1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/blkdev.h> 20 #include <linux/module.h> 21 #include <linux/buffer_head.h> 22 #include <linux/fs.h> 23 #include <linux/pagemap.h> 24 #include <linux/highmem.h> 25 #include <linux/time.h> 26 #include <linux/init.h> 27 #include <linux/seq_file.h> 28 #include <linux/string.h> 29 #include <linux/backing-dev.h> 30 #include <linux/mount.h> 31 #include <linux/mpage.h> 32 #include <linux/swap.h> 33 #include <linux/writeback.h> 34 #include <linux/statfs.h> 35 #include <linux/compat.h> 36 #include <linux/parser.h> 37 #include <linux/ctype.h> 38 #include <linux/namei.h> 39 #include <linux/miscdevice.h> 40 #include <linux/magic.h> 41 #include <linux/slab.h> 42 #include <linux/cleancache.h> 43 #include <linux/ratelimit.h> 44 #include <linux/btrfs.h> 45 #include "delayed-inode.h" 46 #include "ctree.h" 47 #include "disk-io.h" 48 #include "transaction.h" 49 #include "btrfs_inode.h" 50 #include "print-tree.h" 51 #include "hash.h" 52 #include "props.h" 53 #include "xattr.h" 54 #include "volumes.h" 55 #include "export.h" 56 #include "compression.h" 57 #include "rcu-string.h" 58 #include "dev-replace.h" 59 #include "free-space-cache.h" 60 #include "backref.h" 61 #include "tests/btrfs-tests.h" 62 63 #include "qgroup.h" 64 #include "backref.h" 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/btrfs.h> 67 68 static const struct super_operations btrfs_super_ops; 69 static struct file_system_type btrfs_fs_type; 70 71 static int btrfs_remount(struct super_block *sb, int *flags, char *data); 72 73 const char *btrfs_decode_error(int errno) 74 { 75 char *errstr = "unknown"; 76 77 switch (errno) { 78 case -EIO: 79 errstr = "IO failure"; 80 break; 81 case -ENOMEM: 82 errstr = "Out of memory"; 83 break; 84 case -EROFS: 85 errstr = "Readonly filesystem"; 86 break; 87 case -EEXIST: 88 errstr = "Object already exists"; 89 break; 90 case -ENOSPC: 91 errstr = "No space left"; 92 break; 93 case -ENOENT: 94 errstr = "No such entry"; 95 break; 96 } 97 98 return errstr; 99 } 100 101 /* btrfs handle error by forcing the filesystem readonly */ 102 static void btrfs_handle_error(struct btrfs_fs_info *fs_info) 103 { 104 struct super_block *sb = fs_info->sb; 105 106 if (sb->s_flags & MS_RDONLY) 107 return; 108 109 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 110 sb->s_flags |= MS_RDONLY; 111 btrfs_info(fs_info, "forced readonly"); 112 /* 113 * Note that a running device replace operation is not 114 * canceled here although there is no way to update 115 * the progress. It would add the risk of a deadlock, 116 * therefore the canceling is omitted. The only penalty 117 * is that some I/O remains active until the procedure 118 * completes. The next time when the filesystem is 119 * mounted writeable again, the device replace 120 * operation continues. 121 */ 122 } 123 } 124 125 /* 126 * __btrfs_handle_fs_error decodes expected errors from the caller and 127 * invokes the approciate error response. 128 */ 129 __cold 130 void __btrfs_handle_fs_error(struct btrfs_fs_info *fs_info, const char *function, 131 unsigned int line, int errno, const char *fmt, ...) 132 { 133 struct super_block *sb = fs_info->sb; 134 #ifdef CONFIG_PRINTK 135 const char *errstr; 136 #endif 137 138 /* 139 * Special case: if the error is EROFS, and we're already 140 * under MS_RDONLY, then it is safe here. 141 */ 142 if (errno == -EROFS && (sb->s_flags & MS_RDONLY)) 143 return; 144 145 #ifdef CONFIG_PRINTK 146 errstr = btrfs_decode_error(errno); 147 if (fmt) { 148 struct va_format vaf; 149 va_list args; 150 151 va_start(args, fmt); 152 vaf.fmt = fmt; 153 vaf.va = &args; 154 155 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s (%pV)\n", 156 sb->s_id, function, line, errno, errstr, &vaf); 157 va_end(args); 158 } else { 159 pr_crit("BTRFS: error (device %s) in %s:%d: errno=%d %s\n", 160 sb->s_id, function, line, errno, errstr); 161 } 162 #endif 163 164 /* 165 * Today we only save the error info to memory. Long term we'll 166 * also send it down to the disk 167 */ 168 set_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state); 169 170 /* Don't go through full error handling during mount */ 171 if (sb->s_flags & MS_BORN) 172 btrfs_handle_error(fs_info); 173 } 174 175 #ifdef CONFIG_PRINTK 176 static const char * const logtypes[] = { 177 "emergency", 178 "alert", 179 "critical", 180 "error", 181 "warning", 182 "notice", 183 "info", 184 "debug", 185 }; 186 187 188 /* 189 * Use one ratelimit state per log level so that a flood of less important 190 * messages doesn't cause more important ones to be dropped. 191 */ 192 static struct ratelimit_state printk_limits[] = { 193 RATELIMIT_STATE_INIT(printk_limits[0], DEFAULT_RATELIMIT_INTERVAL, 100), 194 RATELIMIT_STATE_INIT(printk_limits[1], DEFAULT_RATELIMIT_INTERVAL, 100), 195 RATELIMIT_STATE_INIT(printk_limits[2], DEFAULT_RATELIMIT_INTERVAL, 100), 196 RATELIMIT_STATE_INIT(printk_limits[3], DEFAULT_RATELIMIT_INTERVAL, 100), 197 RATELIMIT_STATE_INIT(printk_limits[4], DEFAULT_RATELIMIT_INTERVAL, 100), 198 RATELIMIT_STATE_INIT(printk_limits[5], DEFAULT_RATELIMIT_INTERVAL, 100), 199 RATELIMIT_STATE_INIT(printk_limits[6], DEFAULT_RATELIMIT_INTERVAL, 100), 200 RATELIMIT_STATE_INIT(printk_limits[7], DEFAULT_RATELIMIT_INTERVAL, 100), 201 }; 202 203 void btrfs_printk(const struct btrfs_fs_info *fs_info, const char *fmt, ...) 204 { 205 struct super_block *sb = fs_info->sb; 206 char lvl[PRINTK_MAX_SINGLE_HEADER_LEN + 1] = "\0"; 207 struct va_format vaf; 208 va_list args; 209 int kern_level; 210 const char *type = logtypes[4]; 211 struct ratelimit_state *ratelimit = &printk_limits[4]; 212 213 va_start(args, fmt); 214 215 while ((kern_level = printk_get_level(fmt)) != 0) { 216 size_t size = printk_skip_level(fmt) - fmt; 217 218 if (kern_level >= '0' && kern_level <= '7') { 219 memcpy(lvl, fmt, size); 220 lvl[size] = '\0'; 221 type = logtypes[kern_level - '0']; 222 ratelimit = &printk_limits[kern_level - '0']; 223 } 224 fmt += size; 225 } 226 227 vaf.fmt = fmt; 228 vaf.va = &args; 229 230 if (__ratelimit(ratelimit)) 231 printk("%sBTRFS %s (device %s): %pV\n", lvl, type, sb->s_id, &vaf); 232 233 va_end(args); 234 } 235 #endif 236 237 /* 238 * We only mark the transaction aborted and then set the file system read-only. 239 * This will prevent new transactions from starting or trying to join this 240 * one. 241 * 242 * This means that error recovery at the call site is limited to freeing 243 * any local memory allocations and passing the error code up without 244 * further cleanup. The transaction should complete as it normally would 245 * in the call path but will return -EIO. 246 * 247 * We'll complete the cleanup in btrfs_end_transaction and 248 * btrfs_commit_transaction. 249 */ 250 __cold 251 void __btrfs_abort_transaction(struct btrfs_trans_handle *trans, 252 const char *function, 253 unsigned int line, int errno) 254 { 255 struct btrfs_fs_info *fs_info = trans->fs_info; 256 257 trans->aborted = errno; 258 /* Nothing used. The other threads that have joined this 259 * transaction may be able to continue. */ 260 if (!trans->dirty && list_empty(&trans->new_bgs)) { 261 const char *errstr; 262 263 errstr = btrfs_decode_error(errno); 264 btrfs_warn(fs_info, 265 "%s:%d: Aborting unused transaction(%s).", 266 function, line, errstr); 267 return; 268 } 269 WRITE_ONCE(trans->transaction->aborted, errno); 270 /* Wake up anybody who may be waiting on this transaction */ 271 wake_up(&fs_info->transaction_wait); 272 wake_up(&fs_info->transaction_blocked_wait); 273 __btrfs_handle_fs_error(fs_info, function, line, errno, NULL); 274 } 275 /* 276 * __btrfs_panic decodes unexpected, fatal errors from the caller, 277 * issues an alert, and either panics or BUGs, depending on mount options. 278 */ 279 __cold 280 void __btrfs_panic(struct btrfs_fs_info *fs_info, const char *function, 281 unsigned int line, int errno, const char *fmt, ...) 