xref: /openbmc/linux/fs/btrfs/scrub.c (revision 2fc6822c99d7e902b7cef146efa37420d41c0c59)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2011, 2012 STRATO.  All rights reserved.
4  */
5 
6 #include <linux/blkdev.h>
7 #include <linux/ratelimit.h>
8 #include <linux/sched/mm.h>
9 #include <crypto/hash.h>
10 #include "ctree.h"
11 #include "discard.h"
12 #include "volumes.h"
13 #include "disk-io.h"
14 #include "ordered-data.h"
15 #include "transaction.h"
16 #include "backref.h"
17 #include "extent_io.h"
18 #include "dev-replace.h"
19 #include "check-integrity.h"
20 #include "rcu-string.h"
21 #include "raid56.h"
22 #include "block-group.h"
23 #include "zoned.h"
24 #include "fs.h"
25 #include "accessors.h"
26 #include "file-item.h"
27 #include "scrub.h"
28 
29 /*
30  * This is only the first step towards a full-features scrub. It reads all
31  * extent and super block and verifies the checksums. In case a bad checksum
32  * is found or the extent cannot be read, good data will be written back if
33  * any can be found.
34  *
35  * Future enhancements:
36  *  - In case an unrepairable extent is encountered, track which files are
37  *    affected and report them
38  *  - track and record media errors, throw out bad devices
39  *  - add a mode to also read unallocated space
40  */
41 
42 struct scrub_block;
43 struct scrub_ctx;
44 
45 /*
46  * The following three values only influence the performance.
47  *
48  * The last one configures the number of parallel and outstanding I/O
49  * operations. The first one configures an upper limit for the number
50  * of (dynamically allocated) pages that are added to a bio.
51  */
52 #define SCRUB_SECTORS_PER_BIO	32	/* 128KiB per bio for 4KiB pages */
53 #define SCRUB_BIOS_PER_SCTX	64	/* 8MiB per device in flight for 4KiB pages */
54 
55 /*
56  * The following value times PAGE_SIZE needs to be large enough to match the
57  * largest node/leaf/sector size that shall be supported.
58  */
59 #define SCRUB_MAX_SECTORS_PER_BLOCK	(BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K)
60 
61 #define SCRUB_MAX_PAGES			(DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE))
62 
63 /*
64  * Maximum number of mirrors that can be available for all profiles counting
65  * the target device of dev-replace as one. During an active device replace
66  * procedure, the target device of the copy operation is a mirror for the
67  * filesystem data as well that can be used to read data in order to repair
68  * read errors on other disks.
69  *
70  * Current value is derived from RAID1C4 with 4 copies.
71  */
72 #define BTRFS_MAX_MIRRORS (4 + 1)
73 
74 struct scrub_recover {
75 	refcount_t		refs;
76 	struct btrfs_io_context	*bioc;
77 	u64			map_length;
78 };
79 
80 struct scrub_sector {
81 	struct scrub_block	*sblock;
82 	struct list_head	list;
83 	u64			flags;  /* extent flags */
84 	u64			generation;
85 	/* Offset in bytes to @sblock. */
86 	u32			offset;
87 	atomic_t		refs;
88 	unsigned int		have_csum:1;
89 	unsigned int		io_error:1;
90 	u8			csum[BTRFS_CSUM_SIZE];
91 
92 	struct scrub_recover	*recover;
93 };
94 
95 struct scrub_bio {
96 	int			index;
97 	struct scrub_ctx	*sctx;
98 	struct btrfs_device	*dev;
99 	struct bio		*bio;
100 	blk_status_t		status;
101 	u64			logical;
102 	u64			physical;
103 	struct scrub_sector	*sectors[SCRUB_SECTORS_PER_BIO];
104 	int			sector_count;
105 	int			next_free;
106 	struct work_struct	work;
107 };
108 
109 struct scrub_block {
110 	/*
111 	 * Each page will have its page::private used to record the logical
112 	 * bytenr.
