1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 #include "fs.h" 25 #include "accessors.h" 26 #include "file-item.h" 27 28 /* 29 * This is only the first step towards a full-features scrub. It reads all 30 * extent and super block and verifies the checksums. In case a bad checksum 31 * is found or the extent cannot be read, good data will be written back if 32 * any can be found. 33 * 34 * Future enhancements: 35 * - In case an unrepairable extent is encountered, track which files are 36 * affected and report them 37 * - track and record media errors, throw out bad devices 38 * - add a mode to also read unallocated space 39 */ 40 41 struct scrub_block; 42 struct scrub_ctx; 43 44 /* 45 * The following three values only influence the performance. 46 * 47 * The last one configures the number of parallel and outstanding I/O 48 * operations. The first one configures an upper limit for the number 49 * of (dynamically allocated) pages that are added to a bio. 50 */ 51 #define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */ 52 #define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */ 53 54 /* 55 * The following value times PAGE_SIZE needs to be large enough to match the 56 * largest node/leaf/sector size that shall be supported. 57 */ 58 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 59 60 #define SCRUB_MAX_PAGES (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE)) 61 62 /* 63 * Maximum number of mirrors that can be available for all profiles counting 64 * the target device of dev-replace as one. During an active device replace 65 * procedure, the target device of the copy operation is a mirror for the 66 * filesystem data as well that can be used to read data in order to repair 67 * read errors on other disks. 68 * 69 * Current value is derived from RAID1C4 with 4 copies. 70 */ 71 #define BTRFS_MAX_MIRRORS (4 + 1) 72 73 struct scrub_recover { 74 refcount_t refs; 75 struct btrfs_io_context *bioc; 76 u64 map_length; 77 }; 78 79 struct scrub_sector { 80 struct scrub_block *sblock; 81 struct list_head list; 82 u64 flags; /* extent flags */ 83 u64 generation; 84 /* Offset in bytes to @sblock. */ 85 u32 offset; 86 atomic_t refs; 87 unsigned int have_csum:1; 88 unsigned int io_error:1; 89 u8 csum[BTRFS_CSUM_SIZE]; 90 91 struct scrub_recover *recover; 92 }; 93 94 struct scrub_bio { 95 int index; 96 struct scrub_ctx *sctx; 97 struct btrfs_device *dev; 98 struct bio *bio; 99 blk_status_t status; 100 u64 logical; 101 u64 physical; 102 struct scrub_sector *sectors[SCRUB_SECTORS_PER_BIO]; 103 int sector_count; 104 int next_free; 105 struct work_struct work; 106 }; 107 108 struct scrub_block { 109 /* 110 * Each page will have its page::private used to record the logical 111 * bytenr. 112 */ 113 struct page *pages[SCRUB_MAX_PAGES]; 114 struct scrub_sector *sectors[SCRUB_MAX_SECTORS_PER_BLOCK]; 115 struct btrfs_device *dev; 116 /* Logical bytenr of the sblock */ 117 u64 logical; 118 u64 physical; 119 u64 physical_for_dev_replace; 120 /* Length of sblock in bytes */ 121 u32 len; 122 int sector_count; 123 int mirror_num; 124 125 atomic_t outstanding_sectors; 126 refcount_t refs; /* free mem on transition to zero */ 127 struct scrub_ctx *sctx; 128 struct scrub_parity *sparity; 129 struct { 130 unsigned int header_error:1; 131 unsigned int checksum_error:1; 132 unsigned int no_io_error_seen:1; 133 unsigned int generation_error:1; /* also sets header_error */ 134 135 /* The following is for the data used to check parity */ 136 /* It is for the data with checksum */ 137 unsigned int data_corrected:1; 138 }; 139 struct work_struct work; 140 }; 141 142 /* Used for the chunks with parity stripe such RAID5/6 */ 143 struct scrub_parity { 144 struct scrub_ctx *sctx; 145 146 struct btrfs_device *scrub_dev; 147 148 u64 logic_start; 149 150 u64 logic_end; 151 152 int nsectors; 153 154 u32 stripe_len; 155 156 refcount_t refs; 157 158 struct list_head sectors_list; 159 160 /* Work of parity check and repair */ 161 struct work_struct work; 162 163 /* Mark the parity blocks which have data */ 164 unsigned long dbitmap; 165 166 /* 167 * Mark the parity blocks which have data, but errors happen when 168 * read data or check data 169 */ 170 unsigned long ebitmap; 171 }; 172 173 struct scrub_ctx { 174 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 175 struct btrfs_fs_info *fs_info; 176 int first_free; 177 int curr; 178 atomic_t bios_in_flight; 179 atomic_t workers_pending; 180 spinlock_t list_lock; 181 wait_queue_head_t list_wait; 182 struct list_head csum_list; 183 atomic_t cancel_req; 184 int readonly; 185 int sectors_per_bio; 186 187 /* State of IO submission throttling affecting the associated device */ 188 ktime_t throttle_deadline; 189 u64 throttle_sent; 190 191 int is_dev_replace; 192 u64 write_pointer; 193 194 struct scrub_bio *wr_curr_bio; 195 struct mutex wr_lock; 196 struct btrfs_device *wr_tgtdev; 197 bool flush_all_writes; 198 199 /* 200 * statistics 201 */ 202 struct btrfs_scrub_progress stat; 203 spinlock_t stat_lock; 204 205 /* 206 * Use a ref counter to avoid use-after-free issues. Scrub workers 207 * decrement bios_in_flight and workers_pending and then do a wakeup 208 * on the list_wait wait queue. We must ensure the main scrub task 209 * doesn't free the scrub context before or while the workers are 210 * doing the wakeup() call. 211 */ 212 refcount_t refs; 213 }; 214 215 struct scrub_warning { 216 struct btrfs_path *path; 217 u64 extent_item_size; 218 const char *errstr; 219 u64 physical; 220 u64 logical; 221 struct btrfs_device *dev; 222 }; 223 224 struct full_stripe_lock { 225 struct rb_node node; 226 u64 logical; 227 u64 refs; 228 struct mutex mutex; 229 }; 230 231 #ifndef CONFIG_64BIT 232 /* This structure is for archtectures whose (void *) is smaller than u64 */ 233 struct scrub_page_private { 234 u64 logical; 235 }; 236 #endif 237 238 static int attach_scrub_page_private(struct page *page, u64 logical) 239 { 240 #ifdef CONFIG_64BIT 241 attach_page_private(page, (void *)logical); 242 return 0; 243 #else 244 struct scrub_page_private *spp; 245 246 spp = kmalloc(sizeof(*spp), GFP_KERNEL); 247 if (!spp) 248 return -ENOMEM; 249 spp->logical = logical; 250 attach_page_private(page, (void *)spp); 251 return 0; 252 #endif 253 } 254 255 static void detach_scrub_page_private(struct page *page) 256 { 257 #ifdef CONFIG_64BIT 258 detach_page_private(page); 259 return; 260 #else 261 struct scrub_page_private *spp; 262 263 spp = detach_page_private(page); 264 kfree(spp); 265 return; 266 #endif 267 } 268 269 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, 270 struct btrfs_device *dev, 271 u64 logical, u64 physical, 272 u64 physical_for_dev_replace, 273 int mirror_num) 274 { 275 struct scrub_block *sblock; 276 277 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 278 if (!sblock) 279 return NULL; 280 refcount_set(&sblock->refs, 1); 281 sblock->sctx = sctx; 282 sblock->logical = logical; 283 sblock->physical = physical; 284 sblock->physical_for_dev_replace = physical_for_dev_replace; 285 sblock->dev = dev; 286 sblock->mirror_num = mirror_num; 287 sblock->no_io_error_seen = 1; 288 /* 289 * Scrub_block::pages will be allocated at alloc_scrub_sector() when 290 * the corresponding page is not allocated. 291 */ 292 return sblock; 293 } 294 295 /* 296 * Allocate a new scrub sector and attach it to @sblock. 297 * 298 * Will also allocate new pages for @sblock if needed. 299 */ 300 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, 301 u64 logical) 302 { 303 const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT; 304 struct scrub_sector *ssector; 305 306 /* We must never have scrub_block exceed U32_MAX in size. */ 307 ASSERT(logical - sblock->logical < U32_MAX); 308 309 ssector = kzalloc(sizeof(*ssector), GFP_KERNEL); 310 if (!ssector) 311 return NULL; 312 313 /* Allocate a new page if the slot is not allocated */ 314 if (!sblock->pages[page_index]) { 315 int ret; 316 317 sblock->pages[page_index] = alloc_page(GFP_KERNEL); 318 if (!sblock->pages[page_index]) { 319 kfree(ssector); 320 return NULL; 321 } 322 ret = attach_scrub_page_private(sblock->pages[page_index], 323 sblock->logical + (page_index << PAGE_SHIFT)); 324 if (ret < 0) { 325 kfree(ssector); 326 __free_page(sblock->pages[page_index]); 327 sblock->pages[page_index] = NULL; 328 return NULL; 329 } 330 } 331 332 atomic_set(&ssector->refs, 1); 333 ssector->sblock = sblock; 334 /* The sector to be added should not be used */ 335 ASSERT(sblock->sectors[sblock->sector_count] == NULL); 336 ssector->offset = logical - sblock->logical; 337 338 /* The sector count must be smaller than the limit */ 339 ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK); 340 341 sblock->sectors[sblock->sector_count] = ssector; 342 sblock->sector_count++; 343 sblock->len += sblock->sctx->fs_info->sectorsize; 344 345 return ssector; 346 } 347 348 static struct page *scrub_sector_get_page(struct scrub_sector *ssector) 349 { 350 struct scrub_block *sblock = ssector->sblock; 351 pgoff_t index; 352 /* 353 * When calling this function, ssector must be alreaday attached to the 354 * parent sblock. 355 */ 356 ASSERT(sblock); 357 358 /* The range should be inside the sblock range */ 359 ASSERT(ssector->offset < sblock->len); 360 361 index = ssector->offset >> PAGE_SHIFT; 362 ASSERT(index < SCRUB_MAX_PAGES); 363 ASSERT(sblock->pages[index]); 364 ASSERT(PagePrivate(sblock->pages[index])); 365 return sblock->pages[index]; 366 } 367 368 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector) 369 { 370 struct scrub_block *sblock = ssector->sblock; 371 372 /* 373 * When calling this function, ssector must be already attached to the 374 * parent sblock. 375 */ 376 ASSERT(sblock); 377 378 /* The range should be inside the sblock range */ 379 ASSERT(ssector->offset < sblock->len); 380 381 return offset_in_page(ssector->offset); 382 } 383 384 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector) 385 { 386 return page_address(scrub_sector_get_page(ssector)) + 387 scrub_sector_get_page_offset(ssector); 388 } 389 390 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector, 391 unsigned int len) 392 { 393 return bio_add_page(bio, scrub_sector_get_page(ssector), len, 394 scrub_sector_get_page_offset(ssector)); 395 } 396 397 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 398 struct scrub_block *sblocks_for_recheck[]); 399 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 400 struct scrub_block *sblock, 401 int retry_failed_mirror); 402 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 403 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 404 struct scrub_block *sblock_good); 405 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, 406 struct scrub_block *sblock_good, 407 int sector_num, int force_write); 408 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 409 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, 410 int sector_num); 411 static int scrub_checksum_data(struct scrub_block *sblock); 412 static int scrub_checksum_tree_block(struct scrub_block *sblock); 413 static int scrub_checksum_super(struct scrub_block *sblock); 414 static void scrub_block_put(struct scrub_block *sblock); 415 static void scrub_sector_get(struct scrub_sector *sector); 416 static void scrub_sector_put(struct scrub_sector *sector); 417 static void scrub_parity_get(struct scrub_parity *sparity); 418 static void scrub_parity_put(struct scrub_parity *sparity); 419 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, 420 u64 physical, struct btrfs_device *dev, u64 flags, 421 u64 gen, int mirror_num, u8 *csum, 422 u64 physical_for_dev_replace); 423 static void scrub_bio_end_io(struct bio *bio); 424 static void scrub_bio_end_io_worker(struct work_struct *work); 425 static void scrub_block_complete(struct scrub_block *sblock); 426 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, 427 u64 extent_logical, u32 extent_len, 428 u64 *extent_physical, 429 struct btrfs_device **extent_dev, 430 int *extent_mirror_num); 431 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, 432 struct scrub_sector *sector); 433 static void scrub_wr_submit(struct scrub_ctx *sctx); 434 static void scrub_wr_bio_end_io(struct bio *bio); 435 static void scrub_wr_bio_end_io_worker(struct work_struct *work); 436 static void scrub_put_ctx(struct scrub_ctx *sctx); 437 438 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector) 439 { 440 return sector->recover && 441 (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 442 } 443 444 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 445 { 446 refcount_inc(&sctx->refs); 447 atomic_inc(&sctx->bios_in_flight); 448 } 449 450 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 451 { 452 atomic_dec(&sctx->bios_in_flight); 453 wake_up(&sctx->list_wait); 454 scrub_put_ctx(sctx); 455 } 456 457 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 458 { 459 while (atomic_read(&fs_info->scrub_pause_req)) { 460 mutex_unlock(&fs_info->scrub_lock); 461 wait_event(fs_info->scrub_pause_wait, 462 atomic_read(&fs_info->scrub_pause_req) == 0); 463 mutex_lock(&fs_info->scrub_lock); 464 } 465 } 466 467 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 468 { 469 atomic_inc(&fs_info->scrubs_paused); 470 wake_up(&fs_info->scrub_pause_wait); 471 } 472 473 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 474 { 475 mutex_lock(&fs_info->scrub_lock); 476 __scrub_blocked_if_needed(fs_info); 477 atomic_dec(&fs_info->scrubs_paused); 478 mutex_unlock(&fs_info->scrub_lock); 479 480 wake_up(&fs_info->scrub_pause_wait); 481 } 482 483 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 484 { 485 scrub_pause_on(fs_info); 486 scrub_pause_off(fs_info); 487 } 488 489 /* 490 * Insert new full stripe lock into full stripe locks tree 491 * 492 * Return pointer to existing or newly inserted full_stripe_lock structure if 493 * everything works well. 494 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 495 * 496 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 497 * function 498 */ 499 static struct full_stripe_lock *insert_full_stripe_lock( 500 struct btrfs_full_stripe_locks_tree *locks_root, 501 u64 fstripe_logical) 502 { 503 struct rb_node **p; 504 struct rb_node *parent = NULL; 505 struct full_stripe_lock *entry; 506 struct full_stripe_lock *ret; 507 508 lockdep_assert_held(&locks_root->lock); 509 510 p = &locks_root->root.rb_node; 511 while (*p) { 512 parent = *p; 513 entry = rb_entry(parent, struct full_stripe_lock, node); 514 if (fstripe_logical < entry->logical) { 515 p = &(*p)->rb_left; 516 } else if (fstripe_logical > entry->logical) { 517 p = &(*p)->rb_right; 518 } else { 519 entry->refs++; 520 return entry; 521 } 522 } 523 524 /* 525 * Insert new lock. 526 */ 527 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 528 if (!ret) 529 return ERR_PTR(-ENOMEM); 530 ret->logical = fstripe_logical; 531 ret->refs = 1; 532 mutex_init(&ret->mutex); 533 534 rb_link_node(&ret->node, parent, p); 535 rb_insert_color(&ret->node, &locks_root->root); 536 return ret; 537 } 538 539 /* 540 * Search for a full stripe lock of a block group 541 * 542 * Return pointer to existing full stripe lock if found 543 * Return NULL if not found 544 */ 545 static struct full_stripe_lock *search_full_stripe_lock( 546 struct btrfs_full_stripe_locks_tree *locks_root, 547 u64 fstripe_logical) 548 { 549 struct rb_node *node; 550 struct full_stripe_lock *entry; 551 552 lockdep_assert_held(&locks_root->lock); 553 554 node = locks_root->root.rb_node; 555 while (node) { 556 entry = rb_entry(node, struct full_stripe_lock, node); 557 if (fstripe_logical < entry->logical) 558 node = node->rb_left; 559 else if (fstripe_logical > entry->logical) 560 node = node->rb_right; 561 else 562 return entry; 563 } 564 return NULL; 565 } 566 567 /* 568 * Helper to get full stripe logical from a normal bytenr. 569 * 570 * Caller must ensure @cache is a RAID56 block group. 571 */ 572 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 573 { 574 u64 ret; 575 576 /* 577 * Due to chunk item size limit, full stripe length should not be 578 * larger than U32_MAX. Just a sanity check here. 579 */ 580 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 581 582 /* 583 * round_down() can only handle power of 2, while RAID56 full 584 * stripe length can be 64KiB * n, so we need to manually round down. 585 */ 586 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 587 cache->full_stripe_len + cache->start; 588 return ret; 589 } 590 591 /* 592 * Lock a full stripe to avoid concurrency of recovery and read 593 * 594 * It's only used for profiles with parities (RAID5/6), for other profiles it 595 * does nothing. 596 * 597 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 598 * So caller must call unlock_full_stripe() at the same context. 599 * 600 * Return <0 if encounters error. 