xref: /openbmc/linux/fs/btrfs/super.c (revision ad721bc919edfd8b4b06977458a412011e2f0c50)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "messages.h"
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "bio.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #include "dir-item.h"
57 #include "ioctl.h"
58 #include "scrub.h"
59 #include "verity.h"
60 #include "super.h"
61 #include "extent-tree.h"
62 #define CREATE_TRACE_POINTS
63 #include <trace/events/btrfs.h>
64 
65 static const struct super_operations btrfs_super_ops;
66 
67 /*
68  * Types for mounting the default subvolume and a subvolume explicitly
69  * requested by subvol=/path. That way the callchain is straightforward and we
70  * don't have to play tricks with the mount options and recursive calls to
71  * btrfs_mount.
72  *
73  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
74  */
75 static struct file_system_type btrfs_fs_type;
76 static struct file_system_type btrfs_root_fs_type;
77 
78 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
79 
80 static void btrfs_put_super(struct super_block *sb)
81 {
82 	close_ctree(btrfs_sb(sb));
83 }
84 
85 enum {
86 	Opt_acl, Opt_noacl,
87 	Opt_clear_cache,
88 	Opt_commit_interval,
89 	Opt_compress,
90 	Opt_compress_force,
91 	Opt_compress_force_type,
92 	Opt_compress_type,
93 	Opt_degraded,
94 	Opt_device,
95 	Opt_fatal_errors,
96 	Opt_flushoncommit, Opt_noflushoncommit,
97 	Opt_max_inline,
98 	Opt_barrier, Opt_nobarrier,
99 	Opt_datacow, Opt_nodatacow,
100 	Opt_datasum, Opt_nodatasum,
101 	Opt_defrag, Opt_nodefrag,
102 	Opt_discard, Opt_nodiscard,
103 	Opt_discard_mode,
104 	Opt_norecovery,
105 	Opt_ratio,
106 	Opt_rescan_uuid_tree,
107 	Opt_skip_balance,
108 	Opt_space_cache, Opt_no_space_cache,
109 	Opt_space_cache_version,
110 	Opt_ssd, Opt_nossd,
111 	Opt_ssd_spread, Opt_nossd_spread,
112 	Opt_subvol,
113 	Opt_subvol_empty,
114 	Opt_subvolid,
115 	Opt_thread_pool,
116 	Opt_treelog, Opt_notreelog,
117 	Opt_user_subvol_rm_allowed,
118 
119 	/* Rescue options */
120 	Opt_rescue,
121 	Opt_usebackuproot,
122 	Opt_nologreplay,
123 	Opt_ignorebadroots,
124 	Opt_ignoredatacsums,
125 	Opt_rescue_all,
126 
127 	/* Deprecated options */
128 	Opt_recovery,
129 	Opt_inode_cache, Opt_noinode_cache,
130 
131 	/* Debugging options */
132 	Opt_check_integrity,
133 	Opt_check_integrity_including_extent_data,
134 	Opt_check_integrity_print_mask,
135 	Opt_enospc_debug, Opt_noenospc_debug,
136 #ifdef CONFIG_BTRFS_DEBUG
137 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
138 #endif
139 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
140 	Opt_ref_verify,
141 #endif
142 	Opt_err,
143 };
144 
145 static const match_table_t tokens = {
146 	{Opt_acl, "acl"},
147 	{Opt_noacl, "noacl"},
148 	{Opt_clear_cache, "clear_cache"},
149 	{Opt_commit_interval, "commit=%u"},
150 	{Opt_compress, "compress"},
151 	{Opt_compress_type, "compress=%s"},
152 	{Opt_compress_force, "compress-force"},
153 	{Opt_compress_force_type, "compress-force=%s"},
154 	{Opt_degraded, "degraded"},
155 	{Opt_device, "device=%s"},
156 	{Opt_fatal_errors, "fatal_errors=%s"},
157 	{Opt_flushoncommit, "flushoncommit"},
158 	{Opt_noflushoncommit, "noflushoncommit"},
159 	{Opt_inode_cache, "inode_cache"},
160 	{Opt_noinode_cache, "noinode_cache"},
161 	{Opt_max_inline, "max_inline=%s"},
162 	{Opt_barrier, "barrier"},
163 	{Opt_nobarrier, "nobarrier"},
164 	{Opt_datacow, "datacow"},
165 	{Opt_nodatacow, "nodatacow"},
166 	{Opt_datasum, "datasum"},
167 	{Opt_nodatasum, "nodatasum"},
168 	{Opt_defrag, "autodefrag"},
169 	{Opt_nodefrag, "noautodefrag"},
170 	{Opt_discard, "discard"},
171 	{Opt_discard_mode, "discard=%s"},
172 	{Opt_nodiscard, "nodiscard"},
173 	{Opt_norecovery, "norecovery"},
174 	{Opt_ratio, "metadata_ratio=%u"},
175 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
176 	{Opt_skip_balance, "skip_balance"},
177 	{Opt_space_cache, "space_cache"},
178 	{Opt_no_space_cache, "nospace_cache"},
179 	{Opt_space_cache_version, "space_cache=%s"},
180 	{Opt_ssd, "ssd"},
181 	{Opt_nossd, "nossd"},
182 	{Opt_ssd_spread, "ssd_spread"},
183 	{Opt_nossd_spread, "nossd_spread"},
184 	{Opt_subvol, "subvol=%s"},
185 	{Opt_subvol_empty, "subvol="},
186 	{Opt_subvolid, "subvolid=%s"},
187 	{Opt_thread_pool, "thread_pool=%u"},
188 	{Opt_treelog, "treelog"},
189 	{Opt_notreelog, "notreelog"},
190 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
191 
192 	/* Rescue options */
193 	{Opt_rescue, "rescue=%s"},
194 	/* Deprecated, with alias rescue=nologreplay */
195 	{Opt_nologreplay, "nologreplay"},
196 	/* Deprecated, with alias rescue=usebackuproot */
197 	{Opt_usebackuproot, "usebackuproot"},
198 
199 	/* Deprecated options */
200 	{Opt_recovery, "recovery"},
201 
202 	/* Debugging options */
203 	{Opt_check_integrity, "check_int"},
204 	{Opt_check_integrity_including_extent_data, "check_int_data"},
205 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
206 	{Opt_enospc_debug, "enospc_debug"},
207 	{Opt_noenospc_debug, "noenospc_debug"},
208 #ifdef CONFIG_BTRFS_DEBUG
209 	{Opt_fragment_data, "fragment=data"},
210 	{Opt_fragment_metadata, "fragment=metadata"},
211 	{Opt_fragment_all, "fragment=all"},
212 #endif
213 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
214 	{Opt_ref_verify, "ref_verify"},
215 #endif
216 	{Opt_err, NULL},
217 };
218 
219 static const match_table_t rescue_tokens = {
220 	{Opt_usebackuproot, "usebackuproot"},
221 	{Opt_nologreplay, "nologreplay"},
222 	{Opt_ignorebadroots, "ignorebadroots"},
223 	{Opt_ignorebadroots, "ibadroots"},
224 	{Opt_ignoredatacsums, "ignoredatacsums"},
225 	{Opt_ignoredatacsums, "idatacsums"},
226 	{Opt_rescue_all, "all"},
227 	{Opt_err, NULL},
228 };
229 
230 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
231 			    const char *opt_name)
232 {
233 	if (fs_info->mount_opt & opt) {
234 		btrfs_err(fs_info, "%s must be used with ro mount option",
235 			  opt_name);
236 		return true;
237 	}
238 	return false;
239 }
240 
241 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
242 {
243 	char *opts;
244 	char *orig;
245 	char *p;
246 	substring_t args[MAX_OPT_ARGS];
247 	int ret = 0;
248 
249 	opts = kstrdup(options, GFP_KERNEL);
250 	if (!opts)
251 		return -ENOMEM;
252 	orig = opts;
253 
254 	while ((p = strsep(&opts, ":")) != NULL) {
255 		int token;
256 
257 		if (!*p)
258 			continue;
259 		token = match_token(p, rescue_tokens, args);
260 		switch (token){
261 		case Opt_usebackuproot:
262 			btrfs_info(info,
263 				   "trying to use backup root at mount time");
264 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
265 			break;
266 		case Opt_nologreplay:
267 			btrfs_set_and_info(info, NOLOGREPLAY,
268 					   "disabling log replay at mount time");
269 			break;
270 		case Opt_ignorebadroots:
271 			btrfs_set_and_info(info, IGNOREBADROOTS,
272 					   "ignoring bad roots");
273 			break;
274 		case Opt_ignoredatacsums:
275 			btrfs_set_and_info(info, IGNOREDATACSUMS,
276 					   "ignoring data csums");
277 			break;
278 		case Opt_rescue_all:
279 			btrfs_info(info, "enabling all of the rescue options");
280 			btrfs_set_and_info(info, IGNOREDATACSUMS,
281 					   "ignoring data csums");
282 			btrfs_set_and_info(info, IGNOREBADROOTS,
283 					   "ignoring bad roots");
284 			btrfs_set_and_info(info, NOLOGREPLAY,
285 					   "disabling log replay at mount time");
286 			break;
287 		case Opt_err:
288 			btrfs_info(info, "unrecognized rescue option '%s'", p);
289 			ret = -EINVAL;
290 			goto out;
291 		default:
292 			break;
293 		}
294 
295 	}
296 out:
297 	kfree(orig);
298 	return ret;
299 }
300 
301 /*
302  * Regular mount options parser.  Everything that is needed only when
303  * reading in a new superblock is parsed here.
304  * XXX JDM: This needs to be cleaned up for remount.
305  */
306 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
307 			unsigned long new_flags)
308 {
309 	substring_t args[MAX_OPT_ARGS];
310 	char *p, *num;
311 	int intarg;
312 	int ret = 0;
313 	char *compress_type;
314 	bool compress_force = false;
315 	enum btrfs_compression_type saved_compress_type;
316 	int saved_compress_level;
317 	bool saved_compress_force;
318 	int no_compress = 0;
319 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
320 
321 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
322 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
323 	else if (btrfs_free_space_cache_v1_active(info)) {
324 		if (btrfs_is_zoned(info)) {
325 			btrfs_info(info,
326 			"zoned: clearing existing space cache");
327 			btrfs_set_super_cache_generation(info->super_copy, 0);
328 		} else {
329 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
330 		}
331 	}
332 
333 	/*
334 	 * Even the options are empty, we still need to do extra check
335 	 * against new flags
336 	 */
337 	if (!options)
338 		goto check;
339 
340 	while ((p = strsep(&options, ",")) != NULL) {
341 		int token;
342 		if (!*p)
343 			continue;
344 
345 		token = match_token(p, tokens, args);
346 		switch (token) {
347 		case Opt_degraded:
348 			btrfs_info(info, "allowing degraded mounts");
349 			btrfs_set_opt(info->mount_opt, DEGRADED);
350 			break;
351 		case Opt_subvol:
352 		case Opt_subvol_empty:
353 		case Opt_subvolid:
354 		case Opt_device:
355 			/*
356 			 * These are parsed by btrfs_parse_subvol_options or
357 			 * btrfs_parse_device_options and can be ignored here.