113 	 */
114 	struct page		*pages[SCRUB_MAX_PAGES];
115 	struct scrub_sector	*sectors[SCRUB_MAX_SECTORS_PER_BLOCK];
116 	struct btrfs_device	*dev;
117 	/* Logical bytenr of the sblock */
118 	u64			logical;
119 	u64			physical;
120 	u64			physical_for_dev_replace;
121 	/* Length of sblock in bytes */
122 	u32			len;
123 	int			sector_count;
124 	int			mirror_num;
125 
126 	atomic_t		outstanding_sectors;
127 	refcount_t		refs; /* free mem on transition to zero */
128 	struct scrub_ctx	*sctx;
129 	struct scrub_parity	*sparity;
130 	struct {
131 		unsigned int	header_error:1;
132 		unsigned int	checksum_error:1;
133 		unsigned int	no_io_error_seen:1;
134 		unsigned int	generation_error:1; /* also sets header_error */
135 
136 		/* The following is for the data used to check parity */
137 		/* It is for the data with checksum */
138 		unsigned int	data_corrected:1;
139 	};
140 	struct work_struct	work;
141 };
142 
143 /* Used for the chunks with parity stripe such RAID5/6 */
144 struct scrub_parity {
145 	struct scrub_ctx	*sctx;
146 
147 	struct btrfs_device	*scrub_dev;
148 
149 	u64			logic_start;
150 
151 	u64			logic_end;
152 
153 	int			nsectors;
154 
155 	u32			stripe_len;
156 
157 	refcount_t		refs;
158 
159 	struct list_head	sectors_list;
160 
161 	/* Work of parity check and repair */
162 	struct work_struct	work;
163 
164 	/* Mark the parity blocks which have data */
165 	unsigned long		dbitmap;
166 
167 	/*
168 	 * Mark the parity blocks which have data, but errors happen when
169 	 * read data or check data
170 	 */
171 	unsigned long		ebitmap;
172 };
173 
174 struct scrub_ctx {
175 	struct scrub_bio	*bios[SCRUB_BIOS_PER_SCTX];
176 	struct btrfs_fs_info	*fs_info;
177 	int			first_free;
178 	int			curr;
179 	atomic_t		bios_in_flight;
180 	atomic_t		workers_pending;
181 	spinlock_t		list_lock;
182 	wait_queue_head_t	list_wait;
183 	struct list_head	csum_list;
184 	atomic_t		cancel_req;
185 	int			readonly;
186 	int			sectors_per_bio;
187 
188 	/* State of IO submission throttling affecting the associated device */
189 	ktime_t			throttle_deadline;
190 	u64			throttle_sent;
191 
192 	int			is_dev_replace;
193 	u64			write_pointer;
194 
195 	struct scrub_bio        *wr_curr_bio;
196 	struct mutex            wr_lock;
197 	struct btrfs_device     *wr_tgtdev;
198 	bool                    flush_all_writes;
199 
200 	/*
201 	 * statistics
202 	 */
203 	struct btrfs_scrub_progress stat;
204 	spinlock_t		stat_lock;
205 
206 	/*
207 	 * Use a ref counter to avoid use-after-free issues. Scrub workers
208 	 * decrement bios_in_flight and workers_pending and then do a wakeup
209 	 * on the list_wait wait queue. We must ensure the main scrub task
210 	 * doesn't free the scrub context before or while the workers are
211 	 * doing the wakeup() call.
212 	 */
213 	refcount_t              refs;
214 };
215 
216 struct scrub_warning {
217 	struct btrfs_path	*path;
218 	u64			extent_item_size;
219 	const char		*errstr;
220 	u64			physical;
221 	u64			logical;
222 	struct btrfs_device	*dev;
223 };
224 
225 struct full_stripe_lock {
226 	struct rb_node node;
227 	u64 logical;
228 	u64 refs;
229 	struct mutex mutex;
230 };
231 
232 #ifndef CONFIG_64BIT
233 /* This structure is for archtectures whose (void *) is smaller than u64 */
234 struct scrub_page_private {
235 	u64 logical;
236 };
237 #endif
238 
239 static int attach_scrub_page_private(struct page *page, u64 logical)
240 {
241 #ifdef CONFIG_64BIT
242 	attach_page_private(page, (void *)logical);
243 	return 0;
244 #else
245 	struct scrub_page_private *spp;
246 
247 	spp = kmalloc(sizeof(*spp), GFP_KERNEL);
248 	if (!spp)
249 		return -ENOMEM;
250 	spp->logical = logical;
251 	attach_page_private(page, (void *)spp);
252 	return 0;
253 #endif
254 }
255 
256 static void detach_scrub_page_private(struct page *page)
257 {
258 #ifdef CONFIG_64BIT
259 	detach_page_private(page);
260 	return;
261 #else
262 	struct scrub_page_private *spp;
263 
264 	spp = detach_page_private(page);
265 	kfree(spp);
266 	return;
267 #endif
268 }
269 
270 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx,
271 					     struct btrfs_device *dev,
272 					     u64 logical, u64 physical,
273 					     u64 physical_for_dev_replace,
274 					     int mirror_num)
275 {
276 	struct scrub_block *sblock;
277 
278 	sblock = kzalloc(sizeof(*sblock), GFP_KERNEL);
279 	if (!sblock)
280 		return NULL;
281 	refcount_set(&sblock->refs, 1);
282 	sblock->sctx = sctx;
283 	sblock->logical = logical;
284 	sblock->physical = physical;
285 	sblock->physical_for_dev_replace = physical_for_dev_replace;
286 	sblock->dev = dev;
287 	sblock->mirror_num = mirror_num;
288 	sblock->no_io_error_seen = 1;
289 	/*
290 	 * Scrub_block::pages will be allocated at alloc_scrub_sector() when
291 	 * the corresponding page is not allocated.
292 	 */
293 	return sblock;
294 }
295 
296 /*
297  * Allocate a new scrub sector and attach it to @sblock.
298  *
299  * Will also allocate new pages for @sblock if needed.
300  */
301 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock,
302 					       u64 logical)
303 {
304 	const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT;
305 	struct scrub_sector *ssector;
306 
307 	/* We must never have scrub_block exceed U32_MAX in size. */
308 	ASSERT(logical - sblock->logical < U32_MAX);
309 
310 	ssector = kzalloc(sizeof(*ssector), GFP_KERNEL);
311 	if (!ssector)
312 		return NULL;
313 
314 	/* Allocate a new page if the slot is not allocated */
315 	if (!sblock->pages[page_index]) {
316 		int ret;
317 
318 		sblock->pages[page_index] = alloc_page(GFP_KERNEL);
319 		if (!sblock->pages[page_index]) {
320 			kfree(ssector);
321 			return NULL;
322 		}
323 		ret = attach_scrub_page_private(sblock->pages[page_index],
324 				sblock->logical + (page_index << PAGE_SHIFT));
325 		if (ret < 0) {
326 			kfree(ssector);
327 			__free_page(sblock->pages[page_index]);
328 			sblock->pages[page_index] = NULL;
329 			return NULL;
330 		}
331 	}
332 
333 	atomic_set(&ssector->refs, 1);
334 	ssector->sblock = sblock;
335 	/* The sector to be added should not be used */
336 	ASSERT(sblock->sectors[sblock->sector_count] == NULL);
337 	ssector->offset = logical - sblock->logical;
338 
339 	/* The sector count must be smaller than the limit */
340 	ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK);
341 
342 	sblock->sectors[sblock->sector_count] = ssector;
343 	sblock->sector_count++;
344 	sblock->len += sblock->sctx->fs_info->sectorsize;
345 
346 	return ssector;
347 }
348 
349 static struct page *scrub_sector_get_page(struct scrub_sector *ssector)
350 {
351 	struct scrub_block *sblock = ssector->sblock;
352 	pgoff_t index;
353 	/*
354 	 * When calling this function, ssector must be alreaday attached to the
355 	 * parent sblock.
