xref: /openbmc/linux/fs/btrfs/super.c (revision 00142756e1f8015d2f8ce96532d156689db7e448)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/blkdev.h>
20 #include <linux/module.h>
21 #include <linux/buffer_head.h>
22 #include <linux/fs.h>
23 #include <linux/pagemap.h>
24 #include <linux/highmem.h>
25 #include <linux/time.h>
26 #include <linux/init.h>
27 #include <linux/seq_file.h>
28 #include <linux/string.h>
29 #include <linux/backing-dev.h>
30 #include <linux/mount.h>
31 #include <linux/mpage.h>
32 #include <linux/swap.h>
33 #include <linux/writeback.h>
34 #include <linux/statfs.h>
35 #include <linux/compat.h>
36 #include <linux/parser.h>
37 #include <linux/ctype.h>
38 #include <linux/namei.h>
39 #include <linux/miscdevice.h>
40 #include <linux/magic.h>
41 #include <linux/slab.h>
42 #include <linux/cleancache.h>
43 #include <linux/ratelimit.h>
44 #include <linux/btrfs.h>
45 #include "delayed-inode.h"
46 #include "ctree.h"
47 #include "disk-io.h"
48 #include "transaction.h"
49 #include "btrfs_inode.h"
50 #include "print-tree.h"
51 #include "hash.h"
52 #include "props.h"
53 #include "xattr.h"
54 #include "volumes.h"
55 #include "export.h"
56 #include "compression.h"
57 #include "rcu-string.h"
58 #include "dev-replace.h"
59 #include "free-space-cache.h"
60 #include "backref.h"
61 #include "tests/btrfs-tests.h"
62 
63 #include "qgroup.h"
64 #include "backref.h"
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/btrfs.h>
67 
68 static const struct super_operations btrfs_super_ops;
69 static struct file_system_type btrfs_fs_type;
70 
71 static int btrfs_remount(struct super_block *sb, int *flags, char *data);
72 
73 const char *btrfs_decode_error(int errno)
74 {
75 	char *errstr = "unknown";
76 
77 	switch (errno) {
78 	case -EIO:
79 		errstr = "IO failure";
80 		break;
81 	case -ENOMEM:
82 		errstr = "Out of memory";
83 		break;
84 	case -EROFS:
85 		errstr = "Readonly filesystem";
86 		break;
87 	case -EEXIST:
88 		errstr = "Object already exists";
89 		break;
90 	case -ENOSPC:
91 		errstr = "No space left";
92 		break;
93 	case -ENOENT:
94 		errstr = "No such entry";
95 		break;
96 	}
97 
98 	return errstr;
99 }
100 
101 /* btrfs handle error by forcing the filesystem readonly */
102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info)
103 {
104 	struct super_block *sb = fs_info->sb;
105 
106 	if (sb->s_flags & MS_RDONLY)
107 		return;
108 
109 	if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
110 		sb->s_flags |= MS_RDONLY;
111 		btrfs_info(fs_info, "forced readonly");
112 		/*
113 		 * Note that a running device replace operation is not
114 		 * canceled here although there is no way to update
115 		 * the progress. It would add the risk of a deadlock,
116 		 * therefore the canceling is omitted. The only penalty
117 		 * is that some I/O remains active until the procedure
118 		 * completes. The next time when the filesystem is
119 		 * mounted writeable again, the device replace
120 		 * operation continues.
121 		 */
122 	}
123 }
124 
125 /*
126  * __btrfs_handle_fs_error decodes expected errors from the caller and
127  * invokes the approciate error response.
128  */
129 __cold
130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function,
131 		       unsigned int line, int errno, const char *fmt, ...)
132 {
133 	struct super_block *sb = fs_info->sb;
134 #ifdef CONFIG_PRINTK
135 	const char *errstr;
136 #endif
137 
138 	/*
139 	 * Special case: if the error is EROFS, and we're already
140 	 * under MS_RDONLY, then it is safe here.
141 	 */
142 	if (errno == -EROFS && (sb->s_flags & MS_RDONLY))
143   		return;
144 
145 #ifdef CONFIG_PRINTK
146 	errstr = btrfs_decode_error(errno);
147 	if (fmt) {
148 		struct va_format vaf;
149 		va_list args;
150 
151 		va_start(args, fmt);
152 		vaf.fmt = fmt;
153 		vaf.va = &args;
154 
155 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n",
156 			sb->s_id, function, line, errno, errstr, &vaf);
157 		va_end(args);
158 	} else {
159 		pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n",
160 			sb->s_id, function, line, errno, errstr);
161 	}
162 #endif
163 
164 	/*
165 	 * Today we only save the error info to memory.  Long term we'll
166 	 * also send it down to the disk
167 	 */
168 	set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state);
169 
170 	/* Don't go through full error handling during mount */
171 	if (sb->s_flags & MS_BORN)
172 		btrfs_handle_error(fs_info);
173 }
174 
175 #ifdef CONFIG_PRINTK
176 static const char * const logtypes[] = {
177 	"emergency",
178 	"alert",
179 	"critical",
180 	"error",
181 	"warning",
182 	"notice",
183 	"info",
184 	"debug",
185 };
186 
187 
188 /*
189  * Use one ratelimit state per log level so that a flood of less important
190  * messages doesn't cause more important ones to be dropped.
191  */
192 static struct ratelimit_state printk_limits[] = {
193 	RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100),
194 	RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100),
195 	RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100),
196 	RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100),
197 	RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100),
198 	RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100),
199 	RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100),
200 	RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100),
201 };
202 
203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...)
204 {
205 	struct super_block *sb = fs_info->sb;
206 	char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0";
207 	struct va_format vaf;
208 	va_list args;
209 	int kern_level;
210 	const char *type = logtypes[4];
211 	struct ratelimit_state *ratelimit = &printk_limits[4];
212 
213 	va_start(args, fmt);
214 
215 	while ((kern_level = printk_get_level(fmt)) != 0) {
216 		size_t size = printk_skip_level(fmt) - fmt;
217 
218 		if (kern_level >= '0' && kern_level <= '7') {
219 			memcpy(lvl, fmt,  size);
220 			lvl[size] = '\0';
221 			type = logtypes[kern_level - '0'];
222 			ratelimit = &printk_limits[kern_level - '0'];
223 		}
224 		fmt += size;
225 	}
226 
227 	vaf.fmt = fmt;
228 	vaf.va = &args;
229 
230 	if (__ratelimit(ratelimit))
231 		printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf);
232 
233 	va_end(args);
234 }
235 #endif
236 
237 /*
238  * We only mark the transaction aborted and then set the file system read-only.
239  * This will prevent new transactions from starting or trying to join this
240  * one.
241  *
242  * This means that error recovery at the call site is limited to freeing
243  * any local memory allocations and passing the error code up without
244  * further cleanup. The transaction should complete as it normally would
245  * in the call path but will return -EIO.
246  *
247  * We'll complete the cleanup in btrfs_end_transaction and
248  * btrfs_commit_transaction.
249  */
250 __cold
251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans,
252 			       const char *function,
253 			       unsigned int line, int errno)
254 {
255 	struct btrfs_fs_info *fs_info = trans->fs_info;
256 
257 	trans->aborted = errno;
258 	/* Nothing used. The other threads that have joined this
259 	 * transaction may be able to continue. */
260 	if (!trans->dirty && list_empty(&trans->new_bgs)) {
261 		const char *errstr;
262 
263 		errstr = btrfs_decode_error(errno);
264 		btrfs_warn(fs_info,
265 		           "%s:%d: Aborting unused transaction(%s).",
266 		           function, line, errstr);
267 		return;
268 	}
269 	WRITE_ONCE(trans->transaction->aborted, errno);
270 	/* Wake up anybody who may be waiting on this transaction */
271 	wake_up(&fs_info->transaction_wait);
272 	wake_up(&fs_info->transaction_blocked_wait);
273 	__btrfs_handle_fs_error(fs_info, function, line, errno, NULL);
274 }
275 /*
276  * __btrfs_panic decodes unexpected, fatal errors from the caller,
277  * issues an alert, and either panics or BUGs, depending on mount options.
278  */
279 __cold
280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function,
281 		   unsigned int line, int errno, const char *fmt, ...)
282 {
283 	char *s_id = "<unknown>";
284 	const char *errstr;
285 	struct va_format vaf = { .fmt = fmt };
286 	va_list args;
287 
288 	if (fs_info)
289 		s_id = fs_info->sb->s_id;
290 
291 	va_start(args, fmt);
292 	vaf.va = &args;
293 
294 	errstr = btrfs_decode_error(errno);
295 	if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR))
296 		panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n",
297 			s_id, function, line, &vaf, errno, errstr);
298 
299 	btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)",
300 		   function, line, &vaf, errno, errstr);
301 	va_end(args);
302 	/* Caller calls BUG() */
303 }
304 
305 static void btrfs_put_super(struct super_block *sb)
306 {
307 	close_ctree(btrfs_sb(sb));
308 }
309 
310 enum {
311 	Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum,
312 	Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd,
313 	Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress,
314 	Opt_compress_type, Opt_compress_force, Opt_compress_force_type,
315 	Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard,
316 	Opt_space_cache, Opt_space_cache_version, Opt_clear_cache,
317 	Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid,
318 	Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery,
319 	Opt_skip_balance, Opt_check_integrity,
320 	Opt_check_integrity_including_extent_data,
321 	Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree,
322 	Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard,
323 	Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow,
324 	Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot,
325 	Opt_nologreplay, Opt_norecovery,
326 #ifdef CONFIG_BTRFS_DEBUG
327 	Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all,
328 #endif
329 	Opt_err,
330 };
331 
332 static const match_table_t tokens = {
333 	{Opt_degraded, "degraded"},
334 	{Opt_subvol, "subvol=%s"},
335 	{Opt_subvolid, "subvolid=%s"},
336 	{Opt_device, "device=%s"},
337 	{Opt_nodatasum, "nodatasum"},
338 	{Opt_datasum, "datasum"},
339 	{Opt_nodatacow, "nodatacow"},
340 	{Opt_datacow, "datacow"},
341 	{Opt_nobarrier, "nobarrier"},
342 	{Opt_barrier, "barrier"},
343 	{Opt_max_inline, "max_inline=%s"},
344 	{Opt_alloc_start, "alloc_start=%s"},
345 	{Opt_thread_pool, "thread_pool=%d"},
346 	{Opt_compress, "compress"},
347 	{Opt_compress_type, "compress=%s"},
348 	{Opt_compress_force, "compress-force"},
349 	{Opt_compress_force_type, "compress-force=%s"},
350 	{Opt_ssd, "ssd"},
351 	{Opt_ssd_spread, "ssd_spread"},
352 	{Opt_nossd, "nossd"},
353 	{Opt_acl, "acl"},
354 	{Opt_noacl, "noacl"},
355 	{Opt_notreelog, "notreelog"},
356 	{Opt_treelog, "treelog"},
357 	{Opt_nologreplay, "nologreplay"},
358 	{Opt_norecovery, "norecovery"},
359 	{Opt_flushoncommit, "flushoncommit"},
360 	{Opt_noflushoncommit, "noflushoncommit"},
361 	{Opt_ratio, "metadata_ratio=%d"},
362 	{Opt_discard, "discard"},
363 	{Opt_nodiscard, "nodiscard"},
364 	{Opt_space_cache, "space_cache"},
365 	{Opt_space_cache_version, "space_cache=%s"},
366 	{Opt_clear_cache, "clear_cache"},
367 	{Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"},
368 	{Opt_enospc_debug, "enospc_debug"},
369 	{Opt_noenospc_debug, "noenospc_debug"},
370 	{Opt_subvolrootid, "subvolrootid=%d"},
371 	{Opt_defrag, "autodefrag"},
372 	{Opt_nodefrag, "noautodefrag"},
373 	{Opt_inode_cache, "inode_cache"},
374 	{Opt_noinode_cache, "noinode_cache"},
375 	{Opt_no_space_cache, "nospace_cache"},
376 	{Opt_recovery, "recovery"}, /* deprecated */
377 	{Opt_usebackuproot, "usebackuproot"},
378 	{Opt_skip_balance, "skip_balance"},
379 	{Opt_check_integrity, "check_int"},
380 	{Opt_check_integrity_including_extent_data, "check_int_data"},
381 	{Opt_check_integrity_print_mask, "check_int_print_mask=%d"},
382 	{Opt_rescan_uuid_tree, "rescan_uuid_tree"},
383 	{Opt_fatal_errors, "fatal_errors=%s"},
384 	{Opt_commit_interval, "commit=%d"},
385 #ifdef CONFIG_BTRFS_DEBUG
386 	{Opt_fragment_data, "fragment=data"},
387 	{Opt_fragment_metadata, "fragment=metadata"},
388 	{Opt_fragment_all, "fragment=all"},
389 #endif
390 	{Opt_err, NULL},
391 };
392 
393 /*
394  * Regular mount options parser.  Everything that is needed only when
395  * reading in a new superblock is parsed here.
