1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/module.h> 8 #include <linux/fs.h> 9 #include <linux/pagemap.h> 10 #include <linux/highmem.h> 11 #include <linux/time.h> 12 #include <linux/init.h> 13 #include <linux/seq_file.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/writeback.h> 18 #include <linux/statfs.h> 19 #include <linux/compat.h> 20 #include <linux/parser.h> 21 #include <linux/ctype.h> 22 #include <linux/namei.h> 23 #include <linux/miscdevice.h> 24 #include <linux/magic.h> 25 #include <linux/slab.h> 26 #include <linux/ratelimit.h> 27 #include <linux/crc32c.h> 28 #include <linux/btrfs.h> 29 #include "messages.h" 30 #include "delayed-inode.h" 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "transaction.h" 34 #include "btrfs_inode.h" 35 #include "print-tree.h" 36 #include "props.h" 37 #include "xattr.h" 38 #include "volumes.h" 39 #include "export.h" 40 #include "compression.h" 41 #include "rcu-string.h" 42 #include "dev-replace.h" 43 #include "free-space-cache.h" 44 #include "backref.h" 45 #include "space-info.h" 46 #include "sysfs.h" 47 #include "zoned.h" 48 #include "tests/btrfs-tests.h" 49 #include "block-group.h" 50 #include "discard.h" 51 #include "qgroup.h" 52 #include "raid56.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "defrag.h" 56 #include "dir-item.h" 57 #include "ioctl.h" 58 #include "scrub.h" 59 #include "verity.h" 60 #define CREATE_TRACE_POINTS 61 #include <trace/events/btrfs.h> 62 63 static const struct super_operations btrfs_super_ops; 64 65 /* 66 * Types for mounting the default subvolume and a subvolume explicitly 67 * requested by subvol=/path. That way the callchain is straightforward and we 68 * don't have to play tricks with the mount options and recursive calls to 69 * btrfs_mount. 70 * 71 * The new btrfs_root_fs_type also servers as a tag for the bdev_holder. 72 */ 73 static struct file_system_type btrfs_fs_type; 74 static struct file_system_type btrfs_root_fs_type; 75 76 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 77 78 static void btrfs_put_super(struct super_block *sb) 79 { 80 close_ctree(btrfs_sb(sb)); 81 } 82 83 enum { 84 Opt_acl, Opt_noacl, 85 Opt_clear_cache, 86 Opt_commit_interval, 87 Opt_compress, 88 Opt_compress_force, 89 Opt_compress_force_type, 90 Opt_compress_type, 91 Opt_degraded, 92 Opt_device, 93 Opt_fatal_errors, 94 Opt_flushoncommit, Opt_noflushoncommit, 95 Opt_max_inline, 96 Opt_barrier, Opt_nobarrier, 97 Opt_datacow, Opt_nodatacow, 98 Opt_datasum, Opt_nodatasum, 99 Opt_defrag, Opt_nodefrag, 100 Opt_discard, Opt_nodiscard, 101 Opt_discard_mode, 102 Opt_norecovery, 103 Opt_ratio, 104 Opt_rescan_uuid_tree, 105 Opt_skip_balance, 106 Opt_space_cache, Opt_no_space_cache, 107 Opt_space_cache_version, 108 Opt_ssd, Opt_nossd, 109 Opt_ssd_spread, Opt_nossd_spread, 110 Opt_subvol, 111 Opt_subvol_empty, 112 Opt_subvolid, 113 Opt_thread_pool, 114 Opt_treelog, Opt_notreelog, 115 Opt_user_subvol_rm_allowed, 116 117 /* Rescue options */ 118 Opt_rescue, 119 Opt_usebackuproot, 120 Opt_nologreplay, 121 Opt_ignorebadroots, 122 Opt_ignoredatacsums, 123 Opt_rescue_all, 124 125 /* Deprecated options */ 126 Opt_recovery, 127 Opt_inode_cache, Opt_noinode_cache, 128 129 /* Debugging options */ 130 Opt_check_integrity, 131 Opt_check_integrity_including_extent_data, 132 Opt_check_integrity_print_mask, 133 Opt_enospc_debug, Opt_noenospc_debug, 134 #ifdef CONFIG_BTRFS_DEBUG 135 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 136 #endif 137 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 138 Opt_ref_verify, 139 #endif 140 Opt_err, 141 }; 142 143 static const match_table_t tokens = { 144 {Opt_acl, "acl"}, 145 {Opt_noacl, "noacl"}, 146 {Opt_clear_cache, "clear_cache"}, 147 {Opt_commit_interval, "commit=%u"}, 148 {Opt_compress, "compress"}, 149 {Opt_compress_type, "compress=%s"}, 150 {Opt_compress_force, "compress-force"}, 151 {Opt_compress_force_type, "compress-force=%s"}, 152 {Opt_degraded, "degraded"}, 153 {Opt_device, "device=%s"}, 154 {Opt_fatal_errors, "fatal_errors=%s"}, 155 {Opt_flushoncommit, "flushoncommit"}, 156 {Opt_noflushoncommit, "noflushoncommit"}, 157 {Opt_inode_cache, "inode_cache"}, 158 {Opt_noinode_cache, "noinode_cache"}, 159 {Opt_max_inline, "max_inline=%s"}, 160 {Opt_barrier, "barrier"}, 161 {Opt_nobarrier, "nobarrier"}, 162 {Opt_datacow, "datacow"}, 163 {Opt_nodatacow, "nodatacow"}, 164 {Opt_datasum, "datasum"}, 165 {Opt_nodatasum, "nodatasum"}, 166 {Opt_defrag, "autodefrag"}, 167 {Opt_nodefrag, "noautodefrag"}, 168 {Opt_discard, "discard"}, 169 {Opt_discard_mode, "discard=%s"}, 170 {Opt_nodiscard, "nodiscard"}, 171 {Opt_norecovery, "norecovery"}, 172 {Opt_ratio, "metadata_ratio=%u"}, 173 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 174 {Opt_skip_balance, "skip_balance"}, 175 {Opt_space_cache, "space_cache"}, 176 {Opt_no_space_cache, "nospace_cache"}, 177 {Opt_space_cache_version, "space_cache=%s"}, 178 {Opt_ssd, "ssd"}, 179 {Opt_nossd, "nossd"}, 180 {Opt_ssd_spread, "ssd_spread"}, 181 {Opt_nossd_spread, "nossd_spread"}, 182 {Opt_subvol, "subvol=%s"}, 183 {Opt_subvol_empty, "subvol="}, 184 {Opt_subvolid, "subvolid=%s"}, 185 {Opt_thread_pool, "thread_pool=%u"}, 186 {Opt_treelog, "treelog"}, 187 {Opt_notreelog, "notreelog"}, 188 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 189 190 /* Rescue options */ 191 {Opt_rescue, "rescue=%s"}, 192 /* Deprecated, with alias rescue=nologreplay */ 193 {Opt_nologreplay, "nologreplay"}, 194 /* Deprecated, with alias rescue=usebackuproot */ 195 {Opt_usebackuproot, "usebackuproot"}, 196 197 /* Deprecated options */ 198 {Opt_recovery, "recovery"}, 199 200 /* Debugging options */ 201 {Opt_check_integrity, "check_int"}, 202 {Opt_check_integrity_including_extent_data, "check_int_data"}, 203 {Opt_check_integrity_print_mask, "check_int_print_mask=%u"}, 204 {Opt_enospc_debug, "enospc_debug"}, 205 {Opt_noenospc_debug, "noenospc_debug"}, 206 #ifdef CONFIG_BTRFS_DEBUG 207 {Opt_fragment_data, "fragment=data"}, 208 {Opt_fragment_metadata, "fragment=metadata"}, 209 {Opt_fragment_all, "fragment=all"}, 210 #endif 211 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 212 {Opt_ref_verify, "ref_verify"}, 213 #endif 214 {Opt_err, NULL}, 215 }; 216 217 static const match_table_t rescue_tokens = { 218 {Opt_usebackuproot, "usebackuproot"}, 219 {Opt_nologreplay, "nologreplay"}, 220 {Opt_ignorebadroots, "ignorebadroots"}, 221 {Opt_ignorebadroots, "ibadroots"}, 222 {Opt_ignoredatacsums, "ignoredatacsums"}, 223 {Opt_ignoredatacsums, "idatacsums"}, 224 {Opt_rescue_all, "all"}, 225 {Opt_err, NULL}, 226 }; 227 228 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt, 229 const char *opt_name) 230 { 231 if (fs_info->mount_opt & opt) { 232 btrfs_err(fs_info, "%s must be used with ro mount option", 233 opt_name); 234 return true; 235 } 236 return false; 237 } 238 239 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options) 240 { 241 char *opts; 242 char *orig; 243 char *p; 244 substring_t args[MAX_OPT_ARGS]; 245 int ret = 0; 246 247 opts = kstrdup(options, GFP_KERNEL); 248 if (!opts) 249 return -ENOMEM; 250 orig = opts; 251 252 while ((p = strsep(&opts, ":")) != NULL) { 253 int token; 254 255 if (!*p) 256 continue; 257 token = match_token(p, rescue_tokens, args); 258 switch (token){ 259 case Opt_usebackuproot: 260 btrfs_info(info, 261 "trying to use backup root at mount time"); 262 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 263 break; 264 case Opt_nologreplay: 265 btrfs_set_and_info(info, NOLOGREPLAY, 266 "disabling log replay at mount time"); 267 break; 268 case Opt_ignorebadroots: 269 btrfs_set_and_info(info, IGNOREBADROOTS, 270 "ignoring bad roots"); 271 break; 272 case Opt_ignoredatacsums: 273 btrfs_set_and_info(info, IGNOREDATACSUMS, 274 "ignoring data csums"); 275 break; 276 case Opt_rescue_all: 277 btrfs_info(info, "enabling all of the rescue options"); 278 btrfs_set_and_info(info, IGNOREDATACSUMS, 279 "ignoring data csums"); 280 btrfs_set_and_info(info, IGNOREBADROOTS, 281 "ignoring bad roots"); 282 btrfs_set_and_info(info, NOLOGREPLAY, 283 "disabling log replay at mount time"); 284 break; 285 case Opt_err: 286 btrfs_info(info, "unrecognized rescue option '%s'", p); 287 ret = -EINVAL; 288 goto out; 289 default: 290 break; 291 } 292 293 } 294 out: 295 kfree(orig); 296 return ret; 297 } 298 299 /* 300 * Regular mount options parser. Everything that is needed only when 301 * reading in a new superblock is parsed here. 302 * XXX JDM: This needs to be cleaned up for remount. 303 */ 304 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 305 unsigned long new_flags) 306 { 307 substring_t args[MAX_OPT_ARGS]; 308 char *p, *num; 309 int intarg; 310 int ret = 0; 311 char *compress_type; 312 bool compress_force = false; 313 enum btrfs_compression_type saved_compress_type; 314 int saved_compress_level; 315 bool saved_compress_force; 316 int no_compress = 0; 317 const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state); 318 319 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 320 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 321 else if (btrfs_free_space_cache_v1_active(info)) { 322 if (btrfs_is_zoned(info)) { 323 btrfs_info(info, 324 "zoned: clearing existing space cache"); 325 btrfs_set_super_cache_generation(info->super_copy, 0); 326 } else { 327 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 328 } 329 } 330 331 /* 332 * Even the options are empty, we still need to do extra check 333 * against new flags 334 */ 335 if (!options) 336 goto check; 337 338 while ((p = strsep(&options, ",")) != NULL) { 339 int token; 340 if (!