356 	 */
357 	ASSERT(sblock);
358 
359 	/* The range should be inside the sblock range */
360 	ASSERT(ssector->offset < sblock->len);
361 
362 	index = ssector->offset >> PAGE_SHIFT;
363 	ASSERT(index < SCRUB_MAX_PAGES);
364 	ASSERT(sblock->pages[index]);
365 	ASSERT(PagePrivate(sblock->pages[index]));
366 	return sblock->pages[index];
367 }
368 
369 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector)
370 {
371 	struct scrub_block *sblock = ssector->sblock;
372 
373 	/*
374 	 * When calling this function, ssector must be already attached to the
375 	 * parent sblock.
376 	 */
377 	ASSERT(sblock);
378 
379 	/* The range should be inside the sblock range */
380 	ASSERT(ssector->offset < sblock->len);
381 
382 	return offset_in_page(ssector->offset);
383 }
384 
385 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector)
386 {
387 	return page_address(scrub_sector_get_page(ssector)) +
388 	       scrub_sector_get_page_offset(ssector);
389 }
390 
391 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector,
392 				unsigned int len)
393 {
394 	return bio_add_page(bio, scrub_sector_get_page(ssector), len,
395 			    scrub_sector_get_page_offset(ssector));
396 }
397 
398 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
399 				     struct scrub_block *sblocks_for_recheck[]);
400 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
401 				struct scrub_block *sblock,
402 				int retry_failed_mirror);
403 static void scrub_recheck_block_checksum(struct scrub_block *sblock);
404 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
405 					     struct scrub_block *sblock_good);
406 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
407 					    struct scrub_block *sblock_good,
408 					    int sector_num, int force_write);
409 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock);
410 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock,
411 					     int sector_num);
412 static int scrub_checksum_data(struct scrub_block *sblock);
413 static int scrub_checksum_tree_block(struct scrub_block *sblock);
414 static int scrub_checksum_super(struct scrub_block *sblock);
415 static void scrub_block_put(struct scrub_block *sblock);
416 static void scrub_sector_get(struct scrub_sector *sector);
417 static void scrub_sector_put(struct scrub_sector *sector);
418 static void scrub_parity_get(struct scrub_parity *sparity);
419 static void scrub_parity_put(struct scrub_parity *sparity);
420 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
421 			 u64 physical, struct btrfs_device *dev, u64 flags,
422 			 u64 gen, int mirror_num, u8 *csum,
423 			 u64 physical_for_dev_replace);
424 static void scrub_bio_end_io(struct bio *bio);
425 static void scrub_bio_end_io_worker(struct work_struct *work);
426 static void scrub_block_complete(struct scrub_block *sblock);
427 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
428 				 u64 extent_logical, u32 extent_len,
429 				 u64 *extent_physical,
430 				 struct btrfs_device **extent_dev,
431 				 int *extent_mirror_num);
432 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
433 				      struct scrub_sector *sector);
434 static void scrub_wr_submit(struct scrub_ctx *sctx);
435 static void scrub_wr_bio_end_io(struct bio *bio);
436 static void scrub_wr_bio_end_io_worker(struct work_struct *work);
437 static void scrub_put_ctx(struct scrub_ctx *sctx);
438 
439 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector)
440 {
441 	return sector->recover &&
442 	       (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK);
443 }
444 
445 static void scrub_pending_bio_inc(struct scrub_ctx *sctx)
446 {
447 	refcount_inc(&sctx->refs);
448 	atomic_inc(&sctx->bios_in_flight);
449 }
450 
451 static void scrub_pending_bio_dec(struct scrub_ctx *sctx)
452 {
453 	atomic_dec(&sctx->bios_in_flight);
454 	wake_up(&sctx->list_wait);
455 	scrub_put_ctx(sctx);
456 }
457 
458 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
459 {
460 	while (atomic_read(&fs_info->scrub_pause_req)) {
461 		mutex_unlock(&fs_info->scrub_lock);
462 		wait_event(fs_info->scrub_pause_wait,
463 		   atomic_read(&fs_info->scrub_pause_req) == 0);
464 		mutex_lock(&fs_info->scrub_lock);
465 	}
466 }
467 
468 static void scrub_pause_on(struct btrfs_fs_info *fs_info)
469 {
470 	atomic_inc(&fs_info->scrubs_paused);
471 	wake_up(&fs_info->scrub_pause_wait);
472 }
473 
474 static void scrub_pause_off(struct btrfs_fs_info *fs_info)
475 {
476 	mutex_lock(&fs_info->scrub_lock);
477 	__scrub_blocked_if_needed(fs_info);
478 	atomic_dec(&fs_info->scrubs_paused);
479 	mutex_unlock(&fs_info->scrub_lock);
480 
481 	wake_up(&fs_info->scrub_pause_wait);
482 }
483 
484 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info)
485 {
486 	scrub_pause_on(fs_info);
487 	scrub_pause_off(fs_info);
488 }
489 
490 /*
491  * Insert new full stripe lock into full stripe locks tree
492  *
493  * Return pointer to existing or newly inserted full_stripe_lock structure if
494  * everything works well.