396  * XXX JDM: This needs to be cleaned up for remount.
397  */
398 int btrfs_parse_options(struct btrfs_fs_info *info, char *options,
399 			unsigned long new_flags)
400 {
401 	substring_t args[MAX_OPT_ARGS];
402 	char *p, *num, *orig = NULL;
403 	u64 cache_gen;
404 	int intarg;
405 	int ret = 0;
406 	char *compress_type;
407 	bool compress_force = false;
408 	enum btrfs_compression_type saved_compress_type;
409 	bool saved_compress_force;
410 	int no_compress = 0;
411 
412 	cache_gen = btrfs_super_cache_generation(info->super_copy);
413 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE))
414 		btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE);
415 	else if (cache_gen)
416 		btrfs_set_opt(info->mount_opt, SPACE_CACHE);
417 
418 	/*
419 	 * Even the options are empty, we still need to do extra check
420 	 * against new flags
421 	 */
422 	if (!options)
423 		goto check;
424 
425 	/*
426 	 * strsep changes the string, duplicate it because parse_options
427 	 * gets called twice
428 	 */
429 	options = kstrdup(options, GFP_NOFS);
430 	if (!options)
431 		return -ENOMEM;
432 
433 	orig = options;
434 
435 	while ((p = strsep(&options, ",")) != NULL) {
436 		int token;
437 		if (!*p)
438 			continue;
439 
440 		token = match_token(p, tokens, args);
441 		switch (token) {
442 		case Opt_degraded:
443 			btrfs_info(info, "allowing degraded mounts");
444 			btrfs_set_opt(info->mount_opt, DEGRADED);
445 			break;
446 		case Opt_subvol:
447 		case Opt_subvolid:
448 		case Opt_subvolrootid:
449 		case Opt_device:
450 			/*
451 			 * These are parsed by btrfs_parse_early_options
452 			 * and can be happily ignored here.
453 			 */
454 			break;
455 		case Opt_nodatasum:
456 			btrfs_set_and_info(info, NODATASUM,
457 					   "setting nodatasum");
458 			break;
459 		case Opt_datasum:
460 			if (btrfs_test_opt(info, NODATASUM)) {
461 				if (btrfs_test_opt(info, NODATACOW))
462 					btrfs_info(info,
463 						   "setting datasum, datacow enabled");
464 				else
465 					btrfs_info(info, "setting datasum");
466 			}
467 			btrfs_clear_opt(info->mount_opt, NODATACOW);
468 			btrfs_clear_opt(info->mount_opt, NODATASUM);
469 			break;
470 		case Opt_nodatacow:
471 			if (!btrfs_test_opt(info, NODATACOW)) {
472 				if (!btrfs_test_opt(info, COMPRESS) ||
473 				    !btrfs_test_opt(info, FORCE_COMPRESS)) {
474 					btrfs_info(info,
475 						   "setting nodatacow, compression disabled");
476 				} else {
477 					btrfs_info(info, "setting nodatacow");
478 				}
479 			}
480 			btrfs_clear_opt(info->mount_opt, COMPRESS);
481 			btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
482 			btrfs_set_opt(info->mount_opt, NODATACOW);
483 			btrfs_set_opt(info->mount_opt, NODATASUM);
484 			break;
485 		case Opt_datacow:
486 			btrfs_clear_and_info(info, NODATACOW,
487 					     "setting datacow");
488 			break;
489 		case Opt_compress_force:
490 		case Opt_compress_force_type:
491 			compress_force = true;
492 			/* Fallthrough */
493 		case Opt_compress:
494 		case Opt_compress_type:
495 			saved_compress_type = btrfs_test_opt(info,
496 							     COMPRESS) ?
497 				info->compress_type : BTRFS_COMPRESS_NONE;
498 			saved_compress_force =
499 				btrfs_test_opt(info, FORCE_COMPRESS);
500 			if (token == Opt_compress ||
501 			    token == Opt_compress_force ||
502 			    strcmp(args[0].from, "zlib") == 0) {
503 				compress_type = "zlib";
504 				info->compress_type = BTRFS_COMPRESS_ZLIB;
505 				btrfs_set_opt(info->mount_opt, COMPRESS);
506 				btrfs_clear_opt(info->mount_opt, NODATACOW);
507 				btrfs_clear_opt(info->mount_opt, NODATASUM);
508 				no_compress = 0;
509 			} else if (strcmp(args[0].from, "lzo") == 0) {
510 				compress_type = "lzo";
511 				info->compress_type = BTRFS_COMPRESS_LZO;
512 				btrfs_set_opt(info->mount_opt, COMPRESS);
513 				btrfs_clear_opt(info->mount_opt, NODATACOW);
514 				btrfs_clear_opt(info->mount_opt, NODATASUM);
515 				btrfs_set_fs_incompat(info, COMPRESS_LZO);
516 				no_compress = 0;
517 			} else if (strncmp(args[0].from, "no", 2) == 0) {
518 				compress_type = "no";
519 				btrfs_clear_opt(info->mount_opt, COMPRESS);
520 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
521 				compress_force = false;
522 				no_compress++;
523 			} else {
524 				ret = -EINVAL;
525 				goto out;
526 			}
527 
528 			if (compress_force) {
529 				btrfs_set_opt(info->mount_opt, FORCE_COMPRESS);
530 			} else {
531 				/*
532 				 * If we remount from compress-force=xxx to
533 				 * compress=xxx, we need clear FORCE_COMPRESS
534 				 * flag, otherwise, there is no way for users
535 				 * to disable forcible compression separately.
