xref: /openbmc/linux/fs/btrfs/super.c (revision 59b818e064ab9051cd344b82420307e772d6bca7)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/module.h>
8 #include <linux/fs.h>
9 #include <linux/pagemap.h>
10 #include <linux/highmem.h>
11 #include <linux/time.h>
12 #include <linux/init.h>
13 #include <linux/seq_file.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/writeback.h>
18 #include <linux/statfs.h>
19 #include <linux/compat.h>
20 #include <linux/parser.h>
21 #include <linux/ctype.h>
22 #include <linux/namei.h>
23 #include <linux/miscdevice.h>
24 #include <linux/magic.h>
25 #include <linux/slab.h>
26 #include <linux/ratelimit.h>
27 #include <linux/crc32c.h>
28 #include <linux/btrfs.h>
29 #include "messages.h"
30 #include "delayed-inode.h"
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "props.h"
37 #include "xattr.h"
38 #include "volumes.h"
39 #include "export.h"
40 #include "compression.h"
41 #include "rcu-string.h"
42 #include "dev-replace.h"
43 #include "free-space-cache.h"
44 #include "backref.h"
45 #include "space-info.h"
46 #include "sysfs.h"
47 #include "zoned.h"
48 #include "tests/btrfs-tests.h"
49 #include "block-group.h"
50 #include "discard.h"
51 #include "qgroup.h"
52 #include "raid56.h"
53 #include "fs.h"
54 #include "accessors.h"
55 #include "defrag.h"
56 #define CREATE_TRACE_POINTS
57 #include <trace/events/btrfs.h>
58 
59 static const struct super_operations btrfs_super_ops;
60 
61 /*
62  * Types for mounting the default subvolume and a subvolume explicitly
63  * requested by subvol=/path. That way the callchain is straightforward and we
64  * don't have to play tricks with the mount options and recursive calls to
65  * btrfs_mount.
66  *
67  * The new btrfs_root_fs_type also servers as a tag for the bdev_holder.
68  */
69 static struct file_system_type btrfs_fs_type;
70 static struct file_system_type btrfs_root_fs_type;
71 
72 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
73 
74 static void btrfs_put_super(struct super_block *sb)
75 {
76 	close_ctree(btrfs_sb(sb));
77 }
78 
79 enum {
80 	Opt_acl, Opt_noacl,
81 	Opt_clear_cache,
82 	Opt_commit_interval,
83 	Opt_compress,
84 	Opt_compress_force,
85 	Opt_compress_force_type,
86 	Opt_compress_type,
87 	Opt_degraded,
88 	Opt_device,
89 	Opt_fatal_errors,
90 	Opt_flushoncommit, Opt_noflushoncommit,
91 	Opt_max_inline,
92 	Opt_barrier, Opt_nobarrier,
93 	Opt_datacow, Opt_nodatacow,
94 	Opt_datasum, Opt_nodatasum,
95 	Opt_defrag, Opt_nodefrag,
96 	Opt_discard, Opt_nodiscard,
97 	Opt_discard_mode,
98 	Opt_norecovery,
99 	Opt_ratio,
100 	Opt_rescan_uuid_tree,
101 	Opt_skip_balance,
102 	Opt_space_cache, Opt_no_space_cache,
103 	Opt_space_cache_version,
104 	Opt_ssd, Opt_nossd,
105 	Opt_ssd_spread, Opt_nossd_spread,
106 	Opt_subvol,
107 	Opt_subvol_empty,
108 	Opt_subvolid,
109 	Opt_thread_pool,
110 	Opt_treelog, Opt_notreelog,
111 	Opt_user_subvol_rm_allowed,
112 
113 	/* Rescue options */
114 	Opt_rescue,
115 	Opt_usebackuproot,
116 	Opt_nologreplay,
117 	Opt_ignorebadroots,
118 	Opt_ignoredatacsums,
119 	Opt_rescue_all,
120 
121 	/* Deprecated options */
122 	Opt_recovery,
123 	Opt_inode_cache, Opt_noinode_cache,
124 
125 	/* Debugging options */
126 	Opt_check_integrity,
127 	Opt_check_integrity_including_extent_data,
128 	Opt_check_integrity_print_mask,
129 	Opt_enospc_debug, Opt_noenospc_debug,
130 #ifdef CONFIG_BTRFS_DEBUG
131 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
132 #endif
133 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
134 	Opt_ref_verify,
135 #endif
136 	Opt_err,
137 };
138 
139 static const match_table_t tokens = {
140 	{Opt_acl, "acl"},
141 	{Opt_noacl, "noacl"},
142 	{Opt_clear_cache, "clear_cache"},
143 	{Opt_commit_interval, "commit=%u"},
144 	{Opt_compress, "compress"},
145 	{Opt_compress_type, "compress=%s"},
146 	{Opt_compress_force, "compress-force"},
147 	{Opt_compress_force_type, "compress-force=%s"},
148 	{Opt_degraded, "degraded"},
149 	{Opt_device, "device=%s"},
150 	{Opt_fatal_errors, "fatal_errors=%s"},
151 	{Opt_flushoncommit, "flushoncommit"},
152 	{Opt_noflushoncommit, "noflushoncommit"},
153 	{Opt_inode_cache, "inode_cache"},
154 	{Opt_noinode_cache, "noinode_cache"},
155 	{Opt_max_inline, "max_inline=%s"},
156 	{Opt_barrier, "barrier"},
157 	{Opt_nobarrier, "nobarrier"},
158 	{Opt_datacow, "datacow"},
159 	{Opt_nodatacow, "nodatacow"},
160 	{Opt_datasum, "datasum"},
161 	{Opt_nodatasum, "nodatasum"},
162 	{Opt_defrag, "autodefrag"},
163 	{Opt_nodefrag, "noautodefrag"},
164 	{Opt_discard, "discard"},
165 	{Opt_discard_mode, "discard=%s"},
166 	{Opt_nodiscard, "nodiscard"},
167 	{Opt_norecovery, "norecovery"},
168 	{Opt_ratio, "metadata_ratio=%u"},
169 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
170 	{Opt_skip_balance, "skip_balance"},
171 	{Opt_space_cache, "space_cache"},
172 	{Opt_no_space_cache, "nospace_cache"},
173 	{Opt_space_cache_version, "space_cache=%s"},
174 	{Opt_ssd, "ssd"},
175 	{Opt_nossd, "nossd"},
176 	{Opt_ssd_spread, "ssd_spread"},
177 	{Opt_nossd_spread, "nossd_spread"},
178 	{Opt_subvol, "subvol=%s"},
179 	{Opt_subvol_empty, "subvol="},
180 	{Opt_subvolid, "subvolid=%s"},
181 	{Opt_thread_pool, "thread_pool=%u"},
182 	{Opt_treelog, "treelog"},
183 	{Opt_notreelog, "notreelog"},
184 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
185 
186 	/* Rescue options */
187 	{Opt_rescue, "rescue=%s"},
188 	/* Deprecated, with alias rescue=nologreplay */
189 	{Opt_nologreplay, "nologreplay"},
190 	/* Deprecated, with alias rescue=usebackuproot */
191 	{Opt_usebackuproot, "usebackuproot"},
192 
193 	/* Deprecated options */
194 	{Opt_recovery, "recovery"},
195 
196 	/* Debugging options */
197 	{Opt_check_integrity, "check_int"},
198 	{Opt_check_integrity_including_extent_data, "check_int_data"},
199 	{Opt_check_integrity_print_mask, "check_int_print_mask=%u"},
200 	{Opt_enospc_debug, "enospc_debug"},
201 	{Opt_noenospc_debug, "noenospc_debug"},
202 #ifdef CONFIG_BTRFS_DEBUG
203 	{Opt_fragment_data, "fragment=data"},
204 	{Opt_fragment_metadata, "fragment=metadata"},
205 	{Opt_fragment_all, "fragment=all"},
206 #endif
207 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
208 	{Opt_ref_verify, "ref_verify"},
209 #endif
210 	{Opt_err, NULL},
211 };
212 
213 static const match_table_t rescue_tokens = {
214 	{Opt_usebackuproot, "usebackuproot"},
215 	{Opt_nologreplay, "nologreplay"},
216 	{Opt_ignorebadroots, "ignorebadroots"},
217 	{Opt_ignorebadroots, "ibadroots"},
218 	{Opt_ignoredatacsums, "ignoredatacsums"},
219 	{Opt_ignoredatacsums, "idatacsums"},
220 	{Opt_rescue_all, "all"},
221 	{Opt_err, NULL},
222 };
223 
224 static bool check_ro_option(struct btrfs_fs_info *fs_info, unsigned long opt,
225 			    const char *opt_name)
226 {
227 	if (fs_info->mount_opt & opt) {
228 		btrfs_err(fs_info, "%s must be used with ro mount option",
229 			  opt_name);
230 		return true;
231 	}
232 	return false;
233 }
234 
235 static int parse_rescue_options(struct btrfs_fs_info *info, const char *options)
236 {
237 	char *opts;
238 	char *orig;
239 	char *p;
240 	substring_t args[MAX_OPT_ARGS];
241 	int ret = 0;
242 
243 	opts = kstrdup(options, GFP_KERNEL);
244 	if (!opts)
245 		return -ENOMEM;
246 	orig = opts;
247 
248 	while ((p = strsep(&opts, ":")) != NULL) {
249 		int token;
250 
251 		if (!*p)
252 			continue;
253 		token = match_token(p, rescue_tokens, args);
254 		switch (token){
255 		case Opt_usebackuproot:
256 			btrfs_info(info,
257 				   "trying to use backup root at mount time");
258 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
259 			break;
260 		case Opt_nologreplay:
261 			btrfs_set_and_info(info, NOLOGREPLAY,
262 					   "disabling log replay at mount time");
263 			break;
264 		case Opt_ignorebadroots:
265 			btrfs_set_and_info(info, IGNOREBADROOTS,
266 					   "ignoring bad roots");
267 			break;
268 		case Opt_ignoredatacsums:
269 			btrfs_set_and_info(info, IGNOREDATACSUMS,
270 					   "ignoring data csums");
271 			break;
272 		case Opt_rescue_all:
273 			btrfs_info(info, "enabling all of the rescue options");
274 			btrfs_set_and_info(info, IGNOREDATACSUMS,
275 					   "ignoring data csums");
276 			btrfs_set_and_info(info, IGNOREBADROOTS,
277 					   "ignoring bad roots");
278 			btrfs_set_and_info(info, NOLOGREPLAY,
279 					   "disabling log replay at mount time");
280 			break;
281 		case Opt_err:
282 			btrfs_info(info, "unrecognized rescue option '%s'", p);
283 			ret = -EINVAL;
284 			goto out;
285 		default:
286 			break;
287 		}
288 
289 	}
290 out:
291 	kfree(orig);
292 	return ret;
293 }
294 
295 /*
296  * Regular mount options parser.  Everything that is needed only when
297  * reading in a new superblock is parsed here.
298  * XXX JDM: This needs to be cleaned up for remount.