495  * Return ERR_PTR(-ENOMEM) if we failed to allocate memory
496  *
497  * NOTE: caller must hold full_stripe_locks_root->lock before calling this
498  * function
499  */
500 static struct full_stripe_lock *insert_full_stripe_lock(
501 		struct btrfs_full_stripe_locks_tree *locks_root,
502 		u64 fstripe_logical)
503 {
504 	struct rb_node **p;
505 	struct rb_node *parent = NULL;
506 	struct full_stripe_lock *entry;
507 	struct full_stripe_lock *ret;
508 
509 	lockdep_assert_held(&locks_root->lock);
510 
511 	p = &locks_root->root.rb_node;
512 	while (*p) {
513 		parent = *p;
514 		entry = rb_entry(parent, struct full_stripe_lock, node);
515 		if (fstripe_logical < entry->logical) {
516 			p = &(*p)->rb_left;
517 		} else if (fstripe_logical > entry->logical) {
518 			p = &(*p)->rb_right;
519 		} else {
520 			entry->refs++;
521 			return entry;
522 		}
523 	}
524 
525 	/*
526 	 * Insert new lock.
527 	 */
528 	ret = kmalloc(sizeof(*ret), GFP_KERNEL);
529 	if (!ret)
530 		return ERR_PTR(-ENOMEM);
531 	ret->logical = fstripe_logical;
532 	ret->refs = 1;
533 	mutex_init(&ret->mutex);
534 
535 	rb_link_node(&ret->node, parent, p);
536 	rb_insert_color(&ret->node, &locks_root->root);
537 	return ret;
538 }
539 
540 /*
541  * Search for a full stripe lock of a block group
542  *
543  * Return pointer to existing full stripe lock if found
544  * Return NULL if not found
545  */
546 static struct full_stripe_lock *search_full_stripe_lock(
547 		struct btrfs_full_stripe_locks_tree *locks_root,
548 		u64 fstripe_logical)
549 {
550 	struct rb_node *node;
551 	struct full_stripe_lock *entry;
552 
553 	lockdep_assert_held(&locks_root->lock);
554 
555 	node = locks_root->root.rb_node;
556 	while (node) {
557 		entry = rb_entry(node, struct full_stripe_lock, node);
558 		if (fstripe_logical < entry->logical)
559 			node = node->rb_left;
560 		else if (fstripe_logical > entry->logical)
561 			node = node->rb_right;
562 		else
563 			return entry;
564 	}
565 	return NULL;
566 }
567 
568 /*
569  * Helper to get full stripe logical from a normal bytenr.
570  *
571  * Caller must ensure @cache is a RAID56 block group.
572  */
573 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr)
574 {
575 	u64 ret;
576 
577 	/*
578 	 * Due to chunk item size limit, full stripe length should not be
579 	 * larger than U32_MAX. Just a sanity check here.
580 	 */
581 	WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX);
582 
583 	/*
584 	 * round_down() can only handle power of 2, while RAID56 full
585 	 * stripe length can be 64KiB * n, so we need to manually round down.
586 	 */
587 	ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) *
588 			cache->full_stripe_len + cache->start;
589 	return ret;
590 }
591 
592 /*
593  * Lock a full stripe to avoid concurrency of recovery and read
594  *
595  * It's only used for profiles with parities (RAID5/6), for other profiles it
596  * does nothing.
597  *
598  * Return 0 if we locked full stripe covering @bytenr, with a mutex held.
599  * So caller must call unlock_full_stripe() at the same context.
600  *
601  * Return <0 if encounters error.
602  */
603 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
604 			    bool *locked_ret)
605 {
606 	struct btrfs_block_group *bg_cache;
607 	struct btrfs_full_stripe_locks_tree *locks_root;
608 	struct full_stripe_lock *existing;
609 	u64 fstripe_start;
610 	int ret = 0;
611 
612 	*locked_ret = false;
613 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
614 	if (!bg_cache) {
615 		ASSERT(0);
616 		return -ENOENT;
617 	}
618 
619 	/* Profiles not based on parity don't need full stripe lock */
620 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
621 		goto out;
622 	locks_root = &bg_cache->full_stripe_locks_root;
623 
624 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
625 
626 	/* Now insert the full stripe lock */
627 	mutex_lock(&locks_root->lock);
628 	existing = insert_full_stripe_lock(locks_root, fstripe_start);
629 	mutex_unlock(&locks_root->lock);
630 	if (IS_ERR(existing)) {
631 		ret = PTR_ERR(existing);
632 		goto out;
633 	}
634 	mutex_lock(&existing->mutex);
635 	*locked_ret = true;
636 out:
637 	btrfs_put_block_group(bg_cache);
638 	return ret;
639 }
640 
641 /*
642  * Unlock a full stripe.
643  *
644  * NOTE: Caller must ensure it's the same context calling corresponding
645  * lock_full_stripe().
646  *
647  * Return 0 if we unlock full stripe without problem.