536 				 */
537 				btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS);
538 			}
539 			if ((btrfs_test_opt(info, COMPRESS) &&
540 			     (info->compress_type != saved_compress_type ||
541 			      compress_force != saved_compress_force)) ||
542 			    (!btrfs_test_opt(info, COMPRESS) &&
543 			     no_compress == 1)) {
544 				btrfs_info(info, "%s %s compression",
545 					   (compress_force) ? "force" : "use",
546 					   compress_type);
547 			}
548 			compress_force = false;
549 			break;
550 		case Opt_ssd:
551 			btrfs_set_and_info(info, SSD,
552 					   "use ssd allocation scheme");
553 			btrfs_clear_opt(info->mount_opt, NOSSD);
554 			break;
555 		case Opt_ssd_spread:
556 			btrfs_set_and_info(info, SSD_SPREAD,
557 					   "use spread ssd allocation scheme");
558 			btrfs_set_opt(info->mount_opt, SSD);
559 			btrfs_clear_opt(info->mount_opt, NOSSD);
560 			break;
561 		case Opt_nossd:
562 			btrfs_set_and_info(info, NOSSD,
563 					     "not using ssd allocation scheme");
564 			btrfs_clear_opt(info->mount_opt, SSD);
565 			btrfs_clear_opt(info->mount_opt, SSD_SPREAD);
566 			break;
567 		case Opt_barrier:
568 			btrfs_clear_and_info(info, NOBARRIER,
569 					     "turning on barriers");
570 			break;
571 		case Opt_nobarrier:
572 			btrfs_set_and_info(info, NOBARRIER,
573 					   "turning off barriers");
574 			break;
575 		case Opt_thread_pool:
576 			ret = match_int(&args[0], &intarg);
577 			if (ret) {
578 				goto out;
579 			} else if (intarg > 0) {
580 				info->thread_pool_size = intarg;
581 			} else {
582 				ret = -EINVAL;
583 				goto out;
584 			}
585 			break;
586 		case Opt_max_inline:
587 			num = match_strdup(&args[0]);
588 			if (num) {
589 				info->max_inline = memparse(num, NULL);
590 				kfree(num);
591 
592 				if (info->max_inline) {
593 					info->max_inline = min_t(u64,
594 						info->max_inline,
595 						info->sectorsize);
596 				}
597 				btrfs_info(info, "max_inline at %llu",
598 					   info->max_inline);
599 			} else {
600 				ret = -ENOMEM;
601 				goto out;
602 			}
603 			break;
604 		case Opt_alloc_start:
605 			btrfs_info(info,
606 				"option alloc_start is obsolete, ignored");
607 			break;
608 		case Opt_acl:
609 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
610 			info->sb->s_flags |= MS_POSIXACL;
611 			break;
612 #else
613 			btrfs_err(info, "support for ACL not compiled in!");
614 			ret = -EINVAL;
615 			goto out;
616 #endif
617 		case Opt_noacl:
618 			info->sb->s_flags &= ~MS_POSIXACL;
619 			break;
620 		case Opt_notreelog:
621 			btrfs_set_and_info(info, NOTREELOG,
622 					   "disabling tree log");
623 			break;
624 		case Opt_treelog:
625 			btrfs_clear_and_info(info, NOTREELOG,
626 					     "enabling tree log");
627 			break;
628 		case Opt_norecovery:
629 		case Opt_nologreplay:
630 			btrfs_set_and_info(info, NOLOGREPLAY,
631 					   "disabling log replay at mount time");
632 			break;
633 		case Opt_flushoncommit:
634 			btrfs_set_and_info(info, FLUSHONCOMMIT,
635 					   "turning on flush-on-commit");
636 			break;
637 		case Opt_noflushoncommit:
638 			btrfs_clear_and_info(info, FLUSHONCOMMIT,
639 					     "turning off flush-on-commit");
640 			break;
641 		case Opt_ratio:
642 			ret = match_int(&args[0], &intarg);
643 			if (ret) {
644 				goto out;
645 			} else if (intarg >= 0) {
646 				info->metadata_ratio = intarg;
647 				btrfs_info(info, "metadata ratio %d",
648 					   info->metadata_ratio);
649 			} else {
650 				ret = -EINVAL;
651 				goto out;
652 			}
653 			break;
654 		case Opt_discard:
655 			btrfs_set_and_info(info, DISCARD,
656 					   "turning on discard");
657 			break;
658 		case Opt_nodiscard:
659 			btrfs_clear_and_info(info, DISCARD,
660 					     "turning off discard");
661 			break;
662 		case Opt_space_cache:
663 		case Opt_space_cache_version:
664 			if (token == Opt_space_cache ||
665 			    strcmp(args[0].from, "v1") == 0) {
666 				btrfs_clear_opt(info->mount_opt,
667 						FREE_SPACE_TREE);
668 				btrfs_set_and_info(info, SPACE_CACHE,
669 					   "enabling disk space caching");
670 			} else if (strcmp(args[0].from, "v2") == 0) {
671 				btrfs_clear_opt(info->mount_opt,
672 						SPACE_CACHE);
673 				btrfs_set_and_info(info, FREE_SPACE_TREE,
674 						   "enabling free space tree");
675 			} else {
676 				ret = -EINVAL;
677 				goto out;
678 			}
679 			break;
680 		case Opt_rescan_uuid_tree:
681 			btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE);
682 			break;
683 		case Opt_no_space_cache:
684 			if (btrfs_test_opt(info, SPACE_CACHE)) {
685 				btrfs_clear_and_info(info, SPACE_CACHE,
686 					     "disabling disk space caching");
687 			}
688 			if (btrfs_test_opt(info, FREE_SPACE_TREE)) {
689 				btrfs_clear_and_info(info, FREE_SPACE_TREE,
690 					     "disabling free space tree");
691 			}
692 			break;
693 		case Opt_inode_cache:
694 			btrfs_set_pending_and_info(info, INODE_MAP_CACHE,
695 					   "enabling inode map caching");
696 			break;
697 		case Opt_noinode_cache:
698 			btrfs_clear_pending_and_info(info, INODE_MAP_CACHE,
699 					     "disabling inode map caching");
700 			break;
701 		case Opt_clear_cache:
702 			btrfs_set_and_info(info, CLEAR_CACHE,
703 					   "force clearing of disk cache");
704 			break;
705 		case Opt_user_subvol_rm_allowed:
706 			btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED);
707 			break;
708 		case Opt_enospc_debug:
709 			btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG);
710 			break;
711 		case Opt_noenospc_debug:
712 			btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG);
713 			break;
714 		case Opt_defrag:
715 			btrfs_set_and_info(info, AUTO_DEFRAG,
716 					   "enabling auto defrag");
717 			break;
718 		case Opt_nodefrag:
719 			btrfs_clear_and_info(info, AUTO_DEFRAG,
720 					     "disabling auto defrag");
721 			break;
722 		case Opt_recovery:
723 			btrfs_warn(info,
724 				   "'recovery' is deprecated, use 'usebackuproot' instead");
725 		case Opt_usebackuproot:
726 			btrfs_info(info,
727 				   "trying to use backup root at mount time");
728 			btrfs_set_opt(info->mount_opt, USEBACKUPROOT);
729 			break;
730 		case Opt_skip_balance:
731 			btrfs_set_opt(info->mount_opt, SKIP_BALANCE);
732 			break;
733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
734 		case Opt_check_integrity_including_extent_data:
735 			btrfs_info(info,
736 				   "enabling check integrity including extent data");
737 			btrfs_set_opt(info->mount_opt,
738 				      CHECK_INTEGRITY_INCLUDING_EXTENT_DATA);
739 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
740 			break;
741 		case Opt_check_integrity:
742 			btrfs_info(info, "enabling check integrity");
743 			btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY);
744 			break;
745 		case Opt_check_integrity_print_mask:
746 			ret = match_int(&args[0], &intarg);
747 			if (ret) {
748 				goto out;
749 			} else if (intarg >= 0) {
750 				info->check_integrity_print_mask = intarg;
751 				btrfs_info(info,
752 					   "check_integrity_print_mask 0x%x",
753 					   info->check_integrity_print_mask);
754 			} else {
755 				ret = -EINVAL;
756 				goto out;
757 			}
758 			break;
759 #else
760 		case Opt_check_integrity_including_extent_data:
761 		case Opt_check_integrity:
762 		case Opt_check_integrity_print_mask:
763 			btrfs_err(info,
764 				  "support for check_integrity* not compiled in!");
765 			ret = -EINVAL;
766 			goto out;
767 #endif
768 		case Opt_fatal_errors:
769 			if (strcmp(args[0].from, "panic") == 0)
770 				btrfs_set_opt(info->mount_opt,
771 					      PANIC_ON_FATAL_ERROR);
772 			else if (strcmp(args[0].from, "bug") == 0)
773 				btrfs_clear_opt(info->mount_opt,
774 					      PANIC_ON_FATAL_ERROR);
775 			else {
776 				ret = -EINVAL;
777 				goto out;
778 			}
779 			break;
780 		case Opt_commit_interval:
781 			intarg = 0;
782 			ret = match_int(&args[0], &intarg);
783 			if (ret < 0) {
784 				btrfs_err(info, "invalid commit interval");
785 				ret = -EINVAL;
786 				goto out;
787 			}
788 			if (intarg > 0) {
789 				if (intarg > 300) {
790 					btrfs_warn(info,
791 						"excessive commit interval %d",
792 						intarg);
793 				}
794 				info->commit_interval = intarg;
795 			} else {
796 				btrfs_info(info,
797 					   "using default commit interval %ds",
798 					   BTRFS_DEFAULT_COMMIT_INTERVAL);
799 				info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL;
800 			}
801 			break;
802 #ifdef CONFIG_BTRFS_DEBUG
803 		case Opt_fragment_all:
804 			btrfs_info(info, "fragmenting all space");
805 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
806 			btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA);
807 			break;
808 		case Opt_fragment_metadata:
809 			btrfs_info(info, "fragmenting metadata");
810 			btrfs_set_opt(info->mount_opt,
811 				      FRAGMENT_METADATA);
812 			break;
813 		case Opt_fragment_data:
814 			btrfs_info(info, "fragmenting data");
815 			btrfs_set_opt(info->mount_opt, FRAGMENT_DATA);
816 			break;
817 #endif
818 		case Opt_err:
819 			btrfs_info(info, "unrecognized mount option '%s'", p);
820 			ret = -EINVAL;
821 			goto out;
822 		default:
823 			break;
824 		}
825 	}
826 check:
827 	/*
828 	 * Extra check for current option against current flag
829 	 */
830 	if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) {
831 		btrfs_err(info,
832 			  "nologreplay must be used with ro mount option");
833 		ret = -EINVAL;
834 	}
835 out:
836 	if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) &&
837 	    !btrfs_test_opt(info, FREE_SPACE_TREE) &&
838 	    !btrfs_test_opt(info, CLEAR_CACHE)) {
839 		btrfs_err(info, "cannot disable free space tree");
840 		ret = -EINVAL;
841 
842 	}
843 	if (!ret && btrfs_test_opt(info, SPACE_CACHE))
844 		btrfs_info(info, "disk space caching is enabled");
845 	if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE))
846 		btrfs_info(info, "using free space tree");
847 	kfree(orig);
848 	return ret;
849 }
850 
851 /*
852  * Parse mount options that are required early in the mount process.
853  *
854  * All other options will be parsed on much later in the mount process and
855  * only when we need to allocate a new super block.
856  */
857 static int btrfs_parse_early_options(const char *options, fmode_t flags,
858 		void *holder, char **subvol_name, u64 *subvol_objectid,
859 		struct btrfs_fs_devices **fs_devices)
860 {
861 	substring_t args[MAX_OPT_ARGS];
862 	char *device_name, *opts, *orig, *p;
863 	char *num = NULL;
864 	int error = 0;
865 
866 	if (!options)
867 		return 0;
868 
869 	/*
870 	 * strsep changes the string, duplicate it because parse_options
871 	 * gets called twice
872 	 */
873 	opts = kstrdup(options, GFP_KERNEL);
874 	if (!opts)
875 		return -ENOMEM;
876 	orig = opts;
877 
878 	while ((p = strsep(&opts, ",")) != NULL) {
879 		int token;
880 		if (!*p)
881 			continue;
882 
883 		token = match_token(p, tokens, args);
884 		switch (token) {
885 		case Opt_subvol:
886 			kfree(*subvol_name);
887 			*subvol_name = match_strdup(&args[0]);
888 			if (!*subvol_name) {
889 				error = -ENOMEM;
890 				goto out;
891 			}
892 			break;
893 		case Opt_subvolid:
894 			num = match_strdup(&args[0]);
895 			if (num) {
896 				*subvol_objectid = memparse(num, NULL);
897 				kfree(num);
898 				/* we want the original fs_tree */
899 				if (!*subvol_objectid)
900 					*subvol_objectid =
901 						BTRFS_FS_TREE_OBJECTID;
902 			} else {
903 				error = -EINVAL;
904 				goto out;
905 			}
906 			break;
907 		case Opt_subvolrootid:
908 			pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n");
909 			break;
910 		case Opt_device:
911 			device_name = match_strdup(&args[0]);
912 			if (!device_name) {
913 				error = -ENOMEM;
914 				goto out;
915 			}
916 			error = btrfs_scan_one_device(device_name,
917 					flags, holder, fs_devices);
918 			kfree(device_name);
919 			if (error)
920 				goto out;
921 			break;
922 		default:
923 			break;
924 		}
925 	}
926 
927 out:
928 	kfree(orig);
929 	return error;
930 }
931 
932 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info,
933 					   u64 subvol_objectid)
934 {
935 	struct btrfs_root *root = fs_info->tree_root;
936 	struct btrfs_root *fs_root;
937 	struct btrfs_root_ref *root_ref;
938 	struct btrfs_inode_ref *inode_ref;
939 	struct btrfs_key key;
940 	struct btrfs_path *path = NULL;
941 	char *name = NULL, *ptr;
942 	u64 dirid;
943 	int len;
944 	int ret;
945 
946 	path = btrfs_alloc_path();
947 	if (!path) {
948 		ret = -ENOMEM;
949 		goto err;
950 	}
951 	path->leave_spinning = 1;
952 
953 	name = kmalloc(PATH_MAX, GFP_NOFS);
954 	if (!name) {
955 		ret = -ENOMEM;
956 		goto err;
957 	}
958 	ptr = name + PATH_MAX - 1;
959 	ptr[0] = '\0';
960 
961 	/*
962 	 * Walk up the subvolume trees in the tree of tree roots by root
963 	 * backrefs until we hit the top-level subvolume.