299  */
300 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
301 			unsigned long new_flags)
302 {
303 	substring_t args[MAX_OPT_ARGS];
304 	char *p, *num;
305 	int intarg;
306 	int ret = 0;
307 	char *compress_type;
308 	bool compress_force = false;
309 	enum btrfs_compression_type saved_compress_type;
310 	int saved_compress_level;
311 	bool saved_compress_force;
312 	int no_compress = 0;
313 	const bool remounting = test_bit(BTRFS_FS_STATE_REMOUNTING, &info->fs_state);
314 
315 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
316 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
317 	else if (btrfs_free_space_cache_v1_active(info)) {
318 		if (btrfs_is_zoned(info)) {
319 			btrfs_info(info,
320 			"zoned: clearing existing space cache");
321 			btrfs_set_super_cache_generation(info->super_copy, 0);
322 		} else {
323 			btrfs_set_opt(info->mount_opt, SPACE_CACHE);
324 		}
325 	}
326 
327 	/*
328 	 * Even the options are empty, we still need to do extra check
329 	 * against new flags
330 	 */
331 	if (!options)
332 		goto check;
333 
334 	while ((p = strsep(&options, ",")) != NULL) {
335 		int token;
336 		if (!*p)
337 			continue;
338 
339 		token = match_token(p, tokens, args);
340 		switch (token) {
341 		case Opt_degraded:
342 			btrfs_info(info, "allowing degraded mounts");
343 			btrfs_set_opt(info->mount_opt, DEGRADED);
344 			break;
345 		case Opt_subvol:
346 		case Opt_subvol_empty:
347 		case Opt_subvolid:
348 		case Opt_device:
349 			/*
350 			 * These are parsed by btrfs_parse_subvol_options or
351 			 * btrfs_parse_device_options and can be ignored here.
352 			 */
353 			break;
354 		case Opt_nodatasum:
355 			btrfs_set_and_info(info, NODATASUM,
356 					   "setting nodatasum");
357 			break;
358 		case Opt_datasum:
359 			if (btrfs_test_opt(info, NODATASUM)) {
360 				if (btrfs_test_opt(info, NODATACOW))
361 					btrfs_info(info,
362 						   "setting datasum, datacow enabled");
363 				else
364 					btrfs_info(info, "setting datasum");
365 			}
366 			btrfs_clear_opt(info->mount_opt, NODATACOW);
367 			btrfs_clear_opt(info->mount_opt, NODATASUM);
368 			break;
369 		case Opt_nodatacow:
370 			if (!btrfs_test_opt(info, NODATACOW)) {
371 				if (!btrfs_test_opt(info, COMPRESS) ||
372 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
373 					btrfs_info(info,
374 						   "setting nodatacow, compression disabled");
375 				} else {
376 					btrfs_info(info, "setting nodatacow");
377 				}
378 			}
379 			btrfs_clear_opt(info->mount_opt, COMPRESS);
380 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
381 			btrfs_set_opt(info->mount_opt, NODATACOW);
382 			btrfs_set_opt(info->mount_opt, NODATASUM);
383 			break;
384 		case Opt_datacow:
385 			btrfs_clear_and_info(info, NODATACOW,
386 					     "setting datacow");
387 			break;
388 		case Opt_compress_force:
389 		case Opt_compress_force_type:
390 			compress_force = true;
391 			fallthrough;
392 		case Opt_compress:
393 		case Opt_compress_type:
394 			saved_compress_type = btrfs_test_opt(info,
395 							     COMPRESS) ?
396 				info->compress_type : BTRFS_COMPRESS_NONE;
397 			saved_compress_force =
398 				btrfs_test_opt(info, FORCE_COMPRESS);
399 			saved_compress_level = info->compress_level;
400 			if (token == Opt_compress ||
401 			    token == Opt_compress_force ||
402 			    strncmp(args[0].from, "zlib", 4) == 0) {
403 				compress_type = "zlib";
404 
405 				info->compress_type = BTRFS_COMPRESS_ZLIB;
406 				info->compress_level = BTRFS_ZLIB_DEFAULT_LEVEL;
407 				/*
408 				 * args[0] contains uninitialized data since
409 				 * for these tokens we don't expect any
410 				 * parameter.
411 				 */
412 				if (token != Opt_compress &&
413 				    token != Opt_compress_force)
414 					info->compress_level =
415 					  btrfs_compress_str2level(
416 							BTRFS_COMPRESS_ZLIB,
417 							args[0].from + 4);
418 				btrfs_set_opt(info->mount_opt, COMPRESS);
419 				btrfs_clear_opt(info->mount_opt, NODATACOW);
420 				btrfs_clear_opt(info->mount_opt, NODATASUM);
421 				no_compress = 0;
422 			} else if (strncmp(args[0].from, "lzo", 3) == 0) {
423 				compress_type = "lzo";
424 				info->compress_type = BTRFS_COMPRESS_LZO;
425 				info->compress_level = 0;
426 				btrfs_set_opt(info->mount_opt, COMPRESS);
427 				btrfs_clear_opt(info->mount_opt, NODATACOW);
428 				btrfs_clear_opt(info->mount_opt, NODATASUM);
429 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
430 				no_compress = 0;
431 			} else if (strncmp(args[0].from, "zstd", 4) == 0) {
432 				compress_type = "zstd";
433 				info->compress_type = BTRFS_COMPRESS_ZSTD;
434 				info->compress_level =
435 					btrfs_compress_str2level(
436 							 BTRFS_COMPRESS_ZSTD,
437 							 args[0].from + 4);
438 				btrfs_set_opt(info->mount_opt, COMPRESS);
439 				btrfs_clear_opt(info->mount_opt, NODATACOW);
440 				btrfs_clear_opt(info->mount_opt, NODATASUM);
441 				btrfs_set_fs_incompat(info, COMPRESS_ZSTD);
442 				no_compress = 0;
443 			} else if (strncmp(args[0].from, "no", 2) == 0) {
444 				compress_type = "no";
445 				info->compress_level = 0;
446 				info->compress_type = 0;
447 				btrfs_clear_opt(info->mount_opt, COMPRESS);
448 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
449 				compress_force = false;
450 				no_compress++;
451 			} else {
452 				btrfs_err(info, "unrecognized compression value %s",
453 					  args[0].from);
454 				ret = -EINVAL;
455 				goto out;
456 			}
457 
458 			if (compress_force) {
459 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
460 			} else {
461 				/*
462 				 * If we remount from compress-force=xxx to
463 				 * compress=xxx, we need clear FORCE_COMPRESS
464 				 * flag, otherwise, there is no way for users
465 				 * to disable forcible compression separately.
466 				 */
467 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
468 			}
469 			if (no_compress == 1) {
470 				btrfs_info(info, "use no compression");
471 			} else if ((info->compress_type != saved_compress_type) ||
472 				   (compress_force != saved_compress_force) ||
473 				   (info->compress_level != saved_compress_level)) {
474 				btrfs_info(info, "%s %s compression, level %d",
475 					   (compress_force) ? "force" : "use",
476 					   compress_type, info->compress_level);
477 			}
478 			compress_force = false;
479 			break;
480 		case Opt_ssd:
481 			btrfs_set_and_info(info, SSD,
482 					   "enabling ssd optimizations");
483 			btrfs_clear_opt(info->mount_opt, NOSSD);
484 			break;
485 		case Opt_ssd_spread:
486 			btrfs_set_and_info(info, SSD,
487 					   "enabling ssd optimizations");
488 			btrfs_set_and_info(info, SSD_SPREAD,
489 					   "using spread ssd allocation scheme");
490 			btrfs_clear_opt(info->mount_opt, NOSSD);
491 			break;
492 		case Opt_nossd:
493 			btrfs_set_opt(info->mount_opt, NOSSD);
494 			btrfs_clear_and_info(info, SSD,
495 					     "not using ssd optimizations");
496 			fallthrough;
497 		case Opt_nossd_spread:
498 			btrfs_clear_and_info(info, SSD_SPREAD,
499 					     "not using spread ssd allocation scheme");
500 			break;
501 		case Opt_barrier:
502 			btrfs_clear_and_info(info, NOBARRIER,
503 					     "turning on barriers");
504 			break;
505 		case Opt_nobarrier:
506 			btrfs_set_and_info(info, NOBARRIER,
507 					   "turning off barriers");
508 			break;
509 		case Opt_thread_pool:
510 			ret = match_int(&args[0], &intarg);
511 			if (ret) {
512 				btrfs_err(info, "unrecognized thread_pool value %s",
513 					  args[0].from);
514 				goto out;
515 			} else if (intarg == 0) {
516 				btrfs_err(info, "invalid value 0 for thread_pool");
517 				ret = -EINVAL;
518 				goto out;
519 			}
520 			info->thread_pool_size = intarg;
521 			break;
522 		case Opt_max_inline:
523 			num = match_strdup(&args[0]);
524 			if (num) {
525 				info->max_inline = memparse(num, NULL);
526 				kfree(num);
527 
528 				if (info->max_inline) {
529 					info->max_inline = min_t(u64,
530 						info->max_inline,
531 						info->sectorsize);
532 				}
533 				btrfs_info(info, "max_inline at %llu",
534 					   info->max_inline);
535 			} else {
536 				ret = -ENOMEM;
537 				goto out;
538 			}
539 			break;
540 		case Opt_acl:
541 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
542 			info->sb->s_flags |= SB_POSIXACL;
543 			break;
544 #else
545 			btrfs_err(info, "support for ACL not compiled in!");
546 			ret = -EINVAL;
547 			goto out;
548 #endif
549 		case Opt_noacl:
550 			info->sb->s_flags &= ~SB_POSIXACL;
551 			break;
552 		case Opt_notreelog:
553 			btrfs_set_and_info(info, NOTREELOG,
554 					   "disabling tree log");
555 			break;
556 		case Opt_treelog:
557 			btrfs_clear_and_info(info, NOTREELOG,
558 					     "enabling tree log");
559 			break;
560 		case Opt_norecovery:
561 		case Opt_nologreplay:
562 			btrfs_warn(info,
563 		"'nologreplay' is deprecated, use 'rescue=nologreplay' instead");
564 			btrfs_set_and_info(info, NOLOGREPLAY,
565 					   "disabling log replay at mount time");
566 			break;
567 		case Opt_flushoncommit:
568 			btrfs_set_and_info(info, FLUSHONCOMMIT,
569 					   "turning on flush-on-commit");
570 			break;
571 		case Opt_noflushoncommit:
572 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
573 					     "turning off flush-on-commit");
574 			break;
575 		case Opt_ratio:
576 			ret = match_int(&args[0], &intarg);
577 			if (ret) {
578 				btrfs_err(info, "unrecognized metadata_ratio value %s",
579 					  args[0].from);
580 				goto out;
581 			}
582 			info->metadata_ratio = intarg;
583 			btrfs_info(info, "metadata ratio %u",
584 				   info->metadata_ratio);
585 			break;
586 		case Opt_discard:
587 		case Opt_discard_mode:
588 			if (token == Opt_discard ||
589 			    strcmp(args[0].from, "sync") == 0) {
590 				btrfs_clear_opt(info->mount_opt, DISCARD_ASYNC);
591 				btrfs_set_and_info(info, DISCARD_SYNC,
592 						   "turning on sync discard");
593 			} else if (strcmp(args[0].from, "async") == 0) {
594 				btrfs_clear_opt(info->mount_opt, DISCARD_SYNC);
595 				btrfs_set_and_info(info, DISCARD_ASYNC,
596 						   "turning on async discard");
597 			} else {
598 				btrfs_err(info, "unrecognized discard mode value %s",
599 					  args[0].from);
600 				ret = -EINVAL;
601 				goto out;
602 			}
603 			btrfs_clear_opt(info->mount_opt, NODISCARD);
604 			break;
605 		case Opt_nodiscard:
606 			btrfs_clear_and_info(info, DISCARD_SYNC,
607 					     "turning off discard");
608 			btrfs_clear_and_info(info, DISCARD_ASYNC,
609 					     "turning off async discard");
610 			btrfs_set_opt(info->mount_opt, NODISCARD);
611 			break;
612 		case Opt_space_cache:
613 		case Opt_space_cache_version:
614 			/*
615 			 * We already set FREE_SPACE_TREE above because we have
616 			 * compat_ro(FREE_SPACE_TREE) set, and we aren't going
617 			 * to allow v1 to be set for extent tree v2, simply
618 			 * ignore this setting if we're extent tree v2.