282 { 283 char *s_id = "<unknown>"; 284 const char *errstr; 285 struct va_format vaf = { .fmt = fmt }; 286 va_list args; 287 288 if (fs_info) 289 s_id = fs_info->sb->s_id; 290 291 va_start(args, fmt); 292 vaf.va = &args; 293 294 errstr = btrfs_decode_error(errno); 295 if (fs_info && (fs_info->mount_opt & BTRFS_MOUNT_PANIC_ON_FATAL_ERROR)) 296 panic(KERN_CRIT "BTRFS panic (device %s) in %s:%d: %pV (errno=%d %s)\n", 297 s_id, function, line, &vaf, errno, errstr); 298 299 btrfs_crit(fs_info, "panic in %s:%d: %pV (errno=%d %s)", 300 function, line, &vaf, errno, errstr); 301 va_end(args); 302 /* Caller calls BUG() */ 303 } 304 305 static void btrfs_put_super(struct super_block *sb) 306 { 307 close_ctree(btrfs_sb(sb)); 308 } 309 310 enum { 311 Opt_degraded, Opt_subvol, Opt_subvolid, Opt_device, Opt_nodatasum, 312 Opt_nodatacow, Opt_max_inline, Opt_alloc_start, Opt_nobarrier, Opt_ssd, 313 Opt_nossd, Opt_ssd_spread, Opt_thread_pool, Opt_noacl, Opt_compress, 314 Opt_compress_type, Opt_compress_force, Opt_compress_force_type, 315 Opt_notreelog, Opt_ratio, Opt_flushoncommit, Opt_discard, 316 Opt_space_cache, Opt_space_cache_version, Opt_clear_cache, 317 Opt_user_subvol_rm_allowed, Opt_enospc_debug, Opt_subvolrootid, 318 Opt_defrag, Opt_inode_cache, Opt_no_space_cache, Opt_recovery, 319 Opt_skip_balance, Opt_check_integrity, 320 Opt_check_integrity_including_extent_data, 321 Opt_check_integrity_print_mask, Opt_fatal_errors, Opt_rescan_uuid_tree, 322 Opt_commit_interval, Opt_barrier, Opt_nodefrag, Opt_nodiscard, 323 Opt_noenospc_debug, Opt_noflushoncommit, Opt_acl, Opt_datacow, 324 Opt_datasum, Opt_treelog, Opt_noinode_cache, Opt_usebackuproot, 325 Opt_nologreplay, Opt_norecovery, 326 #ifdef CONFIG_BTRFS_DEBUG 327 Opt_fragment_data, Opt_fragment_metadata, Opt_fragment_all, 328 #endif 329 Opt_err, 330 }; 331 332 static const match_table_t tokens = { 333 {Opt_degraded, "degraded"}, 334 {Opt_subvol, "subvol=%s"}, 335 {Opt_subvolid, "subvolid=%s"}, 336 {Opt_device, "device=%s"}, 337 {Opt_nodatasum, "nodatasum"}, 338 {Opt_datasum, "datasum"}, 339 {Opt_nodatacow, "nodatacow"}, 340 {Opt_datacow, "datacow"}, 341 {Opt_nobarrier, "nobarrier"}, 342 {Opt_barrier, "barrier"}, 343 {Opt_max_inline, "max_inline=%s"}, 344 {Opt_alloc_start, "alloc_start=%s"}, 345 {Opt_thread_pool, "thread_pool=%d"}, 346 {Opt_compress, "compress"}, 347 {Opt_compress_type, "compress=%s"}, 348 {Opt_compress_force, "compress-force"}, 349 {Opt_compress_force_type, "compress-force=%s"}, 350 {Opt_ssd, "ssd"}, 351 {Opt_ssd_spread, "ssd_spread"}, 352 {Opt_nossd, "nossd"}, 353 {Opt_acl, "acl"}, 354 {Opt_noacl, "noacl"}, 355 {Opt_notreelog, "notreelog"}, 356 {Opt_treelog, "treelog"}, 357 {Opt_nologreplay, "nologreplay"}, 358 {Opt_norecovery, "norecovery"}, 359 {Opt_flushoncommit, "flushoncommit"}, 360 {Opt_noflushoncommit, "noflushoncommit"}, 361 {Opt_ratio, "metadata_ratio=%d"}, 362 {Opt_discard, "discard"}, 363 {Opt_nodiscard, "nodiscard"}, 364 {Opt_space_cache, "space_cache"}, 365 {Opt_space_cache_version, "space_cache=%s"}, 366 {Opt_clear_cache, "clear_cache"}, 367 {Opt_user_subvol_rm_allowed, "user_subvol_rm_allowed"}, 368 {Opt_enospc_debug, "enospc_debug"}, 369 {Opt_noenospc_debug, "noenospc_debug"}, 370 {Opt_subvolrootid, "subvolrootid=%d"}, 371 {Opt_defrag, "autodefrag"}, 372 {Opt_nodefrag, "noautodefrag"}, 373 {Opt_inode_cache, "inode_cache"}, 374 {Opt_noinode_cache, "noinode_cache"}, 375 {Opt_no_space_cache, "nospace_cache"}, 376 {Opt_recovery, "recovery"}, /* deprecated */ 377 {Opt_usebackuproot, "usebackuproot"}, 378 {Opt_skip_balance, "skip_balance"}, 379 {Opt_check_integrity, "check_int"}, 380 {Opt_check_integrity_including_extent_data, "check_int_data"}, 381 {Opt_check_integrity_print_mask, "check_int_print_mask=%d"}, 382 {Opt_rescan_uuid_tree, "rescan_uuid_tree"}, 383 {Opt_fatal_errors, "fatal_errors=%s"}, 384 {Opt_commit_interval, "commit=%d"}, 385 #ifdef CONFIG_BTRFS_DEBUG 386 {Opt_fragment_data, "fragment=data"}, 387 {Opt_fragment_metadata, "fragment=metadata"}, 388 {Opt_fragment_all, "fragment=all"}, 389 #endif 390 {Opt_err, NULL}, 391 }; 392 393 /* 394 * Regular mount options parser. Everything that is needed only when 395 * reading in a new superblock is parsed here. 396 * XXX JDM: This needs to be cleaned up for remount. 397 */ 398 int btrfs_parse_options(struct btrfs_fs_info *info, char *options, 399 unsigned long new_flags) 400 { 401 substring_t args[MAX_OPT_ARGS]; 402 char *p, *num, *orig = NULL; 403 u64 cache_gen; 404 int intarg; 405 int ret = 0; 406 char *compress_type; 407 bool compress_force = false; 408 enum btrfs_compression_type saved_compress_type; 409 bool saved_compress_force; 410 int no_compress = 0; 411 412 cache_gen = btrfs_super_cache_generation(info->super_copy); 413 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE)) 414 btrfs_set_opt(info->mount_opt, FREE_SPACE_TREE); 415 else if (cache_gen) 416 btrfs_set_opt(info->mount_opt, SPACE_CACHE); 417 418 /* 419 * Even the options are empty, we still need to do extra check 420 * against new flags 421 */ 422 if (!options) 423 goto check; 424 425 /* 426 * strsep changes the string, duplicate it because parse_options 427 * gets called twice 428 */ 429 options = kstrdup(options, GFP_NOFS); 430 if (!options) 431 return -ENOMEM; 432 433 orig = options; 434 435 while ((p = strsep(&options, ",")) != NULL) { 436 int token; 437 if (!*p) 438 continue; 439 440 token = match_token(p, tokens, args); 441 switch (token) { 442 case Opt_degraded: 443 btrfs_info(info, "allowing degraded mounts"); 444 btrfs_set_opt(info->mount_opt, DEGRADED); 445 break; 446 case Opt_subvol: 447 case Opt_subvolid: 448 case Opt_subvolrootid: 449 case Opt_device: 450 /* 451 * These are parsed by btrfs_parse_early_options 452 * and can be happily ignored here. 453 */ 454 break; 455 case Opt_nodatasum: 456 btrfs_set_and_info(info, NODATASUM, 457 "setting nodatasum"); 458 break; 459 case Opt_datasum: 460 if (btrfs_test_opt(info, NODATASUM)) { 461 if (btrfs_test_opt(info, NODATACOW)) 462 btrfs_info(info, 463 "setting datasum, datacow enabled"); 464 else 465 btrfs_info(info, "setting datasum"); 466 } 467 btrfs_clear_opt(info->mount_opt, NODATACOW); 468 btrfs_clear_opt(info->mount_opt, NODATASUM); 469 break; 470 case Opt_nodatacow: 471 if (!btrfs_test_opt(info, NODATACOW)) { 472 if (!btrfs_test_opt(info, COMPRESS) || 473 !btrfs_test_opt(info, FORCE_COMPRESS)) { 474 btrfs_info(info, 475 "setting nodatacow, compression disabled"); 476 } else { 477 btrfs_info(info, "setting nodatacow"); 478 } 479 } 480 btrfs_clear_opt(info->mount_opt, COMPRESS); 481 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 482 btrfs_set_opt(info->mount_opt, NODATACOW); 483 btrfs_set_opt(info->mount_opt, NODATASUM); 484 break; 485 case Opt_datacow: 486 btrfs_clear_and_info(info, NODATACOW, 487 "setting datacow"); 488 break; 489 case Opt_compress_force: 490 case Opt_compress_force_type: 491 compress_force = true; 492 /* Fallthrough */ 493 case Opt_compress: 494 case Opt_compress_type: 495 saved_compress_type = btrfs_test_opt(info, 496 COMPRESS) ? 497 info->compress_type : BTRFS_COMPRESS_NONE; 498 saved_compress_force = 499 btrfs_test_opt(info, FORCE_COMPRESS); 500 if (token == Opt_compress || 501 token == Opt_compress_force || 502 strcmp(args[0].from, "zlib") == 0) { 503 compress_type = "zlib"; 504 info->compress_type = BTRFS_COMPRESS_ZLIB; 505 btrfs_set_opt(info->mount_opt, COMPRESS); 506 btrfs_clear_opt(info->mount_opt, NODATACOW); 507 btrfs_clear_opt(info->mount_opt, NODATASUM); 508 no_compress = 0; 509 } else if (strcmp(args[0].from, "lzo") == 0) { 510 compress_type = "lzo"; 511 info->compress_type = BTRFS_COMPRESS_LZO; 512 btrfs_set_opt(info->mount_opt, COMPRESS); 513 btrfs_clear_opt(info->mount_opt, NODATACOW); 514 btrfs_clear_opt(info->mount_opt, NODATASUM); 515 btrfs_set_fs_incompat(info, COMPRESS_LZO); 516 no_compress = 0; 517 } else if (strncmp(args[0].from, "no", 2) == 0) { 518 compress_type = "no"; 519 btrfs_clear_opt(info->mount_opt, COMPRESS); 520 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 521 compress_force = false; 522 no_compress++; 523 } else { 524 ret = -EINVAL; 525 goto out; 526 } 527 528 if (compress_force) { 529 btrfs_set_opt(info->mount_opt, FORCE_COMPRESS); 530 } else { 531 /* 532 * If we remount from compress-force=xxx to 533 * compress=xxx, we need clear FORCE_COMPRESS 534 * flag, otherwise, there is no way for users 535 * to disable forcible compression separately. 536 */ 537 btrfs_clear_opt(info->mount_opt, FORCE_COMPRESS); 538 } 539 if ((btrfs_test_opt(info, COMPRESS) && 540 (info->compress_type != saved_compress_type || 541 compress_force != saved_compress_force)) || 542 (!btrfs_test_opt(info, COMPRESS) && 543 no_compress == 1)) { 544 btrfs_info(info, "%s %s compression", 545 (compress_force) ? "force" : "use", 546 compress_type); 547 } 548 compress_force = false; 549 break; 550 case Opt_ssd: 551 btrfs_set_and_info(info, SSD, 552 "use ssd allocation scheme"); 553 btrfs_clear_opt(info->mount_opt, NOSSD); 554 break; 555 case Opt_ssd_spread: 556 btrfs_set_and_info(info, SSD_SPREAD, 557 "use spread ssd allocation scheme"); 558 btrfs_set_opt(info->mount_opt, SSD); 559 btrfs_clear_opt(info->mount_opt, NOSSD); 560 break; 561 case Opt_nossd: 562 btrfs_set_and_info(info, NOSSD, 563 "not using ssd allocation scheme"); 564 btrfs_clear_opt(info->mount_opt, SSD); 565 btrfs_clear_opt(info->mount_opt, SSD_SPREAD); 566 break; 567 case Opt_barrier: 568 btrfs_clear_and_info(info, NOBARRIER, 569 "turning on barriers"); 570 break; 571 case Opt_nobarrier: 572 btrfs_set_and_info(info, NOBARRIER, 573 "turning off barriers"); 574 break; 575 case Opt_thread_pool: 576 ret = match_int(&args[0], &intarg); 577 if (ret) { 578 goto out; 579 } else if (intarg > 0) { 580 info->thread_pool_size = intarg; 581 } else { 582 ret = -EINVAL; 583 goto out; 584 } 585 break; 586 case Opt_max_inline: 587 num = match_strdup(&args[0]); 588 if (num) { 589 info->max_inline = memparse(num, NULL); 590 kfree(num); 591 592 if (info->max_inline) { 593 info->max_inline = min_t(u64, 594 info->max_inline, 595 info->sectorsize); 596 } 597 btrfs_info(info, "max_inline at %llu", 598 info->max_inline); 599 } else { 600 ret = -ENOMEM; 601 goto out; 602 } 603 break; 604 case Opt_alloc_start: 605 btrfs_info(info, 606 "option alloc_start is obsolete, ignored"); 607 break; 608 case Opt_acl: 609 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 610 info->sb->s_flags |= MS_POSIXACL; 611 break; 612 #else 613 btrfs_err(info, "support for ACL not compiled in!"); 614 ret = -EINVAL; 615 goto out; 616 #endif 617 case Opt_noacl: 618 info->sb->s_flags &= ~MS_POSIXACL; 619 break; 620 case Opt_notreelog: 621 btrfs_set_and_info(info, NOTREELOG, 622 "disabling tree log"); 623 break; 624 case Opt_treelog: 625 btrfs_clear_and_info(info, NOTREELOG, 626 "enabling tree log"); 627 break; 628 case Opt_norecovery: 629 case Opt_nologreplay: 630 btrfs_set_and_info(info, NOLOGREPLAY, 631 "disabling log replay at mount time"); 632 break; 633 case Opt_flushoncommit: 634 btrfs_set_and_info(info, FLUSHONCOMMIT, 635 "turning on flush-on-commit"); 636 break; 637 case Opt_noflushoncommit: 638 btrfs_clear_and_info(info, FLUSHONCOMMIT, 639 "turning off flush-on-commit"); 640 break; 641 case Opt_ratio: 642 ret = match_int(&args[0], &intarg); 643 if (ret) { 644 goto out; 645 } else if (intarg >= 0) { 646 info->metadata_ratio = intarg; 647 btrfs_info(info, "metadata ratio %d", 648 info->metadata_ratio); 649 } else { 650 ret = -EINVAL; 651 goto out; 652 } 653 break; 654 case Opt_discard: 655 btrfs_set_and_info(info, DISCARD, 656 "turning on discard"); 657 break; 658 case Opt_nodiscard: 659 btrfs_clear_and_info(info, DISCARD, 660 "turning off discard"); 661 break; 662 case Opt_space_cache: 663 case Opt_space_cache_version: 664 if (token == Opt_space_cache || 665 strcmp(args[0].from, "v1") == 0) { 666 btrfs_clear_opt(info->mount_opt, 667 FREE_SPACE_TREE); 668 btrfs_set_and_info(info, SPACE_CACHE, 669 "enabling disk space caching"); 670 } else if (strcmp(args[0].from, "v2") == 0) { 671 btrfs_clear_opt(info->mount_opt, 672 SPACE_CACHE); 673 btrfs_set_and_info(info, FREE_SPACE_TREE, 674 "enabling free space tree"); 675 } else { 676 ret = -EINVAL; 677 goto out; 678 } 679 break; 680 case Opt_rescan_uuid_tree: 681 btrfs_set_opt(info->mount_opt, RESCAN_UUID_TREE); 682 break; 683 case Opt_no_space_cache: 684 if (btrfs_test_opt(info, SPACE_CACHE)) { 685 btrfs_clear_and_info(info, SPACE_CACHE, 686 "disabling disk space caching"); 687 } 688 if (btrfs_test_opt(info, FREE_SPACE_TREE)) { 689 btrfs_clear_and_info(info, FREE_SPACE_TREE, 690 "disabling free space tree"); 691 } 692 break; 693 case Opt_inode_cache: 694 btrfs_set_pending_and_info(info, INODE_MAP_CACHE, 695 "enabling inode map caching"); 696 break; 697 case Opt_noinode_cache: 698 btrfs_clear_pending_and_info(info, INODE_MAP_CACHE, 699 "disabling inode map caching"); 700 break; 701 case Opt_clear_cache: 702 btrfs_set_and_info(info, CLEAR_CACHE, 703 "force clearing of disk cache"); 704 break; 705 case Opt_user_subvol_rm_allowed: 706 btrfs_set_opt(info->mount_opt, USER_SUBVOL_RM_ALLOWED); 707 break; 708 case Opt_enospc_debug: 709 btrfs_set_opt(info->mount_opt, ENOSPC_DEBUG); 710 break; 711 case Opt_noenospc_debug: 712 btrfs_clear_opt(info->mount_opt, ENOSPC_DEBUG); 713 break; 714 case Opt_defrag: 715 btrfs_set_and_info(info, AUTO_DEFRAG, 716 "enabling auto defrag"); 717 break; 718 case Opt_nodefrag: 719 btrfs_clear_and_info(info, AUTO_DEFRAG, 720 "disabling auto defrag"); 721 break; 722 case Opt_recovery: 723 btrfs_warn(info, 724 "'recovery' is deprecated, use 'usebackuproot' instead"); 725 case Opt_usebackuproot: 726 btrfs_info(info, 727 "trying to use backup root at mount time"); 728 btrfs_set_opt(info->mount_opt, USEBACKUPROOT); 729 break; 730 case Opt_skip_balance: 731 btrfs_set_opt(info->mount_opt, SKIP_BALANCE); 732 break; 733 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 734 case Opt_check_integrity_including_extent_data: 735 btrfs_info(info, 736 "enabling check integrity including extent data"); 737 btrfs_set_opt(info->mount_opt, 738 CHECK_INTEGRITY_INCLUDING_EXTENT_DATA); 739 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 740 break; 741 case Opt_check_integrity: 742 btrfs_info(info, "enabling check integrity"); 743 btrfs_set_opt(info->mount_opt, CHECK_INTEGRITY); 744 break; 745 case Opt_check_integrity_print_mask: 746 ret = match_int(&args[0], &intarg); 747 if (ret) { 748 goto out; 749 } else if (intarg >= 0) { 750 info->check_integrity_print_mask = intarg; 751 btrfs_info(info, 752 "check_integrity_print_mask 0x%x", 753 info->check_integrity_print_mask); 754 } else { 755 ret = -EINVAL; 756 goto out; 757 } 758 break; 759 #else 760 case Opt_check_integrity_including_extent_data: 761 case Opt_check_integrity: 762 case Opt_check_integrity_print_mask: 763 btrfs_err(info, 764 "support for check_integrity* not compiled in!"); 765 ret = -EINVAL; 766 goto out; 767 #endif 768 case Opt_fatal_errors: 769 if (strcmp(args[0].from, "panic") == 0) 770 btrfs_set_opt(info->mount_opt, 771 PANIC_ON_FATAL_ERROR); 772 else if (strcmp(args[0].from, "bug") == 0) 773 btrfs_clear_opt(info->mount_opt, 774 PANIC_ON_FATAL_ERROR); 775 else { 776 ret = -EINVAL; 777 goto out; 778 } 779 break; 780 case Opt_commit_interval: 781 intarg = 0; 782 ret = match_int(&args[0], &intarg); 783 if (ret < 0) { 784 btrfs_err(info, "invalid commit interval"); 785 ret = -EINVAL; 786 goto out; 787 } 788 if (intarg > 0) { 789 if (intarg > 300) { 790 btrfs_warn(info, 791 "excessive commit interval %d", 792 intarg); 793 } 794 info->commit_interval = intarg; 795 } else { 796 btrfs_info(info, 797 "using default commit interval %ds", 798 BTRFS_DEFAULT_COMMIT_INTERVAL); 799 info->commit_interval = BTRFS_DEFAULT_COMMIT_INTERVAL; 800 } 801 break; 802 #ifdef CONFIG_BTRFS_DEBUG 803 case Opt_fragment_all: 804 btrfs_info(info, "fragmenting all space"); 805 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 806 btrfs_set_opt(info->mount_opt, FRAGMENT_METADATA); 807 break; 808 case Opt_fragment_metadata: 809 btrfs_info(info, "fragmenting metadata"); 810 btrfs_set_opt(info->mount_opt, 811 FRAGMENT_METADATA); 812 break; 813 case Opt_fragment_data: 814 btrfs_info(info, "fragmenting data"); 815 btrfs_set_opt(info->mount_opt, FRAGMENT_DATA); 816 break; 817 #endif 818 case Opt_err: 819 btrfs_info(info, "unrecognized mount option '%s'", p); 820 ret = -EINVAL; 821 goto out; 822 default: 823 break; 824 } 825 } 826 check: 827 /* 828 * Extra check for current option against current flag 829 */ 830 if (btrfs_test_opt(info, NOLOGREPLAY) && !(new_flags & MS_RDONLY)) { 831 btrfs_err(info, 832 "nologreplay must be used with ro mount option"); 833 ret = -EINVAL; 834 } 835 out: 836 if (btrfs_fs_compat_ro(info, FREE_SPACE_TREE) && 837 !btrfs_test_opt(info, FREE_SPACE_TREE) && 838 !btrfs_test_opt(info, CLEAR_CACHE)) { 839 btrfs_err(info, "cannot disable free space tree"); 840 ret = -EINVAL; 841 842 } 843 if (!ret && btrfs_test_opt(info, SPACE_CACHE)) 844 btrfs_info(info, "disk space caching is enabled"); 845 if (!ret && btrfs_test_opt(info, FREE_SPACE_TREE)) 846 btrfs_info(info, "using free space tree"); 847 kfree(orig); 848 return ret; 849 } 850 851 /* 852 * Parse mount options that are required early in the mount process. 853 * 854 * All other options will be parsed on much later in the mount process and 855 * only when we need to allocate a new super block. 856 */ 857 static int btrfs_parse_early_options(const char *options, fmode_t flags, 858 void *holder, char **subvol_name, u64 *subvol_objectid, 859 struct btrfs_fs_devices **fs_devices) 860 { 861 substring_t args[MAX_OPT_ARGS]; 862 char *device_name, *opts, *orig, *p; 863 char *num = NULL; 864 int error = 0; 865 866 if (!options) 867 return 0; 868 869 /* 870 * strsep changes the string, duplicate it because parse_options 871 * gets called twice 872 */ 873 opts = kstrdup(options, GFP_KERNEL); 874 if (!opts) 875 return -ENOMEM; 876 orig = opts; 877 878 while ((p = strsep(&opts, ",")) != NULL) { 879 int token; 880 if (!*p) 881 continue; 882 883 token = match_token(p, tokens, args); 884 switch (token) { 885 case Opt_subvol: 886 kfree(*subvol_name); 887 *subvol_name = match_strdup(&args[0]); 888 if (!*subvol_name) { 889 error = -ENOMEM; 890 goto out; 891 } 892 break; 893 case Opt_subvolid: 894 num = match_strdup(&args[0]); 895 if (num) { 896 *subvol_objectid = memparse(num, NULL); 897 kfree(num); 898 /* we want the original fs_tree */ 899 if (!