*p) 341 continue; 342 343 token = match_token(p, tokens, args); 344 switch (token) { 345 case Opt_degraded: 346 btrfs_info(info, "allowing degraded mounts"); 347 btrfs_set_opt(info->mount_opt, DEGRADED); 348 break; 349 case Opt_subvol: 350 case Opt_subvol_empty: 351 case Opt_subvolid: 352 case Opt_device: 353 /* 354 * These are parsed by btrfs_parse_subvol_options or 355 * btrfs_parse_device_options and can be ignored here. 356 */ 357 break; 358 case Opt_nodatasum: 359 btrfs_set_and_info(info, NODATASUM, 360 "setting nodatasum"); 361 break; 362 case Opt_datasum: 363 if (btrfs_test_opt(info, NODATASUM)) { 364 if (btrfs_test_opt(info, NODATACOW)) 365 btrfs_info(info, 366 "setting datasum, datacow enabled"); 367 else 368 btrfs_info(info, "setting datasum"); 369 } 370 btrfs_clear_opt(info->mount_opt, NODATACOW); 371 btrfs_clear_opt(info->mount_opt, NODATASUM); 372 break; 373 case Opt_nodatacow: 374 if (!btrfs_test_opt(info, NODATACOW)) { 375 if (!btrfs_test_opt(info, COMPRESS) || 376 !btrfs_test_opt(info, FORCE_COMPRESS)) { 377 btrfs_info(info, 378 "setting nodatacow, compression disabled"); 379 } else { 380 btrfs_info(info, "setting nodatacow"); 381 } 382 } 383 btrfs_clear_opt(info->mount_opt, COMPRESS); 384 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 385 btrfs_set_opt(info->mount_opt, NODATACOW); 386 btrfs_set_opt(info->mount_opt, NODATASUM); 387 break; 388 case Opt_datacow: 389 btrfs_clear_and_info(info, NODATACOW, 390 "setting datacow"); 391 break; 392 case Opt_compress_force: 393 case Opt_compress_force_type: 394 compress_force = true; 395 fallthrough; 396 case Opt_compress: 397 case Opt_compress_type: 398 saved_compress_type = btrfs_test_opt(info, 399 COMPRESS) ? 400 info->compress_type : BTRFS_COMPRESS_NONE; 401 saved_compress_force = 402 btrfs_test_opt(info, FORCE_COMPRESS); 403 saved_compress_level = info->compress_level; 404 if (token == Opt_compress || 405 token == Opt_compress_force || 406 strncmp(args[0].from, "zlib", 4) == 0) { 407 compress_type = "zlib"; 408 409 info->compress_type = BTRFS_COMPRESS_ZLIB; 410 info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL; 411 /* 412 * args[0] contains uninitialized data since 413 * for these tokens we don't expect any 414 * parameter. 415 */ 416 if (token != Opt_compress && 417 token != Opt_compress_force) 418 info->compress_level = 419 btrfs_compress_str2level( 420 BTRFS_COMPRESS_ZLIB, 421 args[0].from + 4); 422 btrfs_set_opt(info->mount_opt, COMPRESS); 423 btrfs_clear_opt(info->mount_opt, NODATACOW); 424 btrfs_clear_opt(info->mount_opt, NODATASUM); 425 no_compress = 0; 426 } else if (strncmp(args[0].from, "lzo", 3) == 0) { 427 compress_type = "lzo"; 428 info->compress_type = BTRFS_COMPRESS_LZO; 429 info->compress_level = 0; 430 btrfs_set_opt(info->mount_opt, COMPRESS); 431 btrfs_clear_opt(info->mount_opt, NODATACOW); 432 btrfs_clear_opt(info->mount_opt, NODATASUM); 433 btrfs_set_fs_incompat(info, COMPRESS_LZO); 434 no_compress = 0; 435 } else if (strncmp(args[0].from, "zstd", 4) == 0) { 436 compress_type = "zstd"; 437 info->compress_type = BTRFS_COMPRESS_ZSTD; 438 info->compress_level = 439 btrfs_compress_str2level( 440 BTRFS_COMPRESS_ZSTD, 441 args[0].from + 4); 442 btrfs_set_opt(info->mount_opt, COMPRESS); 443 btrfs_clear_opt(info->mount_opt, NODATACOW); 444 btrfs_clear_opt(info->mount_opt, NODATASUM); 445 btrfs_set_fs_incompat(info, COMPRESS_ZSTD); 446 no_compress = 0; 447 } else if (strncmp(args[0].from, "no", 2) == 0) { 448 compress_type = "no"; 449 info->compress_level = 0; 450 info->compress_type = 0; 451 btrfs_clear_opt(info->mount_opt, COMPRESS); 452 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 453 compress_force = false; 454 no_compress++; 455 } else { 456 btrfs_err(info, "unrecognized compression value %s", 457 args[0].from); 458 ret = -EINVAL; 459 goto out; 460 } 461 462 if (compress_force) { 463 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 464 } else { 465 /* 466 * If we remount from compress-force=xxx to 467 * compress=xxx, we need clear FORCE_COMPRESS 468 * flag, otherwise, there is no way for users 469 * to disable forcible compression separately. 470 */ 471 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 472 } 473 if (no_compress == 1) { 474 btrfs_info(info, "use no compression"); 475 } else if ((info->compress_type != saved_compress_type) || 476 (compress_force != saved_compress_force) || 477 (info->compress_level != saved_compress_level)) { 478 btrfs_info(info, "%s %s compression, level %d", 479 (compress_force) ? "force" : "use", 480 compress_type, info->compress_level); 481 } 482 compress_force = false; 483 break; 484 case Opt_ssd: 485 btrfs_set_and_info(info, SSD, 486 "enabling ssd optimizations"); 487 btrfs_clear_opt(info->mount_opt, NOSSD); 488 break; 489 case Opt_ssd_spread: 490 btrfs_set_and_info(info, SSD, 491 "enabling ssd optimizations"); 492 btrfs_set_and_info(info, SSD_SPREAD, 493 "using spread ssd allocation scheme"); 494 btrfs_clear_opt(info->mount_opt, NOSSD); 495 break; 496 case Opt_nossd: 497 btrfs_set_opt(info->mount_opt, NOSSD); 498 btrfs_clear_and_info(info, SSD, 499 "not using ssd optimizations"); 500 fallthrough; 501 case Opt_nossd_spread: 502 btrfs_clear_and_info(info, SSD_SPREAD, 503 "not using spread ssd allocation scheme"); 504 break; 505 case Opt_barrier: 506 btrfs_clear_and_info(info, NOBARRIER, 507 "turning on barriers"); 508 break; 509 case Opt_nobarrier: 510 btrfs_set_and_info(info, NOBARRIER, 511 "turning off barriers"); 512 break; 513 case Opt_thread_pool: 514 ret = match_int(&args[0], &intarg); 515 if (ret) { 516 btrfs_err(info, "unrecognized thread_pool value %s", 517 args[0].from); 518 goto out; 519 } else if (intarg == 0) { 520 btrfs_err(info, "invalid value 0 for thread_pool"); 521 ret = -EINVAL; 522 goto out; 523 } 524 info->thread_pool_size = intarg; 525 break; 526 case Opt_max_inline: 527 num = match_strdup(&args[0]); 528 if (num) { 529 info->max_inline = memparse(num, NULL); 530 kfree(num); 531 532 if (info->max_inline) { 533 info->max_inline = min_t(u64, 534 info->max_inline, 535 info->sectorsize); 536 } 537 btrfs_info(info, "max_inline at %llu", 538 info->max_inline); 539 } else { 540 ret = -ENOMEM; 541 goto out; 542 } 543 break; 544 case Opt_acl: 545 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 546 info->sb->s_flags |= SB_POSIXACL; 547 break; 548 #else 549 btrfs_err(info, "support for ACL not compiled in!"); 550 ret = -EINVAL; 551 goto out; 552 #endif 553 case Opt_noacl: 554 info->sb->s_flags &= ~SB_POSIXACL; 555 break; 556 case Opt_notreelog: 557 btrfs_set_and_info(info, NOTREELOG, 558 "disabling tree log"); 559 break; 560 case Opt_treelog: 561 btrfs_clear_and_info(info, NOTREELOG, 562 "enabling tree log"); 563 break; 564 case Opt_norecovery: 565 case Opt_nologreplay: 566 btrfs_warn(info, 567 "'nologreplay' is deprecated, use 'rescue=nologreplay' instead"); 568 btrfs_set_and_info(info, NOLOGREPLAY, 569 "disabling log replay at mount time"); 570 break; 571 case Opt_flushoncommit: 572 btrfs_set_and_info(info, FLUSHONCOMMIT, 573 "turning on flush-on-commit"); 574 break; 575 case Opt_noflushoncommit: 576 btrfs_clear_and_info(info, FLUSHONCOMMIT, 577 "turning off flush-on-commit"); 578 break; 579 case Opt_ratio: 580 ret = match_int(&args[0], &intarg); 581 if (ret) { 582 btrfs_err(info, "unrecognized metadata_ratio value %s", 583 args[0].from); 584 goto out; 585 } 586 info->metadata_ratio = intarg; 587 btrfs_info(info, "metadata ratio %u", 588 info->metadata_ratio); 589 break; 590 case Opt_discard: 591 case Opt_discard_mode: 592 if (token == Opt_discard || 593 strcmp(args[0].from, "sync") == 0) { 594 btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC); 595 btrfs_set_and_info(info, DISCARD_SYNC, 596 "turning on sync discard"); 597 } else if (strcmp(args[0].from, "async") == 0) { 598 btrfs_clear_opt(info->mount_opt, DISCARD_SYNC); 599 btrfs_set_and_info(info, DISCARD_ASYNC, 600 "turning on async discard"); 601 } else { 602 btrfs_err(info, "unrecognized discard mode value %s", 603 args[0].from); 604 ret = -EINVAL; 605 goto out; 606 } 607 btrfs_clear_opt(info->mount_opt, NODISCARD); 608 break; 609 case Opt_nodiscard: 610 btrfs_clear_and_info(info, DISCARD_SYNC, 611 "turning off discard"); 612 btrfs_clear_and_info(info, DISCARD_ASYNC, 613 "turning off async discard"); 614 btrfs_set_opt(info->mount_opt, NODISCARD); 615 break; 616 case Opt_space_cache: 617 case Opt_space_cache_version: 618 /* 619 * We already set FREE_SPACE_TREE above because we have 620 * compat_ro(FREE_SPACE_TREE) set, and we aren't going 621 * to allow v1 to be set for extent tree v2, simply 622 * ignore this setting if we're extent tree v2. 623 */ 624 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 625 break; 626 if (token == Opt_space_cache || 627 strcmp(args[0].from, "v1") == 0) { 628 btrfs_clear_opt(info->mount_opt, 629 FREE_SPACE_TREE); 630 btrfs_set_and_info(info, SPACE_CACHE, 631 "enabling disk space caching"); 632 } else if (strcmp(args[0].from, "v2") == 0) { 633 btrfs_clear_opt(info->mount_opt, 634 SPACE_CACHE); 635 btrfs_set_and_info(info, FREE_SPACE_TREE, 636 "enabling free space tree"); 637 } else { 638 btrfs_err(info, "unrecognized space_cache value %s", 639 args[0].from); 640 ret = -EINVAL; 641 goto out; 642 } 643 break; 644 case Opt_rescan_uuid_tree: 645 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 646 break; 647 case Opt_no_space_cache: 648 /* 649 * We cannot operate without the free space tree with 650 * extent tree v2, ignore this option. 