358 			 */
359 			break;
360 		case Opt_nodatasum:
361 			btrfs_set_and_info(info, NODATASUM,
362 					   "setting nodatasum");
363 			break;
364 		case Opt_datasum:
365 			if (btrfs_test_opt(info, NODATASUM)) {
366 				if (btrfs_test_opt(info, NODATACOW))
367 					btrfs_info(info,
368 						   "setting datasum, datacow enabled");
369 				else
370 					btrfs_info(info, "setting datasum");
371 			}
372 			btrfs_clear_opt(info->mount_opt, NODATACOW);
373 			btrfs_clear_opt(info->mount_opt, NODATASUM);
374 			break;
375 		case Opt_nodatacow:
376 			if (!btrfs_test_opt(info, NODATACOW)) {
377 				if (!btrfs_test_opt(info, COMPRESS) ||
378 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
379 					btrfs_info(info,
380 						   "setting nodatacow, compression disabled");
381 				} else {
382 					btrfs_info(info, "setting nodatacow");
383 				}
384 			}
385 			btrfs_clear_opt(info->mount_opt, COMPRESS);
386 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
387 			btrfs_set_opt(info->mount_opt, NODATACOW);
388 			btrfs_set_opt(info->mount_opt, NODATASUM);
389 			break;
390 		case Opt_datacow:
391 			btrfs_clear_and_info(info, NODATACOW,
392 					     "setting datacow");
393 			break;
394 		case Opt_compress_force:
395 		case Opt_compress_force_type:
396 			compress_force = true;
397 			fallthrough;
398 		case Opt_compress:
399 		case Opt_compress_type:
400 			saved_compress_type = btrfs_test_opt(info,
401 							     COMPRESS) ?
402 				info->compress_type : BTRFS_COMPRESS_NONE;
403 			saved_compress_force =
404 				btrfs_test_opt(info, FORCE_COMPRESS);
405 			saved_compress_level = info->compress_level;
406 			if (token == Opt_compress ||
407 			    token == Opt_compress_force ||
408 			    strncmp(args[0].from, "zlib", 4) == 0) {
409 				compress_type = "zlib";
410 
411 				info->compress_type = BTRFS_COMPRESS_ZLIB;
412 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
413 				/*
414 				 * args[0] contains uninitialized data since
415 				 * for these tokens we don't expect any
416 				 * parameter.
417 				 */
418 				if (token != Opt_compress &&
419 				    token != Opt_compress_force)
420 					info->compress_level =
421 					  btrfs_compress_str2level(
422 							BTRFS_COMPRESS_ZLIB,
423 							args[0].from + 4);
424 				btrfs_set_opt(info->mount_opt, COMPRESS);
425 				btrfs_clear_opt(info->mount_opt, NODATACOW);
426 				btrfs_clear_opt(info->mount_opt, NODATASUM);
427 				no_compress = 0;
428 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
429 				compress_type = "lzo";
430 				info->compress_type = BTRFS_COMPRESS_LZO;
431 				info->compress_level = 0;
432 				btrfs_set_opt(info->mount_opt, COMPRESS);
433 				btrfs_clear_opt(info->mount_opt, NODATACOW);
434 				btrfs_clear_opt(info->mount_opt, NODATASUM);
435 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
436 				no_compress = 0;
437 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
438 				compress_type = "zstd";
439 				info->compress_type = BTRFS_COMPRESS_ZSTD;
440 				info->compress_level =
441 					btrfs_compress_str2level(
442 							 BTRFS_COMPRESS_ZSTD,
443 							 args[0].from + 4);
444 				btrfs_set_opt(info->mount_opt, COMPRESS);
445 				btrfs_clear_opt(info->mount_opt, NODATACOW);
446 				btrfs_clear_opt(info->mount_opt, NODATASUM);
447 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
448 				no_compress = 0;
449 			} else if (strncmp(args[0].from, "no", 2) == 0) {
450 				compress_type = "no";
451 				info->compress_level = 0;
452 				info->compress_type = 0;
453 				btrfs_clear_opt(info->mount_opt, COMPRESS);
454 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
455 				compress_force = false;
456 				no_compress++;
457 			} else {
458 				btrfs_err(info, "unrecognized compression value %s",
459 					  args[0].from);
460 				ret = -EINVAL;
461 				goto out;
462 			}
463 
464 			if (compress_force) {
465 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
466 			} else {
467 				/*
468 				 * If we remount from compress-force=xxx to
469 				 * compress=xxx, we need clear FORCE_COMPRESS
470 				 * flag, otherwise, there is no way for users
471 				 * to disable forcible compression separately.
472 				 */
473 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
474 			}
475 			if (no_compress == 1) {
476 				btrfs_info(info, "use no compression");
477 			} else if ((info->compress_type != saved_compress_type) ||
478 				   (compress_force != saved_compress_force) ||
479 				   (info->compress_level != saved_compress_level)) {
480 				btrfs_info(info, "%s %s compression, level %d",
481 					   (compress_force) ? "force" : "use",
482 					   compress_type, info->compress_level);
483 			}
484 			compress_force = false;
485 			break;
486 		case Opt_ssd:
487 			btrfs_set_and_info(info, SSD,
488 					   "enabling ssd optimizations");
489 			btrfs_clear_opt(info->mount_opt, NOSSD);
490 			break;
491 		case Opt_ssd_spread:
492 			btrfs_set_and_info(info, SSD,
493 					   "enabling ssd optimizations");
494 			btrfs_set_and_info(info, SSD_SPREAD,
495 					   "using spread ssd allocation scheme");
496 			btrfs_clear_opt(info->mount_opt, NOSSD);
497 			break;
498 		case Opt_nossd:
499 			btrfs_set_opt(info->mount_opt, NOSSD);
500 			btrfs_clear_and_info(info, SSD,
501 					     "not using ssd optimizations");
502 			fallthrough;
503 		case Opt_nossd_spread:
504 			btrfs_clear_and_info(info, SSD_SPREAD,
505 					     "not using spread ssd allocation scheme");
506 			break;
507 		case Opt_barrier:
508 			btrfs_clear_and_info(info, NOBARRIER,
509 					     "turning on barriers");
510 			break;
511 		case Opt_nobarrier:
512 			btrfs_set_and_info(info, NOBARRIER,
513 					   "turning off barriers");
514 			break;
515 		case Opt_thread_pool:
516 			ret = match_int(&args[0], &intarg);
517 			if (ret) {
518 				btrfs_err(info, "unrecognized thread_pool value %s",
519 					  args[0].from);
520 				goto out;
521 			} else if (intarg == 0) {
522 				btrfs_err(info, "invalid value 0 for thread_pool");
523 				ret = -EINVAL;
524 				goto out;
525 			}
526 			info->thread_pool_size = intarg;
527 			break;
528 		case Opt_max_inline:
529 			num = match_strdup(&args[0]);
530 			if (num) {
531 				info->max_inline = memparse(num, NULL);
532 				kfree(num);
533 
534 				if (info->max_inline) {
535 					info->max_inline = min_t(u64,
536 						info->max_inline,
537 						info->sectorsize);
538 				}
539 				btrfs_info(info, "max_inline at %llu",
540 					   info->max_inline);
541 			} else {
542 				ret = -ENOMEM;
543 				goto out;
544 			}
545 			break;
546 		case Opt_acl:
547 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
548 			info->sb->s_flags |= SB_POSIXACL;
549 			break;
550 #else
551 			btrfs_err(info, "support for ACL not compiled in!");
552 			ret = -EINVAL;
553 			goto out;
554 #endif
555 		case Opt_noacl:
556 			info->sb->s_flags &= ~SB_POSIXACL;
557 			break;
558 		case Opt_notreelog:
559 			btrfs_set_and_info(info, NOTREELOG,
560 					   "disabling tree log");
561 			break;
562 		case Opt_treelog:
563 			btrfs_clear_and_info(info, NOTREELOG,
564 					     "enabling tree log");
565 			break;
566 		case Opt_norecovery:
567 		case Opt_nologreplay:
568 			btrfs_warn(info,
569 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
570 			btrfs_set_and_info(info, NOLOGREPLAY,
571 					   "disabling log replay at mount time");
572 			break;
573 		case Opt_flushoncommit:
574 			btrfs_set_and_info(info, FLUSHONCOMMIT,
575 					   "turning on flush-on-commit");
576 			break;
577 		case Opt_noflushoncommit:
578 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
579 					     "turning off flush-on-commit");
580 			break;
581 		case Opt_ratio:
582 			ret = match_int(&args[0], &intarg);
583 			if (ret) {
584 				btrfs_err(info, "unrecognized metadata_ratio value %s",
585 					  args[0].from);
586 				goto out;
587 			}
588 			info->metadata_ratio = intarg;
589 			btrfs_info(info, "metadata ratio %u",
590 				   info->metadata_ratio);
591 			break;
592 		case Opt_discard:
593 		case Opt_discard_mode:
594 			if (token == Opt_discard ||
595 			    strcmp(args[0].from, "sync") == 0) {
596 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
597 				btrfs_set_and_info(info, DISCARD_SYNC,
598 						   "turning on sync discard");
599 			} else if (strcmp(args[0].from, "async") == 0) {
600 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
601 				btrfs_set_and_info(info, DISCARD_ASYNC,
602 						   "turning on async discard");
603 			} else {
604 				btrfs_err(info, "unrecognized discard mode value %s",
605 					  args[0].from);
606 				ret = -EINVAL;
607 				goto out;
608 			}
609 			btrfs_clear_opt(info->mount_opt, NODISCARD);
610 			break;
611 		case Opt_nodiscard:
612 			btrfs_clear_and_info(info, DISCARD_SYNC,
613 					     "turning off discard");
614 			btrfs_clear_and_info(info, DISCARD_ASYNC,
615 					     "turning off async discard");
616 			btrfs_set_opt(info->mount_opt, NODISCARD);
617 			break;
618 		case Opt_space_cache:
619 		case Opt_space_cache_version:
620 			/*
621 			 * We already set FREE_SPACE_TREE above because we have
622 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
623 			 * to allow v1 to be set for extent tree v2, simply
624 			 * ignore this setting if we're extent tree v2.