648  * Return <0 for error
649  */
650 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr,
651 			      bool locked)
652 {
653 	struct btrfs_block_group *bg_cache;
654 	struct btrfs_full_stripe_locks_tree *locks_root;
655 	struct full_stripe_lock *fstripe_lock;
656 	u64 fstripe_start;
657 	bool freeit = false;
658 	int ret = 0;
659 
660 	/* If we didn't acquire full stripe lock, no need to continue */
661 	if (!locked)
662 		return 0;
663 
664 	bg_cache = btrfs_lookup_block_group(fs_info, bytenr);
665 	if (!bg_cache) {
666 		ASSERT(0);
667 		return -ENOENT;
668 	}
669 	if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK))
670 		goto out;
671 
672 	locks_root = &bg_cache->full_stripe_locks_root;
673 	fstripe_start = get_full_stripe_logical(bg_cache, bytenr);
674 
675 	mutex_lock(&locks_root->lock);
676 	fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start);
677 	/* Unpaired unlock_full_stripe() detected */
678 	if (!fstripe_lock) {
679 		WARN_ON(1);
680 		ret = -ENOENT;
681 		mutex_unlock(&locks_root->lock);
682 		goto out;
683 	}
684 
685 	if (fstripe_lock->refs == 0) {
686 		WARN_ON(1);
687 		btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow",
688 			fstripe_lock->logical);
689 	} else {
690 		fstripe_lock->refs--;
691 	}
692 
693 	if (fstripe_lock->refs == 0) {
694 		rb_erase(&fstripe_lock->node, &locks_root->root);
695 		freeit = true;
696 	}
697 	mutex_unlock(&locks_root->lock);
698 
699 	mutex_unlock(&fstripe_lock->mutex);
700 	if (freeit)
701 		kfree(fstripe_lock);
702 out:
703 	btrfs_put_block_group(bg_cache);
704 	return ret;
705 }
706 
707 static void scrub_free_csums(struct scrub_ctx *sctx)
708 {
709 	while (!list_empty(&sctx->csum_list)) {
710 		struct btrfs_ordered_sum *sum;
711 		sum = list_first_entry(&sctx->csum_list,
712 				       struct btrfs_ordered_sum, list);
713 		list_del(&sum->list);
714 		kfree(sum);
715 	}
716 }
717 
718 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx)
719 {
720 	int i;
721 
722 	if (!sctx)
723 		return;
724 
725 	/* this can happen when scrub is cancelled */
726 	if (sctx->curr != -1) {
727 		struct scrub_bio *sbio = sctx->bios[sctx->curr];
728 
729 		for (i = 0; i < sbio->sector_count; i++)
730 			scrub_block_put(sbio->sectors[i]->sblock);
731 		bio_put(sbio->bio);
732 	}
733 
734 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
735 		struct scrub_bio *sbio = sctx->bios[i];
736 
737 		if (!sbio)
738 			break;
739 		kfree(sbio);
740 	}
741 
742 	kfree(sctx->wr_curr_bio);
743 	scrub_free_csums(sctx);
744 	kfree(sctx);
745 }
746 
747 static void scrub_put_ctx(struct scrub_ctx *sctx)
748 {
749 	if (refcount_dec_and_test(&sctx->refs))
750 		scrub_free_ctx(sctx);
751 }
752 
753 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx(
754 		struct btrfs_fs_info *fs_info, int is_dev_replace)
755 {
756 	struct scrub_ctx *sctx;
757 	int		i;
758 
759 	sctx = kzalloc(sizeof(*sctx), GFP_KERNEL);
760 	if (!sctx)
761 		goto nomem;
762 	refcount_set(&sctx->refs, 1);
763 	sctx->is_dev_replace = is_dev_replace;
764 	sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO;
765 	sctx->curr = -1;
766 	sctx->fs_info = fs_info;
767 	INIT_LIST_HEAD(&sctx->csum_list);
768 	for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) {
769 		struct scrub_bio *sbio;
770 
771 		sbio = kzalloc(sizeof(*sbio), GFP_KERNEL);
772 		if (!sbio)
773 			goto nomem;
774 		sctx->bios[i] = sbio;
775 
776 		sbio->index = i;
777 		sbio->sctx = sctx;
778 		sbio->sector_count = 0;
779 		INIT_WORK(&sbio->work, scrub_bio_end_io_worker);
780 
781 		if (i != SCRUB_BIOS_PER_SCTX - 1)
782 			sctx->bios[i]->next_free = i + 1;
783 		else
784 			sctx->bios[i]->next_free = -1;
785 	}
786 	sctx->first_free = 0;
787 	atomic_set(&sctx->bios_in_flight, 0);
788 	atomic_set(&sctx->workers_pending, 0);
789 	atomic_set(&sctx->cancel_req, 0);
790 
791 	spin_lock_init(&sctx->list_lock);
792 	spin_lock_init(&sctx->stat_lock);
793 	init_waitqueue_head(&sctx->list_wait);
794 	sctx->throttle_deadline = 0;
795 
796 	WARN_ON(sctx->wr_curr_bio != NULL);
797 	mutex_init(&sctx->wr_lock);
798 	sctx->wr_curr_bio = NULL;
799 	if (is_dev_replace) {
800 		WARN_ON(!fs_info->dev_replace.tgtdev);
801 		sctx->wr_tgtdev = fs_info->dev_replace.tgtdev;
802 		sctx->flush_all_writes = false;
803 	}
804 
805 	return sctx;
806 
807 nomem:
808 	scrub_free_ctx(sctx);
809 	return ERR_PTR(-ENOMEM);
810 }
811 
812 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root,
813 				     void *warn_ctx)
814 {
815 	u32 nlink;
816 	int ret;
817 	int i;
818 	unsigned nofs_flag;
819 	struct extent_buffer *eb;
820 	struct btrfs_inode_item *inode_item;
821 	struct scrub_warning *swarn = warn_ctx;
822 	struct btrfs_fs_info *fs_info = swarn->dev->fs_info;
823 	struct inode_fs_paths *ipath = NULL;
824 	struct btrfs_root *local_root;
825 	struct btrfs_key key;
826 
827 	local_root = btrfs_get_fs_root(fs_info, root, true);
828 	if (IS_ERR(local_root)) {
829 		ret = PTR_ERR(local_root);
830 		goto err;
831 	}
832 
833 	/*
834 	 * this makes the path point to (inum INODE_ITEM ioff)
835 	 */
836 	key.objectid = inum;
837 	key.type = BTRFS_INODE_ITEM_KEY;
838 	key.offset = 0;
839 
840 	ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0);
841 	if (ret) {
842 		btrfs_put_root(local_root);
843 		btrfs_release_path(swarn->path);
844 		goto err;
845 	}
846 
847 	eb = swarn->path->nodes[0];
848 	inode_item = btrfs_item_ptr(eb, swarn->path->slots[0],
849 					struct btrfs_inode_item);
850 	nlink = btrfs_inode_nlink(eb, inode_item);
851 	btrfs_release_path(swarn->path);
852 
853 	/*
854 	 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub
855 	 * uses GFP_NOFS in this context, so we keep it consistent but it does
856 	 * not seem to be strictly necessary.