619 			 */
620 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
621 				break;
622 			if (token == Opt_space_cache ||
623 			    strcmp(args[0].from, "v1") == 0) {
624 				btrfs_clear_opt(info->mount_opt,
625 						FREE_SPACE_TREE);
626 				btrfs_set_and_info(info, SPACE_CACHE,
627 					   "enabling disk space caching");
628 			} else if (strcmp(args[0].from, "v2") == 0) {
629 				btrfs_clear_opt(info->mount_opt,
630 						SPACE_CACHE);
631 				btrfs_set_and_info(info, FREE_SPACE_TREE,
632 						   "enabling free space tree");
633 			} else {
634 				btrfs_err(info, "unrecognized space_cache value %s",
635 					  args[0].from);
636 				ret = -EINVAL;
637 				goto out;
638 			}
639 			break;
640 		case Opt_rescan_uuid_tree:
641 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
642 			break;
643 		case Opt_no_space_cache:
644 			/*
645 			 * We cannot operate without the free space tree with
646 			 * extent tree v2, ignore this option.
647 			 */
648 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
649 				break;
650 			if (btrfs_test_opt(info, SPACE_CACHE)) {
651 				btrfs_clear_and_info(info, SPACE_CACHE,
652 					     "disabling disk space caching");
653 			}
654 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
655 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
656 					     "disabling free space tree");
657 			}
658 			break;
659 		case Opt_inode_cache:
660 		case Opt_noinode_cache:
661 			btrfs_warn(info,
662 	"the 'inode_cache' option is deprecated and has no effect since 5.11");
663 			break;
664 		case Opt_clear_cache:
665 			/*
666 			 * We cannot clear the free space tree with extent tree
667 			 * v2, ignore this option.
668 			 */
669 			if (btrfs_fs_incompat(info, EXTENT_TREE_V2))
670 				break;
671 			btrfs_set_and_info(info, CLEAR_CACHE,
672 					   "force clearing of disk cache");
673 			break;
674 		case Opt_user_subvol_rm_allowed:
675 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
676 			break;
677 		case Opt_enospc_debug:
678 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
679 			break;
680 		case Opt_noenospc_debug:
681 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
682 			break;
683 		case Opt_defrag:
684 			btrfs_set_and_info(info, AUTO_DEFRAG,
685 					   "enabling auto defrag");
686 			break;
687 		case Opt_nodefrag:
688 			btrfs_clear_and_info(info, AUTO_DEFRAG,
689 					     "disabling auto defrag");
690 			break;
691 		case Opt_recovery:
692 		case Opt_usebackuproot:
693 			btrfs_warn(info,
694 			"'%s' is deprecated, use 'rescue=usebackuproot' instead",
695 				   token == Opt_recovery ? "recovery" :
696 				   "usebackuproot");
697 			btrfs_info(info,
698 				   "trying to use backup root at mount time");
699 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
700 			break;
701 		case Opt_skip_balance:
702 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
703 			break;
704 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
705 		case Opt_check_integrity_including_extent_data:
706 			btrfs_info(info,
707 				   "enabling check integrity including extent data");
708 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY_DATA);
709 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
710 			break;
711 		case Opt_check_integrity:
712 			btrfs_info(info, "enabling check integrity");
713 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
714 			break;
715 		case Opt_check_integrity_print_mask:
716 			ret = match_int(&args[0], &intarg);
717 			if (ret) {
718 				btrfs_err(info,
719 				"unrecognized check_integrity_print_mask value %s",
720 					args[0].from);
721 				goto out;
722 			}
723 			info->check_integrity_print_mask = intarg;
724 			btrfs_info(info, "check_integrity_print_mask 0x%x",
725 				   info->check_integrity_print_mask);
726 			break;
727 #else
728 		case Opt_check_integrity_including_extent_data:
729 		case Opt_check_integrity:
730 		case Opt_check_integrity_print_mask:
731 			btrfs_err(info,
732 				  "support for check_integrity* not compiled in!");
733 			ret = -EINVAL;
734 			goto out;
735 #endif
736 		case Opt_fatal_errors:
737 			if (strcmp(args[0].from, "panic") == 0) {
738 				btrfs_set_opt(info->mount_opt,
739 					      PANIC_ON_FATAL_ERROR);
740 			} else if (strcmp(args[0].from, "bug") == 0) {
741 				btrfs_clear_opt(info->mount_opt,
742 					      PANIC_ON_FATAL_ERROR);
743 			} else {
744 				btrfs_err(info, "unrecognized fatal_errors value %s",
745 					  args[0].from);
746 				ret = -EINVAL;
747 				goto out;
748 			}
749 			break;
750 		case Opt_commit_interval:
751 			intarg = 0;
752 			ret = match_int(&args[0], &intarg);
753 			if (ret) {
754 				btrfs_err(info, "unrecognized commit_interval value %s",
755 					  args[0].from);
756 				ret = -EINVAL;
757 				goto out;
758 			}
759 			if (intarg == 0) {
760 				btrfs_info(info,
761 					   "using default commit interval %us",
762 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
763 				intarg = BTRFS_DEFAULT_COMMIT_INTERVAL;
764 			} else if (intarg > 300) {
765 				btrfs_warn(info, "excessive commit interval %d",
766 					   intarg);
767 			}
768 			info->commit_interval = intarg;
769 			break;
770 		case Opt_rescue:
771 			ret = parse_rescue_options(info, args[0].from);
772 			if (ret < 0) {
773 				btrfs_err(info, "unrecognized rescue value %s",
774 					  args[0].from);
775 				goto out;
776 			}
777 			break;
778 #ifdef CONFIG_BTRFS_DEBUG
779 		case Opt_fragment_all:
780 			btrfs_info(info, "fragmenting all space");
781 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
782 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
783 			break;
784 		case Opt_fragment_metadata:
785 			btrfs_info(info, "fragmenting metadata");
786 			btrfs_set_opt(info->mount_opt,
787 				      FRAGMENT_METADATA);
788 			break;
789 		case Opt_fragment_data:
790 			btrfs_info(info, "fragmenting data");
791 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
792 			break;
793 #endif
794 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
795 		case Opt_ref_verify:
796 			btrfs_info(info, "doing ref verification");
797 			btrfs_set_opt(info->mount_opt, REF_VERIFY);
798 			break;
799 #endif
800 		case Opt_err:
801 			btrfs_err(info, "unrecognized mount option '%s'", p);
802 			ret = -EINVAL;
803 			goto out;
804 		default:
805 			break;
806 		}
807 	}
808 check:
809 	/* We're read-only, don't have to check. */
810 	if (new_flags & SB_RDONLY)
811 		goto out;
812 
813 	if (check_ro_option(info, BTRFS_MOUNT_NOLOGREPLAY, "nologreplay") ||
814 	    check_ro_option(info, BTRFS_MOUNT_IGNOREBADROOTS, "ignorebadroots") ||
815 	    check_ro_option(info, BTRFS_MOUNT_IGNOREDATACSUMS, "ignoredatacsums"))
816 		ret = -EINVAL;
817 out:
818 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
819 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
820 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
821 		btrfs_err(info, "cannot disable free space tree");
822 		ret = -EINVAL;
823 
824 	}
825 	if (!ret)
826 		ret = btrfs_check_mountopts_zoned(info);
827 	if (!ret && !remounting) {
828 		if (btrfs_test_opt(info, SPACE_CACHE))
829 			btrfs_info(info, "disk space caching is enabled");
830 		if (btrfs_test_opt(info, FREE_SPACE_TREE))
831 			btrfs_info(info, "using free space tree");
832 	}
833 	return ret;
834 }
835 
836 /*
837  * Parse mount options that are required early in the mount process.
838  *
839  * All other options will be parsed on much later in the mount process and
840  * only when we need to allocate a new super block.
841  */
842 static int btrfs_parse_device_options(const char *options, fmode_t flags,
843 				      void *holder)
844 {
845 	substring_t args[MAX_OPT_ARGS];
846 	char *device_name, *opts, *orig, *p;
847 	struct btrfs_device *device = NULL;
848 	int error = 0;
849 
850 	lockdep_assert_held(&uuid_mutex);
851 
852 	if (!options)
853 		return 0;
854 
855 	/*
856 	 * strsep changes the string, duplicate it because btrfs_parse_options
857 	 * gets called later
858 	 */
859 	opts = kstrdup(options, GFP_KERNEL);
860 	if (!opts)
861 		return -ENOMEM;
862 	orig = opts;
863 
864 	while ((p = strsep(&opts, ",")) != NULL) {
865 		int token;
866 
867 		if (!*p)
868 			continue;
869 
870 		token = match_token(p, tokens, args);
871 		if (token == Opt_device) {
872 			device_name = match_strdup(&args[0]);
873 			if (!device_name) {
874 				error = -ENOMEM;
875 				goto out;
876 			}
877 			device = btrfs_scan_one_device(device_name, flags,
878 					holder);
879 			kfree(device_name);
880 			if (IS_ERR(device)) {
881 				error = PTR_ERR(device);
882 				goto out;
883 			}
884 		}
885 	}
886 
887 out:
888 	kfree(orig);
889 	return error;
890 }
891 
892 /*
893  * Parse mount options that are related to subvolume id
894  *
895  * The value is later passed to mount_subvol()
896  */
897 static int btrfs_parse_subvol_options(const char *options, char **subvol_name,
898 		u64 *subvol_objectid)
899 {
900 	substring_t args[MAX_OPT_ARGS];
901 	char *opts, *orig, *p;
902 	int error = 0;
903 	u64 subvolid;
904 
905 	if (!options)
906 		return 0;
907 
908 	/*
909 	 * strsep changes the string, duplicate it because
910 	 * btrfs_parse_device_options gets called later
911 	 */
912 	opts = kstrdup(options, GFP_KERNEL);
913 	if (!opts)
914 		return -ENOMEM;
915 	orig = opts;
916 
917 	while ((p = strsep(&opts, ",")) != NULL) {
918 		int token;
919 		if (!*p)
920 			continue;
921 
922 		token = match_token(p, tokens, args);
923 		switch (token) {
924 		case Opt_subvol:
925 			kfree(*subvol_name);
926 			*subvol_name = match_strdup(&args[0]);
927 			if (!*subvol_name) {
928 				error = -ENOMEM;
929 				goto out;
930 			}
931 			break;
932 		case Opt_subvolid:
933 			error = match_u64(&args[0], &subvolid);
934 			if (error)
935 				goto out;
936 
937 			/* we want the original fs_tree */
938 			if (subvolid == 0)
939 				subvolid = BTRFS_FS_TREE_OBJECTID;
940 
941 			*subvol_objectid = subvolid;
942 			break;
943 		default:
944 			break;
945 		}
946 	}
947 
948 out:
949 	kfree(orig);
950 	return error;
951 }
952 
953 char *btrfs_get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
954 					  u64 subvol_objectid)
955 {
956 	struct btrfs_root *root = fs_info->tree_root;
957 	struct btrfs_root *fs_root = NULL;
958 	struct btrfs_root_ref *root_ref;
959 	struct btrfs_inode_ref *inode_ref;
960 	struct btrfs_key key;
961 	struct btrfs_path *path = NULL;
962 	char *name = NULL, *ptr;
963 	u64 dirid;
964 	int len;
965 	int ret;
966 
967 	path = btrfs_alloc_path();
968 	if (!path) {
969 		ret = -ENOMEM;
970 		goto err;
971 	}
972 
973 	name = kmalloc(PATH_MAX, GFP_KERNEL);
974 	if (!name) {
975 		ret = -ENOMEM;
976 		goto err;
977 	}
978 	ptr = name + PATH_MAX - 1;
979 	ptr[0] = '\0';
980 
981 	/*
982 	 * Walk up the subvolume trees in the tree of tree roots by root
983 	 * backrefs until we hit the top-level subvolume.