625 			 */
626 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
627 				break;
628 			if (token == Opt_space_cache ||
629 			    strcmp(args[0].from, "v1") == 0) {
630 				btrfs_clear_opt(info->mount_opt,
631 						FREE_SPACE_TREE);
632 				btrfs_set_and_info(info, SPACE_CACHE,
633 					   "enabling disk space caching");
634 			} else if (strcmp(args[0].from, "v2") == 0) {
635 				btrfs_clear_opt(info->mount_opt,
636 						SPACE_CACHE);
637 				btrfs_set_and_info(info, FREE_SPACE_TREE,
638 						   "enabling free space tree");
639 			} else {
640 				btrfs_err(info, "unrecognized space_cache value %s",
641 					  args[0].from);
642 				ret = -EINVAL;
643 				goto out;
644 			}
645 			break;
646 		case Opt_rescan_uuid_tree:
647 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
648 			break;
649 		case Opt_no_space_cache:
650 			/*
651 			 * We cannot operate without the free space tree with
652 			 * extent tree v2, ignore this option.
653 			 */
654 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
655 				break;
656 			if (btrfs_test_opt(info, SPACE_CACHE)) {
657 				btrfs_clear_and_info(info, SPACE_CACHE,
658 					     "disabling disk space caching");
659 			}
660 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
661 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
662 					     "disabling free space tree");
663 			}
664 			break;
665 		case Opt_inode_cache:
666 		case Opt_noinode_cache:
667 			btrfs_warn(info,
668 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
669 			break;
670 		case Opt_clear_cache:
671 			/*
672 			 * We cannot clear the free space tree with extent tree
673 			 * v2, ignore this option.
674 			 */
675 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
676 				break;
677 			btrfs_set_and_info(info, CLEAR_CACHE,
678 					   "force clearing of disk cache");
679 			break;
680 		case Opt_user_subvol_rm_allowed:
681 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
682 			break;
683 		case Opt_enospc_debug:
684 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
685 			break;
686 		case Opt_noenospc_debug:
687 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
688 			break;
689 		case Opt_defrag:
690 			btrfs_set_and_info(info, AUTO_DEFRAG,
691 					   "enabling auto defrag");
692 			break;
693 		case Opt_nodefrag:
694 			btrfs_clear_and_info(info, AUTO_DEFRAG,
695 					     "disabling auto defrag");
696 			break;
697 		case Opt_recovery:
698 		case Opt_usebackuproot:
699 			btrfs_warn(info,
700 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
701 				   token == Opt_recovery ? "recovery" :
702 				   "usebackuproot");
703 			btrfs_info(info,
704 				   "trying to use backup root at mount time");
705 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
706 			break;
707 		case Opt_skip_balance:
708 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
709 			break;
710 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
711 		case Opt_check_integrity_including_extent_data:
712 			btrfs_info(info,
713 				   "enabling check integrity including extent data");
714 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
715 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
716 			break;
717 		case Opt_check_integrity:
718 			btrfs_info(info, "enabling check integrity");
719 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
720 			break;
721 		case Opt_check_integrity_print_mask:
722 			ret = match_int(&args[0], &intarg);
723 			if (ret) {
724 				btrfs_err(info,
725 				"unrecognized check_integrity_print_mask value %s",
726 					args[0].from);
727 				goto out;
728 			}
729 			info->check_integrity_print_mask = intarg;
730 			btrfs_info(info, "check_integrity_print_mask 0x%x",
731 				   info->check_integrity_print_mask);
732 			break;
733 #else
734 		case Opt_check_integrity_including_extent_data:
735 		case Opt_check_integrity:
736 		case Opt_check_integrity_print_mask:
737 			btrfs_err(info,
738 				  "support for check_integrity* not compiled in!");
739 			ret = -EINVAL;
740 			goto out;
741 #endif
742 		case Opt_fatal_errors:
743 			if (strcmp(args[0].from, "panic") == 0) {
744 				btrfs_set_opt(info->mount_opt,
745 					      PANIC_ON_FATAL_ERROR);
746 			} else if (strcmp(args[0].from, "bug") == 0) {
747 				btrfs_clear_opt(info->mount_opt,
748 					      PANIC_ON_FATAL_ERROR);
749 			} else {
750 				btrfs_err(info, "unrecognized fatal_errors value %s",
751 					  args[0].from);
752 				ret = -EINVAL;
753 				goto out;
754 			}
755 			break;
756 		case Opt_commit_interval:
757 			intarg = 0;
758 			ret = match_int(&args[0], &intarg);
759 			if (ret) {
760 				btrfs_err(info, "unrecognized commit_interval value %s",
761 					  args[0].from);
762 				ret = -EINVAL;
763 				goto out;
764 			}
765 			if (intarg == 0) {
766 				btrfs_info(info,
767 					   "using default commit interval %us",
768 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
769 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
770 			} else if (intarg > 300) {
771 				btrfs_warn(info, "excessive commit interval %d",
772 					   intarg);
773 			}
774 			info->commit_interval = intarg;
775 			break;
776 		case Opt_rescue:
777 			ret = parse_rescue_options(info, args[0].from);
778 			if (ret < 0) {
779 				btrfs_err(info, "unrecognized rescue value %s",
780 					  args[0].from);
781 				goto out;
782 			}
783 			break;
784 #ifdef CONFIG_BTRFS_DEBUG
785 		case Opt_fragment_all:
786 			btrfs_info(info, "fragmenting all space");
787 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
788 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
789 			break;
790 		case Opt_fragment_metadata:
791 			btrfs_info(info, "fragmenting metadata");
792 			btrfs_set_opt(info->mount_opt,
793 				      FRAGMENT_METADATA);
794 			break;
795 		case Opt_fragment_data:
796 			btrfs_info(info, "fragmenting data");
797 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
798 			break;
799 #endif
800 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
801 		case Opt_ref_verify:
802 			btrfs_info(info, "doing ref verification");
803 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
804 			break;
805 #endif
806 		case Opt_err:
807 			btrfs_err(info, "unrecognized mount option '%s'", p);
808 			ret = -EINVAL;
809 			goto out;
810 		default:
811 			break;
812 		}
813 	}
814 check:
815 	/* We're read-only, don't have to check. */
816 	if (new_flags & SB_RDONLY)
817 		goto out;
818 
819 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
820 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
821 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
822 		ret = -EINVAL;
823 out:
824 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
825 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
826 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
827 		btrfs_err(info, "cannot disable free space tree");
828 		ret = -EINVAL;
829 
830 	}
831 	if (!ret)
832 		ret = btrfs_check_mountopts_zoned(info);
833 	if (!ret && !remounting) {
834 		if (btrfs_test_opt(info, SPACE_CACHE))
835 			btrfs_info(info, "disk space caching is enabled");
836 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
837 			btrfs_info(info, "using free space tree");
838 	}
839 	return ret;
840 }
841 
842 /*
843  * Parse mount options that are required early in the mount process.
844  *
845  * All other options will be parsed on much later in the mount process and
846  * only when we need to allocate a new super block.
847  */
848 static int btrfs_parse_device_options(const char *options, fmode_t flags,
849 				      void *holder)
850 {
851 	substring_t args[MAX_OPT_ARGS];
852 	char *device_name, *opts, *orig, *p;
853 	struct btrfs_device *device = NULL;
854 	int error = 0;
855 
856 	lockdep_assert_held(&uuid_mutex);
857 
858 	if (!options)
859 		return 0;
860 
861 	/*
862 	 * strsep changes the string, duplicate it because btrfs_parse_options
863 	 * gets called later
864 	 */
865 	opts = kstrdup(options, GFP_KERNEL);
866 	if (!opts)
867 		return -ENOMEM;
868 	orig = opts;
869 
870 	while ((p = strsep(&opts, ",")) != NULL) {
871 		int token;
872 
873 		if (!*p)
874 			continue;
875 
876 		token = match_token(p, tokens, args);
877 		if (token == Opt_device) {
878 			device_name = match_strdup(&args[0]);
879 			if (!device_name) {
880 				error = -ENOMEM;
881 				goto out;
882 			}
883 			device = btrfs_scan_one_device(device_name, flags,
884 					holder);
885 			kfree(device_name);
886 			if (IS_ERR(device)) {
887 				error = PTR_ERR(device);
888 				goto out;
889 			}
890 		}
891 	}
892 
893 out:
894 	kfree(orig);
895 	return error;
896 }
897 
898 /*
899  * Parse mount options that are related to subvolume id
900  *
901  * The value is later passed to mount_subvol()
902  */
903 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
904 		u64 *subvol_objectid)
905 {
906 	substring_t args[MAX_OPT_ARGS];
907 	char *opts, *orig, *p;
908 	int error = 0;
909 	u64 subvolid;
910 
911 	if (!options)
912 		return 0;
913 
914 	/*
915 	 * strsep changes the string, duplicate it because
916 	 * btrfs_parse_device_options gets called later
917 	 */
918 	opts = kstrdup(options, GFP_KERNEL);
919 	if (!opts)
920 		return -ENOMEM;
921 	orig = opts;
922 
923 	while ((p = strsep(&opts, ",")) != NULL) {
924 		int token;
925 		if (!*p)
926 			continue;
927 
928 		token = match_token(p, tokens, args);
929 		switch (token) {
930 		case Opt_subvol:
931 			kfree(*subvol_name);
932 			*subvol_name = match_strdup(&args[0]);
933 			if (!*subvol_name) {
934 				error = -ENOMEM;
935 				goto out;
936 			}
937 			break;
938 		case Opt_subvolid:
939 			error = match_u64(&args[0], &subvolid);
940 			if (error)
941 				goto out;
942 
943 			/* we want the original fs_tree */
944 			if (subvolid == 0)
945 				subvolid = BTRFS_FS_TREE_OBJECTID;
946 
947 			*subvol_objectid = subvolid;
948 			break;
949 		default:
950 			break;
951 		}
952 	}
953 
954 out:
955 	kfree(orig);
956 	return error;
957 }
958 
959 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
960 					  u64 subvol_objectid)
961 {
962 	struct btrfs_root *root = fs_info->tree_root;
963 	struct btrfs_root *fs_root = NULL;
964 	struct btrfs_root_ref *root_ref;
965 	struct btrfs_inode_ref *inode_ref;
966 	struct btrfs_key key;
967 	struct btrfs_path *path = NULL;
968 	char *name = NULL, *ptr;
969 	u64 dirid;
970 	int len;
971 	int ret;
972 
973 	path = btrfs_alloc_path();
974 	if (!path) {
975 		ret = -ENOMEM;
976 		goto err;
977 	}
978 
979 	name = kmalloc(PATH_MAX, GFP_KERNEL);
980 	if (!name) {
981 		ret = -ENOMEM;
982 		goto err;
983 	}
984 	ptr = name + PATH_MAX - 1;
985 	ptr[0] = '\0';
986 
987 	/*
988 	 * Walk up the subvolume trees in the tree of tree roots by root
989 	 * backrefs until we hit the top-level subvolume.