*subvol_objectid) 900 *subvol_objectid = 901 BTRFS_FS_TREE_OBJECTID; 902 } else { 903 error = -EINVAL; 904 goto out; 905 } 906 break; 907 case Opt_subvolrootid: 908 pr_warn("BTRFS: 'subvolrootid' mount option is deprecated and has no effect\n"); 909 break; 910 case Opt_device: 911 device_name = match_strdup(&args[0]); 912 if (!device_name) { 913 error = -ENOMEM; 914 goto out; 915 } 916 error = btrfs_scan_one_device(device_name, 917 flags, holder, fs_devices); 918 kfree(device_name); 919 if (error) 920 goto out; 921 break; 922 default: 923 break; 924 } 925 } 926 927 out: 928 kfree(orig); 929 return error; 930 } 931 932 static char *get_subvol_name_from_objectid(struct btrfs_fs_info *fs_info, 933 u64 subvol_objectid) 934 { 935 struct btrfs_root *root = fs_info->tree_root; 936 struct btrfs_root *fs_root; 937 struct btrfs_root_ref *root_ref; 938 struct btrfs_inode_ref *inode_ref; 939 struct btrfs_key key; 940 struct btrfs_path *path = NULL; 941 char *name = NULL, *ptr; 942 u64 dirid; 943 int len; 944 int ret; 945 946 path = btrfs_alloc_path(); 947 if (!path) { 948 ret = -ENOMEM; 949 goto err; 950 } 951 path->leave_spinning = 1; 952 953 name = kmalloc(PATH_MAX, GFP_NOFS); 954 if (!name) { 955 ret = -ENOMEM; 956 goto err; 957 } 958 ptr = name + PATH_MAX - 1; 959 ptr[0] = '\0'; 960 961 /* 962 * Walk up the subvolume trees in the tree of tree roots by root 963 * backrefs until we hit the top-level subvolume. 964 */ 965 while (subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 966 key.objectid = subvol_objectid; 967 key.type = BTRFS_ROOT_BACKREF_KEY; 968 key.offset = (u64)-1; 969 970 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 971 if (ret < 0) { 972 goto err; 973 } else if (ret > 0) { 974 ret = btrfs_previous_item(root, path, subvol_objectid, 975 BTRFS_ROOT_BACKREF_KEY); 976 if (ret < 0) { 977 goto err; 978 } else if (ret > 0) { 979 ret = -ENOENT; 980 goto err; 981 } 982 } 983 984 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 985 subvol_objectid = key.offset; 986 987 root_ref = btrfs_item_ptr(path->nodes[0], path->slots[0], 988 struct btrfs_root_ref); 989 len = btrfs_root_ref_name_len(path->nodes[0], root_ref); 990 ptr -= len + 1; 991 if (ptr < name) { 992 ret = -ENAMETOOLONG; 993 goto err; 994 } 995 read_extent_buffer(path->nodes[0], ptr + 1, 996 (unsigned long)(root_ref + 1), len); 997 ptr[0] = '/'; 998 dirid = btrfs_root_ref_dirid(path->nodes[0], root_ref); 999 btrfs_release_path(path); 1000 1001 key.objectid = subvol_objectid; 1002 key.type = BTRFS_ROOT_ITEM_KEY; 1003 key.offset = (u64)-1; 1004 fs_root = btrfs_read_fs_root_no_name(fs_info, &key); 1005 if (IS_ERR(fs_root)) { 1006 ret = PTR_ERR(fs_root); 1007 goto err; 1008 } 1009 1010 /* 1011 * Walk up the filesystem tree by inode refs until we hit the 1012 * root directory. 1013 */ 1014 while (dirid != BTRFS_FIRST_FREE_OBJECTID) { 1015 key.objectid = dirid; 1016 key.type = BTRFS_INODE_REF_KEY; 1017 key.offset = (u64)-1; 1018 1019 ret = btrfs_search_slot(NULL, fs_root, &key, path, 0, 0); 1020 if (ret < 0) { 1021 goto err; 1022 } else if (ret > 0) { 1023 ret = btrfs_previous_item(fs_root, path, dirid, 1024 BTRFS_INODE_REF_KEY); 1025 if (ret < 0) { 1026 goto err; 1027 } else if (ret > 0) { 1028 ret = -ENOENT; 1029 goto err; 1030 } 1031 } 1032 1033 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1034 dirid = key.offset; 1035 1036 inode_ref = btrfs_item_ptr(path->nodes[0], 1037 path->slots[0], 1038 struct btrfs_inode_ref); 1039 len = btrfs_inode_ref_name_len(path->nodes[0], 1040 inode_ref); 1041 ptr -= len + 1; 1042 if (ptr < name) { 1043 ret = -ENAMETOOLONG; 1044 goto err; 1045 } 1046 read_extent_buffer(path->nodes[0], ptr + 1, 1047 (unsigned long)(inode_ref + 1), len); 1048 ptr[0] = '/'; 1049 btrfs_release_path(path); 1050 } 1051 } 1052 1053 btrfs_free_path(path); 1054 if (ptr == name + PATH_MAX - 1) { 1055 name[0] = '/'; 1056 name[1] = '\0'; 1057 } else { 1058 memmove(name, ptr, name + PATH_MAX - ptr); 1059 } 1060 return name; 1061 1062 err: 1063 btrfs_free_path(path); 1064 kfree(name); 1065 return ERR_PTR(ret); 1066 } 1067 1068 static int get_default_subvol_objectid(struct btrfs_fs_info *fs_info, u64 *objectid) 1069 { 1070 struct btrfs_root *root = fs_info->tree_root; 1071 struct btrfs_dir_item *di; 1072 struct btrfs_path *path; 1073 struct btrfs_key location; 1074 u64 dir_id; 1075 1076 path = btrfs_alloc_path(); 1077 if (!path) 1078 return -ENOMEM; 1079 path->leave_spinning = 1; 1080 1081 /* 1082 * Find the "default" dir item which points to the root item that we 1083 * will mount by default if we haven't been given a specific subvolume 1084 * to mount. 1085 */ 1086 dir_id = btrfs_super_root_dir(fs_info->super_copy); 1087 di = btrfs_lookup_dir_item(NULL, root, path, dir_id, "default", 7, 0); 1088 if (IS_ERR(di)) { 1089 btrfs_free_path(path); 1090 return PTR_ERR(di); 1091 } 1092 if (!di) { 1093 /* 1094 * Ok the default dir item isn't there. This is weird since 1095 * it's always been there, but don't freak out, just try and 1096 * mount the top-level subvolume. 1097 */ 1098 btrfs_free_path(path); 1099 *objectid = BTRFS_FS_TREE_OBJECTID; 1100 return 0; 1101 } 1102 1103 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &location); 1104 btrfs_free_path(path); 1105 *objectid = location.objectid; 1106 return 0; 1107 } 1108 1109 static int btrfs_fill_super(struct super_block *sb, 1110 struct btrfs_fs_devices *fs_devices, 1111 void *data) 1112 { 1113 struct inode *inode; 1114 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1115 struct btrfs_key key; 1116 int err; 1117 1118 sb->s_maxbytes = MAX_LFS_FILESIZE; 1119 sb->s_magic = BTRFS_SUPER_MAGIC; 1120 sb->s_op = &btrfs_super_ops; 1121 sb->s_d_op = &btrfs_dentry_operations; 1122 sb->s_export_op = &btrfs_export_ops; 1123 sb->s_xattr = btrfs_xattr_handlers; 1124 sb->s_time_gran = 1; 1125 #ifdef CONFIG_BTRFS_FS_POSIX_ACL 1126 sb->s_flags |= MS_POSIXACL; 1127 #endif 1128 sb->s_flags |= MS_I_VERSION; 1129 sb->s_iflags |= SB_I_CGROUPWB; 1130 1131 err = super_setup_bdi(sb); 1132 if (err) { 1133 btrfs_err(fs_info, "super_setup_bdi failed"); 1134 return err; 1135 } 1136 1137 err = open_ctree(sb, fs_devices, (char *)data); 1138 if (err) { 1139 btrfs_err(fs_info, "open_ctree failed"); 1140 return err; 1141 } 1142 1143 key.objectid = BTRFS_FIRST_FREE_OBJECTID; 1144 key.type = BTRFS_INODE_ITEM_KEY; 1145 key.offset = 0; 1146 inode = btrfs_iget(sb, &key, fs_info->fs_root, NULL); 1147 if (IS_ERR(inode)) { 1148 err = PTR_ERR(inode); 1149 goto fail_close; 1150 } 1151 1152 sb->s_root = d_make_root(inode); 1153 if (!sb->s_root) { 1154 err = -ENOMEM; 1155 goto fail_close; 1156 } 1157 1158 cleancache_init_fs(sb); 1159 sb->s_flags |= MS_ACTIVE; 1160 return 0; 1161 1162 fail_close: 1163 close_ctree(fs_info); 1164 return err; 1165 } 1166 1167 int btrfs_sync_fs(struct super_block *sb, int wait) 1168 { 1169 struct btrfs_trans_handle *trans; 1170 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1171 struct btrfs_root *root = fs_info->tree_root; 1172 1173 trace_btrfs_sync_fs(fs_info, wait); 1174 1175 if (!wait) { 1176 filemap_flush(fs_info->btree_inode->i_mapping); 1177 return 0; 1178 } 1179 1180 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1); 1181 1182 trans = btrfs_attach_transaction_barrier(root); 1183 if (IS_ERR(trans)) { 1184 /* no transaction, don't bother */ 1185 if (PTR_ERR(trans) == -ENOENT) { 1186 /* 1187 * Exit unless we have some pending changes 1188 * that need to go through commit 1189 */ 1190 if (fs_info->pending_changes == 0) 1191 return 0; 1192 /* 1193 * A non-blocking test if the fs is frozen. We must not 1194 * start a new transaction here otherwise a deadlock 1195 * happens. The pending operations are delayed to the 1196 * next commit after thawing. 1197 */ 1198 if (__sb_start_write(sb, SB_FREEZE_WRITE, false)) 1199 __sb_end_write(sb, SB_FREEZE_WRITE); 1200 else 1201 return 0; 1202 trans = btrfs_start_transaction(root, 0); 1203 } 1204 if (IS_ERR(trans)) 1205 return PTR_ERR(trans); 1206 } 1207 return btrfs_commit_transaction(trans); 1208 } 1209 1210 static int btrfs_show_options(struct seq_file *seq, struct dentry *dentry) 1211 { 1212 struct btrfs_fs_info *info = btrfs_sb(dentry->d_sb); 1213 char *compress_type; 1214 1215 if (btrfs_test_opt(info, DEGRADED)) 1216 seq_puts(seq, ",degraded"); 1217 if (btrfs_test_opt(info, NODATASUM)) 1218 seq_puts(seq, ",nodatasum"); 1219 if (btrfs_test_opt(info, NODATACOW)) 1220 seq_puts(seq, ",nodatacow"); 1221 if (btrfs_test_opt(info, NOBARRIER)) 1222 seq_puts(seq, ",nobarrier"); 1223 if (info->max_inline != BTRFS_DEFAULT_MAX_INLINE) 1224 seq_printf(seq, ",max_inline=%llu", info->max_inline); 1225 if (info->thread_pool_size != min_t(unsigned long, 1226 num_online_cpus() + 2, 8)) 1227 seq_printf(seq, ",thread_pool=%d", info->thread_pool_size); 1228 if (btrfs_test_opt(info, COMPRESS)) { 1229 if (info->compress_type == BTRFS_COMPRESS_ZLIB) 1230 compress_type = "zlib"; 1231 else 1232 compress_type = "lzo"; 1233 if (btrfs_test_opt(info, FORCE_COMPRESS)) 1234 seq_printf(seq, ",compress-force=%s", compress_type); 1235 else 1236 seq_printf(seq, ",compress=%s", compress_type); 1237 } 1238 if (btrfs_test_opt(info, NOSSD)) 1239 seq_puts(seq, ",nossd"); 1240 if (btrfs_test_opt(info, SSD_SPREAD)) 1241 seq_puts(seq, ",ssd_spread"); 1242 else if (btrfs_test_opt(info, SSD)) 1243 seq_puts(seq, ",ssd"); 1244 if (btrfs_test_opt(info, NOTREELOG)) 1245 seq_puts(seq, ",notreelog"); 1246 if (btrfs_test_opt(info, NOLOGREPLAY)) 1247 seq_puts(seq, ",nologreplay"); 1248 if (btrfs_test_opt(info, FLUSHONCOMMIT)) 1249 seq_puts(seq, ",flushoncommit"); 1250 if (btrfs_test_opt(info, DISCARD)) 1251 seq_puts(seq, ",discard"); 1252 if (!