857 	 */
858 	nofs_flag = memalloc_nofs_save();
859 	ipath = init_ipath(4096, local_root, swarn->path);
860 	memalloc_nofs_restore(nofs_flag);
861 	if (IS_ERR(ipath)) {
862 		btrfs_put_root(local_root);
863 		ret = PTR_ERR(ipath);
864 		ipath = NULL;
865 		goto err;
866 	}
867 	ret = paths_from_inode(inum, ipath);
868 
869 	if (ret < 0)
870 		goto err;
871 
872 	/*
873 	 * we deliberately ignore the bit ipath might have been too small to
874 	 * hold all of the paths here
875 	 */
876 	for (i = 0; i < ipath->fspath->elem_cnt; ++i)
877 		btrfs_warn_in_rcu(fs_info,
878 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)",
879 				  swarn->errstr, swarn->logical,
880 				  rcu_str_deref(swarn->dev->name),
881 				  swarn->physical,
882 				  root, inum, offset,
883 				  fs_info->sectorsize, nlink,
884 				  (char *)(unsigned long)ipath->fspath->val[i]);
885 
886 	btrfs_put_root(local_root);
887 	free_ipath(ipath);
888 	return 0;
889 
890 err:
891 	btrfs_warn_in_rcu(fs_info,
892 			  "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d",
893 			  swarn->errstr, swarn->logical,
894 			  rcu_str_deref(swarn->dev->name),
895 			  swarn->physical,
896 			  root, inum, offset, ret);
897 
898 	free_ipath(ipath);
899 	return 0;
900 }
901 
902 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock)
903 {
904 	struct btrfs_device *dev;
905 	struct btrfs_fs_info *fs_info;
906 	struct btrfs_path *path;
907 	struct btrfs_key found_key;
908 	struct extent_buffer *eb;
909 	struct btrfs_extent_item *ei;
910 	struct scrub_warning swarn;
911 	unsigned long ptr = 0;
912 	u64 extent_item_pos;
913 	u64 flags = 0;
914 	u64 ref_root;
915 	u32 item_size;
916 	u8 ref_level = 0;
917 	int ret;
918 
919 	WARN_ON(sblock->sector_count < 1);
920 	dev = sblock->dev;
921 	fs_info = sblock->sctx->fs_info;
922 
923 	/* Super block error, no need to search extent tree. */
924 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
925 		btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu",
926 			errstr, rcu_str_deref(dev->name),
927 			sblock->physical);
928 		return;
929 	}
930 	path = btrfs_alloc_path();
931 	if (!path)
932 		return;
933 
934 	swarn.physical = sblock->physical;
935 	swarn.logical = sblock->logical;
936 	swarn.errstr = errstr;
937 	swarn.dev = NULL;
938 
939 	ret = extent_from_logical(fs_info, swarn.logical, path, &found_key,
940 				  &flags);
941 	if (ret < 0)
942 		goto out;
943 
944 	extent_item_pos = swarn.logical - found_key.objectid;
945 	swarn.extent_item_size = found_key.offset;
946 
947 	eb = path->nodes[0];
948 	ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item);
949 	item_size = btrfs_item_size(eb, path->slots[0]);
950 
951 	if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
952 		do {
953 			ret = tree_backref_for_extent(&ptr, eb, &found_key, ei,
954 						      item_size, &ref_root,
955 						      &ref_level);
956 			btrfs_warn_in_rcu(fs_info,
957 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu",
958 				errstr, swarn.logical,
959 				rcu_str_deref(dev->name),
960 				swarn.physical,
961 				ref_level ? "node" : "leaf",
962 				ret < 0 ? -1 : ref_level,
963 				ret < 0 ? -1 : ref_root);
964 		} while (ret != 1);
965 		btrfs_release_path(path);
966 	} else {
967 		btrfs_release_path(path);
968 		swarn.path = path;
969 		swarn.dev = dev;
970 		iterate_extent_inodes(fs_info, found_key.objectid,
971 					extent_item_pos, 1,
972 					scrub_print_warning_inode, &swarn, false);
973 	}
974 
975 out:
976 	btrfs_free_path(path);
977 }
978 
979 static inline void scrub_get_recover(struct scrub_recover *recover)
980 {
981 	refcount_inc(&recover->refs);
982 }
983 
984 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info,
985 				     struct scrub_recover *recover)
986 {
987 	if (refcount_dec_and_test(&recover->refs)) {
988 		btrfs_bio_counter_dec(fs_info);
989 		btrfs_put_bioc(recover->bioc);
990 		kfree(recover);
991 	}
992 }
993 
994 /*
995  * scrub_handle_errored_block gets called when either verification of the
996  * sectors failed or the bio failed to read, e.g. with EIO. In the latter
997  * case, this function handles all sectors in the bio, even though only one
998  * may be bad.
