xref: /openbmc/linux/fs/btrfs/super.c (revision f2b39277b87dbb26f15e2e3b667df25dad3dd2ea)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "messages.h"
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/btrfs.h>
59 
60 static const struct super_operations btrfs_super_ops;
61 
62 /*
63  * Types for mounting the default subvolume and a subvolume explicitly
64  * requested by subvol=/path. That way the callchain is straightforward and we
65  * don't have to play tricks with the mount options and recursive calls to
66  * btrfs_mount.
67  *
68  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
69  */
70 static struct file_system_type btrfs_fs_type;
71 static struct file_system_type btrfs_root_fs_type;
72 
73 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
74 
75 static void btrfs_put_super(struct super_block *sb)
76 {
77 	close_ctree(btrfs_sb(sb));
78 }
79 
80 enum {
81 	Opt_acl, Opt_noacl,
82 	Opt_clear_cache,
83 	Opt_commit_interval,
84 	Opt_compress,
85 	Opt_compress_force,
86 	Opt_compress_force_type,
87 	Opt_compress_type,
88 	Opt_degraded,
89 	Opt_device,
90 	Opt_fatal_errors,
91 	Opt_flushoncommit, Opt_noflushoncommit,
92 	Opt_max_inline,
93 	Opt_barrier, Opt_nobarrier,
94 	Opt_datacow, Opt_nodatacow,
95 	Opt_datasum, Opt_nodatasum,
96 	Opt_defrag, Opt_nodefrag,
97 	Opt_discard, Opt_nodiscard,
98 	Opt_discard_mode,
99 	Opt_norecovery,
100 	Opt_ratio,
101 	Opt_rescan_uuid_tree,
102 	Opt_skip_balance,
103 	Opt_space_cache, Opt_no_space_cache,
104 	Opt_space_cache_version,
105 	Opt_ssd, Opt_nossd,
106 	Opt_ssd_spread, Opt_nossd_spread,
107 	Opt_subvol,
108 	Opt_subvol_empty,
109 	Opt_subvolid,
110 	Opt_thread_pool,
111 	Opt_treelog, Opt_notreelog,
112 	Opt_user_subvol_rm_allowed,
113 
114 	/* Rescue options */
115 	Opt_rescue,
116 	Opt_usebackuproot,
117 	Opt_nologreplay,
118 	Opt_ignorebadroots,
119 	Opt_ignoredatacsums,
120 	Opt_rescue_all,
121 
122 	/* Deprecated options */
123 	Opt_recovery,
124 	Opt_inode_cache, Opt_noinode_cache,
125 
126 	/* Debugging options */
127 	Opt_check_integrity,
128 	Opt_check_integrity_including_extent_data,
129 	Opt_check_integrity_print_mask,
130 	Opt_enospc_debug, Opt_noenospc_debug,
131 #ifdef CONFIG_BTRFS_DEBUG
132 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
133 #endif
134 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
135 	Opt_ref_verify,
136 #endif
137 	Opt_err,
138 };
139 
140 static const match_table_t tokens = {
141 	{Opt_acl, "acl"},
142 	{Opt_noacl, "noacl"},
143 	{Opt_clear_cache, "clear_cache"},
144 	{Opt_commit_interval, "commit=%u"},
145 	{Opt_compress, "compress"},
146 	{Opt_compress_type, "compress=%s"},
147 	{Opt_compress_force, "compress-force"},
148 	{Opt_compress_force_type, "compress-force=%s"},
149 	{Opt_degraded, "degraded"},
150 	{Opt_device, "device=%s"},
151 	{Opt_fatal_errors, "fatal_errors=%s"},
152 	{Opt_flushoncommit, "flushoncommit"},
153 	{Opt_noflushoncommit, "noflushoncommit"},
154 	{Opt_inode_cache, "inode_cache"},
155 	{Opt_noinode_cache, "noinode_cache"},
156 	{Opt_max_inline, "max_inline=%s"},
157 	{Opt_barrier, "barrier"},
158 	{Opt_nobarrier, "nobarrier"},
159 	{Opt_datacow, "datacow"},
160 	{Opt_nodatacow, "nodatacow"},
161 	{Opt_datasum, "datasum"},
162 	{Opt_nodatasum, "nodatasum"},
163 	{Opt_defrag, "autodefrag"},
164 	{Opt_nodefrag, "noautodefrag"},
165 	{Opt_discard, "discard"},
166 	{Opt_discard_mode, "discard=%s"},
167 	{Opt_nodiscard, "nodiscard"},
168 	{Opt_norecovery, "norecovery"},
169 	{Opt_ratio, "metadata_ratio=%u"},
170 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
171 	{Opt_skip_balance, "skip_balance"},
172 	{Opt_space_cache, "space_cache"},
173 	{Opt_no_space_cache, "nospace_cache"},
174 	{Opt_space_cache_version, "space_cache=%s"},
175 	{Opt_ssd, "ssd"},
176 	{Opt_nossd, "nossd"},
177 	{Opt_ssd_spread, "ssd_spread"},
178 	{Opt_nossd_spread, "nossd_spread"},
179 	{Opt_subvol, "subvol=%s"},
180 	{Opt_subvol_empty, "subvol="},
181 	{Opt_subvolid, "subvolid=%s"},
182 	{Opt_thread_pool, "thread_pool=%u"},
183 	{Opt_treelog, "treelog"},
184 	{Opt_notreelog, "notreelog"},
185 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
186 
187 	/* Rescue options */
188 	{Opt_rescue, "rescue=%s"},
189 	/* Deprecated, with alias rescue=nologreplay */
190 	{Opt_nologreplay, "nologreplay"},
191 	/* Deprecated, with alias rescue=usebackuproot */
192 	{Opt_usebackuproot, "usebackuproot"},
193 
194 	/* Deprecated options */
195 	{Opt_recovery, "recovery"},
196 
197 	/* Debugging options */
198 	{Opt_check_integrity, "check_int"},
199 	{Opt_check_integrity_including_extent_data, "check_int_data"},
200 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
201 	{Opt_enospc_debug, "enospc_debug"},
202 	{Opt_noenospc_debug, "noenospc_debug"},
203 #ifdef CONFIG_BTRFS_DEBUG
204 	{Opt_fragment_data, "fragment=data"},
205 	{Opt_fragment_metadata, "fragment=metadata"},
206 	{Opt_fragment_all, "fragment=all"},
207 #endif
208 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
209 	{Opt_ref_verify, "ref_verify"},
210 #endif
211 	{Opt_err, NULL},
212 };
213 
214 static const match_table_t rescue_tokens = {
215 	{Opt_usebackuproot, "usebackuproot"},
216 	{Opt_nologreplay, "nologreplay"},
217 	{Opt_ignorebadroots, "ignorebadroots"},
218 	{Opt_ignorebadroots, "ibadroots"},
219 	{Opt_ignoredatacsums, "ignoredatacsums"},
220 	{Opt_ignoredatacsums, "idatacsums"},
221 	{Opt_rescue_all, "all"},
222 	{Opt_err, NULL},
223 };
224 
225 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
226 			    const char *opt_name)
227 {
228 	if (fs_info->mount_opt & opt) {
229 		btrfs_err(fs_info, "%s must be used with ro mount option",
230 			  opt_name);
231 		return true;
232 	}
233 	return false;
234 }
235 
236 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
237 {
238 	char *opts;
239 	char *orig;
240 	char *p;
241 	substring_t args[MAX_OPT_ARGS];
242 	int ret = 0;
243 
244 	opts = kstrdup(options, GFP_KERNEL);
245 	if (!opts)
246 		return -ENOMEM;
247 	orig = opts;
248 
249 	while ((p = strsep(&opts, ":")) != NULL) {
250 		int token;
251 
252 		if (!*p)
253 			continue;
254 		token = match_token(p, rescue_tokens, args);
255 		switch (token){
256 		case Opt_usebackuproot:
257 			btrfs_info(info,
258 				   "trying to use backup root at mount time");
259 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
260 			break;
261 		case Opt_nologreplay:
262 			btrfs_set_and_info(info, NOLOGREPLAY,
263 					   "disabling log replay at mount time");
264 			break;
265 		case Opt_ignorebadroots:
266 			btrfs_set_and_info(info, IGNOREBADROOTS,
267 					   "ignoring bad roots");
268 			break;
269 		case Opt_ignoredatacsums:
270 			btrfs_set_and_info(info, IGNOREDATACSUMS,
271 					   "ignoring data csums");
272 			break;
273 		case Opt_rescue_all:
274 			btrfs_info(info, "enabling all of the rescue options");
275 			btrfs_set_and_info(info, IGNOREDATACSUMS,
276 					   "ignoring data csums");
277 			btrfs_set_and_info(info, IGNOREBADROOTS,
278 					   "ignoring bad roots");
279 			btrfs_set_and_info(info, NOLOGREPLAY,
280 					   "disabling log replay at mount time");
281 			break;
282 		case Opt_err:
283 			btrfs_info(info, "unrecognized rescue option '%s'", p);
284 			ret = -EINVAL;
285 			goto out;
286 		default:
287 			break;
288 		}
289 
290 	}
291 out:
292 	kfree(orig);
293 	return ret;
294 }
295 
296 /*
297  * Regular mount options parser.  Everything that is needed only when
298  * reading in a new superblock is parsed here.
299  * XXX JDM: This needs to be cleaned up for remount.
300  */
301 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
302 			unsigned long new_flags)
303 {
304 	substring_t args[MAX_OPT_ARGS];
305 	char *p, *num;
306 	int intarg;
307 	int ret = 0;
308 	char *compress_type;
309 	bool compress_force = false;
310 	enum btrfs_compression_type saved_compress_type;
311 	int saved_compress_level;
312 	bool saved_compress_force;
313 	int no_compress = 0;
314 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
315 
316 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
317 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
318 	else if (btrfs_free_space_cache_v1_active(info)) {
319 		if (btrfs_is_zoned(info)) {
320 			btrfs_info(info,
321 			"zoned: clearing existing space cache");
322 			btrfs_set_super_cache_generation(info->super_copy, 0);
323 		} else {
324 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
325 		}
326 	}
327 
328 	/*
329 	 * Even the options are empty, we still need to do extra check
330 	 * against new flags
331 	 */
332 	if (!options)
333 		goto check;
334 
335 	while ((p = strsep(&options, ",")) != NULL) {
336 		int token;
337 		if (!*p)
338 			continue;
339 
340 		token = match_token(p, tokens, args);
341 		switch (token) {
342 		case Opt_degraded:
343 			btrfs_info(info, "allowing degraded mounts");
344 			btrfs_set_opt(info->mount_opt, DEGRADED);
345 			break;
346 		case Opt_subvol:
347 		case Opt_subvol_empty:
348 		case Opt_subvolid:
349 		case Opt_device:
350 			/*
351 			 * These are parsed by btrfs_parse_subvol_options or
352 			 * btrfs_parse_device_options and can be ignored here.