990 	 */
991 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
992 		key.objectid = subvol_objectid;
993 		key.type = BTRFS_ROOT_BACKREF_KEY;
994 		key.offset = (u64)-1;
995 
996 		ret = btrfs_search_backwards(root, &key, path);
997 		if (ret < 0) {
998 			goto err;
999 		} else if (ret > 0) {
1000 			ret = -ENOENT;
1001 			goto err;
1002 		}
1003 
1004 		subvol_objectid = key.offset;
1005 
1006 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1007 					  struct btrfs_root_ref);
1008 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1009 		ptr -= len + 1;
1010 		if (ptr < name) {
1011 			ret = -ENAMETOOLONG;
1012 			goto err;
1013 		}
1014 		read_extent_buffer(path->nodes[0], ptr + 1,
1015 				   (unsigned long)(root_ref + 1), len);
1016 		ptr[0] = '/';
1017 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1018 		btrfs_release_path(path);
1019 
1020 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1021 		if (IS_ERR(fs_root)) {
1022 			ret = PTR_ERR(fs_root);
1023 			fs_root = NULL;
1024 			goto err;
1025 		}
1026 
1027 		/*
1028 		 * Walk up the filesystem tree by inode refs until we hit the
1029 		 * root directory.
1030 		 */
1031 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1032 			key.objectid = dirid;
1033 			key.type = BTRFS_INODE_REF_KEY;
1034 			key.offset = (u64)-1;
1035 
1036 			ret = btrfs_search_backwards(fs_root, &key, path);
1037 			if (ret < 0) {
1038 				goto err;
1039 			} else if (ret > 0) {
1040 				ret = -ENOENT;
1041 				goto err;
1042 			}
1043 
1044 			dirid = key.offset;
1045 
1046 			inode_ref = btrfs_item_ptr(path->nodes[0],
1047 						   path->slots[0],
1048 						   struct btrfs_inode_ref);
1049 			len = btrfs_inode_ref_name_len(path->nodes[0],
1050 						       inode_ref);
1051 			ptr -= len + 1;
1052 			if (ptr < name) {
1053 				ret = -ENAMETOOLONG;
1054 				goto err;
1055 			}
1056 			read_extent_buffer(path->nodes[0], ptr + 1,
1057 					   (unsigned long)(inode_ref + 1), len);
1058 			ptr[0] = '/';
1059 			btrfs_release_path(path);
1060 		}
1061 		btrfs_put_root(fs_root);
1062 		fs_root = NULL;
1063 	}
1064 
1065 	btrfs_free_path(path);
1066 	if (ptr == name + PATH_MAX - 1) {
1067 		name[0] = '/';
1068 		name[1] = '\0';
1069 	} else {
1070 		memmove(name, ptr, name + PATH_MAX - ptr);
1071 	}
1072 	return name;
1073 
1074 err:
1075 	btrfs_put_root(fs_root);
1076 	btrfs_free_path(path);
1077 	kfree(name);
1078 	return ERR_PTR(ret);
1079 }
1080 
1081 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1082 {
1083 	struct btrfs_root *root = fs_info->tree_root;
1084 	struct btrfs_dir_item *di;
1085 	struct btrfs_path *path;
1086 	struct btrfs_key location;
1087 	struct fscrypt_str name = FSTR_INIT("default", 7);
1088 	u64 dir_id;
1089 
1090 	path = btrfs_alloc_path();
1091 	if (!path)
1092 		return -ENOMEM;
1093 
1094 	/*
1095 	 * Find the "default" dir item which points to the root item that we
1096 	 * will mount by default if we haven't been given a specific subvolume
1097 	 * to mount.
1098 	 */
1099 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1100 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1101 	if (IS_ERR(di)) {
1102 		btrfs_free_path(path);
1103 		return PTR_ERR(di);
1104 	}
1105 	if (!di) {
1106 		/*
1107 		 * Ok the default dir item isn't there.  This is weird since
1108 		 * it's always been there, but don't freak out, just try and
1109 		 * mount the top-level subvolume.
1110 		 */
1111 		btrfs_free_path(path);
1112 		*objectid = BTRFS_FS_TREE_OBJECTID;
1113 		return 0;
1114 	}
1115 
1116 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1117 	btrfs_free_path(path);
1118 	*objectid = location.objectid;
1119 	return 0;
1120 }
1121 
1122 static int btrfs_fill_super(struct super_block *sb,
1123 			    struct btrfs_fs_devices *fs_devices,
1124 			    void *data)
1125 {
1126 	struct inode *inode;
1127 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1128 	int err;
1129 
1130 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1131 	sb->s_magic = BTRFS_SUPER_MAGIC;
1132 	sb->s_op = &btrfs_super_ops;
1133 	sb->s_d_op = &btrfs_dentry_operations;
1134 	sb->s_export_op = &btrfs_export_ops;
1135 #ifdef CONFIG_FS_VERITY
1136 	sb->s_vop = &btrfs_verityops;
1137 #endif
1138 	sb->s_xattr = btrfs_xattr_handlers;
1139 	sb->s_time_gran = 1;
1140 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1141 	sb->s_flags |= SB_POSIXACL;
1142 #endif
1143 	sb->s_flags |= SB_I_VERSION;
1144 	sb->s_iflags |= SB_I_CGROUPWB;
1145 
1146 	err = super_setup_bdi(sb);
1147 	if (err) {
1148 		btrfs_err(fs_info, "super_setup_bdi failed");
1149 		return err;
1150 	}
1151 
1152 	err = open_ctree(sb, fs_devices, (char *)data);
1153 	if (err) {
1154 		btrfs_err(fs_info, "open_ctree failed");
1155 		return err;
1156 	}
1157 
1158 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1159 	if (IS_ERR(inode)) {
1160 		err = PTR_ERR(inode);
1161 		btrfs_handle_fs_error(fs_info, err, NULL);
1162 		goto fail_close;
1163 	}
1164 
1165 	sb->s_root = d_make_root(inode);
1166 	if (!sb->s_root) {
1167 		err = -ENOMEM;
1168 		goto fail_close;
1169 	}
1170 
1171 	sb->s_flags |= SB_ACTIVE;
1172 	return 0;
1173 
1174 fail_close:
1175 	close_ctree(fs_info);
1176 	return err;
1177 }
1178 
1179 int btrfs_sync_fs(struct super_block *sb, int wait)
1180 {
1181 	struct btrfs_trans_handle *trans;
1182 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1183 	struct btrfs_root *root = fs_info->tree_root;
1184 
1185 	trace_btrfs_sync_fs(fs_info, wait);
1186 
1187 	if (!wait) {
1188 		filemap_flush(fs_info->btree_inode->i_mapping);
1189 		return 0;
1190 	}
1191 
1192 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1193 
1194 	trans = btrfs_attach_transaction_barrier(root);
1195 	if (IS_ERR(trans)) {
1196 		/* no transaction, don't bother */
1197 		if (PTR_ERR(trans) == -ENOENT) {
1198 			/*
1199 			 * Exit unless we have some pending changes
1200 			 * that need to go through commit
1201 			 */
1202 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1203 				      &fs_info->flags))
1204 				return 0;
1205 			/*
1206 			 * A non-blocking test if the fs is frozen. We must not
1207 			 * start a new transaction here otherwise a deadlock
1208 			 * happens. The pending operations are delayed to the
1209 			 * next commit after thawing.