984 	 */
985 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
986 		key.objectid = subvol_objectid;
987 		key.type = BTRFS_ROOT_BACKREF_KEY;
988 		key.offset = (u64)-1;
989 
990 		ret = btrfs_search_backwards(root, &key, path);
991 		if (ret < 0) {
992 			goto err;
993 		} else if (ret > 0) {
994 			ret = -ENOENT;
995 			goto err;
996 		}
997 
998 		subvol_objectid = key.offset;
999 
1000 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
1001 					  struct btrfs_root_ref);
1002 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
1003 		ptr -= len + 1;
1004 		if (ptr < name) {
1005 			ret = -ENAMETOOLONG;
1006 			goto err;
1007 		}
1008 		read_extent_buffer(path->nodes[0], ptr + 1,
1009 				   (unsigned long)(root_ref + 1), len);
1010 		ptr[0] = '/';
1011 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
1012 		btrfs_release_path(path);
1013 
1014 		fs_root = btrfs_get_fs_root(fs_info, subvol_objectid, true);
1015 		if (IS_ERR(fs_root)) {
1016 			ret = PTR_ERR(fs_root);
1017 			fs_root = NULL;
1018 			goto err;
1019 		}
1020 
1021 		/*
1022 		 * Walk up the filesystem tree by inode refs until we hit the
1023 		 * root directory.
1024 		 */
1025 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1026 			key.objectid = dirid;
1027 			key.type = BTRFS_INODE_REF_KEY;
1028 			key.offset = (u64)-1;
1029 
1030 			ret = btrfs_search_backwards(fs_root, &key, path);
1031 			if (ret < 0) {
1032 				goto err;
1033 			} else if (ret > 0) {
1034 				ret = -ENOENT;
1035 				goto err;
1036 			}
1037 
1038 			dirid = key.offset;
1039 
1040 			inode_ref = btrfs_item_ptr(path->nodes[0],
1041 						   path->slots[0],
1042 						   struct btrfs_inode_ref);
1043 			len = btrfs_inode_ref_name_len(path->nodes[0],
1044 						       inode_ref);
1045 			ptr -= len + 1;
1046 			if (ptr < name) {
1047 				ret = -ENAMETOOLONG;
1048 				goto err;
1049 			}
1050 			read_extent_buffer(path->nodes[0], ptr + 1,
1051 					   (unsigned long)(inode_ref + 1), len);
1052 			ptr[0] = '/';
1053 			btrfs_release_path(path);
1054 		}
1055 		btrfs_put_root(fs_root);
1056 		fs_root = NULL;
1057 	}
1058 
1059 	btrfs_free_path(path);
1060 	if (ptr == name + PATH_MAX - 1) {
1061 		name[0] = '/';
1062 		name[1] = '\0';
1063 	} else {
1064 		memmove(name, ptr, name + PATH_MAX - ptr);
1065 	}
1066 	return name;
1067 
1068 err:
1069 	btrfs_put_root(fs_root);
1070 	btrfs_free_path(path);
1071 	kfree(name);
1072 	return ERR_PTR(ret);
1073 }
1074 
1075 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1076 {
1077 	struct btrfs_root *root = fs_info->tree_root;
1078 	struct btrfs_dir_item *di;
1079 	struct btrfs_path *path;
1080 	struct btrfs_key location;
1081 	struct fscrypt_str name = FSTR_INIT("default", 7);
1082 	u64 dir_id;
1083 
1084 	path = btrfs_alloc_path();
1085 	if (!path)
1086 		return -ENOMEM;
1087 
1088 	/*
1089 	 * Find the "default" dir item which points to the root item that we
1090 	 * will mount by default if we haven't been given a specific subvolume
1091 	 * to mount.
1092 	 */
1093 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1094 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, &name, 0);
1095 	if (IS_ERR(di)) {
1096 		btrfs_free_path(path);
1097 		return PTR_ERR(di);
1098 	}
1099 	if (!di) {
1100 		/*
1101 		 * Ok the default dir item isn't there.  This is weird since
1102 		 * it's always been there, but don't freak out, just try and
1103 		 * mount the top-level subvolume.
1104 		 */
1105 		btrfs_free_path(path);
1106 		*objectid = BTRFS_FS_TREE_OBJECTID;
1107 		return 0;
1108 	}
1109 
1110 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1111 	btrfs_free_path(path);
1112 	*objectid = location.objectid;
1113 	return 0;
1114 }
1115 
1116 static int btrfs_fill_super(struct super_block *sb,
1117 			    struct btrfs_fs_devices *fs_devices,
1118 			    void *data)
1119 {
1120 	struct inode *inode;
1121 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1122 	int err;
1123 
1124 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1125 	sb->s_magic = BTRFS_SUPER_MAGIC;
1126 	sb->s_op = &btrfs_super_ops;
1127 	sb->s_d_op = &btrfs_dentry_operations;
1128 	sb->s_export_op = &btrfs_export_ops;
1129 #ifdef CONFIG_FS_VERITY
1130 	sb->s_vop = &btrfs_verityops;
1131 #endif
1132 	sb->s_xattr = btrfs_xattr_handlers;
1133 	sb->s_time_gran = 1;
1134 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1135 	sb->s_flags |= SB_POSIXACL;
1136 #endif
1137 	sb->s_flags |= SB_I_VERSION;
1138 	sb->s_iflags |= SB_I_CGROUPWB;
1139 
1140 	err = super_setup_bdi(sb);
1141 	if (err) {
1142 		btrfs_err(fs_info, "super_setup_bdi failed");
1143 		return err;
1144 	}
1145 
1146 	err = open_ctree(sb, fs_devices, (char *)data);
1147 	if (err) {
1148 		btrfs_err(fs_info, "open_ctree failed");
1149 		return err;
1150 	}
1151 
1152 	inode = btrfs_iget(sb, BTRFS_FIRST_FREE_OBJECTID, fs_info->fs_root);
1153 	if (IS_ERR(inode)) {
1154 		err = PTR_ERR(inode);
1155 		goto fail_close;
1156 	}
1157 
1158 	sb->s_root = d_make_root(inode);
1159 	if (!sb->s_root) {
1160 		err = -ENOMEM;
1161 		goto fail_close;
1162 	}
1163 
1164 	sb->s_flags |= SB_ACTIVE;
1165 	return 0;
1166 
1167 fail_close:
1168 	close_ctree(fs_info);
1169 	return err;
1170 }
1171 
1172 int btrfs_sync_fs(struct super_block *sb, int wait)
1173 {
1174 	struct btrfs_trans_handle *trans;
1175 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1176 	struct btrfs_root *root = fs_info->tree_root;
1177 
1178 	trace_btrfs_sync_fs(fs_info, wait);
1179 
1180 	if (!wait) {
1181 		filemap_flush(fs_info->btree_inode->i_mapping);
1182 		return 0;
1183 	}
1184 
1185 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1186 
1187 	trans = btrfs_attach_transaction_barrier(root);
1188 	if (IS_ERR(trans)) {
1189 		/* no transaction, don't bother */
1190 		if (PTR_ERR(trans) == -ENOENT) {
1191 			/*
1192 			 * Exit unless we have some pending changes
1193 			 * that need to go through commit
1194 			 */
1195 			if (!test_bit(BTRFS_FS_NEED_TRANS_COMMIT,
1196 				      &fs_info->flags))
1197 				return 0;
1198 			/*
1199 			 * A non-blocking test if the fs is frozen. We must not
1200 			 * start a new transaction here otherwise a deadlock
1201 			 * happens. The pending operations are delayed to the
1202 			 * next commit after thawing.
1203 			 */
1204 			if (sb_start_write_trylock(sb))
1205 				sb_end_write(sb);
1206 			else
1207 				return 0;
1208 			trans = btrfs_start_transaction(root, 0);
1209 		}
1210 		if (IS_ERR(trans))
1211 			return PTR_ERR(trans);
1212 	}
1213 	return btrfs_commit_transaction(trans);
1214 }
1215 
1216 static void print_rescue_option(struct seq_file *seq, const char *s, bool *printed)
1217 {
1218 	seq_printf(seq, "%s%s", (*printed) ? ":" : ",rescue=", s);
1219 	*printed = true;
1220 }
1221 
1222 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1223 {
1224 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1225 	const char *compress_type;
1226 	const char *subvol_name;
1227 	bool printed = false;
1228 
1229 	if (btrfs_test_opt(info, DEGRADED))
1230 		seq_puts(seq, ",degraded");
1231 	if (btrfs_test_opt(info, NODATASUM))
1232 		seq_puts(seq, ",nodatasum");
1233 	if (btrfs_test_opt(info, NODATACOW))
1234 		seq_puts(seq, ",nodatacow");
1235 	if (btrfs_test_opt(info, NOBARRIER))
1236 		seq_puts(seq, ",nobarrier");
1237 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1238 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1239 	if (info->thread_pool_size !=  min_t(unsigned long,
1240 					     num_online_cpus() + 2, 8))
1241 		seq_printf(seq, ",thread_pool=%u", info->thread_pool_size);
1242 	if (btrfs_test_opt(info, COMPRESS)) {
1243 		compress_type = btrfs_compress_type2str(info->compress_type);
1244 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1245 			seq_printf(seq, ",compress-force=%s", compress_type);
1246 		else
1247 			seq_printf(seq, ",compress=%s", compress_type);
1248 		if (info->compress_level)
1249 			seq_printf(seq, ":%d", info->compress_level);
1250 	}
1251 	if (btrfs_test_opt(info, NOSSD))
1252 		seq_puts(seq, ",nossd");
1253 	if (btrfs_test_opt(info, SSD_SPREAD))
1254 		seq_puts(seq, ",ssd_spread");
1255 	else if (btrfs_test_opt(info, SSD))
1256 		seq_puts(seq, ",ssd");
1257 	if (btrfs_test_opt(info, NOTREELOG))
1258 		seq_puts(seq, ",notreelog");
1259 	if (btrfs_test_opt(info, NOLOGREPLAY))
1260 		print_rescue_option(seq, "nologreplay", &printed);
1261 	if (btrfs_test_opt(info, USEBACKUPROOT))
1262 		print_rescue_option(seq, "usebackuproot", &printed);
1263 	if (btrfs_test_opt(info, IGNOREBADROOTS))
1264 		print_rescue_option(seq, "ignorebadroots", &printed);
1265 	if (btrfs_test_opt(info, IGNOREDATACSUMS))
1266 		print_rescue_option(seq, "ignoredatacsums", &printed);
1267 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1268 		seq_puts(seq, ",flushoncommit");
1269 	if (btrfs_test_opt(info, DISCARD_SYNC))
1270 		seq_puts(seq, ",discard");
1271 	if (btrfs_test_opt(info, DISCARD_ASYNC))
1272 		seq_puts(seq, ",discard=async");
1273 	if (!(info->sb->s_flags & SB_POSIXACL))
1274 		seq_puts(seq, ",noacl");
1275 	if (btrfs_free_space_cache_v1_active(info))
1276 		seq_puts(seq, ",space_cache");
1277 	else if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
1278 		seq_puts(seq, ",space_cache=v2");
1279 	else
1280 		seq_puts(seq, ",nospace_cache");
1281 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1282 		seq_puts(seq, ",rescan_uuid_tree");
1283 	if (btrfs_test_opt(info, CLEAR_CACHE))
1284 		seq_puts(seq, ",clear_cache");
1285 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1286 		seq_puts(seq, ",user_subvol_rm_allowed");
1287 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1288 		seq_puts(seq, ",enospc_debug");
1289 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1290 		seq_puts(seq, ",autodefrag");
1291 	if (btrfs_test_opt(info, SKIP_BALANCE))
1292 		seq_puts(seq, ",skip_balance");
1293 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1294 	if (btrfs_test_opt(info, CHECK_INTEGRITY_DATA))
1295 		seq_puts(seq, ",check_int_data");
1296 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1297 		seq_puts(seq, ",check_int");
1298 	if (info->check_integrity_print_mask)
1299 		seq_printf(seq, ",check_int_print_mask=%d",
1300 				info->check_integrity_print_mask);
1301 #endif
1302 	if (info->metadata_ratio)
1303 		seq_printf(seq, ",metadata_ratio=%u", info->metadata_ratio);
1304 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1305 		seq_puts(seq, ",fatal_errors=panic");
1306 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1307 		seq_printf(seq, ",commit=%u", info->commit_interval);
1308 #ifdef CONFIG_BTRFS_DEBUG
1309 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1310 		seq_puts(seq, ",fragment=data");
1311 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1312 		seq_puts(seq, ",fragment=metadata");
1313 #endif
1314 	if (btrfs_test_opt(info, REF_VERIFY))
1315 		seq_puts(seq, ",ref_verify");
1316 	seq_printf(seq, ",subvolid=%llu",