(info->sb->s_flags & MS_POSIXACL)) 1253 seq_puts(seq, ",noacl"); 1254 if (btrfs_test_opt(info, SPACE_CACHE)) 1255 seq_puts(seq, ",space_cache"); 1256 else if (btrfs_test_opt(info, FREE_SPACE_TREE)) 1257 seq_puts(seq, ",space_cache=v2"); 1258 else 1259 seq_puts(seq, ",nospace_cache"); 1260 if (btrfs_test_opt(info, RESCAN_UUID_TREE)) 1261 seq_puts(seq, ",rescan_uuid_tree"); 1262 if (btrfs_test_opt(info, CLEAR_CACHE)) 1263 seq_puts(seq, ",clear_cache"); 1264 if (btrfs_test_opt(info, USER_SUBVOL_RM_ALLOWED)) 1265 seq_puts(seq, ",user_subvol_rm_allowed"); 1266 if (btrfs_test_opt(info, ENOSPC_DEBUG)) 1267 seq_puts(seq, ",enospc_debug"); 1268 if (btrfs_test_opt(info, AUTO_DEFRAG)) 1269 seq_puts(seq, ",autodefrag"); 1270 if (btrfs_test_opt(info, INODE_MAP_CACHE)) 1271 seq_puts(seq, ",inode_cache"); 1272 if (btrfs_test_opt(info, SKIP_BALANCE)) 1273 seq_puts(seq, ",skip_balance"); 1274 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 1275 if (btrfs_test_opt(info, CHECK_INTEGRITY_INCLUDING_EXTENT_DATA)) 1276 seq_puts(seq, ",check_int_data"); 1277 else if (btrfs_test_opt(info, CHECK_INTEGRITY)) 1278 seq_puts(seq, ",check_int"); 1279 if (info->check_integrity_print_mask) 1280 seq_printf(seq, ",check_int_print_mask=%d", 1281 info->check_integrity_print_mask); 1282 #endif 1283 if (info->metadata_ratio) 1284 seq_printf(seq, ",metadata_ratio=%d", 1285 info->metadata_ratio); 1286 if (btrfs_test_opt(info, PANIC_ON_FATAL_ERROR)) 1287 seq_puts(seq, ",fatal_errors=panic"); 1288 if (info->commit_interval != BTRFS_DEFAULT_COMMIT_INTERVAL) 1289 seq_printf(seq, ",commit=%d", info->commit_interval); 1290 #ifdef CONFIG_BTRFS_DEBUG 1291 if (btrfs_test_opt(info, FRAGMENT_DATA)) 1292 seq_puts(seq, ",fragment=data"); 1293 if (btrfs_test_opt(info, FRAGMENT_METADATA)) 1294 seq_puts(seq, ",fragment=metadata"); 1295 #endif 1296 seq_printf(seq, ",subvolid=%llu", 1297 BTRFS_I(d_inode(dentry))->root->root_key.objectid); 1298 seq_puts(seq, ",subvol="); 1299 seq_dentry(seq, dentry, " \t\n\\"); 1300 return 0; 1301 } 1302 1303 static int btrfs_test_super(struct super_block *s, void *data) 1304 { 1305 struct btrfs_fs_info *p = data; 1306 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1307 1308 return fs_info->fs_devices == p->fs_devices; 1309 } 1310 1311 static int btrfs_set_super(struct super_block *s, void *data) 1312 { 1313 int err = set_anon_super(s, data); 1314 if (!err) 1315 s->s_fs_info = data; 1316 return err; 1317 } 1318 1319 /* 1320 * subvolumes are identified by ino 256 1321 */ 1322 static inline int is_subvolume_inode(struct inode *inode) 1323 { 1324 if (inode && inode->i_ino == BTRFS_FIRST_FREE_OBJECTID) 1325 return 1; 1326 return 0; 1327 } 1328 1329 /* 1330 * This will add subvolid=0 to the argument string while removing any subvol= 1331 * and subvolid= arguments to make sure we get the top-level root for path 1332 * walking to the subvol we want. 1333 */ 1334 static char *setup_root_args(char *args) 1335 { 1336 char *buf, *dst, *sep; 1337 1338 if (!args) 1339 return kstrdup("subvolid=0", GFP_NOFS); 1340 1341 /* The worst case is that we add ",subvolid=0" to the end. */ 1342 buf = dst = kmalloc(strlen(args) + strlen(",subvolid=0") + 1, GFP_NOFS); 1343 if (!buf) 1344 return NULL; 1345 1346 while (1) { 1347 sep = strchrnul(args, ','); 1348 if (!strstarts(args, "subvol=") && 1349 !strstarts(args, "subvolid=")) { 1350 memcpy(dst, args, sep - args); 1351 dst += sep - args; 1352 *dst++ = ','; 1353 } 1354 if (*sep) 1355 args = sep + 1; 1356 else 1357 break; 1358 } 1359 strcpy(dst, "subvolid=0"); 1360 1361 return buf; 1362 } 1363 1364 static struct dentry *mount_subvol(const char *subvol_name, u64 subvol_objectid, 1365 int flags, const char *device_name, 1366 char *data) 1367 { 1368 struct dentry *root; 1369 struct vfsmount *mnt = NULL; 1370 char *newargs; 1371 int ret; 1372 1373 newargs = setup_root_args(data); 1374 if (!newargs) { 1375 root = ERR_PTR(-ENOMEM); 1376 goto out; 1377 } 1378 1379 mnt = vfs_kern_mount(&btrfs_fs_type, flags, device_name, newargs); 1380 if (PTR_ERR_OR_ZERO(mnt) == -EBUSY) { 1381 if (flags & MS_RDONLY) { 1382 mnt = vfs_kern_mount(&btrfs_fs_type, flags & ~MS_RDONLY, 1383 device_name, newargs); 1384 } else { 1385 mnt = vfs_kern_mount(&btrfs_fs_type, flags | MS_RDONLY, 1386 device_name, newargs); 1387 if (IS_ERR(mnt)) { 1388 root = ERR_CAST(mnt); 1389 mnt = NULL; 1390 goto out; 1391 } 1392 1393 down_write(&mnt->mnt_sb->s_umount); 1394 ret = btrfs_remount(mnt->mnt_sb, &flags, NULL); 1395 up_write(&mnt->mnt_sb->s_umount); 1396 if (ret < 0) { 1397 root = ERR_PTR(ret); 1398 goto out; 1399 } 1400 } 1401 } 1402 if (IS_ERR(mnt)) { 1403 root = ERR_CAST(mnt); 1404 mnt = NULL; 1405 goto out; 1406 } 1407 1408 if (!subvol_name) { 1409 if (!subvol_objectid) { 1410 ret = get_default_subvol_objectid(btrfs_sb(mnt->mnt_sb), 1411 &subvol_objectid); 1412 if (ret) { 1413 root = ERR_PTR(ret); 1414 goto out; 1415 } 1416 } 1417 subvol_name = get_subvol_name_from_objectid(btrfs_sb(mnt->mnt_sb), 1418 subvol_objectid); 1419 if (IS_ERR(subvol_name)) { 1420 root = ERR_CAST(subvol_name); 1421 subvol_name = NULL; 1422 goto out; 1423 } 1424 1425 } 1426 1427 root = mount_subtree(mnt, subvol_name); 1428 /* mount_subtree() drops our reference on the vfsmount. */ 1429 mnt = NULL; 1430 1431 if (!IS_ERR(root)) { 1432 struct super_block *s = root->d_sb; 1433 struct btrfs_fs_info *fs_info = btrfs_sb(s); 1434 struct inode *root_inode = d_inode(root); 1435 u64 root_objectid = BTRFS_I(root_inode)->root->root_key.objectid; 1436 1437 ret = 0; 1438 if (!is_subvolume_inode(root_inode)) { 1439 btrfs_err(fs_info, "'%s' is not a valid subvolume", 1440 subvol_name); 1441 ret = -EINVAL; 1442 } 1443 if (subvol_objectid && root_objectid != subvol_objectid) { 1444 /* 1445 * This will also catch a race condition where a 1446 * subvolume which was passed by ID is renamed and 1447 * another subvolume is renamed over the old location. 1448 */ 1449 btrfs_err(fs_info, 1450 "subvol '%s' does not match subvolid %llu", 1451 subvol_name, subvol_objectid); 1452 ret = -EINVAL; 1453 } 1454 if (ret) { 1455 dput(root); 1456 root = ERR_PTR(ret); 1457 deactivate_locked_super(s); 1458 } 1459 } 1460 1461 out: 1462 mntput(mnt); 1463 kfree(newargs); 1464 kfree(subvol_name); 1465 return root; 1466 } 1467 1468 static int parse_security_options(char *orig_opts, 1469 struct security_mnt_opts *sec_opts) 1470 { 1471 char *secdata = NULL; 1472 int ret = 0; 1473 1474 secdata = alloc_secdata(); 1475 if (!secdata) 1476 return -ENOMEM; 1477 ret = security_sb_copy_data(orig_opts, secdata); 1478 if (ret) { 1479 free_secdata(secdata); 1480 return ret; 1481 } 1482 ret = security_sb_parse_opts_str(secdata, sec_opts); 1483 free_secdata(secdata); 1484 return ret; 1485 } 1486 1487 static int setup_security_options(struct btrfs_fs_info *fs_info, 1488 struct super_block *sb, 1489 struct security_mnt_opts *sec_opts) 1490 { 1491 int ret = 0; 1492 1493 /* 1494 * Call security_sb_set_mnt_opts() to check whether new sec_opts 1495 * is valid. 1496 */ 1497 ret = security_sb_set_mnt_opts(sb, sec_opts, 0, NULL); 1498 if (ret) 1499 return ret; 1500 1501 #ifdef CONFIG_SECURITY 1502 if (!fs_info->security_opts.num_mnt_opts) { 1503 /* first time security setup, copy sec_opts to fs_info */ 1504 memcpy(&fs_info->security_opts, sec_opts, sizeof(*sec_opts)); 1505 } else { 1506 /* 1507 * Since SELinux (the only one supporting security_mnt_opts) 1508 * does NOT support changing context during remount/mount of 1509 * the same sb, this must be the same or part of the same 1510 * security options, just free it. 1511 */ 1512 security_free_mnt_opts(sec_opts); 1513 } 1514 #endif 1515 return ret; 1516 } 1517 1518 /* 1519 * Find a superblock for the given device / mount point. 1520 * 1521 * Note: This is based on get_sb_bdev from fs/super.c with a few additions 1522 * for multiple device setup. Make sure to keep it in sync. 1523 */ 1524 static struct dentry *btrfs_mount(struct file_system_type *fs_type, int flags, 1525 const char *device_name, void *data) 1526 { 1527 struct block_device *bdev = NULL; 1528 struct super_block *s; 1529 struct btrfs_fs_devices *fs_devices = NULL; 1530 struct btrfs_fs_info *fs_info = NULL; 1531 struct security_mnt_opts new_sec_opts; 1532 fmode_t mode = FMODE_READ; 1533 char *subvol_name = NULL; 1534 u64 subvol_objectid = 0; 1535 int error = 0; 1536 1537 if (!