1210 			 */
1211 			if (sb_start_write_trylock(sb))
1212 				sb_end_write(sb);
1213 			else
1214 				return 0;
1215 			trans = btrfs_start_transaction(root, 0);
1216 		}
1217 		if (IS_ERR(trans))
1218 			return PTR_ERR(trans);
1219 	}
1220 	return btrfs_commit_transaction(trans);
1221 }
1222 
1223 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1224 {
1225 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1226 	*printed = true;
1227 }
1228 
1229 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1230 {
1231 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1232 	const char *compress_type;
1233 	const char *subvol_name;
1234 	bool printed = false;
1235 
1236 	if (btrfs_test_opt(info, DEGRADED))
1237 		seq_puts(seq, ",degraded");
1238 	if (btrfs_test_opt(info, NODATASUM))
1239 		seq_puts(seq, ",nodatasum");
1240 	if (btrfs_test_opt(info, NODATACOW))
1241 		seq_puts(seq, ",nodatacow");
1242 	if (btrfs_test_opt(info, NOBARRIER))
1243 		seq_puts(seq, ",nobarrier");
1244 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1245 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1246 	if (info->thread_pool_size !=  min_t(unsigned long,
1247 					     num_online_cpus() + 2, 8))
1248 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1249 	if (btrfs_test_opt(info, COMPRESS)) {
1250 		compress_type = btrfs_compress_type2str(info->compress_type);
1251 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1252 			seq_printf(seq, ",compress-force=%s", compress_type);
1253 		else
1254 			seq_printf(seq, ",compress=%s", compress_type);
1255 		if (info->compress_level)
1256 			seq_printf(seq, ":%d", info->compress_level);
1257 	}
1258 	if (btrfs_test_opt(info, NOSSD))
1259 		seq_puts(seq, ",nossd");
1260 	if (btrfs_test_opt(info, SSD_SPREAD))
1261 		seq_puts(seq, ",ssd_spread");
1262 	else if (btrfs_test_opt(info, SSD))
1263 		seq_puts(seq, ",ssd");
1264 	if (btrfs_test_opt(info, NOTREELOG))
1265 		seq_puts(seq, ",notreelog");
1266 	if (btrfs_test_opt(info, NOLOGREPLAY))
1267 		print_rescue_option(seq, "nologreplay", &printed);
1268 	if (btrfs_test_opt(info, USEBACKUPROOT))
1269 		print_rescue_option(seq, "usebackuproot", &printed);
1270 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1271 		print_rescue_option(seq, "ignorebadroots", &printed);
1272 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1273 		print_rescue_option(seq, "ignoredatacsums", &printed);
1274 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1275 		seq_puts(seq, ",flushoncommit");
1276 	if (btrfs_test_opt(info, DISCARD_SYNC))
1277 		seq_puts(seq, ",discard");
1278 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1279 		seq_puts(seq, ",discard=async");
1280 	if (!(info->sb->s_flags & SB_POSIXACL))
1281 		seq_puts(seq, ",noacl");
1282 	if (btrfs_free_space_cache_v1_active(info))
1283 		seq_puts(seq, ",space_cache");
1284 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1285 		seq_puts(seq, ",space_cache=v2");
1286 	else
1287 		seq_puts(seq, ",nospace_cache");
1288 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1289 		seq_puts(seq, ",rescan_uuid_tree");
1290 	if (btrfs_test_opt(info, CLEAR_CACHE))
1291 		seq_puts(seq, ",clear_cache");
1292 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1293 		seq_puts(seq, ",user_subvol_rm_allowed");
1294 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1295 		seq_puts(seq, ",enospc_debug");
1296 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1297 		seq_puts(seq, ",autodefrag");
1298 	if (btrfs_test_opt(info, SKIP_BALANCE))
1299 		seq_puts(seq, ",skip_balance");
1300 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1301 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1302 		seq_puts(seq, ",check_int_data");
1303 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1304 		seq_puts(seq, ",check_int");
1305 	if (info->check_integrity_print_mask)
1306 		seq_printf(seq, ",check_int_print_mask=%d",
1307 				info->check_integrity_print_mask);
1308 #endif
1309 	if (info->metadata_ratio)
1310 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1311 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1312 		seq_puts(seq, ",fatal_errors=panic");
1313 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1314 		seq_printf(seq, ",commit=%u", info->commit_interval);
1315 #ifdef CONFIG_BTRFS_DEBUG
1316 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1317 		seq_puts(seq, ",fragment=data");
1318 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1319 		seq_puts(seq, ",fragment=metadata");
1320 #endif
1321 	if (btrfs_test_opt(info, REF_VERIFY))
1322 		seq_puts(seq, ",ref_verify");
1323 	seq_printf(seq, ",subvolid=%llu",
1324 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1325 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1326 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1327 	if (!IS_ERR(subvol_name)) {
1328 		seq_puts(seq, ",subvol=");
1329 		seq_escape(seq, subvol_name, " \t\n\\");
1330 		kfree(subvol_name);
1331 	}
1332 	return 0;
1333 }
1334 
1335 static int btrfs_test_super(struct super_block *s, void *data)
1336 {
1337 	struct btrfs_fs_info *p = data;
1338 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1339 
1340 	return fs_info->fs_devices == p->fs_devices;
1341 }
1342 
1343 static int btrfs_set_super(struct super_block *s, void *data)
1344 {
1345 	int err = set_anon_super(s, data);
1346 	if (!err)
1347 		s->s_fs_info = data;
1348 	return err;
1349 }
1350 
1351 /*
1352  * subvolumes are identified by ino 256
1353  */
1354 static inline int is_subvolume_inode(struct inode *inode)
1355 {
1356 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1357 		return 1;
1358 	return 0;
1359 }
1360 
1361 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1362 				   struct vfsmount *mnt)
1363 {
1364 	struct dentry *root;
1365 	int ret;
1366 
1367 	if (!subvol_name) {
1368 		if (!subvol_objectid) {
1369 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1370 							  &subvol_objectid);
1371 			if (ret) {
1372 				root = ERR_PTR(ret);
1373 				goto out;
1374 			}
1375 		}
1376 		subvol_name = btrfs_get_subvol_name_from_objectid(
1377 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1378 		if (IS_ERR(subvol_name)) {
1379 			root = ERR_CAST(subvol_name);
1380 			subvol_name = NULL;
1381 			goto out;
1382 		}
1383 
1384 	}
1385 
1386 	root = mount_subtree(mnt, subvol_name);
1387 	/* mount_subtree() drops our reference on the vfsmount. */
1388 	mnt = NULL;
1389 
1390 	if (!IS_ERR(root)) {
1391 		struct super_block *s = root->d_sb;
1392 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1393 		struct inode *root_inode = d_inode(root);
1394 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1395 
1396 		ret = 0;
1397 		if (!is_subvolume_inode(root_inode)) {
1398 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1399 			       subvol_name);
1400 			ret = -EINVAL;
1401 		}
1402 		if (subvol_objectid && root_objectid != subvol_objectid) {
1403 			/*
1404 			 * This will also catch a race condition where a
1405 			 * subvolume which was passed by ID is renamed and
1406 			 * another subvolume is renamed over the old location.
1407 			 */
1408 			btrfs_err(fs_info,
1409 				  "subvol '%s' does not match subvolid %llu",
1410 				  subvol_name, subvol_objectid);
1411 			ret = -EINVAL;
1412 		}
1413 		if (ret) {
1414 			dput(root);
1415 			root = ERR_PTR(ret);
1416 			deactivate_locked_super(s);
1417 		}
1418 	}
1419 
1420 out:
1421 	mntput(mnt);
1422 	kfree(subvol_name);
1423 	return root;
1424 }
1425 
1426 /*
1427  * Find a superblock for the given device / mount point.
1428  *
1429  * Note: This is based on mount_bdev from fs/super.c with a few additions
1430  *       for multiple device setup.  Make sure to keep it in sync.
1431  */
1432 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1433 		int flags, const char *device_name, void *data)
1434 {
1435 	struct block_device *bdev = NULL;
1436 	struct super_block *s;
1437 	struct btrfs_device *device = NULL;
1438 	struct btrfs_fs_devices *fs_devices = NULL;
1439 	struct btrfs_fs_info *fs_info = NULL;
1440 	void *new_sec_opts = NULL;
1441 	fmode_t mode = FMODE_READ;
1442 	int error = 0;
1443 
1444 	if (!(flags & SB_RDONLY))
1445 		mode |= FMODE_WRITE;
1446 
1447 	if (data) {
1448 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1449 		if (error)
1450 			return ERR_PTR(error);
1451 	}
1452 
1453 	/*
1454 	 * Setup a dummy root and fs_info for test/set super.  This is because
1455 	 * we don't actually fill this stuff out until open_ctree, but we need
1456 	 * then open_ctree will properly initialize the file system specific
1457 	 * settings later.  btrfs_init_fs_info initializes the static elements
1458 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1459 	 * superblock with our given fs_devices later on at sget() time.
1460 	 */
1461 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1462 	if (!fs_info) {
1463 		error = -ENOMEM;
1464 		goto error_sec_opts;
1465 	}
1466 	btrfs_init_fs_info(fs_info);
1467 
1468 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1469 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1470 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1471 		error = -ENOMEM;
1472 		goto error_fs_info;
1473 	}
1474 
1475 	mutex_lock(&uuid_mutex);
1476 	error = btrfs_parse_device_options(data, mode, fs_type);
1477 	if (error) {
1478 		mutex_unlock(&uuid_mutex);
1479 		goto error_fs_info;
1480 	}
1481 
1482 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1483 	if (IS_ERR(device)) {
1484 		mutex_unlock(&uuid_mutex);
1485 		error = PTR_ERR(device);
1486 		goto error_fs_info;
1487 	}
1488 
1489 	fs_devices = device->fs_devices;
1490 	fs_info->fs_devices = fs_devices;
1491 
1492 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1493 	mutex_unlock(&uuid_mutex);
1494 	if (error)
1495 		goto error_fs_info;
1496 
1497 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1498 		error = -EACCES;
1499 		goto error_close_devices;
1500 	}
1501 
1502 	bdev = fs_devices->latest_dev->bdev;
1503 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1504 		 fs_info);
1505 	if (IS_ERR(s)) {
1506 		error = PTR_ERR(s);
1507 		goto error_close_devices;
1508 	}
1509 
1510 	if (s->s_root) {
1511 		btrfs_close_devices(fs_devices);
1512 		btrfs_free_fs_info(fs_info);
1513 		if ((flags ^ s->s_flags) & SB_RDONLY)
1514 			error = -EBUSY;
1515 	} else {
1516 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1517 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1518 					s->s_id);
1519 		btrfs_sb(s)->bdev_holder = fs_type;
1520 		error = btrfs_fill_super(s, fs_devices, data);
1521 	}
1522 	if (!error)
1523 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1524 	security_free_mnt_opts(&new_sec_opts);
1525 	if (error) {
1526 		deactivate_locked_super(s);
1527 		return ERR_PTR(error);
1528 	}
1529 
1530 	return dget(s->s_root);
1531 
1532 error_close_devices:
1533 	btrfs_close_devices(fs_devices);
1534 error_fs_info:
1535 	btrfs_free_fs_info(fs_info);
1536 error_sec_opts:
1537 	security_free_mnt_opts(&new_sec_opts);
1538 	return ERR_PTR(error);
1539 }
1540 
1541 /*
1542  * Mount function which is called by VFS layer.
1543  *
1544  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1545  * which needs vfsmount* of device's root (/).  This means device's root has to
1546  * be mounted internally in any case.
1547  *
1548  * Operation flow:
1549  *   1. Parse subvol id related options for later use in mount_subvol().
1550  *
1551  *   2. Mount device's root (/) by calling vfs_kern_mount().
1552  *
1553  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1554  *      first place. In order to avoid calling btrfs_mount() again, we use
1555  *      different file_system_type which is not registered to VFS by
1556  *      register_filesystem() (btrfs_root_fs_type). As a result,
1557  *      btrfs_mount_root() is called. The return value will be used by
1558  *      mount_subtree() in mount_subvol().
1559  *
1560  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1561  *      "btrfs subvolume set-default", mount_subvol() is called always.
