefragment is
1290 	 * close or the fs is R/O.
1291 	 */
1292 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1293 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1294 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1295 		btrfs_cleanup_defrag_inodes(fs_info);
1296 	}
1297 
1298 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1299 }
1300 
1301 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1302 {
1303 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1304 	struct btrfs_root *root = fs_info->tree_root;
1305 	unsigned old_flags = sb->s_flags;
1306 	unsigned long old_opts = fs_info->mount_opt;
1307 	unsigned long old_compress_type = fs_info->compress_type;
1308 	u64 old_max_inline = fs_info->max_inline;
1309 	u64 old_alloc_start = fs_info->alloc_start;
1310 	int old_thread_pool_size = fs_info->thread_pool_size;
1311 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1312 	int ret;
1313 
1314 	btrfs_remount_prepare(fs_info);
1315 
1316 	ret = btrfs_parse_options(root, data);
1317 	if (ret) {
1318 		ret = -EINVAL;
1319 		goto restore;
1320 	}
1321 
1322 	btrfs_remount_begin(fs_info, old_opts, *flags);
1323 	btrfs_resize_thread_pool(fs_info,
1324 		fs_info->thread_pool_size, old_thread_pool_size);
1325 
1326 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1327 		goto out;
1328 
1329 	if (*flags & MS_RDONLY) {
1330 		/*
1331 		 * this also happens on 'umount -rf' or on shutdown, when
1332 		 * the filesystem is busy.
1333 		 */
1334 		sb->s_flags |= MS_RDONLY;
1335 
1336 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1337 		btrfs_scrub_cancel(fs_info);
1338 		btrfs_pause_balance(fs_info);
1339 
1340 		ret = btrfs_commit_super(root);
1341 		if (ret)
1342 			goto restore;
1343 	} else {
1344 		if (fs_info->fs_devices->rw_devices == 0) {
1345 			ret = -EACCES;
1346 			goto restore;
1347 		}
1348 
1349 		if (fs_info->fs_devices->missing_devices >
1350 		     fs_info->num_tolerated_disk_barrier_failures &&
1351 		    !(*flags & MS_RDONLY)) {
1352 			printk(KERN_WARNING
1353 			       "Btrfs: too many missing devices, writeable remount is not allowed\n");
1354 			ret = -EACCES;
1355 			goto restore;
1356 		}
1357 
1358 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1359 			ret = -EINVAL;
1360 			goto restore;
1361 		}
1362 
1363 		ret = btrfs_cleanup_fs_roots(fs_info);
1364 		if (ret)
1365 			goto restore;
1366 
1367 		/* recover relocation */
1368 		ret = btrfs_recover_relocation(root);
1369 		if (ret)
1370 			goto restore;
1371 
1372 		ret = btrfs_resume_balance_async(fs_info);
1373 		if (ret)
1374 			goto restore;
1375 
1376 		ret = btrfs_resume_dev_replace_async(fs_info);
1377 		if (ret) {
1378 			pr_warn("btrfs: failed to resume dev_replace\n");
1379 			goto restore;
1380 		}
1381 		sb->s_flags &= ~MS_RDONLY;
1382 	}
1383 out:
1384 	btrfs_remount_cleanup(fs_info, old_opts);
1385 	return 0;
1386 
1387 restore:
1388 	/* We've hit an error - don't reset MS_RDONLY */
1389 	if (sb->s_flags & MS_RDONLY)
1390 		old_flags |= MS_RDONLY;
1391 	sb->s_flags = old_flags;
1392 	fs_info->mount_opt = old_opts;
1393 	fs_info->compress_type = old_compress_type;
1394 	fs_info->max_inline = old_max_inline;
1395 	mutex_lock(&fs_info->chunk_mutex);
1396 	fs_info->alloc_start = old_alloc_start;
1397 	mutex_unlock(&fs_info->chunk_mutex);
1398 	btrfs_resize_thread_pool(fs_info,
1399 		old_thread_pool_size, fs_info->thread_pool_size);
1400 	fs_info->metadata_ratio = old_metadata_ratio;
1401 	btrfs_remount_cleanup(fs_info, old_opts);
1402 	return ret;
1403 }
1404 
1405 /* Used to sort the devices by max_avail(descending sort) */
1406 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1407 				       const void *dev_info2)
1408 {
1409 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1410 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1411 		return -1;
1412 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1413 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1414 		return 1;
1415 	else
1416 	return 0;
1417 }
1418 
1419 /*
1420  * sort the devices by max_avail, in which max free extent size of each device
1421  * is stored.(Descending Sort)
1422  */
1423 static inline void btrfs_descending_sort_devices(
1424 					struct btrfs_device_info *devices,
1425 					size_t nr_devices)
1426 {
1427 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1428 	     btrfs_cmp_device_free_bytes, NULL);
1429 }
1430 
1431 /*
1432  * The helper to calc the free space on the devices that can be used to store
1433  * file data.