999  * The goal of this function is to repair the errored block by using the
1000  * contents of one of the mirrors.
1001  */
1002 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check)
1003 {
1004 	struct scrub_ctx *sctx = sblock_to_check->sctx;
1005 	struct btrfs_device *dev = sblock_to_check->dev;
1006 	struct btrfs_fs_info *fs_info;
1007 	u64 logical;
1008 	unsigned int failed_mirror_index;
1009 	unsigned int is_metadata;
1010 	unsigned int have_csum;
1011 	/* One scrub_block for each mirror */
1012 	struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 };
1013 	struct scrub_block *sblock_bad;
1014 	int ret;
1015 	int mirror_index;
1016 	int sector_num;
1017 	int success;
1018 	bool full_stripe_locked;
1019 	unsigned int nofs_flag;
1020 	static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL,
1021 				      DEFAULT_RATELIMIT_BURST);
1022 
1023 	BUG_ON(sblock_to_check->sector_count < 1);
1024 	fs_info = sctx->fs_info;
1025 	if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) {
1026 		/*
1027 		 * If we find an error in a super block, we just report it.
1028 		 * They will get written with the next transaction commit
1029 		 * anyway
1030 		 */
1031 		scrub_print_warning("super block error", sblock_to_check);
1032 		spin_lock(&sctx->stat_lock);
1033 		++sctx->stat.super_errors;
1034 		spin_unlock(&sctx->stat_lock);
1035 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS);
1036 		return 0;
1037 	}
1038 	logical = sblock_to_check->logical;
1039 	ASSERT(sblock_to_check->mirror_num);
1040 	failed_mirror_index = sblock_to_check->mirror_num - 1;
1041 	is_metadata = !(sblock_to_check->sectors[0]->flags &
1042 			BTRFS_EXTENT_FLAG_DATA);
1043 	have_csum = sblock_to_check->sectors[0]->have_csum;
1044 
1045 	if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical))
1046 		return 0;
1047 
1048 	/*
1049 	 * We must use GFP_NOFS because the scrub task might be waiting for a
1050 	 * worker task executing this function and in turn a transaction commit
1051 	 * might be waiting the scrub task to pause (which needs to wait for all
1052 	 * the worker tasks to complete before pausing).
1053 	 * We do allocations in the workers through insert_full_stripe_lock()
1054 	 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of
1055 	 * this function.
1056 	 */
1057 	nofs_flag = memalloc_nofs_save();
1058 	/*
1059 	 * For RAID5/6, race can happen for a different device scrub thread.
1060 	 * For data corruption, Parity and Data threads will both try
1061 	 * to recovery the data.
1062 	 * Race can lead to doubly added csum error, or even unrecoverable
1063 	 * error.
1064 	 */
1065 	ret = lock_full_stripe(fs_info, logical, &full_stripe_locked);
1066 	if (ret < 0) {
1067 		memalloc_nofs_restore(nofs_flag);
1068 		spin_lock(&sctx->stat_lock);
1069 		if (ret == -ENOMEM)
1070 			sctx->stat.malloc_errors++;
1071 		sctx->stat.read_errors++;
1072 		sctx->stat.uncorrectable_errors++;
1073 		spin_unlock(&sctx->stat_lock);
1074 		return ret;
1075 	}
1076 
1077 	/*
1078 	 * read all mirrors one after the other. This includes to
1079 	 * re-read the extent or metadata block that failed (that was
1080 	 * the cause that this fixup code is called) another time,
1081 	 * sector by sector this time in order to know which sectors
1082 	 * caused I/O errors and which ones are good (for all mirrors).
1083 	 * It is the goal to handle the situation when more than one
1084 	 * mirror contains I/O errors, but the errors do not
1085 	 * overlap, i.e. the data can be repaired by selecting the
1086 	 * sectors from those mirrors without I/O error on the
1087 	 * particular sectors. One example (with blocks >= 2 * sectorsize)
1088 	 * would be that mirror #1 has an I/O error on the first sector,
1089 	 * the second sector is good, and mirror #2 has an I/O error on
1090 	 * the second sector, but the first sector is good.
1091 	 * Then the first sector of the first mirror can be repaired by
1092 	 * taking the first sector of the second mirror, and the
1093 	 * second sector of the second mirror can be repaired by
1094 	 * copying the contents of the 2nd sector of the 1st mirror.
1095 	 * One more note: if the sectors of one mirror contain I/O
1096 	 * errors, the checksum cannot be verified. In order to get
1097 	 * the best data for repairing, the first attempt is to find
1098 	 * a mirror without I/O errors and with a validated checksum.
1099 	 * Only if this is not possible, the sectors are picked from
1100 	 * mirrors with I/O errors without considering the checksum.
1101 	 * If the latter is the case, at the end, the checksum of the
1102 	 * repaired area is verified in order to correctly maintain
1103 	 * the statistics.
1104 	 */
1105 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1106 		/*
1107 		 * Note: the two members refs and outstanding_sectors are not
1108 		 * used in the blocks that are used for the recheck procedure.