1562  */
1563 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1564 		const char *device_name, void *data)
1565 {
1566 	struct vfsmount *mnt_root;
1567 	struct dentry *root;
1568 	char *subvol_name = NULL;
1569 	u64 subvol_objectid = 0;
1570 	int error = 0;
1571 
1572 	error = btrfs_parse_subvol_options(data, &subvol_name,
1573 					&subvol_objectid);
1574 	if (error) {
1575 		kfree(subvol_name);
1576 		return ERR_PTR(error);
1577 	}
1578 
1579 	/* mount device's root (/) */
1580 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1581 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1582 		if (flags & SB_RDONLY) {
1583 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1584 				flags & ~SB_RDONLY, device_name, data);
1585 		} else {
1586 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1587 				flags | SB_RDONLY, device_name, data);
1588 			if (IS_ERR(mnt_root)) {
1589 				root = ERR_CAST(mnt_root);
1590 				kfree(subvol_name);
1591 				goto out;
1592 			}
1593 
1594 			down_write(&mnt_root->mnt_sb->s_umount);
1595 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1596 			up_write(&mnt_root->mnt_sb->s_umount);
1597 			if (error < 0) {
1598 				root = ERR_PTR(error);
1599 				mntput(mnt_root);
1600 				kfree(subvol_name);
1601 				goto out;
1602 			}
1603 		}
1604 	}
1605 	if (IS_ERR(mnt_root)) {
1606 		root = ERR_CAST(mnt_root);
1607 		kfree(subvol_name);
1608 		goto out;
1609 	}
1610 
1611 	/* mount_subvol() will free subvol_name and mnt_root */
1612 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1613 
1614 out:
1615 	return root;
1616 }
1617 
1618 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1619 				     u32 new_pool_size, u32 old_pool_size)
1620 {
1621 	if (new_pool_size == old_pool_size)
1622 		return;
1623 
1624 	fs_info->thread_pool_size = new_pool_size;
1625 
1626 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1627 	       old_pool_size, new_pool_size);
1628 
1629 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1630 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1631 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1632 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1633 	workqueue_set_max_active(fs_info->endio_workers, new_pool_size);
1634 	workqueue_set_max_active(fs_info->endio_meta_workers, new_pool_size);
1635 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1636 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1637 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1638 }
1639 
1640 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1641 				       unsigned long old_opts, int flags)
1642 {
1643 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1644 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1645 	     (flags & SB_RDONLY))) {
1646 		/* wait for any defraggers to finish */
1647 		wait_event(fs_info->transaction_wait,
1648 			   (atomic_read(&fs_info->defrag_running) == 0));
1649 		if (flags & SB_RDONLY)
1650 			sync_filesystem(fs_info->sb);
1651 	}
1652 }
1653 
1654 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1655 					 unsigned long old_opts)
1656 {
1657 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1658 
1659 	/*
1660 	 * We need to cleanup all defragable inodes if the autodefragment is
1661 	 * close or the filesystem is read only.
1662 	 */
1663 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1664 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1665 		btrfs_cleanup_defrag_inodes(fs_info);
1666 	}
1667 
1668 	/* If we toggled discard async */
1669 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1670 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1671 		btrfs_discard_resume(fs_info);
1672 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1673 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1674 		btrfs_discard_cleanup(fs_info);
1675 
1676 	/* If we toggled space cache */
1677 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1678 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1679 }
1680 
1681 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1682 {
1683 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1684 	unsigned old_flags = sb->s_flags;
1685 	unsigned long old_opts = fs_info->mount_opt;
1686 	unsigned long old_compress_type = fs_info->compress_type;
1687 	u64 old_max_inline = fs_info->max_inline;
1688 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1689 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1690 	int ret;
1691 
1692 	sync_filesystem(sb);
1693 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1694 
1695 	if (data) {
1696 		void *new_sec_opts = NULL;
1697 
1698 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1699 		if (!ret)
1700 			ret = security_sb_remount(sb, new_sec_opts);
1701 		security_free_mnt_opts(&new_sec_opts);
1702 		if (ret)
1703 			goto restore;
1704 	}
1705 
1706 	ret = btrfs_parse_options(fs_info, data, *flags);
1707 	if (ret)
1708 		goto restore;
1709 
1710 	ret = btrfs_check_features(fs_info, !(*flags & SB_RDONLY));
1711 	if (ret < 0)
1712 		goto restore;
1713 
1714 	btrfs_remount_begin(fs_info, old_opts, *flags);
1715 	btrfs_resize_thread_pool(fs_info,
1716 		fs_info->thread_pool_size, old_thread_pool_size);
1717 
1718 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1719 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1720 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1721 		btrfs_warn(fs_info,
1722 		"remount supports changing free space tree only from ro to rw");
1723 		/* Make sure free space cache options match the state on disk */
1724 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1725 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1726 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1727 		}
1728 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1729 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1730 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1731 		}
1732 	}
1733 
1734 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1735 		goto out;
1736 
1737 	if (*flags & SB_RDONLY) {
1738 		/*
1739 		 * this also happens on 'umount -rf' or on shutdown, when
1740 		 * the filesystem is busy.
1741 		 */
1742 		cancel_work_sync(&fs_info->async_reclaim_work);
1743 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1744 
1745 		btrfs_discard_cleanup(fs_info);
1746 
1747 		/* wait for the uuid_scan task to finish */
1748 		down(&fs_info->uuid_tree_rescan_sem);
1749 		/* avoid complains from lockdep et al. */
1750 		up(&fs_info->uuid_tree_rescan_sem);
1751 
1752 		btrfs_set_sb_rdonly(sb);
1753 
1754 		/*
1755 		 * Setting SB_RDONLY will put the cleaner thread to
1756 		 * sleep at the next loop if it's already active.
1757 		 * If it's already asleep, we'll leave unused block
1758 		 * groups on disk until we're mounted read-write again
1759 		 * unless we clean them up here.
1760 		 */
1761 		btrfs_delete_unused_bgs(fs_info);
1762 
1763 		/*
1764 		 * The cleaner task could be already running before we set the
1765 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1766 		 * We must make sure that after we finish the remount, i.e. after
1767 		 * we call btrfs_commit_super(), the cleaner can no longer start
1768 		 * a transaction - either because it was dropping a dead root,
1769 		 * running delayed iputs or deleting an unused block group (the
1770 		 * cleaner picked a block group from the list of unused block
1771 		 * groups before we were able to in the previous call to
1772 		 * btrfs_delete_unused_bgs()).
1773 		 */
1774 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1775 			    TASK_UNINTERRUPTIBLE);
1776 
1777 		/*
1778 		 * We've set the superblock to RO mode, so we might have made
1779 		 * the cleaner task sleep without running all pending delayed
1780 		 * iputs. Go through all the delayed iputs here, so that if an
1781 		 * unmount happens without remounting RW we don't end up at
1782 		 * finishing close_ctree() with a non-empty list of delayed
1783 		 * iputs.
1784 		 */
1785 		btrfs_run_delayed_iputs(fs_info);
1786 
1787 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1788 		btrfs_scrub_cancel(fs_info);
1789 		btrfs_pause_balance(fs_info);
1790 
1791 		/*
1792 		 * Pause the qgroup rescan worker if it is running. We don't want
1793 		 * it to be still running after we are in RO mode, as after that,
1794 		 * by the time we unmount, it might have left a transaction open,
1795 		 * so we would leak the transaction and/or crash.
1796 		 */
1797 		btrfs_qgroup_wait_for_completion(fs_info, false);
1798 
1799 		ret = btrfs_commit_super(fs_info);
1800 		if (ret)
1801 			goto restore;
1802 	} else {
1803 		if (BTRFS_FS_ERROR(fs_info)) {
1804 			btrfs_err(fs_info,
1805 				"Remounting read-write after error is not allowed");
1806 			ret = -EINVAL;
1807 			goto restore;
1808 		}
1809 		if (fs_info->fs_devices->rw_devices == 0) {
1810 			ret = -EACCES;
1811 			goto restore;
1812 		}
1813 
1814 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1815 			btrfs_warn(fs_info,
1816 		"too many missing devices, writable remount is not allowed");
1817 			ret = -EACCES;
1818 			goto restore;
1819 		}
1820 
1821 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1822 			btrfs_warn(fs_info,
1823 		"mount required to replay tree-log, cannot remount read-write");
1824 			ret = -EINVAL;
1825 			goto restore;
1826 		}
1827 
1828 		/*
1829 		 * NOTE: when remounting with a change that does writes, don't
1830 		 * put it anywhere above this point, as we are not sure to be
1831 		 * safe to write until we pass the above checks.
1832 		 */
1833 		ret = btrfs_start_pre_rw_mount(fs_info);
1834 		if (ret)
1835 			goto restore;
1836 
1837 		btrfs_clear_sb_rdonly(sb);
1838 
1839 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1840 	}
1841 out:
1842 	/*
1843 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1844 	 * since the absence of the flag means it can be toggled off by remount.
1845 	 */
1846 	*flags |= SB_I_VERSION;
1847 
1848 	wake_up_process(fs_info->transaction_kthread);
1849 	btrfs_remount_cleanup(fs_info, old_opts);
1850 	btrfs_clear_oneshot_options(fs_info);
1851 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1852 
1853 	return 0;
1854 
1855 restore:
1856 	/* We've hit an error - don't reset SB_RDONLY */
1857 	if (sb_rdonly(sb))
1858 		old_flags |= SB_RDONLY;
1859 	if (!(old_flags & SB_RDONLY))
1860 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1861 	sb->s_flags = old_flags;
1862 	fs_info->mount_opt = old_opts;
1863 	fs_info->compress_type = old_compress_type;
1864 	fs_info->max_inline = old_max_inline;
1865 	btrfs_resize_thread_pool(fs_info,
1866 		old_thread_pool_size, fs_info->thread_pool_size);
1867 	fs_info->metadata_ratio = old_metadata_ratio;
1868 	btrfs_remount_cleanup(fs_info, old_opts);
1869 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1870 
1871 	return ret;
1872 }
1873 
1874 /* Used to sort the devices by max_avail(descending sort) */
1875 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1876 {
1877 	const struct btrfs_device_info *dev_info1 = a;
1878 	const struct btrfs_device_info *dev_info2 = b;
1879 
1880 	if (dev_info1->max_avail > dev_info2->max_avail)
1881 		return -1;
1882 	else if (dev_info1->max_avail < dev_info2->max_avail)
1883 		return 1;
1884 	return 0;
1885 }
1886 
1887 /*
1888  * sort the devices by max_avail, in which max free extent size of each device
1889  * is stored.(Descending Sort)
1890  */
1891 static inline void btrfs_descending_sort_devices(
1892 					struct btrfs_device_info *devices,
1893 					size_t nr_devices)
1894 {
1895 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1896 	     btrfs_cmp_device_free_bytes, NULL);
1897 }
1898 
1899 /*
1900  * The helper to calc the free space on the devices that can be used to store
1901  * file data.
1902  */
1903 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1904 					      u64 *free_bytes)
1905 {
1906 	struct btrfs_device_info *devices_info;
1907 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1908 	struct btrfs_device *device;
1909 	u64 type;
1910 	u64 avail_space;
1911 	u64 min_stripe_size;
1912 	int num_stripes = 1;
1913 	int i = 0, nr_devices;
1914 	const struct btrfs_raid_attr *rattr;
1915 
1916 	/*
1917 	 * We aren't under the device list lock, so this is racy-ish, but good
1918 	 * enough for our purposes.