(flags & MS_RDONLY)) 1538 mode |= FMODE_WRITE; 1539 1540 error = btrfs_parse_early_options(data, mode, fs_type, 1541 &subvol_name, &subvol_objectid, 1542 &fs_devices); 1543 if (error) { 1544 kfree(subvol_name); 1545 return ERR_PTR(error); 1546 } 1547 1548 if (subvol_name || subvol_objectid != BTRFS_FS_TREE_OBJECTID) { 1549 /* mount_subvol() will free subvol_name. */ 1550 return mount_subvol(subvol_name, subvol_objectid, flags, 1551 device_name, data); 1552 } 1553 1554 security_init_mnt_opts(&new_sec_opts); 1555 if (data) { 1556 error = parse_security_options(data, &new_sec_opts); 1557 if (error) 1558 return ERR_PTR(error); 1559 } 1560 1561 error = btrfs_scan_one_device(device_name, mode, fs_type, &fs_devices); 1562 if (error) 1563 goto error_sec_opts; 1564 1565 /* 1566 * Setup a dummy root and fs_info for test/set super. This is because 1567 * we don't actually fill this stuff out until open_ctree, but we need 1568 * it for searching for existing supers, so this lets us do that and 1569 * then open_ctree will properly initialize everything later. 1570 */ 1571 fs_info = kzalloc(sizeof(struct btrfs_fs_info), GFP_NOFS); 1572 if (!fs_info) { 1573 error = -ENOMEM; 1574 goto error_sec_opts; 1575 } 1576 1577 fs_info->fs_devices = fs_devices; 1578 1579 fs_info->super_copy = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1580 fs_info->super_for_commit = kzalloc(BTRFS_SUPER_INFO_SIZE, GFP_NOFS); 1581 security_init_mnt_opts(&fs_info->security_opts); 1582 if (!fs_info->super_copy || !fs_info->super_for_commit) { 1583 error = -ENOMEM; 1584 goto error_fs_info; 1585 } 1586 1587 error = btrfs_open_devices(fs_devices, mode, fs_type); 1588 if (error) 1589 goto error_fs_info; 1590 1591 if (!(flags & MS_RDONLY) && fs_devices->rw_devices == 0) { 1592 error = -EACCES; 1593 goto error_close_devices; 1594 } 1595 1596 bdev = fs_devices->latest_bdev; 1597 s = sget(fs_type, btrfs_test_super, btrfs_set_super, flags | MS_NOSEC, 1598 fs_info); 1599 if (IS_ERR(s)) { 1600 error = PTR_ERR(s); 1601 goto error_close_devices; 1602 } 1603 1604 if (s->s_root) { 1605 btrfs_close_devices(fs_devices); 1606 free_fs_info(fs_info); 1607 if ((flags ^ s->s_flags) & MS_RDONLY) 1608 error = -EBUSY; 1609 } else { 1610 snprintf(s->s_id, sizeof(s->s_id), "%pg", bdev); 1611 btrfs_sb(s)->bdev_holder = fs_type; 1612 error = btrfs_fill_super(s, fs_devices, data); 1613 } 1614 if (error) { 1615 deactivate_locked_super(s); 1616 goto error_sec_opts; 1617 } 1618 1619 fs_info = btrfs_sb(s); 1620 error = setup_security_options(fs_info, s, &new_sec_opts); 1621 if (error) { 1622 deactivate_locked_super(s); 1623 goto error_sec_opts; 1624 } 1625 1626 return dget(s->s_root); 1627 1628 error_close_devices: 1629 btrfs_close_devices(fs_devices); 1630 error_fs_info: 1631 free_fs_info(fs_info); 1632 error_sec_opts: 1633 security_free_mnt_opts(&new_sec_opts); 1634 return ERR_PTR(error); 1635 } 1636 1637 static void btrfs_resize_thread_pool(struct btrfs_fs_info *fs_info, 1638 int new_pool_size, int old_pool_size) 1639 { 1640 if (new_pool_size == old_pool_size) 1641 return; 1642 1643 fs_info->thread_pool_size = new_pool_size; 1644 1645 btrfs_info(fs_info, "resize thread pool %d -> %d", 1646 old_pool_size, new_pool_size); 1647 1648 btrfs_workqueue_set_max(fs_info->workers, new_pool_size); 1649 btrfs_workqueue_set_max(fs_info->delalloc_workers, new_pool_size); 1650 btrfs_workqueue_set_max(fs_info->submit_workers, new_pool_size); 1651 btrfs_workqueue_set_max(fs_info->caching_workers, new_pool_size); 1652 btrfs_workqueue_set_max(fs_info->endio_workers, new_pool_size); 1653 btrfs_workqueue_set_max(fs_info->endio_meta_workers, new_pool_size); 1654 btrfs_workqueue_set_max(fs_info->endio_meta_write_workers, 1655 new_pool_size); 1656 btrfs_workqueue_set_max(fs_info->endio_write_workers, new_pool_size); 1657 btrfs_workqueue_set_max(fs_info->endio_freespace_worker, new_pool_size); 1658 btrfs_workqueue_set_max(fs_info->delayed_workers, new_pool_size); 1659 btrfs_workqueue_set_max(fs_info->readahead_workers, new_pool_size); 1660 btrfs_workqueue_set_max(fs_info->scrub_wr_completion_workers, 1661 new_pool_size); 1662 } 1663 1664 static inline void btrfs_remount_prepare(struct btrfs_fs_info *fs_info) 1665 { 1666 set_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1667 } 1668 1669 static inline void btrfs_remount_begin(struct btrfs_fs_info *fs_info, 1670 unsigned long old_opts, int flags) 1671 { 1672 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1673 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1674 (flags & MS_RDONLY))) { 1675 /* wait for any defraggers to finish */ 1676 wait_event(fs_info->transaction_wait, 1677 (atomic_read(&fs_info->defrag_running) == 0)); 1678 if (flags & MS_RDONLY) 1679 sync_filesystem(fs_info->sb); 1680 } 1681 } 1682 1683 static inline void btrfs_remount_cleanup(struct btrfs_fs_info *fs_info, 1684 unsigned long old_opts) 1685 { 1686 /* 1687 * We need to cleanup all defragable inodes if the autodefragment is 1688 * close or the filesystem is read only. 1689 */ 1690 if (btrfs_raw_test_opt(old_opts, AUTO_DEFRAG) && 1691 (!btrfs_raw_test_opt(fs_info->mount_opt, AUTO_DEFRAG) || 1692 (fs_info->sb->s_flags & MS_RDONLY))) { 1693 btrfs_cleanup_defrag_inodes(fs_info); 1694 } 1695 1696 clear_bit(BTRFS_FS_STATE_REMOUNTING, &fs_info->fs_state); 1697 } 1698 1699 static int btrfs_remount(struct super_block *sb, int *flags, char *data) 1700 { 1701 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 1702 struct btrfs_root *root = fs_info->tree_root; 1703 unsigned old_flags = sb->s_flags; 1704 unsigned long old_opts = fs_info->mount_opt; 1705 unsigned long old_compress_type = fs_info->compress_type; 1706 u64 old_max_inline = fs_info->max_inline; 1707 int old_thread_pool_size = fs_info->thread_pool_size; 1708 unsigned int old_metadata_ratio = fs_info->metadata_ratio; 1709 int ret; 1710 1711 sync_filesystem(sb); 1712 btrfs_remount_prepare(fs_info); 1713 1714 if (data) { 1715 struct security_mnt_opts new_sec_opts; 1716 1717 security_init_mnt_opts(&new_sec_opts); 1718 ret = parse_security_options(data, &new_sec_opts); 1719 if (ret) 1720 goto restore; 1721 ret = setup_security_options(fs_info, sb, 1722 &new_sec_opts); 1723 if (ret) { 1724 security_free_mnt_opts(&new_sec_opts); 1725 goto restore; 1726 } 1727 } 1728 1729 ret = btrfs_parse_options(fs_info, data, *flags); 1730 if (ret) { 1731 ret = -EINVAL; 1732 goto restore; 1733 } 1734 1735 btrfs_remount_begin(fs_info, old_opts, *flags); 1736 btrfs_resize_thread_pool(fs_info, 1737 fs_info->thread_pool_size, old_thread_pool_size); 1738 1739 if ((*flags & MS_RDONLY) == (sb->s_flags & MS_RDONLY)) 1740 goto out; 1741 1742 if (*flags & MS_RDONLY) { 1743 /* 1744 * this also happens on 'umount -rf' or on shutdown, when 1745 * the filesystem is busy. 1746 */ 1747 cancel_work_sync(&fs_info->async_reclaim_work); 1748 1749 /* wait for the uuid_scan task to finish */ 1750 down(&fs_info->uuid_tree_rescan_sem); 1751 /* avoid complains from lockdep et al. */ 1752 up(&fs_info->uuid_tree_rescan_sem); 1753 1754 sb->s_flags |= MS_RDONLY; 1755 1756 /* 1757 * Setting MS_RDONLY will put the cleaner thread to 1758 * sleep at the next loop if it's already active. 1759 * If it's already asleep, we'll leave unused block 1760 * groups on disk until we're mounted read-write again 1761 * unless we clean them up here. 1762 */ 1763 btrfs_delete_unused_bgs(fs_info); 1764 1765 btrfs_dev_replace_suspend_for_unmount(fs_info); 1766 btrfs_scrub_cancel(fs_info); 1767 btrfs_pause_balance(fs_info); 1768 1769 ret = btrfs_commit_super(fs_info); 1770 if (ret) 1771 goto restore; 1772 } else { 1773 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) { 1774 btrfs_err(fs_info, 1775 "Remounting read-write after error is not allowed"); 1776 ret = -EINVAL; 1777 goto restore; 1778 } 1779 if (fs_info->fs_devices->rw_devices == 0) { 1780 ret = -EACCES; 1781 goto restore; 1782 } 1783 1784 if (fs_info->fs_devices->missing_devices > 1785 fs_info->num_tolerated_disk_barrier_failures) { 1786 btrfs_warn(fs_info, 1787 "too many missing devices, writeable remount is not allowed"); 1788 ret = -EACCES; 1789 goto restore; 1790 } 1791 1792 if (btrfs_super_log_root(fs_info->super_copy) != 0) { 1793 ret = -EINVAL; 1794 goto restore; 1795 } 1796 1797 ret = btrfs_cleanup_fs_roots(fs_info); 1798 if (ret) 1799 goto restore; 1800 1801 /* recover relocation */ 1802 mutex_lock(&fs_info->cleaner_mutex); 1803 ret = btrfs_recover_relocation(root); 1804 mutex_unlock(&fs_info->cleaner_mutex); 1805 if (ret) 1806 goto restore; 1807 1808 ret = btrfs_resume_balance_async(fs_info); 1809 if (ret) 1810 goto restore; 1811 1812 ret = btrfs_resume_dev_replace_async(fs_info); 1813 if (ret) { 1814 