651 */ 652 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 653 break; 654 if (btrfs_test_opt(info, SPACE_CACHE)) { 655 btrfs_clear_and_info(info, SPACE_CACHE, 656 "disabling disk space caching"); 657 } 658 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 659 btrfs_clear_and_info(info, FREE_SPACE_TREE, 660 "disabling free space tree"); 661 } 662 break; 663 case Opt_inode_cache: 664 case Opt_noinode_cache: 665 btrfs_warn(info, 666 "the 'inode_cache' option is deprecated and has no effect since 5.11"); 667 break; 668 case Opt_clear_cache: 669 /* 670 * We cannot clear the free space tree with extent tree 671 * v2, ignore this option. 672 */ 673 if (btrfs_fs_incompat(info, EXTENT_TREE_V2)) 674 break; 675 btrfs_set_and_info(info, CLEAR_CACHE, 676 "force clearing of disk cache"); 677 break; 678 case Opt_user_subvol_rm_allowed: 679 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 680 break; 681 case Opt_enospc_debug: 682 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 683 break; 684 case Opt_noenospc_debug: 685 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 686 break; 687 case Opt_defrag: 688 btrfs_set_and_info(info, AUTO_DEFRAG, 689 "enabling auto defrag"); 690 break; 691 case Opt_nodefrag: 692 btrfs_clear_and_info(info, AUTO_DEFRAG, 693 "disabling auto defrag"); 694 break; 695 case Opt_recovery: 696 case Opt_usebackuproot: 697 btrfs_warn(info, 698 "'%s' is deprecated, use 'rescue=usebackuproot' instead", 699 token == Opt_recovery ? "recovery" : 700 "usebackuproot"); 701 btrfs_info(info, 702 "trying to use backup root at mount time"); 703 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 704 break; 705 case Opt_skip_balance: 706 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 707 break; 708 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 709 case Opt_check_integrity_including_extent_data: 710 btrfs_info(info, 711 "enabling check integrity including extent data"); 712 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA); 713 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 714 break; 715 case Opt_check_integrity: 716 btrfs_info(info, "enabling check integrity"); 717 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 718 break; 719 case Opt_check_integrity_print_mask: 720 ret = match_int(&args[0], &intarg); 721 if (ret) { 722 btrfs_err(info, 723 "unrecognized check_integrity_print_mask value %s", 724 args[0].from); 725 goto out; 726 } 727 info->check_integrity_print_mask = intarg; 728 btrfs_info(info, "check_integrity_print_mask 0x%x", 729 info->check_integrity_print_mask); 730 break; 731 #else 732 case Opt_check_integrity_including_extent_data: 733 case Opt_check_integrity: 734 case Opt_check_integrity_print_mask: 735 btrfs_err(info, 736 "support for check_integrity* not compiled in!"); 737 ret = -EINVAL; 738 goto out; 739 #endif 740 case Opt_fatal_errors: 741 if (strcmp(args[0].from, "panic") == 0) { 742 btrfs_set_opt(info->mount_opt, 743 PANIC_ON_FATAL_ERROR); 744 } else if (strcmp(args[0].from, "bug") == 0) { 745 btrfs_clear_opt(info->mount_opt, 746 PANIC_ON_FATAL_ERROR); 747 } else { 748 btrfs_err(info, "unrecognized fatal_errors value %s", 749 args[0].from); 750 ret = -EINVAL; 751 goto out; 752 } 753 break; 754 case Opt_commit_interval: 755 intarg = 0; 756 ret = match_int(&args[0], &intarg); 757 if (ret) { 758 btrfs_err(info, "unrecognized commit_interval value %s", 759 args[0].from); 760 ret = -EINVAL; 761 goto out; 762 } 763 if (intarg == 0) { 764 btrfs_info(info, 765 "using default commit interval %us", 766 BTRFS_DEFAULT_COMMIT_INTERVAL); 767 intarg = BTRFS_DEFAULT_COMMIT_INTERVAL; 768 } else if (intarg > 300) { 769 btrfs_warn(info, "excessive commit interval %d", 770 intarg); 771 } 772 info->commit_interval = intarg; 773 break; 774 case Opt_rescue: 775 ret = parse_rescue_options(info, args[0].from); 776 if (ret < 0) { 777 btrfs_err(info, "unrecognized rescue value %s", 778 args[0].from); 779 goto out; 780 } 781 break; 782 #ifdef CONFIG_BTRFS_DEBUG 783 case Opt_fragment_all: 784 btrfs_info(info, "fragmenting all space"); 785 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 786 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 787 break; 788 case Opt_fragment_metadata: 789 btrfs_info(info, "fragmenting metadata"); 790 btrfs_set_opt(info->mount_opt, 791 FRAGMENT_METADATA); 792 break; 793 case Opt_fragment_data: 794 btrfs_info(info, "fragmenting data"); 795 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 796 break; 797 #endif 798 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 799 case Opt_ref_verify: 800 btrfs_info(info, "doing ref verification"); 801 btrfs_set_opt(info->mount_opt, REF_VERIFY); 802 break; 803 #endif 804 case Opt_err: 805 btrfs_err(info, "unrecognized mount option '%s'", p); 806 ret = -EINVAL; 807 goto out; 808 default: 809 break; 810 } 811 } 812 check: 813 /* We're read-only, don't have to check. */ 814 if (new_flags & SB_RDONLY) 815 goto out; 816 817 if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") || 818 check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") || 819 check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums")) 820 ret = -EINVAL; 821 out: 822 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 823 !btrfs_test_opt(info, FREE_SPACE_TREE) && 824 !btrfs_test_opt(info, CLEAR_CACHE)) { 825 btrfs_err(info, "cannot disable free space tree"); 826 ret = -EINVAL; 827 828 } 829 if (!ret) 830 ret = btrfs_check_mountopts_zoned(info); 831 if (!ret && !remounting) { 832 if (btrfs_test_opt(info, SPACE_CACHE)) 833 btrfs_info(info, "disk space caching is enabled"); 834 if (btrfs_test_opt(info, FREE_SPACE_TREE)) 835 btrfs_info(info, "using free space tree"); 836 } 837 return ret; 838 } 839 840 /* 841 * Parse mount options that are required early in the mount process. 842 * 843 * All other options will be parsed on much later in the mount process and 844 * only when we need to allocate a new super block. 845 */ 846 static int btrfs_parse_device_options(const char *options, fmode_t flags, 847 void *holder) 848 { 849 substring_t args[MAX_OPT_ARGS]; 850 char *device_name, *opts, *orig, *p; 851 struct btrfs_device *device = NULL; 852 int error = 0; 853 854 lockdep_assert_held(&uuid_mutex); 855 856 if (!options) 857 return 0; 858 859 /* 860 * strsep changes the string, duplicate it because btrfs_parse_options 861 * gets called later 862 */ 863 opts = kstrdup(options, GFP_KERNEL); 864 if (!opts) 865 return -ENOMEM; 866 orig = opts; 867 868 while ((p = strsep(&opts, ",")) != NULL) { 869 int token; 870 871 if (!*p) 872 continue; 873 874 token = match_token(p, tokens, args); 875 if (token == Opt_device) { 876 device_name = match_strdup(&args[0]); 877 if (!device_name) { 878 error = -ENOMEM; 879 goto out; 880 } 881 device = btrfs_scan_one_device(device_name, flags, 882 holder); 883 kfree(device_name); 884 if (IS_ERR(device)) { 885 error = PTR_ERR(device); 886 goto out; 887 } 888 } 889 } 890 891 out: 892 kfree(orig); 893 return error; 894 } 895 896 /* 897 * Parse mount options that are related to subvolume id 898 * 899 * The value is later passed to mount_subvol() 900 */ 901 static int btrfs_parse_subvol_options(const char *options, char **subvol_name, 902 u64 *subvol_objectid) 903 { 904 substring_t args[MAX_OPT_ARGS]; 905 char *opts, *orig, *p; 906 int error = 0; 907 u64 subvolid; 908 909 if (!options) 910 return 0; 911 912 /* 913 * strsep changes the string, duplicate it because 914 * btrfs_parse_device_options gets called later 915 */ 916 opts = kstrdup(options, GFP_KERNEL); 917 if (!opts) 918 return -ENOMEM; 919 orig = opts; 920 921 while ((p = strsep(&opts, ",")) != NULL) { 922 int token; 923 if (!*p) 924 continue; 925 926 token = match_token(p, tokens, args); 927 switch (token) { 928 case Opt_subvol: 929 kfree(*subvol_name); 930 *subvol_name = match_strdup(&args[0]); 931 if (!*subvol_name) { 932 error = -ENOMEM; 933 goto out; 934 } 935 break; 936 case Opt_subvolid: 937 error = match_u64(&args[0], &subvolid); 938 if (error) 939 goto out; 940 941 /* we want the original fs_tree */ 942 if (subvolid == 0) 943 subvolid = BTRFS_FS_TREE_OBJECTID; 944 945 *subvol_objectid = subvolid; 946 break; 947 default: 948 break; 949 } 950 } 951 952 out: 953 kfree(orig); 954 return error; 955 } 956 957 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 958 u64 subvol_objectid) 959 { 960 struct btrfs_root *root = fs_info->tree_root; 961 struct btrfs_root *fs_root = NULL; 962 struct btrfs_root_ref *root_ref; 963 struct btrfs_inode_ref *inode_ref; 964 struct btrfs_key key; 965 struct btrfs_path *path = NULL; 966 char *name = NULL, *ptr; 967 u64 dirid; 968 int len; 969 int ret; 970 971 path = btrfs_alloc_path(); 972 if (!path) { 973 ret = -ENOMEM; 974 goto err; 975 } 976 977 name = kmalloc(PATH_MAX, GFP_KERNEL); 978 if (!name) { 979 ret = -ENOMEM; 980 goto err; 981 } 982 ptr = name + PATH_MAX - 1; 983 ptr[0] = '\0'; 984 985 /* 986 * Walk up the subvolume trees in the tree of tree roots by root 987 * backrefs until we hit the top-level subvolume. 