1919 	 */
1920 	nr_devices = fs_info->fs_devices->open_devices;
1921 	if (!nr_devices) {
1922 		smp_mb();
1923 		nr_devices = fs_info->fs_devices->open_devices;
1924 		ASSERT(nr_devices);
1925 		if (!nr_devices) {
1926 			*free_bytes = 0;
1927 			return 0;
1928 		}
1929 	}
1930 
1931 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1932 			       GFP_KERNEL);
1933 	if (!devices_info)
1934 		return -ENOMEM;
1935 
1936 	/* calc min stripe number for data space allocation */
1937 	type = btrfs_data_alloc_profile(fs_info);
1938 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1939 
1940 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1941 		num_stripes = nr_devices;
1942 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1943 		num_stripes = rattr->ncopies;
1944 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1945 		num_stripes = 4;
1946 
1947 	/* Adjust for more than 1 stripe per device */
1948 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1949 
1950 	rcu_read_lock();
1951 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1952 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1953 						&device->dev_state) ||
1954 		    !device->bdev ||
1955 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1956 			continue;
1957 
1958 		if (i >= nr_devices)
1959 			break;
1960 
1961 		avail_space = device->total_bytes - device->bytes_used;
1962 
1963 		/* align with stripe_len */
1964 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1965 
1966 		/*
1967 		 * Ensure we have at least min_stripe_size on top of the
1968 		 * reserved space on the device.
1969 		 */
1970 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1971 			continue;
1972 
1973 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1974 
1975 		devices_info[i].dev = device;
1976 		devices_info[i].max_avail = avail_space;
1977 
1978 		i++;
1979 	}
1980 	rcu_read_unlock();
1981 
1982 	nr_devices = i;
1983 
1984 	btrfs_descending_sort_devices(devices_info, nr_devices);
1985 
1986 	i = nr_devices - 1;
1987 	avail_space = 0;
1988 	while (nr_devices >= rattr->devs_min) {
1989 		num_stripes = min(num_stripes, nr_devices);
1990 
1991 		if (devices_info[i].max_avail >= min_stripe_size) {
1992 			int j;
1993 			u64 alloc_size;
1994 
1995 			avail_space += devices_info[i].max_avail * num_stripes;
1996 			alloc_size = devices_info[i].max_avail;
1997 			for (j = i + 1 - num_stripes; j <= i; j++)
1998 				devices_info[j].max_avail -= alloc_size;
1999 		}
2000 		i--;
2001 		nr_devices--;
2002 	}
2003 
2004 	kfree(devices_info);
2005 	*free_bytes = avail_space;
2006 	return 0;
2007 }
2008 
2009 /*
2010  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2011  *
2012  * If there's a redundant raid level at DATA block groups, use the respective
2013  * multiplier to scale the sizes.
2014  *
2015  * Unused device space usage is based on simulating the chunk allocator
2016  * algorithm that respects the device sizes and order of allocations.  This is
2017  * a close approximation of the actual use but there are other factors that may
2018  * change the result (like a new metadata chunk).
2019  *
2020  * If metadata is exhausted, f_bavail will be 0.
2021  */
2022 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2023 {
2024 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2025 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2026 	struct btrfs_space_info *found;
2027 	u64 total_used = 0;
2028 	u64 total_free_data = 0;
2029 	u64 total_free_meta = 0;
2030 	u32 bits = fs_info->sectorsize_bits;
2031 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2032 	unsigned factor = 1;
2033 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2034 	int ret;
2035 	u64 thresh = 0;
2036 	int mixed = 0;
2037 
2038 	list_for_each_entry(found, &fs_info->space_info, list) {
2039 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2040 			int i;
2041 
2042 			total_free_data += found->disk_total - found->disk_used;
2043 			total_free_data -=
2044 				btrfs_account_ro_block_groups_free_space(found);
2045 
2046 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2047 				if (!list_empty(&found->block_groups[i]))
2048 					factor = btrfs_bg_type_to_factor(
2049 						btrfs_raid_array[i].bg_flag);
2050 			}
2051 		}
2052 
2053 		/*
2054 		 * Metadata in mixed block group profiles are accounted in data
2055 		 */
2056 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2057 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2058 				mixed = 1;
2059 			else
2060 				total_free_meta += found->disk_total -
2061 					found->disk_used;
2062 		}
2063 
2064 		total_used += found->disk_used;
2065 	}
2066 
2067 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2068 	buf->f_blocks >>= bits;
2069 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2070 
2071 	/* Account global block reserve as used, it's in logical size already */
2072 	spin_lock(&block_rsv->lock);
2073 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2074 	if (buf->f_bfree >= block_rsv->size >> bits)
2075 		buf->f_bfree -= block_rsv->size >> bits;
2076 	else
2077 		buf->f_bfree = 0;
2078 	spin_unlock(&block_rsv->lock);
2079 
2080 	buf->f_bavail = div_u64(total_free_data, factor);
2081 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2082 	if (ret)
2083 		return ret;
2084 	buf->f_bavail += div_u64(total_free_data, factor);
2085 	buf->f_bavail = buf->f_bavail >> bits;
2086 
2087 	/*
2088 	 * We calculate the remaining metadata space minus global reserve. If
2089 	 * this is (supposedly) smaller than zero, there's no space. But this
2090 	 * does not hold in practice, the exhausted state happens where's still
2091 	 * some positive delta. So we apply some guesswork and compare the
2092 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2093 	 *
2094 	 * We probably cannot calculate the exact threshold value because this
2095 	 * depends on the internal reservations requested by various
2096 	 * operations, so some operations that consume a few metadata will
2097 	 * succeed even if the Avail is zero. But this is better than the other
2098 	 * way around.
2099 	 */
2100 	thresh = SZ_4M;
2101 
2102 	/*
2103 	 * We only want to claim there's no available space if we can no longer
2104 	 * allocate chunks for our metadata profile and our global reserve will
2105 	 * not fit in the free metadata space.  If we aren't ->full then we
2106 	 * still can allocate chunks and thus are fine using the currently
2107 	 * calculated f_bavail.
2108 	 */
2109 	if (!mixed && block_rsv->space_info->full &&
2110 	    total_free_meta - thresh < block_rsv->size)
2111 		buf->f_bavail = 0;
2112 
2113 	buf->f_type = BTRFS_SUPER_MAGIC;
2114 	buf->f_bsize = dentry->d_sb->s_blocksize;
2115 	buf->f_namelen = BTRFS_NAME_LEN;
2116 
2117 	/* We treat it as constant endianness (it doesn't matter _which_)
2118 	   because we want the fsid to come out the same whether mounted
2119 	   on a big-endian or little-endian host */
2120 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2121 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2122 	/* Mask in the root object ID too, to disambiguate subvols */
2123 	buf->f_fsid.val[0] ^=
2124 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2125 	buf->f_fsid.val[1] ^=
2126 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2127 
2128 	return 0;
2129 }
2130 
2131 static void btrfs_kill_super(struct super_block *sb)
2132 {
2133 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2134 	kill_anon_super(sb);
2135 	btrfs_free_fs_info(fs_info);
2136 }
2137 
2138 static struct file_system_type btrfs_fs_type = {
2139 	.owner		= THIS_MODULE,
2140 	.name		= "btrfs",
2141 	.mount		= btrfs_mount,
2142 	.kill_sb	= btrfs_kill_super,
2143 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2144 };
2145 
2146 static struct file_system_type btrfs_root_fs_type = {
2147 	.owner		= THIS_MODULE,
2148 	.name		= "btrfs",
2149 	.mount		= btrfs_mount_root,
2150 	.kill_sb	= btrfs_kill_super,
2151 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2152 };
2153 
2154 MODULE_ALIAS_FS("btrfs");
2155 
2156 static int btrfs_control_open(struct inode *inode, struct file *file)
2157 {
2158 	/*
2159 	 * The control file's private_data is used to hold the
2160 	 * transaction when it is started and is used to keep
2161 	 * track of whether a transaction is already in progress.
2162 	 */
2163 	file->private_data = NULL;
2164 	return 0;
2165 }
2166 
2167 /*
2168  * Used by /dev/btrfs-control for devices ioctls.
2169  */
2170 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2171 				unsigned long arg)
2172 {
2173 	struct btrfs_ioctl_vol_args *vol;
2174 	struct btrfs_device *device = NULL;
2175 	dev_t devt = 0;
2176 	int ret = -ENOTTY;
2177 
2178 	if (!capable(CAP_SYS_ADMIN))
2179 		return -EPERM;
2180 
2181 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2182 	if (IS_ERR(vol))
2183 		return PTR_ERR(vol);
2184 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2185 
2186 	switch (cmd) {
2187 	case BTRFS_IOC_SCAN_DEV:
2188 		mutex_lock(&uuid_mutex);
2189 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2190 					       &btrfs_root_fs_type);
2191 		ret = PTR_ERR_OR_ZERO(device);
2192 		mutex_unlock(&uuid_mutex);
2193 		break;
2194 	case BTRFS_IOC_FORGET_DEV:
2195 		if (vol->name[0] != 0) {
2196 			ret = lookup_bdev(vol->name, &devt);
2197 			if (ret)
2198 				break;
2199 		}
2200 		ret = btrfs_forget_devices(devt);
2201 		break;
2202 	case BTRFS_IOC_DEVICES_READY:
2203 		mutex_lock(&uuid_mutex);
2204 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2205 					       &btrfs_root_fs_type);
2206 		if (IS_ERR(device)) {
2207 			mutex_unlock(&uuid_mutex);
2208 			ret = PTR_ERR(device);
2209 			break;
2210 		}
2211 		ret = !(device->fs_devices->num_devices ==
2212 			device->fs_devices->total_devices);
2213 		mutex_unlock(&uuid_mutex);
2214 		break;
2215 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2216 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2217 		break;
2218 	}
2219 
2220 	kfree(vol);
2221 	return ret;
2222 }
2223 
2224 static int btrfs_freeze(struct super_block *sb)
2225 {
2226 	struct btrfs_trans_handle *trans;
2227 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2228 	struct btrfs_root *root = fs_info->tree_root;
2229 
2230 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2231 	/*
2232 	 * We don't need a barrier here, we'll wait for any transaction that
2233 	 * could be in progress on other threads (and do delayed iputs that
2234 	 * we want to avoid on a frozen filesystem), or do the commit
2235 	 * ourselves.