353 			 */
354 			break;
355 		case Opt_nodatasum:
356 			btrfs_set_and_info(info, NODATASUM,
357 					   "setting nodatasum");
358 			break;
359 		case Opt_datasum:
360 			if (btrfs_test_opt(info, NODATASUM)) {
361 				if (btrfs_test_opt(info, NODATACOW))
362 					btrfs_info(info,
363 						   "setting datasum, datacow enabled");
364 				else
365 					btrfs_info(info, "setting datasum");
366 			}
367 			btrfs_clear_opt(info->mount_opt, NODATACOW);
368 			btrfs_clear_opt(info->mount_opt, NODATASUM);
369 			break;
370 		case Opt_nodatacow:
371 			if (!btrfs_test_opt(info, NODATACOW)) {
372 				if (!btrfs_test_opt(info, COMPRESS) ||
373 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
374 					btrfs_info(info,
375 						   "setting nodatacow, compression disabled");
376 				} else {
377 					btrfs_info(info, "setting nodatacow");
378 				}
379 			}
380 			btrfs_clear_opt(info->mount_opt, COMPRESS);
381 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
382 			btrfs_set_opt(info->mount_opt, NODATACOW);
383 			btrfs_set_opt(info->mount_opt, NODATASUM);
384 			break;
385 		case Opt_datacow:
386 			btrfs_clear_and_info(info, NODATACOW,
387 					     "setting datacow");
388 			break;
389 		case Opt_compress_force:
390 		case Opt_compress_force_type:
391 			compress_force = true;
392 			fallthrough;
393 		case Opt_compress:
394 		case Opt_compress_type:
395 			saved_compress_type = btrfs_test_opt(info,
396 							     COMPRESS) ?
397 				info->compress_type : BTRFS_COMPRESS_NONE;
398 			saved_compress_force =
399 				btrfs_test_opt(info, FORCE_COMPRESS);
400 			saved_compress_level = info->compress_level;
401 			if (token == Opt_compress ||
402 			    token == Opt_compress_force ||
403 			    strncmp(args[0].from, "zlib", 4) == 0) {
404 				compress_type = "zlib";
405 
406 				info->compress_type = BTRFS_COMPRESS_ZLIB;
407 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
408 				/*
409 				 * args[0] contains uninitialized data since
410 				 * for these tokens we don't expect any
411 				 * parameter.
412 				 */
413 				if (token != Opt_compress &&
414 				    token != Opt_compress_force)
415 					info->compress_level =
416 					  btrfs_compress_str2level(
417 							BTRFS_COMPRESS_ZLIB,
418 							args[0].from + 4);
419 				btrfs_set_opt(info->mount_opt, COMPRESS);
420 				btrfs_clear_opt(info->mount_opt, NODATACOW);
421 				btrfs_clear_opt(info->mount_opt, NODATASUM);
422 				no_compress = 0;
423 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
424 				compress_type = "lzo";
425 				info->compress_type = BTRFS_COMPRESS_LZO;
426 				info->compress_level = 0;
427 				btrfs_set_opt(info->mount_opt, COMPRESS);
428 				btrfs_clear_opt(info->mount_opt, NODATACOW);
429 				btrfs_clear_opt(info->mount_opt, NODATASUM);
430 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
431 				no_compress = 0;
432 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
433 				compress_type = "zstd";
434 				info->compress_type = BTRFS_COMPRESS_ZSTD;
435 				info->compress_level =
436 					btrfs_compress_str2level(
437 							 BTRFS_COMPRESS_ZSTD,
438 							 args[0].from + 4);
439 				btrfs_set_opt(info->mount_opt, COMPRESS);
440 				btrfs_clear_opt(info->mount_opt, NODATACOW);
441 				btrfs_clear_opt(info->mount_opt, NODATASUM);
442 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
443 				no_compress = 0;
444 			} else if (strncmp(args[0].from, "no", 2) == 0) {
445 				compress_type = "no";
446 				info->compress_level = 0;
447 				info->compress_type = 0;
448 				btrfs_clear_opt(info->mount_opt, COMPRESS);
449 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
450 				compress_force = false;
451 				no_compress++;
452 			} else {
453 				btrfs_err(info, "unrecognized compression value %s",
454 					  args[0].from);
455 				ret = -EINVAL;
456 				goto out;
457 			}
458 
459 			if (compress_force) {
460 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
461 			} else {
462 				/*
463 				 * If we remount from compress-force=xxx to
464 				 * compress=xxx, we need clear FORCE_COMPRESS
465 				 * flag, otherwise, there is no way for users
466 				 * to disable forcible compression separately.
467 				 */
468 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
469 			}
470 			if (no_compress == 1) {
471 				btrfs_info(info, "use no compression");
472 			} else if ((info->compress_type != saved_compress_type) ||
473 				   (compress_force != saved_compress_force) ||
474 				   (info->compress_level != saved_compress_level)) {
475 				btrfs_info(info, "%s %s compression, level %d",
476 					   (compress_force) ? "force" : "use",
477 					   compress_type, info->compress_level);
478 			}
479 			compress_force = false;
480 			break;
481 		case Opt_ssd:
482 			btrfs_set_and_info(info, SSD,
483 					   "enabling ssd optimizations");
484 			btrfs_clear_opt(info->mount_opt, NOSSD);
485 			break;
486 		case Opt_ssd_spread:
487 			btrfs_set_and_info(info, SSD,
488 					   "enabling ssd optimizations");
489 			btrfs_set_and_info(info, SSD_SPREAD,
490 					   "using spread ssd allocation scheme");
491 			btrfs_clear_opt(info->mount_opt, NOSSD);
492 			break;
493 		case Opt_nossd:
494 			btrfs_set_opt(info->mount_opt, NOSSD);
495 			btrfs_clear_and_info(info, SSD,
496 					     "not using ssd optimizations");
497 			fallthrough;
498 		case Opt_nossd_spread:
499 			btrfs_clear_and_info(info, SSD_SPREAD,
500 					     "not using spread ssd allocation scheme");
501 			break;
502 		case Opt_barrier:
503 			btrfs_clear_and_info(info, NOBARRIER,
504 					     "turning on barriers");
505 			break;
506 		case Opt_nobarrier:
507 			btrfs_set_and_info(info, NOBARRIER,
508 					   "turning off barriers");
509 			break;
510 		case Opt_thread_pool:
511 			ret = match_int(&args[0], &intarg);
512 			if (ret) {
513 				btrfs_err(info, "unrecognized thread_pool value %s",
514 					  args[0].from);
515 				goto out;
516 			} else if (intarg == 0) {
517 				btrfs_err(info, "invalid value 0 for thread_pool");
518 				ret = -EINVAL;
519 				goto out;
520 			}
521 			info->thread_pool_size = intarg;
522 			break;
523 		case Opt_max_inline:
524 			num = match_strdup(&args[0]);
525 			if (num) {
526 				info->max_inline = memparse(num, NULL);
527 				kfree(num);
528 
529 				if (info->max_inline) {
530 					info->max_inline = min_t(u64,
531 						info->max_inline,
532 						info->sectorsize);
533 				}
534 				btrfs_info(info, "max_inline at %llu",
535 					   info->max_inline);
536 			} else {
537 				ret = -ENOMEM;
538 				goto out;
539 			}
540 			break;
541 		case Opt_acl:
542 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
543 			info->sb->s_flags |= SB_POSIXACL;
544 			break;
545 #else
546 			btrfs_err(info, "support for ACL not compiled in!");
547 			ret = -EINVAL;
548 			goto out;
549 #endif
550 		case Opt_noacl:
551 			info->sb->s_flags &= ~SB_POSIXACL;
552 			break;
553 		case Opt_notreelog:
554 			btrfs_set_and_info(info, NOTREELOG,
555 					   "disabling tree log");
556 			break;
557 		case Opt_treelog:
558 			btrfs_clear_and_info(info, NOTREELOG,
559 					     "enabling tree log");
560 			break;
561 		case Opt_norecovery:
562 		case Opt_nologreplay:
563 			btrfs_warn(info,
564 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
565 			btrfs_set_and_info(info, NOLOGREPLAY,
566 					   "disabling log replay at mount time");
567 			break;
568 		case Opt_flushoncommit:
569 			btrfs_set_and_info(info, FLUSHONCOMMIT,
570 					   "turning on flush-on-commit");
571 			break;
572 		case Opt_noflushoncommit:
573 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
574 					     "turning off flush-on-commit");
575 			break;
576 		case Opt_ratio:
577 			ret = match_int(&args[0], &intarg);
578 			if (ret) {
579 				btrfs_err(info, "unrecognized metadata_ratio value %s",
580 					  args[0].from);
581 				goto out;
582 			}
583 			info->metadata_ratio = intarg;
584 			btrfs_info(info, "metadata ratio %u",
585 				   info->metadata_ratio);
586 			break;
587 		case Opt_discard:
588 		case Opt_discard_mode:
589 			if (token == Opt_discard ||
590 			    strcmp(args[0].from, "sync") == 0) {
591 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
592 				btrfs_set_and_info(info, DISCARD_SYNC,
593 						   "turning on sync discard");
594 			} else if (strcmp(args[0].from, "async") == 0) {
595 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
596 				btrfs_set_and_info(info, DISCARD_ASYNC,
597 						   "turning on async discard");
598 			} else {
599 				btrfs_err(info, "unrecognized discard mode value %s",
600 					  args[0].from);
601 				ret = -EINVAL;
602 				goto out;
603 			}
604 			btrfs_clear_opt(info->mount_opt, NODISCARD);
605 			break;
606 		case Opt_nodiscard:
607 			btrfs_clear_and_info(info, DISCARD_SYNC,
608 					     "turning off discard");
609 			btrfs_clear_and_info(info, DISCARD_ASYNC,
610 					     "turning off async discard");
611 			btrfs_set_opt(info->mount_opt, NODISCARD);
612 			break;
613 		case Opt_space_cache:
614 		case Opt_space_cache_version:
615 			/*
616 			 * We already set FREE_SPACE_TREE above because we have
617 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
618 			 * to allow v1 to be set for extent tree v2, simply
619 			 * ignore this setting if we're extent tree v2.