btrfs_warn(fs_info, "failed to resume dev_replace"); 1815 goto restore; 1816 } 1817 1818 if (!fs_info->uuid_root) { 1819 btrfs_info(fs_info, "creating UUID tree"); 1820 ret = btrfs_create_uuid_tree(fs_info); 1821 if (ret) { 1822 btrfs_warn(fs_info, 1823 "failed to create the UUID tree %d", 1824 ret); 1825 goto restore; 1826 } 1827 } 1828 sb->s_flags &= ~MS_RDONLY; 1829 1830 set_bit(BTRFS_FS_OPEN, &fs_info->flags); 1831 } 1832 out: 1833 wake_up_process(fs_info->transaction_kthread); 1834 btrfs_remount_cleanup(fs_info, old_opts); 1835 return 0; 1836 1837 restore: 1838 /* We've hit an error - don't reset MS_RDONLY */ 1839 if (sb->s_flags & MS_RDONLY) 1840 old_flags |= MS_RDONLY; 1841 sb->s_flags = old_flags; 1842 fs_info->mount_opt = old_opts; 1843 fs_info->compress_type = old_compress_type; 1844 fs_info->max_inline = old_max_inline; 1845 btrfs_resize_thread_pool(fs_info, 1846 old_thread_pool_size, fs_info->thread_pool_size); 1847 fs_info->metadata_ratio = old_metadata_ratio; 1848 btrfs_remount_cleanup(fs_info, old_opts); 1849 return ret; 1850 } 1851 1852 /* Used to sort the devices by max_avail(descending sort) */ 1853 static int btrfs_cmp_device_free_bytes(const void *dev_info1, 1854 const void *dev_info2) 1855 { 1856 if (((struct btrfs_device_info *)dev_info1)->max_avail > 1857 ((struct btrfs_device_info *)dev_info2)->max_avail) 1858 return -1; 1859 else if (((struct btrfs_device_info *)dev_info1)->max_avail < 1860 ((struct btrfs_device_info *)dev_info2)->max_avail) 1861 return 1; 1862 else 1863 return 0; 1864 } 1865 1866 /* 1867 * sort the devices by max_avail, in which max free extent size of each device 1868 * is stored.(Descending Sort) 1869 */ 1870 static inline void btrfs_descending_sort_devices( 1871 struct btrfs_device_info *devices, 1872 size_t nr_devices) 1873 { 1874 sort(devices, nr_devices, sizeof(struct btrfs_device_info), 1875 btrfs_cmp_device_free_bytes, NULL); 1876 } 1877 1878 /* 1879 * The helper to calc the free space on the devices that can be used to store 1880 * file data. 1881 */ 1882 static int btrfs_calc_avail_data_space(struct btrfs_fs_info *fs_info, 1883 u64 *free_bytes) 1884 { 1885 struct btrfs_device_info *devices_info; 1886 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 1887 struct btrfs_device *device; 1888 u64 skip_space; 1889 u64 type; 1890 u64 avail_space; 1891 u64 min_stripe_size; 1892 int min_stripes = 1, num_stripes = 1; 1893 int i = 0, nr_devices; 1894 1895 /* 1896 * We aren't under the device list lock, so this is racy-ish, but good 1897 * enough for our purposes. 1898 */ 1899 nr_devices = fs_info->fs_devices->open_devices; 1900 if (!nr_devices) { 1901 smp_mb(); 1902 nr_devices = fs_info->fs_devices->open_devices; 1903 ASSERT(nr_devices); 1904 if (!nr_devices) { 1905 *free_bytes = 0; 1906 return 0; 1907 } 1908 } 1909 1910 devices_info = kmalloc_array(nr_devices, sizeof(*devices_info), 1911 GFP_KERNEL); 1912 if (!devices_info) 1913 return -ENOMEM; 1914 1915 /* calc min stripe number for data space allocation */ 1916 type = btrfs_data_alloc_profile(fs_info); 1917 if (type & BTRFS_BLOCK_GROUP_RAID0) { 1918 min_stripes = 2; 1919 num_stripes = nr_devices; 1920 } else if (type & BTRFS_BLOCK_GROUP_RAID1) { 1921 min_stripes = 2; 1922 num_stripes = 2; 1923 } else if (type & BTRFS_BLOCK_GROUP_RAID10) { 1924 min_stripes = 4; 1925 num_stripes = 4; 1926 } 1927 1928 if (type & BTRFS_BLOCK_GROUP_DUP) 1929 min_stripe_size = 2 * BTRFS_STRIPE_LEN; 1930 else 1931 min_stripe_size = BTRFS_STRIPE_LEN; 1932 1933 rcu_read_lock(); 1934 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 1935 if (!device->in_fs_metadata || !device->bdev || 1936 device->is_tgtdev_for_dev_replace) 1937 continue; 1938 1939 if (i >= nr_devices) 1940 break; 1941 1942 avail_space = device->total_bytes - device->bytes_used; 1943 1944 /* align with stripe_len */ 1945 avail_space = div_u64(avail_space, BTRFS_STRIPE_LEN); 1946 avail_space *= BTRFS_STRIPE_LEN; 1947 1948 /* 1949 * In order to avoid overwriting the superblock on the drive, 1950 * btrfs starts at an offset of at least 1MB when doing chunk 1951 * allocation. 1952 */ 1953 skip_space = SZ_1M; 1954 1955 /* 1956 * we can use the free space in [0, skip_space - 1], subtract 1957 * it from the total. 1958 */ 1959 if (avail_space && avail_space >= skip_space) 1960 avail_space -= skip_space; 1961 else 1962 avail_space = 0; 1963 1964 if (avail_space < min_stripe_size) 1965 continue; 1966 1967 devices_info[i].dev = device; 1968 devices_info[i].max_avail = avail_space; 1969 1970 i++; 1971 } 1972 rcu_read_unlock(); 1973 1974 nr_devices = i; 1975 1976 btrfs_descending_sort_devices(devices_info, nr_devices); 1977 1978 i = nr_devices - 1; 1979 avail_space = 0; 1980 while (nr_devices >= min_stripes) { 1981 if (num_stripes > nr_devices) 1982 num_stripes = nr_devices; 1983 1984 if (devices_info[i].max_avail >= min_stripe_size) { 1985 int j; 1986 u64 alloc_size; 1987 1988 avail_space += devices_info[i].max_avail * num_stripes; 1989 alloc_size = devices_info[i].max_avail; 1990 for (j = i + 1 - num_stripes; j <= i; j++) 1991 devices_info[j].max_avail -= alloc_size; 1992 } 1993 i--; 1994 nr_devices--; 1995 } 1996 1997 kfree(devices_info); 1998 *free_bytes = avail_space; 1999 return 0; 2000 } 2001 2002 /* 2003 * Calculate numbers for 'df', pessimistic in case of mixed raid profiles. 2004 * 2005 * If there's a redundant raid level at DATA block groups, use the respective 2006 * multiplier to scale the sizes. 2007 * 2008 * Unused device space usage is based on simulating the chunk allocator 2009 * algorithm that respects the device sizes and order of allocations. This is 2010 * a close approximation of the actual use but there are other factors that may 2011 * change the result (like a new metadata chunk). 2012 * 2013 * If metadata is exhausted, f_bavail will be 0. 2014 */ 2015 static int btrfs_statfs(struct dentry *dentry, struct kstatfs *buf) 2016 { 2017 struct btrfs_fs_info *fs_info = btrfs_sb(dentry->d_sb); 2018 struct btrfs_super_block *disk_super = fs_info->super_copy; 2019 struct list_head *head = &fs_info->space_info; 2020 struct btrfs_space_info *found; 2021 u64 total_used = 0; 2022 u64 total_free_data = 0; 2023 u64 total_free_meta = 0; 2024 int bits = dentry->d_sb->s_blocksize_bits; 2025 __be32 *fsid = (__be32 *)fs_info->fsid; 2026 unsigned factor = 1; 2027 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 2028 int ret; 2029 u64 thresh = 0; 2030 int mixed = 0; 2031 2032 rcu_read_lock(); 2033 list_for_each_entry_rcu(found, head, list) { 2034 if (found->flags & BTRFS_BLOCK_GROUP_DATA) { 2035 int i; 2036 2037 total_free_data += found->disk_total - found->disk_used; 2038 total_free_data -= 2039 btrfs_account_ro_block_groups_free_space(found); 2040 2041 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++) { 2042 if (!list_empty(&found->block_groups[i])) { 2043 switch (i) { 2044 case BTRFS_RAID_DUP: 2045 case BTRFS_RAID_RAID1: 2046 case BTRFS_RAID_RAID10: 2047 factor = 2; 2048 } 2049 } 2050 } 2051 } 2052 2053 /* 2054 * Metadata in mixed block goup profiles are accounted in data 2055 */ 2056 if (!mixed && found->flags & BTRFS_BLOCK_GROUP_METADATA) { 2057 if (found->flags & BTRFS_BLOCK_GROUP_DATA) 2058 mixed = 1; 2059 else 2060 total_free_meta += found->disk_total - 2061 found->disk_used; 2062 } 2063 2064 total_used += found->disk_used; 2065 } 2066 2067 rcu_read_unlock(); 2068 2069 buf->f_blocks = div_u64(btrfs_super_total_bytes(disk_super), factor); 2070 buf->f_blocks >>= bits; 2071 buf->f_bfree = buf->f_blocks - (div_u64(total_used, factor) >> bits); 2072 2073 /* Account global block reserve as used, it's in logical size already */ 2074 spin_lock(&block_rsv->lock); 2075 /* Mixed block groups accounting is not byte-accurate, avoid overflow */ 2076 if (buf->f_bfree >= block_rsv->size >> bits) 2077 buf->f_bfree -= block_rsv->size >> bits; 2078 else 2079 buf->f_bfree = 0; 2080 spin_unlock(&block_rsv->lock); 2081 2082 buf->f_bavail = div_u64(total_free_data, factor); 2083 ret = btrfs_calc_avail_data_space(fs_info, &total_free_data); 2084 if (ret) 2085 return ret; 2086 buf->f_bavail += div_u64(total_free_data, factor); 2087 buf->f_bavail = buf->f_bavail >> bits; 2088 2089 /* 2090 * We calculate the remaining metadata space minus global reserve. If 2091 * this is (supposedly) smaller than zero, there's no space. But this 2092 * does not hold in practice, the exhausted state happens where's still 2093 * some positive delta. So we apply some guesswork and compare the 2094 * delta to a 4M threshold. (Practically observed delta was ~2M.) 2095 * 2096 * We probably cannot calculate the exact threshold value because this 2097 * depends on the internal reservations requested by various 2098 * operations, so some operations that consume a few metadata will 2099 * succeed even if the Avail is zero. But this is better than the other 2100 * way around. 