988 */ 989 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 990 key.objectid = subvol_objectid; 991 key.type = BTRFS_ROOT_BACKREF_KEY; 992 key.offset = (u64)-1; 993 994 ret = btrfs_search_backwards(root, &key, path); 995 if (ret < 0) { 996 goto err; 997 } else if (ret > 0) { 998 ret = -ENOENT; 999 goto err; 1000 } 1001 1002 subvol_objectid = key.offset; 1003 1004 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 1005 struct btrfs_root_ref); 1006 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 1007 ptr -= len + 1; 1008 if (ptr < name) { 1009 ret = -ENAMETOOLONG; 1010 goto err; 1011 } 1012 read_extent_buffer(path->nodes[0], ptr + 1, 1013 (unsigned long)(root_ref + 1), len); 1014 ptr[0] = '/'; 1015 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 1016 btrfs_release_path(path); 1017 1018 fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true); 1019 if (IS_ERR(fs_root)) { 1020 ret = PTR_ERR(fs_root); 1021 fs_root = NULL; 1022 goto err; 1023 } 1024 1025 /* 1026 * Walk up the filesystem tree by inode refs until we hit the 1027 * root directory. 1028 */ 1029 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1030 key.objectid = dirid; 1031 key.type = BTRFS_INODE_REF_KEY; 1032 key.offset = (u64)-1; 1033 1034 ret = btrfs_search_backwards(fs_root, &key, path); 1035 if (ret < 0) { 1036 goto err; 1037 } else if (ret > 0) { 1038 ret = -ENOENT; 1039 goto err; 1040 } 1041 1042 dirid = key.offset; 1043 1044 inode_ref = btrfs_item_ptr(path->nodes[0], 1045 path->slots[0], 1046 struct btrfs_inode_ref); 1047 len = btrfs_inode_ref_name_len(path->nodes[0], 1048 inode_ref); 1049 ptr -= len + 1; 1050 if (ptr < name) { 1051 ret = -ENAMETOOLONG; 1052 goto err; 1053 } 1054 read_extent_buffer(path->nodes[0], ptr + 1, 1055 (unsigned long)(inode_ref + 1), len); 1056 ptr[0] = '/'; 1057 btrfs_release_path(path); 1058 } 1059 btrfs_put_root(fs_root); 1060 fs_root = NULL; 1061 } 1062 1063 btrfs_free_path(path); 1064 if (ptr == name + PATH_MAX - 1) { 1065 name[0] = '/'; 1066 name[1] = '\0'; 1067 } else { 1068 memmove(name, ptr, name + PATH_MAX - ptr); 1069 } 1070 return name; 1071 1072 err: 1073 btrfs_put_root(fs_root); 1074 btrfs_free_path(path); 1075 kfree(name); 1076 return ERR_PTR(ret); 1077 } 1078 1079 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1080 { 1081 struct btrfs_root *root = fs_info->tree_root; 1082 struct btrfs_dir_item *di; 1083 struct btrfs_path *path; 1084 struct btrfs_key location; 1085 struct fscrypt_str name = FSTR_INIT("default", 7); 1086 u64 dir_id; 1087 1088 path = btrfs_alloc_path(); 1089 if (!path) 1090 return -ENOMEM; 1091 1092 /* 1093 * Find the "default" dir item which points to the root item that we 1094 * will mount by default if we haven't been given a specific subvolume 1095 * to mount. 1096 */ 1097 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1098 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0); 1099 if (IS_ERR(di)) { 1100 btrfs_free_path(path); 1101 return PTR_ERR(di); 1102 } 1103 if (!di) { 1104 /* 1105 * Ok the default dir item isn't there. This is weird since 1106 * it's always been there, but don't freak out, just try and 1107 * mount the top-level subvolume. 1108 */ 1109 btrfs_free_path(path); 1110 *objectid = BTRFS_FS_TREE_OBJECTID; 1111 return 0; 1112 } 1113 1114 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1115 btrfs_free_path(path); 1116 *objectid = location.objectid; 1117 return 0; 1118 } 1119 1120 static int btrfs_fill_super(struct super_block *sb, 1121 struct btrfs_fs_devices *fs_devices, 1122 void *data) 1123 { 1124 struct inode *inode; 1125 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1126 int err; 1127 1128 sb->s_maxbytes = MAX_LFS_FILESIZE; 1129 sb->s_magic = BTRFS_SUPER_MAGIC; 1130 sb->s_op = &btrfs_super_ops; 1131 sb->s_d_op = &btrfs_dentry_operations; 1132 sb->s_export_op = &btrfs_export_ops; 1133 #ifdef CONFIG_FS_VERITY 1134 sb->s_vop = &btrfs_verityops; 1135 #endif 1136 sb->s_xattr = btrfs_xattr_handlers; 1137 sb->s_time_gran = 1; 1138 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1139 sb->s_flags |= SB_POSIXACL; 1140 #endif 1141 sb->s_flags |= SB_I_VERSION; 1142 sb->s_iflags |= SB_I_CGROUPWB; 1143 1144 err = super_setup_bdi(sb); 1145 if (err) { 1146 btrfs_err(fs_info, "super_setup_bdi failed"); 1147 return err; 1148 } 1149 1150 err = open_ctree(sb, fs_devices, (char *)data); 1151 if (err) { 1152 btrfs_err(fs_info, "open_ctree failed"); 1153 return err; 1154 } 1155 1156 inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root); 1157 if (IS_ERR(inode)) { 1158 err = PTR_ERR(inode); 1159 goto fail_close; 1160 } 1161 1162 sb->s_root = d_make_root(inode); 1163 if (!sb->s_root) { 1164 err = -ENOMEM; 1165 goto fail_close; 1166 } 1167 1168 sb->s_flags |= SB_ACTIVE; 1169 return 0; 1170 1171 fail_close: 1172 close_ctree(fs_info); 1173 return err; 1174 } 1175 1176 int btrfs_sync_fs(struct super_block *sb, int wait) 1177 { 1178 struct btrfs_trans_handle *trans; 1179 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1180 struct btrfs_root *root = fs_info->tree_root; 1181 1182 trace_btrfs_sync_fs(fs_info, wait); 1183 1184 if (!wait) { 1185 filemap_flush(fs_info->btree_inode->i_mapping); 1186 return 0; 1187 } 1188 1189 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1190 1191 trans = btrfs_attach_transaction_barrier(root); 1192 if (IS_ERR(trans)) { 1193 /* no transaction, don't bother */ 1194 if (PTR_ERR(trans) == -ENOENT) { 1195 /* 1196 * Exit unless we have some pending changes 1197 * that need to go through commit 1198 */ 1199 if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT, 1200 &fs_info->flags)) 1201 return 0; 1202 /* 1203 * A non-blocking test if the fs is frozen. We must not 1204 * start a new transaction here otherwise a deadlock 1205 * happens. The pending operations are delayed to the 1206 * next commit after thawing. 1207 */ 1208 if (sb_start_write_trylock(sb)) 1209 sb_end_write(sb); 1210 else 1211 return 0; 1212 trans = btrfs_start_transaction(root, 0); 1213 } 1214 if (IS_ERR(trans)) 1215 return PTR_ERR(trans); 1216 } 1217 return btrfs_commit_transaction(trans); 1218 } 1219 1220 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed) 1221 { 1222 seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s); 1223 *printed = true; 1224 } 1225 1226 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1227 { 1228 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1229 const char *compress_type; 1230 const char *subvol_name; 1231 bool printed = false; 1232 1233 if (btrfs_test_opt(info, DEGRADED)) 1234 seq_puts(seq, ",degraded"); 1235 if (btrfs_test_opt(info, NODATASUM)) 1236 seq_puts(seq, ",nodatasum"); 1237 if (btrfs_test_opt(info, NODATACOW)) 1238 seq_puts(seq, ",nodatacow"); 1239 if (btrfs_test_opt(info, NOBARRIER)) 1240 seq_puts(seq, ",nobarrier"); 1241 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1242 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1243 if (info->thread_pool_size != min_t(unsigned long, 1244 num_online_cpus() + 2, 8)) 1245 seq_printf(seq, ",thread_pool=%u", info->thread_pool_size); 1246 if (btrfs_test_opt(info, COMPRESS)) { 1247 compress_type = btrfs_compress_type2str(info->compress_type); 1248 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1249 seq_printf(seq, ",compress-force=%s", compress_type); 1250 else 1251 seq_printf(seq, ",compress=%s", compress_type); 1252 if (info->compress_level) 1253 seq_printf(seq, ":%d", info->compress_level); 1254 } 1255 if (btrfs_test_opt(info, NOSSD)) 1256 seq_puts(seq, ",nossd"); 1257 if (btrfs_test_opt(info, SSD_SPREAD)) 1258 seq_puts(seq, ",ssd_spread"); 1259 else if (btrfs_test_opt(info, SSD)) 1260 seq_puts(seq, ",ssd"); 1261 if (btrfs_test_opt(info, NOTREELOG)) 1262 seq_puts(seq, ",notreelog"); 1263 if (btrfs_test_opt(info, NOLOGREPLAY)) 1264 print_rescue_option(seq, "nologreplay", &printed); 1265 if (btrfs_test_opt(info, USEBACKUPROOT)) 1266 print_rescue_option(seq, "usebackuproot", &printed); 1267 if (btrfs_test_opt(info, IGNOREBADROOTS)) 1268 print_rescue_option(seq, "ignorebadroots", &printed); 1269 if (btrfs_test_opt(info, IGNOREDATACSUMS)) 1270 print_rescue_option(seq, "ignoredatacsums", &printed); 1271 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1272 seq_puts(seq, ",flushoncommit"); 1273 if (btrfs_test_opt(info, DISCARD_SYNC)) 1274 seq_puts(seq, ",discard"); 1275 if (btrfs_test_opt(info, DISCARD_ASYNC)) 1276 seq_puts(seq, ",discard=async"); 1277 if (!(info->sb->s_flags & SB_POSIXACL)) 1278 seq_puts(seq, ",noacl"); 1279 if (btrfs_free_space_cache_v1_active(info)) 1280 seq_puts(seq, ",space_cache"); 1281 else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 1282 seq_puts(seq, ",space_cache=v2"); 1283 else 1284 seq_puts(seq, ",nospace_cache"); 1285 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1286 seq_puts(seq, ",rescan_uuid_tree"); 1287 if (btrfs_test_opt(info, CLEAR_CACHE)) 1288 seq_puts(seq, ",clear_cache"); 1289 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1290 seq_puts(seq, ",user_subvol_rm_allowed"); 1291 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1292 seq_puts(seq, ",enospc_debug"); 1293 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1294 seq_puts(seq, ",autodefrag"); 1295 if (btrfs_test_opt(info, SKIP_BALANCE)) 1296 seq_puts(seq, ",skip_balance"); 1297 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1298 if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA)) 1299 seq_puts(seq, ",check_int_data"); 1300 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1301 seq_puts(seq, ",check_int"); 1302 if (info->check_integrity_print_mask) 1303 seq_printf(seq, ",check_int_print_mask=%d", 1304 info->check_integrity_print_mask); 1305 #endif 1306 if (info->metadata_ratio) 1307 seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio); 1308 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1309 seq_puts(seq, ",fatal_errors=panic"); 1310 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1311 seq_printf(seq, ",commit=%u", info->commit_interval); 1312 #ifdef CONFIG_BTRFS_DEBUG 1313 