601 */ 602 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 603 bool *locked_ret) 604 { 605 struct btrfs_block_group *bg_cache; 606 struct btrfs_full_stripe_locks_tree *locks_root; 607 struct full_stripe_lock *existing; 608 u64 fstripe_start; 609 int ret = 0; 610 611 *locked_ret = false; 612 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 613 if (!bg_cache) { 614 ASSERT(0); 615 return -ENOENT; 616 } 617 618 /* Profiles not based on parity don't need full stripe lock */ 619 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 620 goto out; 621 locks_root = &bg_cache->full_stripe_locks_root; 622 623 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 624 625 /* Now insert the full stripe lock */ 626 mutex_lock(&locks_root->lock); 627 existing = insert_full_stripe_lock(locks_root, fstripe_start); 628 mutex_unlock(&locks_root->lock); 629 if (IS_ERR(existing)) { 630 ret = PTR_ERR(existing); 631 goto out; 632 } 633 mutex_lock(&existing->mutex); 634 *locked_ret = true; 635 out: 636 btrfs_put_block_group(bg_cache); 637 return ret; 638 } 639 640 /* 641 * Unlock a full stripe. 642 * 643 * NOTE: Caller must ensure it's the same context calling corresponding 644 * lock_full_stripe(). 645 * 646 * Return 0 if we unlock full stripe without problem. 647 * Return <0 for error 648 */ 649 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 650 bool locked) 651 { 652 struct btrfs_block_group *bg_cache; 653 struct btrfs_full_stripe_locks_tree *locks_root; 654 struct full_stripe_lock *fstripe_lock; 655 u64 fstripe_start; 656 bool freeit = false; 657 int ret = 0; 658 659 /* If we didn't acquire full stripe lock, no need to continue */ 660 if (!locked) 661 return 0; 662 663 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 664 if (!bg_cache) { 665 ASSERT(0); 666 return -ENOENT; 667 } 668 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 669 goto out; 670 671 locks_root = &bg_cache->full_stripe_locks_root; 672 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 673 674 mutex_lock(&locks_root->lock); 675 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 676 /* Unpaired unlock_full_stripe() detected */ 677 if (!fstripe_lock) { 678 WARN_ON(1); 679 ret = -ENOENT; 680 mutex_unlock(&locks_root->lock); 681 goto out; 682 } 683 684 if (fstripe_lock->refs == 0) { 685 WARN_ON(1); 686 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 687 fstripe_lock->logical); 688 } else { 689 fstripe_lock->refs--; 690 } 691 692 if (fstripe_lock->refs == 0) { 693 rb_erase(&fstripe_lock->node, &locks_root->root); 694 freeit = true; 695 } 696 mutex_unlock(&locks_root->lock); 697 698 mutex_unlock(&fstripe_lock->mutex); 699 if (freeit) 700 kfree(fstripe_lock); 701 out: 702 btrfs_put_block_group(bg_cache); 703 return ret; 704 } 705 706 static void scrub_free_csums(struct scrub_ctx *sctx) 707 { 708 while (!list_empty(&sctx->csum_list)) { 709 struct btrfs_ordered_sum *sum; 710 sum = list_first_entry(&sctx->csum_list, 711 struct btrfs_ordered_sum, list); 712 list_del(&sum->list); 713 kfree(sum); 714 } 715 } 716 717 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 718 { 719 int i; 720 721 if (!sctx) 722 return; 723 724 /* this can happen when scrub is cancelled */ 725 if (sctx->curr != -1) { 726 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 727 728 for (i = 0; i < sbio->sector_count; i++) 729 scrub_block_put(sbio->sectors[i]->sblock); 730 bio_put(sbio->bio); 731 } 732 733 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 734 struct scrub_bio *sbio = sctx->bios[i]; 735 736 if (!sbio) 737 break; 738 kfree(sbio); 739 } 740 741 kfree(sctx->wr_curr_bio); 742 scrub_free_csums(sctx); 743 kfree(sctx); 744 } 745 746 static void scrub_put_ctx(struct scrub_ctx *sctx) 747 { 748 if (refcount_dec_and_test(&sctx->refs)) 749 scrub_free_ctx(sctx); 750 } 751 752 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 753 struct btrfs_fs_info *fs_info, int is_dev_replace) 754 { 755 struct scrub_ctx *sctx; 756 int i; 757 758 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 759 if (!sctx) 760 goto nomem; 761 refcount_set(&sctx->refs, 1); 762 sctx->is_dev_replace = is_dev_replace; 763 sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO; 764 sctx->curr = -1; 765 sctx->fs_info = fs_info; 766 INIT_LIST_HEAD(&sctx->csum_list); 767 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 768 struct scrub_bio *sbio; 769 770 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 771 if (!sbio) 772 goto nomem; 773 sctx->bios[i] = sbio; 774 775 sbio->index = i; 776 sbio->sctx = sctx; 777 sbio->sector_count = 0; 778 INIT_WORK(&sbio->work, scrub_bio_end_io_worker); 779 780 if (i != SCRUB_BIOS_PER_SCTX - 1) 781 sctx->bios[i]->next_free = i + 1; 782 else 783 sctx->bios[i]->next_free = -1; 784 } 785 sctx->first_free = 0; 786 atomic_set(&sctx->bios_in_flight, 0); 787 atomic_set(&sctx->workers_pending, 0); 788 atomic_set(&sctx->cancel_req, 0); 789 790 spin_lock_init(&sctx->list_lock); 791 spin_lock_init(&sctx->stat_lock); 792 init_waitqueue_head(&sctx->list_wait); 793 sctx->throttle_deadline = 0; 794 795 WARN_ON(sctx->wr_curr_bio != NULL); 796 mutex_init(&sctx->wr_lock); 797 sctx->wr_curr_bio = NULL; 798 if (is_dev_replace) { 799 WARN_ON(!fs_info->dev_replace.tgtdev); 800 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 801 sctx->flush_all_writes = false; 802 } 803 804 return sctx; 805 806 nomem: 807 scrub_free_ctx(sctx); 808 return ERR_PTR(-ENOMEM); 809 } 810 811 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 812 void *warn_ctx) 813 { 814 u32 nlink; 815 int ret; 816 int i; 817 unsigned nofs_flag; 818 struct extent_buffer *eb; 819 struct btrfs_inode_item *inode_item; 820 struct scrub_warning *swarn = warn_ctx; 821 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 822 struct inode_fs_paths *ipath = NULL; 823 struct btrfs_root *local_root; 824 struct btrfs_key key; 825 826 local_root = btrfs_get_fs_root(fs_info, root, true); 827 if (IS_ERR(local_root)) { 828 ret = PTR_ERR(local_root); 829 goto err; 830 } 831 832 /* 833 * this makes the path point to (inum INODE_ITEM ioff) 834 */ 835 key.objectid = inum; 836 key.type = BTRFS_INODE_ITEM_KEY; 837 key.offset = 0; 838 839 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 840 if (ret) { 841 btrfs_put_root(local_root); 842 btrfs_release_path(swarn->path); 843 goto err; 844 } 845 846 eb = swarn->path->nodes[0]; 847 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 848 struct btrfs_inode_item); 849 nlink = btrfs_inode_nlink(eb, inode_item); 850 btrfs_release_path(swarn->path); 851 852 /* 853 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 854 * uses GFP_NOFS in this context, so we keep it consistent but it does 855 * not seem to be strictly necessary. 856 */ 857 nofs_flag = memalloc_nofs_save(); 858 ipath = init_ipath(4096, local_root, swarn->path); 859 memalloc_nofs_restore(nofs_flag); 860 if (IS_ERR(ipath)) { 861 btrfs_put_root(local_root); 862 ret = PTR_ERR(ipath); 863 ipath = NULL; 864 goto err; 865 } 866 ret = paths_from_inode(inum, ipath); 867 868 if (ret < 0) 869 goto err; 870 871 /* 872 * we deliberately ignore the bit ipath might have been too small to 873 * hold all of the paths here 874 */ 875 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 876 btrfs_warn_in_rcu(fs_info, 877 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 878 swarn->errstr, swarn->logical, 879 rcu_str_deref(swarn->dev->name), 880 swarn->physical, 881 root, inum, offset, 882 fs_info->sectorsize, nlink, 883 (char *)(unsigned long)ipath->fspath->val[i]); 884 885 btrfs_put_root(local_root); 886 free_ipath(ipath); 887 return 0; 888 889 err: 890 btrfs_warn_in_rcu(fs_info, 891 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 892 swarn->errstr, swarn->logical, 893 rcu_str_deref(swarn->dev->name), 894 swarn->physical, 895 root, inum, offset, ret); 896 897 free_ipath(ipath); 898 return 0; 899 } 900 901 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 902 { 903 struct btrfs_device *dev; 904 struct btrfs_fs_info *fs_info; 905 struct btrfs_path *path; 906 struct btrfs_key found_key; 907 struct extent_buffer *eb; 908 struct btrfs_extent_item *ei; 909 struct scrub_warning swarn; 910 unsigned long ptr = 0; 911 u64 extent_item_pos; 912 u64 flags = 0; 913 u64 ref_root; 914 u32 item_size; 915 u8 ref_level = 0; 916 int ret; 917 918 WARN_ON(sblock->sector_count < 1); 919 dev = sblock->dev; 920 fs_info = sblock->sctx->fs_info; 921 922 /* Super block error, no need to search extent tree. */ 923 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 924 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 925 errstr, rcu_str_deref(dev->name), 926 sblock->physical); 927 return; 928 } 929 path = btrfs_alloc_path(); 930 if (!path) 931 return; 932 933 swarn.physical = sblock->physical; 934 swarn.logical = sblock->logical; 935 swarn.errstr = errstr; 936 swarn.dev = NULL; 937 938 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 939 &flags); 940 if (ret < 0) 941 goto out; 942 943 extent_item_pos = swarn.logical - found_key.objectid; 944 swarn.extent_item_size = found_key.offset; 945 946 eb = path->nodes[0]; 947 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 948 item_size = btrfs_item_size(eb, path->slots[0]); 949 950 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 951 do { 952 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 953 item_size, &ref_root, 954 &ref_level); 955 btrfs_warn_in_rcu(fs_info, 956 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 957 errstr, swarn.logical, 958 rcu_str_deref(dev->name), 959 swarn.physical, 960 ref_level ? "node" : "leaf", 961 ret < 0 ? -1 : ref_level, 962 ret < 0 ? -1 : ref_root); 963 } while (ret != 1); 964 btrfs_release_path(path); 965 } else { 966 btrfs_release_path(path); 967 swarn.path = path; 968 swarn.dev = dev; 969 iterate_extent_inodes(fs_info, found_key.objectid, 970 extent_item_pos, 1, 971 scrub_print_warning_inode, &swarn, false); 972 } 973 974 out: 975 btrfs_free_path(path); 976 } 977 978 static inline void scrub_get_recover(struct scrub_recover *recover) 979 { 980 refcount_inc(&recover->refs); 981 } 982 983 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 984 struct scrub_recover *recover) 985 { 986 if (refcount_dec_and_test(&recover->refs)) { 987 btrfs_bio_counter_dec(fs_info); 988 btrfs_put_bioc(recover->bioc); 989 kfree(recover); 990 } 991 } 992 993 /* 994 * scrub_handle_errored_block gets called when either verification of the 995 * sectors failed or the bio failed to read, e.g. with EIO. In the latter 996 * case, this function handles all sectors in the bio, even though only one 997 * may be bad. 998 * The goal of this function is to repair the errored block by using the 999 * contents of one of the mirrors. 1000 */ 1001 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1002 { 1003 struct scrub_ctx *sctx = sblock_to_check->sctx; 1004 struct btrfs_device *dev = sblock_to_check->dev; 1005 struct btrfs_fs_info *fs_info; 1006 u64 logical; 1007 unsigned int failed_mirror_index; 1008 unsigned int is_metadata; 1009 unsigned int have_csum; 1010 /* One scrub_block for each mirror */ 1011 struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 }; 1012 struct scrub_block *sblock_bad; 1013 int ret; 1014 int mirror_index; 1015 int sector_num; 1016 int success; 1017 bool full_stripe_locked; 1018 unsigned int nofs_flag; 1019 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1020 DEFAULT_RATELIMIT_BURST); 1021 1022 BUG_ON(sblock_to_check->sector_count < 1); 1023 fs_info = sctx->fs_info; 1024 if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1025 /* 1026 * If we find an error in a super block, we just report it. 1027 * They will get written with the next transaction commit 1028 * anyway 1029 */ 1030 scrub_print_warning("super block error", sblock_to_check); 1031 spin_lock(&sctx->stat_lock); 1032 ++sctx->stat.super_errors; 1033 spin_unlock(&sctx->stat_lock); 1034 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 1035 return 0; 1036 } 1037 logical = sblock_to_check->logical; 1038 ASSERT(sblock_to_check->mirror_num); 1039 failed_mirror_index = sblock_to_check->mirror_num - 1; 1040 is_metadata = !(sblock_to_check->sectors[0]->flags & 1041 BTRFS_EXTENT_FLAG_DATA); 1042 have_csum = sblock_to_check->sectors[0]->have_csum; 1043 1044 if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) 1045 return 0; 1046 1047 /* 1048 * We must use GFP_NOFS because the scrub task might be waiting for a 1049 * worker task executing this function and in turn a transaction commit 1050 * might be waiting the scrub task to pause (which needs to wait for all 1051 * the worker tasks to complete before pausing). 1052 * We do allocations in the workers through insert_full_stripe_lock() 1053 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of 1054 * this function. 1055 */ 1056 nofs_flag = memalloc_nofs_save(); 1057 /* 1058 * For RAID5/6, race can happen for a different device scrub thread. 1059 * For data corruption, Parity and Data threads will both try 1060 * to recovery the data. 1061 * Race can lead to doubly added csum error, or even unrecoverable 1062 * error. 1063 */ 1064 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1065 if (ret < 0) { 1066 memalloc_nofs_restore(nofs_flag); 1067 spin_lock(&sctx->stat_lock); 1068 if (ret == -ENOMEM) 1069 sctx->stat.malloc_errors++; 1070 sctx->stat.read_errors++; 1071 sctx->stat.uncorrectable_errors++; 1072 spin_unlock(&sctx->stat_lock); 1073 return ret; 1074 } 1075 1076 /* 1077 * read all mirrors one after the other. This includes to 1078 * re-read the extent or metadata block that failed (that was 1079 * the cause that this fixup code is called) another time, 1080 * sector by sector this time in order to know which sectors 1081 * caused I/O errors and which ones are good (for all mirrors). 1082 * It is the goal to handle the situation when more than one 1083 * mirror contains I/O errors, but the errors do not 1084 * overlap, i.e. the data can be repaired by selecting the 1085 * sectors from those mirrors without I/O error on the 1086 * particular sectors. One example (with blocks >= 2 * sectorsize) 1087 * would be that mirror #1 has an I/O error on the first sector, 1088 * the second sector is good, and mirror #2 has an I/O error on 1089 * the second sector, but the first sector is good. 1090 * Then the first sector of the first mirror can be repaired by 1091 * taking the first sector of the second mirror, and the 1092 * second sector of the second mirror can be repaired by 1093 * copying the contents of the 2nd sector of the 1st mirror. 1094 * One more note: if the sectors of one mirror contain I/O 1095 * errors, the checksum cannot be verified. In order to get 1096 * the best data for repairing, the first attempt is to find 1097 * a mirror without I/O errors and with a validated checksum. 1098 * Only if this is not possible, the sectors are picked from 1099 * mirrors with I/O errors without considering the checksum. 1100 * If the latter is the case, at the end, the checksum of the 1101 * repaired area is verified in order to correctly maintain 1102 * the statistics. 1103 */ 1104 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { 1105 /* 1106 * Note: the two members refs and outstanding_sectors are not 1107 * used in the blocks that are used for the recheck procedure. 1108 * 1109 * But alloc_scrub_block() will initialize sblock::ref anyway, 1110 * so we can use scrub_block_put() to clean them up. 1111 * 1112 * And here we don't setup the physical/dev for the sblock yet, 1113 * they will be correctly initialized in scrub_setup_recheck_block(). 1114 */ 1115 sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL, 1116 logical, 0, 0, mirror_index); 1117 if (!sblocks_for_recheck[mirror_index]) { 1118 spin_lock(&sctx->stat_lock); 1119 sctx->stat.malloc_errors++; 1120 sctx->stat.read_errors++; 1121 sctx->stat.uncorrectable_errors++; 1122 spin_unlock(&sctx->stat_lock); 1123 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1124 goto out; 1125 } 1126 } 1127 1128 /* Setup the context, map the logical blocks and alloc the sectors */ 1129 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1130 if (ret) { 1131 spin_lock(&sctx->stat_lock); 1132 sctx->stat.read_errors++; 1133 sctx->stat.uncorrectable_errors++; 1134 spin_unlock(&sctx->stat_lock); 1135 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1136 goto out; 1137 } 1138 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1139 sblock_bad = sblocks_for_recheck[failed_mirror_index]; 1140 1141 /* build and submit the bios for the failed mirror, check checksums */ 1142 scrub_recheck_block(fs_info, sblock_bad, 1); 1143 1144 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1145 sblock_bad->no_io_error_seen) { 1146 /* 1147 * The error disappeared after reading sector by sector, or 1148 * the area was part of a huge bio and other parts of the 1149 * bio caused I/O errors, or the block layer merged several 1150 * read requests into one and the error is caused by a 1151 * different bio (usually one of the two latter cases is 1152 * the cause) 1153 */ 1154 spin_lock(&sctx->stat_lock); 1155 sctx->stat.unverified_errors++; 1156 sblock_to_check->data_corrected = 1; 1157 spin_unlock(&sctx->stat_lock); 1158 1159 if (sctx->is_dev_replace) 1160 scrub_write_block_to_dev_replace(sblock_bad); 1161 goto out; 1162 } 1163 1164 if (!sblock_bad->no_io_error_seen) { 1165 spin_lock(&sctx->stat_lock); 1166 sctx->stat.read_errors++; 1167 spin_unlock(&sctx->stat_lock); 1168 if (__ratelimit(&rs)) 1169 scrub_print_warning("i/o error", sblock_to_check); 1170 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1171 } else if (sblock_bad->checksum_error) { 1172 spin_lock(&sctx->stat_lock); 1173 sctx->stat.csum_errors++; 1174 spin_unlock(&sctx->stat_lock); 1175 if (__ratelimit(&rs)) 1176 scrub_print_warning("checksum error", sblock_to_check); 1177 btrfs_dev_stat_inc_and_print(dev, 1178 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1179 } else if (sblock_bad->header_error) { 1180 spin_lock(&sctx->stat_lock); 1181 sctx->stat.verify_errors++; 1182 spin_unlock(&sctx->stat_lock); 1183 if (__ratelimit(&rs)) 1184 scrub_print_warning("checksum/header error", 1185 sblock_to_check); 1186 if (sblock_bad->generation_error) 1187 btrfs_dev_stat_inc_and_print(dev, 1188 BTRFS_DEV_STAT_GENERATION_ERRS); 1189 else 1190 btrfs_dev_stat_inc_and_print(dev, 1191 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1192 } 1193 1194 if (sctx->readonly) { 1195 ASSERT(!sctx->is_dev_replace); 1196 goto out; 1197 } 1198 1199 /* 1200 * now build and submit the bios for the other mirrors, check 1201 * checksums. 