1434  */
1435 static int btrfs_calc_avail_data_space(struct btrfs_root *root, u64 *free_bytes)
1436 {
1437 	struct btrfs_fs_info *fs_info = root->fs_info;
1438 	struct btrfs_device_info *devices_info;
1439 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1440 	struct btrfs_device *device;
1441 	u64 skip_space;
1442 	u64 type;
1443 	u64 avail_space;
1444 	u64 used_space;
1445 	u64 min_stripe_size;
1446 	int min_stripes = 1, num_stripes = 1;
1447 	int i = 0, nr_devices;
1448 	int ret;
1449 
1450 	nr_devices = fs_info->fs_devices->open_devices;
1451 	BUG_ON(!nr_devices);
1452 
1453 	devices_info = kmalloc(sizeof(*devices_info) * nr_devices,
1454 			       GFP_NOFS);
1455 	if (!devices_info)
1456 		return -ENOMEM;
1457 
1458 	/* calc min stripe number for data space alloction */
1459 	type = btrfs_get_alloc_profile(root, 1);
1460 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1461 		min_stripes = 2;
1462 		num_stripes = nr_devices;
1463 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1464 		min_stripes = 2;
1465 		num_stripes = 2;
1466 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1467 		min_stripes = 4;
1468 		num_stripes = 4;
1469 	}
1470 
1471 	if (type & BTRFS_BLOCK_GROUP_DUP)
1472 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1473 	else
1474 		min_stripe_size = BTRFS_STRIPE_LEN;
1475 
1476 	list_for_each_entry(device, &fs_devices->devices, dev_list) {
1477 		if (!device->in_fs_metadata || !device->bdev ||
1478 		    device->is_tgtdev_for_dev_replace)
1479 			continue;
1480 
1481 		avail_space = device->total_bytes - device->bytes_used;
1482 
1483 		/* align with stripe_len */
1484 		do_div(avail_space, BTRFS_STRIPE_LEN);
1485 		avail_space *= BTRFS_STRIPE_LEN;
1486 
1487 		/*
1488 		 * In order to avoid overwritting the superblock on the drive,
1489 		 * btrfs starts at an offset of at least 1MB when doing chunk
1490 		 * allocation.
1491 		 */
1492 		skip_space = 1024 * 1024;
1493 
1494 		/* user can set the offset in fs_info->alloc_start. */
1495 		if (fs_info->alloc_start + BTRFS_STRIPE_LEN <=
1496 		    device->total_bytes)
1497 			skip_space = max(fs_info->alloc_start, skip_space);
1498 
1499 		/*
1500 		 * btrfs can not use the free space in [0, skip_space - 1],
1501 		 * we must subtract it from the total. In order to implement
1502 		 * it, we account the used space in this range first.
1503 		 */
1504 		ret = btrfs_account_dev_extents_size(device, 0, skip_space - 1,
1505 						     &used_space);
1506 		if (ret) {
1507 			kfree(devices_info);
1508 			return ret;
1509 		}
1510 
1511 		/* calc the free space in [0, skip_space - 1] */
1512 		skip_space -= used_space;
1513 
1514 		/*
1515 		 * we can use the free space in [0, skip_space - 1], subtract
1516 		 * it from the total.