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1314 seq_puts(seq, ",fragment=data"); 1315 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1316 seq_puts(seq, ",fragment=metadata"); 1317 #endif 1318 if (btrfs_test_opt(info, REF_VERIFY)) 1319 seq_puts(seq, ",ref_verify"); 1320 seq_printf(seq, ",subvolid=%llu", 1321 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1322 subvol_name = btrfs_get_subvol_name_from_objectid(info, 1323 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1324 if (!IS_ERR(subvol_name)) { 1325 seq_puts(seq, ",subvol="); 1326 seq_escape(seq, subvol_name, " \t\n\\"); 1327 kfree(subvol_name); 1328 } 1329 return 0; 1330 } 1331 1332 static int btrfs_test_super(struct super_block *s, void *data) 1333 { 1334 struct btrfs_fs_info *p = data; 1335 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1336 1337 return fs_info->fs_devices == p->fs_devices; 1338 } 1339 1340 static int btrfs_set_super(struct super_block *s, void *data) 1341 { 1342 int err = set_anon_super(s, data); 1343 if (!err) 1344 s->s_fs_info = data; 1345 return err; 1346 } 1347 1348 /* 1349 * subvolumes are identified by ino 256 1350 */ 1351 static inline int is_subvolume_inode(struct inode *inode) 1352 { 1353 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1354 return 1; 1355 return 0; 1356 } 1357 1358 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1359 struct vfsmount *mnt) 1360 { 1361 struct dentry *root; 1362 int ret; 1363 1364 if (!subvol_name) { 1365 if (!subvol_objectid) { 1366 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1367 &subvol_objectid); 1368 if (ret) { 1369 root = ERR_PTR(ret); 1370 goto out; 1371 } 1372 } 1373 subvol_name = btrfs_get_subvol_name_from_objectid( 1374 btrfs_sb(mnt->mnt_sb), subvol_objectid); 1375 if (IS_ERR(subvol_name)) { 1376 root = ERR_CAST(subvol_name); 1377 subvol_name = NULL; 1378 goto out; 1379 } 1380 1381 } 1382 1383 root = mount_subtree(mnt, subvol_name); 1384 /* mount_subtree() drops our reference on the vfsmount. */ 1385 mnt = NULL; 1386 1387 if (!IS_ERR(root)) { 1388 struct super_block *s = root->d_sb; 1389 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1390 struct inode *root_inode = d_inode(root); 1391 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1392 1393 ret = 0; 1394 if (!is_subvolume_inode(root_inode)) { 1395 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1396 subvol_name); 1397 ret = -EINVAL; 1398 } 1399 if (subvol_objectid && root_objectid != subvol_objectid) { 1400 /* 1401 * This will also catch a race condition where a 1402 * subvolume which was passed by ID is renamed and 1403 * another subvolume is renamed over the old location. 1404 */ 1405 btrfs_err(fs_info, 1406 "subvol '%s' does not match subvolid %llu", 1407 subvol_name, subvol_objectid); 1408 ret = -EINVAL; 1409 } 1410 if (ret) { 1411 dput(root); 1412 root = ERR_PTR(ret); 1413 deactivate_locked_super(s); 1414 } 1415 } 1416 1417 out: 1418 mntput(mnt); 1419 kfree(subvol_name); 1420 return root; 1421 } 1422 1423 /* 1424 * Find a superblock for the given device / mount point. 1425 * 1426 * Note: This is based on mount_bdev from fs/super.c with a few additions 1427 * for multiple device setup. Make sure to keep it in sync. 1428 */ 1429 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type, 1430 int flags, const char *device_name, void *data) 1431 { 1432 struct block_device *bdev = NULL; 1433 struct super_block *s; 1434 struct btrfs_device *device = NULL; 1435 struct btrfs_fs_devices *fs_devices = NULL; 1436 struct btrfs_fs_info *fs_info = NULL; 1437 void *new_sec_opts = NULL; 1438 fmode_t mode = FMODE_READ; 1439 int error = 0; 1440 1441 if (!(flags & SB_RDONLY)) 1442 mode |= FMODE_WRITE; 1443 1444 if (data) { 1445 error = security_sb_eat_lsm_opts(data, &new_sec_opts); 1446 if (error) 1447 return ERR_PTR(error); 1448 } 1449 1450 /* 1451 * Setup a dummy root and fs_info for test/set super. This is because 1452 * we don't actually fill this stuff out until open_ctree, but we need 1453 * then open_ctree will properly initialize the file system specific 1454 * settings later. btrfs_init_fs_info initializes the static elements 1455 * of the fs_info (locks and such) to make cleanup easier if we find a 1456 * superblock with our given fs_devices later on at sget() time. 1457 */ 1458 fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL); 1459 if (!fs_info) { 1460 error = -ENOMEM; 1461 goto error_sec_opts; 1462 } 1463 btrfs_init_fs_info(fs_info); 1464 1465 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1466 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL); 1467 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1468 error = -ENOMEM; 1469 goto error_fs_info; 1470 } 1471 1472 mutex_lock(&uuid_mutex); 1473 error = btrfs_parse_device_options(data, mode, fs_type); 1474 if (error) { 1475 mutex_unlock(&uuid_mutex); 1476 goto error_fs_info; 1477 } 1478 1479 device = btrfs_scan_one_device(device_name, mode, fs_type); 1480 if (IS_ERR(device)) { 1481 mutex_unlock(&uuid_mutex); 1482 error = PTR_ERR(device); 1483 goto error_fs_info; 1484 } 1485 1486 fs_devices = device->fs_devices; 1487 fs_info->fs_devices = fs_devices; 1488 1489 error = btrfs_open_devices(fs_devices, mode, fs_type); 1490 mutex_unlock(&uuid_mutex); 1491 if (error) 1492 goto error_fs_info; 1493 1494 if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) { 1495 error = -EACCES; 1496 goto error_close_devices; 1497 } 1498 1499 bdev = fs_devices->latest_dev->bdev; 1500 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC, 1501 fs_info); 1502 if (IS_ERR(s)) { 1503 error = PTR_ERR(s); 1504 goto error_close_devices; 1505 } 1506 1507 if (s->s_root) { 1508 btrfs_close_devices(fs_devices); 1509 btrfs_free_fs_info(fs_info); 1510 if ((flags ^ s->s_flags) & SB_RDONLY) 1511 error = -EBUSY; 1512 } else { 1513 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1514 shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name, 1515 s->s_id); 1516 btrfs_sb(s)->bdev_holder = fs_type; 1517 if (!strstr(crc32c_impl(), "generic")) 1518 set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags); 1519 error = btrfs_fill_super(s, fs_devices, data); 1520 } 1521 if (!error) 1522 error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL); 1523 security_free_mnt_opts(&new_sec_opts); 1524 if (error) { 1525 deactivate_locked_super(s); 1526 return ERR_PTR(error); 1527 } 1528 1529 return dget(s->s_root); 1530 1531 error_close_devices: 1532 btrfs_close_devices(fs_devices); 1533 error_fs_info: 1534 btrfs_free_fs_info(fs_info); 1535 error_sec_opts: 1536 security_free_mnt_opts(&new_sec_opts); 1537 return ERR_PTR(error); 1538 } 1539 1540 /* 1541 * Mount function which is called by VFS layer. 1542 * 1543 * In order to allow mounting a subvolume directly, btrfs uses mount_subtree() 1544 * which needs vfsmount* of device's root (/). This means device's root has to 1545 * be mounted internally in any case. 1546 * 1547 * Operation flow: 1548 * 1. Parse subvol id related options for later use in mount_subvol(). 1549 * 1550 * 2. Mount device's root (/) by calling vfs_kern_mount(). 1551 * 1552 * NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the 1553 * first place. In order to avoid calling btrfs_mount() again, we use 1554 * different file_system_type which is not registered to VFS by 1555 * register_filesystem() (btrfs_root_fs_type). As a result, 1556 * btrfs_mount_root() is called. The return value will be used by 1557 * mount_subtree() in mount_subvol(). 1558 * 1559 * 3. Call mount_subvol() to get the dentry of subvolume. Since there is 1560 * "btrfs subvolume set-default", mount_subvol() is called always. 1561 */ 1562 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1563 const char *device_name, void *data) 1564 { 1565 struct vfsmount *mnt_root; 1566 struct dentry *root; 1567 char *subvol_name = NULL; 1568 u64 subvol_objectid = 0; 1569 int error = 0; 1570 1571 error = btrfs_parse_subvol_options(data, &subvol_name, 1572 &subvol_objectid); 1573 if (error) { 1574 kfree(subvol_name); 1575 return ERR_PTR(error); 1576 } 1577 1578 /* mount device's root (/) */ 1579 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data); 1580 if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) { 1581 if (flags & SB_RDONLY) { 1582 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1583 flags & ~SB_RDONLY, device_name, data); 1584 } else { 1585 mnt_root = vfs_kern_mount(&btrfs_root_fs_type, 1586 flags | SB_RDONLY, device_name, data); 1587 if (IS_ERR(mnt_root)) { 1588 root = ERR_CAST(mnt_root); 1589 kfree(subvol_name); 1590 goto out; 1591 } 1592 1593 down_write(&mnt_root->mnt_sb->s_umount); 1594 error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL); 1595 up_write(&mnt_root->mnt_sb->s_umount); 1596 if (error < 0) { 1597 root = ERR_PTR(error); 1598 mntput(mnt_root); 1599 kfree(subvol_name); 1600 goto out; 1601 } 1602 } 1603 } 1604 if (IS_ERR(mnt_root)) { 1605 root = ERR_CAST(mnt_root); 1606 kfree(subvol_name); 1607 goto out; 1608 } 1609 1610 /* mount_subvol() will free subvol_name and mnt_root */ 1611 root = mount_subvol(subvol_name, subvol_objectid, mnt_root); 1612 1613 out: 1614 return root; 1615 } 1616 1617 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1618 u32 new_pool_size, u32 old_pool_size) 1619 { 1620 if (new_pool_size == old_pool_size) 1621 return; 1622 1623 fs_info->thread_pool_size = new_pool_size; 1624 1625 btrfs_info(fs_info, "resize thread pool %d -> %d", 1626 old_pool_size, new_pool_size); 1627 1628 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1629 btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size); 1630 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1631 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1632 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1633 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1634 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1635 } 1636 1637 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1638 unsigned long old_opts, int flags) 1639 { 1640 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1641 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1642 (flags & SB_RDONLY))) { 1643 /* wait for any defraggers to finish */ 1644 wait_event(fs_info->transaction_wait, 1645 (atomic_read(&fs_info->defrag_running) == 0)); 1646 if (flags & SB_RDONLY) 1647 sync_filesystem(fs_info->sb); 1648 } 1649 } 1650 1651 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1652 unsigned long old_opts) 1653 { 1654 const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE); 1655 1656 /* 1657 * We need to cleanup all defragable inodes if the autodefragment is 1658 * close or the filesystem is read only. 1659 */ 1660 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1661 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) { 1662 btrfs_cleanup_defrag_inodes(fs_info); 1663 } 1664 1665 /* If we toggled discard async */ 1666 if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1667 btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1668 btrfs_discard_resume(fs_info); 1669 else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) && 1670 !btrfs_test_opt(fs_info, DISCARD_ASYNC)) 1671 btrfs_discard_cleanup(fs_info); 1672 1673 /* If we toggled space cache */ 1674 if (cache_opt != btrfs_free_space_cache_v1_active(fs_info)) 1675 btrfs_set_free_space_cache_v1_active(fs_info, cache_opt); 1676 } 1677 1678 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1679 { 1680 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1681 unsigned old_flags = sb->s_flags; 1682 unsigned long old_opts = fs_info->mount_opt; 1683 unsigned long old_compress_type = fs_info->compress_type; 1684 u64 old_max_inline = fs_info->max_inline; 1685 u32 old_thread_pool_size = fs_info->thread_pool_size; 1686 u32 old_metadata_ratio = fs_info->metadata_ratio; 1687 int ret; 1688 1689 sync_filesystem(sb); 1690 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1691 1692 if (data) { 1693 void *new_sec_opts = NULL; 1694 1695 ret = security_sb_eat_lsm_opts(data, &new_sec_opts); 1696 if (!ret) 1697 ret = security_sb_remount(sb, new_sec_opts); 1698 security_free_mnt_opts(&new_sec_opts); 1699 if (ret) 1700 goto restore; 1701 } 1702 1703 ret = btrfs_parse_options(fs_info, data, *flags); 1704 if (ret) 1705 goto restore; 1706 1707 ret = btrfs_check_features(fs_info, sb); 1708 if (ret < 0) 1709 goto restore; 1710 1711 btrfs_remount_begin(fs_info, old_opts, *flags); 1712 btrfs_resize_thread_pool(fs_info, 1713 fs_info->thread_pool_size, old_thread_pool_size); 1714 1715 if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) != 1716 (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) && 1717 (!sb_rdonly(sb) || (*flags & SB_RDONLY))) { 1718 btrfs_warn(fs_info, 1719 "remount supports changing free space tree only from ro to rw"); 1720 /* Make sure free space cache options match the state on disk */ 1721 if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) { 1722 btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1723 btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE); 1724 } 1725 if (btrfs_free_space_cache_v1_active(fs_info)) { 1726 btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE); 1727 btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE); 1728 } 1729 } 1730 1731 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 1732 goto out; 1733 1734 if (*flags & SB_RDONLY) { 1735 /* 1736 * this also happens on 'umount -rf' or on shutdown, when 1737 * the filesystem is busy. 1738 */ 1739 cancel_work_sync(&fs_info->async_reclaim_work); 1740 cancel_work_sync(&fs_info->async_data_reclaim_work); 1741 1742 btrfs_discard_cleanup(fs_info); 1743 1744 /* wait for the uuid_scan task to finish */ 1745 down(&fs_info->uuid_tree_rescan_sem); 1746 /* avoid complains from lockdep et al. */ 1747 up(&fs_info->uuid_tree_rescan_sem); 1748 1749 btrfs_set_sb_rdonly(sb); 1750 1751 /* 1752 * Setting SB_RDONLY will put the cleaner thread to 1753 * sleep at the next loop if it's already active. 1754 * If it's already asleep, we'll leave unused block 1755 * groups on disk until we're mounted read-write again 1756 * unless we clean them up here. 1757 */ 1758 btrfs_delete_unused_bgs(fs_info); 1759 1760 /* 1761 * The cleaner task could be already running before we set the 1762 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock). 1763 * We must make sure that after we finish the remount, i.e. after 1764 * we call btrfs_commit_super(), the cleaner can no longer start 1765 * a transaction - either because it was dropping a dead root, 1766 * running delayed iputs or deleting an unused block group (the 1767 * cleaner picked a block group from the list of unused block 1768 * groups before we were able to in the previous call to 1769 * btrfs_delete_unused_bgs()). 1770 */ 1771 wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING, 1772 TASK_UNINTERRUPTIBLE); 1773 1774 /* 1775 * We've set the superblock to RO mode, so we might have made 1776 * the cleaner task sleep without running all pending delayed 1777 * iputs. Go through all the delayed iputs here, so that if an 1778 * unmount happens without remounting RW we don't end up at 1779 * finishing close_ctree() with a non-empty list of delayed 1780 * iputs. 1781 */ 1782 btrfs_run_delayed_iputs(fs_info); 1783 1784 btrfs_dev_replace_suspend_for_unmount(fs_info); 1785 btrfs_scrub_cancel(fs_info); 1786 btrfs_pause_balance(fs_info); 1787 1788 /* 1789 * Pause the qgroup rescan worker if it is running. We don't want 1790 * it to be still running after we are in RO mode, as after that, 1791 * by the time we unmount, it might have left a transaction open, 1792 * so we would leak the transaction and/or crash. 1793 */ 1794 btrfs_qgroup_wait_for_completion(fs_info, false); 1795 1796 ret = btrfs_commit_super(fs_info); 1797 if (ret) 1798 goto restore; 1799 } else { 1800 if (BTRFS_FS_ERROR(fs_info)) { 1801 btrfs_err(fs_info, 1802 "Remounting read-write after error is not allowed"); 1803 ret = -EINVAL; 1804 goto restore; 1805 } 1806 if (fs_info->fs_devices->rw_devices == 0) { 1807 ret = -EACCES; 1808 goto restore; 1809 } 1810 1811 if (!btrfs_check_rw_degradable(fs_info, NULL)) { 1812 btrfs_warn(fs_info, 1813 "too many missing devices, writable remount is not allowed"); 1814 ret = -EACCES; 1815 goto restore; 1816 } 1817 1818 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1819 btrfs_warn(fs_info, 1820 "mount required to replay tree-log, cannot remount read-write"); 1821 ret = -EINVAL; 1822 goto restore; 1823 } 1824 1825 /* 1826 * NOTE: when remounting with a change that does writes, don't 1827 * put it anywhere above this point, as we are not sure to be 1828 * safe to write until we pass the above checks. 1829 */ 1830 ret = btrfs_start_pre_rw_mount(fs_info); 1831 if (ret) 1832 goto restore; 1833 1834 btrfs_clear_sb_rdonly(sb); 1835 1836 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1837 } 1838 out: 1839 /* 1840 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS, 1841 * since the absence of the flag means it can be toggled off by remount. 1842 */ 1843 *flags |= SB_I_VERSION; 1844 1845 wake_up_process(fs_info->transaction_kthread); 1846 btrfs_remount_cleanup(fs_info, old_opts); 1847 btrfs_clear_oneshot_options(fs_info); 1848 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1849 1850 return 0; 1851 1852 restore: 1853 /* We've hit an error - don't reset SB_RDONLY */ 1854 if (sb_rdonly(sb)) 1855 old_flags |= SB_RDONLY; 1856 if (!(old_flags & SB_RDONLY)) 1857 clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state); 1858 sb->s_flags = old_flags; 1859 fs_info->mount_opt = old_opts; 1860 fs_info->compress_type = old_compress_type; 1861 fs_info->max_inline = old_max_inline; 1862 btrfs_resize_thread_pool(fs_info, 1863 old_thread_pool_size, fs_info->thread_pool_size); 1864 fs_info->metadata_ratio = old_metadata_ratio; 1865 btrfs_remount_cleanup(fs_info, old_opts); 1866 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1867 1868 return ret; 1869 } 1870 1871 /* Used to sort the devices by max_avail(descending sort) */ 1872 static int btrfs_cmp_device_free_bytes(const void *a, const void *b) 1873 { 1874 const struct btrfs_device_info *dev_info1 = a; 1875 const struct btrfs_device_info *dev_info2 = b; 1876 1877 if (dev_info1->max_avail > dev_info2->max_avail) 1878 return -1; 1879 else if (dev_info1->max_avail < dev_info2->max_avail) 1880 return 1; 1881 return 0; 1882 } 1883 1884 /* 1885 * sort the devices by max_avail, in which max free extent size of each device 1886 * is stored.(Descending Sort) 1887 */ 1888 static inline void btrfs_descending_sort_devices( 1889 struct btrfs_device_info *devices, 1890 size_t nr_devices) 1891 { 1892 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1893 btrfs_cmp_device_free_bytes, NULL); 1894 } 1895 1896 /* 1897 * The helper to calc the free space on the devices that can be used to store 1898 * file data. 1899 */ 1900 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1901 u64 *free_bytes) 1902 { 1903 struct btrfs_device_info *devices_info; 1904 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1905 struct btrfs_device *device; 1906 u64 type; 1907 u64 avail_space; 1908 u64 min_stripe_size; 1909 int num_stripes = 1; 1910 int i = 0, nr_devices; 1911 const struct btrfs_raid_attr *rattr; 1912 1913 /* 1914 * We aren't under the device list lock, so this is racy-ish, but good 1915 * enough for our purposes. 