1202 * First try to pick the mirror which is completely without I/O 1203 * errors and also does not have a checksum error. 1204 * If one is found, and if a checksum is present, the full block 1205 * that is known to contain an error is rewritten. Afterwards 1206 * the block is known to be corrected. 1207 * If a mirror is found which is completely correct, and no 1208 * checksum is present, only those sectors are rewritten that had 1209 * an I/O error in the block to be repaired, since it cannot be 1210 * determined, which copy of the other sectors is better (and it 1211 * could happen otherwise that a correct sector would be 1212 * overwritten by a bad one). 1213 */ 1214 for (mirror_index = 0; ;mirror_index++) { 1215 struct scrub_block *sblock_other; 1216 1217 if (mirror_index == failed_mirror_index) 1218 continue; 1219 1220 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1221 if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) { 1222 if (mirror_index >= BTRFS_MAX_MIRRORS) 1223 break; 1224 if (!sblocks_for_recheck[mirror_index]->sector_count) 1225 break; 1226 1227 sblock_other = sblocks_for_recheck[mirror_index]; 1228 } else { 1229 struct scrub_recover *r = sblock_bad->sectors[0]->recover; 1230 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; 1231 1232 if (mirror_index >= max_allowed) 1233 break; 1234 if (!sblocks_for_recheck[1]->sector_count) 1235 break; 1236 1237 ASSERT(failed_mirror_index == 0); 1238 sblock_other = sblocks_for_recheck[1]; 1239 sblock_other->mirror_num = 1 + mirror_index; 1240 } 1241 1242 /* build and submit the bios, check checksums */ 1243 scrub_recheck_block(fs_info, sblock_other, 0); 1244 1245 if (!sblock_other->header_error && 1246 !sblock_other->checksum_error && 1247 sblock_other->no_io_error_seen) { 1248 if (sctx->is_dev_replace) { 1249 scrub_write_block_to_dev_replace(sblock_other); 1250 goto corrected_error; 1251 } else { 1252 ret = scrub_repair_block_from_good_copy( 1253 sblock_bad, sblock_other); 1254 if (!ret) 1255 goto corrected_error; 1256 } 1257 } 1258 } 1259 1260 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1261 goto did_not_correct_error; 1262 1263 /* 1264 * In case of I/O errors in the area that is supposed to be 1265 * repaired, continue by picking good copies of those sectors. 1266 * Select the good sectors from mirrors to rewrite bad sectors from 1267 * the area to fix. Afterwards verify the checksum of the block 1268 * that is supposed to be repaired. This verification step is 1269 * only done for the purpose of statistic counting and for the 1270 * final scrub report, whether errors remain. 1271 * A perfect algorithm could make use of the checksum and try 1272 * all possible combinations of sectors from the different mirrors 1273 * until the checksum verification succeeds. For example, when 1274 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector 1275 * of mirror #2 is readable but the final checksum test fails, 1276 * then the 2nd sector of mirror #3 could be tried, whether now 1277 * the final checksum succeeds. But this would be a rare 1278 * exception and is therefore not implemented. At least it is 1279 * avoided that the good copy is overwritten. 1280 * A more useful improvement would be to pick the sectors 1281 * without I/O error based on sector sizes (512 bytes on legacy 1282 * disks) instead of on sectorsize. Then maybe 512 byte of one 1283 * mirror could be repaired by taking 512 byte of a different 1284 * mirror, even if other 512 byte sectors in the same sectorsize 1285 * area are unreadable. 1286 */ 1287 success = 1; 1288 for (sector_num = 0; sector_num < sblock_bad->sector_count; 1289 sector_num++) { 1290 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; 1291 struct scrub_block *sblock_other = NULL; 1292 1293 /* Skip no-io-error sectors in scrub */ 1294 if (!sector_bad->io_error && !sctx->is_dev_replace) 1295 continue; 1296 1297 if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) { 1298 /* 1299 * In case of dev replace, if raid56 rebuild process 1300 * didn't work out correct data, then copy the content 1301 * in sblock_bad to make sure target device is identical 1302 * to source device, instead of writing garbage data in 1303 * sblock_for_recheck array to target device. 1304 */ 1305 sblock_other = NULL; 1306 } else if (sector_bad->io_error) { 1307 /* Try to find no-io-error sector in mirrors */ 1308 for (mirror_index = 0; 1309 mirror_index < BTRFS_MAX_MIRRORS && 1310 sblocks_for_recheck[mirror_index]->sector_count > 0; 1311 mirror_index++) { 1312 if (!sblocks_for_recheck[mirror_index]-> 1313 sectors[sector_num]->io_error) { 1314 sblock_other = sblocks_for_recheck[mirror_index]; 1315 break; 1316 } 1317 } 1318 if (!sblock_other) 1319 success = 0; 1320 } 1321 1322 if (sctx->is_dev_replace) { 1323 /* 1324 * Did not find a mirror to fetch the sector from. 1325 * scrub_write_sector_to_dev_replace() handles this 1326 * case (sector->io_error), by filling the block with 1327 * zeros before submitting the write request 1328 */ 1329 if (!sblock_other) 1330 sblock_other = sblock_bad; 1331 1332 if (scrub_write_sector_to_dev_replace(sblock_other, 1333 sector_num) != 0) { 1334 atomic64_inc( 1335 &fs_info->dev_replace.num_write_errors); 1336 success = 0; 1337 } 1338 } else if (sblock_other) { 1339 ret = scrub_repair_sector_from_good_copy(sblock_bad, 1340 sblock_other, 1341 sector_num, 0); 1342 if (0 == ret) 1343 sector_bad->io_error = 0; 1344 else 1345 success = 0; 1346 } 1347 } 1348 1349 if (success && !sctx->is_dev_replace) { 1350 if (is_metadata || have_csum) { 1351 /* 1352 * need to verify the checksum now that all 1353 * sectors on disk are repaired (the write 1354 * request for data to be repaired is on its way). 1355 * Just be lazy and use scrub_recheck_block() 1356 * which re-reads the data before the checksum 1357 * is verified, but most likely the data comes out 1358 * of the page cache. 1359 */ 1360 scrub_recheck_block(fs_info, sblock_bad, 1); 1361 if (!sblock_bad->header_error && 1362 !sblock_bad->checksum_error && 1363 sblock_bad->no_io_error_seen) 1364 goto corrected_error; 1365 else 1366 goto did_not_correct_error; 1367 } else { 1368 corrected_error: 1369 spin_lock(&sctx->stat_lock); 1370 sctx->stat.corrected_errors++; 1371 sblock_to_check->data_corrected = 1; 1372 spin_unlock(&sctx->stat_lock); 1373 btrfs_err_rl_in_rcu(fs_info, 1374 "fixed up error at logical %llu on dev %s", 1375 logical, rcu_str_deref(dev->name)); 1376 } 1377 } else { 1378 did_not_correct_error: 1379 spin_lock(&sctx->stat_lock); 1380 sctx->stat.uncorrectable_errors++; 1381 spin_unlock(&sctx->stat_lock); 1382 btrfs_err_rl_in_rcu(fs_info, 1383 "unable to fixup (regular) error at logical %llu on dev %s", 1384 logical, rcu_str_deref(dev->name)); 1385 } 1386 1387 out: 1388 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { 1389 struct scrub_block *sblock = sblocks_for_recheck[mirror_index]; 1390 struct scrub_recover *recover; 1391 int sector_index; 1392 1393 /* Not allocated, continue checking the next mirror */ 1394 if (!sblock) 1395 continue; 1396 1397 for (sector_index = 0; sector_index < sblock->sector_count; 1398 sector_index++) { 1399 /* 1400 * Here we just cleanup the recover, each sector will be 1401 * properly cleaned up by later scrub_block_put() 1402 */ 1403 recover = sblock->sectors[sector_index]->recover; 1404 if (recover) { 1405 scrub_put_recover(fs_info, recover); 1406 sblock->sectors[sector_index]->recover = NULL; 1407 } 1408 } 1409 scrub_block_put(sblock); 1410 } 1411 1412 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1413 memalloc_nofs_restore(nofs_flag); 1414 if (ret < 0) 1415 return ret; 1416 return 0; 1417 } 1418 1419 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 1420 { 1421 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 1422 return 2; 1423 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 1424 return 3; 1425 else 1426 return (int)bioc->num_stripes; 1427 } 1428 1429 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1430 u64 *raid_map, 1431 int nstripes, int mirror, 1432 int *stripe_index, 1433 u64 *stripe_offset) 1434 { 1435 int i; 1436 1437 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1438 /* RAID5/6 */ 1439 for (i = 0; i < nstripes; i++) { 1440 if (raid_map[i] == RAID6_Q_STRIPE || 1441 raid_map[i] == RAID5_P_STRIPE) 1442 continue; 1443 1444 if (logical >= raid_map[i] && 1445 logical < raid_map[i] + BTRFS_STRIPE_LEN) 1446 break; 1447 } 1448 1449 *stripe_index = i; 1450 *stripe_offset = logical - raid_map[i]; 1451 } else { 1452 /* The other RAID type */ 1453 *stripe_index = mirror; 1454 *stripe_offset = 0; 1455 } 1456 } 1457 1458 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1459 struct scrub_block *sblocks_for_recheck[]) 1460 { 1461 struct scrub_ctx *sctx = original_sblock->sctx; 1462 struct btrfs_fs_info *fs_info = sctx->fs_info; 1463 u64 logical = original_sblock->logical; 1464 u64 length = original_sblock->sector_count << fs_info->sectorsize_bits; 1465 u64 generation = original_sblock->sectors[0]->generation; 1466 u64 flags = original_sblock->sectors[0]->flags; 1467 u64 have_csum = original_sblock->sectors[0]->have_csum; 1468 struct scrub_recover *recover; 1469 struct btrfs_io_context *bioc; 1470 u64 sublen; 1471 u64 mapped_length; 1472 u64 stripe_offset; 1473 int stripe_index; 1474 int sector_index = 0; 1475 int mirror_index; 1476 int nmirrors; 1477 int ret; 1478 1479 while (length > 0) { 1480 sublen = min_t(u64, length, fs_info->sectorsize); 1481 mapped_length = sublen; 1482 bioc = NULL; 1483 1484 /* 1485 * With a length of sectorsize, each returned stripe represents 1486 * one mirror 1487 */ 1488 btrfs_bio_counter_inc_blocked(fs_info); 1489 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1490 logical, &mapped_length, &bioc); 1491 if (ret || !bioc || mapped_length < sublen) { 1492 btrfs_put_bioc(bioc); 1493 btrfs_bio_counter_dec(fs_info); 1494 return -EIO; 1495 } 1496 1497 recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL); 1498 if (!recover) { 1499 btrfs_put_bioc(bioc); 1500 btrfs_bio_counter_dec(fs_info); 1501 return -ENOMEM; 1502 } 1503 1504 refcount_set(&recover->refs, 1); 1505 recover->bioc = bioc; 1506 recover->map_length = mapped_length; 1507 1508 ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK); 1509 1510 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); 1511 1512 for (mirror_index = 0; mirror_index < nmirrors; 1513 mirror_index++) { 1514 struct scrub_block *sblock; 1515 struct scrub_sector *sector; 1516 1517 sblock = sblocks_for_recheck[mirror_index]; 1518 sblock->sctx = sctx; 1519 1520 sector = alloc_scrub_sector(sblock, logical); 1521 if (!sector) { 1522 spin_lock(&sctx->stat_lock); 1523 sctx->stat.malloc_errors++; 1524 spin_unlock(&sctx->stat_lock); 1525 scrub_put_recover(fs_info, recover); 1526 return -ENOMEM; 1527 } 1528 sector->flags = flags; 1529 sector->generation = generation; 1530 sector->have_csum = have_csum; 1531 if (have_csum) 1532 memcpy(sector->csum, 1533 original_sblock->sectors[0]->csum, 1534 sctx->fs_info->csum_size); 1535 1536 scrub_stripe_index_and_offset(logical, 1537 bioc->map_type, 1538 bioc->raid_map, 1539 bioc->num_stripes - 1540 bioc->num_tgtdevs, 1541 mirror_index, 1542 &stripe_index, 1543 &stripe_offset); 1544 /* 1545 * We're at the first sector, also populate @sblock 1546 * physical and dev. 1547 */ 1548 if (sector_index == 0) { 1549 sblock->physical = 1550 bioc->stripes[stripe_index].physical + 1551 stripe_offset; 1552 sblock->dev = bioc->stripes[stripe_index].dev; 1553 sblock->physical_for_dev_replace = 1554 original_sblock->physical_for_dev_replace; 1555 } 1556 1557 BUG_ON(sector_index >= original_sblock->sector_count); 1558 scrub_get_recover(recover); 1559 sector->recover = recover; 1560 } 1561 scrub_put_recover(fs_info, recover); 1562 length -= sublen; 1563 logical += sublen; 1564 sector_index++; 1565 } 1566 1567 return 0; 1568 } 1569 1570 static void scrub_bio_wait_endio(struct bio *bio) 1571 { 1572 complete(bio->bi_private); 1573 } 1574 1575 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1576 struct bio *bio, 1577 struct scrub_sector *sector) 1578 { 1579 DECLARE_COMPLETION_ONSTACK(done); 1580 1581 bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >> 1582 SECTOR_SHIFT; 1583 bio->bi_private = &done; 1584 bio->bi_end_io = scrub_bio_wait_endio; 1585 raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num); 1586 1587 wait_for_completion_io(&done); 1588 return blk_status_to_errno(bio->bi_status); 1589 } 1590 1591 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1592 struct scrub_block *sblock) 1593 { 1594 struct scrub_sector *first_sector = sblock->sectors[0]; 1595 struct bio *bio; 1596 int i; 1597 1598 /* All sectors in sblock belong to the same stripe on the same device. */ 1599 ASSERT(sblock->dev); 1600 if (!sblock->dev->bdev) 1601 goto out; 1602 1603 bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 1604 1605 for (i = 0; i < sblock->sector_count; i++) { 1606 struct scrub_sector *sector = sblock->sectors[i]; 1607 1608 bio_add_scrub_sector(bio, sector, fs_info->sectorsize); 1609 } 1610 1611 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) { 1612 bio_put(bio); 1613 goto out; 1614 } 1615 1616 bio_put(bio); 1617 1618 scrub_recheck_block_checksum(sblock); 1619 1620 return; 1621 out: 1622 for (i = 0; i < sblock->sector_count; i++) 1623 sblock->sectors[i]->io_error = 1; 1624 1625 sblock->no_io_error_seen = 0; 1626 } 1627 1628 /* 1629 * This function will check the on disk data for checksum errors, header errors 1630 * and read I/O errors. If any I/O errors happen, the exact sectors which are 1631 * errored are marked as being bad. The goal is to enable scrub to take those 1632 * sectors that are not errored from all the mirrors so that the sectors that 1633 * are errored in the just handled mirror can be repaired. 1634 */ 1635 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1636 struct scrub_block *sblock, 1637 int retry_failed_mirror) 1638 { 1639 int i; 1640 1641 sblock->no_io_error_seen = 1; 1642 1643 /* short cut for raid56 */ 1644 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0])) 1645 return scrub_recheck_block_on_raid56(fs_info, sblock); 1646 1647 for (i = 0; i < sblock->sector_count; i++) { 1648 struct scrub_sector *sector = sblock->sectors[i]; 1649 struct bio bio; 1650 struct bio_vec bvec; 1651 1652 if (sblock->dev->bdev == NULL) { 1653 sector->io_error = 1; 1654 sblock->no_io_error_seen = 0; 1655 continue; 1656 } 1657 1658 bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ); 1659 bio_add_scrub_sector(&bio, sector, fs_info->sectorsize); 1660 bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >> 1661 SECTOR_SHIFT; 1662 1663 btrfsic_check_bio(&bio); 1664 if (submit_bio_wait(&bio)) { 1665 sector->io_error = 1; 1666 sblock->no_io_error_seen = 0; 1667 } 1668 1669 bio_uninit(&bio); 1670 } 1671 1672 if (sblock->no_io_error_seen) 1673 scrub_recheck_block_checksum(sblock); 1674 } 1675 1676 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) 1677 { 1678 struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices; 1679 int ret; 1680 1681 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1682 return !ret; 1683 } 1684 1685 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1686 { 1687 sblock->header_error = 0; 1688 sblock->checksum_error = 0; 1689 sblock->generation_error = 0; 1690 1691 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1692 scrub_checksum_data(sblock); 1693 else 1694 scrub_checksum_tree_block(sblock); 1695 } 1696 1697 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1698 struct scrub_block *sblock_good) 1699 { 1700 int i; 1701 int ret = 0; 1702 1703 for (i = 0; i < sblock_bad->sector_count; i++) { 1704 int ret_sub; 1705 1706 ret_sub = scrub_repair_sector_from_good_copy(sblock_bad, 1707 sblock_good, i, 1); 1708 if (ret_sub) 1709 ret = ret_sub; 1710 } 1711 1712 return ret; 1713 } 1714 1715 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, 1716 struct scrub_block *sblock_good, 1717 int sector_num, int force_write) 1718 { 1719 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; 1720 struct scrub_sector *sector_good = sblock_good->sectors[sector_num]; 1721 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1722 const u32 sectorsize = fs_info->sectorsize; 1723 1724 if (force_write || sblock_bad->header_error || 1725 sblock_bad->checksum_error || sector_bad->io_error) { 1726 struct bio bio; 1727 struct bio_vec bvec; 1728 int ret; 1729 1730 if (!sblock_bad->dev->bdev) { 1731 btrfs_warn_rl(fs_info, 1732 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1733 return -EIO; 1734 } 1735 1736 bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE); 1737 bio.bi_iter.bi_sector = (sblock_bad->physical + 1738 sector_bad->offset) >> SECTOR_SHIFT; 1739 ret = bio_add_scrub_sector(&bio, sector_good, sectorsize); 1740 1741 btrfsic_check_bio(&bio); 1742 ret = submit_bio_wait(&bio); 1743 bio_uninit(&bio); 1744 1745 if (ret) { 1746 btrfs_dev_stat_inc_and_print(sblock_bad->dev, 1747 BTRFS_DEV_STAT_WRITE_ERRS); 1748 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1749 return -EIO; 1750 } 1751 } 1752 1753 return 0; 1754 } 1755 1756 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1757 { 1758 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1759 int i; 1760 1761 /* 1762 * This block is used for the check of the parity on the source device, 1763 * so the data needn't be written into the destination device. 