620 			 */
621 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
622 				break;
623 			if (token == Opt_space_cache ||
624 			    strcmp(args[0].from, "v1") == 0) {
625 				btrfs_clear_opt(info->mount_opt,
626 						FREE_SPACE_TREE);
627 				btrfs_set_and_info(info, SPACE_CACHE,
628 					   "enabling disk space caching");
629 			} else if (strcmp(args[0].from, "v2") == 0) {
630 				btrfs_clear_opt(info->mount_opt,
631 						SPACE_CACHE);
632 				btrfs_set_and_info(info, FREE_SPACE_TREE,
633 						   "enabling free space tree");
634 			} else {
635 				btrfs_err(info, "unrecognized space_cache value %s",
636 					  args[0].from);
637 				ret = -EINVAL;
638 				goto out;
639 			}
640 			break;
641 		case Opt_rescan_uuid_tree:
642 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
643 			break;
644 		case Opt_no_space_cache:
645 			/*
646 			 * We cannot operate without the free space tree with
647 			 * extent tree v2, ignore this option.
648 			 */
649 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
650 				break;
651 			if (btrfs_test_opt(info, SPACE_CACHE)) {
652 				btrfs_clear_and_info(info, SPACE_CACHE,
653 					     "disabling disk space caching");
654 			}
655 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
656 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
657 					     "disabling free space tree");
658 			}
659 			break;
660 		case Opt_inode_cache:
661 		case Opt_noinode_cache:
662 			btrfs_warn(info,
663 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
664 			break;
665 		case Opt_clear_cache:
666 			/*
667 			 * We cannot clear the free space tree with extent tree
668 			 * v2, ignore this option.
669 			 */
670 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
671 				break;
672 			btrfs_set_and_info(info, CLEAR_CACHE,
673 					   "force clearing of disk cache");
674 			break;
675 		case Opt_user_subvol_rm_allowed:
676 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
677 			break;
678 		case Opt_enospc_debug:
679 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
680 			break;
681 		case Opt_noenospc_debug:
682 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
683 			break;
684 		case Opt_defrag:
685 			btrfs_set_and_info(info, AUTO_DEFRAG,
686 					   "enabling auto defrag");
687 			break;
688 		case Opt_nodefrag:
689 			btrfs_clear_and_info(info, AUTO_DEFRAG,
690 					     "disabling auto defrag");
691 			break;
692 		case Opt_recovery:
693 		case Opt_usebackuproot:
694 			btrfs_warn(info,
695 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
696 				   token == Opt_recovery ? "recovery" :
697 				   "usebackuproot");
698 			btrfs_info(info,
699 				   "trying to use backup root at mount time");
700 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
701 			break;
702 		case Opt_skip_balance:
703 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
704 			break;
705 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
706 		case Opt_check_integrity_including_extent_data:
707 			btrfs_info(info,
708 				   "enabling check integrity including extent data");
709 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
710 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
711 			break;
712 		case Opt_check_integrity:
713 			btrfs_info(info, "enabling check integrity");
714 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
715 			break;
716 		case Opt_check_integrity_print_mask:
717 			ret = match_int(&args[0], &intarg);
718 			if (ret) {
719 				btrfs_err(info,
720 				"unrecognized check_integrity_print_mask value %s",
721 					args[0].from);
722 				goto out;
723 			}
724 			info->check_integrity_print_mask = intarg;
725 			btrfs_info(info, "check_integrity_print_mask 0x%x",
726 				   info->check_integrity_print_mask);
727 			break;
728 #else
729 		case Opt_check_integrity_including_extent_data:
730 		case Opt_check_integrity:
731 		case Opt_check_integrity_print_mask:
732 			btrfs_err(info,
733 				  "support for check_integrity* not compiled in!");
734 			ret = -EINVAL;
735 			goto out;
736 #endif
737 		case Opt_fatal_errors:
738 			if (strcmp(args[0].from, "panic") == 0) {
739 				btrfs_set_opt(info->mount_opt,
740 					      PANIC_ON_FATAL_ERROR);
741 			} else if (strcmp(args[0].from, "bug") == 0) {
742 				btrfs_clear_opt(info->mount_opt,
743 					      PANIC_ON_FATAL_ERROR);
744 			} else {
745 				btrfs_err(info, "unrecognized fatal_errors value %s",
746 					  args[0].from);
747 				ret = -EINVAL;
748 				goto out;
749 			}
750 			break;
751 		case Opt_commit_interval:
752 			intarg = 0;
753 			ret = match_int(&args[0], &intarg);
754 			if (ret) {
755 				btrfs_err(info, "unrecognized commit_interval value %s",
756 					  args[0].from);
757 				ret = -EINVAL;
758 				goto out;
759 			}
760 			if (intarg == 0) {
761 				btrfs_info(info,
762 					   "using default commit interval %us",
763 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
764 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
765 			} else if (intarg > 300) {
766 				btrfs_warn(info, "excessive commit interval %d",
767 					   intarg);
768 			}
769 			info->commit_interval = intarg;
770 			break;
771 		case Opt_rescue:
772 			ret = parse_rescue_options(info, args[0].from);
773 			if (ret < 0) {
774 				btrfs_err(info, "unrecognized rescue value %s",
775 					  args[0].from);
776 				goto out;
777 			}
778 			break;
779 #ifdef CONFIG_BTRFS_DEBUG
780 		case Opt_fragment_all:
781 			btrfs_info(info, "fragmenting all space");
782 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
783 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
784 			break;
785 		case Opt_fragment_metadata:
786 			btrfs_info(info, "fragmenting metadata");
787 			btrfs_set_opt(info->mount_opt,
788 				      FRAGMENT_METADATA);
789 			break;
790 		case Opt_fragment_data:
791 			btrfs_info(info, "fragmenting data");
792 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
793 			break;
794 #endif
795 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
796 		case Opt_ref_verify:
797 			btrfs_info(info, "doing ref verification");
798 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
799 			break;
800 #endif
801 		case Opt_err:
802 			btrfs_err(info, "unrecognized mount option '%s'", p);
803 			ret = -EINVAL;
804 			goto out;
805 		default:
806 			break;
807 		}
808 	}
809 check:
810 	/* We're read-only, don't have to check. */
811 	if (new_flags & SB_RDONLY)
812 		goto out;
813 
814 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
815 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
816 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
817 		ret = -EINVAL;
818 out:
819 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
820 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
821 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
822 		btrfs_err(info, "cannot disable free space tree");
823 		ret = -EINVAL;
824 
825 	}
826 	if (!ret)
827 		ret = btrfs_check_mountopts_zoned(info);
828 	if (!ret && !remounting) {
829 		if (btrfs_test_opt(info, SPACE_CACHE))
830 			btrfs_info(info, "disk space caching is enabled");
831 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
832 			btrfs_info(info, "using free space tree");
833 	}
834 	return ret;
835 }
836 
837 /*
838  * Parse mount options that are required early in the mount process.
839  *
840  * All other options will be parsed on much later in the mount process and
841  * only when we need to allocate a new super block.
842  */
843 static int btrfs_parse_device_options(const char *options, fmode_t flags,
844 				      void *holder)
845 {
846 	substring_t args[MAX_OPT_ARGS];
847 	char *device_name, *opts, *orig, *p;
848 	struct btrfs_device *device = NULL;
849 	int error = 0;
850 
851 	lockdep_assert_held(&uuid_mutex);
852 
853 	if (!options)
854 		return 0;
855 
856 	/*
857 	 * strsep changes the string, duplicate it because btrfs_parse_options
858 	 * gets called later
859 	 */
860 	opts = kstrdup(options, GFP_KERNEL);
861 	if (!opts)
862 		return -ENOMEM;
863 	orig = opts;
864 
865 	while ((p = strsep(&opts, ",")) != NULL) {
866 		int token;
867 
868 		if (!*p)
869 			continue;
870 
871 		token = match_token(p, tokens, args);
872 		if (token == Opt_device) {
873 			device_name = match_strdup(&args[0]);
874 			if (!device_name) {
875 				error = -ENOMEM;
876 				goto out;
877 			}
878 			device = btrfs_scan_one_device(device_name, flags,
879 					holder);
880 			kfree(device_name);
881 			if (IS_ERR(device)) {
882 				error = PTR_ERR(device);
883 				goto out;
884 			}
885 		}
886 	}
887 
888 out:
889 	kfree(orig);
890 	return error;
891 }
892 
893 /*
894  * Parse mount options that are related to subvolume id
895  *
896  * The value is later passed to mount_subvol()
897  */
898 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
899 		u64 *subvol_objectid)
900 {
901 	substring_t args[MAX_OPT_ARGS];
902 	char *opts, *orig, *p;
903 	int error = 0;
904 	u64 subvolid;
905 
906 	if (!options)
907 		return 0;
908 
909 	/*
910 	 * strsep changes the string, duplicate it because
911 	 * btrfs_parse_device_options gets called later
912 	 */
913 	opts = kstrdup(options, GFP_KERNEL);
914 	if (!opts)
915 		return -ENOMEM;
916 	orig = opts;
917 
918 	while ((p = strsep(&opts, ",")) != NULL) {
919 		int token;
920 		if (!*p)
921 			continue;
922 
923 		token = match_token(p, tokens, args);
924 		switch (token) {
925 		case Opt_subvol:
926 			kfree(*subvol_name);
927 			*subvol_name = match_strdup(&args[0]);
928 			if (!*subvol_name) {
929 				error = -ENOMEM;
930 				goto out;
931 			}
932 			break;
933 		case Opt_subvolid:
934 			error = match_u64(&args[0], &subvolid);
935 			if (error)
936 				goto out;
937 
938 			/* we want the original fs_tree */
939 			if (subvolid == 0)
940 				subvolid = BTRFS_FS_TREE_OBJECTID;
941 
942 			*subvol_objectid = subvolid;
943 			break;
944 		default:
945 			break;
946 		}
947 	}
948 
949 out:
950 	kfree(orig);
951 	return error;
952 }
953 
954 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
955 					  u64 subvol_objectid)
956 {
957 	struct btrfs_root *root = fs_info->tree_root;
958 	struct btrfs_root *fs_root = NULL;
959 	struct btrfs_root_ref *root_ref;
960 	struct btrfs_inode_ref *inode_ref;
961 	struct btrfs_key key;
962 	struct btrfs_path *path = NULL;
963 	char *name = NULL, *ptr;
964 	u64 dirid;
965 	int len;
966 	int ret;
967 
968 	path = btrfs_alloc_path();
969 	if (!path) {
970 		ret = -ENOMEM;
971 		goto err;
972 	}
973 
974 	name = kmalloc(PATH_MAX, GFP_KERNEL);
975 	if (!name) {
976 		ret = -ENOMEM;
977 		goto err;
978 	}
979 	ptr = name + PATH_MAX - 1;
980 	ptr[0] = '\0';
981 
982 	/*
983 	 * Walk up the subvolume trees in the tree of tree roots by root
984 	 * backrefs until we hit the top-level subvolume.