2101 */ 2102 thresh = 4 * 1024 * 1024; 2103 2104 if (!mixed && total_free_meta - thresh < block_rsv->size) 2105 buf->f_bavail = 0; 2106 2107 buf->f_type = BTRFS_SUPER_MAGIC; 2108 buf->f_bsize = dentry->d_sb->s_blocksize; 2109 buf->f_namelen = BTRFS_NAME_LEN; 2110 2111 /* We treat it as constant endianness (it doesn't matter _which_) 2112 because we want the fsid to come out the same whether mounted 2113 on a big-endian or little-endian host */ 2114 buf->f_fsid.val[0] = be32_to_cpu(fsid[0]) ^ be32_to_cpu(fsid[2]); 2115 buf->f_fsid.val[1] = be32_to_cpu(fsid[1]) ^ be32_to_cpu(fsid[3]); 2116 /* Mask in the root object ID too, to disambiguate subvols */ 2117 buf->f_fsid.val[0] ^= BTRFS_I(d_inode(dentry))->root->objectid >> 32; 2118 buf->f_fsid.val[1] ^= BTRFS_I(d_inode(dentry))->root->objectid; 2119 2120 return 0; 2121 } 2122 2123 static void btrfs_kill_super(struct super_block *sb) 2124 { 2125 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2126 kill_anon_super(sb); 2127 free_fs_info(fs_info); 2128 } 2129 2130 static struct file_system_type btrfs_fs_type = { 2131 .owner = THIS_MODULE, 2132 .name = "btrfs", 2133 .mount = btrfs_mount, 2134 .kill_sb = btrfs_kill_super, 2135 .fs_flags = FS_REQUIRES_DEV | FS_BINARY_MOUNTDATA, 2136 }; 2137 MODULE_ALIAS_FS("btrfs"); 2138 2139 static int btrfs_control_open(struct inode *inode, struct file *file) 2140 { 2141 /* 2142 * The control file's private_data is used to hold the 2143 * transaction when it is started and is used to keep 2144 * track of whether a transaction is already in progress. 2145 */ 2146 file->private_data = NULL; 2147 return 0; 2148 } 2149 2150 /* 2151 * used by btrfsctl to scan devices when no FS is mounted 2152 */ 2153 static long btrfs_control_ioctl(struct file *file, unsigned int cmd, 2154 unsigned long arg) 2155 { 2156 struct btrfs_ioctl_vol_args *vol; 2157 struct btrfs_fs_devices *fs_devices; 2158 int ret = -ENOTTY; 2159 2160 if (!capable(CAP_SYS_ADMIN)) 2161 return -EPERM; 2162 2163 vol = memdup_user((void __user *)arg, sizeof(*vol)); 2164 if (IS_ERR(vol)) 2165 return PTR_ERR(vol); 2166 2167 switch (cmd) { 2168 case BTRFS_IOC_SCAN_DEV: 2169 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2170 &btrfs_fs_type, &fs_devices); 2171 break; 2172 case BTRFS_IOC_DEVICES_READY: 2173 ret = btrfs_scan_one_device(vol->name, FMODE_READ, 2174 &btrfs_fs_type, &fs_devices); 2175 if (ret) 2176 break; 2177 ret = !(fs_devices->num_devices == fs_devices->total_devices); 2178 break; 2179 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 2180 ret = btrfs_ioctl_get_supported_features((void __user*)arg); 2181 break; 2182 } 2183 2184 kfree(vol); 2185 return ret; 2186 } 2187 2188 static int btrfs_freeze(struct super_block *sb) 2189 { 2190 struct btrfs_trans_handle *trans; 2191 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2192 struct btrfs_root *root = fs_info->tree_root; 2193 2194 set_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2195 /* 2196 * We don't need a barrier here, we'll wait for any transaction that 2197 * could be in progress on other threads (and do delayed iputs that 2198 * we want to avoid on a frozen filesystem), or do the commit 2199 * ourselves. 2200 */ 2201 trans = btrfs_attach_transaction_barrier(root); 2202 if (IS_ERR(trans)) { 2203 /* no transaction, don't bother */ 2204 if (PTR_ERR(trans) == -ENOENT) 2205 return 0; 2206 return PTR_ERR(trans); 2207 } 2208 return btrfs_commit_transaction(trans); 2209 } 2210 2211 static int btrfs_unfreeze(struct super_block *sb) 2212 { 2213 struct btrfs_fs_info *fs_info = btrfs_sb(sb); 2214 2215 clear_bit(BTRFS_FS_FROZEN, &fs_info->flags); 2216 return 0; 2217 } 2218 2219 static int btrfs_show_devname(struct seq_file *m, struct dentry *root) 2220 { 2221 struct btrfs_fs_info *fs_info = btrfs_sb(root->d_sb); 2222 struct btrfs_fs_devices *cur_devices; 2223 struct btrfs_device *dev, *first_dev = NULL; 2224 struct list_head *head; 2225 struct rcu_string *name; 2226 2227 mutex_lock(&fs_info->fs_devices->device_list_mutex); 2228 cur_devices = fs_info->fs_devices; 2229 while (cur_devices) { 2230 head = &cur_devices->devices; 2231 list_for_each_entry(dev, head, dev_list) { 2232 if (dev->missing) 2233 continue; 2234 if (!dev->name) 2235 continue; 2236 if (!first_dev || dev->devid < first_dev->devid) 2237 first_dev = dev; 2238 } 2239 cur_devices = cur_devices->seed; 2240 } 2241 2242 if (first_dev) { 2243 rcu_read_lock(); 2244 name = rcu_dereference(first_dev->name); 2245 seq_escape(m, name->str, " \t\n\\"); 2246 rcu_read_unlock(); 2247 } else { 2248 WARN_ON(1); 2249 } 2250 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 2251 return 0; 2252 } 2253 2254 static const struct super_operations btrfs_super_ops = { 2255 .drop_inode = btrfs_drop_inode, 2256 .evict_inode = btrfs_evict_inode, 2257 .put_super = btrfs_put_super, 2258 .sync_fs = btrfs_sync_fs, 2259 .show_options = btrfs_show_options, 2260 .show_devname = btrfs_show_devname, 2261 .write_inode = btrfs_write_inode, 2262 .alloc_inode = btrfs_alloc_inode, 2263 .destroy_inode = btrfs_destroy_inode, 2264 .statfs = btrfs_statfs, 2265 .remount_fs = btrfs_remount, 2266 .freeze_fs = btrfs_freeze, 2267 .unfreeze_fs = btrfs_unfreeze, 2268 }; 2269 2270 static const struct file_operations btrfs_ctl_fops = { 2271 .open = btrfs_control_open, 2272 .unlocked_ioctl = btrfs_control_ioctl, 2273 .compat_ioctl = btrfs_control_ioctl, 2274 .owner = THIS_MODULE, 2275 .llseek = noop_llseek, 2276 }; 2277 2278 static struct miscdevice btrfs_misc = { 2279 .minor = BTRFS_MINOR, 2280 .name = "btrfs-control", 2281 .fops = &btrfs_ctl_fops 2282 }; 2283 2284 MODULE_ALIAS_MISCDEV(BTRFS_MINOR); 2285 MODULE_ALIAS("devname:btrfs-control"); 2286 2287 static int btrfs_interface_init(void) 2288 { 2289 return misc_register(&btrfs_misc); 2290 } 2291 2292 static void btrfs_interface_exit(void) 2293 { 2294 misc_deregister(&btrfs_misc); 2295 } 2296 2297 static void btrfs_print_mod_info(void) 2298 { 2299 pr_info("Btrfs loaded, crc32c=%s" 2300 #ifdef CONFIG_BTRFS_DEBUG 2301 ", debug=on" 2302 #endif 2303 #ifdef CONFIG_BTRFS_ASSERT 2304 ", assert=on" 2305 #endif 2306 #ifdef CONFIG_BTRFS_FS_CHECK_INTEGRITY 2307 ", integrity-checker=on" 2308 #endif 2309 "\n", 2310 btrfs_crc32c_impl()); 2311 } 2312 2313 static int __init init_btrfs_fs(void) 2314 { 2315 int err; 2316 2317 err = btrfs_hash_init(); 2318 if (err) 2319 return err; 2320 2321 btrfs_props_init(); 2322 2323 err = btrfs_init_sysfs(); 2324 if (err) 2325 goto free_hash; 2326 2327 btrfs_init_compress(); 2328 2329 err = btrfs_init_cachep(); 2330 if (err) 2331 goto free_compress; 2332 2333 err = extent_io_init(); 2334 if (err) 2335 goto free_cachep; 2336 2337 err = extent_map_init(); 2338 if (err) 2339 goto free_extent_io; 2340 2341 err = ordered_data_init(); 2342 if (err) 2343 goto free_extent_map; 2344 2345 err = btrfs_delayed_inode_init(); 2346 if (err) 2347 goto free_ordered_data; 2348 2349 err = btrfs_auto_defrag_init(); 2350 if (err) 2351 goto free_delayed_inode; 2352 2353 err = btrfs_delayed_ref_init(); 2354 if (err) 2355 goto free_auto_defrag; 2356 2357 err = btrfs_prelim_ref_init(); 2358 if (err) 2359 goto free_delayed_ref; 2360 2361 err = btrfs_end_io_wq_init(); 2362 if (err) 2363 goto free_prelim_ref; 2364 2365 err = btrfs_interface_init(); 2366 if (err) 2367 goto free_end_io_wq; 2368 2369 btrfs_init_lockdep(); 2370 2371 btrfs_print_mod_info(); 2372 2373 err = btrfs_run_sanity_tests(); 2374 if (err) 2375 goto unregister_ioctl; 2376 2377 err = register_filesystem(&btrfs_fs_type); 2378 if (err) 2379 goto unregister_ioctl; 2380 2381 return 0; 2382 2383 unregister_ioctl: 2384 btrfs_interface_exit(); 2385 free_end_io_wq: 2386 btrfs_end_io_wq_exit(); 2387 free_prelim_ref: 2388 btrfs_prelim_ref_exit(); 2389 free_delayed_ref: 2390 btrfs_delayed_ref_exit(); 2391 free_auto_defrag: 2392 btrfs_auto_defrag_exit(); 2393 free_delayed_inode: 2394 btrfs_delayed_inode_exit(); 2395 free_ordered_data: 2396 ordered_data_exit(); 2397 free_extent_map: 2398 extent_map_exit(); 2399 free_extent_io: 2400 extent_io_exit(); 2401 free_cachep: 2402 btrfs_destroy_cachep(); 2403 free_compress: 2404 btrfs_exit_compress(); 2405 btrfs_exit_sysfs(); 2406 free_hash: 2407 btrfs_hash_exit(); 2408 return err; 2409 } 2410 2411 static void __exit exit_btrfs_fs(void) 2412 { 2413 btrfs_destroy_cachep(); 2414 btrfs_delayed_ref_exit(); 2415 btrfs_auto_defrag_exit(); 2416 btrfs_delayed_inode_exit(); 2417 btrfs_prelim_ref_exit(); 2418 ordered_data_exit(); 2419 extent_map_exit(); 2420 extent_io_exit(); 2421 btrfs_interface_exit(); 2422 btrfs_end_io_wq_exit(); 2423 unregister_filesystem(&btrfs_fs_type); 2424 btrfs_exit_sysfs(); 2425 btrfs_cleanup_fs_uuids(); 2426 btrfs_exit_compress(); 2427 btrfs_hash_exit(); 2428 } 2429 2430 late_initcall(init_btrfs_fs); 2431 module_exit(exit_btrfs_fs) 2432 2433 MODULE_LICENSE("GPL"); 2434