964 	 */
965 	while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
966 		key.objectid = subvol_objectid;
967 		key.type = BTRFS_ROOT_BACKREF_KEY;
968 		key.offset = (u64)-1;
969 
970 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
971 		if (ret < 0) {
972 			goto err;
973 		} else if (ret > 0) {
974 			ret = btrfs_previous_item(root, path, subvol_objectid,
975 						  BTRFS_ROOT_BACKREF_KEY);
976 			if (ret < 0) {
977 				goto err;
978 			} else if (ret > 0) {
979 				ret = -ENOENT;
980 				goto err;
981 			}
982 		}
983 
984 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
985 		subvol_objectid = key.offset;
986 
987 		root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0],
988 					  struct btrfs_root_ref);
989 		len = btrfs_root_ref_name_len(path->nodes[0], root_ref);
990 		ptr -= len + 1;
991 		if (ptr < name) {
992 			ret = -ENAMETOOLONG;
993 			goto err;
994 		}
995 		read_extent_buffer(path->nodes[0], ptr + 1,
996 				   (unsigned long)(root_ref + 1), len);
997 		ptr[0] = '/';
998 		dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref);
999 		btrfs_release_path(path);
1000 
1001 		key.objectid = subvol_objectid;
1002 		key.type = BTRFS_ROOT_ITEM_KEY;
1003 		key.offset = (u64)-1;
1004 		fs_root = btrfs_read_fs_root_no_name(fs_info, &key);
1005 		if (IS_ERR(fs_root)) {
1006 			ret = PTR_ERR(fs_root);
1007 			goto err;
1008 		}
1009 
1010 		/*
1011 		 * Walk up the filesystem tree by inode refs until we hit the
1012 		 * root directory.
1013 		 */
1014 		while (dirid != BTRFS_FIRST_FREE_OBJECTID) {
1015 			key.objectid = dirid;
1016 			key.type = BTRFS_INODE_REF_KEY;
1017 			key.offset = (u64)-1;
1018 
1019 			ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0);
1020 			if (ret < 0) {
1021 				goto err;
1022 			} else if (ret > 0) {
1023 				ret = btrfs_previous_item(fs_root, path, dirid,
1024 							  BTRFS_INODE_REF_KEY);
1025 				if (ret < 0) {
1026 					goto err;
1027 				} else if (ret > 0) {
1028 					ret = -ENOENT;
1029 					goto err;
1030 				}
1031 			}
1032 
1033 			btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1034 			dirid = key.offset;
1035 
1036 			inode_ref = btrfs_item_ptr(path->nodes[0],
1037 						   path->slots[0],
1038 						   struct btrfs_inode_ref);
1039 			len = btrfs_inode_ref_name_len(path->nodes[0],
1040 						       inode_ref);
1041 			ptr -= len + 1;
1042 			if (ptr < name) {
1043 				ret = -ENAMETOOLONG;
1044 				goto err;
1045 			}
1046 			read_extent_buffer(path->nodes[0], ptr + 1,
1047 					   (unsigned long)(inode_ref + 1), len);
1048 			ptr[0] = '/';
1049 			btrfs_release_path(path);
1050 		}
1051 	}
1052 
1053 	btrfs_free_path(path);
1054 	if (ptr == name + PATH_MAX - 1) {
1055 		name[0] = '/';
1056 		name[1] = '\0';
1057 	} else {
1058 		memmove(name, ptr, name + PATH_MAX - ptr);
1059 	}
1060 	return name;
1061 
1062 err:
1063 	btrfs_free_path(path);
1064 	kfree(name);
1065 	return ERR_PTR(ret);
1066 }
1067 
1068 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid)
1069 {
1070 	struct btrfs_root *root = fs_info->tree_root;
1071 	struct btrfs_dir_item *di;
1072 	struct btrfs_path *path;
1073 	struct btrfs_key location;
1074 	u64 dir_id;
1075 
1076 	path = btrfs_alloc_path();
1077 	if (!path)
1078 		return -ENOMEM;
1079 	path->leave_spinning = 1;
1080 
1081 	/*
1082 	 * Find the "default" dir item which points to the root item that we
1083 	 * will mount by default if we haven't been given a specific subvolume
1084 	 * to mount.
1085 	 */
1086 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
1087 	di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0);
1088 	if (IS_ERR(di)) {
1089 		btrfs_free_path(path);
1090 		return PTR_ERR(di);
1091 	}
1092 	if (!di) {
1093 		/*
1094 		 * Ok the default dir item isn't there.  This is weird since
1095 		 * it's always been there, but don't freak out, just try and
1096 		 * mount the top-level subvolume.
1097 		 */
1098 		btrfs_free_path(path);
1099 		*objectid = BTRFS_FS_TREE_OBJECTID;
1100 		return 0;
1101 	}
1102 
1103 	btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location);
1104 	btrfs_free_path(path);
1105 	*objectid = location.objectid;
1106 	return 0;
1107 }
1108 
1109 static int btrfs_fill_super(struct super_block *sb,
1110 			    struct btrfs_fs_devices *fs_devices,
1111 			    void *data)
1112 {
1113 	struct inode *inode;
1114 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1115 	struct btrfs_key key;
1116 	int err;
1117 
1118 	sb->s_maxbytes = MAX_LFS_FILESIZE;
1119 	sb->s_magic = BTRFS_SUPER_MAGIC;
1120 	sb->s_op = &btrfs_super_ops;
1121 	sb->s_d_op = &btrfs_dentry_operations;
1122 	sb->s_export_op = &btrfs_export_ops;
1123 	sb->s_xattr = btrfs_xattr_handlers;
1124 	sb->s_time_gran = 1;
1125 #ifdef CONFIG_BTRFS_FS_POSIX_ACL
1126 	sb->s_flags |= MS_POSIXACL;
1127 #endif
1128 	sb->s_flags |= MS_I_VERSION;
1129 	sb->s_iflags |= SB_I_CGROUPWB;
1130 
1131 	err = super_setup_bdi(sb);
1132 	if (err) {
1133 		btrfs_err(fs_info, "super_setup_bdi failed");
1134 		return err;
1135 	}
1136 
1137 	err = open_ctree(sb, fs_devices, (char *)data);
1138 	if (err) {
1139 		btrfs_err(fs_info, "open_ctree failed");
1140 		return err;
1141 	}
1142 
1143 	key.objectid = BTRFS_FIRST_FREE_OBJECTID;
1144 	key.type = BTRFS_INODE_ITEM_KEY;
1145 	key.offset = 0;
1146 	inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL);
1147 	if (IS_ERR(inode)) {
1148 		err = PTR_ERR(inode);
1149 		goto fail_close;
1150 	}
1151 
1152 	sb->s_root = d_make_root(inode);
1153 	if (!sb->s_root) {
1154 		err = -ENOMEM;
1155 		goto fail_close;
1156 	}
1157 
1158 	cleancache_init_fs(sb);
1159 	sb->s_flags |= MS_ACTIVE;
1160 	return 0;
1161 
1162 fail_close:
1163 	close_ctree(fs_info);
1164 	return err;
1165 }
1166 
1167 int btrfs_sync_fs(struct super_block *sb, int wait)
1168 {
1169 	struct btrfs_trans_handle *trans;
1170 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1171 	struct btrfs_root *root = fs_info->tree_root;
1172 
1173 	trace_btrfs_sync_fs(fs_info, wait);
1174 
1175 	if (!wait) {
1176 		filemap_flush(fs_info->btree_inode->i_mapping);
1177 		return 0;
1178 	}
1179 
1180 	btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1181 
1182 	trans = btrfs_attach_transaction_barrier(root);
1183 	if (IS_ERR(trans)) {
1184 		/* no transaction, don't bother */
1185 		if (PTR_ERR(trans) == -ENOENT) {
1186 			/*
1187 			 * Exit unless we have some pending changes
1188 			 * that need to go through commit
1189 			 */
1190 			if (fs_info->pending_changes == 0)
1191 				return 0;
1192 			/*
1193 			 * A non-blocking test if the fs is frozen. We must not
1194 			 * start a new transaction here otherwise a deadlock
1195 			 * happens. The pending operations are delayed to the
1196 			 * next commit after thawing.