985 	 */
986 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
987 		key.objectid = subvol_objectid;
988 		key.type = BTRFS_ROOT_BACKREF_KEY;
989 		key.offset = (u64)-1;
990 
991 		ret = btrfs_search_backwards(root, &key, path);
992 		if (ret < 0) {
993 			goto err;
994 		} else if (ret > 0) {
995 			ret = -ENOENT;
996 			goto err;
997 		}
998 
999 		subvol_objectid = key.offset;
1000 
1001 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1002 					  struct btrfs_root_ref);
1003 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1004 		ptr -= len + 1;
1005 		if (ptr < name) {
1006 			ret = -ENAMETOOLONG;
1007 			goto err;
1008 		}
1009 		read_extent_buffer(path->nodes[0], ptr + 1,
1010 				   (unsigned long)(root_ref + 1), len);
1011 		ptr[0] = '/';
1012 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1013 		btrfs_release_path(path);
1014 
1015 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1016 		if (IS_ERR(fs_root)) {
1017 			ret = PTR_ERR(fs_root);
1018 			fs_root = NULL;
1019 			goto err;
1020 		}
1021 
1022 		/*
1023 		 * Walk up the filesystem tree by inode refs until we hit the
1024 		 * root directory.
1025 		 */
1026 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1027 			key.objectid = dirid;
1028 			key.type = BTRFS_INODE_REF_KEY;
1029 			key.offset = (u64)-1;
1030 
1031 			ret = btrfs_search_backwards(fs_root, &key, path);
1032 			if (ret < 0) {
1033 				goto err;
1034 			} else if (ret > 0) {
1035 				ret = -ENOENT;
1036 				goto err;
1037 			}
1038 
1039 			dirid = key.offset;
1040 
1041 			inode_ref = btrfs_item_ptr(path->nodes[0],
1042 						   path->slots[0],
1043 						   struct btrfs_inode_ref);
1044 			len = btrfs_inode_ref_name_len(path->nodes[0],
1045 						       inode_ref);
1046 			ptr -= len + 1;
1047 			if (ptr < name) {
1048 				ret = -ENAMETOOLONG;
1049 				goto err;
1050 			}
1051 			read_extent_buffer(path->nodes[0], ptr + 1,
1052 					   (unsigned long)(inode_ref + 1), len);
1053 			ptr[0] = '/';
1054 			btrfs_release_path(path);
1055 		}
1056 		btrfs_put_root(fs_root);
1057 		fs_root = NULL;
1058 	}
1059 
1060 	btrfs_free_path(path);
1061 	if (ptr == name + PATH_MAX - 1) {
1062 		name[0] = '/';
1063 		name[1] = '\0';
1064 	} else {
1065 		memmove(name, ptr, name + PATH_MAX - ptr);
1066 	}
1067 	return name;
1068 
1069 err:
1070 	btrfs_put_root(fs_root);
1071 	btrfs_free_path(path);
1072 	kfree(name);
1073 	return ERR_PTR(ret);
1074 }
1075 
1076 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1077 {
1078 	struct btrfs_root *root = fs_info->tree_root;
1079 	struct btrfs_dir_item *di;
1080 	struct btrfs_path *path;
1081 	struct btrfs_key location;
1082 	struct fscrypt_str name = FSTR_INIT("default", 7);
1083 	u64 dir_id;
1084 
1085 	path = btrfs_alloc_path();
1086 	if (!path)
1087 		return -ENOMEM;
1088 
1089 	/*
1090 	 * Find the "default" dir item which points to the root item that we
1091 	 * will mount by default if we haven't been given a specific subvolume
1092 	 * to mount.
1093 	 */
1094 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1095 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1096 	if (IS_ERR(di)) {
1097 		btrfs_free_path(path);
1098 		return PTR_ERR(di);
1099 	}
1100 	if (!di) {
1101 		/*
1102 		 * Ok the default dir item isn't there.  This is weird since
1103 		 * it's always been there, but don't freak out, just try and
1104 		 * mount the top-level subvolume.
1105 		 */
1106 		btrfs_free_path(path);
1107 		*objectid = BTRFS_FS_TREE_OBJECTID;
1108 		return 0;
1109 	}
1110 
1111 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1112 	btrfs_free_path(path);
1113 	*objectid = location.objectid;
1114 	return 0;
1115 }
1116 
1117 static int btrfs_fill_super(struct super_block *sb,
1118 			    struct btrfs_fs_devices *fs_devices,
1119 			    void *data)
1120 {
1121 	struct inode *inode;
1122 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1123 	int err;
1124 
1125 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1126 	sb->s_magic = BTRFS_SUPER_MAGIC;
1127 	sb->s_op = &btrfs_super_ops;
1128 	sb->s_d_op = &btrfs_dentry_operations;
1129 	sb->s_export_op = &btrfs_export_ops;
1130 #ifdef CONFIG_FS_VERITY
1131 	sb->s_vop = &btrfs_verityops;
1132 #endif
1133 	sb->s_xattr = btrfs_xattr_handlers;
1134 	sb->s_time_gran = 1;
1135 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1136 	sb->s_flags |= SB_POSIXACL;
1137 #endif
1138 	sb->s_flags |= SB_I_VERSION;
1139 	sb->s_iflags |= SB_I_CGROUPWB;
1140 
1141 	err = super_setup_bdi(sb);
1142 	if (err) {
1143 		btrfs_err(fs_info, "super_setup_bdi failed");
1144 		return err;
1145 	}
1146 
1147 	err = open_ctree(sb, fs_devices, (char *)data);
1148 	if (err) {
1149 		btrfs_err(fs_info, "open_ctree failed");
1150 		return err;
1151 	}
1152 
1153 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1154 	if (IS_ERR(inode)) {
1155 		err = PTR_ERR(inode);
1156 		goto fail_close;
1157 	}
1158 
1159 	sb->s_root = d_make_root(inode);
1160 	if (!sb->s_root) {
1161 		err = -ENOMEM;
1162 		goto fail_close;
1163 	}
1164 
1165 	sb->s_flags |= SB_ACTIVE;
1166 	return 0;
1167 
1168 fail_close:
1169 	close_ctree(fs_info);
1170 	return err;
1171 }
1172 
1173 int btrfs_sync_fs(struct super_block *sb, int wait)
1174 {
1175 	struct btrfs_trans_handle *trans;
1176 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1177 	struct btrfs_root *root = fs_info->tree_root;
1178 
1179 	trace_btrfs_sync_fs(fs_info, wait);
1180 
1181 	if (!wait) {
1182 		filemap_flush(fs_info->btree_inode->i_mapping);
1183 		return 0;
1184 	}
1185 
1186 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1187 
1188 	trans = btrfs_attach_transaction_barrier(root);
1189 	if (IS_ERR(trans)) {
1190 		/* no transaction, don't bother */
1191 		if (PTR_ERR(trans) == -ENOENT) {
1192 			/*
1193 			 * Exit unless we have some pending changes
1194 			 * that need to go through commit
1195 			 */
1196 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1197 				      &fs_info->flags))
1198 				return 0;
1199 			/*
1200 			 * A non-blocking test if the fs is frozen. We must not
1201 			 * start a new transaction here otherwise a deadlock
1202 			 * happens. The pending operations are delayed to the
1203 			 * next commit after thawing.