1764 */ 1765 if (sblock->sparity) 1766 return; 1767 1768 for (i = 0; i < sblock->sector_count; i++) { 1769 int ret; 1770 1771 ret = scrub_write_sector_to_dev_replace(sblock, i); 1772 if (ret) 1773 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1774 } 1775 } 1776 1777 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num) 1778 { 1779 const u32 sectorsize = sblock->sctx->fs_info->sectorsize; 1780 struct scrub_sector *sector = sblock->sectors[sector_num]; 1781 1782 if (sector->io_error) 1783 memset(scrub_sector_get_kaddr(sector), 0, sectorsize); 1784 1785 return scrub_add_sector_to_wr_bio(sblock->sctx, sector); 1786 } 1787 1788 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1789 { 1790 int ret = 0; 1791 u64 length; 1792 1793 if (!btrfs_is_zoned(sctx->fs_info)) 1794 return 0; 1795 1796 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1797 return 0; 1798 1799 if (sctx->write_pointer < physical) { 1800 length = physical - sctx->write_pointer; 1801 1802 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1803 sctx->write_pointer, length); 1804 if (!ret) 1805 sctx->write_pointer = physical; 1806 } 1807 return ret; 1808 } 1809 1810 static void scrub_block_get(struct scrub_block *sblock) 1811 { 1812 refcount_inc(&sblock->refs); 1813 } 1814 1815 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, 1816 struct scrub_sector *sector) 1817 { 1818 struct scrub_block *sblock = sector->sblock; 1819 struct scrub_bio *sbio; 1820 int ret; 1821 const u32 sectorsize = sctx->fs_info->sectorsize; 1822 1823 mutex_lock(&sctx->wr_lock); 1824 again: 1825 if (!sctx->wr_curr_bio) { 1826 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1827 GFP_KERNEL); 1828 if (!sctx->wr_curr_bio) { 1829 mutex_unlock(&sctx->wr_lock); 1830 return -ENOMEM; 1831 } 1832 sctx->wr_curr_bio->sctx = sctx; 1833 sctx->wr_curr_bio->sector_count = 0; 1834 } 1835 sbio = sctx->wr_curr_bio; 1836 if (sbio->sector_count == 0) { 1837 ret = fill_writer_pointer_gap(sctx, sector->offset + 1838 sblock->physical_for_dev_replace); 1839 if (ret) { 1840 mutex_unlock(&sctx->wr_lock); 1841 return ret; 1842 } 1843 1844 sbio->physical = sblock->physical_for_dev_replace + sector->offset; 1845 sbio->logical = sblock->logical + sector->offset; 1846 sbio->dev = sctx->wr_tgtdev; 1847 if (!sbio->bio) { 1848 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, 1849 REQ_OP_WRITE, GFP_NOFS); 1850 } 1851 sbio->bio->bi_private = sbio; 1852 sbio->bio->bi_end_io = scrub_wr_bio_end_io; 1853 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; 1854 sbio->status = 0; 1855 } else if (sbio->physical + sbio->sector_count * sectorsize != 1856 sblock->physical_for_dev_replace + sector->offset || 1857 sbio->logical + sbio->sector_count * sectorsize != 1858 sblock->logical + sector->offset) { 1859 scrub_wr_submit(sctx); 1860 goto again; 1861 } 1862 1863 ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); 1864 if (ret != sectorsize) { 1865 if (sbio->sector_count < 1) { 1866 bio_put(sbio->bio); 1867 sbio->bio = NULL; 1868 mutex_unlock(&sctx->wr_lock); 1869 return -EIO; 1870 } 1871 scrub_wr_submit(sctx); 1872 goto again; 1873 } 1874 1875 sbio->sectors[sbio->sector_count] = sector; 1876 scrub_sector_get(sector); 1877 /* 1878 * Since ssector no longer holds a page, but uses sblock::pages, we 1879 * have to ensure the sblock had not been freed before our write bio 1880 * finished. 1881 */ 1882 scrub_block_get(sector->sblock); 1883 1884 sbio->sector_count++; 1885 if (sbio->sector_count == sctx->sectors_per_bio) 1886 scrub_wr_submit(sctx); 1887 mutex_unlock(&sctx->wr_lock); 1888 1889 return 0; 1890 } 1891 1892 static void scrub_wr_submit(struct scrub_ctx *sctx) 1893 { 1894 struct scrub_bio *sbio; 1895 1896 if (!sctx->wr_curr_bio) 1897 return; 1898 1899 sbio = sctx->wr_curr_bio; 1900 sctx->wr_curr_bio = NULL; 1901 scrub_pending_bio_inc(sctx); 1902 /* process all writes in a single worker thread. Then the block layer 1903 * orders the requests before sending them to the driver which 1904 * doubled the write performance on spinning disks when measured 1905 * with Linux 3.5 */ 1906 btrfsic_check_bio(sbio->bio); 1907 submit_bio(sbio->bio); 1908 1909 if (btrfs_is_zoned(sctx->fs_info)) 1910 sctx->write_pointer = sbio->physical + sbio->sector_count * 1911 sctx->fs_info->sectorsize; 1912 } 1913 1914 static void scrub_wr_bio_end_io(struct bio *bio) 1915 { 1916 struct scrub_bio *sbio = bio->bi_private; 1917 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1918 1919 sbio->status = bio->bi_status; 1920 sbio->bio = bio; 1921 1922 INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker); 1923 queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1924 } 1925 1926 static void scrub_wr_bio_end_io_worker(struct work_struct *work) 1927 { 1928 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1929 struct scrub_ctx *sctx = sbio->sctx; 1930 int i; 1931 1932 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); 1933 if (sbio->status) { 1934 struct btrfs_dev_replace *dev_replace = 1935 &sbio->sctx->fs_info->dev_replace; 1936 1937 for (i = 0; i < sbio->sector_count; i++) { 1938 struct scrub_sector *sector = sbio->sectors[i]; 1939 1940 sector->io_error = 1; 1941 atomic64_inc(&dev_replace->num_write_errors); 1942 } 1943 } 1944 1945 /* 1946 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in 1947 * endio we should put the sblock. 1948 */ 1949 for (i = 0; i < sbio->sector_count; i++) { 1950 scrub_block_put(sbio->sectors[i]->sblock); 1951 scrub_sector_put(sbio->sectors[i]); 1952 } 1953 1954 bio_put(sbio->bio); 1955 kfree(sbio); 1956 scrub_pending_bio_dec(sctx); 1957 } 1958 1959 static int scrub_checksum(struct scrub_block *sblock) 1960 { 1961 u64 flags; 1962 int ret; 1963 1964 /* 1965 * No need to initialize these stats currently, 1966 * because this function only use return value 1967 * instead of these stats value. 1968 * 1969 * Todo: 1970 * always use stats 1971 */ 1972 sblock->header_error = 0; 1973 sblock->generation_error = 0; 1974 sblock->checksum_error = 0; 1975 1976 WARN_ON(sblock->sector_count < 1); 1977 flags = sblock->sectors[0]->flags; 1978 ret = 0; 1979 if (flags & BTRFS_EXTENT_FLAG_DATA) 1980 ret = scrub_checksum_data(sblock); 1981 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1982 ret = scrub_checksum_tree_block(sblock); 1983 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1984 ret = scrub_checksum_super(sblock); 1985 else 1986 WARN_ON(1); 1987 if (ret) 1988 scrub_handle_errored_block(sblock); 1989 1990 return ret; 1991 } 1992 1993 static int scrub_checksum_data(struct scrub_block *sblock) 1994 { 1995 struct scrub_ctx *sctx = sblock->sctx; 1996 struct btrfs_fs_info *fs_info = sctx->fs_info; 1997 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1998 u8 csum[BTRFS_CSUM_SIZE]; 1999 struct scrub_sector *sector; 2000 char *kaddr; 2001 2002 BUG_ON(sblock->sector_count < 1); 2003 sector = sblock->sectors[0]; 2004 if (!sector->have_csum) 2005 return 0; 2006 2007 kaddr = scrub_sector_get_kaddr(sector); 2008 2009 shash->tfm = fs_info->csum_shash; 2010 crypto_shash_init(shash); 2011 2012 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 2013 2014 if (memcmp(csum, sector->csum, fs_info->csum_size)) 2015 sblock->checksum_error = 1; 2016 return sblock->checksum_error; 2017 } 2018 2019 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2020 { 2021 struct scrub_ctx *sctx = sblock->sctx; 2022 struct btrfs_header *h; 2023 struct btrfs_fs_info *fs_info = sctx->fs_info; 2024 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2025 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2026 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2027 /* 2028 * This is done in sectorsize steps even for metadata as there's a 2029 * constraint for nodesize to be aligned to sectorsize. This will need 2030 * to change so we don't misuse data and metadata units like that. 2031 */ 2032 const u32 sectorsize = sctx->fs_info->sectorsize; 2033 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 2034 int i; 2035 struct scrub_sector *sector; 2036 char *kaddr; 2037 2038 BUG_ON(sblock->sector_count < 1); 2039 2040 /* Each member in sectors is just one sector */ 2041 ASSERT(sblock->sector_count == num_sectors); 2042 2043 sector = sblock->sectors[0]; 2044 kaddr = scrub_sector_get_kaddr(sector); 2045 h = (struct btrfs_header *)kaddr; 2046 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 2047 2048 /* 2049 * we don't use the getter functions here, as we 2050 * a) don't have an extent buffer and 2051 * b) the page is already kmapped 2052 */ 2053 if (sblock->logical != btrfs_stack_header_bytenr(h)) 2054 sblock->header_error = 1; 2055 2056 if (sector->generation != btrfs_stack_header_generation(h)) { 2057 sblock->header_error = 1; 2058 sblock->generation_error = 1; 2059 } 2060 2061 if (!scrub_check_fsid(h->fsid, sector)) 2062 sblock->header_error = 1; 2063 2064 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2065 BTRFS_UUID_SIZE)) 2066 sblock->header_error = 1; 2067 2068 shash->tfm = fs_info->csum_shash; 2069 crypto_shash_init(shash); 2070 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 2071 sectorsize - BTRFS_CSUM_SIZE); 2072 2073 for (i = 1; i < num_sectors; i++) { 2074 kaddr = scrub_sector_get_kaddr(sblock->sectors[i]); 2075 crypto_shash_update(shash, kaddr, sectorsize); 2076 } 2077 2078 crypto_shash_final(shash, calculated_csum); 2079 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 2080 sblock->checksum_error = 1; 2081 2082 return sblock->header_error || sblock->checksum_error; 2083 } 2084 2085 static int scrub_checksum_super(struct scrub_block *sblock) 2086 { 2087 struct btrfs_super_block *s; 2088 struct scrub_ctx *sctx = sblock->sctx; 2089 struct btrfs_fs_info *fs_info = sctx->fs_info; 2090 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2091 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2092 struct scrub_sector *sector; 2093 char *kaddr; 2094 int fail_gen = 0; 2095 int fail_cor = 0; 2096 2097 BUG_ON(sblock->sector_count < 1); 2098 sector = sblock->sectors[0]; 2099 kaddr = scrub_sector_get_kaddr(sector); 2100 s = (struct btrfs_super_block *)kaddr; 2101 2102 if (sblock->logical != btrfs_super_bytenr(s)) 2103 ++fail_cor; 2104 2105 if (sector->generation != btrfs_super_generation(s)) 2106 ++fail_gen; 2107 2108 if (!scrub_check_fsid(s->fsid, sector)) 2109 ++fail_cor; 2110 2111 shash->tfm = fs_info->csum_shash; 2112 crypto_shash_init(shash); 2113 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 2114 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 2115 2116 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 2117 ++fail_cor; 2118 2119 return fail_cor + fail_gen; 2120 } 2121 2122 static void scrub_block_put(struct scrub_block *sblock) 2123 { 2124 if (refcount_dec_and_test(&sblock->refs)) { 2125 int i; 2126 2127 if (sblock->sparity) 2128 scrub_parity_put(sblock->sparity); 2129 2130 for (i = 0; i < sblock->sector_count; i++) 2131 scrub_sector_put(sblock->sectors[i]); 2132 for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) { 2133 if (sblock->pages[i]) { 2134 detach_scrub_page_private(sblock->pages[i]); 2135 __free_page(sblock->pages[i]); 2136 } 2137 } 2138 kfree(sblock); 2139 } 2140 } 2141 2142 static void scrub_sector_get(struct scrub_sector *sector) 2143 { 2144 atomic_inc(§or->refs); 2145 } 2146 2147 static void scrub_sector_put(struct scrub_sector *sector) 2148 { 2149 if (atomic_dec_and_test(§or->refs)) 2150 kfree(sector); 2151 } 2152 2153 /* 2154 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 2155 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 2156 */ 2157 static void scrub_throttle(struct scrub_ctx *sctx) 2158 { 2159 const int time_slice = 1000; 2160 struct scrub_bio *sbio; 2161 struct btrfs_device *device; 2162 s64 delta; 2163 ktime_t now; 2164 u32 div; 2165 u64 bwlimit; 2166 2167 sbio = sctx->bios[sctx->curr]; 2168 device = sbio->dev; 2169 bwlimit = READ_ONCE(device->scrub_speed_max); 2170 if (bwlimit == 0) 2171 return; 2172 2173 /* 2174 * Slice is divided into intervals when the IO is submitted, adjust by 2175 * bwlimit and maximum of 64 intervals. 2176 */ 2177 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 2178 div = min_t(u32, 64, div); 2179 2180 /* Start new epoch, set deadline */ 2181 now = ktime_get(); 2182 if (sctx->throttle_deadline == 0) { 2183 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 2184 sctx->throttle_sent = 0; 2185 } 2186 2187 /* Still in the time to send? */ 2188 if (ktime_before(now, sctx->throttle_deadline)) { 2189 /* If current bio is within the limit, send it */ 2190 sctx->throttle_sent += sbio->bio->bi_iter.bi_size; 2191 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 2192 return; 2193 2194 /* We're over the limit, sleep until the rest of the slice */ 2195 delta = ktime_ms_delta(sctx->throttle_deadline, now); 2196 } else { 2197 /* New request after deadline, start new epoch */ 2198 delta = 0; 2199 } 2200 2201 if (delta) { 2202 long timeout; 2203 2204 timeout = div_u64(delta * HZ, 1000); 2205 schedule_timeout_interruptible(timeout); 2206 } 2207 2208 /* Next call will start the deadline period */ 2209 sctx->throttle_deadline = 0; 2210 } 2211 2212 static void scrub_submit(struct scrub_ctx *sctx) 2213 { 2214 struct scrub_bio *sbio; 2215 2216 if (sctx->curr == -1) 2217 return; 2218 2219 scrub_throttle(sctx); 2220 2221 sbio = sctx->bios[sctx->curr]; 2222 sctx->curr = -1; 2223 scrub_pending_bio_inc(sctx); 2224 btrfsic_check_bio(sbio->bio); 2225 submit_bio(sbio->bio); 2226 } 2227 2228 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx, 2229 struct scrub_sector *sector) 2230 { 2231 struct scrub_block *sblock = sector->sblock; 2232 struct scrub_bio *sbio; 2233 const u32 sectorsize = sctx->fs_info->sectorsize; 2234 int ret; 2235 2236 again: 2237 /* 2238 * grab a fresh bio or wait for one to become available 2239 */ 2240 while (sctx->curr == -1) { 2241 spin_lock(&sctx->list_lock); 2242 sctx->curr = sctx->first_free; 2243 if (sctx->curr != -1) { 2244 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2245 sctx->bios[sctx->curr]->next_free = -1; 2246 sctx->bios[sctx->curr]->sector_count = 0; 2247 spin_unlock(&sctx->list_lock); 2248 } else { 2249 spin_unlock(&sctx->list_lock); 2250 wait_event(sctx->list_wait, sctx->first_free != -1); 2251 } 2252 } 2253 sbio = sctx->bios[sctx->curr]; 2254 if (sbio->sector_count == 0) { 2255 sbio->physical = sblock->physical + sector->offset; 2256 sbio->logical = sblock->logical + sector->offset; 2257 sbio->dev = sblock->dev; 2258 if (!sbio->bio) { 2259 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, 2260 REQ_OP_READ, GFP_NOFS); 2261 } 2262 sbio->bio->bi_private = sbio; 2263 sbio->bio->bi_end_io = scrub_bio_end_io; 2264 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; 2265 sbio->status = 0; 2266 } else if (sbio->physical + sbio->sector_count * sectorsize != 2267 sblock->physical + sector->offset || 2268 sbio->logical + sbio->sector_count * sectorsize != 2269 sblock->logical + sector->offset || 2270 sbio->dev != sblock->dev) { 2271 scrub_submit(sctx); 2272 goto again; 2273 } 2274 2275 sbio->sectors[sbio->sector_count] = sector; 2276 ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); 2277 if (ret != sectorsize) { 2278 if (sbio->sector_count < 1) { 2279 bio_put(sbio->bio); 2280 sbio->bio = NULL; 2281 return -EIO; 2282 } 2283 scrub_submit(sctx); 2284 goto again; 2285 } 2286 2287 scrub_block_get(sblock); /* one for the page added to the bio */ 2288 atomic_inc(&sblock->outstanding_sectors); 2289 sbio->sector_count++; 2290 if (sbio->sector_count == sctx->sectors_per_bio) 2291 scrub_submit(sctx); 2292 2293 return 0; 2294 } 2295 2296 static void scrub_missing_raid56_end_io(struct bio *bio) 2297 { 2298 struct scrub_block *sblock = bio->bi_private; 2299 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2300 2301 btrfs_bio_counter_dec(fs_info); 2302 if (bio->bi_status) 2303 sblock->no_io_error_seen = 0; 2304 2305 bio_put(bio); 2306 2307 queue_work(fs_info->scrub_workers, &sblock->work); 2308 } 2309 2310 static void scrub_missing_raid56_worker(struct work_struct *work) 2311 { 2312 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2313 struct scrub_ctx *sctx = sblock->sctx; 2314 struct btrfs_fs_info *fs_info = sctx->fs_info; 2315 u64 logical; 2316 struct btrfs_device *dev; 2317 2318 logical = sblock->logical; 2319 dev = sblock->dev; 2320 2321 if (sblock->no_io_error_seen) 2322 scrub_recheck_block_checksum(sblock); 2323 2324 if (!sblock->no_io_error_seen) { 2325 spin_lock(&sctx->stat_lock); 2326 sctx->stat.read_errors++; 2327 spin_unlock(&sctx->stat_lock); 2328 btrfs_err_rl_in_rcu(fs_info, 2329 "IO error rebuilding logical %llu for dev %s", 2330 logical, rcu_str_deref(dev->name)); 2331 } else if (sblock->header_error || sblock->checksum_error) { 2332 spin_lock(&sctx->stat_lock); 2333 sctx->stat.uncorrectable_errors++; 2334 spin_unlock(&sctx->stat_lock); 2335 btrfs_err_rl_in_rcu(fs_info, 2336 "failed to rebuild valid logical %llu for dev %s", 2337 logical, rcu_str_deref(dev->name)); 2338 } else { 2339 scrub_write_block_to_dev_replace(sblock); 2340 } 2341 2342 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2343 mutex_lock(&sctx->wr_lock); 2344 scrub_wr_submit(sctx); 2345 mutex_unlock(&sctx->wr_lock); 2346 } 2347 2348 scrub_block_put(sblock); 2349 scrub_pending_bio_dec(sctx); 2350 } 2351 2352 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2353 { 2354 struct scrub_ctx *sctx = sblock->sctx; 2355 struct btrfs_fs_info *fs_info = sctx->fs_info; 2356 u64 length = sblock->sector_count << fs_info->sectorsize_bits; 2357 u64 logical = sblock->logical; 2358 struct btrfs_io_context *bioc = NULL; 2359 struct bio *bio; 2360 struct btrfs_raid_bio *rbio; 2361 int ret; 2362 int i; 2363 2364 btrfs_bio_counter_inc_blocked(fs_info); 2365 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2366 &length, &bioc); 2367 if (ret || !bioc || !bioc->raid_map) 2368 goto bioc_out; 2369 2370 if (WARN_ON(!sctx->is_dev_replace || 2371 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2372 /* 2373 * We shouldn't be scrubbing a missing device. Even for dev 2374 * replace, we should only get here for RAID 5/6. We either 2375 * managed to mount something with no mirrors remaining or 2376 * there's a bug in scrub_find_good_copy()/btrfs_map_block(). 