1197 			 */
1198 			if (__sb_start_write(sb, SB_FREEZE_WRITE, false))
1199 				__sb_end_write(sb, SB_FREEZE_WRITE);
1200 			else
1201 				return 0;
1202 			trans = btrfs_start_transaction(root, 0);
1203 		}
1204 		if (IS_ERR(trans))
1205 			return PTR_ERR(trans);
1206 	}
1207 	return btrfs_commit_transaction(trans);
1208 }
1209 
1210 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry)
1211 {
1212 	struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb);
1213 	char *compress_type;
1214 
1215 	if (btrfs_test_opt(info, DEGRADED))
1216 		seq_puts(seq, ",degraded");
1217 	if (btrfs_test_opt(info, NODATASUM))
1218 		seq_puts(seq, ",nodatasum");
1219 	if (btrfs_test_opt(info, NODATACOW))
1220 		seq_puts(seq, ",nodatacow");
1221 	if (btrfs_test_opt(info, NOBARRIER))
1222 		seq_puts(seq, ",nobarrier");
1223 	if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE)
1224 		seq_printf(seq, ",max_inline=%llu", info->max_inline);
1225 	if (info->thread_pool_size !=  min_t(unsigned long,
1226 					     num_online_cpus() + 2, 8))
1227 		seq_printf(seq, ",thread_pool=%d", info->thread_pool_size);
1228 	if (btrfs_test_opt(info, COMPRESS)) {
1229 		if (info->compress_type == BTRFS_COMPRESS_ZLIB)
1230 			compress_type = "zlib";
1231 		else
1232 			compress_type = "lzo";
1233 		if (btrfs_test_opt(info, FORCE_COMPRESS))
1234 			seq_printf(seq, ",compress-force=%s", compress_type);
1235 		else
1236 			seq_printf(seq, ",compress=%s", compress_type);
1237 	}
1238 	if (btrfs_test_opt(info, NOSSD))
1239 		seq_puts(seq, ",nossd");
1240 	if (btrfs_test_opt(info, SSD_SPREAD))
1241 		seq_puts(seq, ",ssd_spread");
1242 	else if (btrfs_test_opt(info, SSD))
1243 		seq_puts(seq, ",ssd");
1244 	if (btrfs_test_opt(info, NOTREELOG))
1245 		seq_puts(seq, ",notreelog");
1246 	if (btrfs_test_opt(info, NOLOGREPLAY))
1247 		seq_puts(seq, ",nologreplay");
1248 	if (btrfs_test_opt(info, FLUSHONCOMMIT))
1249 		seq_puts(seq, ",flushoncommit");
1250 	if (btrfs_test_opt(info, DISCARD))
1251 		seq_puts(seq, ",discard");
1252 	if (!(info->sb->s_flags & MS_POSIXACL))
1253 		seq_puts(seq, ",noacl");
1254 	if (btrfs_test_opt(info, SPACE_CACHE))
1255 		seq_puts(seq, ",space_cache");
1256 	else if (btrfs_test_opt(info, FREE_SPACE_TREE))
1257 		seq_puts(seq, ",space_cache=v2");
1258 	else
1259 		seq_puts(seq, ",nospace_cache");
1260 	if (btrfs_test_opt(info, RESCAN_UUID_TREE))
1261 		seq_puts(seq, ",rescan_uuid_tree");
1262 	if (btrfs_test_opt(info, CLEAR_CACHE))
1263 		seq_puts(seq, ",clear_cache");
1264 	if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED))
1265 		seq_puts(seq, ",user_subvol_rm_allowed");
1266 	if (btrfs_test_opt(info, ENOSPC_DEBUG))
1267 		seq_puts(seq, ",enospc_debug");
1268 	if (btrfs_test_opt(info, AUTO_DEFRAG))
1269 		seq_puts(seq, ",autodefrag");
1270 	if (btrfs_test_opt(info, INODE_MAP_CACHE))
1271 		seq_puts(seq, ",inode_cache");
1272 	if (btrfs_test_opt(info, SKIP_BALANCE))
1273 		seq_puts(seq, ",skip_balance");
1274 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
1275 	if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA))
1276 		seq_puts(seq, ",check_int_data");
1277 	else if (btrfs_test_opt(info, CHECK_INTEGRITY))
1278 		seq_puts(seq, ",check_int");
1279 	if (info->check_integrity_print_mask)
1280 		seq_printf(seq, ",check_int_print_mask=%d",
1281 				info->check_integrity_print_mask);
1282 #endif
1283 	if (info->metadata_ratio)
1284 		seq_printf(seq, ",metadata_ratio=%d",
1285 				info->metadata_ratio);
1286 	if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR))
1287 		seq_puts(seq, ",fatal_errors=panic");
1288 	if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL)
1289 		seq_printf(seq, ",commit=%d", info->commit_interval);
1290 #ifdef CONFIG_BTRFS_DEBUG
1291 	if (btrfs_test_opt(info, FRAGMENT_DATA))
1292 		seq_puts(seq, ",fragment=data");
1293 	if (btrfs_test_opt(info, FRAGMENT_METADATA))
1294 		seq_puts(seq, ",fragment=metadata");
1295 #endif
1296 	seq_printf(seq, ",subvolid=%llu",
1297 		  BTRFS_I(d_inode(dentry))->root->root_key.objectid);
1298 	seq_puts(seq, ",subvol=");
1299 	seq_dentry(seq, dentry, " \t\n\\");
1300 	return 0;
1301 }
1302 
1303 static int btrfs_test_super(struct super_block *s, void *data)
1304 {
1305 	struct btrfs_fs_info *p = data;
1306 	struct btrfs_fs_info *fs_info = btrfs_sb(s);
1307 
1308 	return fs_info->fs_devices == p->fs_devices;
1309 }
1310 
1311 static int btrfs_set_super(struct super_block *s, void *data)
1312 {
1313 	int err = set_anon_super(s, data);
1314 	if (!err)
1315 		s->s_fs_info = data;
1316 	return err;
1317 }
1318 
1319 /*
1320  * subvolumes are identified by ino 256
1321  */
1322 static inline int is_subvolume_inode(struct inode *inode)
1323 {
1324 	if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID)
1325 		return 1;
1326 	return 0;
1327 }
1328 
1329 /*
1330  * This will add subvolid=0 to the argument string while removing any subvol=
1331  * and subvolid= arguments to make sure we get the top-level root for path
1332  * walking to the subvol we want.
1333  */
1334 static char *setup_root_args(char *args)
1335 {
1336 	char *buf, *dst, *sep;
1337 
1338 	if (!args)
1339 		return kstrdup("subvolid=0", GFP_NOFS);
1340 
1341 	/* The worst case is that we add ",subvolid=0" to the end. */
1342 	buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS);
1343 	if (!buf)
1344 		return NULL;
1345 
1346 	while (1) {
1347 		sep = strchrnul(args, ',');
1348 		if (!strstarts(args, "subvol=") &&
1349 		    !strstarts(args, "subvolid=")) {
1350 			memcpy(dst, args, sep - args);
1351 			dst += sep - args;
1352 			*dst++ = ',';
1353 		}
1354 		if (*sep)
1355 			args = sep + 1;
1356 		else
1357 			break;
1358 	}
1359 	strcpy(dst, "subvolid=0");
1360 
1361 	return buf;
1362 }
1363 
1364 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid,
1365 				   int flags, const char *device_name,
1366 				   char *data)
1367 {
1368 	struct dentry *root;
1369 	struct vfsmount *mnt = NULL;
1370 	char *newargs;
1371 	int ret;
1372 
1373 	newargs = setup_root_args(data);
1374 	if (!newargs) {
1375 		root = ERR_PTR(-ENOMEM);
1376 		goto out;
1377 	}
1378 
1379 	mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs);
1380 	if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) {
1381 		if (flags & MS_RDONLY) {
1382 			mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY,
1383 					     device_name, newargs);
1384 		} else {
1385 			mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY,
1386 					     device_name, newargs);
1387 			if (IS_ERR(mnt)) {
1388 				root = ERR_CAST(mnt);
1389 				mnt = NULL;
1390 				goto out;
1391 			}
1392 
1393 			down_write(&mnt->mnt_sb->s_umount);
1394 			ret = btrfs_remount(mnt->mnt_sb, &flags, NULL);
1395 			up_write(&mnt->mnt_sb->s_umount);
1396 			if (ret < 0) {
1397 				root = ERR_PTR(ret);
1398 				goto out;
1399 			}
1400 		}
1401 	}
1402 	if (IS_ERR(mnt)) {
1403 		root = ERR_CAST(mnt);
1404 		mnt = NULL;
1405 		goto out;
1406 	}
1407 
1408 	if (!subvol_name) {
1409 		if (!subvol_objectid) {
1410 			ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb),
1411 							  &subvol_objectid);
1412 			if (ret) {
1413 				root = ERR_PTR(ret);
1414 				goto out;
1415 			}
1416 		}
1417 		subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb),
1418 							    subvol_objectid);
1419 		if (IS_ERR(subvol_name)) {
1420 			root = ERR_CAST(subvol_name);
1421 			subvol_name = NULL;
1422 			goto out;
1423 		}
1424 
1425 	}
1426 
1427 	root = mount_subtree(mnt, subvol_name);
1428 	/* mount_subtree() drops our reference on the vfsmount. */
1429 	mnt = NULL;
1430 
1431 	if (!IS_ERR(root)) {
1432 		struct super_block *s = root->d_sb;
1433 		struct btrfs_fs_info *fs_info = btrfs_sb(s);
1434 		struct inode *root_inode = d_inode(root);
1435 		u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid;
1436 
1437 		ret = 0;
1438 		if (!is_subvolume_inode(root_inode)) {
1439 			btrfs_err(fs_info, "'%s' is not a valid subvolume",
1440 			       subvol_name);
1441 			ret = -EINVAL;
1442 		}
1443 		if (subvol_objectid && root_objectid != subvol_objectid) {
1444 			/*
1445 			 * This will also catch a race condition where a
1446 			 * subvolume which was passed by ID is renamed and
1447 			 * another subvolume is renamed over the old location.
1448 			 */
1449 			btrfs_err(fs_info,
1450 				  "subvol '%s' does not match subvolid %llu",
1451 				  subvol_name, subvol_objectid);
1452 			ret = -EINVAL;
1453 		}
1454 		if (ret) {
1455 			dput(root);
1456 			root = ERR_PTR(ret);
1457 			deactivate_locked_super(s);
1458 		}
1459 	}
1460 
1461 out:
1462 	mntput(mnt);
1463 	kfree(newargs);
1464 	kfree(subvol_name);
1465 	return root;
1466 }
1467 
1468 static int parse_security_options(char *orig_opts,
1469 				  struct security_mnt_opts *sec_opts)
1470 {
1471 	char *secdata = NULL;
1472 	int ret = 0;
1473 
1474 	secdata = alloc_secdata();
1475 	if (!secdata)
1476 		return -ENOMEM;
1477 	ret = security_sb_copy_data(orig_opts, secdata);
1478 	if (ret) {
1479 		free_secdata(secdata);
1480 		return ret;
1481 	}
1482 	ret = security_sb_parse_opts_str(secdata, sec_opts);
1483 	free_secdata(secdata);
1484 	return ret;
1485 }
1486 
1487 static int setup_security_options(struct btrfs_fs_info *fs_info,
1488 				  struct super_block *sb,
1489 				  struct security_mnt_opts *sec_opts)
1490 {
1491 	int ret = 0;
1492 
1493 	/*
1494 	 * Call security_sb_set_mnt_opts() to check whether new sec_opts
1495 	 * is valid.
1496 	 */
1497 	ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL);
1498 	if (ret)
1499 		return ret;
1500 
1501 #ifdef CONFIG_SECURITY
1502 	if (!fs_info->security_opts.num_mnt_opts) {
1503 		/* first time security setup, copy sec_opts to fs_info */
1504 		memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts));
1505 	} else {
1506 		/*
1507 		 * Since SELinux (the only one supporting security_mnt_opts)
1508 		 * does NOT support changing context during remount/mount of
1509 		 * the same sb, this must be the same or part of the same
1510 		 * security options, just free it.
1511 		 */
1512 		security_free_mnt_opts(sec_opts);
1513 	}
1514 #endif
1515 	return ret;
1516 }
1517 
1518 /*
1519  * Find a superblock for the given device / mount point.
1520  *
1521  * Note:  This is based on get_sb_bdev from fs/super.c with a few additions
1522  *	  for multiple device setup.  Make sure to keep it in sync.