1317 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1318 	subvol_name = btrfs_get_subvol_name_from_objectid(info,
1319 			BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1320 	if (!IS_ERR(subvol_name)) {
1321 		seq_puts(seq, ",subvol=");
1322 		seq_escape(seq, subvol_name, " \t\n\\");
1323 		kfree(subvol_name);
1324 	}
1325 	return 0;
1326 }
1327 
1328 static int btrfs_test_super(struct super_block *s, void *data)
1329 {
1330 	struct btrfs_fs_info *p = data;
1331 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1332 
1333 	return fs_info->fs_devices == p->fs_devices;
1334 }
1335 
1336 static int btrfs_set_super(struct super_block *s, void *data)
1337 {
1338 	int err = set_anon_super(s, data);
1339 	if (!err)
1340 		s->s_fs_info = data;
1341 	return err;
1342 }
1343 
1344 /*
1345  * subvolumes are identified by ino 256
1346  */
1347 static inline int is_subvolume_inode(struct inode *inode)
1348 {
1349 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1350 		return 1;
1351 	return 0;
1352 }
1353 
1354 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1355 				   struct vfsmount *mnt)
1356 {
1357 	struct dentry *root;
1358 	int ret;
1359 
1360 	if (!subvol_name) {
1361 		if (!subvol_objectid) {
1362 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1363 							  &subvol_objectid);
1364 			if (ret) {
1365 				root = ERR_PTR(ret);
1366 				goto out;
1367 			}
1368 		}
1369 		subvol_name = btrfs_get_subvol_name_from_objectid(
1370 					btrfs_sb(mnt->mnt_sb), subvol_objectid);
1371 		if (IS_ERR(subvol_name)) {
1372 			root = ERR_CAST(subvol_name);
1373 			subvol_name = NULL;
1374 			goto out;
1375 		}
1376 
1377 	}
1378 
1379 	root = mount_subtree(mnt, subvol_name);
1380 	/* mount_subtree() drops our reference on the vfsmount. */
1381 	mnt = NULL;
1382 
1383 	if (!IS_ERR(root)) {
1384 		struct super_block *s = root->d_sb;
1385 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1386 		struct inode *root_inode = d_inode(root);
1387 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1388 
1389 		ret = 0;
1390 		if (!is_subvolume_inode(root_inode)) {
1391 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1392 			       subvol_name);
1393 			ret = -EINVAL;
1394 		}
1395 		if (subvol_objectid && root_objectid != subvol_objectid) {
1396 			/*
1397 			 * This will also catch a race condition where a
1398 			 * subvolume which was passed by ID is renamed and
1399 			 * another subvolume is renamed over the old location.
1400 			 */
1401 			btrfs_err(fs_info,
1402 				  "subvol '%s' does not match subvolid %llu",
1403 				  subvol_name, subvol_objectid);
1404 			ret = -EINVAL;
1405 		}
1406 		if (ret) {
1407 			dput(root);
1408 			root = ERR_PTR(ret);
1409 			deactivate_locked_super(s);
1410 		}
1411 	}
1412 
1413 out:
1414 	mntput(mnt);
1415 	kfree(subvol_name);
1416 	return root;
1417 }
1418 
1419 /*
1420  * Find a superblock for the given device / mount point.
1421  *
1422  * Note: This is based on mount_bdev from fs/super.c with a few additions
1423  *       for multiple device setup.  Make sure to keep it in sync.
1424  */
1425 static struct dentry *btrfs_mount_root(struct file_system_type *fs_type,
1426 		int flags, const char *device_name, void *data)
1427 {
1428 	struct block_device *bdev = NULL;
1429 	struct super_block *s;
1430 	struct btrfs_device *device = NULL;
1431 	struct btrfs_fs_devices *fs_devices = NULL;
1432 	struct btrfs_fs_info *fs_info = NULL;
1433 	void *new_sec_opts = NULL;
1434 	fmode_t mode = FMODE_READ;
1435 	int error = 0;
1436 
1437 	if (!(flags & SB_RDONLY))
1438 		mode |= FMODE_WRITE;
1439 
1440 	if (data) {
1441 		error = security_sb_eat_lsm_opts(data, &new_sec_opts);
1442 		if (error)
1443 			return ERR_PTR(error);
1444 	}
1445 
1446 	/*
1447 	 * Setup a dummy root and fs_info for test/set super.  This is because
1448 	 * we don't actually fill this stuff out until open_ctree, but we need
1449 	 * then open_ctree will properly initialize the file system specific
1450 	 * settings later.  btrfs_init_fs_info initializes the static elements
1451 	 * of the fs_info (locks and such) to make cleanup easier if we find a
1452 	 * superblock with our given fs_devices later on at sget() time.
1453 	 */
1454 	fs_info = kvzalloc(sizeof(struct btrfs_fs_info), GFP_KERNEL);
1455 	if (!fs_info) {
1456 		error = -ENOMEM;
1457 		goto error_sec_opts;
1458 	}
1459 	btrfs_init_fs_info(fs_info);
1460 
1461 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1462 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_KERNEL);
1463 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1464 		error = -ENOMEM;
1465 		goto error_fs_info;
1466 	}
1467 
1468 	mutex_lock(&uuid_mutex);
1469 	error = btrfs_parse_device_options(data, mode, fs_type);
1470 	if (error) {
1471 		mutex_unlock(&uuid_mutex);
1472 		goto error_fs_info;
1473 	}
1474 
1475 	device = btrfs_scan_one_device(device_name, mode, fs_type);
1476 	if (IS_ERR(device)) {
1477 		mutex_unlock(&uuid_mutex);
1478 		error = PTR_ERR(device);
1479 		goto error_fs_info;
1480 	}
1481 
1482 	fs_devices = device->fs_devices;
1483 	fs_info->fs_devices = fs_devices;
1484 
1485 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1486 	mutex_unlock(&uuid_mutex);
1487 	if (error)
1488 		goto error_fs_info;
1489 
1490 	if (!(flags & SB_RDONLY) && fs_devices->rw_devices == 0) {
1491 		error = -EACCES;
1492 		goto error_close_devices;
1493 	}
1494 
1495 	bdev = fs_devices->latest_dev->bdev;
1496 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | SB_NOSEC,
1497 		 fs_info);
1498 	if (IS_ERR(s)) {
1499 		error = PTR_ERR(s);
1500 		goto error_close_devices;
1501 	}
1502 
1503 	if (s->s_root) {
1504 		btrfs_close_devices(fs_devices);
1505 		btrfs_free_fs_info(fs_info);
1506 		if ((flags ^ s->s_flags) & SB_RDONLY)
1507 			error = -EBUSY;
1508 	} else {
1509 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1510 		shrinker_debugfs_rename(&s->s_shrink, "sb-%s:%s", fs_type->name,
1511 					s->s_id);
1512 		btrfs_sb(s)->bdev_holder = fs_type;
1513 		if (!strstr(crc32c_impl(), "generic"))
1514 			set_bit(BTRFS_FS_CSUM_IMPL_FAST, &fs_info->flags);
1515 		error = btrfs_fill_super(s, fs_devices, data);
1516 	}
1517 	if (!error)
1518 		error = security_sb_set_mnt_opts(s, new_sec_opts, 0, NULL);
1519 	security_free_mnt_opts(&new_sec_opts);
1520 	if (error) {
1521 		deactivate_locked_super(s);
1522 		return ERR_PTR(error);
1523 	}
1524 
1525 	return dget(s->s_root);
1526 
1527 error_close_devices:
1528 	btrfs_close_devices(fs_devices);
1529 error_fs_info:
1530 	btrfs_free_fs_info(fs_info);
1531 error_sec_opts:
1532 	security_free_mnt_opts(&new_sec_opts);
1533 	return ERR_PTR(error);
1534 }
1535 
1536 /*
1537  * Mount function which is called by VFS layer.
1538  *
1539  * In order to allow mounting a subvolume directly, btrfs uses mount_subtree()
1540  * which needs vfsmount* of device's root (/).  This means device's root has to
1541  * be mounted internally in any case.
1542  *
1543  * Operation flow:
1544  *   1. Parse subvol id related options for later use in mount_subvol().
1545  *
1546  *   2. Mount device's root (/) by calling vfs_kern_mount().
1547  *
1548  *      NOTE: vfs_kern_mount() is used by VFS to call btrfs_mount() in the
1549  *      first place. In order to avoid calling btrfs_mount() again, we use
1550  *      different file_system_type which is not registered to VFS by
1551  *      register_filesystem() (btrfs_root_fs_type). As a result,
1552  *      btrfs_mount_root() is called. The return value will be used by
1553  *      mount_subtree() in mount_subvol().
1554  *
1555  *   3. Call mount_subvol() to get the dentry of subvolume. Since there is
1556  *      "btrfs subvolume set-default", mount_subvol() is called always.
1557  */
1558 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1559 		const char *device_name, void *data)
1560 {
1561 	struct vfsmount *mnt_root;
1562 	struct dentry *root;
1563 	char *subvol_name = NULL;
1564 	u64 subvol_objectid = 0;
1565 	int error = 0;
1566 
1567 	error = btrfs_parse_subvol_options(data, &subvol_name,
1568 					&subvol_objectid);
1569 	if (error) {
1570 		kfree(subvol_name);
1571 		return ERR_PTR(error);
1572 	}
1573 
1574 	/* mount device's root (/) */
1575 	mnt_root = vfs_kern_mount(&btrfs_root_fs_type, flags, device_name, data);
1576 	if (PTR_ERR_OR_ZERO(mnt_root) == -EBUSY) {
1577 		if (flags & SB_RDONLY) {
1578 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1579 				flags & ~SB_RDONLY, device_name, data);
1580 		} else {
1581 			mnt_root = vfs_kern_mount(&btrfs_root_fs_type,
1582 				flags | SB_RDONLY, device_name, data);
1583 			if (IS_ERR(mnt_root)) {
1584 				root = ERR_CAST(mnt_root);
1585 				kfree(subvol_name);
1586 				goto out;
1587 			}
1588 
1589 			down_write(&mnt_root->mnt_sb->s_umount);
1590 			error = btrfs_remount(mnt_root->mnt_sb, &flags, NULL);
1591 			up_write(&mnt_root->mnt_sb->s_umount);
1592 			if (error < 0) {
1593 				root = ERR_PTR(error);
1594 				mntput(mnt_root);
1595 				kfree(subvol_name);
1596 				goto out;
1597 			}
1598 		}
1599 	}
1600 	if (IS_ERR(mnt_root)) {
1601 		root = ERR_CAST(mnt_root);
1602 		kfree(subvol_name);
1603 		goto out;
1604 	}
1605 
1606 	/* mount_subvol() will free subvol_name and mnt_root */
1607 	root = mount_subvol(subvol_name, subvol_objectid, mnt_root);
1608 
1609 out:
1610 	return root;
1611 }
1612 
1613 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1614 				     u32 new_pool_size, u32 old_pool_size)
1615 {
1616 	if (new_pool_size == old_pool_size)
1617 		return;
1618 
1619 	fs_info->thread_pool_size = new_pool_size;
1620 
1621 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1622 	       old_pool_size, new_pool_size);
1623 
1624 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1625 	btrfs_workqueue_set_max(fs_info->hipri_workers, new_pool_size);
1626 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1627 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1628 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1629 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1630 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1631 }
1632 
1633 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1634 				       unsigned long old_opts, int flags)
1635 {
1636 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1637 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1638 	     (flags & SB_RDONLY))) {
1639 		/* wait for any defraggers to finish */
1640 		wait_event(fs_info->transaction_wait,
1641 			   (atomic_read(&fs_info->defrag_running) == 0));
1642 		if (flags & SB_RDONLY)
1643 			sync_filesystem(fs_info->sb);
1644 	}
1645 }
1646 
1647 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1648 					 unsigned long old_opts)
1649 {
1650 	const bool cache_opt = btrfs_test_opt(fs_info, SPACE_CACHE);
1651 
1652 	/*
1653 	 * We need to cleanup all defragable inodes if the autodefragment is
1654 	 * close or the filesystem is read only.