1916 */ 1917 nr_devices = fs_info->fs_devices->open_devices; 1918 if (!nr_devices) { 1919 smp_mb(); 1920 nr_devices = fs_info->fs_devices->open_devices; 1921 ASSERT(nr_devices); 1922 if (!nr_devices) { 1923 *free_bytes = 0; 1924 return 0; 1925 } 1926 } 1927 1928 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1929 GFP_KERNEL); 1930 if (!devices_info) 1931 return -ENOMEM; 1932 1933 /* calc min stripe number for data space allocation */ 1934 type = btrfs_data_alloc_profile(fs_info); 1935 rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)]; 1936 1937 if (type & BTRFS_BLOCK_GROUP_RAID0) 1938 num_stripes = nr_devices; 1939 else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK) 1940 num_stripes = rattr->ncopies; 1941 else if (type & BTRFS_BLOCK_GROUP_RAID10) 1942 num_stripes = 4; 1943 1944 /* Adjust for more than 1 stripe per device */ 1945 min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN; 1946 1947 rcu_read_lock(); 1948 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1949 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, 1950 &device->dev_state) || 1951 !device->bdev || 1952 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) 1953 continue; 1954 1955 if (i >= nr_devices) 1956 break; 1957 1958 avail_space = device->total_bytes - device->bytes_used; 1959 1960 /* align with stripe_len */ 1961 avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN); 1962 1963 /* 1964 * Ensure we have at least min_stripe_size on top of the 1965 * reserved space on the device. 1966 */ 1967 if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size) 1968 continue; 1969 1970 avail_space -= BTRFS_DEVICE_RANGE_RESERVED; 1971 1972 devices_info[i].dev = device; 1973 devices_info[i].max_avail = avail_space; 1974 1975 i++; 1976 } 1977 rcu_read_unlock(); 1978 1979 nr_devices = i; 1980 1981 btrfs_descending_sort_devices(devices_info, nr_devices); 1982 1983 i = nr_devices - 1; 1984 avail_space = 0; 1985 while (nr_devices >= rattr->devs_min) { 1986 num_stripes = min(num_stripes, nr_devices); 1987 1988 if (devices_info[i].max_avail >= min_stripe_size) { 1989 int j; 1990 u64 alloc_size; 1991 1992 avail_space += devices_info[i].max_avail * num_stripes; 1993 alloc_size = devices_info[i].max_avail; 1994 for (j = i + 1 - num_stripes; j <= i; j++) 1995 devices_info[j].max_avail -= alloc_size; 1996 } 1997 i--; 1998 nr_devices--; 1999 } 2000 2001 kfree(devices_info); 2002 *free_bytes = avail_space; 2003 return 0; 2004 } 2005 2006 /* 2007 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2008 * 2009 * If there's a redundant raid level at DATA block groups, use the respective 2010 * multiplier to scale the sizes. 2011 * 2012 * Unused device space usage is based on simulating the chunk allocator 2013 * algorithm that respects the device sizes and order of allocations. This is 2014 * a close approximation of the actual use but there are other factors that may 2015 * change the result (like a new metadata chunk). 2016 * 2017 * If metadata is exhausted, f_bavail will be 0. 2018 */ 2019 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2020 { 2021 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2022 struct btrfs_super_block *disk_super = fs_info->super_copy; 2023 struct btrfs_space_info *found; 2024 u64 total_used = 0; 2025 u64 total_free_data = 0; 2026 u64 total_free_meta = 0; 2027 u32 bits = fs_info->sectorsize_bits; 2028 __be32 *fsid = (__be32 *)fs_info->fs_devices->fsid; 2029 unsigned factor = 1; 2030 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2031 int ret; 2032 u64 thresh = 0; 2033 int mixed = 0; 2034 2035 list_for_each_entry(found, &fs_info->space_info, list) { 2036 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2037 int i; 2038 2039 total_free_data += found->disk_total - found->disk_used; 2040 total_free_data -= 2041 btrfs_account_ro_block_groups_free_space(found); 2042 2043 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2044 if (!list_empty(&found->block_groups[i])) 2045 factor = btrfs_bg_type_to_factor( 2046 btrfs_raid_array[i].bg_flag); 2047 } 2048 } 2049 2050 /* 2051 * Metadata in mixed block goup profiles are accounted in data 2052 */ 2053 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2054 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2055 mixed = 1; 2056 else 2057 total_free_meta += found->disk_total - 2058 found->disk_used; 2059 } 2060 2061 total_used += found->disk_used; 2062 } 2063 2064 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2065 buf->f_blocks >>= bits; 2066 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2067 2068 /* Account global block reserve as used, it's in logical size already */ 2069 spin_lock(&block_rsv->lock); 2070 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2071 if (buf->f_bfree >= block_rsv->size >> bits) 2072 buf->f_bfree -= block_rsv->size >> bits; 2073 else 2074 buf->f_bfree = 0; 2075 spin_unlock(&block_rsv->lock); 2076 2077 buf->f_bavail = div_u64(total_free_data, factor); 2078 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2079 if (ret) 2080 return ret; 2081 buf->f_bavail += div_u64(total_free_data, factor); 2082 buf->f_bavail = buf->f_bavail >> bits; 2083 2084 /* 2085 * We calculate the remaining metadata space minus global reserve. If 2086 * this is (supposedly) smaller than zero, there's no space. But this 2087 * does not hold in practice, the exhausted state happens where's still 2088 * some positive delta. So we apply some guesswork and compare the 2089 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2090 * 2091 * We probably cannot calculate the exact threshold value because this 2092 * depends on the internal reservations requested by various 2093 * operations, so some operations that consume a few metadata will 2094 * succeed even if the Avail is zero. But this is better than the other 2095 * way around. 2096 */ 2097 thresh = SZ_4M; 2098 2099 /* 2100 * We only want to claim there's no available space if we can no longer 2101 * allocate chunks for our metadata profile and our global reserve will 2102 * not fit in the free metadata space. If we aren't ->full then we 2103 * still can allocate chunks and thus are fine using the currently 2104 * calculated f_bavail. 2105 */ 2106 if (!mixed && block_rsv->space_info->full && 2107 total_free_meta - thresh < block_rsv->size) 2108 buf->f_bavail = 0; 2109 2110 buf->f_type = BTRFS_SUPER_MAGIC; 2111 buf->f_bsize = dentry->d_sb->s_blocksize; 2112 buf->f_namelen = BTRFS_NAME_LEN; 2113 2114 /* We treat it as constant endianness (it doesn't matter _which_) 2115 because we want the fsid to come out the same whether mounted 2116 on a big-endian or little-endian host */ 2117 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2118 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2119 /* Mask in the root object ID too, to disambiguate subvols */ 2120 buf->f_fsid.val[0] ^= 2121 BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32; 2122 buf->f_fsid.val[1] ^= 2123 BTRFS_I(d_inode(dentry))->root->root_key.objectid; 2124 2125 return 0; 2126 } 2127 2128 static void btrfs_kill_super(struct super_block *sb) 2129 { 2130 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2131 kill_anon_super(sb); 2132 btrfs_free_fs_info(fs_info); 2133 } 2134 2135 static struct file_system_type btrfs_fs_type = { 2136 .owner = THIS_MODULE, 2137 .name = "btrfs", 2138 .mount = btrfs_mount, 2139 .kill_sb = btrfs_kill_super, 2140 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2141 }; 2142 2143 static struct file_system_type btrfs_root_fs_type = { 2144 .owner = THIS_MODULE, 2145 .name = "btrfs", 2146 .mount = btrfs_mount_root, 2147 .kill_sb = btrfs_kill_super, 2148 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP, 2149 }; 2150 2151 MODULE_ALIAS_FS("btrfs"); 2152 2153 static int btrfs_control_open(struct inode *inode, struct file *file) 2154 { 2155 /* 2156 * The control file's private_data is used to hold the 2157 * transaction when it is started and is used to keep 2158 * track of whether a transaction is already in progress. 2159 */ 2160 file->private_data = NULL; 2161 return 0; 2162 } 2163 2164 /* 2165 * Used by /dev/btrfs-control for devices ioctls. 2166 */ 2167 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2168 unsigned long arg) 2169 { 2170 struct btrfs_ioctl_vol_args *vol; 2171 struct btrfs_device *device = NULL; 2172 dev_t devt = 0; 2173 int ret = -ENOTTY; 2174 2175 if (!capable(CAP_SYS_ADMIN)) 2176 return -EPERM; 2177 2178 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2179 if (IS_ERR(vol)) 2180 return PTR_ERR(vol); 2181 vol->name[BTRFS_PATH_NAME_MAX] = '\0'; 2182 2183 switch (cmd) { 2184 case BTRFS_IOC_SCAN_DEV: 2185 mutex_lock(&uuid_mutex); 2186 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2187 &btrfs_root_fs_type); 2188 ret = PTR_ERR_OR_ZERO(device); 2189 mutex_unlock(&uuid_mutex); 2190 break; 2191 case BTRFS_IOC_FORGET_DEV: 2192 if (vol->name[0] != 0) { 2193 ret = lookup_bdev(vol->name, &devt); 2194 if (ret) 2195 break; 2196 } 2197 ret = btrfs_forget_devices(devt); 2198 break; 2199 case BTRFS_IOC_DEVICES_READY: 2200 mutex_lock(&uuid_mutex); 2201 device = btrfs_scan_one_device(vol->name, FMODE_READ, 2202 &btrfs_root_fs_type); 2203 if (IS_ERR(device)) { 2204 mutex_unlock(&uuid_mutex); 2205 ret = PTR_ERR(device); 2206 break; 2207 } 2208 ret = !