1523  */
1524 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags,
1525 		const char *device_name, void *data)
1526 {
1527 	struct block_device *bdev = NULL;
1528 	struct super_block *s;
1529 	struct btrfs_fs_devices *fs_devices = NULL;
1530 	struct btrfs_fs_info *fs_info = NULL;
1531 	struct security_mnt_opts new_sec_opts;
1532 	fmode_t mode = FMODE_READ;
1533 	char *subvol_name = NULL;
1534 	u64 subvol_objectid = 0;
1535 	int error = 0;
1536 
1537 	if (!(flags & MS_RDONLY))
1538 		mode |= FMODE_WRITE;
1539 
1540 	error = btrfs_parse_early_options(data, mode, fs_type,
1541 					  &subvol_name, &subvol_objectid,
1542 					  &fs_devices);
1543 	if (error) {
1544 		kfree(subvol_name);
1545 		return ERR_PTR(error);
1546 	}
1547 
1548 	if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) {
1549 		/* mount_subvol() will free subvol_name. */
1550 		return mount_subvol(subvol_name, subvol_objectid, flags,
1551 				    device_name, data);
1552 	}
1553 
1554 	security_init_mnt_opts(&new_sec_opts);
1555 	if (data) {
1556 		error = parse_security_options(data, &new_sec_opts);
1557 		if (error)
1558 			return ERR_PTR(error);
1559 	}
1560 
1561 	error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices);
1562 	if (error)
1563 		goto error_sec_opts;
1564 
1565 	/*
1566 	 * Setup a dummy root and fs_info for test/set super.  This is because
1567 	 * we don't actually fill this stuff out until open_ctree, but we need
1568 	 * it for searching for existing supers, so this lets us do that and
1569 	 * then open_ctree will properly initialize everything later.
1570 	 */
1571 	fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS);
1572 	if (!fs_info) {
1573 		error = -ENOMEM;
1574 		goto error_sec_opts;
1575 	}
1576 
1577 	fs_info->fs_devices = fs_devices;
1578 
1579 	fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1580 	fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS);
1581 	security_init_mnt_opts(&fs_info->security_opts);
1582 	if (!fs_info->super_copy || !fs_info->super_for_commit) {
1583 		error = -ENOMEM;
1584 		goto error_fs_info;
1585 	}
1586 
1587 	error = btrfs_open_devices(fs_devices, mode, fs_type);
1588 	if (error)
1589 		goto error_fs_info;
1590 
1591 	if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) {
1592 		error = -EACCES;
1593 		goto error_close_devices;
1594 	}
1595 
1596 	bdev = fs_devices->latest_bdev;
1597 	s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC,
1598 		 fs_info);
1599 	if (IS_ERR(s)) {
1600 		error = PTR_ERR(s);
1601 		goto error_close_devices;
1602 	}
1603 
1604 	if (s->s_root) {
1605 		btrfs_close_devices(fs_devices);
1606 		free_fs_info(fs_info);
1607 		if ((flags ^ s->s_flags) & MS_RDONLY)
1608 			error = -EBUSY;
1609 	} else {
1610 		snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev);
1611 		btrfs_sb(s)->bdev_holder = fs_type;
1612 		error = btrfs_fill_super(s, fs_devices, data);
1613 	}
1614 	if (error) {
1615 		deactivate_locked_super(s);
1616 		goto error_sec_opts;
1617 	}
1618 
1619 	fs_info = btrfs_sb(s);
1620 	error = setup_security_options(fs_info, s, &new_sec_opts);
1621 	if (error) {
1622 		deactivate_locked_super(s);
1623 		goto error_sec_opts;
1624 	}
1625 
1626 	return dget(s->s_root);
1627 
1628 error_close_devices:
1629 	btrfs_close_devices(fs_devices);
1630 error_fs_info:
1631 	free_fs_info(fs_info);
1632 error_sec_opts:
1633 	security_free_mnt_opts(&new_sec_opts);
1634 	return ERR_PTR(error);
1635 }
1636 
1637 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info,
1638 				     int new_pool_size, int old_pool_size)
1639 {
1640 	if (new_pool_size == old_pool_size)
1641 		return;
1642 
1643 	fs_info->thread_pool_size = new_pool_size;
1644 
1645 	btrfs_info(fs_info, "resize thread pool %d -> %d",
1646 	       old_pool_size, new_pool_size);
1647 
1648 	btrfs_workqueue_set_max(fs_info->workers, new_pool_size);
1649 	btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size);
1650 	btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size);
1651 	btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size);
1652 	btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size);
1653 	btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size);
1654 	btrfs_workqueue_set_max(fs_info->endio_meta_write_workers,
1655 				new_pool_size);
1656 	btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size);
1657 	btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size);
1658 	btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size);
1659 	btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size);
1660 	btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers,
1661 				new_pool_size);
1662 }
1663 
1664 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info)
1665 {
1666 	set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1667 }
1668 
1669 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info,
1670 				       unsigned long old_opts, int flags)
1671 {
1672 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1673 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1674 	     (flags & MS_RDONLY))) {
1675 		/* wait for any defraggers to finish */
1676 		wait_event(fs_info->transaction_wait,
1677 			   (atomic_read(&fs_info->defrag_running) == 0));
1678 		if (flags & MS_RDONLY)
1679 			sync_filesystem(fs_info->sb);
1680 	}
1681 }
1682 
1683 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info,
1684 					 unsigned long old_opts)
1685 {
1686 	/*
1687 	 * We need to cleanup all defragable inodes if the autodefragment is
1688 	 * close or the filesystem is read only.
1689 	 */
1690 	if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) &&
1691 	    (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) ||
1692 	     (fs_info->sb->s_flags & MS_RDONLY))) {
1693 		btrfs_cleanup_defrag_inodes(fs_info);
1694 	}
1695 
1696 	clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state);
1697 }
1698 
1699 static int btrfs_remount(struct super_block *sb, int *flags, char *data)
1700 {
1701 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
1702 	struct btrfs_root *root = fs_info->tree_root;
1703 	unsigned old_flags = sb->s_flags;
1704 	unsigned long old_opts = fs_info->mount_opt;
1705 	unsigned long old_compress_type = fs_info->compress_type;
1706 	u64 old_max_inline = fs_info->max_inline;
1707 	int old_thread_pool_size = fs_info->thread_pool_size;
1708 	unsigned int old_metadata_ratio = fs_info->metadata_ratio;
1709 	int ret;
1710 
1711 	sync_filesystem(sb);
1712 	btrfs_remount_prepare(fs_info);
1713 
1714 	if (data) {
1715 		struct security_mnt_opts new_sec_opts;
1716 
1717 		security_init_mnt_opts(&new_sec_opts);
1718 		ret = parse_security_options(data, &new_sec_opts);
1719 		if (ret)
1720 			goto restore;
1721 		ret = setup_security_options(fs_info, sb,
1722 					     &new_sec_opts);
1723 		if (ret) {
1724 			security_free_mnt_opts(&new_sec_opts);
1725 			goto restore;
1726 		}
1727 	}
1728 
1729 	ret = btrfs_parse_options(fs_info, data, *flags);
1730 	if (ret) {
1731 		ret = -EINVAL;
1732 		goto restore;
1733 	}
1734 
1735 	btrfs_remount_begin(fs_info, old_opts, *flags);
1736 	btrfs_resize_thread_pool(fs_info,
1737 		fs_info->thread_pool_size, old_thread_pool_size);
1738 
1739 	if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY))
1740 		goto out;
1741 
1742 	if (*flags & MS_RDONLY) {
1743 		/*
1744 		 * this also happens on 'umount -rf' or on shutdown, when
1745 		 * the filesystem is busy.
1746 		 */
1747 		cancel_work_sync(&fs_info->async_reclaim_work);
1748 
1749 		/* wait for the uuid_scan task to finish */
1750 		down(&fs_info->uuid_tree_rescan_sem);
1751 		/* avoid complains from lockdep et al. */
1752 		up(&fs_info->uuid_tree_rescan_sem);
1753 
1754 		sb->s_flags |= MS_RDONLY;
1755 
1756 		/*
1757 		 * Setting MS_RDONLY will put the cleaner thread to
1758 		 * sleep at the next loop if it's already active.
1759 		 * If it's already asleep, we'll leave unused block
1760 		 * groups on disk until we're mounted read-write again
1761 		 * unless we clean them up here.
1762 		 */
1763 		btrfs_delete_unused_bgs(fs_info);
1764 
1765 		btrfs_dev_replace_suspend_for_unmount(fs_info);
1766 		btrfs_scrub_cancel(fs_info);
1767 		btrfs_pause_balance(fs_info);
1768 
1769 		ret = btrfs_commit_super(fs_info);
1770 		if (ret)
1771 			goto restore;
1772 	} else {
1773 		if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
1774 			btrfs_err(fs_info,
1775 				"Remounting read-write after error is not allowed");
1776 			ret = -EINVAL;
1777 			goto restore;
1778 		}
1779 		if (fs_info->fs_devices->rw_devices == 0) {
1780 			ret = -EACCES;
1781 			goto restore;
1782 		}
1783 
1784 		if (fs_info->fs_devices->missing_devices >
1785 		     fs_info->num_tolerated_disk_barrier_failures) {
1786 			btrfs_warn(fs_info,
1787 				"too many missing devices, writeable remount is not allowed");
1788 			ret = -EACCES;
1789 			goto restore;
1790 		}
1791 
1792 		if (btrfs_super_log_root(fs_info->super_copy) != 0) {
1793 			ret = -EINVAL;
1794 			goto restore;
1795 		}
1796 
1797 		ret = btrfs_cleanup_fs_roots(fs_info);
1798 		if (ret)
1799 			goto restore;
1800 
1801 		/* recover relocation */
1802 		mutex_lock(&fs_info->cleaner_mutex);
1803 		ret = btrfs_recover_relocation(root);
1804 		mutex_unlock(&fs_info->cleaner_mutex);
1805 		if (ret)
1806 			goto restore;
1807 
1808 		ret = btrfs_resume_balance_async(fs_info);
1809 		if (ret)
1810 			goto restore;
1811 
1812 		ret = btrfs_resume_dev_replace_async(fs_info);
1813 		if (ret) {
1814 			btrfs_warn(fs_info, "failed to resume dev_replace");
1815 			goto restore;
1816 		}
1817 
1818 		if (!fs_info->uuid_root) {
1819 			btrfs_info(fs_info, "creating UUID tree");
1820 			ret = btrfs_create_uuid_tree(fs_info);
1821 			if (ret) {
1822 				btrfs_warn(fs_info,
1823 					   "failed to create the UUID tree %d",
1824 					   ret);
1825 				goto restore;
1826 			}
1827 		}
1828 		sb->s_flags &= ~MS_RDONLY;
1829 
1830 		set_bit(BTRFS_FS_OPEN, &fs_info->flags);
1831 	}
1832 out:
1833 	wake_up_process(fs_info->transaction_kthread);
1834 	btrfs_remount_cleanup(fs_info, old_opts);
1835 	return 0;
1836 
1837 restore:
1838 	/* We've hit an error - don't reset MS_RDONLY */
1839 	if (sb->s_flags & MS_RDONLY)
1840 		old_flags |= MS_RDONLY;
1841 	sb->s_flags = old_flags;
1842 	fs_info->mount_opt = old_opts;
1843 	fs_info->compress_type = old_compress_type;
1844 	fs_info->max_inline = old_max_inline;
1845 	btrfs_resize_thread_pool(fs_info,
1846 		old_thread_pool_size, fs_info->thread_pool_size);
1847 	fs_info->metadata_ratio = old_metadata_ratio;
1848 	btrfs_remount_cleanup(fs_info, old_opts);
1849 	return ret;
1850 }
1851 
1852 /* Used to sort the devices by max_avail(descending sort) */
1853 static int btrfs_cmp_device_free_bytes(const void *dev_info1,
1854 				       const void *dev_info2)
1855 {
1856 	if (((struct btrfs_device_info *)dev_info1)->max_avail >
1857 	    ((struct btrfs_device_info *)dev_info2)->max_avail)
1858 		return -1;
1859 	else if (((struct btrfs_device_info *)dev_info1)->max_avail <
1860 		 ((struct btrfs_device_info *)dev_info2)->max_avail)
1861 		return 1;
1862 	else
1863 	return 0;
1864 }
1865 
1866 /*
1867  * sort the devices by max_avail, in which max free extent size of each device
1868  * is stored.(Descending Sort)
1869  */
1870 static inline void btrfs_descending_sort_devices(
1871 					struct btrfs_device_info *devices,
1872 					size_t nr_devices)
1873 {
1874 	sort(devices, nr_devices, sizeof(struct btrfs_device_info),
1875 	     btrfs_cmp_device_free_bytes, NULL);
1876 }
1877 
1878 /*
1879  * The helper to calc the free space on the devices that can be used to store
1880  * file data.