2377 */ 2378 goto bioc_out; 2379 } 2380 2381 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 2382 bio->bi_iter.bi_sector = logical >> 9; 2383 bio->bi_private = sblock; 2384 bio->bi_end_io = scrub_missing_raid56_end_io; 2385 2386 rbio = raid56_alloc_missing_rbio(bio, bioc); 2387 if (!rbio) 2388 goto rbio_out; 2389 2390 for (i = 0; i < sblock->sector_count; i++) { 2391 struct scrub_sector *sector = sblock->sectors[i]; 2392 2393 raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector), 2394 scrub_sector_get_page_offset(sector), 2395 sector->offset + sector->sblock->logical); 2396 } 2397 2398 INIT_WORK(&sblock->work, scrub_missing_raid56_worker); 2399 scrub_block_get(sblock); 2400 scrub_pending_bio_inc(sctx); 2401 raid56_submit_missing_rbio(rbio); 2402 btrfs_put_bioc(bioc); 2403 return; 2404 2405 rbio_out: 2406 bio_put(bio); 2407 bioc_out: 2408 btrfs_bio_counter_dec(fs_info); 2409 btrfs_put_bioc(bioc); 2410 spin_lock(&sctx->stat_lock); 2411 sctx->stat.malloc_errors++; 2412 spin_unlock(&sctx->stat_lock); 2413 } 2414 2415 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, 2416 u64 physical, struct btrfs_device *dev, u64 flags, 2417 u64 gen, int mirror_num, u8 *csum, 2418 u64 physical_for_dev_replace) 2419 { 2420 struct scrub_block *sblock; 2421 const u32 sectorsize = sctx->fs_info->sectorsize; 2422 int index; 2423 2424 sblock = alloc_scrub_block(sctx, dev, logical, physical, 2425 physical_for_dev_replace, mirror_num); 2426 if (!sblock) { 2427 spin_lock(&sctx->stat_lock); 2428 sctx->stat.malloc_errors++; 2429 spin_unlock(&sctx->stat_lock); 2430 return -ENOMEM; 2431 } 2432 2433 for (index = 0; len > 0; index++) { 2434 struct scrub_sector *sector; 2435 /* 2436 * Here we will allocate one page for one sector to scrub. 2437 * This is fine if PAGE_SIZE == sectorsize, but will cost 2438 * more memory for PAGE_SIZE > sectorsize case. 2439 */ 2440 u32 l = min(sectorsize, len); 2441 2442 sector = alloc_scrub_sector(sblock, logical); 2443 if (!sector) { 2444 spin_lock(&sctx->stat_lock); 2445 sctx->stat.malloc_errors++; 2446 spin_unlock(&sctx->stat_lock); 2447 scrub_block_put(sblock); 2448 return -ENOMEM; 2449 } 2450 sector->flags = flags; 2451 sector->generation = gen; 2452 if (csum) { 2453 sector->have_csum = 1; 2454 memcpy(sector->csum, csum, sctx->fs_info->csum_size); 2455 } else { 2456 sector->have_csum = 0; 2457 } 2458 len -= l; 2459 logical += l; 2460 physical += l; 2461 physical_for_dev_replace += l; 2462 } 2463 2464 WARN_ON(sblock->sector_count == 0); 2465 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2466 /* 2467 * This case should only be hit for RAID 5/6 device replace. See 2468 * the comment in scrub_missing_raid56_pages() for details. 2469 */ 2470 scrub_missing_raid56_pages(sblock); 2471 } else { 2472 for (index = 0; index < sblock->sector_count; index++) { 2473 struct scrub_sector *sector = sblock->sectors[index]; 2474 int ret; 2475 2476 ret = scrub_add_sector_to_rd_bio(sctx, sector); 2477 if (ret) { 2478 scrub_block_put(sblock); 2479 return ret; 2480 } 2481 } 2482 2483 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2484 scrub_submit(sctx); 2485 } 2486 2487 /* last one frees, either here or in bio completion for last page */ 2488 scrub_block_put(sblock); 2489 return 0; 2490 } 2491 2492 static void scrub_bio_end_io(struct bio *bio) 2493 { 2494 struct scrub_bio *sbio = bio->bi_private; 2495 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2496 2497 sbio->status = bio->bi_status; 2498 sbio->bio = bio; 2499 2500 queue_work(fs_info->scrub_workers, &sbio->work); 2501 } 2502 2503 static void scrub_bio_end_io_worker(struct work_struct *work) 2504 { 2505 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2506 struct scrub_ctx *sctx = sbio->sctx; 2507 int i; 2508 2509 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); 2510 if (sbio->status) { 2511 for (i = 0; i < sbio->sector_count; i++) { 2512 struct scrub_sector *sector = sbio->sectors[i]; 2513 2514 sector->io_error = 1; 2515 sector->sblock->no_io_error_seen = 0; 2516 } 2517 } 2518 2519 /* Now complete the scrub_block items that have all pages completed */ 2520 for (i = 0; i < sbio->sector_count; i++) { 2521 struct scrub_sector *sector = sbio->sectors[i]; 2522 struct scrub_block *sblock = sector->sblock; 2523 2524 if (atomic_dec_and_test(&sblock->outstanding_sectors)) 2525 scrub_block_complete(sblock); 2526 scrub_block_put(sblock); 2527 } 2528 2529 bio_put(sbio->bio); 2530 sbio->bio = NULL; 2531 spin_lock(&sctx->list_lock); 2532 sbio->next_free = sctx->first_free; 2533 sctx->first_free = sbio->index; 2534 spin_unlock(&sctx->list_lock); 2535 2536 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2537 mutex_lock(&sctx->wr_lock); 2538 scrub_wr_submit(sctx); 2539 mutex_unlock(&sctx->wr_lock); 2540 } 2541 2542 scrub_pending_bio_dec(sctx); 2543 } 2544 2545 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2546 unsigned long *bitmap, 2547 u64 start, u32 len) 2548 { 2549 u64 offset; 2550 u32 nsectors; 2551 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2552 2553 if (len >= sparity->stripe_len) { 2554 bitmap_set(bitmap, 0, sparity->nsectors); 2555 return; 2556 } 2557 2558 start -= sparity->logic_start; 2559 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2560 offset = offset >> sectorsize_bits; 2561 nsectors = len >> sectorsize_bits; 2562 2563 if (offset + nsectors <= sparity->nsectors) { 2564 bitmap_set(bitmap, offset, nsectors); 2565 return; 2566 } 2567 2568 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2569 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2570 } 2571 2572 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2573 u64 start, u32 len) 2574 { 2575 __scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len); 2576 } 2577 2578 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2579 u64 start, u32 len) 2580 { 2581 __scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len); 2582 } 2583 2584 static void scrub_block_complete(struct scrub_block *sblock) 2585 { 2586 int corrupted = 0; 2587 2588 if (!sblock->no_io_error_seen) { 2589 corrupted = 1; 2590 scrub_handle_errored_block(sblock); 2591 } else { 2592 /* 2593 * if has checksum error, write via repair mechanism in 2594 * dev replace case, otherwise write here in dev replace 2595 * case. 2596 */ 2597 corrupted = scrub_checksum(sblock); 2598 if (!corrupted && sblock->sctx->is_dev_replace) 2599 scrub_write_block_to_dev_replace(sblock); 2600 } 2601 2602 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2603 u64 start = sblock->logical; 2604 u64 end = sblock->logical + 2605 sblock->sectors[sblock->sector_count - 1]->offset + 2606 sblock->sctx->fs_info->sectorsize; 2607 2608 ASSERT(end - start <= U32_MAX); 2609 scrub_parity_mark_sectors_error(sblock->sparity, 2610 start, end - start); 2611 } 2612 } 2613 2614 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2615 { 2616 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2617 list_del(&sum->list); 2618 kfree(sum); 2619 } 2620 2621 /* 2622 * Find the desired csum for range [logical, logical + sectorsize), and store 2623 * the csum into @csum. 2624 * 2625 * The search source is sctx->csum_list, which is a pre-populated list 2626 * storing bytenr ordered csum ranges. We're responsible to cleanup any range 2627 * that is before @logical. 2628 * 2629 * Return 0 if there is no csum for the range. 2630 * Return 1 if there is csum for the range and copied to @csum. 2631 */ 2632 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2633 { 2634 bool found = false; 2635 2636 while (!list_empty(&sctx->csum_list)) { 2637 struct btrfs_ordered_sum *sum = NULL; 2638 unsigned long index; 2639 unsigned long num_sectors; 2640 2641 sum = list_first_entry(&sctx->csum_list, 2642 struct btrfs_ordered_sum, list); 2643 /* The current csum range is beyond our range, no csum found */ 2644 if (sum->bytenr > logical) 2645 break; 2646 2647 /* 2648 * The current sum is before our bytenr, since scrub is always 2649 * done in bytenr order, the csum will never be used anymore, 2650 * clean it up so that later calls won't bother with the range, 2651 * and continue search the next range. 2652 */ 2653 if (sum->bytenr + sum->len <= logical) { 2654 drop_csum_range(sctx, sum); 2655 continue; 2656 } 2657 2658 /* Now the csum range covers our bytenr, copy the csum */ 2659 found = true; 2660 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2661 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2662 2663 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2664 sctx->fs_info->csum_size); 2665 2666 /* Cleanup the range if we're at the end of the csum range */ 2667 if (index == num_sectors - 1) 2668 drop_csum_range(sctx, sum); 2669 break; 2670 } 2671 if (!found) 2672 return 0; 2673 return 1; 2674 } 2675 2676 /* scrub extent tries to collect up to 64 kB for each bio */ 2677 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2678 u64 logical, u32 len, 2679 u64 physical, struct btrfs_device *dev, u64 flags, 2680 u64 gen, int mirror_num) 2681 { 2682 struct btrfs_device *src_dev = dev; 2683 u64 src_physical = physical; 2684 int src_mirror = mirror_num; 2685 int ret; 2686 u8 csum[BTRFS_CSUM_SIZE]; 2687 u32 blocksize; 2688 2689 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2690 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2691 blocksize = map->stripe_len; 2692 else 2693 blocksize = sctx->fs_info->sectorsize; 2694 spin_lock(&sctx->stat_lock); 2695 sctx->stat.data_extents_scrubbed++; 2696 sctx->stat.data_bytes_scrubbed += len; 2697 spin_unlock(&sctx->stat_lock); 2698 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2699 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2700 blocksize = map->stripe_len; 2701 else 2702 blocksize = sctx->fs_info->nodesize; 2703 spin_lock(&sctx->stat_lock); 2704 sctx->stat.tree_extents_scrubbed++; 2705 sctx->stat.tree_bytes_scrubbed += len; 2706 spin_unlock(&sctx->stat_lock); 2707 } else { 2708 blocksize = sctx->fs_info->sectorsize; 2709 WARN_ON(1); 2710 } 2711 2712 /* 2713 * For dev-replace case, we can have @dev being a missing device. 2714 * Regular scrub will avoid its execution on missing device at all, 2715 * as that would trigger tons of read error. 2716 * 2717 * Reading from missing device will cause read error counts to 2718 * increase unnecessarily. 2719 * So here we change the read source to a good mirror. 2720 */ 2721 if (sctx->is_dev_replace && !dev->bdev) 2722 scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical, 2723 &src_dev, &src_mirror); 2724 while (len) { 2725 u32 l = min(len, blocksize); 2726 int have_csum = 0; 2727 2728 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2729 /* push csums to sbio */ 2730 have_csum = scrub_find_csum(sctx, logical, csum); 2731 if (have_csum == 0) 2732 ++sctx->stat.no_csum; 2733 } 2734 ret = scrub_sectors(sctx, logical, l, src_physical, src_dev, 2735 flags, gen, src_mirror, 2736 have_csum ? csum : NULL, physical); 2737 if (ret) 2738 return ret; 2739 len -= l; 2740 logical += l; 2741 physical += l; 2742 src_physical += l; 2743 } 2744 return 0; 2745 } 2746 2747 static int scrub_sectors_for_parity(struct scrub_parity *sparity, 2748 u64 logical, u32 len, 2749 u64 physical, struct btrfs_device *dev, 2750 u64 flags, u64 gen, int mirror_num, u8 *csum) 2751 { 2752 struct scrub_ctx *sctx = sparity->sctx; 2753 struct scrub_block *sblock; 2754 const u32 sectorsize = sctx->fs_info->sectorsize; 2755 int index; 2756 2757 ASSERT(IS_ALIGNED(len, sectorsize)); 2758 2759 sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num); 2760 if (!sblock) { 2761 spin_lock(&sctx->stat_lock); 2762 sctx->stat.malloc_errors++; 2763 spin_unlock(&sctx->stat_lock); 2764 return -ENOMEM; 2765 } 2766 2767 sblock->sparity = sparity; 2768 scrub_parity_get(sparity); 2769 2770 for (index = 0; len > 0; index++) { 2771 struct scrub_sector *sector; 2772 2773 sector = alloc_scrub_sector(sblock, logical); 2774 if (!sector) { 2775 spin_lock(&sctx->stat_lock); 2776 sctx->stat.malloc_errors++; 2777 spin_unlock(&sctx->stat_lock); 2778 scrub_block_put(sblock); 2779 return -ENOMEM; 2780 } 2781 sblock->sectors[index] = sector; 2782 /* For scrub parity */ 2783 scrub_sector_get(sector); 2784 list_add_tail(§or->list, &sparity->sectors_list); 2785 sector->flags = flags; 2786 sector->generation = gen; 2787 if (csum) { 2788 sector->have_csum = 1; 2789 memcpy(sector->csum, csum, sctx->fs_info->csum_size); 2790 } else { 2791 sector->have_csum = 0; 2792 } 2793 2794 /* Iterate over the stripe range in sectorsize steps */ 2795 len -= sectorsize; 2796 logical += sectorsize; 2797 physical += sectorsize; 2798 } 2799 2800 WARN_ON(sblock->sector_count == 0); 2801 for (index = 0; index < sblock->sector_count; index++) { 2802 struct scrub_sector *sector = sblock->sectors[index]; 2803 int ret; 2804 2805 ret = scrub_add_sector_to_rd_bio(sctx, sector); 2806 if (ret) { 2807 scrub_block_put(sblock); 2808 return ret; 2809 } 2810 } 2811 2812 /* Last one frees, either here or in bio completion for last sector */ 2813 scrub_block_put(sblock); 2814 return 0; 2815 } 2816 2817 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2818 u64 logical, u32 len, 2819 u64 physical, struct btrfs_device *dev, 2820 u64 flags, u64 gen, int mirror_num) 2821 { 2822 struct scrub_ctx *sctx = sparity->sctx; 2823 int ret; 2824 u8 csum[BTRFS_CSUM_SIZE]; 2825 u32 blocksize; 2826 2827 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2828 scrub_parity_mark_sectors_error(sparity, logical, len); 2829 return 0; 2830 } 2831 2832 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2833 blocksize = sparity->stripe_len; 2834 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2835 blocksize = sparity->stripe_len; 2836 } else { 2837 blocksize = sctx->fs_info->sectorsize; 2838 WARN_ON(1); 2839 } 2840 2841 while (len) { 2842 u32 l = min(len, blocksize); 2843 int have_csum = 0; 2844 2845 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2846 /* push csums to sbio */ 2847 have_csum = scrub_find_csum(sctx, logical, csum); 2848 if (have_csum == 0) 2849 goto skip; 2850 } 2851 ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev, 2852 flags, gen, mirror_num, 2853 have_csum ? csum : NULL); 2854 if (ret) 2855 return ret; 2856 skip: 2857 len -= l; 2858 logical += l; 2859 physical += l; 2860 } 2861 return 0; 2862 } 2863 2864 /* 2865 * Given a physical address, this will calculate it's 2866 * logical offset. if this is a parity stripe, it will return 2867 * the most left data stripe's logical offset. 2868 * 2869 * return 0 if it is a data stripe, 1 means parity stripe. 