(device->fs_devices->num_devices == 2209 device->fs_devices->total_devices); 2210 mutex_unlock(&uuid_mutex); 2211 break; 2212 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2213 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2214 break; 2215 } 2216 2217 kfree(vol); 2218 return ret; 2219 } 2220 2221 static int btrfs_freeze(struct super_block *sb) 2222 { 2223 struct btrfs_trans_handle *trans; 2224 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2225 struct btrfs_root *root = fs_info->tree_root; 2226 2227 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2228 /* 2229 * We don't need a barrier here, we'll wait for any transaction that 2230 * could be in progress on other threads (and do delayed iputs that 2231 * we want to avoid on a frozen filesystem), or do the commit 2232 * ourselves. 2233 */ 2234 trans = btrfs_attach_transaction_barrier(root); 2235 if (IS_ERR(trans)) { 2236 /* no transaction, don't bother */ 2237 if (PTR_ERR(trans) == -ENOENT) 2238 return 0; 2239 return PTR_ERR(trans); 2240 } 2241 return btrfs_commit_transaction(trans); 2242 } 2243 2244 static int check_dev_super(struct btrfs_device *dev) 2245 { 2246 struct btrfs_fs_info *fs_info = dev->fs_info; 2247 struct btrfs_super_block *sb; 2248 u16 csum_type; 2249 int ret = 0; 2250 2251 /* This should be called with fs still frozen. */ 2252 ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags)); 2253 2254 /* Missing dev, no need to check. */ 2255 if (!dev->bdev) 2256 return 0; 2257 2258 /* Only need to check the primary super block. */ 2259 sb = btrfs_read_dev_one_super(dev->bdev, 0, true); 2260 if (IS_ERR(sb)) 2261 return PTR_ERR(sb); 2262 2263 /* Verify the checksum. */ 2264 csum_type = btrfs_super_csum_type(sb); 2265 if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) { 2266 btrfs_err(fs_info, "csum type changed, has %u expect %u", 2267 csum_type, btrfs_super_csum_type(fs_info->super_copy)); 2268 ret = -EUCLEAN; 2269 goto out; 2270 } 2271 2272 if (btrfs_check_super_csum(fs_info, sb)) { 2273 btrfs_err(fs_info, "csum for on-disk super block no longer matches"); 2274 ret = -EUCLEAN; 2275 goto out; 2276 } 2277 2278 /* Btrfs_validate_super() includes fsid check against super->fsid. */ 2279 ret = btrfs_validate_super(fs_info, sb, 0); 2280 if (ret < 0) 2281 goto out; 2282 2283 if (btrfs_super_generation(sb) != fs_info->last_trans_committed) { 2284 btrfs_err(fs_info, "transid mismatch, has %llu expect %llu", 2285 btrfs_super_generation(sb), 2286 fs_info->last_trans_committed); 2287 ret = -EUCLEAN; 2288 goto out; 2289 } 2290 out: 2291 btrfs_release_disk_super(sb); 2292 return ret; 2293 } 2294 2295 static int btrfs_unfreeze(struct super_block *sb) 2296 { 2297 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2298 struct btrfs_device *device; 2299 int ret = 0; 2300 2301 /* 2302 * Make sure the fs is not changed by accident (like hibernation then 2303 * modified by other OS). 2304 * If we found anything wrong, we mark the fs error immediately. 2305 * 2306 * And since the fs is frozen, no one can modify the fs yet, thus 2307 * we don't need to hold device_list_mutex. 2308 */ 2309 list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) { 2310 ret = check_dev_super(device); 2311 if (ret < 0) { 2312 btrfs_handle_fs_error(fs_info, ret, 2313 "super block on devid %llu got modified unexpectedly", 2314 device->devid); 2315 break; 2316 } 2317 } 2318 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2319 2320 /* 2321 * We still return 0, to allow VFS layer to unfreeze the fs even the 2322 * above checks failed. Since the fs is either fine or read-only, we're 2323 * safe to continue, without causing further damage. 2324 */ 2325 return 0; 2326 } 2327 2328 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2329 { 2330 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2331 2332 /* 2333 * There should be always a valid pointer in latest_dev, it may be stale 2334 * for a short moment in case it's being deleted but still valid until 2335 * the end of RCU grace period. 2336 */ 2337 rcu_read_lock(); 2338 seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\"); 2339 rcu_read_unlock(); 2340 2341 return 0; 2342 } 2343 2344 static const struct super_operations btrfs_super_ops = { 2345 .drop_inode = btrfs_drop_inode, 2346 .evict_inode = btrfs_evict_inode, 2347 .put_super = btrfs_put_super, 2348 .sync_fs = btrfs_sync_fs, 2349 .show_options = btrfs_show_options, 2350 .show_devname = btrfs_show_devname, 2351 .alloc_inode = btrfs_alloc_inode, 2352 .destroy_inode = btrfs_destroy_inode, 2353 .free_inode = btrfs_free_inode, 2354 .statfs = btrfs_statfs, 2355 .remount_fs = btrfs_remount, 2356 .freeze_fs = btrfs_freeze, 2357 .unfreeze_fs = btrfs_unfreeze, 2358 }; 2359 2360 static const struct file_operations btrfs_ctl_fops = { 2361 .open = btrfs_control_open, 2362 .unlocked_ioctl = btrfs_control_ioctl, 2363 .compat_ioctl = compat_ptr_ioctl, 2364 .owner = THIS_MODULE, 2365 .llseek = noop_llseek, 2366 }; 2367 2368 static struct miscdevice btrfs_misc = { 2369 .minor = BTRFS_MINOR, 2370 .name = "btrfs-control", 2371 .fops = &btrfs_ctl_fops 2372 }; 2373 2374 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2375 MODULE_ALIAS("devname:btrfs-control"); 2376 2377 static int __init btrfs_interface_init(void) 2378 { 2379 return misc_register(&btrfs_misc); 2380 } 2381 2382 static __cold void btrfs_interface_exit(void) 2383 { 2384 misc_deregister(&btrfs_misc); 2385 } 2386 2387 static int __init btrfs_print_mod_info(void) 2388 { 2389 static const char options[] = "" 2390 #ifdef CONFIG_BTRFS_DEBUG 2391 ", debug=on" 2392 #endif 2393 #ifdef CONFIG_BTRFS_ASSERT 2394 ", assert=on" 2395 #endif 2396 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2397 ", integrity-checker=on" 2398 #endif 2399 #ifdef CONFIG_BTRFS_FS_REF_VERIFY 2400 ", ref-verify=on" 2401 #endif 2402 #ifdef CONFIG_BLK_DEV_ZONED 2403 ", zoned=yes" 2404 #else 2405 ", zoned=no" 2406 #endif 2407 #ifdef CONFIG_FS_VERITY 2408 ", fsverity=yes" 2409 #else 2410 ", fsverity=no" 2411 #endif 2412 ; 2413 pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options); 2414 return 0; 2415 } 2416 2417 static int register_btrfs(void) 2418 { 2419 return register_filesystem(&btrfs_fs_type); 2420 } 2421 2422 static void unregister_btrfs(void) 2423 { 2424 unregister_filesystem(&btrfs_fs_type); 2425 } 2426 2427 /* Helper structure for long init/exit functions. */ 2428 struct init_sequence { 2429 int (*init_func)(void); 2430 /* Can be NULL if the init_func doesn't need cleanup. */ 2431 void (*exit_func)(void); 2432 }; 2433 2434 static const struct init_sequence mod_init_seq[] = { 2435 { 2436 .init_func = btrfs_props_init, 2437 .exit_func = NULL, 2438 }, { 2439 .init_func = btrfs_init_sysfs, 2440 .exit_func = btrfs_exit_sysfs, 2441 }, { 2442 .init_func = btrfs_init_compress, 2443 .exit_func = btrfs_exit_compress, 2444 }, { 2445 .init_func = btrfs_init_cachep, 2446 .exit_func = btrfs_destroy_cachep, 2447 }, { 2448 .init_func = btrfs_transaction_init, 2449 .exit_func = btrfs_transaction_exit, 2450 }, { 2451 .init_func = btrfs_ctree_init, 2452 .exit_func = btrfs_ctree_exit, 2453 }, { 2454 .init_func = btrfs_free_space_init, 2455 .exit_func = btrfs_free_space_exit, 2456 }, { 2457 .init_func = extent_state_init_cachep, 2458 .exit_func = extent_state_free_cachep, 2459 }, { 2460 .init_func = extent_buffer_init_cachep, 2461 .exit_func = extent_buffer_free_cachep, 2462 }, { 2463 .init_func = btrfs_bioset_init, 2464 .exit_func = btrfs_bioset_exit, 2465 }, { 2466 .init_func = extent_map_init, 2467 .exit_func = extent_map_exit, 2468 }, { 2469 .init_func = ordered_data_init, 2470 .exit_func = ordered_data_exit, 2471 }, { 2472 .init_func = btrfs_delayed_inode_init, 2473 .exit_func = btrfs_delayed_inode_exit, 2474 }, { 2475 .init_func = btrfs_auto_defrag_init, 2476 .exit_func = btrfs_auto_defrag_exit, 2477 }, { 2478 .init_func = btrfs_delayed_ref_init, 2479 .exit_func = btrfs_delayed_ref_exit, 2480 }, { 2481 .init_func = btrfs_prelim_ref_init, 2482 .exit_func = btrfs_prelim_ref_exit, 2483 }, { 2484 .init_func = btrfs_interface_init, 2485 .exit_func = btrfs_interface_exit, 2486 }, { 2487 .init_func = btrfs_print_mod_info, 2488 .exit_func = NULL, 2489 }, { 2490 .init_func = btrfs_run_sanity_tests, 2491 .exit_func = NULL, 2492 }, { 2493 .init_func = register_btrfs, 2494 .exit_func = unregister_btrfs, 2495 } 2496 }; 2497 2498 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)]; 2499 2500 static __always_inline void btrfs_exit_btrfs_fs(void) 2501 { 2502 int i; 2503 2504 for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) { 2505 if (!mod_init_result[i]) 2506 continue; 2507 if (mod_init_seq[i].exit_func) 2508 mod_init_seq[i].exit_func(); 2509 mod_init_result[i] = false; 2510 } 2511 } 2512 2513 static void __exit exit_btrfs_fs(void) 2514 { 2515 btrfs_exit_btrfs_fs(); 2516 } 2517 2518 static int __init init_btrfs_fs(void) 2519 { 2520 int ret; 2521 int i; 2522 2523 for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) { 2524 ASSERT(!mod_init_result[i]); 2525 ret = mod_init_seq[i].init_func(); 2526 if (ret < 0) { 2527 btrfs_exit_btrfs_fs(); 2528 return ret; 2529 } 2530 mod_init_result[i] = true; 2531 } 2532 return 0; 2533 } 2534 2535 late_initcall(init_btrfs_fs); 2536 module_exit(exit_btrfs_fs) 2537 2538 MODULE_LICENSE("GPL"); 2539 MODULE_SOFTDEP("pre: crc32c"); 2540 MODULE_SOFTDEP("pre: xxhash64"); 2541 MODULE_SOFTDEP("pre: sha256"); 2542 MODULE_SOFTDEP("pre: blake2b-256"); 2543