1881  */
1882 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info,
1883 				       u64 *free_bytes)
1884 {
1885 	struct btrfs_device_info *devices_info;
1886 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
1887 	struct btrfs_device *device;
1888 	u64 skip_space;
1889 	u64 type;
1890 	u64 avail_space;
1891 	u64 min_stripe_size;
1892 	int min_stripes = 1, num_stripes = 1;
1893 	int i = 0, nr_devices;
1894 
1895 	/*
1896 	 * We aren't under the device list lock, so this is racy-ish, but good
1897 	 * enough for our purposes.
1898 	 */
1899 	nr_devices = fs_info->fs_devices->open_devices;
1900 	if (!nr_devices) {
1901 		smp_mb();
1902 		nr_devices = fs_info->fs_devices->open_devices;
1903 		ASSERT(nr_devices);
1904 		if (!nr_devices) {
1905 			*free_bytes = 0;
1906 			return 0;
1907 		}
1908 	}
1909 
1910 	devices_info = kmalloc_array(nr_devices, sizeof(*devices_info),
1911 			       GFP_KERNEL);
1912 	if (!devices_info)
1913 		return -ENOMEM;
1914 
1915 	/* calc min stripe number for data space allocation */
1916 	type = btrfs_data_alloc_profile(fs_info);
1917 	if (type & BTRFS_BLOCK_GROUP_RAID0) {
1918 		min_stripes = 2;
1919 		num_stripes = nr_devices;
1920 	} else if (type & BTRFS_BLOCK_GROUP_RAID1) {
1921 		min_stripes = 2;
1922 		num_stripes = 2;
1923 	} else if (type & BTRFS_BLOCK_GROUP_RAID10) {
1924 		min_stripes = 4;
1925 		num_stripes = 4;
1926 	}
1927 
1928 	if (type & BTRFS_BLOCK_GROUP_DUP)
1929 		min_stripe_size = 2 * BTRFS_STRIPE_LEN;
1930 	else
1931 		min_stripe_size = BTRFS_STRIPE_LEN;
1932 
1933 	rcu_read_lock();
1934 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
1935 		if (!device->in_fs_metadata || !device->bdev ||
1936 		    device->is_tgtdev_for_dev_replace)
1937 			continue;
1938 
1939 		if (i >= nr_devices)
1940 			break;
1941 
1942 		avail_space = device->total_bytes - device->bytes_used;
1943 
1944 		/* align with stripe_len */
1945 		avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN);
1946 		avail_space *= BTRFS_STRIPE_LEN;
1947 
1948 		/*
1949 		 * In order to avoid overwriting the superblock on the drive,
1950 		 * btrfs starts at an offset of at least 1MB when doing chunk
1951 		 * allocation.
1952 		 */
1953 		skip_space = SZ_1M;
1954 
1955 		/*
1956 		 * we can use the free space in [0, skip_space - 1], subtract
1957 		 * it from the total.
1958 		 */
1959 		if (avail_space && avail_space >= skip_space)
1960 			avail_space -= skip_space;
1961 		else
1962 			avail_space = 0;
1963 
1964 		if (avail_space < min_stripe_size)
1965 			continue;
1966 
1967 		devices_info[i].dev = device;
1968 		devices_info[i].max_avail = avail_space;
1969 
1970 		i++;
1971 	}
1972 	rcu_read_unlock();
1973 
1974 	nr_devices = i;
1975 
1976 	btrfs_descending_sort_devices(devices_info, nr_devices);
1977 
1978 	i = nr_devices - 1;
1979 	avail_space = 0;
1980 	while (nr_devices >= min_stripes) {
1981 		if (num_stripes > nr_devices)
1982 			num_stripes = nr_devices;
1983 
1984 		if (devices_info[i].max_avail >= min_stripe_size) {
1985 			int j;
1986 			u64 alloc_size;
1987 
1988 			avail_space += devices_info[i].max_avail * num_stripes;
1989 			alloc_size = devices_info[i].max_avail;
1990 			for (j = i + 1 - num_stripes; j <= i; j++)
1991 				devices_info[j].max_avail -= alloc_size;
1992 		}
1993 		i--;
1994 		nr_devices--;
1995 	}
1996 
1997 	kfree(devices_info);
1998 	*free_bytes = avail_space;
1999 	return 0;
2000 }
2001 
2002 /*
2003  * Calculate numbers for 'df', pessimistic in case of mixed raid profiles.
2004  *
2005  * If there's a redundant raid level at DATA block groups, use the respective
2006  * multiplier to scale the sizes.
2007  *
2008  * Unused device space usage is based on simulating the chunk allocator
2009  * algorithm that respects the device sizes and order of allocations.  This is
2010  * a close approximation of the actual use but there are other factors that may
2011  * change the result (like a new metadata chunk).
2012  *
2013  * If metadata is exhausted, f_bavail will be 0.
2014  */
2015 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf)
2016 {
2017 	struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb);
2018 	struct btrfs_super_block *disk_super = fs_info->super_copy;
2019 	struct list_head *head = &fs_info->space_info;
2020 	struct btrfs_space_info *found;
2021 	u64 total_used = 0;
2022 	u64 total_free_data = 0;
2023 	u64 total_free_meta = 0;
2024 	int bits = dentry->d_sb->s_blocksize_bits;
2025 	__be32 *fsid = (__be32 *)fs_info->fsid;
2026 	unsigned factor = 1;
2027 	struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
2028 	int ret;
2029 	u64 thresh = 0;
2030 	int mixed = 0;
2031 
2032 	rcu_read_lock();
2033 	list_for_each_entry_rcu(found, head, list) {
2034 		if (found->flags & BTRFS_BLOCK_GROUP_DATA) {
2035 			int i;
2036 
2037 			total_free_data += found->disk_total - found->disk_used;
2038 			total_free_data -=
2039 				btrfs_account_ro_block_groups_free_space(found);
2040 
2041 			for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) {
2042 				if (!list_empty(&found->block_groups[i])) {
2043 					switch (i) {
2044 					case BTRFS_RAID_DUP:
2045 					case BTRFS_RAID_RAID1:
2046 					case BTRFS_RAID_RAID10:
2047 						factor = 2;
2048 					}
2049 				}
2050 			}
2051 		}
2052 
2053 		/*
2054 		 * Metadata in mixed block goup profiles are accounted in data
2055 		 */
2056 		if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) {
2057 			if (found->flags & BTRFS_BLOCK_GROUP_DATA)
2058 				mixed = 1;
2059 			else
2060 				total_free_meta += found->disk_total -
2061 					found->disk_used;
2062 		}
2063 
2064 		total_used += found->disk_used;
2065 	}
2066 
2067 	rcu_read_unlock();
2068 
2069 	buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor);
2070 	buf->f_blocks >>= bits;
2071 	buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits);
2072 
2073 	/* Account global block reserve as used, it's in logical size already */
2074 	spin_lock(&block_rsv->lock);
2075 	/* Mixed block groups accounting is not byte-accurate, avoid overflow */
2076 	if (buf->f_bfree >= block_rsv->size >> bits)
2077 		buf->f_bfree -= block_rsv->size >> bits;
2078 	else
2079 		buf->f_bfree = 0;
2080 	spin_unlock(&block_rsv->lock);
2081 
2082 	buf->f_bavail = div_u64(total_free_data, factor);
2083 	ret = btrfs_calc_avail_data_space(fs_info, &total_free_data);
2084 	if (ret)
2085 		return ret;
2086 	buf->f_bavail += div_u64(total_free_data, factor);
2087 	buf->f_bavail = buf->f_bavail >> bits;
2088 
2089 	/*
2090 	 * We calculate the remaining metadata space minus global reserve. If
2091 	 * this is (supposedly) smaller than zero, there's no space. But this
2092 	 * does not hold in practice, the exhausted state happens where's still
2093 	 * some positive delta. So we apply some guesswork and compare the
2094 	 * delta to a 4M threshold.  (Practically observed delta was ~2M.)
2095 	 *
2096 	 * We probably cannot calculate the exact threshold value because this
2097 	 * depends on the internal reservations requested by various
2098 	 * operations, so some operations that consume a few metadata will
2099 	 * succeed even if the Avail is zero. But this is better than the other
2100 	 * way around.