1204 			 */
1205 			if (sb_start_write_trylock(sb))
1206 				sb_end_write(sb);
1207 			else
1208 				return 0;
1209 			trans = btrfs_start_transaction(root, 0);
1210 		}
1211 		if (IS_ERR(trans))
1212 			return PTR_ERR(trans);
1213 	}
1214 	return btrfs_commit_transaction(trans);
1215 }
1216 
1217 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1218 {
1219 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1220 	*printed = true;
1221 }
1222 
1223 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1224 {
1225 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1226 	const char *compress_type;
1227 	const char *subvol_name;
1228 	bool printed = false;
1229 
1230 	if (btrfs_test_opt(info, DEGRADED))
1231 		seq_puts(seq, ",degraded");
1232 	if (btrfs_test_opt(info, NODATASUM))
1233 		seq_puts(seq, ",nodatasum");
1234 	if (btrfs_test_opt(info, NODATACOW))
1235 		seq_puts(seq, ",nodatacow");
1236 	if (btrfs_test_opt(info, NOBARRIER))
1237 		seq_puts(seq, ",nobarrier");
1238 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1239 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1240 	if (info->thread_pool_size !=  min_t(unsigned long,
1241 					     num_online_cpus() + 2, 8))
1242 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1243 	if (btrfs_test_opt(info, COMPRESS)) {
1244 		compress_type = btrfs_compress_type2str(info->compress_type);
1245 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1246 			seq_printf(seq, ",compress-force=%s", compress_type);
1247 		else
1248 			seq_printf(seq, ",compress=%s", compress_type);
1249 		if (info->compress_level)
1250 			seq_printf(seq, ":%d", info->compress_level);
1251 	}
1252 	if (btrfs_test_opt(info, NOSSD))
1253 		seq_puts(seq, ",nossd");
1254 	if (btrfs_test_opt(info, SSD_SPREAD))
1255 		seq_puts(seq, ",ssd_spread");
1256 	else if (btrfs_test_opt(info, SSD))
1257 		seq_puts(seq, ",ssd");
1258 	if (btrfs_test_opt(info, NOTREELOG))
1259 		seq_puts(seq, ",notreelog");
1260 	if (btrfs_test_opt(info, NOLOGREPLAY))
1261 		print_rescue_option(seq, "nologreplay", &printed);
1262 	if (btrfs_test_opt(info, USEBACKUPROOT))
1263 		print_rescue_option(seq, "usebackuproot", &printed);
1264 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1265 		print_rescue_option(seq, "ignorebadroots", &printed);
1266 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1267 		print_rescue_option(seq, "ignoredatacsums", &printed);
1268 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1269 		seq_puts(seq, ",flushoncommit");
1270 	if (btrfs_test_opt(info, DISCARD_SYNC))
1271 		seq_puts(seq, ",discard");
1272 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1273 		seq_puts(seq, ",discard=async");
1274 	if (!(info->sb->s_flags & SB_POSIXACL))
1275 		seq_puts(seq, ",noacl");
1276 	if (btrfs_free_space_cache_v1_active(info))
1277 		seq_puts(seq, ",space_cache");
1278 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1279 		seq_puts(seq, ",space_cache=v2");
1280 	else
1281 		seq_puts(seq, ",nospace_cache");
1282 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1283 		seq_puts(seq, ",rescan_uuid_tree");
1284 	if (btrfs_test_opt(info, CLEAR_CACHE))
1285 		seq_puts(seq, ",clear_cache");
1286 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1287 		seq_puts(seq, ",user_subvol_rm_allowed");
1288 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1289 		seq_puts(seq, ",enospc_debug");
1290 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1291 		seq_puts(seq, ",autodefrag");
1292 	if (btrfs_test_opt(info, SKIP_BALANCE))
1293 		seq_puts(seq, ",skip_balance");
1294 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1295 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1296 		seq_puts(seq, ",check_int_data");
1297 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1298 		seq_puts(seq, ",check_int");
1299 	if (info->check_integrity_print_mask)
1300 		seq_printf(seq, ",check_int_print_mask=%d",
1301 				info->check_integrity_print_mask);
1302 #endif
1303 	if (info->metadata_ratio)
1304 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1305 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1306 		seq_puts(seq, ",fatal_errors=panic");
1307 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1308 		seq_printf(seq, ",commit=%u", info->commit_interval);
1309 #ifdef CONFIG_BTRFS_DEBUG
1310 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1311 		seq_puts(seq, ",fragment=data");
1312 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1313 		seq_puts(seq, ",fragment=metadata");
1314 #endif
1315 	if (btrfs_test_opt(info, REF_VERIFY))
1316 		seq_puts(seq, ",ref_verify");
1317 	seq_printf(seq, ",subvolid=%llu",
1318 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1319 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1320 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1321 	if (!IS_ERR(subvol_name)) {
1322 		seq_puts(seq, ",subvol=");
1323 		seq_escape(seq, subvol_name, " \t\n\\");
1324 		kfree(subvol_name);
1325 	}
1326 	return 0;
1327 }
1328 
1329 static int btrfs_test_super(struct super_block *s, void *data)
1330 {
1331 	struct btrfs_fs_info *p = data;
1332 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1333 
1334 	return fs_info->fs_devices == p->fs_devices;
1335 }
1336 
1337 static int btrfs_set_super(struct super_block *s, void *data)
1338 {
1339 	int err = set_anon_super(s, data);
1340 	if (!err)
1341 		s->s_fs_info = data;
1342 	return err;
1343 }
1344 
1345 /*
1346  * subvolumes are identified by ino 256
1347  */
1348 static inline int is_subvolume_inode(struct inode *inode)
1349 {
1350 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1351 		return 1;
1352 	return 0;
1353 }
1354 
1355 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1356 				   struct vfsmount *mnt)
1357 {
1358 	struct dentry *root;
1359 	int ret;
1360 
1361 	if (!subvol_name) {
1362 		if (!subvol_objectid) {
1363 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1364 							  &subvol_objectid);
1365 			if (ret) {
1366 				root = ERR_PTR(ret);
1367 				goto out;
1368 			}
1369 		}
1370 		subvol_name = btrfs_get_subvol_name_from_objectid(
1371 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1372 		if (IS_ERR(subvol_name)) {
1373 			root = ERR_CAST(subvol_name);
1374 			subvol_name = NULL;
1375 			goto out;
1376 		}
1377 
1378 	}
1379 
1380 	root = mount_subtree(mnt, subvol_name);
1381 	/* mount_subtree() drops our reference on the vfsmount. */
1382 	mnt = NULL;
1383 
1384 	if (!IS_ERR(root)) {
1385 		struct super_block *s = root->d_sb;
1386 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1387 		struct inode *root_inode = d_inode(root);
1388 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1389 
1390 		ret = 0;
1391 		if (!is_subvolume_inode(root_inode)) {
1392 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1393 			       subvol_name);
1394 			ret = -EINVAL;
1395 		}
1396 		if (subvol_objectid && root_objectid != subvol_objectid) {
1397 			/*
1398 			 * This will also catch a race condition where a
1399 			 * subvolume which was passed by ID is renamed and
1400 			 * another subvolume is renamed over the old location.
1401 			 */
1402 			btrfs_err(fs_info,
1403 				  "subvol '%s' does not match subvolid %llu",
1404 				  subvol_name, subvol_objectid);
1405 			ret = -EINVAL;
1406 		}
1407 		if (ret) {
1408 			dput(root);
1409 			root = ERR_PTR(ret);
1410 			deactivate_locked_super(s);
1411 		}
1412 	}
1413 
1414 out:
1415 	mntput(mnt);
1416 	kfree(subvol_name);
1417 	return root;
1418 }
1419 
1420 /*
1421  * Find a superblock for the given device / mount point.
1422  *
1423  * Note: This is based on mount_bdev from fs/super.c with a few additions
1424  *       for multiple device setup.  Make sure to keep it in sync.
1425  */
1426 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1427 		int flags, const char *device_name, void *data)
1428 {
1429 	struct block_device *bdev = NULL;
1430 	struct super_block *s;
1431 	struct btrfs_device *device = NULL;
1432 	struct btrfs_fs_devices *fs_devices = NULL;
1433 	struct btrfs_fs_info *fs_info = NULL;
1434 	void *new_sec_opts = NULL;
1435 	fmode_t mode = FMODE_READ;
1436 	int error = 0;
1437 
1438 	if (!(flags & SB_RDONLY))
1439 		mode |= FMODE_WRITE;
1440 
1441 	if (data) {
1442 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1443 		if (error)
1444 			return ERR_PTR(error);
1445 	}
1446 
1447 	/*
1448 	 * Setup a dummy root and fs_info for test/set super.  This is because
1449 	 * we don't actually fill this stuff out until open_ctree, but we need
1450 	 * then open_ctree will properly initialize the file system specific
1451 	 * settings later.  btrfs_init_fs_info initializes the static elements
1452 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1453 	 * superblock with our given fs_devices later on at sget() time.
1454 	 */
1455 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1456 	if (!fs_info) {
1457 		error = -ENOMEM;
1458 		goto error_sec_opts;
1459 	}
1460 	btrfs_init_fs_info(fs_info);
1461 
1462 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1463 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1464 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1465 		error = -ENOMEM;
1466 		goto error_fs_info;
1467 	}
1468 
1469 	mutex_lock(&uuid_mutex);
1470 	error = btrfs_parse_device_options(data, mode, fs_type);
1471 	if (error) {
1472 		mutex_unlock(&uuid_mutex);
1473 		goto error_fs_info;
1474 	}
1475 
1476 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1477 	if (IS_ERR(device)) {
1478 		mutex_unlock(&uuid_mutex);
1479 		error = PTR_ERR(device);
1480 		goto error_fs_info;
1481 	}
1482 
1483 	fs_devices = device->fs_devices;
1484 	fs_info->fs_devices = fs_devices;
1485 
1486 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1487 	mutex_unlock(&uuid_mutex);
1488 	if (error)
1489 		goto error_fs_info;
1490 
1491 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1492 		error = -EACCES;
1493 		goto error_close_devices;
1494 	}
1495 
1496 	bdev = fs_devices->latest_dev->bdev;
1497 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1498 		 fs_info);
1499 	if (IS_ERR(s)) {
1500 		error = PTR_ERR(s);
1501 		goto error_close_devices;
1502 	}
1503 
1504 	if (s->s_root) {
1505 		btrfs_close_devices(fs_devices);
1506 		btrfs_free_fs_info(fs_info);
1507 		if ((flags ^ s->s_flags) & SB_RDONLY)
1508 			error = -EBUSY;
1509 	} else {
1510 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1511 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1512 					s->s_id);
1513 		btrfs_sb(s)->bdev_holder = fs_type;
1514 		if (!strstr(crc32c_impl(), "generic"))
1515 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1516 		error = btrfs_fill_super(s, fs_devices, data);
1517 	}
1518 	if (!error)
1519 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1520 	security_free_mnt_opts(&new_sec_opts);
1521 	if (error) {
1522 		deactivate_locked_super(s);
1523 		return ERR_PTR(error);
1524 	}
1525 
1526 	return dget(s->s_root);
1527 
1528 error_close_devices:
1529 	btrfs_close_devices(fs_devices);
1530 error_fs_info:
1531 	btrfs_free_fs_info(fs_info);
1532 error_sec_opts:
1533 	security_free_mnt_opts(&new_sec_opts);
1534 	return ERR_PTR(error);
1535 }
1536 
1537 /*
1538  * Mount function which is called by VFS layer.
1539  *
1540  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1541  * which needs vfsmount* of device's root (/).  This means device's root has to
1542  * be mounted internally in any case.
1543  *
1544  * Operation flow:
1545  *   1. Parse subvol id related options for later use in mount_subvol().
1546  *
1547  *   2. Mount device's root (/) by calling vfs_kern_mount().
1548  *
1549  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1550  *      first place. In order to avoid calling btrfs_mount() again, we use
1551  *      different file_system_type which is not registered to VFS by
1552  *      register_filesystem() (btrfs_root_fs_type). As a result,
1553  *      btrfs_mount_root() is called. The return value will be used by
1554  *      mount_subtree() in mount_subvol().
1555  *
1556  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1557  *      "btrfs subvolume set-default", mount_subvol() is called always.