2870 */ 2871 static int get_raid56_logic_offset(u64 physical, int num, 2872 struct map_lookup *map, u64 *offset, 2873 u64 *stripe_start) 2874 { 2875 int i; 2876 int j = 0; 2877 u64 stripe_nr; 2878 u64 last_offset; 2879 u32 stripe_index; 2880 u32 rot; 2881 const int data_stripes = nr_data_stripes(map); 2882 2883 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2884 if (stripe_start) 2885 *stripe_start = last_offset; 2886 2887 *offset = last_offset; 2888 for (i = 0; i < data_stripes; i++) { 2889 *offset = last_offset + i * map->stripe_len; 2890 2891 stripe_nr = div64_u64(*offset, map->stripe_len); 2892 stripe_nr = div_u64(stripe_nr, data_stripes); 2893 2894 /* Work out the disk rotation on this stripe-set */ 2895 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2896 /* calculate which stripe this data locates */ 2897 rot += i; 2898 stripe_index = rot % map->num_stripes; 2899 if (stripe_index == num) 2900 return 0; 2901 if (stripe_index < num) 2902 j++; 2903 } 2904 *offset = last_offset + j * map->stripe_len; 2905 return 1; 2906 } 2907 2908 static void scrub_free_parity(struct scrub_parity *sparity) 2909 { 2910 struct scrub_ctx *sctx = sparity->sctx; 2911 struct scrub_sector *curr, *next; 2912 int nbits; 2913 2914 nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors); 2915 if (nbits) { 2916 spin_lock(&sctx->stat_lock); 2917 sctx->stat.read_errors += nbits; 2918 sctx->stat.uncorrectable_errors += nbits; 2919 spin_unlock(&sctx->stat_lock); 2920 } 2921 2922 list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) { 2923 list_del_init(&curr->list); 2924 scrub_sector_put(curr); 2925 } 2926 2927 kfree(sparity); 2928 } 2929 2930 static void scrub_parity_bio_endio_worker(struct work_struct *work) 2931 { 2932 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2933 work); 2934 struct scrub_ctx *sctx = sparity->sctx; 2935 2936 btrfs_bio_counter_dec(sctx->fs_info); 2937 scrub_free_parity(sparity); 2938 scrub_pending_bio_dec(sctx); 2939 } 2940 2941 static void scrub_parity_bio_endio(struct bio *bio) 2942 { 2943 struct scrub_parity *sparity = bio->bi_private; 2944 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2945 2946 if (bio->bi_status) 2947 bitmap_or(&sparity->ebitmap, &sparity->ebitmap, 2948 &sparity->dbitmap, sparity->nsectors); 2949 2950 bio_put(bio); 2951 2952 INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker); 2953 queue_work(fs_info->scrub_parity_workers, &sparity->work); 2954 } 2955 2956 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2957 { 2958 struct scrub_ctx *sctx = sparity->sctx; 2959 struct btrfs_fs_info *fs_info = sctx->fs_info; 2960 struct bio *bio; 2961 struct btrfs_raid_bio *rbio; 2962 struct btrfs_io_context *bioc = NULL; 2963 u64 length; 2964 int ret; 2965 2966 if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap, 2967 &sparity->ebitmap, sparity->nsectors)) 2968 goto out; 2969 2970 length = sparity->logic_end - sparity->logic_start; 2971 2972 btrfs_bio_counter_inc_blocked(fs_info); 2973 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2974 &length, &bioc); 2975 if (ret || !bioc || !bioc->raid_map) 2976 goto bioc_out; 2977 2978 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 2979 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2980 bio->bi_private = sparity; 2981 bio->bi_end_io = scrub_parity_bio_endio; 2982 2983 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, 2984 sparity->scrub_dev, 2985 &sparity->dbitmap, 2986 sparity->nsectors); 2987 btrfs_put_bioc(bioc); 2988 if (!rbio) 2989 goto rbio_out; 2990 2991 scrub_pending_bio_inc(sctx); 2992 raid56_parity_submit_scrub_rbio(rbio); 2993 return; 2994 2995 rbio_out: 2996 bio_put(bio); 2997 bioc_out: 2998 btrfs_bio_counter_dec(fs_info); 2999 bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap, 3000 sparity->nsectors); 3001 spin_lock(&sctx->stat_lock); 3002 sctx->stat.malloc_errors++; 3003 spin_unlock(&sctx->stat_lock); 3004 out: 3005 scrub_free_parity(sparity); 3006 } 3007 3008 static void scrub_parity_get(struct scrub_parity *sparity) 3009 { 3010 refcount_inc(&sparity->refs); 3011 } 3012 3013 static void scrub_parity_put(struct scrub_parity *sparity) 3014 { 3015 if (!refcount_dec_and_test(&sparity->refs)) 3016 return; 3017 3018 scrub_parity_check_and_repair(sparity); 3019 } 3020 3021 /* 3022 * Return 0 if the extent item range covers any byte of the range. 3023 * Return <0 if the extent item is before @search_start. 3024 * Return >0 if the extent item is after @start_start + @search_len. 3025 */ 3026 static int compare_extent_item_range(struct btrfs_path *path, 3027 u64 search_start, u64 search_len) 3028 { 3029 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 3030 u64 len; 3031 struct btrfs_key key; 3032 3033 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3034 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 3035 key.type == BTRFS_METADATA_ITEM_KEY); 3036 if (key.type == BTRFS_METADATA_ITEM_KEY) 3037 len = fs_info->nodesize; 3038 else 3039 len = key.offset; 3040 3041 if (key.objectid + len <= search_start) 3042 return -1; 3043 if (key.objectid >= search_start + search_len) 3044 return 1; 3045 return 0; 3046 } 3047 3048 /* 3049 * Locate one extent item which covers any byte in range 3050 * [@search_start, @search_start + @search_length) 3051 * 3052 * If the path is not initialized, we will initialize the search by doing 3053 * a btrfs_search_slot(). 3054 * If the path is already initialized, we will use the path as the initial 3055 * slot, to avoid duplicated btrfs_search_slot() calls. 3056 * 3057 * NOTE: If an extent item starts before @search_start, we will still 3058 * return the extent item. This is for data extent crossing stripe boundary. 3059 * 3060 * Return 0 if we found such extent item, and @path will point to the extent item. 3061 * Return >0 if no such extent item can be found, and @path will be released. 3062 * Return <0 if hit fatal error, and @path will be released. 3063 */ 3064 static int find_first_extent_item(struct btrfs_root *extent_root, 3065 struct btrfs_path *path, 3066 u64 search_start, u64 search_len) 3067 { 3068 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3069 struct btrfs_key key; 3070 int ret; 3071 3072 /* Continue using the existing path */ 3073 if (path->nodes[0]) 3074 goto search_forward; 3075 3076 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3077 key.type = BTRFS_METADATA_ITEM_KEY; 3078 else 3079 key.type = BTRFS_EXTENT_ITEM_KEY; 3080 key.objectid = search_start; 3081 key.offset = (u64)-1; 3082 3083 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3084 if (ret < 0) 3085 return ret; 3086 3087 ASSERT(ret > 0); 3088 /* 3089 * Here we intentionally pass 0 as @min_objectid, as there could be 3090 * an extent item starting before @search_start. 3091 */ 3092 ret = btrfs_previous_extent_item(extent_root, path, 0); 3093 if (ret < 0) 3094 return ret; 3095 /* 3096 * No matter whether we have found an extent item, the next loop will 3097 * properly do every check on the key. 3098 */ 3099 search_forward: 3100 while (true) { 3101 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3102 if (key.objectid >= search_start + search_len) 3103 break; 3104 if (key.type != BTRFS_METADATA_ITEM_KEY && 3105 key.type != BTRFS_EXTENT_ITEM_KEY) 3106 goto next; 3107 3108 ret = compare_extent_item_range(path, search_start, search_len); 3109 if (ret == 0) 3110 return ret; 3111 if (ret > 0) 3112 break; 3113 next: 3114 path->slots[0]++; 3115 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3116 ret = btrfs_next_leaf(extent_root, path); 3117 if (ret) { 3118 /* Either no more item or fatal error */ 3119 btrfs_release_path(path); 3120 return ret; 3121 } 3122 } 3123 } 3124 btrfs_release_path(path); 3125 return 1; 3126 } 3127 3128 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 3129 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 3130 { 3131 struct btrfs_key key; 3132 struct btrfs_extent_item *ei; 3133 3134 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3135 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 3136 key.type == BTRFS_EXTENT_ITEM_KEY); 3137 *extent_start_ret = key.objectid; 3138 if (key.type == BTRFS_METADATA_ITEM_KEY) 3139 *size_ret = path->nodes[0]->fs_info->nodesize; 3140 else 3141 *size_ret = key.offset; 3142 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 3143 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 3144 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 3145 } 3146 3147 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len, 3148 u64 boundary_start, u64 boudary_len) 3149 { 3150 return (extent_start < boundary_start && 3151 extent_start + extent_len > boundary_start) || 3152 (extent_start < boundary_start + boudary_len && 3153 extent_start + extent_len > boundary_start + boudary_len); 3154 } 3155 3156 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx, 3157 struct scrub_parity *sparity, 3158 struct map_lookup *map, 3159 struct btrfs_device *sdev, 3160 struct btrfs_path *path, 3161 u64 logical) 3162 { 3163 struct btrfs_fs_info *fs_info = sctx->fs_info; 3164 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 3165 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical); 3166 u64 cur_logical = logical; 3167 int ret; 3168 3169 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 3170 3171 /* Path must not be populated */ 3172 ASSERT(!path->nodes[0]); 3173 3174 while (cur_logical < logical + map->stripe_len) { 3175 struct btrfs_io_context *bioc = NULL; 3176 struct btrfs_device *extent_dev; 3177 u64 extent_start; 3178 u64 extent_size; 3179 u64 mapped_length; 3180 u64 extent_flags; 3181 u64 extent_gen; 3182 u64 extent_physical; 3183 u64 extent_mirror_num; 3184 3185 ret = find_first_extent_item(extent_root, path, cur_logical, 3186 logical + map->stripe_len - cur_logical); 3187 /* No more extent item in this data stripe */ 3188 if (ret > 0) { 3189 ret = 0; 3190 break; 3191 } 3192 if (ret < 0) 3193 break; 3194 get_extent_info(path, &extent_start, &extent_size, &extent_flags, 3195 &extent_gen); 3196 3197 /* Metadata should not cross stripe boundaries */ 3198 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3199 does_range_cross_boundary(extent_start, extent_size, 3200 logical, map->stripe_len)) { 3201 btrfs_err(fs_info, 3202 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3203 extent_start, logical); 3204 spin_lock(&sctx->stat_lock); 3205 sctx->stat.uncorrectable_errors++; 3206 spin_unlock(&sctx->stat_lock); 3207 cur_logical += extent_size; 3208 continue; 3209 } 3210 3211 /* Skip hole range which doesn't have any extent */ 3212 cur_logical = max(extent_start, cur_logical); 3213 3214 /* Truncate the range inside this data stripe */ 3215 extent_size = min(extent_start + extent_size, 3216 logical + map->stripe_len) - cur_logical; 3217 extent_start = cur_logical; 3218 ASSERT(extent_size <= U32_MAX); 3219 3220 scrub_parity_mark_sectors_data(sparity, extent_start, extent_size); 3221 3222 mapped_length = extent_size; 3223 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start, 3224 &mapped_length, &bioc, 0); 3225 if (!ret && (!bioc || mapped_length < extent_size)) 3226 ret = -EIO; 3227 if (ret) { 3228 btrfs_put_bioc(bioc); 3229 scrub_parity_mark_sectors_error(sparity, extent_start, 3230 extent_size); 3231 break; 3232 } 3233 extent_physical = bioc->stripes[0].physical; 3234 extent_mirror_num = bioc->mirror_num; 3235 extent_dev = bioc->stripes[0].dev; 3236 btrfs_put_bioc(bioc); 3237 3238 ret = btrfs_lookup_csums_range(csum_root, extent_start, 3239 extent_start + extent_size - 1, 3240 &sctx->csum_list, 1, false); 3241 if (ret) { 3242 scrub_parity_mark_sectors_error(sparity, extent_start, 3243 extent_size); 3244 break; 3245 } 3246 3247 ret = scrub_extent_for_parity(sparity, extent_start, 3248 extent_size, extent_physical, 3249 extent_dev, extent_flags, 3250 extent_gen, extent_mirror_num); 3251 scrub_free_csums(sctx); 3252 3253 if (ret) { 3254 scrub_parity_mark_sectors_error(sparity, extent_start, 3255 extent_size); 3256 break; 3257 } 3258 3259 cond_resched(); 3260 cur_logical += extent_size; 3261 } 3262 btrfs_release_path(path); 3263 return ret; 3264 } 3265 3266 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3267 struct map_lookup *map, 3268 struct btrfs_device *sdev, 3269 u64 logic_start, 3270 u64 logic_end) 3271 { 3272 struct btrfs_fs_info *fs_info = sctx->fs_info; 3273 struct btrfs_path *path; 3274 u64 cur_logical; 3275 int ret; 3276 struct scrub_parity *sparity; 3277 int nsectors; 3278 3279 path = btrfs_alloc_path(); 3280 if (!path) { 3281 spin_lock(&sctx->stat_lock); 3282 sctx->stat.malloc_errors++; 3283 spin_unlock(&sctx->stat_lock); 3284 return -ENOMEM; 3285 } 3286 path->search_commit_root = 1; 3287 path->skip_locking = 1; 3288 3289 ASSERT(map->stripe_len <= U32_MAX); 3290 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 3291 ASSERT(nsectors <= BITS_PER_LONG); 3292 sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS); 3293 if (!sparity) { 3294 spin_lock(&sctx->stat_lock); 3295 sctx->stat.malloc_errors++; 3296 spin_unlock(&sctx->stat_lock); 3297 btrfs_free_path(path); 3298 return -ENOMEM; 3299 } 3300 3301 ASSERT(map->stripe_len <= U32_MAX); 3302 sparity->stripe_len = map->stripe_len; 3303 sparity->nsectors = nsectors; 3304 sparity->sctx = sctx; 3305 sparity->scrub_dev = sdev; 3306 sparity->logic_start = logic_start; 3307 sparity->logic_end = logic_end; 3308 refcount_set(&sparity->refs, 1); 3309 INIT_LIST_HEAD(&sparity->sectors_list); 3310 3311 ret = 0; 3312 for (cur_logical = logic_start; cur_logical < logic_end; 3313 cur_logical += map->stripe_len) { 3314 ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map, 3315 sdev, path, cur_logical); 3316 if (ret < 0) 3317 break; 3318 } 3319 3320 scrub_parity_put(sparity); 3321 scrub_submit(sctx); 3322 mutex_lock(&sctx->wr_lock); 3323 scrub_wr_submit(sctx); 3324 mutex_unlock(&sctx->wr_lock); 3325 3326 btrfs_free_path(path); 3327 return ret < 0 ? ret : 0; 3328 } 3329 3330 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3331 { 3332 if (!btrfs_is_zoned(sctx->fs_info)) 3333 return; 3334 3335 sctx->flush_all_writes = true; 3336 scrub_submit(sctx); 3337 mutex_lock(&sctx->wr_lock); 3338 scrub_wr_submit(sctx); 3339 mutex_unlock(&sctx->wr_lock); 3340 3341 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3342 } 3343 3344 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3345 u64 physical, u64 physical_end) 3346 { 3347 struct btrfs_fs_info *fs_info = sctx->fs_info; 3348 int ret = 0; 3349 3350 if (!btrfs_is_zoned(fs_info)) 3351 return 0; 3352 3353 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3354 3355 mutex_lock(&sctx->wr_lock); 3356 if (sctx->write_pointer < physical_end) { 3357 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3358 physical, 3359 sctx->write_pointer); 3360 if (ret) 3361 btrfs_err(fs_info, 3362 "zoned: failed to recover write pointer"); 3363 } 3364 mutex_unlock(&sctx->wr_lock); 3365 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3366 3367 return ret; 3368 } 3369 3370 /* 3371 * Scrub one range which can only has simple mirror based profile. 3372 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 3373 * RAID0/RAID10). 3374 * 3375 * Since we may need to handle a subset of block group, we need @logical_start 3376 * and @logical_length parameter. 