1655 	 */
1656 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1657 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || sb_rdonly(fs_info->sb))) {
1658 		btrfs_cleanup_defrag_inodes(fs_info);
1659 	}
1660 
1661 	/* If we toggled discard async */
1662 	if (!btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1663 	    btrfs_test_opt(fs_info, DISCARD_ASYNC))
1664 		btrfs_discard_resume(fs_info);
1665 	else if (btrfs_raw_test_opt(old_opts, DISCARD_ASYNC) &&
1666 		 !btrfs_test_opt(fs_info, DISCARD_ASYNC))
1667 		btrfs_discard_cleanup(fs_info);
1668 
1669 	/* If we toggled space cache */
1670 	if (cache_opt != btrfs_free_space_cache_v1_active(fs_info))
1671 		btrfs_set_free_space_cache_v1_active(fs_info, cache_opt);
1672 }
1673 
1674 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1675 {
1676 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1677 	unsigned old_flags = sb->s_flags;
1678 	unsigned long old_opts = fs_info->mount_opt;
1679 	unsigned long old_compress_type = fs_info->compress_type;
1680 	u64 old_max_inline = fs_info->max_inline;
1681 	u32 old_thread_pool_size = fs_info->thread_pool_size;
1682 	u32 old_metadata_ratio = fs_info->metadata_ratio;
1683 	int ret;
1684 
1685 	sync_filesystem(sb);
1686 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1687 
1688 	if (data) {
1689 		void *new_sec_opts = NULL;
1690 
1691 		ret = security_sb_eat_lsm_opts(data, &new_sec_opts);
1692 		if (!ret)
1693 			ret = security_sb_remount(sb, new_sec_opts);
1694 		security_free_mnt_opts(&new_sec_opts);
1695 		if (ret)
1696 			goto restore;
1697 	}
1698 
1699 	ret = btrfs_parse_options(fs_info, data, *flags);
1700 	if (ret)
1701 		goto restore;
1702 
1703 	ret = btrfs_check_features(fs_info, sb);
1704 	if (ret < 0)
1705 		goto restore;
1706 
1707 	btrfs_remount_begin(fs_info, old_opts, *flags);
1708 	btrfs_resize_thread_pool(fs_info,
1709 		fs_info->thread_pool_size, old_thread_pool_size);
1710 
1711 	if ((bool)btrfs_test_opt(fs_info, FREE_SPACE_TREE) !=
1712 	    (bool)btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE) &&
1713 	    (!sb_rdonly(sb) || (*flags & SB_RDONLY))) {
1714 		btrfs_warn(fs_info,
1715 		"remount supports changing free space tree only from ro to rw");
1716 		/* Make sure free space cache options match the state on disk */
1717 		if (btrfs_fs_compat_ro(fs_info, FREE_SPACE_TREE)) {
1718 			btrfs_set_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1719 			btrfs_clear_opt(fs_info->mount_opt, SPACE_CACHE);
1720 		}
1721 		if (btrfs_free_space_cache_v1_active(fs_info)) {
1722 			btrfs_clear_opt(fs_info->mount_opt, FREE_SPACE_TREE);
1723 			btrfs_set_opt(fs_info->mount_opt, SPACE_CACHE);
1724 		}
1725 	}
1726 
1727 	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1728 		goto out;
1729 
1730 	if (*flags & SB_RDONLY) {
1731 		/*
1732 		 * this also happens on 'umount -rf' or on shutdown, when
1733 		 * the filesystem is busy.
1734 		 */
1735 		cancel_work_sync(&fs_info->async_reclaim_work);
1736 		cancel_work_sync(&fs_info->async_data_reclaim_work);
1737 
1738 		btrfs_discard_cleanup(fs_info);
1739 
1740 		/* wait for the uuid_scan task to finish */
1741 		down(&fs_info->uuid_tree_rescan_sem);
1742 		/* avoid complains from lockdep et al. */
1743 		up(&fs_info->uuid_tree_rescan_sem);
1744 
1745 		btrfs_set_sb_rdonly(sb);
1746 
1747 		/*
1748 		 * Setting SB_RDONLY will put the cleaner thread to
1749 		 * sleep at the next loop if it's already active.
1750 		 * If it's already asleep, we'll leave unused block
1751 		 * groups on disk until we're mounted read-write again
1752 		 * unless we clean them up here.
1753 		 */
1754 		btrfs_delete_unused_bgs(fs_info);
1755 
1756 		/*
1757 		 * The cleaner task could be already running before we set the
1758 		 * flag BTRFS_FS_STATE_RO (and SB_RDONLY in the superblock).
1759 		 * We must make sure that after we finish the remount, i.e. after
1760 		 * we call btrfs_commit_super(), the cleaner can no longer start
1761 		 * a transaction - either because it was dropping a dead root,
1762 		 * running delayed iputs or deleting an unused block group (the
1763 		 * cleaner picked a block group from the list of unused block
1764 		 * groups before we were able to in the previous call to
1765 		 * btrfs_delete_unused_bgs()).
1766 		 */
1767 		wait_on_bit(&fs_info->flags, BTRFS_FS_CLEANER_RUNNING,
1768 			    TASK_UNINTERRUPTIBLE);
1769 
1770 		/*
1771 		 * We've set the superblock to RO mode, so we might have made
1772 		 * the cleaner task sleep without running all pending delayed
1773 		 * iputs. Go through all the delayed iputs here, so that if an
1774 		 * unmount happens without remounting RW we don't end up at
1775 		 * finishing close_ctree() with a non-empty list of delayed
1776 		 * iputs.
1777 		 */
1778 		btrfs_run_delayed_iputs(fs_info);
1779 
1780 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1781 		btrfs_scrub_cancel(fs_info);
1782 		btrfs_pause_balance(fs_info);
1783 
1784 		/*
1785 		 * Pause the qgroup rescan worker if it is running. We don't want
1786 		 * it to be still running after we are in RO mode, as after that,
1787 		 * by the time we unmount, it might have left a transaction open,
1788 		 * so we would leak the transaction and/or crash.
1789 		 */
1790 		btrfs_qgroup_wait_for_completion(fs_info, false);
1791 
1792 		ret = btrfs_commit_super(fs_info);
1793 		if (ret)
1794 			goto restore;
1795 	} else {
1796 		if (BTRFS_FS_ERROR(fs_info)) {
1797 			btrfs_err(fs_info,
1798 				"Remounting read-write after error is not allowed");
1799 			ret = -EINVAL;
1800 			goto restore;
1801 		}
1802 		if (fs_info->fs_devices->rw_devices == 0) {
1803 			ret = -EACCES;
1804 			goto restore;
1805 		}
1806 
1807 		if (!btrfs_check_rw_degradable(fs_info, NULL)) {
1808 			btrfs_warn(fs_info,
1809 		"too many missing devices, writable remount is not allowed");
1810 			ret = -EACCES;
1811 			goto restore;
1812 		}
1813 
1814 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1815 			btrfs_warn(fs_info,
1816 		"mount required to replay tree-log, cannot remount read-write");
1817 			ret = -EINVAL;
1818 			goto restore;
1819 		}
1820 
1821 		/*
1822 		 * NOTE: when remounting with a change that does writes, don't
1823 		 * put it anywhere above this point, as we are not sure to be
1824 		 * safe to write until we pass the above checks.
1825 		 */
1826 		ret = btrfs_start_pre_rw_mount(fs_info);
1827 		if (ret)
1828 			goto restore;
1829 
1830 		btrfs_clear_sb_rdonly(sb);
1831 
1832 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1833 	}
1834 out:
1835 	/*
1836 	 * We need to set SB_I_VERSION here otherwise it'll get cleared by VFS,
1837 	 * since the absence of the flag means it can be toggled off by remount.
1838 	 */
1839 	*flags |= SB_I_VERSION;
1840 
1841 	wake_up_process(fs_info->transaction_kthread);
1842 	btrfs_remount_cleanup(fs_info, old_opts);
1843 	btrfs_clear_oneshot_options(fs_info);
1844 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1845 
1846 	return 0;
1847 
1848 restore:
1849 	/* We've hit an error - don't reset SB_RDONLY */
1850 	if (sb_rdonly(sb))
1851 		old_flags |= SB_RDONLY;
1852 	if (!(old_flags & SB_RDONLY))
1853 		clear_bit(BTRFS_FS_STATE_RO, &fs_info->fs_state);
1854 	sb->s_flags = old_flags;
1855 	fs_info->mount_opt = old_opts;
1856 	fs_info->compress_type = old_compress_type;
1857 	fs_info->max_inline = old_max_inline;
1858 	btrfs_resize_thread_pool(fs_info,
1859 		old_thread_pool_size, fs_info->thread_pool_size);
1860 	fs_info->metadata_ratio = old_metadata_ratio;
1861 	btrfs_remount_cleanup(fs_info, old_opts);
1862 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1863 
1864 	return ret;
1865 }
1866 
1867 /* Used to sort the devices by max_avail(descending sort) */
1868 static int btrfs_cmp_device_free_bytes(const void *a, const void *b)
1869 {
1870 	const struct btrfs_device_info *dev_info1 = a;
1871 	const struct btrfs_device_info *dev_info2 = b;
1872 
1873 	if (dev_info1->max_avail > dev_info2->max_avail)
1874 		return -1;
1875 	else if (dev_info1->max_avail < dev_info2->max_avail)
1876 		return 1;
1877 	return 0;
1878 }
1879 
1880 /*
1881  * sort the devices by max_avail, in which max free extent size of each device
1882  * is stored.(Descending Sort)
1883  */
1884 static inline void btrfs_descending_sort_devices(
1885 					struct btrfs_device_info *devices,
1886 					size_t nr_devices)
1887 {
1888 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1889 	     btrfs_cmp_device_free_bytes, NULL);
1890 }
1891 
1892 /*
1893  * The helper to calc the free space on the devices that can be used to store
1894  * file data.