1517 		 */
1518 		if (avail_space && avail_space >= skip_space)
1519 			avail_space -= skip_space;
1520 		else
1521 			avail_space = 0;
1522 
1523 		if (avail_space < min_stripe_size)
1524 			continue;
1525 
1526 		devices_info[i].dev = device;
1527 		devices_info[i].max_avail = avail_space;
1528 
1529 		i++;
1530 	}
1531 
1532 	nr_devices = i;
1533 
1534 	btrfs_descending_sort_devices(devices_info, nr_devices);
1535 
1536 	i = nr_devices - 1;
1537 	avail_space = 0;
1538 	while (nr_devices >= min_stripes) {
1539 		if (num_stripes > nr_devices)
1540 			num_stripes = nr_devices;
1541 
1542 		if (devices_info[i].max_avail >= min_stripe_size) {
1543 			int j;
1544 			u64 alloc_size;
1545 
1546 			avail_space += devices_info[i].max_avail * num_stripes;
1547 			alloc_size = devices_info[i].max_avail;
1548 			for (j = i + 1 - num_stripes; j <= i; j++)
1549 				devices_info[j].max_avail -= alloc_size;
1550 		}
1551 		i--;
1552 		nr_devices--;
1553 	}
1554 
1555 	kfree(devices_info);
1556 	*free_bytes = avail_space;
1557 	return 0;
1558 }
1559 
1560 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
1561 {
1562 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
1563 	struct btrfs_super_block *disk_super = fs_info->super_copy;
1564 	struct list_head *head = &fs_info->space_info;
1565 	struct btrfs_space_info *found;
1566 	u64 total_used = 0;
1567 	u64 total_free_data = 0;
1568 	int bits = dentry->d_sb->s_blocksize_bits;
1569 	__be32 *fsid = (__be32 *)fs_info->fsid;
1570 	int ret;
1571 
1572 	/* holding chunk_muext to avoid allocating new chunks */
1573 	mutex_lock(&fs_info->chunk_mutex);
1574 	rcu_read_lock();
1575 	list_for_each_entry_rcu(found, head, list) {
1576 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
1577 			total_free_data += found->disk_total - found->disk_used;
1578 			total_free_data -=
1579 				btrfs_account_ro_block_groups_free_space(found);
1580 		}
1581 
1582 		total_used += found->disk_used;
1583 	}
1584 	rcu_read_unlock();
1585 
1586 	buf->f_namelen = BTRFS_NAME_LEN;
1587 	buf->f_blocks = btrfs_super_total_bytes(disk_super) >> bits;
1588 	buf->f_bfree = buf->f_blocks - (total_used >> bits);
1589 	buf->f_bsize = dentry->d_sb->s_blocksize;
1590 	buf->f_type = BTRFS_SUPER_MAGIC;
1591 	buf->f_bavail = total_free_data;
1592 	ret = btrfs_calc_avail_data_space(fs_info->tree_root, &total_free_data);
1593 	if (ret) {
1594 		mutex_unlock(&fs_info->chunk_mutex);
1595 		return ret;
1596 	}
1597 	buf->f_bavail += total_free_data;
1598 	buf->f_bavail = buf->f_bavail >> bits;
1599 	mutex_unlock(&fs_info->chunk_mutex);
1600 
1601 	/* We treat it as constant endianness (it doesn't matter _which_)
1602 	   because we want the fsid to come out the same whether mounted
1603 	   on a big-endian or little-endian host */
1604 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
1605 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
1606 	/* Mask in the root object ID too, to disambiguate subvols */
1607 	buf->f_fsid.val[0] ^= BTRFS_I(dentry->d_inode)->root->objectid >> 32;
1608 	buf->f_fsid.val[1] ^= BTRFS_I(dentry->d_inode)->root->objectid;
1609 
1610 	return 0;
1611 }
1612 
1613 static void btrfs_kill_super(struct super_block *sb)
1614 {
1615 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1616 	kill_anon_super(sb);
1617 	free_fs_info(fs_info);