2101 	 */
2102 	thresh = 4 * 1024 * 1024;
2103 
2104 	if (!mixed && total_free_meta - thresh < block_rsv->size)
2105 		buf->f_bavail = 0;
2106 
2107 	buf->f_type = BTRFS_SUPER_MAGIC;
2108 	buf->f_bsize = dentry->d_sb->s_blocksize;
2109 	buf->f_namelen = BTRFS_NAME_LEN;
2110 
2111 	/* We treat it as constant endianness (it doesn't matter _which_)
2112 	   because we want the fsid to come out the same whether mounted
2113 	   on a big-endian or little-endian host */
2114 	buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]);
2115 	buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]);
2116 	/* Mask in the root object ID too, to disambiguate subvols */
2117 	buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32;
2118 	buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid;
2119 
2120 	return 0;
2121 }
2122 
2123 static void btrfs_kill_super(struct super_block *sb)
2124 {
2125 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2126 	kill_anon_super(sb);
2127 	free_fs_info(fs_info);
2128 }
2129 
2130 static struct file_system_type btrfs_fs_type = {
2131 	.owner		= THIS_MODULE,
2132 	.name		= "btrfs",
2133 	.mount		= btrfs_mount,
2134 	.kill_sb	= btrfs_kill_super,
2135 	.fs_flags	= FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA,
2136 };
2137 MODULE_ALIAS_FS("btrfs");
2138 
2139 static int btrfs_control_open(struct inode *inode, struct file *file)
2140 {
2141 	/*
2142 	 * The control file's private_data is used to hold the
2143 	 * transaction when it is started and is used to keep
2144 	 * track of whether a transaction is already in progress.
2145 	 */
2146 	file->private_data = NULL;
2147 	return 0;
2148 }
2149 
2150 /*
2151  * used by btrfsctl to scan devices when no FS is mounted
2152  */
2153 static long btrfs_control_ioctl(struct file *file, unsigned int cmd,
2154 				unsigned long arg)
2155 {
2156 	struct btrfs_ioctl_vol_args *vol;
2157 	struct btrfs_fs_devices *fs_devices;
2158 	int ret = -ENOTTY;
2159 
2160 	if (!capable(CAP_SYS_ADMIN))
2161 		return -EPERM;
2162 
2163 	vol = memdup_user((void __user *)arg, sizeof(*vol));
2164 	if (IS_ERR(vol))
2165 		return PTR_ERR(vol);
2166 
2167 	switch (cmd) {
2168 	case BTRFS_IOC_SCAN_DEV:
2169 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2170 					    &btrfs_fs_type, &fs_devices);
2171 		break;
2172 	case BTRFS_IOC_DEVICES_READY:
2173 		ret = btrfs_scan_one_device(vol->name, FMODE_READ,
2174 					    &btrfs_fs_type, &fs_devices);
2175 		if (ret)
2176 			break;
2177 		ret = !(fs_devices->num_devices == fs_devices->total_devices);
2178 		break;
2179 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
2180 		ret = btrfs_ioctl_get_supported_features((void __user*)arg);
2181 		break;
2182 	}
2183 
2184 	kfree(vol);
2185 	return ret;
2186 }
2187 
2188 static int btrfs_freeze(struct super_block *sb)
2189 {
2190 	struct btrfs_trans_handle *trans;
2191 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2192 	struct btrfs_root *root = fs_info->tree_root;
2193 
2194 	set_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2195 	/*
2196 	 * We don't need a barrier here, we'll wait for any transaction that
2197 	 * could be in progress on other threads (and do delayed iputs that
2198 	 * we want to avoid on a frozen filesystem), or do the commit
2199 	 * ourselves.
2200 	 */
2201 	trans = btrfs_attach_transaction_barrier(root);
2202 	if (IS_ERR(trans)) {
2203 		/* no transaction, don't bother */
2204 		if (PTR_ERR(trans) == -ENOENT)
2205 			return 0;
2206 		return PTR_ERR(trans);
2207 	}
2208 	return btrfs_commit_transaction(trans);
2209 }
2210 
2211 static int btrfs_unfreeze(struct super_block *sb)
2212 {
2213 	struct btrfs_fs_info *fs_info = btrfs_sb(sb);
2214 
2215 	clear_bit(BTRFS_FS_FROZEN, &fs_info->flags);
2216 	return 0;
2217 }
2218 
2219 static int btrfs_show_devname(struct seq_file *m, struct dentry *root)
2220 {
2221 	struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb);
2222 	struct btrfs_fs_devices *cur_devices;
2223 	struct btrfs_device *dev, *first_dev = NULL;
2224 	struct list_head *head;
2225 	struct rcu_string *name;
2226 
2227 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
2228 	cur_devices = fs_info->fs_devices;
2229 	while (cur_devices) {
2230 		head = &cur_devices->devices;
2231 		list_for_each_entry(dev, head, dev_list) {
2232 			if (dev->missing)
2233 				continue;
2234 			if (!dev->name)
2235 				continue;
2236 			if (!first_dev || dev->devid < first_dev->devid)
2237 				first_dev = dev;
2238 		}
2239 		cur_devices = cur_devices->seed;
2240 	}
2241 
2242 	if (first_dev) {
2243 		rcu_read_lock();
2244 		name = rcu_dereference(first_dev->name);
2245 		seq_escape(m, name->str, " \t\n\\");
2246 		rcu_read_unlock();
2247 	} else {
2248 		WARN_ON(1);
2249 	}
2250 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
2251 	return 0;
2252 }
2253 
2254 static const struct super_operations btrfs_super_ops = {
2255 	.drop_inode	= btrfs_drop_inode,
2256 	.evict_inode	= btrfs_evict_inode,
2257 	.put_super	= btrfs_put_super,
2258 	.sync_fs	= btrfs_sync_fs,
2259 	.show_options	= btrfs_show_options,
2260 	.show_devname	= btrfs_show_devname,
2261 	.write_inode	= btrfs_write_inode,
2262 	.alloc_inode	= btrfs_alloc_inode,
2263 	.destroy_inode	= btrfs_destroy_inode,
2264 	.statfs		= btrfs_statfs,
2265 	.remount_fs	= btrfs_remount,
2266 	.freeze_fs	= btrfs_freeze,
2267 	.unfreeze_fs	= btrfs_unfreeze,
2268 };
2269 
2270 static const struct file_operations btrfs_ctl_fops = {
2271 	.open = btrfs_control_open,
2272 	.unlocked_ioctl	 = btrfs_control_ioctl,
2273 	.compat_ioctl = btrfs_control_ioctl,
2274 	.owner	 = THIS_MODULE,
2275 	.llseek = noop_llseek,
2276 };
2277 
2278 static struct miscdevice btrfs_misc = {
2279 	.minor		= BTRFS_MINOR,
2280 	.name		= "btrfs-control",
2281 	.fops		= &btrfs_ctl_fops
2282 };
2283 
2284 MODULE_ALIAS_MISCDEV(BTRFS_MINOR);
2285 MODULE_ALIAS("devname:btrfs-control");
2286 
2287 static int btrfs_interface_init(void)
2288 {
2289 	return misc_register(&btrfs_misc);
2290 }
2291 
2292 static void btrfs_interface_exit(void)
2293 {
2294 	misc_deregister(&btrfs_misc);
2295 }
2296 
2297 static void btrfs_print_mod_info(void)
2298 {
2299 	pr_info("Btrfs loaded, crc32c=%s"
2300 #ifdef CONFIG_BTRFS_DEBUG
2301 			", debug=on"
2302 #endif
2303 #ifdef CONFIG_BTRFS_ASSERT
2304 			", assert=on"
2305 #endif
2306 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY
2307 			", integrity-checker=on"
2308 #endif
2309 			"\n",
2310 			btrfs_crc32c_impl());
2311 }
2312 
2313 static int __init init_btrfs_fs(void)
2314 {
2315 	int err;
2316 
2317 	err = btrfs_hash_init();
2318 	if (err)
2319 		return err;
2320 
2321 	btrfs_props_init();
2322 
2323 	err = btrfs_init_sysfs();
2324 	if (err)
2325 		goto free_hash;
2326 
2327 	btrfs_init_compress();
2328 
2329 	err = btrfs_init_cachep();
2330 	if (err)
2331 		goto free_compress;
2332 
2333 	err = extent_io_init();
2334 	if (err)
2335 		goto free_cachep;
2336 
2337 	err = extent_map_init();
2338 	if (err)
2339 		goto free_extent_io;
2340 
2341 	err = ordered_data_init();
2342 	if (err)
2343 		goto free_extent_map;
2344 
2345 	err = btrfs_delayed_inode_init();
2346 	if (err)
2347 		goto free_ordered_data;
2348 
2349 	err = btrfs_auto_defrag_init();
2350 	if (err)
2351 		goto free_delayed_inode;
2352 
2353 	err = btrfs_delayed_ref_init();
2354 	if (err)
2355 		goto free_auto_defrag;
2356 
2357 	err = btrfs_prelim_ref_init();
2358 	if (err)
2359 		goto free_delayed_ref;
2360 
2361 	err = btrfs_end_io_wq_init();
2362 	if (err)
2363 		goto free_prelim_ref;
2364 
2365 	err = btrfs_interface_init();
2366 	if (err)
2367 		goto free_end_io_wq;
2368 
2369 	btrfs_init_lockdep();
2370 
2371 	btrfs_print_mod_info();
2372 
2373 	err = btrfs_run_sanity_tests();
2374 	if (err)
2375 		goto unregister_ioctl;
2376 
2377 	err = register_filesystem(&btrfs_fs_type);
2378 	if (err)
2379 		goto unregister_ioctl;
2380 
2381 	return 0;
2382 
2383 unregister_ioctl:
2384 	btrfs_interface_exit();
2385 free_end_io_wq:
2386 	btrfs_end_io_wq_exit();
2387 free_prelim_ref:
2388 	btrfs_prelim_ref_exit();
2389 free_delayed_ref:
2390 	btrfs_delayed_ref_exit();
2391 free_auto_defrag:
2392 	btrfs_auto_defrag_exit();
2393 free_delayed_inode:
2394 	btrfs_delayed_inode_exit();
2395 free_ordered_data:
2396 	ordered_data_exit();
2397 free_extent_map:
2398 	extent_map_exit();
2399 free_extent_io:
2400 	extent_io_exit();
2401 free_cachep:
2402 	btrfs_destroy_cachep();
2403 free_compress:
2404 	btrfs_exit_compress();
2405 	btrfs_exit_sysfs();
2406 free_hash:
2407 	btrfs_hash_exit();
2408 	return err;
2409 }
2410 
2411 static void __exit exit_btrfs_fs(void)
2412 {
2413 	btrfs_destroy_cachep();
2414 	btrfs_delayed_ref_exit();
2415 	btrfs_auto_defrag_exit();
2416 	btrfs_delayed_inode_exit();
2417 	btrfs_prelim_ref_exit();
2418 	ordered_data_exit();
2419 	extent_map_exit();
2420 	extent_io_exit();
2421 	btrfs_interface_exit();
2422 	btrfs_end_io_wq_exit();
2423 	unregister_filesystem(&btrfs_fs_type);
2424 	btrfs_exit_sysfs();
2425 	btrfs_cleanup_fs_uuids();
2426 	btrfs_exit_compress();
2427 	btrfs_hash_exit();
2428 }
2429 
2430 late_initcall(init_btrfs_fs);
2431 module_exit(exit_btrfs_fs)
2432 
2433 MODULE_LICENSE("GPL");
2434