3377 */ 3378 static int scrub_simple_mirror(struct scrub_ctx *sctx, 3379 struct btrfs_root *extent_root, 3380 struct btrfs_root *csum_root, 3381 struct btrfs_block_group *bg, 3382 struct map_lookup *map, 3383 u64 logical_start, u64 logical_length, 3384 struct btrfs_device *device, 3385 u64 physical, int mirror_num) 3386 { 3387 struct btrfs_fs_info *fs_info = sctx->fs_info; 3388 const u64 logical_end = logical_start + logical_length; 3389 /* An artificial limit, inherit from old scrub behavior */ 3390 const u32 max_length = SZ_64K; 3391 struct btrfs_path path = { 0 }; 3392 u64 cur_logical = logical_start; 3393 int ret; 3394 3395 /* The range must be inside the bg */ 3396 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 3397 3398 path.search_commit_root = 1; 3399 path.skip_locking = 1; 3400 /* Go through each extent items inside the logical range */ 3401 while (cur_logical < logical_end) { 3402 u64 extent_start; 3403 u64 extent_len; 3404 u64 extent_flags; 3405 u64 extent_gen; 3406 u64 scrub_len; 3407 3408 /* Canceled? */ 3409 if (atomic_read(&fs_info->scrub_cancel_req) || 3410 atomic_read(&sctx->cancel_req)) { 3411 ret = -ECANCELED; 3412 break; 3413 } 3414 /* Paused? */ 3415 if (atomic_read(&fs_info->scrub_pause_req)) { 3416 /* Push queued extents */ 3417 sctx->flush_all_writes = true; 3418 scrub_submit(sctx); 3419 mutex_lock(&sctx->wr_lock); 3420 scrub_wr_submit(sctx); 3421 mutex_unlock(&sctx->wr_lock); 3422 wait_event(sctx->list_wait, 3423 atomic_read(&sctx->bios_in_flight) == 0); 3424 sctx->flush_all_writes = false; 3425 scrub_blocked_if_needed(fs_info); 3426 } 3427 /* Block group removed? */ 3428 spin_lock(&bg->lock); 3429 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 3430 spin_unlock(&bg->lock); 3431 ret = 0; 3432 break; 3433 } 3434 spin_unlock(&bg->lock); 3435 3436 ret = find_first_extent_item(extent_root, &path, cur_logical, 3437 logical_end - cur_logical); 3438 if (ret > 0) { 3439 /* No more extent, just update the accounting */ 3440 sctx->stat.last_physical = physical + logical_length; 3441 ret = 0; 3442 break; 3443 } 3444 if (ret < 0) 3445 break; 3446 get_extent_info(&path, &extent_start, &extent_len, 3447 &extent_flags, &extent_gen); 3448 /* Skip hole range which doesn't have any extent */ 3449 cur_logical = max(extent_start, cur_logical); 3450 3451 /* 3452 * Scrub len has three limits: 3453 * - Extent size limit 3454 * - Scrub range limit 3455 * This is especially imporatant for RAID0/RAID10 to reuse 3456 * this function 3457 * - Max scrub size limit 3458 */ 3459 scrub_len = min(min(extent_start + extent_len, 3460 logical_end), cur_logical + max_length) - 3461 cur_logical; 3462 3463 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) { 3464 ret = btrfs_lookup_csums_range(csum_root, cur_logical, 3465 cur_logical + scrub_len - 1, 3466 &sctx->csum_list, 1, false); 3467 if (ret) 3468 break; 3469 } 3470 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3471 does_range_cross_boundary(extent_start, extent_len, 3472 logical_start, logical_length)) { 3473 btrfs_err(fs_info, 3474 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)", 3475 extent_start, logical_start, logical_end); 3476 spin_lock(&sctx->stat_lock); 3477 sctx->stat.uncorrectable_errors++; 3478 spin_unlock(&sctx->stat_lock); 3479 cur_logical += scrub_len; 3480 continue; 3481 } 3482 ret = scrub_extent(sctx, map, cur_logical, scrub_len, 3483 cur_logical - logical_start + physical, 3484 device, extent_flags, extent_gen, 3485 mirror_num); 3486 scrub_free_csums(sctx); 3487 if (ret) 3488 break; 3489 if (sctx->is_dev_replace) 3490 sync_replace_for_zoned(sctx); 3491 cur_logical += scrub_len; 3492 /* Don't hold CPU for too long time */ 3493 cond_resched(); 3494 } 3495 btrfs_release_path(&path); 3496 return ret; 3497 } 3498 3499 /* Calculate the full stripe length for simple stripe based profiles */ 3500 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 3501 { 3502 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3503 BTRFS_BLOCK_GROUP_RAID10)); 3504 3505 return map->num_stripes / map->sub_stripes * map->stripe_len; 3506 } 3507 3508 /* Get the logical bytenr for the stripe */ 3509 static u64 simple_stripe_get_logical(struct map_lookup *map, 3510 struct btrfs_block_group *bg, 3511 int stripe_index) 3512 { 3513 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3514 BTRFS_BLOCK_GROUP_RAID10)); 3515 ASSERT(stripe_index < map->num_stripes); 3516 3517 /* 3518 * (stripe_index / sub_stripes) gives how many data stripes we need to 3519 * skip. 3520 */ 3521 return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start; 3522 } 3523 3524 /* Get the mirror number for the stripe */ 3525 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 3526 { 3527 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3528 BTRFS_BLOCK_GROUP_RAID10)); 3529 ASSERT(stripe_index < map->num_stripes); 3530 3531 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 3532 return stripe_index % map->sub_stripes + 1; 3533 } 3534 3535 static int scrub_simple_stripe(struct scrub_ctx *sctx, 3536 struct btrfs_root *extent_root, 3537 struct btrfs_root *csum_root, 3538 struct btrfs_block_group *bg, 3539 struct map_lookup *map, 3540 struct btrfs_device *device, 3541 int stripe_index) 3542 { 3543 const u64 logical_increment = simple_stripe_full_stripe_len(map); 3544 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 3545 const u64 orig_physical = map->stripes[stripe_index].physical; 3546 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 3547 u64 cur_logical = orig_logical; 3548 u64 cur_physical = orig_physical; 3549 int ret = 0; 3550 3551 while (cur_logical < bg->start + bg->length) { 3552 /* 3553 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 3554 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 3555 * this stripe. 3556 */ 3557 ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map, 3558 cur_logical, map->stripe_len, device, 3559 cur_physical, mirror_num); 3560 if (ret) 3561 return ret; 3562 /* Skip to next stripe which belongs to the target device */ 3563 cur_logical += logical_increment; 3564 /* For physical offset, we just go to next stripe */ 3565 cur_physical += map->stripe_len; 3566 } 3567 return ret; 3568 } 3569 3570 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3571 struct btrfs_block_group *bg, 3572 struct extent_map *em, 3573 struct btrfs_device *scrub_dev, 3574 int stripe_index) 3575 { 3576 struct btrfs_path *path; 3577 struct btrfs_fs_info *fs_info = sctx->fs_info; 3578 struct btrfs_root *root; 3579 struct btrfs_root *csum_root; 3580 struct blk_plug plug; 3581 struct map_lookup *map = em->map_lookup; 3582 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 3583 const u64 chunk_logical = bg->start; 3584 int ret; 3585 u64 physical = map->stripes[stripe_index].physical; 3586 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 3587 const u64 physical_end = physical + dev_stripe_len; 3588 u64 logical; 3589 u64 logic_end; 3590 /* The logical increment after finishing one stripe */ 3591 u64 increment; 3592 /* Offset inside the chunk */ 3593 u64 offset; 3594 u64 stripe_logical; 3595 u64 stripe_end; 3596 int stop_loop = 0; 3597 3598 path = btrfs_alloc_path(); 3599 if (!path) 3600 return -ENOMEM; 3601 3602 /* 3603 * work on commit root. The related disk blocks are static as 3604 * long as COW is applied. This means, it is save to rewrite 3605 * them to repair disk errors without any race conditions 3606 */ 3607 path->search_commit_root = 1; 3608 path->skip_locking = 1; 3609 path->reada = READA_FORWARD; 3610 3611 wait_event(sctx->list_wait, 3612 atomic_read(&sctx->bios_in_flight) == 0); 3613 scrub_blocked_if_needed(fs_info); 3614 3615 root = btrfs_extent_root(fs_info, bg->start); 3616 csum_root = btrfs_csum_root(fs_info, bg->start); 3617 3618 /* 3619 * collect all data csums for the stripe to avoid seeking during 3620 * the scrub. This might currently (crc32) end up to be about 1MB 3621 */ 3622 blk_start_plug(&plug); 3623 3624 if (sctx->is_dev_replace && 3625 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3626 mutex_lock(&sctx->wr_lock); 3627 sctx->write_pointer = physical; 3628 mutex_unlock(&sctx->wr_lock); 3629 sctx->flush_all_writes = true; 3630 } 3631 3632 /* 3633 * There used to be a big double loop to handle all profiles using the 3634 * same routine, which grows larger and more gross over time. 3635 * 3636 * So here we handle each profile differently, so simpler profiles 3637 * have simpler scrubbing function. 3638 */ 3639 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 3640 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 3641 /* 3642 * Above check rules out all complex profile, the remaining 3643 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 3644 * mirrored duplication without stripe. 3645 * 3646 * Only @physical and @mirror_num needs to calculated using 3647 * @stripe_index. 3648 */ 3649 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, 3650 bg->start, bg->length, scrub_dev, 3651 map->stripes[stripe_index].physical, 3652 stripe_index + 1); 3653 offset = 0; 3654 goto out; 3655 } 3656 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3657 ret = scrub_simple_stripe(sctx, root, csum_root, bg, map, 3658 scrub_dev, stripe_index); 3659 offset = map->stripe_len * (stripe_index / map->sub_stripes); 3660 goto out; 3661 } 3662 3663 /* Only RAID56 goes through the old code */ 3664 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 3665 ret = 0; 3666 3667 /* Calculate the logical end of the stripe */ 3668 get_raid56_logic_offset(physical_end, stripe_index, 3669 map, &logic_end, NULL); 3670 logic_end += chunk_logical; 3671 3672 /* Initialize @offset in case we need to go to out: label */ 3673 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 3674 increment = map->stripe_len * nr_data_stripes(map); 3675 3676 /* 3677 * Due to the rotation, for RAID56 it's better to iterate each stripe 3678 * using their physical offset. 3679 */ 3680 while (physical < physical_end) { 3681 ret = get_raid56_logic_offset(physical, stripe_index, map, 3682 &logical, &stripe_logical); 3683 logical += chunk_logical; 3684 if (ret) { 3685 /* it is parity strip */ 3686 stripe_logical += chunk_logical; 3687 stripe_end = stripe_logical + increment; 3688 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3689 stripe_logical, 3690 stripe_end); 3691 if (ret) 3692 goto out; 3693 goto next; 3694 } 3695 3696 /* 3697 * Now we're at a data stripe, scrub each extents in the range. 3698 * 3699 * At this stage, if we ignore the repair part, inside each data 3700 * stripe it is no different than SINGLE profile. 3701 * We can reuse scrub_simple_mirror() here, as the repair part 3702 * is still based on @mirror_num. 3703 */ 3704 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, 3705 logical, map->stripe_len, 3706 scrub_dev, physical, 1); 3707 if (ret < 0) 3708 goto out; 3709 next: 3710 logical += increment; 3711 physical += map->stripe_len; 3712 spin_lock(&sctx->stat_lock); 3713 if (stop_loop) 3714 sctx->stat.last_physical = 3715 map->stripes[stripe_index].physical + dev_stripe_len; 3716 else 3717 sctx->stat.last_physical = physical; 3718 spin_unlock(&sctx->stat_lock); 3719 if (stop_loop) 3720 break; 3721 } 3722 out: 3723 /* push queued extents */ 3724 scrub_submit(sctx); 3725 mutex_lock(&sctx->wr_lock); 3726 scrub_wr_submit(sctx); 3727 mutex_unlock(&sctx->wr_lock); 3728 3729 blk_finish_plug(&plug); 3730 btrfs_free_path(path); 3731 3732 if (sctx->is_dev_replace && ret >= 0) { 3733 int ret2; 3734 3735 ret2 = sync_write_pointer_for_zoned(sctx, 3736 chunk_logical + offset, 3737 map->stripes[stripe_index].physical, 3738 physical_end); 3739 if (ret2) 3740 ret = ret2; 3741 } 3742 3743 return ret < 0 ? ret : 0; 3744 } 3745 3746 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3747 struct btrfs_block_group *bg, 3748 struct btrfs_device *scrub_dev, 3749 u64 dev_offset, 3750 u64 dev_extent_len) 3751 { 3752 struct btrfs_fs_info *fs_info = sctx->fs_info; 3753 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3754 struct map_lookup *map; 3755 struct extent_map *em; 3756 int i; 3757 int ret = 0; 3758 3759 read_lock(&map_tree->lock); 3760 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 3761 read_unlock(&map_tree->lock); 3762 3763 if (!em) { 3764 /* 3765 * Might have been an unused block group deleted by the cleaner 3766 * kthread or relocation. 3767 */ 3768 spin_lock(&bg->lock); 3769 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 3770 ret = -EINVAL; 3771 spin_unlock(&bg->lock); 3772 3773 return ret; 3774 } 3775 if (em->start != bg->start) 3776 goto out; 3777 if (em->len < dev_extent_len) 3778 goto out; 3779 3780 map = em->map_lookup; 3781 for (i = 0; i < map->num_stripes; ++i) { 3782 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3783 map->stripes[i].physical == dev_offset) { 3784 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 3785 if (ret) 3786 goto out; 3787 } 3788 } 3789 out: 3790 free_extent_map(em); 3791 3792 return ret; 3793 } 3794 3795 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3796 struct btrfs_block_group *cache) 3797 { 3798 struct btrfs_fs_info *fs_info = cache->fs_info; 3799 struct btrfs_trans_handle *trans; 3800 3801 if (!btrfs_is_zoned(fs_info)) 3802 return 0; 3803 3804 btrfs_wait_block_group_reservations(cache); 3805 btrfs_wait_nocow_writers(cache); 3806 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3807 3808 trans = btrfs_join_transaction(root); 3809 if (IS_ERR(trans)) 3810 return PTR_ERR(trans); 3811 return btrfs_commit_transaction(trans); 3812 } 3813 3814 static noinline_for_stack 3815 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3816 struct btrfs_device *scrub_dev, u64 start, u64 end) 3817 { 3818 struct btrfs_dev_extent *dev_extent = NULL; 3819 struct btrfs_path *path; 3820 struct btrfs_fs_info *fs_info = sctx->fs_info; 3821 struct btrfs_root *root = fs_info->dev_root; 3822 u64 chunk_offset; 3823 int ret = 0; 3824 int ro_set; 3825 int slot; 3826 struct extent_buffer *l; 3827 struct btrfs_key key; 3828 struct btrfs_key found_key; 3829 struct btrfs_block_group *cache; 3830 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3831 3832 path = btrfs_alloc_path(); 3833 if (!path) 3834 return -ENOMEM; 3835 3836 path->reada = READA_FORWARD; 3837 path->search_commit_root = 1; 3838 path->skip_locking = 1; 3839 3840 key.objectid = scrub_dev->devid; 3841 key.offset = 0ull; 3842 key.type = BTRFS_DEV_EXTENT_KEY; 3843 3844 while (1) { 3845 u64 dev_extent_len; 3846 3847 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3848 if (ret < 0) 3849 break; 3850 if (ret > 0) { 3851 if (path->slots[0] >= 3852 btrfs_header_nritems(path->nodes[0])) { 3853 ret = btrfs_next_leaf(root, path); 3854 if (ret < 0) 3855 break; 3856 if (ret > 0) { 3857 ret = 0; 3858 break; 3859 } 3860 } else { 3861 ret = 0; 3862 } 3863 } 3864 3865 l = path->nodes[0]; 3866 slot = path->slots[0]; 3867 3868 btrfs_item_key_to_cpu(l, &found_key, slot); 3869 3870 if (found_key.objectid != scrub_dev->devid) 3871 break; 3872 3873 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3874 break; 3875 3876 if (found_key.offset >= end) 3877 break; 3878 3879 if (found_key.offset < key.offset) 3880 break; 3881 3882 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3883 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 3884 3885 if (found_key.offset + dev_extent_len <= start) 3886 goto skip; 3887 3888 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3889 3890 /* 3891 * get a reference on the corresponding block group to prevent 3892 * the chunk from going away while we scrub it 3893 */ 3894 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3895 3896 /* some chunks are removed but not committed to disk yet, 3897 * continue scrubbing */ 3898 if (!cache) 3899 goto skip; 3900 3901 ASSERT(cache->start <= chunk_offset); 3902 /* 3903 * We are using the commit root to search for device extents, so 3904 * that means we could have found a device extent item from a 3905 * block group that was deleted in the current transaction. The 3906 * logical start offset of the deleted block group, stored at 3907 * @chunk_offset, might be part of the logical address range of 3908 * a new block group (which uses different physical extents). 3909 * In this case btrfs_lookup_block_group() has returned the new 3910 * block group, and its start address is less than @chunk_offset. 3911 * 3912 * We skip such new block groups, because it's pointless to 3913 * process them, as we won't find their extents because we search 3914 * for them using the commit root of the extent tree. For a device 3915 * replace it's also fine to skip it, we won't miss copying them 3916 * to the target device because we have the write duplication 3917 * setup through the regular write path (by btrfs_map_block()), 3918 * and we have committed a transaction when we started the device 3919 * replace, right after setting up the device replace state. 3920 */ 3921 if (cache->start < chunk_offset) { 3922 btrfs_put_block_group(cache); 3923 goto skip; 3924 } 3925 3926 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3927 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 3928 btrfs_put_block_group(cache); 3929 goto skip; 3930 } 3931 } 3932 3933 /* 3934 * Make sure that while we are scrubbing the corresponding block 3935 * group doesn't get its logical address and its device extents 3936 * reused for another block group, which can possibly be of a 3937 * different type and different profile. We do this to prevent 3938 * false error detections and crashes due to bogus attempts to 3939 * repair extents. 3940 */ 3941 spin_lock(&cache->lock); 3942 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 3943 spin_unlock(&cache->lock); 3944 btrfs_put_block_group(cache); 3945 goto skip; 3946 } 3947 btrfs_freeze_block_group(cache); 3948 spin_unlock(&cache->lock); 3949 3950 /* 3951 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3952 * to avoid deadlock caused by: 3953 * btrfs_inc_block_group_ro() 3954 * -> btrfs_wait_for_commit() 3955 * -> btrfs_commit_transaction() 3956 * -> btrfs_scrub_pause() 3957 */ 3958 scrub_pause_on(fs_info); 3959 3960 /* 3961 * Don't do chunk preallocation for scrub. 3962 * 3963 * This is especially important for SYSTEM bgs, or we can hit 3964 * -EFBIG from btrfs_finish_chunk_alloc() like: 3965 * 1. The only SYSTEM bg is marked RO. 3966 * Since SYSTEM bg is small, that's pretty common. 3967 * 2. New SYSTEM bg will be allocated 3968 * Due to regular version will allocate new chunk. 3969 * 3. New SYSTEM bg is empty and will get cleaned up 3970 * Before cleanup really happens, it's marked RO again. 3971 * 4. Empty SYSTEM bg get scrubbed 3972 * We go back to 2. 3973 * 3974 * This can easily boost the amount of SYSTEM chunks if cleaner 3975 * thread can't be triggered fast enough, and use up all space 3976 * of btrfs_super_block::sys_chunk_array 3977 * 3978 * While for dev replace, we need to try our best to mark block 3979 * group RO, to prevent race between: 3980 * - Write duplication 3981 * Contains latest data 3982 * - Scrub copy 3983 * Contains data from commit tree 3984 * 3985 * If target block group is not marked RO, nocow writes can 3986 * be overwritten by scrub copy, causing data corruption. 