1895  */
1896 static inline int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1897 					      u64 *free_bytes)
1898 {
1899 	struct btrfs_device_info *devices_info;
1900 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1901 	struct btrfs_device *device;
1902 	u64 type;
1903 	u64 avail_space;
1904 	u64 min_stripe_size;
1905 	int num_stripes = 1;
1906 	int i = 0, nr_devices;
1907 	const struct btrfs_raid_attr *rattr;
1908 
1909 	/*
1910 	 * We aren't under the device list lock, so this is racy-ish, but good
1911 	 * enough for our purposes.
1912 	 */
1913 	nr_devices = fs_info->fs_devices->open_devices;
1914 	if (!nr_devices) {
1915 		smp_mb();
1916 		nr_devices = fs_info->fs_devices->open_devices;
1917 		ASSERT(nr_devices);
1918 		if (!nr_devices) {
1919 			*free_bytes = 0;
1920 			return 0;
1921 		}
1922 	}
1923 
1924 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1925 			       GFP_KERNEL);
1926 	if (!devices_info)
1927 		return -ENOMEM;
1928 
1929 	/* calc min stripe number for data space allocation */
1930 	type = btrfs_data_alloc_profile(fs_info);
1931 	rattr = &btrfs_raid_array[btrfs_bg_flags_to_raid_index(type)];
1932 
1933 	if (type & BTRFS_BLOCK_GROUP_RAID0)
1934 		num_stripes = nr_devices;
1935 	else if (type & BTRFS_BLOCK_GROUP_RAID1_MASK)
1936 		num_stripes = rattr->ncopies;
1937 	else if (type & BTRFS_BLOCK_GROUP_RAID10)
1938 		num_stripes = 4;
1939 
1940 	/* Adjust for more than 1 stripe per device */
1941 	min_stripe_size = rattr->dev_stripes * BTRFS_STRIPE_LEN;
1942 
1943 	rcu_read_lock();
1944 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1945 		if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA,
1946 						&device->dev_state) ||
1947 		    !device->bdev ||
1948 		    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state))
1949 			continue;
1950 
1951 		if (i >= nr_devices)
1952 			break;
1953 
1954 		avail_space = device->total_bytes - device->bytes_used;
1955 
1956 		/* align with stripe_len */
1957 		avail_space = rounddown(avail_space, BTRFS_STRIPE_LEN);
1958 
1959 		/*
1960 		 * Ensure we have at least min_stripe_size on top of the
1961 		 * reserved space on the device.
1962 		 */
1963 		if (avail_space <= BTRFS_DEVICE_RANGE_RESERVED + min_stripe_size)
1964 			continue;
1965 
1966 		avail_space -= BTRFS_DEVICE_RANGE_RESERVED;
1967 
1968 		devices_info[i].dev = device;
1969 		devices_info[i].max_avail = avail_space;
1970 
1971 		i++;
1972 	}
1973 	rcu_read_unlock();
1974 
1975 	nr_devices = i;
1976 
1977 	btrfs_descending_sort_devices(devices_info, nr_devices);
1978 
1979 	i = nr_devices - 1;
1980 	avail_space = 0;
1981 	while (nr_devices >= rattr->devs_min) {
1982 		num_stripes = min(num_stripes, nr_devices);
1983 
1984 		if (devices_info[i].max_avail >= min_stripe_size) {
1985 			int j;
1986 			u64 alloc_size;
1987 
1988 			avail_space += devices_info[i].max_avail * num_stripes;
1989 			alloc_size = devices_info[i].max_avail;
1990 			for (j = i + 1 - num_stripes; j <= i; j++)
1991 				devices_info[j].max_avail -= alloc_size;
1992 		}
1993 		i--;
1994 		nr_devices--;
1995 	}
1996 
1997 	kfree(devices_info);
1998 	*free_bytes = avail_space;
1999 	return 0;
2000 }
2001 
2002 /*
2003  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2004  *
2005  * If there's a redundant raid level at DATA block groups, use the respective
2006  * multiplier to scale the sizes.
2007  *
2008  * Unused device space usage is based on simulating the chunk allocator
2009  * algorithm that respects the device sizes and order of allocations.  This is
2010  * a close approximation of the actual use but there are other factors that may
2011  * change the result (like a new metadata chunk).
2012  *
2013  * If metadata is exhausted, f_bavail will be 0.
2014  */
2015 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2016 {
2017 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2018 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2019 	struct btrfs_space_info *found;
2020 	u64 total_used = 0;
2021 	u64 total_free_data = 0;
2022 	u64 total_free_meta = 0;
2023 	u32 bits = fs_info->sectorsize_bits;
2024 	__be32 *fsid = (__be32 *)fs_info->fs_devices->fsid;
2025 	unsigned factor = 1;
2026 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2027 	int ret;
2028 	u64 thresh = 0;
2029 	int mixed = 0;
2030 
2031 	list_for_each_entry(found, &fs_info->space_info, list) {
2032 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2033 			int i;
2034 
2035 			total_free_data += found->disk_total - found->disk_used;
2036 			total_free_data -=
2037 				btrfs_account_ro_block_groups_free_space(found);
2038 
2039 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2040 				if (!list_empty(&found->block_groups[i]))
2041 					factor = btrfs_bg_type_to_factor(
2042 						btrfs_raid_array[i].bg_flag);
2043 			}
2044 		}
2045 
2046 		/*
2047 		 * Metadata in mixed block goup profiles are accounted in data
2048 		 */
2049 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2050 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2051 				mixed = 1;
2052 			else
2053 				total_free_meta += found->disk_total -
2054 					found->disk_used;
2055 		}
2056 
2057 		total_used += found->disk_used;
2058 	}
2059 
2060 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2061 	buf->f_blocks >>= bits;
2062 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2063 
2064 	/* Account global block reserve as used, it's in logical size already */
2065 	spin_lock(&block_rsv->lock);
2066 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2067 	if (buf->f_bfree >= block_rsv->size >> bits)
2068 		buf->f_bfree -= block_rsv->size >> bits;
2069 	else
2070 		buf->f_bfree = 0;
2071 	spin_unlock(&block_rsv->lock);
2072 
2073 	buf->f_bavail = div_u64(total_free_data, factor);
2074 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2075 	if (ret)
2076 		return ret;
2077 	buf->f_bavail += div_u64(total_free_data, factor);
2078 	buf->f_bavail = buf->f_bavail >> bits;
2079 
2080 	/*
2081 	 * We calculate the remaining metadata space minus global reserve. If
2082 	 * this is (supposedly) smaller than zero, there's no space. But this
2083 	 * does not hold in practice, the exhausted state happens where's still
2084 	 * some positive delta. So we apply some guesswork and compare the
2085 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2086 	 *
2087 	 * We probably cannot calculate the exact threshold value because this
2088 	 * depends on the internal reservations requested by various
2089 	 * operations, so some operations that consume a few metadata will
2090 	 * succeed even if the Avail is zero. But this is better than the other
2091 	 * way around.
2092 	 */
2093 	thresh = SZ_4M;
2094 
2095 	/*
2096 	 * We only want to claim there's no available space if we can no longer
2097 	 * allocate chunks for our metadata profile and our global reserve will
2098 	 * not fit in the free metadata space.  If we aren't ->full then we
2099 	 * still can allocate chunks and thus are fine using the currently
2100 	 * calculated f_bavail.
2101 	 */
2102 	if (!mixed && block_rsv->space_info->full &&
2103 	    total_free_meta - thresh < block_rsv->size)
2104 		buf->f_bavail = 0;
2105 
2106 	buf->f_type = BTRFS_SUPER_MAGIC;
2107 	buf->f_bsize = dentry->d_sb->s_blocksize;
2108 	buf->f_namelen = BTRFS_NAME_LEN;
2109 
2110 	/* We treat it as constant endianness (it doesn't matter _which_)
2111 	   because we want the fsid to come out the same whether mounted
2112 	   on a big-endian or little-endian host */
2113 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2114 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2115 	/* Mask in the root object ID too, to disambiguate subvols */
2116 	buf->f_fsid.val[0] ^=
2117 		BTRFS_I(d_inode(dentry))->root->root_key.objectid >> 32;
2118 	buf->f_fsid.val[1] ^=
2119 		BTRFS_I(d_inode(dentry))->root->root_key.objectid;
2120 
2121 	return 0;
2122 }
2123 
2124 static void btrfs_kill_super(struct super_block *sb)
2125 {
2126 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2127 	kill_anon_super(sb);
2128 	btrfs_free_fs_info(fs_info);
2129 }
2130 
2131 static struct file_system_type btrfs_fs_type = {
2132 	.owner		= THIS_MODULE,
2133 	.name		= "btrfs",
2134 	.mount		= btrfs_mount,
2135 	.kill_sb	= btrfs_kill_super,
2136 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2137 };
2138 
2139 static struct file_system_type btrfs_root_fs_type = {
2140 	.owner		= THIS_MODULE,
2141 	.name		= "btrfs",
2142 	.mount		= btrfs_mount_root,
2143 	.kill_sb	= btrfs_kill_super,
2144 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA | FS_ALLOW_IDMAP,
2145 };
2146 
2147 MODULE_ALIAS_FS("btrfs");
2148 
2149 static int btrfs_control_open(struct inode *inode, struct file *file)
2150 {
2151 	/*
2152 	 * The control file's private_data is used to hold the
2153 	 * transaction when it is started and is used to keep
2154 	 * track of whether a transaction is already in progress.
2155 	 */
2156 	file->private_data = NULL;
2157 	return 0;
2158 }
2159 
2160 /*
2161  * Used by /dev/btrfs-control for devices ioctls.
2162  */
2163 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2164 				unsigned long arg)
2165 {
2166 	struct btrfs_ioctl_vol_args *vol;
2167 	struct btrfs_device *device = NULL;
2168 	dev_t devt = 0;
2169 	int ret = -ENOTTY;
2170 
2171 	if (!capable(CAP_SYS_ADMIN))
2172 		return -EPERM;
2173 
2174 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2175 	if (IS_ERR(vol))
2176 		return PTR_ERR(vol);
2177 	vol->name[BTRFS_PATH_NAME_MAX] = '\0';
2178 
2179 	switch (cmd) {
2180 	case BTRFS_IOC_SCAN_DEV:
2181 		mutex_lock(&uuid_mutex);
2182 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2183 					       &btrfs_root_fs_type);
2184 		ret = PTR_ERR_OR_ZERO(device);
2185 		mutex_unlock(&uuid_mutex);
2186 		break;
2187 	case BTRFS_IOC_FORGET_DEV:
2188 		if (vol->name[0] != 0) {
2189 			ret = lookup_bdev(vol->name, &devt);
2190 			if (ret)
2191 				break;
2192 		}
2193 		ret = btrfs_forget_devices(devt);
2194 		break;
2195 	case BTRFS_IOC_DEVICES_READY:
2196 		mutex_lock(&uuid_mutex);
2197 		device = btrfs_scan_one_device(vol->name, FMODE_READ,
2198 					       &btrfs_root_fs_type);
2199 		if (IS_ERR(device)) {
2200 			mutex_unlock(&uuid_mutex);
2201 			ret = PTR_ERR(device);
2202 			break;
2203 		}
2204 		ret = !(device->fs_devices->num_devices ==
2205 			device->fs_devices->total_devices);
2206 		mutex_unlock(&uuid_mutex);
2207 		break;
2208 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2209 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2210 		break;
2211 	}
2212 
2213 	kfree(vol);
2214 	return ret;
2215 }
2216 
2217 static int btrfs_freeze(struct super_block *sb)
2218 {
2219 	struct btrfs_trans_handle *trans;
2220 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2221 	struct btrfs_root *root = fs_info->tree_root;
2222 
2223 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2224 	/*
2225 	 * We don't need a barrier here, we'll wait for any transaction that
2226 	 * could be in progress on other threads (and do delayed iputs that
2227 	 * we want to avoid on a frozen filesystem), or do the commit
2228 	 * ourselves.