1618 }
1619 
1620 static struct file_system_type btrfs_fs_type = {
1621 	.owner		= THIS_MODULE,
1622 	.name		= "btrfs",
1623 	.mount		= btrfs_mount,
1624 	.kill_sb	= btrfs_kill_super,
1625 	.fs_flags	= FS_REQUIRES_DEV,
1626 };
1627 MODULE_ALIAS_FS("btrfs");
1628 
1629 /*
1630  * used by btrfsctl to scan devices when no FS is mounted
1631  */
1632 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
1633 				unsigned long arg)
1634 {
1635 	struct btrfs_ioctl_vol_args *vol;
1636 	struct btrfs_fs_devices *fs_devices;
1637 	int ret = -ENOTTY;
1638 
1639 	if (!capable(CAP_SYS_ADMIN))
1640 		return -EPERM;
1641 
1642 	vol = memdup_user((void __user *)arg, sizeof(*vol));
1643 	if (IS_ERR(vol))
1644 		return PTR_ERR(vol);
1645 
1646 	switch (cmd) {
1647 	case BTRFS_IOC_SCAN_DEV:
1648 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1649 					    &btrfs_fs_type, &fs_devices);
1650 		break;
1651 	case BTRFS_IOC_DEVICES_READY:
1652 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
1653 					    &btrfs_fs_type, &fs_devices);
1654 		if (ret)
1655 			break;
1656 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
1657 		break;
1658 	}
1659 
1660 	kfree(vol);
1661 	return ret;
1662 }
1663 
1664 static int btrfs_freeze(struct super_block *sb)
1665 {
1666 	struct btrfs_trans_handle *trans;
1667 	struct btrfs_root *root = btrfs_sb(sb)->tree_root;
1668 
1669 	trans = btrfs_attach_transaction_barrier(root);
1670 	if (IS_ERR(trans)) {
1671 		/* no transaction, don't bother */
1672 		if (PTR_ERR(trans) == -ENOENT)
1673 			return 0;
1674 		return PTR_ERR(trans);
1675 	}
1676 	return btrfs_commit_transaction(trans, root);
1677 }
1678 
1679 static int btrfs_unfreeze(struct super_block *sb)
1680 {
1681 	return 0;
1682 }
1683 
1684 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
1685 {
1686 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
1687 	struct btrfs_fs_devices *cur_devices;
1688 	struct btrfs_device *dev, *first_dev = NULL;
1689 	struct list_head *head;
1690 	struct rcu_string *name;
1691 
1692 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
1693 	cur_devices = fs_info->fs_devices;
1694 	while (cur_devices) {
1695 		head = &cur_devices->devices;
1696 		list_for_each_entry(dev, head, dev_list) {
1697 			if (dev->missing)
1698 				continue;
1699 			if (!first_dev || dev->devid < first_dev->devid)
1700 				first_dev = dev;
1701 		}
1702 		cur_devices = cur_devices->seed;
1703 	}
1704 
1705 	if (first_dev) {
1706 		rcu_read_lock();
1707 		name = rcu_dereference(first_dev->name);
1708 		seq_escape(m, name->str, " \t\n\\");
1709 		rcu_read_unlock();
1710 	} else {
1711 		WARN_ON(1);
1712 	}
1713 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
1714 	return 0;
1715 }
1716 
1717 static const struct super_operations btrfs_super_ops = {
1718 	.drop_inode	= btrfs_drop_inode,
1719 	.evict_inode	= btrfs_evict_inode,
1720 	.put_super	= btrfs_put_super,
1721 	.sync_fs	= btrfs_sync_fs,
1722 	.show_options	= btrfs_show_options,
1723 	.show_devname	= btrfs_show_devname,
1724 	.write_inode	= btrfs_write_inode,
1725 	.alloc_inode	= btrfs_alloc_inode,
1726 	.destroy_inode	= btrfs_destroy_inode,
1727 	.statfs		= btrfs_statfs,
1728 	.remount_fs	= btrfs_remount,
1729 	.freeze_fs	= btrfs_freeze,
1730 	.unfreeze_fs	= btrfs_unfreeze,
1731 };
1732 