3987 * So for dev-replace, it's not allowed to continue if a block 3988 * group is not RO. 3989 */ 3990 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3991 if (!ret && sctx->is_dev_replace) { 3992 ret = finish_extent_writes_for_zoned(root, cache); 3993 if (ret) { 3994 btrfs_dec_block_group_ro(cache); 3995 scrub_pause_off(fs_info); 3996 btrfs_put_block_group(cache); 3997 break; 3998 } 3999 } 4000 4001 if (ret == 0) { 4002 ro_set = 1; 4003 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 4004 /* 4005 * btrfs_inc_block_group_ro return -ENOSPC when it 4006 * failed in creating new chunk for metadata. 4007 * It is not a problem for scrub, because 4008 * metadata are always cowed, and our scrub paused 4009 * commit_transactions. 4010 */ 4011 ro_set = 0; 4012 } else if (ret == -ETXTBSY) { 4013 btrfs_warn(fs_info, 4014 "skipping scrub of block group %llu due to active swapfile", 4015 cache->start); 4016 scrub_pause_off(fs_info); 4017 ret = 0; 4018 goto skip_unfreeze; 4019 } else { 4020 btrfs_warn(fs_info, 4021 "failed setting block group ro: %d", ret); 4022 btrfs_unfreeze_block_group(cache); 4023 btrfs_put_block_group(cache); 4024 scrub_pause_off(fs_info); 4025 break; 4026 } 4027 4028 /* 4029 * Now the target block is marked RO, wait for nocow writes to 4030 * finish before dev-replace. 4031 * COW is fine, as COW never overwrites extents in commit tree. 4032 */ 4033 if (sctx->is_dev_replace) { 4034 btrfs_wait_nocow_writers(cache); 4035 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 4036 cache->length); 4037 } 4038 4039 scrub_pause_off(fs_info); 4040 down_write(&dev_replace->rwsem); 4041 dev_replace->cursor_right = found_key.offset + dev_extent_len; 4042 dev_replace->cursor_left = found_key.offset; 4043 dev_replace->item_needs_writeback = 1; 4044 up_write(&dev_replace->rwsem); 4045 4046 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 4047 dev_extent_len); 4048 4049 /* 4050 * flush, submit all pending read and write bios, afterwards 4051 * wait for them. 4052 * Note that in the dev replace case, a read request causes 4053 * write requests that are submitted in the read completion 4054 * worker. Therefore in the current situation, it is required 4055 * that all write requests are flushed, so that all read and 4056 * write requests are really completed when bios_in_flight 4057 * changes to 0. 4058 */ 4059 sctx->flush_all_writes = true; 4060 scrub_submit(sctx); 4061 mutex_lock(&sctx->wr_lock); 4062 scrub_wr_submit(sctx); 4063 mutex_unlock(&sctx->wr_lock); 4064 4065 wait_event(sctx->list_wait, 4066 atomic_read(&sctx->bios_in_flight) == 0); 4067 4068 scrub_pause_on(fs_info); 4069 4070 /* 4071 * must be called before we decrease @scrub_paused. 4072 * make sure we don't block transaction commit while 4073 * we are waiting pending workers finished. 4074 */ 4075 wait_event(sctx->list_wait, 4076 atomic_read(&sctx->workers_pending) == 0); 4077 sctx->flush_all_writes = false; 4078 4079 scrub_pause_off(fs_info); 4080 4081 if (sctx->is_dev_replace && 4082 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 4083 cache, found_key.offset)) 4084 ro_set = 0; 4085 4086 down_write(&dev_replace->rwsem); 4087 dev_replace->cursor_left = dev_replace->cursor_right; 4088 dev_replace->item_needs_writeback = 1; 4089 up_write(&dev_replace->rwsem); 4090 4091 if (ro_set) 4092 btrfs_dec_block_group_ro(cache); 4093 4094 /* 4095 * We might have prevented the cleaner kthread from deleting 4096 * this block group if it was already unused because we raced 4097 * and set it to RO mode first. So add it back to the unused 4098 * list, otherwise it might not ever be deleted unless a manual 4099 * balance is triggered or it becomes used and unused again. 4100 */ 4101 spin_lock(&cache->lock); 4102 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 4103 !cache->ro && cache->reserved == 0 && cache->used == 0) { 4104 spin_unlock(&cache->lock); 4105 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 4106 btrfs_discard_queue_work(&fs_info->discard_ctl, 4107 cache); 4108 else 4109 btrfs_mark_bg_unused(cache); 4110 } else { 4111 spin_unlock(&cache->lock); 4112 } 4113 skip_unfreeze: 4114 btrfs_unfreeze_block_group(cache); 4115 btrfs_put_block_group(cache); 4116 if (ret) 4117 break; 4118 if (sctx->is_dev_replace && 4119 atomic64_read(&dev_replace->num_write_errors) > 0) { 4120 ret = -EIO; 4121 break; 4122 } 4123 if (sctx->stat.malloc_errors > 0) { 4124 ret = -ENOMEM; 4125 break; 4126 } 4127 skip: 4128 key.offset = found_key.offset + dev_extent_len; 4129 btrfs_release_path(path); 4130 } 4131 4132 btrfs_free_path(path); 4133 4134 return ret; 4135 } 4136 4137 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 4138 struct btrfs_device *scrub_dev) 4139 { 4140 int i; 4141 u64 bytenr; 4142 u64 gen; 4143 int ret; 4144 struct btrfs_fs_info *fs_info = sctx->fs_info; 4145 4146 if (BTRFS_FS_ERROR(fs_info)) 4147 return -EROFS; 4148 4149 /* Seed devices of a new filesystem has their own generation. */ 4150 if (scrub_dev->fs_devices != fs_info->fs_devices) 4151 gen = scrub_dev->generation; 4152 else 4153 gen = fs_info->last_trans_committed; 4154 4155 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 4156 bytenr = btrfs_sb_offset(i); 4157 if (bytenr + BTRFS_SUPER_INFO_SIZE > 4158 scrub_dev->commit_total_bytes) 4159 break; 4160 if (!btrfs_check_super_location(scrub_dev, bytenr)) 4161 continue; 4162 4163 ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 4164 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 4165 NULL, bytenr); 4166 if (ret) 4167 return ret; 4168 } 4169 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4170 4171 return 0; 4172 } 4173 4174 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 4175 { 4176 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 4177 &fs_info->scrub_lock)) { 4178 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 4179 struct workqueue_struct *scrub_wr_comp = 4180 fs_info->scrub_wr_completion_workers; 4181 struct workqueue_struct *scrub_parity = 4182 fs_info->scrub_parity_workers; 4183 4184 fs_info->scrub_workers = NULL; 4185 fs_info->scrub_wr_completion_workers = NULL; 4186 fs_info->scrub_parity_workers = NULL; 4187 mutex_unlock(&fs_info->scrub_lock); 4188 4189 if (scrub_workers) 4190 destroy_workqueue(scrub_workers); 4191 if (scrub_wr_comp) 4192 destroy_workqueue(scrub_wr_comp); 4193 if (scrub_parity) 4194 destroy_workqueue(scrub_parity); 4195 } 4196 } 4197 4198 /* 4199 * get a reference count on fs_info->scrub_workers. start worker if necessary 4200 */ 4201 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4202 int is_dev_replace) 4203 { 4204 struct workqueue_struct *scrub_workers = NULL; 4205 struct workqueue_struct *scrub_wr_comp = NULL; 4206 struct workqueue_struct *scrub_parity = NULL; 4207 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4208 int max_active = fs_info->thread_pool_size; 4209 int ret = -ENOMEM; 4210 4211 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 4212 return 0; 4213 4214 scrub_workers = alloc_workqueue("btrfs-scrub", flags, 4215 is_dev_replace ? 1 : max_active); 4216 if (!scrub_workers) 4217 goto fail_scrub_workers; 4218 4219 scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); 4220 if (!scrub_wr_comp) 4221 goto fail_scrub_wr_completion_workers; 4222 4223 scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active); 4224 if (!scrub_parity) 4225 goto fail_scrub_parity_workers; 4226 4227 mutex_lock(&fs_info->scrub_lock); 4228 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 4229 ASSERT(fs_info->scrub_workers == NULL && 4230 fs_info->scrub_wr_completion_workers == NULL && 4231 fs_info->scrub_parity_workers == NULL); 4232 fs_info->scrub_workers = scrub_workers; 4233 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 4234 fs_info->scrub_parity_workers = scrub_parity; 4235 refcount_set(&fs_info->scrub_workers_refcnt, 1); 4236 mutex_unlock(&fs_info->scrub_lock); 4237 return 0; 4238 } 4239 /* Other thread raced in and created the workers for us */ 4240 refcount_inc(&fs_info->scrub_workers_refcnt); 4241 mutex_unlock(&fs_info->scrub_lock); 4242 4243 ret = 0; 4244 destroy_workqueue(scrub_parity); 4245 fail_scrub_parity_workers: 4246 destroy_workqueue(scrub_wr_comp); 4247 fail_scrub_wr_completion_workers: 4248 destroy_workqueue(scrub_workers); 4249 fail_scrub_workers: 4250 return ret; 4251 } 4252 4253 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4254 u64 end, struct btrfs_scrub_progress *progress, 4255 int readonly, int is_dev_replace) 4256 { 4257 struct btrfs_dev_lookup_args args = { .devid = devid }; 4258 struct scrub_ctx *sctx; 4259 int ret; 4260 struct btrfs_device *dev; 4261 unsigned int nofs_flag; 4262 bool need_commit = false; 4263 4264 if (btrfs_fs_closing(fs_info)) 4265 return -EAGAIN; 4266 4267 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 4268 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 4269 4270 /* 4271 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 4272 * value (max nodesize / min sectorsize), thus nodesize should always 4273 * be fine. 4274 */ 4275 ASSERT(fs_info->nodesize <= 4276 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 4277 4278 /* Allocate outside of device_list_mutex */ 4279 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4280 if (IS_ERR(sctx)) 4281 return PTR_ERR(sctx); 4282 4283 ret = scrub_workers_get(fs_info, is_dev_replace); 4284 if (ret) 4285 goto out_free_ctx; 4286 4287 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4288 dev = btrfs_find_device(fs_info->fs_devices, &args); 4289 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4290 !is_dev_replace)) { 4291 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4292 ret = -ENODEV; 4293 goto out; 4294 } 4295 4296 if (!is_dev_replace && !readonly && 4297 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4298 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4299 btrfs_err_in_rcu(fs_info, 4300 "scrub on devid %llu: filesystem on %s is not writable", 4301 devid, rcu_str_deref(dev->name)); 4302 ret = -EROFS; 4303 goto out; 4304 } 4305 4306 mutex_lock(&fs_info->scrub_lock); 4307 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4308 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4309 mutex_unlock(&fs_info->scrub_lock); 4310 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4311 ret = -EIO; 4312 goto out; 4313 } 4314 4315 down_read(&fs_info->dev_replace.rwsem); 4316 if (dev->scrub_ctx || 4317 (!is_dev_replace && 4318 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4319 up_read(&fs_info->dev_replace.rwsem); 4320 mutex_unlock(&fs_info->scrub_lock); 4321 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4322 ret = -EINPROGRESS; 4323 goto out; 4324 } 4325 up_read(&fs_info->dev_replace.rwsem); 4326 4327 sctx->readonly = readonly; 4328 dev->scrub_ctx = sctx; 4329 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4330 4331 /* 4332 * checking @scrub_pause_req here, we can avoid 4333 * race between committing transaction and scrubbing. 4334 */ 4335 __scrub_blocked_if_needed(fs_info); 4336 atomic_inc(&fs_info->scrubs_running); 4337 mutex_unlock(&fs_info->scrub_lock); 4338 4339 /* 4340 * In order to avoid deadlock with reclaim when there is a transaction 4341 * trying to pause scrub, make sure we use GFP_NOFS for all the 4342 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 4343 * invoked by our callees. The pausing request is done when the 4344 * transaction commit starts, and it blocks the transaction until scrub 4345 * is paused (done at specific points at scrub_stripe() or right above 4346 * before incrementing fs_info->scrubs_running). 4347 */ 4348 nofs_flag = memalloc_nofs_save(); 4349 if (!is_dev_replace) { 4350 u64 old_super_errors; 4351 4352 spin_lock(&sctx->stat_lock); 4353 old_super_errors = sctx->stat.super_errors; 4354 spin_unlock(&sctx->stat_lock); 4355 4356 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4357 /* 4358 * by holding device list mutex, we can 4359 * kick off writing super in log tree sync. 4360 */ 4361 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4362 ret = scrub_supers(sctx, dev); 4363 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4364 4365 spin_lock(&sctx->stat_lock); 4366 /* 4367 * Super block errors found, but we can not commit transaction 4368 * at current context, since btrfs_commit_transaction() needs 4369 * to pause the current running scrub (hold by ourselves). 4370 */ 4371 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 4372 need_commit = true; 4373 spin_unlock(&sctx->stat_lock); 4374 } 4375 4376 if (!ret) 4377 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4378 memalloc_nofs_restore(nofs_flag); 4379 4380 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4381 atomic_dec(&fs_info->scrubs_running); 4382 wake_up(&fs_info->scrub_pause_wait); 4383 4384 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4385 4386 if (progress) 4387 memcpy(progress, &sctx->stat, sizeof(*progress)); 4388 4389 if (!is_dev_replace) 4390 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4391 ret ? "not finished" : "finished", devid, ret); 4392 4393 mutex_lock(&fs_info->scrub_lock); 4394 dev->scrub_ctx = NULL; 4395 mutex_unlock(&fs_info->scrub_lock); 4396 4397 scrub_workers_put(fs_info); 4398 scrub_put_ctx(sctx); 4399 4400 /* 4401 * We found some super block errors before, now try to force a 4402 * transaction commit, as scrub has finished. 4403 */ 4404 if (need_commit) { 4405 struct btrfs_trans_handle *trans; 4406 4407 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4408 if (IS_ERR(trans)) { 4409 ret = PTR_ERR(trans); 4410 btrfs_err(fs_info, 4411 "scrub: failed to start transaction to fix super block errors: %d", ret); 4412 return ret; 4413 } 4414 ret = btrfs_commit_transaction(trans); 4415 if (ret < 0) 4416 btrfs_err(fs_info, 4417 "scrub: failed to commit transaction to fix super block errors: %d", ret); 4418 } 4419 return ret; 4420 out: 4421 scrub_workers_put(fs_info); 4422 out_free_ctx: 4423 scrub_free_ctx(sctx); 4424 4425 return ret; 4426 } 4427 4428 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4429 { 4430 mutex_lock(&fs_info->scrub_lock); 4431 atomic_inc(&fs_info->scrub_pause_req); 4432 while (atomic_read(&fs_info->scrubs_paused) != 4433 atomic_read(&fs_info->scrubs_running)) { 4434 mutex_unlock(&fs_info->scrub_lock); 4435 wait_event(fs_info->scrub_pause_wait, 4436 atomic_read(&fs_info->scrubs_paused) == 4437 atomic_read(&fs_info->scrubs_running)); 4438 mutex_lock(&fs_info->scrub_lock); 4439 } 4440 mutex_unlock(&fs_info->scrub_lock); 4441 } 4442 4443 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4444 { 4445 atomic_dec(&fs_info->scrub_pause_req); 4446 wake_up(&fs_info->scrub_pause_wait); 4447 } 4448 4449 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4450 { 4451 mutex_lock(&fs_info->scrub_lock); 4452 if (!atomic_read(&fs_info->scrubs_running)) { 4453 mutex_unlock(&fs_info->scrub_lock); 4454 return -ENOTCONN; 4455 } 4456 4457 atomic_inc(&fs_info->scrub_cancel_req); 4458 while (atomic_read(&fs_info->scrubs_running)) { 4459 mutex_unlock(&fs_info->scrub_lock); 4460 wait_event(fs_info->scrub_pause_wait, 4461 atomic_read(&fs_info->scrubs_running) == 0); 4462 mutex_lock(&fs_info->scrub_lock); 4463 } 4464 atomic_dec(&fs_info->scrub_cancel_req); 4465 mutex_unlock(&fs_info->scrub_lock); 4466 4467 return 0; 4468 } 4469 4470 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4471 { 4472 struct btrfs_fs_info *fs_info = dev->fs_info; 4473 struct scrub_ctx *sctx; 4474 4475 mutex_lock(&fs_info->scrub_lock); 4476 sctx = dev->scrub_ctx; 4477 if (!sctx) { 4478 mutex_unlock(&fs_info->scrub_lock); 4479 return -ENOTCONN; 4480 } 4481 atomic_inc(&sctx->cancel_req); 4482 while (dev->scrub_ctx) { 4483 mutex_unlock(&fs_info->scrub_lock); 4484 wait_event(fs_info->scrub_pause_wait, 4485 dev->scrub_ctx == NULL); 4486 mutex_lock(&fs_info->scrub_lock); 4487 } 4488 mutex_unlock(&fs_info->scrub_lock); 4489 4490 return 0; 4491 } 4492 4493 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4494 struct btrfs_scrub_progress *progress) 4495 { 4496 struct btrfs_dev_lookup_args args = { .devid = devid }; 4497 struct btrfs_device *dev; 4498 struct scrub_ctx *sctx = NULL; 4499 4500 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4501 dev = btrfs_find_device(fs_info->fs_devices, &args); 4502 if (dev) 4503 sctx = dev->scrub_ctx; 4504 if (sctx) 4505 memcpy(progress, &sctx->stat, sizeof(*progress)); 4506 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4507 4508 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4509 } 4510 4511 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, 4512 u64 extent_logical, u32 extent_len, 4513 u64 *extent_physical, 4514 struct btrfs_device **extent_dev, 4515 int *extent_mirror_num) 4516 { 4517 u64 mapped_length; 4518 struct btrfs_io_context *bioc = NULL; 4519 int ret; 4520 4521 mapped_length = extent_len; 4522 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4523 &mapped_length, &bioc, 0); 4524 if (ret || !bioc || mapped_length < extent_len || 4525 !bioc->stripes[0].dev->bdev) { 4526 btrfs_put_bioc(bioc); 4527 return; 4528 } 4529 4530 *extent_physical = bioc->stripes[0].physical; 4531 *extent_mirror_num = bioc->mirror_num; 4532 *extent_dev = bioc->stripes[0].dev; 4533 btrfs_put_bioc(bioc); 4534 } 4535