2236 	 */
2237 	trans = btrfs_attach_transaction_barrier(root);
2238 	if (IS_ERR(trans)) {
2239 		/* no transaction, don't bother */
2240 		if (PTR_ERR(trans) == -ENOENT)
2241 			return 0;
2242 		return PTR_ERR(trans);
2243 	}
2244 	return btrfs_commit_transaction(trans);
2245 }
2246 
2247 static int check_dev_super(struct btrfs_device *dev)
2248 {
2249 	struct btrfs_fs_info *fs_info = dev->fs_info;
2250 	struct btrfs_super_block *sb;
2251 	u16 csum_type;
2252 	int ret = 0;
2253 
2254 	/* This should be called with fs still frozen. */
2255 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2256 
2257 	/* Missing dev, no need to check. */
2258 	if (!dev->bdev)
2259 		return 0;
2260 
2261 	/* Only need to check the primary super block. */
2262 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2263 	if (IS_ERR(sb))
2264 		return PTR_ERR(sb);
2265 
2266 	/* Verify the checksum. */
2267 	csum_type = btrfs_super_csum_type(sb);
2268 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2269 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2270 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2271 		ret = -EUCLEAN;
2272 		goto out;
2273 	}
2274 
2275 	if (btrfs_check_super_csum(fs_info, sb)) {
2276 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2277 		ret = -EUCLEAN;
2278 		goto out;
2279 	}
2280 
2281 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2282 	ret = btrfs_validate_super(fs_info, sb, 0);
2283 	if (ret < 0)
2284 		goto out;
2285 
2286 	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2287 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2288 			btrfs_super_generation(sb),
2289 			fs_info->last_trans_committed);
2290 		ret = -EUCLEAN;
2291 		goto out;
2292 	}
2293 out:
2294 	btrfs_release_disk_super(sb);
2295 	return ret;
2296 }
2297 
2298 static int btrfs_unfreeze(struct super_block *sb)
2299 {
2300 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2301 	struct btrfs_device *device;
2302 	int ret = 0;
2303 
2304 	/*
2305 	 * Make sure the fs is not changed by accident (like hibernation then
2306 	 * modified by other OS).
2307 	 * If we found anything wrong, we mark the fs error immediately.
2308 	 *
2309 	 * And since the fs is frozen, no one can modify the fs yet, thus
2310 	 * we don't need to hold device_list_mutex.
2311 	 */
2312 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2313 		ret = check_dev_super(device);
2314 		if (ret < 0) {
2315 			btrfs_handle_fs_error(fs_info, ret,
2316 				"super block on devid %llu got modified unexpectedly",
2317 				device->devid);
2318 			break;
2319 		}
2320 	}
2321 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2322 
2323 	/*
2324 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2325 	 * above checks failed. Since the fs is either fine or read-only, we're
2326 	 * safe to continue, without causing further damage.
2327 	 */
2328 	return 0;
2329 }
2330 
2331 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2332 {
2333 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2334 
2335 	/*
2336 	 * There should be always a valid pointer in latest_dev, it may be stale
2337 	 * for a short moment in case it's being deleted but still valid until
2338 	 * the end of RCU grace period.
2339 	 */
2340 	rcu_read_lock();
2341 	seq_escape(m, btrfs_dev_name(fs_info->fs_devices->latest_dev), " \t\n\\");
2342 	rcu_read_unlock();
2343 
2344 	return 0;
2345 }
2346 
2347 static const struct super_operations btrfs_super_ops = {
2348 	.drop_inode	= btrfs_drop_inode,
2349 	.evict_inode	= btrfs_evict_inode,
2350 	.put_super	= btrfs_put_super,
2351 	.sync_fs	= btrfs_sync_fs,
2352 	.show_options	= btrfs_show_options,
2353 	.show_devname	= btrfs_show_devname,
2354 	.alloc_inode	= btrfs_alloc_inode,
2355 	.destroy_inode	= btrfs_destroy_inode,
2356 	.free_inode	= btrfs_free_inode,
2357 	.statfs		= btrfs_statfs,
2358 	.remount_fs	= btrfs_remount,
2359 	.freeze_fs	= btrfs_freeze,
2360 	.unfreeze_fs	= btrfs_unfreeze,
2361 };
2362 
2363 static const struct file_operations btrfs_ctl_fops = {
2364 	.open = btrfs_control_open,
2365 	.unlocked_ioctl	 = btrfs_control_ioctl,
2366 	.compat_ioctl = compat_ptr_ioctl,
2367 	.owner	 = THIS_MODULE,
2368 	.llseek = noop_llseek,
2369 };
2370 
2371 static struct miscdevice btrfs_misc = {
2372 	.minor		= BTRFS_MINOR,
2373 	.name		= "btrfs-control",
2374 	.fops		= &btrfs_ctl_fops
2375 };
2376 
2377 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2378 MODULE_ALIAS("devname:btrfs-control");
2379 
2380 static int __init btrfs_interface_init(void)
2381 {
2382 	return misc_register(&btrfs_misc);
2383 }
2384 
2385 static __cold void btrfs_interface_exit(void)
2386 {
2387 	misc_deregister(&btrfs_misc);
2388 }
2389 
2390 static int __init btrfs_print_mod_info(void)
2391 {
2392 	static const char options[] = ""
2393 #ifdef CONFIG_BTRFS_DEBUG
2394 			", debug=on"
2395 #endif
2396 #ifdef CONFIG_BTRFS_ASSERT
2397 			", assert=on"
2398 #endif
2399 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2400 			", integrity-checker=on"
2401 #endif
2402 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2403 			", ref-verify=on"
2404 #endif
2405 #ifdef CONFIG_BLK_DEV_ZONED
2406 			", zoned=yes"
2407 #else
2408 			", zoned=no"
2409 #endif
2410 #ifdef CONFIG_FS_VERITY
2411 			", fsverity=yes"
2412 #else
2413 			", fsverity=no"
2414 #endif
2415 			;
2416 	pr_info("Btrfs loaded%s\n", options);
2417 	return 0;
2418 }
2419 
2420 static int register_btrfs(void)
2421 {
2422 	return register_filesystem(&btrfs_fs_type);
2423 }
2424 
2425 static void unregister_btrfs(void)
2426 {
2427 	unregister_filesystem(&btrfs_fs_type);
2428 }
2429 
2430 /* Helper structure for long init/exit functions. */
2431 struct init_sequence {
2432 	int (*init_func)(void);
2433 	/* Can be NULL if the init_func doesn't need cleanup. */
2434 	void (*exit_func)(void);
2435 };
2436 
2437 static const struct init_sequence mod_init_seq[] = {
2438 	{
2439 		.init_func = btrfs_props_init,
2440 		.exit_func = NULL,
2441 	}, {
2442 		.init_func = btrfs_init_sysfs,
2443 		.exit_func = btrfs_exit_sysfs,
2444 	}, {
2445 		.init_func = btrfs_init_compress,
2446 		.exit_func = btrfs_exit_compress,
2447 	}, {
2448 		.init_func = btrfs_init_cachep,
2449 		.exit_func = btrfs_destroy_cachep,
2450 	}, {
2451 		.init_func = btrfs_transaction_init,
2452 		.exit_func = btrfs_transaction_exit,
2453 	}, {
2454 		.init_func = btrfs_ctree_init,
2455 		.exit_func = btrfs_ctree_exit,
2456 	}, {
2457 		.init_func = btrfs_free_space_init,
2458 		.exit_func = btrfs_free_space_exit,
2459 	}, {
2460 		.init_func = extent_state_init_cachep,
2461 		.exit_func = extent_state_free_cachep,
2462 	}, {
2463 		.init_func = extent_buffer_init_cachep,
2464 		.exit_func = extent_buffer_free_cachep,
2465 	}, {
2466 		.init_func = btrfs_bioset_init,
2467 		.exit_func = btrfs_bioset_exit,
2468 	}, {
2469 		.init_func = extent_map_init,
2470 		.exit_func = extent_map_exit,
2471 	}, {
2472 		.init_func = ordered_data_init,
2473 		.exit_func = ordered_data_exit,
2474 	}, {
2475 		.init_func = btrfs_delayed_inode_init,
2476 		.exit_func = btrfs_delayed_inode_exit,
2477 	}, {
2478 		.init_func = btrfs_auto_defrag_init,
2479 		.exit_func = btrfs_auto_defrag_exit,
2480 	}, {
2481 		.init_func = btrfs_delayed_ref_init,
2482 		.exit_func = btrfs_delayed_ref_exit,
2483 	}, {
2484 		.init_func = btrfs_prelim_ref_init,
2485 		.exit_func = btrfs_prelim_ref_exit,
2486 	}, {
2487 		.init_func = btrfs_interface_init,
2488 		.exit_func = btrfs_interface_exit,
2489 	}, {
2490 		.init_func = btrfs_print_mod_info,
2491 		.exit_func = NULL,
2492 	}, {
2493 		.init_func = btrfs_run_sanity_tests,
2494 		.exit_func = NULL,
2495 	}, {
2496 		.init_func = register_btrfs,
2497 		.exit_func = unregister_btrfs,
2498 	}
2499 };
2500 
2501 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2502 
2503 static __always_inline void btrfs_exit_btrfs_fs(void)
2504 {
2505 	int i;
2506 
2507 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2508 		if (!mod_init_result[i])
2509 			continue;
2510 		if (mod_init_seq[i].exit_func)
2511 			mod_init_seq[i].exit_func();
2512 		mod_init_result[i] = false;
2513 	}
2514 }
2515 
2516 static void __exit exit_btrfs_fs(void)
2517 {
2518 	btrfs_exit_btrfs_fs();
2519 	btrfs_cleanup_fs_uuids();
2520 }
2521 
2522 static int __init init_btrfs_fs(void)
2523 {
2524 	int ret;
2525 	int i;
2526 
2527 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2528 		ASSERT(!mod_init_result[i]);
2529 		ret = mod_init_seq[i].init_func();
2530 		if (ret < 0) {
2531 			btrfs_exit_btrfs_fs();
2532 			return ret;
2533 		}
2534 		mod_init_result[i] = true;
2535 	}
2536 	return 0;
2537 }
2538 
2539 late_initcall(init_btrfs_fs);
2540 module_exit(exit_btrfs_fs)
2541 
2542 MODULE_LICENSE("GPL");
2543 MODULE_SOFTDEP("pre: crc32c");
2544 MODULE_SOFTDEP("pre: xxhash64");
2545 MODULE_SOFTDEP("pre: sha256");
2546 MODULE_SOFTDEP("pre: blake2b-256");
2547