1733 static const struct file_operations btrfs_ctl_fops = {
1734 	.unlocked_ioctl	 = btrfs_control_ioctl,
1735 	.compat_ioctl = btrfs_control_ioctl,
1736 	.owner	 = THIS_MODULE,
1737 	.llseek = noop_llseek,
1738 };
1739 
1740 static struct miscdevice btrfs_misc = {
1741 	.minor		= BTRFS_MINOR,
1742 	.name		= "btrfs-control",
1743 	.fops		= &btrfs_ctl_fops
1744 };
1745 
1746 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
1747 MODULE_ALIAS("devname:btrfs-control");
1748 
1749 static int btrfs_interface_init(void)
1750 {
1751 	return misc_register(&btrfs_misc);
1752 }
1753 
1754 static void btrfs_interface_exit(void)
1755 {
1756 	if (misc_deregister(&btrfs_misc) < 0)
1757 		printk(KERN_INFO "btrfs: misc_deregister failed for control device\n");
1758 }
1759 
1760 static void btrfs_print_info(void)
1761 {
1762 	printk(KERN_INFO "Btrfs loaded"
1763 #ifdef CONFIG_BTRFS_DEBUG
1764 			", debug=on"
1765 #endif
1766 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1767 			", integrity-checker=on"
1768 #endif
1769 			"\n");
1770 }
1771 
1772 static int btrfs_run_sanity_tests(void)
1773 {
1774 	return btrfs_test_free_space_cache();
1775 }
1776 
1777 static int __init init_btrfs_fs(void)
1778 {
1779 	int err;
1780 
1781 	err = btrfs_init_sysfs();
1782 	if (err)
1783 		return err;
1784 
1785 	btrfs_init_compress();
1786 
1787 	err = btrfs_init_cachep();
1788 	if (err)
1789 		goto free_compress;
1790 
1791 	err = extent_io_init();
1792 	if (err)
1793 		goto free_cachep;
1794 
1795 	err = extent_map_init();
1796 	if (err)
1797 		goto free_extent_io;
1798 
1799 	err = ordered_data_init();
1800 	if (err)
1801 		goto free_extent_map;
1802 
1803 	err = btrfs_delayed_inode_init();
1804 	if (err)
1805 		goto free_ordered_data;
1806 
1807 	err = btrfs_auto_defrag_init();
1808 	if (err)
1809 		goto free_delayed_inode;
1810 
1811 	err = btrfs_delayed_ref_init();
1812 	if (err)
1813 		goto free_auto_defrag;
1814 
1815 	err = btrfs_interface_init();
1816 	if (err)
1817 		goto free_delayed_ref;
1818 
1819 	btrfs_init_lockdep();
1820 
1821 	btrfs_print_info();
1822 
1823 	err = btrfs_run_sanity_tests();
1824 	if (err)
1825 		goto unregister_ioctl;
1826 
1827 	err = register_filesystem(&btrfs_fs_type);
1828 	if (err)
1829 		goto unregister_ioctl;
1830 
1831 	return 0;
1832 
1833 unregister_ioctl:
1834 	btrfs_interface_exit();
1835 free_delayed_ref:
1836 	btrfs_delayed_ref_exit();
1837 free_auto_defrag:
1838 	btrfs_auto_defrag_exit();
1839 free_delayed_inode:
1840 	btrfs_delayed_inode_exit();
1841 free_ordered_data:
1842 	ordered_data_exit();
1843 free_extent_map:
1844 	extent_map_exit();
1845 free_extent_io:
1846 	extent_io_exit();
1847 free_cachep:
1848 	btrfs_destroy_cachep();
1849 free_compress:
1850 	btrfs_exit_compress();
1851 	btrfs_exit_sysfs();
1852 	return err;
1853 }
1854 
1855 static void __exit exit_btrfs_fs(void)
1856 {
1857 	btrfs_destroy_cachep();
1858 	btrfs_delayed_ref_exit();
1859 	btrfs_auto_defrag_exit();
1860 	btrfs_delayed_inode_exit();
1861 	ordered_data_exit();
1862 	extent_map_exit();
1863 	extent_io_exit();
1864 	btrfs_interface_exit();
1865 	unregister_filesystem(&btrfs_fs_type);
1866 	btrfs_exit_sysfs();
1867 	btrfs_cleanup_fs_uuids();
1868 	btrfs_exit_compress();
1869 }
1870 
1871 module_init(init_btrfs_fs)
1872 module_exit(exit_btrfs_fs)
1873 
1874 MODULE_LICENSE("GPL");
1875