2229 	 */
2230 	trans = btrfs_attach_transaction_barrier(root);
2231 	if (IS_ERR(trans)) {
2232 		/* no transaction, don't bother */
2233 		if (PTR_ERR(trans) == -ENOENT)
2234 			return 0;
2235 		return PTR_ERR(trans);
2236 	}
2237 	return btrfs_commit_transaction(trans);
2238 }
2239 
2240 static int check_dev_super(struct btrfs_device *dev)
2241 {
2242 	struct btrfs_fs_info *fs_info = dev->fs_info;
2243 	struct btrfs_super_block *sb;
2244 	u16 csum_type;
2245 	int ret = 0;
2246 
2247 	/* This should be called with fs still frozen. */
2248 	ASSERT(test_bit(BTRFS_FS_FROZEN, &fs_info->flags));
2249 
2250 	/* Missing dev, no need to check. */
2251 	if (!dev->bdev)
2252 		return 0;
2253 
2254 	/* Only need to check the primary super block. */
2255 	sb = btrfs_read_dev_one_super(dev->bdev, 0, true);
2256 	if (IS_ERR(sb))
2257 		return PTR_ERR(sb);
2258 
2259 	/* Verify the checksum. */
2260 	csum_type = btrfs_super_csum_type(sb);
2261 	if (csum_type != btrfs_super_csum_type(fs_info->super_copy)) {
2262 		btrfs_err(fs_info, "csum type changed, has %u expect %u",
2263 			  csum_type, btrfs_super_csum_type(fs_info->super_copy));
2264 		ret = -EUCLEAN;
2265 		goto out;
2266 	}
2267 
2268 	if (btrfs_check_super_csum(fs_info, sb)) {
2269 		btrfs_err(fs_info, "csum for on-disk super block no longer matches");
2270 		ret = -EUCLEAN;
2271 		goto out;
2272 	}
2273 
2274 	/* Btrfs_validate_super() includes fsid check against super->fsid. */
2275 	ret = btrfs_validate_super(fs_info, sb, 0);
2276 	if (ret < 0)
2277 		goto out;
2278 
2279 	if (btrfs_super_generation(sb) != fs_info->last_trans_committed) {
2280 		btrfs_err(fs_info, "transid mismatch, has %llu expect %llu",
2281 			btrfs_super_generation(sb),
2282 			fs_info->last_trans_committed);
2283 		ret = -EUCLEAN;
2284 		goto out;
2285 	}
2286 out:
2287 	btrfs_release_disk_super(sb);
2288 	return ret;
2289 }
2290 
2291 static int btrfs_unfreeze(struct super_block *sb)
2292 {
2293 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2294 	struct btrfs_device *device;
2295 	int ret = 0;
2296 
2297 	/*
2298 	 * Make sure the fs is not changed by accident (like hibernation then
2299 	 * modified by other OS).
2300 	 * If we found anything wrong, we mark the fs error immediately.
2301 	 *
2302 	 * And since the fs is frozen, no one can modify the fs yet, thus
2303 	 * we don't need to hold device_list_mutex.
2304 	 */
2305 	list_for_each_entry(device, &fs_info->fs_devices->devices, dev_list) {
2306 		ret = check_dev_super(device);
2307 		if (ret < 0) {
2308 			btrfs_handle_fs_error(fs_info, ret,
2309 				"super block on devid %llu got modified unexpectedly",
2310 				device->devid);
2311 			break;
2312 		}
2313 	}
2314 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2315 
2316 	/*
2317 	 * We still return 0, to allow VFS layer to unfreeze the fs even the
2318 	 * above checks failed. Since the fs is either fine or read-only, we're
2319 	 * safe to continue, without causing further damage.
2320 	 */
2321 	return 0;
2322 }
2323 
2324 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2325 {
2326 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2327 
2328 	/*
2329 	 * There should be always a valid pointer in latest_dev, it may be stale
2330 	 * for a short moment in case it's being deleted but still valid until
2331 	 * the end of RCU grace period.
2332 	 */
2333 	rcu_read_lock();
2334 	seq_escape(m, rcu_str_deref(fs_info->fs_devices->latest_dev->name), " \t\n\\");
2335 	rcu_read_unlock();
2336 
2337 	return 0;
2338 }
2339 
2340 static const struct super_operations btrfs_super_ops = {
2341 	.drop_inode	= btrfs_drop_inode,
2342 	.evict_inode	= btrfs_evict_inode,
2343 	.put_super	= btrfs_put_super,
2344 	.sync_fs	= btrfs_sync_fs,
2345 	.show_options	= btrfs_show_options,
2346 	.show_devname	= btrfs_show_devname,
2347 	.alloc_inode	= btrfs_alloc_inode,
2348 	.destroy_inode	= btrfs_destroy_inode,
2349 	.free_inode	= btrfs_free_inode,
2350 	.statfs		= btrfs_statfs,
2351 	.remount_fs	= btrfs_remount,
2352 	.freeze_fs	= btrfs_freeze,
2353 	.unfreeze_fs	= btrfs_unfreeze,
2354 };
2355 
2356 static const struct file_operations btrfs_ctl_fops = {
2357 	.open = btrfs_control_open,
2358 	.unlocked_ioctl	 = btrfs_control_ioctl,
2359 	.compat_ioctl = compat_ptr_ioctl,
2360 	.owner	 = THIS_MODULE,
2361 	.llseek = noop_llseek,
2362 };
2363 
2364 static struct miscdevice btrfs_misc = {
2365 	.minor		= BTRFS_MINOR,
2366 	.name		= "btrfs-control",
2367 	.fops		= &btrfs_ctl_fops
2368 };
2369 
2370 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2371 MODULE_ALIAS("devname:btrfs-control");
2372 
2373 static int __init btrfs_interface_init(void)
2374 {
2375 	return misc_register(&btrfs_misc);
2376 }
2377 
2378 static __cold void btrfs_interface_exit(void)
2379 {
2380 	misc_deregister(&btrfs_misc);
2381 }
2382 
2383 static int __init btrfs_print_mod_info(void)
2384 {
2385 	static const char options[] = ""
2386 #ifdef CONFIG_BTRFS_DEBUG
2387 			", debug=on"
2388 #endif
2389 #ifdef CONFIG_BTRFS_ASSERT
2390 			", assert=on"
2391 #endif
2392 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2393 			", integrity-checker=on"
2394 #endif
2395 #ifdef CONFIG_BTRFS_FS_REF_VERIFY
2396 			", ref-verify=on"
2397 #endif
2398 #ifdef CONFIG_BLK_DEV_ZONED
2399 			", zoned=yes"
2400 #else
2401 			", zoned=no"
2402 #endif
2403 #ifdef CONFIG_FS_VERITY
2404 			", fsverity=yes"
2405 #else
2406 			", fsverity=no"
2407 #endif
2408 			;
2409 	pr_info("Btrfs loaded, crc32c=%s%s\n", crc32c_impl(), options);
2410 	return 0;
2411 }
2412 
2413 static int register_btrfs(void)
2414 {
2415 	return register_filesystem(&btrfs_fs_type);
2416 }
2417 
2418 static void unregister_btrfs(void)
2419 {
2420 	unregister_filesystem(&btrfs_fs_type);
2421 }
2422 
2423 /* Helper structure for long init/exit functions. */
2424 struct init_sequence {
2425 	int (*init_func)(void);
2426 	/* Can be NULL if the init_func doesn't need cleanup. */
2427 	void (*exit_func)(void);
2428 };
2429 
2430 static const struct init_sequence mod_init_seq[] = {
2431 	{
2432 		.init_func = btrfs_props_init,
2433 		.exit_func = NULL,
2434 	}, {
2435 		.init_func = btrfs_init_sysfs,
2436 		.exit_func = btrfs_exit_sysfs,
2437 	}, {
2438 		.init_func = btrfs_init_compress,
2439 		.exit_func = btrfs_exit_compress,
2440 	}, {
2441 		.init_func = btrfs_init_cachep,
2442 		.exit_func = btrfs_destroy_cachep,
2443 	}, {
2444 		.init_func = btrfs_transaction_init,
2445 		.exit_func = btrfs_transaction_exit,
2446 	}, {
2447 		.init_func = btrfs_ctree_init,
2448 		.exit_func = btrfs_ctree_exit,
2449 	}, {
2450 		.init_func = btrfs_free_space_init,
2451 		.exit_func = btrfs_free_space_exit,
2452 	}, {
2453 		.init_func = extent_state_init_cachep,
2454 		.exit_func = extent_state_free_cachep,
2455 	}, {
2456 		.init_func = extent_buffer_init_cachep,
2457 		.exit_func = extent_buffer_free_cachep,
2458 	}, {
2459 		.init_func = btrfs_bioset_init,
2460 		.exit_func = btrfs_bioset_exit,
2461 	}, {
2462 		.init_func = extent_map_init,
2463 		.exit_func = extent_map_exit,
2464 	}, {
2465 		.init_func = ordered_data_init,
2466 		.exit_func = ordered_data_exit,
2467 	}, {
2468 		.init_func = btrfs_delayed_inode_init,
2469 		.exit_func = btrfs_delayed_inode_exit,
2470 	}, {
2471 		.init_func = btrfs_auto_defrag_init,
2472 		.exit_func = btrfs_auto_defrag_exit,
2473 	}, {
2474 		.init_func = btrfs_delayed_ref_init,
2475 		.exit_func = btrfs_delayed_ref_exit,
2476 	}, {
2477 		.init_func = btrfs_prelim_ref_init,
2478 		.exit_func = btrfs_prelim_ref_exit,
2479 	}, {
2480 		.init_func = btrfs_interface_init,
2481 		.exit_func = btrfs_interface_exit,
2482 	}, {
2483 		.init_func = btrfs_print_mod_info,
2484 		.exit_func = NULL,
2485 	}, {
2486 		.init_func = btrfs_run_sanity_tests,
2487 		.exit_func = NULL,
2488 	}, {
2489 		.init_func = register_btrfs,
2490 		.exit_func = unregister_btrfs,
2491 	}
2492 };
2493 
2494 static bool mod_init_result[ARRAY_SIZE(mod_init_seq)];
2495 
2496 static __always_inline void btrfs_exit_btrfs_fs(void)
2497 {
2498 	int i;
2499 
2500 	for (i = ARRAY_SIZE(mod_init_seq) - 1; i >= 0; i--) {
2501 		if (!mod_init_result[i])
2502 			continue;
2503 		if (mod_init_seq[i].exit_func)
2504 			mod_init_seq[i].exit_func();
2505 		mod_init_result[i] = false;
2506 	}
2507 }
2508 
2509 static void __exit exit_btrfs_fs(void)
2510 {
2511 	btrfs_exit_btrfs_fs();
2512 }
2513 
2514 static int __init init_btrfs_fs(void)
2515 {
2516 	int ret;
2517 	int i;
2518 
2519 	for (i = 0; i < ARRAY_SIZE(mod_init_seq); i++) {
2520 		ASSERT(!mod_init_result[i]);
2521 		ret = mod_init_seq[i].init_func();
2522 		if (ret < 0) {
2523 			btrfs_exit_btrfs_fs();
2524 			return ret;
2525 		}
2526 		mod_init_result[i] = true;
2527 	}
2528 	return 0;
2529 }
2530 
2531 late_initcall(init_btrfs_fs);
2532 module_exit(exit_btrfs_fs)
2533 
2534 MODULE_LICENSE("GPL");
2535 MODULE_SOFTDEP("pre: crc32c");
2536 MODULE_SOFTDEP("pre: xxhash64");
2537 MODULE_SOFTDEP("pre: sha256");
2538 MODULE_SOFTDEP("pre: blake2b-256");
2539