1558  */
1559 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1560 		const char *device_name, void *data)
1561 {
1562 	struct vfsmount *mnt_root;
1563 	struct dentry *root;
1564 	char *subvol_name = NULL;
1565 	u64 subvol_objectid = 0;
1566 	int error = 0;
1567 
1568 	error = btrfs_parse_subvol_options(data, &subvol_name,
1569 					&subvol_objectid);
1570 	if (error) {
1571 		kfree(subvol_name);
1572 		return ERR_PTR(error);
1573 	}
1574 
1575 	/* mount device's root (/) */
1576 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1577 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1578 		if (flags & SB_RDONLY) {
1579 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1580 				flags & ~SB_RDONLY, device_name, data);
1581 		} else {
1582 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1583 				flags | SB_RDONLY, device_name, data);
1584 			if (IS_ERR(mnt_root)) {
1585 				root = ERR_CAST(mnt_root);
1586 				kfree(subvol_name);
1587 				goto out;
1588 			}
1589 
1590 			down_write(&mnt_root->mnt_sb->s_umount);
1591 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1592 			up_write(&mnt_root->mnt_sb->s_umount);
1593 			if (error < 0) {
1594 				root = ERR_PTR(error);
1595 				mntput(mnt_root);
1596 				kfree(subvol_name);
1597 				goto out;
1598 			}
1599 		}
1600 	}
1601 	if (IS_ERR(mnt_root)) {
1602 		root = ERR_CAST(mnt_root);
1603 		kfree(subvol_name);
1604 		goto out;
1605 	}
1606 
1607 	/* mount_subvol() will free subvol_name and mnt_root */
1608 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1609 
1610 out:
1611 	return root;
1612 }
1613 
1614 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1615 				     u32 new_pool_size, u32 old_pool_size)
1616 {
1617 	if (new_pool_size == old_pool_size)
1618 		return;
1619 
1620 	fs_info->thread_pool_size = new_pool_size;
1621 
1622 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1623 	       old_pool_size, new_pool_size);
1624 
1625 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1626 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1627 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1628 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1629 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1630 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1631 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1632 }
1633 
1634 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1635 				       unsigned long old_opts, int flags)
1636 {
1637 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1638 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1639 	     (flags & SB_RDONLY))) {
1640 		/* wait for any defraggers to finish */
1641 		wait_event(fs_info->transaction_wait,
1642 			   (atomic_read(&fs_info->defrag_running) == 0));
1643 		if (flags & SB_RDONLY)
1644 			sync_filesystem(fs_info->sb);
1645 	}
1646 }
1647 
1648 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1649 					 unsigned long old_opts)
1650 {
1651 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1652 
1653 	/*
1654 	 * We need to cleanup all defragable inodes if the autodefragment is
1655 	 * close or the filesystem is read only.
1656 	 */
1657 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1658 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1659 		btrfs_cleanup_defrag_inodes(fs_info);
1660 	}
1661 
1662 	/* If we toggled discard async */
1663 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1664 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1665 		btrfs_discard_resume(fs_info);
1666 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1667 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1668 		btrfs_discard_cleanup(fs_info);
1669 
1670 	/* If we toggled space cache */
1671 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1672 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1673 }
1674 
1675 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1676 {
1677 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1678 	unsigned old_flags = sb->s_flags;
1679 	unsigned long old_opts = fs_info->mount_opt;
1680 	unsigned long old_compress_type = fs_info->compress_type;
1681 	u64 old_max_inline = fs_info->max_inline;
1682 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1683 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1684 	int ret;
1685 
1686 	sync_filesystem(sb);
1687 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1688 
1689 	if (data) {
1690 		void *new_sec_opts = NULL;
1691 
1692 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1693 		if (!ret)
1694 			ret = security_sb_remount(sb, new_sec_opts);
1695 		security_free_mnt_opts(&new_sec_opts);
1696 		if (ret)
1697 			goto restore;
1698 	}
1699 
1700 	ret = btrfs_parse_options(fs_info, data, *flags);
1701 	if (ret)
1702 		goto restore;
1703 
1704 	ret = btrfs_check_features(fs_info, sb);
1705 	if (ret < 0)
1706 		goto restore;
1707 
1708 	btrfs_remount_begin(fs_info, old_opts, *flags);
1709 	btrfs_resize_thread_pool(fs_info,
1710 		fs_info->thread_pool_size, old_thread_pool_size);
1711 
1712 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1713 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1714 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1715 		btrfs_warn(fs_info,
1716 		"remount supports changing free space tree only from ro to rw");
1717 		/* Make sure free space cache options match the state on disk */
1718 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1719 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1720 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1721 		}
1722 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1723 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1724 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1725 		}
1726 	}
1727 
1728 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1729 		goto out;
1730 
1731 	if (*flags & SB_RDONLY) {
1732 		/*
1733 		 * this also happens on 'umount -rf' or on shutdown, when
1734 		 * the filesystem is busy.
1735 		 */
1736 		cancel_work_sync(&fs_info->async_reclaim_work);
1737 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1738 
1739 		btrfs_discard_cleanup(fs_info);
1740 
1741 		/* wait for the uuid_scan task to finish */
1742 		down(&fs_info->uuid_tree_rescan_sem);
1743 		/* avoid complains from lockdep et al. */
1744 		up(&fs_info->uuid_tree_rescan_sem);
1745 
1746 		btrfs_set_sb_rdonly(sb);
1747 
1748 		/*
1749 		 * Setting SB_RDONLY will put the cleaner thread to
1750 		 * sleep at the next loop if it's already active.
1751 		 * If it's already asleep, we'll leave unused block
1752 		 * groups on disk until we're mounted read-write again
1753 		 * unless we clean them up here.
1754 		 */
1755 		btrfs_delete_unused_bgs(fs_info);
1756 
1757 		/*
1758 		 * The cleaner task could be already running before we set the
1759 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1760 		 * We must make sure that after we finish the remount, i.e. after
1761 		 * we call btrfs_commit_super(), the cleaner can no longer start
1762 		 * a transaction - either because it was dropping a dead root,
1763 		 * running delayed iputs or deleting an unused block group (the
1764 		 * cleaner picked a block group from the list of unused block
1765 		 * groups before we were able to in the previous call to
1766 		 * btrfs_delete_unused_bgs()).
1767 		 */
1768 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1769 			    TASK_UNINTERRUPTIBLE);
1770 
1771 		/*
1772 		 * We've set the superblock to RO mode, so we might have made
1773 		 * the cleaner task sleep without running all pending delayed
1774 		 * iputs. Go through all the delayed iputs here, so that if an
1775 		 * unmount happens without remounting RW we don't end up at
1776 		 * finishing close_ctree() with a non-empty list of delayed
1777 		 * iputs.
1778 		 */
1779 		btrfs_run_delayed_iputs(fs_info);
1780 
1781 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1782 		btrfs_scrub_cancel(fs_info);
1783 		btrfs_pause_balance(fs_info);
1784 
1785 		/*
1786 		 * Pause the qgroup rescan worker if it is running. We don't want
1787 		 * it to be still running after we are in RO mode, as after that,
1788 		 * by the time we unmount, it might have left a transaction open,
1789 		 * so we would leak the transaction and/or crash.
1790 		 */
1791 		btrfs_qgroup_wait_for_completion(fs_info, false);
1792 
1793 		ret = btrfs_commit_super(fs_info);
1794 		if (ret)
1795 			goto restore;
1796 	} else {
1797 		if (BTRFS_FS_ERROR(fs_info)) {
1798 			btrfs_err(fs_info,
1799 				"Remounting read-write after error is not allowed");
1800 			ret = -EINVAL;
1801 			goto restore;
1802 		}
1803 		if (fs_info->fs_devices->rw_devices == 0) {
1804 			ret = -EACCES;
1805 			goto restore;
1806 		}
1807 
1808 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1809 			btrfs_warn(fs_info,
1810 		"too many missing devices, writable remount is not allowed");
1811 			ret = -EACCES;
1812 			goto restore;
1813 		}
1814 
1815 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1816 			btrfs_warn(fs_info,
1817 		"mount required to replay tree-log, cannot remount read-write");
1818 			ret = -EINVAL;
1819 			goto restore;
1820 		}
1821 
1822 		/*
1823 		 * NOTE: when remounting with a change that does writes, don't
1824 		 * put it anywhere above this point, as we are not sure to be
1825 		 * safe to write until we pass the above checks.
1826 		 */
1827 		ret = btrfs_start_pre_rw_mount(fs_info);
1828 		if (ret)
1829 			goto restore;
1830 
1831 		btrfs_clear_sb_rdonly(sb);
1832 
1833 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1834 	}
1835 out:
1836 	/*
1837 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1838 	 * since the absence of the flag means it can be toggled off by remount.
1839 	 */
1840 	*flags |= SB_I_VERSION;
1841 
1842 	wake_up_process(fs_info->transaction_kthread);
1843 	btrfs_remount_cleanup(fs_info, old_opts);
1844 	btrfs_clear_oneshot_options(fs_info);
1845 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1846 
1847 	return 0;
1848 
1849 restore:
1850 	/* We've hit an error - don't reset SB_RDONLY */
1851 	if (sb_rdonly(sb))
1852 		old_flags |= SB_RDONLY;
1853 	if (!(old_flags & SB_RDONLY))
1854 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1855 	sb->s_flags = old_flags;
1856 	fs_info->mount_opt = old_opts;
1857 	fs_info->compress_type = old_compress_type;
1858 	fs_info->max_inline = old_max_inline;
1859 	btrfs_resize_thread_pool(fs_info,
1860 		old_thread_pool_size, fs_info->thread_pool_size);
1861 	fs_info->metadata_ratio = old_metadata_ratio;
1862 	btrfs_remount_cleanup(fs_info, old_opts);
1863 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1864 
1865 	return ret;
1866 }
1867 
1868 /* Used to sort the devices by max_avail(descending sort) */
1869 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1870 {
1871 	const struct btrfs_device_info *dev_info1 = a;
1872 	const struct btrfs_device_info *dev_info2 = b;
1873 
1874 	if (dev_info1->max_avail > dev_info2->max_avail)
1875 		return -1;
1876 	else if (dev_info1->max_avail < dev_info2->max_avail)
1877 		return 1;
1878 	return 0;
1879 }
1880 
1881 /*
1882  * sort the devices by max_avail, in which max free extent size of each device
1883  * is stored.(Descending Sort)
1884  */
1885 static inline void btrfs_descending_sort_devices(
1886 					struct btrfs_device_info *devices,
1887 					size_t nr_devices)
1888 {
1889 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1890 	     btrfs_cmp_device_free_bytes, NULL);
1891 }
1892 
1893 /*
1894  * The helper to calc the free space on the devices that can be used to store
1895  * file data.
1896  */
1897 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1898 					      u64 *free_bytes)
1899 {
1900 	struct btrfs_device_info *devices_info;
1901 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1902 	struct btrfs_device *device;
1903 	u64 type;
1904 	u64 avail_space;
1905 	u64 min_stripe_size;
1906 	int num_stripes = 1;
1907 	int i = 0, nr_devices;
1908 	const struct btrfs_raid_attr *rattr;
1909 
1910 	/*
1911 	 * We aren't under the device list lock, so this is racy-ish, but good
1912 	 * enough for our purposes.
1913 	 */
1914 	nr_devices = fs_info->fs_devices->open_devices;
1915 	if (!nr_devices) {
1916 		smp_mb();
1917 		nr_devices = fs_info->fs_devices->open_devices;
1918 		ASSERT(nr_devices);
1919 		if (!nr_devices) {
1920 			*free_bytes = 0;
1921 			return 0;
1922 		}
1923 	}
1924 
1925 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1926 			       GFP_KERNEL);
1927 	if (!devices_info)
1928 		return -ENOMEM;
1929 
1930 	/* calc min stripe number for data space allocation */
1931 	type = btrfs_data_alloc_profile(fs_info);
1932 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1933 
1934 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1935 		num_stripes = nr_devices;
1936 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1937 		num_stripes = rattr->ncopies;
1938 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1939 		num_stripes = 4;
1940 
1941 	/* Adjust for more than 1 stripe per device */
1942 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1943 
1944 	rcu_read_lock();
1945 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1946 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1947 						&device->dev_state) ||
1948 		    !device->bdev ||
1949 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1950 			continue;
1951 
1952 		if (i >= nr_devices)
1953 			break;
1954 
1955 		avail_space = device->total_bytes - device->bytes_used;
1956 
1957 		/* align with stripe_len */
1958 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1959 
1960 		/*
1961 		 * Ensure we have at least min_stripe_size on top of the
1962 		 * reserved space on the device.
1963 		 */
1964 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1965 			continue;
1966 
1967 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1968 
1969 		devices_info[i].dev = device;
1970 		devices_info[i].max_avail = avail_space;
1971 
1972 		i++;
1973 	}
1974 	rcu_read_unlock();
1975 
1976 	nr_devices = i;
1977 
1978 	btrfs_descending_sort_devices(devices_info, nr_devices);
1979 
1980 	i = nr_devices - 1;
1981 	avail_space = 0;
1982 	while (nr_devices >= rattr->devs_min) {
1983 		num_stripes = min(num_stripes, nr_devices);
1984 
1985 		if (devices_info[i].max_avail >= min_stripe_size) {
1986 			int j;
1987 			u64 alloc_size;
1988 
1989 			avail_space += devices_info[i].max_avail * num_stripes;
1990 			alloc_size = devices_info[i].max_avail;
1991 			for (j = i + 1 - num_stripes; j <= i; j++)
1992 				devices_info[j].max_avail -= alloc_size;
1993 		}
1994 		i--;
1995 		nr_devices--;
1996 	}
1997 
1998 	kfree(devices_info);
1999 	*free_bytes = avail_space;
2000 	return 0;
2001 }
2002 
2003 /*
2004  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2005  *
2006  * If there's a redundant raid level at DATA block groups, use the respective
2007  * multiplier to scale the sizes.
2008  *
2009  * Unused device space usage is based on simulating the chunk allocator
2010  * algorithm that respects the device sizes and order of allocations.  This is
2011  * a close approximation of the actual use but there are other factors that may
2012  * change the result (like a new metadata chunk).
2013  *
2014  * If metadata is exhausted, f_bavail will be 0.
2015  */
2016 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2017 {
2018 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2019 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2020 	struct btrfs_space_info *found;
2021 	u64 total_used = 0;
2022 	u64 total_free_data = 0;
2023 	u64 total_free_meta = 0;
2024 	u32 bits = fs_info->sectorsize_bits;
2025 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2026 	unsigned factor = 1;
2027 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2028 	int ret;
2029 	u64 thresh = 0;
2030 	int mixed = 0;
2031 
2032 	list_for_each_entry(found, &fs_info->space_info, list) {
2033 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2034 			int i;
2035 
2036 			total_free_data += found->disk_total - found->disk_used;
2037 			total_free_data -=
2038 				btrfs_account_ro_block_groups_free_space(found);
2039 
2040 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2041 				if (!list_empty(&found->block_groups[i]))
2042 					factor = btrfs_bg_type_to_factor(
2043 						btrfs_raid_array[i].bg_flag);
2044 			}
2045 		}
2046 
2047 		/*
2048 		 * Metadata in mixed block goup profiles are accounted in data
2049 		 */
2050 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2051 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2052 				mixed = 1;
2053 			else
2054 				total_free_meta += found->disk_total -
2055 					found->disk_used;
2056 		}
2057 
2058 		total_used += found->disk_used;
2059 	}
2060 
2061 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2062 	buf->f_blocks >>= bits;
2063 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2064 
2065 	/* Account global block reserve as used, it's in logical size already */
2066 	spin_lock(&block_rsv->lock);
2067 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2068 	if (buf->f_bfree >= block_rsv->size >> bits)
2069 		buf->f_bfree -= block_rsv->size >> bits;
2070 	else
2071 		buf->f_bfree = 0;
2072 	spin_unlock(&block_rsv->lock);
2073 
2074 	buf->f_bavail = div_u64(total_free_data, factor);
2075 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2076 	if (ret)
2077 		return ret;
2078 	buf->f_bavail += div_u64(total_free_data, factor);
2079 	buf->f_bavail = buf->f_bavail >> bits;
2080 
2081 	/*
2082 	 * We calculate the remaining metadata space minus global reserve. If
2083 	 * this is (supposedly) smaller than zero, there's no space. But this
2084 	 * does not hold in practice, the exhausted state happens where's still
2085 	 * some positive delta. So we apply some guesswork and compare the
2086 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2087 	 *
2088 	 * We probably cannot calculate the exact threshold value because this
2089 	 * depends on the internal reservations requested by various
2090 	 * operations, so some operations that consume a few metadata will
2091 	 * succeed even if the Avail is zero. But this is better than the other
2092 	 * way around.
2093 	 */
2094 	thresh = SZ_4M;
2095 
2096 	/*
2097 	 * We only want to claim there's no available space if we can no longer
2098 	 * allocate chunks for our metadata profile and our global reserve will
2099 	 * not fit in the free metadata space.  If we aren't ->full then we
2100 	 * still can allocate chunks and thus are fine using the currently
2101 	 * calculated f_bavail.
2102 	 */
2103 	if (!mixed && block_rsv->space_info->full &&
2104 	    total_free_meta - thresh < block_rsv->size)
2105 		buf->f_bavail = 0;
2106 
2107 	buf->f_type = BTRFS_SUPER_MAGIC;
2108 	buf->f_bsize = dentry->d_sb->s_blocksize;
2109 	buf->f_namelen = BTRFS_NAME_LEN;
2110 
2111 	/* We treat it as constant endianness (it doesn't matter _which_)
2112 	   because we want the fsid to come out the same whether mounted
2113 	   on a big-endian or little-endian host */
2114 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2115 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2116 	/* Mask in the root object ID too, to disambiguate subvols */
2117 	buf->f_fsid.val[0] ^=
2118 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2119 	buf->f_fsid.val[1] ^=
2120 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2121 
2122 	return 0;
2123 }
2124 
2125 static void btrfs_kill_super(struct super_block *sb)
2126 {
2127 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2128 	kill_anon_super(sb);
2129 	btrfs_free_fs_info(fs_info);
2130 }
2131 
2132 static struct file_system_type btrfs_fs_type = {
2133 	.owner		= THIS_MODULE,
2134 	.name		= "btrfs",
2135 	.mount		= btrfs_mount,
2136 	.kill_sb	= btrfs_kill_super,
2137 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2138 };
2139 
2140 static struct file_system_type btrfs_root_fs_type = {
2141 	.owner		= THIS_MODULE,
2142 	.name		= "btrfs",
2143 	.mount		= btrfs_mount_root,
2144 	.kill_sb	= btrfs_kill_super,
2145 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2146 };
2147 
2148 MODULE_ALIAS_FS("btrfs");
2149 
2150 static int btrfs_control_open(struct inode *inode, struct file *file)
2151 {
2152 	/*
2153 	 * The control file's private_data is used to hold the
2154 	 * transaction when it is started and is used to keep
2155 	 * track of whether a transaction is already in progress.
2156 	 */
2157 	file->private_data = NULL;
2158 	return 0;
2159 }
2160 
2161 /*
2162  * Used by /dev/btrfs-control for devices ioctls.
2163  */
2164 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2165 				unsigned long arg)
2166 {
2167 	struct btrfs_ioctl_vol_args *vol;
2168 	struct btrfs_device *device = NULL;
2169 	dev_t devt = 0;
2170 	int ret = -ENOTTY;
2171 
2172 	if (!capable(CAP_SYS_ADMIN))
2173 		return -EPERM;
2174 
2175 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2176 	if (IS_ERR(vol))
2177 		return PTR_ERR(vol);
2178 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2179 
2180 	switch (cmd) {
2181 	case BTRFS_IOC_SCAN_DEV:
2182 		mutex_lock(&uuid_mutex);
2183 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2184 					       &btrfs_root_fs_type);
2185 		ret = PTR_ERR_OR_ZERO(device);
2186 		mutex_unlock(&uuid_mutex);
2187 		break;
2188 	case BTRFS_IOC_FORGET_DEV:
2189 		if (vol->name[0] != 0) {
2190 			ret = lookup_bdev(vol->name, &devt);
2191 			if (ret)
2192 				break;
2193 		}
2194 		ret = btrfs_forget_devices(devt);
2195 		break;
2196 	case BTRFS_IOC_DEVICES_READY:
2197 		mutex_lock(&uuid_mutex);
2198 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2199 					       &btrfs_root_fs_type);
2200 		if (IS_ERR(device)) {
2201 			mutex_unlock(&uuid_mutex);
2202 			ret = PTR_ERR(device);
2203 			break;
2204 		}
2205 		ret = !(device->fs_devices->num_devices ==
2206 			device->fs_devices->total_devices);
2207 		mutex_unlock(&uuid_mutex);
2208 		break;
2209 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2210 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2211 		break;
2212 	}
2213 
2214 	kfree(vol);
2215 	return ret;
2216 }
2217 
2218 static int btrfs_freeze(struct super_block *sb)
2219 {
2220 	struct btrfs_trans_handle *trans;
2221 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2222 	struct btrfs_root *root = fs_info->tree_root;
2223 
2224 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2225 	/*
2226 	 * We don't need a barrier here, we'll wait for any transaction that
2227 	 * could be in progress on other threads (and do delayed iputs that
2228 	 * we want to avoid on a frozen filesystem), or do the commit
2229 	 * ourselves.
2230 	 */
2231 	trans = btrfs_attach_transaction_barrier(root);
2232 	if (IS_ERR(trans)) {
2233 		/* no transaction, don't bother */
2234 		if (PTR_ERR(trans) == -ENOENT)
2235 			return 0;
2236 		return PTR_ERR(trans);
2237 	}
2238 	return btrfs_commit_transaction(trans);
2239 }
2240 
2241 static int check_dev_super(struct btrfs_device *dev)
2242 {
2243 	struct btrfs_fs_info *fs_info = dev->fs_info;
2244 	struct btrfs_super_block *sb;
2245 	u16 csum_type;
2246 	int ret = 0;
2247 
2248 	/* This should be called with fs still frozen. */
2249 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2250 
2251 	/* Missing dev, no need to check. */
2252 	if (!dev->bdev)
2253 		return 0;
2254 
2255 	/* Only need to check the primary super block. */
2256 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2257 	if (IS_ERR(sb))
2258 		return PTR_ERR(sb);
2259 
2260 	/* Verify the checksum. */
2261 	csum_type = btrfs_super_csum_type(sb);
2262 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2263 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2264 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2265 		ret = -EUCLEAN;
2266 		goto out;
2267 	}
2268 
2269 	if (btrfs_check_super_csum(fs_info, sb)) {
2270 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2271 		ret = -EUCLEAN;
2272 		goto out;
2273 	}
2274 
2275 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2276 	ret = btrfs_validate_super(fs_info, sb, 0);
2277 	if (ret < 0)
2278 		goto out;
2279 
2280 	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2281 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2282 			btrfs_super_generation(sb),
2283 			fs_info->last_trans_committed);
2284 		ret = -EUCLEAN;
2285 		goto out;
2286 	}
2287 out:
2288 	btrfs_release_disk_super(sb);
2289 	return ret;
2290 }
2291 
2292 static int btrfs_unfreeze(struct super_block *sb)
2293 {
2294 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2295 	struct btrfs_device *device;
2296 	int ret = 0;
2297 
2298 	/*
2299 	 * Make sure the fs is not changed by accident (like hibernation then
2300 	 * modified by other OS).
2301 	 * If we found anything wrong, we mark the fs error immediately.
2302 	 *
2303 	 * And since the fs is frozen, no one can modify the fs yet, thus
2304 	 * we don't need to hold device_list_mutex.
2305 	 */
2306 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2307 		ret = check_dev_super(device);
2308 		if (ret < 0) {
2309 			btrfs_handle_fs_error(fs_info, ret,
2310 				"super block on devid %llu got modified unexpectedly",
2311 				device->devid);
2312 			break;
2313 		}
2314 	}
2315 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2316 
2317 	/*
2318 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2319 	 * above checks failed. Since the fs is either fine or read-only, we're
2320 	 * safe to continue, without causing further damage.
2321 	 */
2322 	return 0;
2323 }
2324 
2325 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2326 {
2327 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2328 
2329 	/*
2330 	 * There should be always a valid pointer in latest_dev, it may be stale
2331 	 * for a short moment in case it's being deleted but still valid until
2332 	 * the end of RCU grace period.
2333 	 */
2334 	rcu_read_lock();
2335 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2336 	rcu_read_unlock();
2337 
2338 	return 0;
2339 }
2340 
2341 static const struct super_operations btrfs_super_ops = {
2342 	.drop_inode	= btrfs_drop_inode,
2343 	.evict_inode	= btrfs_evict_inode,
2344 	.put_super	= btrfs_put_super,
2345 	.sync_fs	= btrfs_sync_fs,
2346 	.show_options	= btrfs_show_options,
2347 	.show_devname	= btrfs_show_devname,
2348 	.alloc_inode	= btrfs_alloc_inode,
2349 	.destroy_inode	= btrfs_destroy_inode,
2350 	.free_inode	= btrfs_free_inode,
2351 	.statfs		= btrfs_statfs,
2352 	.remount_fs	= btrfs_remount,
2353 	.freeze_fs	= btrfs_freeze,
2354 	.unfreeze_fs	= btrfs_unfreeze,
2355 };
2356 
2357 static const struct file_operations btrfs_ctl_fops = {
2358 	.open = btrfs_control_open,
2359 	.unlocked_ioctl	 = btrfs_control_ioctl,
2360 	.compat_ioctl = compat_ptr_ioctl,
2361 	.owner	 = THIS_MODULE,
2362 	.llseek = noop_llseek,
2363 };
2364 
2365 static struct miscdevice btrfs_misc = {
2366 	.minor		= BTRFS_MINOR,
2367 	.name		= "btrfs-control",
2368 	.fops		= &btrfs_ctl_fops
2369 };
2370 
2371 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2372 MODULE_ALIAS("devname:btrfs-control");
2373 
2374 static int __init btrfs_interface_init(void)
2375 {
2376 	return misc_register(&btrfs_misc);
2377 }
2378 
2379 static __cold void btrfs_interface_exit(void)
2380 {
2381 	misc_deregister(&btrfs_misc);
2382 }
2383 
2384 static int __init btrfs_print_mod_info(void)
2385 {
2386 	static const char options[] = ""
2387 #ifdef CONFIG_BTRFS_DEBUG
2388 			", debug=on"
2389 #endif
2390 #ifdef CONFIG_BTRFS_ASSERT
2391 			", assert=on"
2392 #endif
2393 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2394 			", integrity-checker=on"
2395 #endif
2396 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2397 			", ref-verify=on"
2398 #endif
2399 #ifdef CONFIG_BLK_DEV_ZONED
2400 			", zoned=yes"
2401 #else
2402 			", zoned=no"
2403 #endif
2404 #ifdef CONFIG_FS_VERITY
2405 			", fsverity=yes"
2406 #else
2407 			", fsverity=no"
2408 #endif
2409 			;
2410 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2411 	return 0;
2412 }
2413 
2414 static int register_btrfs(void)
2415 {
2416 	return register_filesystem(&btrfs_fs_type);
2417 }
2418 
2419 static void unregister_btrfs(void)
2420 {
2421 	unregister_filesystem(&btrfs_fs_type);
2422 }
2423 
2424 /* Helper structure for long init/exit functions. */
2425 struct init_sequence {
2426 	int (*init_func)(void);
2427 	/* Can be NULL if the init_func doesn't need cleanup. */
2428 	void (*exit_func)(void);
2429 };
2430 
2431 static const struct init_sequence mod_init_seq[] = {
2432 	{
2433 		.init_func = btrfs_props_init,
2434 		.exit_func = NULL,
2435 	}, {
2436 		.init_func = btrfs_init_sysfs,
2437 		.exit_func = btrfs_exit_sysfs,
2438 	}, {
2439 		.init_func = btrfs_init_compress,
2440 		.exit_func = btrfs_exit_compress,
2441 	}, {
2442 		.init_func = btrfs_init_cachep,
2443 		.exit_func = btrfs_destroy_cachep,
2444 	}, {
2445 		.init_func = btrfs_transaction_init,
2446 		.exit_func = btrfs_transaction_exit,
2447 	}, {
2448 		.init_func = btrfs_ctree_init,
2449 		.exit_func = btrfs_ctree_exit,
2450 	}, {
2451 		.init_func = btrfs_free_space_init,
2452 		.exit_func = btrfs_free_space_exit,
2453 	}, {
2454 		.init_func = extent_state_init_cachep,
2455 		.exit_func = extent_state_free_cachep,
2456 	}, {
2457 		.init_func = extent_buffer_init_cachep,
2458 		.exit_func = extent_buffer_free_cachep,
2459 	}, {
2460 		.init_func = btrfs_bioset_init,
2461 		.exit_func = btrfs_bioset_exit,
2462 	}, {
2463 		.init_func = extent_map_init,
2464 		.exit_func = extent_map_exit,
2465 	}, {
2466 		.init_func = ordered_data_init,
2467 		.exit_func = ordered_data_exit,
2468 	}, {
2469 		.init_func = btrfs_delayed_inode_init,
2470 		.exit_func = btrfs_delayed_inode_exit,
2471 	}, {
2472 		.init_func = btrfs_auto_defrag_init,
2473 		.exit_func = btrfs_auto_defrag_exit,
2474 	}, {
2475 		.init_func = btrfs_delayed_ref_init,
2476 		.exit_func = btrfs_delayed_ref_exit,
2477 	}, {
2478 		.init_func = btrfs_prelim_ref_init,
2479 		.exit_func = btrfs_prelim_ref_exit,
2480 	}, {
2481 		.init_func = btrfs_interface_init,
2482 		.exit_func = btrfs_interface_exit,
2483 	}, {
2484 		.init_func = btrfs_print_mod_info,
2485 		.exit_func = NULL,
2486 	}, {
2487 		.init_func = btrfs_run_sanity_tests,
2488 		.exit_func = NULL,
2489 	}, {
2490 		.init_func = register_btrfs,
2491 		.exit_func = unregister_btrfs,
2492 	}
2493 };
2494 
2495 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2496 
2497 static __always_inline void btrfs_exit_btrfs_fs(void)
2498 {
2499 	int i;
2500 
2501 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2502 		if (!mod_init_result[i])
2503 			continue;
2504 		if (mod_init_seq[i].exit_func)
2505 			mod_init_seq[i].exit_func();
2506 		mod_init_result[i] = false;
2507 	}
2508 }
2509 
2510 static void __exit exit_btrfs_fs(void)
2511 {
2512 	btrfs_exit_btrfs_fs();
2513 }
2514 
2515 static int __init init_btrfs_fs(void)
2516 {
2517 	int ret;
2518 	int i;
2519 
2520 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2521 		ASSERT(!mod_init_result[i]);
2522 		ret = mod_init_seq[i].init_func();
2523 		if (ret < 0) {
2524 			btrfs_exit_btrfs_fs();
2525 			return ret;
2526 		}
2527 		mod_init_result[i] = true;
2528 	}
2529 	return 0;
2530 }
2531 
2532 late_initcall(init_btrfs_fs);
2533 module_exit(exit_btrfs_fs)
2534 
2535 MODULE_LICENSE("GPL");
2536 MODULE_SOFTDEP("pre: crc32c");
2537 MODULE_SOFTDEP("pre: xxhash64");
2538 MODULE_SOFTDEP("pre: sha256");
2539 MODULE_SOFTDEP("pre: blake2b-256");
2540