1109 		 *
1110 		 * But alloc_scrub_block() will initialize sblock::ref anyway,
1111 		 * so we can use scrub_block_put() to clean them up.
1112 		 *
1113 		 * And here we don't setup the physical/dev for the sblock yet,
1114 		 * they will be correctly initialized in scrub_setup_recheck_block().
1115 		 */
1116 		sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL,
1117 							logical, 0, 0, mirror_index);
1118 		if (!sblocks_for_recheck[mirror_index]) {
1119 			spin_lock(&sctx->stat_lock);
1120 			sctx->stat.malloc_errors++;
1121 			sctx->stat.read_errors++;
1122 			sctx->stat.uncorrectable_errors++;
1123 			spin_unlock(&sctx->stat_lock);
1124 			btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1125 			goto out;
1126 		}
1127 	}
1128 
1129 	/* Setup the context, map the logical blocks and alloc the sectors */
1130 	ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck);
1131 	if (ret) {
1132 		spin_lock(&sctx->stat_lock);
1133 		sctx->stat.read_errors++;
1134 		sctx->stat.uncorrectable_errors++;
1135 		spin_unlock(&sctx->stat_lock);
1136 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1137 		goto out;
1138 	}
1139 	BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS);
1140 	sblock_bad = sblocks_for_recheck[failed_mirror_index];
1141 
1142 	/* build and submit the bios for the failed mirror, check checksums */
1143 	scrub_recheck_block(fs_info, sblock_bad, 1);
1144 
1145 	if (!sblock_bad->header_error && !sblock_bad->checksum_error &&
1146 	    sblock_bad->no_io_error_seen) {
1147 		/*
1148 		 * The error disappeared after reading sector by sector, or
1149 		 * the area was part of a huge bio and other parts of the
1150 		 * bio caused I/O errors, or the block layer merged several
1151 		 * read requests into one and the error is caused by a
1152 		 * different bio (usually one of the two latter cases is
1153 		 * the cause)
1154 		 */
1155 		spin_lock(&sctx->stat_lock);
1156 		sctx->stat.unverified_errors++;
1157 		sblock_to_check->data_corrected = 1;
1158 		spin_unlock(&sctx->stat_lock);
1159 
1160 		if (sctx->is_dev_replace)
1161 			scrub_write_block_to_dev_replace(sblock_bad);
1162 		goto out;
1163 	}
1164 
1165 	if (!sblock_bad->no_io_error_seen) {
1166 		spin_lock(&sctx->stat_lock);
1167 		sctx->stat.read_errors++;
1168 		spin_unlock(&sctx->stat_lock);
1169 		if (__ratelimit(&rs))
1170 			scrub_print_warning("i/o error", sblock_to_check);
1171 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS);
1172 	} else if (sblock_bad->checksum_error) {
1173 		spin_lock(&sctx->stat_lock);
1174 		sctx->stat.csum_errors++;
1175 		spin_unlock(&sctx->stat_lock);
1176 		if (__ratelimit(&rs))
1177 			scrub_print_warning("checksum error", sblock_to_check);
1178 		btrfs_dev_stat_inc_and_print(dev,
1179 					     BTRFS_DEV_STAT_CORRUPTION_ERRS);
1180 	} else if (sblock_bad->header_error) {
1181 		spin_lock(&sctx->stat_lock);
1182 		sctx->stat.verify_errors++;
1183 		spin_unlock(&sctx->stat_lock);
1184 		if (__ratelimit(&rs))
1185 			scrub_print_warning("checksum/header error",
1186 					    sblock_to_check);
1187 		if (sblock_bad->generation_error)
1188 			btrfs_dev_stat_inc_and_print(dev,
1189 				BTRFS_DEV_STAT_GENERATION_ERRS);
1190 		else
1191 			btrfs_dev_stat_inc_and_print(dev,
1192 				BTRFS_DEV_STAT_CORRUPTION_ERRS);
1193 	}
1194 
1195 	if (sctx->readonly) {
1196 		ASSERT(!sctx->is_dev_replace);
1197 		goto out;
1198 	}
1199 
1200 	/*
1201 	 * now build and submit the bios for the other mirrors, check
1202 	 * checksums.
1203 	 * First try to pick the mirror which is completely without I/O
1204 	 * errors and also does not have a checksum error.
1205 	 * If one is found, and if a checksum is present, the full block
1206 	 * that is known to contain an error is rewritten. Afterwards
1207 	 * the block is known to be corrected.
1208 	 * If a mirror is found which is completely correct, and no
1209 	 * checksum is present, only those sectors are rewritten that had
1210 	 * an I/O error in the block to be repaired, since it cannot be
1211 	 * determined, which copy of the other sectors is better (and it
1212 	 * could happen otherwise that a correct sector would be
1213 	 * overwritten by a bad one).
1214 	 */
1215 	for (mirror_index = 0; ;mirror_index++) {
1216 		struct scrub_block *sblock_other;
1217 
1218 		if (mirror_index == failed_mirror_index)
1219 			continue;
1220 
1221 		/* raid56's mirror can be more than BTRFS_MAX_MIRRORS */
1222 		if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1223 			if (mirror_index >= BTRFS_MAX_MIRRORS)
1224 				break;
1225 			if (!sblocks_for_recheck[mirror_index]->sector_count)
1226 				break;
1227 
1228 			sblock_other = sblocks_for_recheck[mirror_index];
1229 		} else {
1230 			struct scrub_recover *r = sblock_bad->sectors[0]->recover;
1231 			int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs;
1232 
1233 			if (mirror_index >= max_allowed)
1234 				break;
1235 			if (!sblocks_for_recheck[1]->sector_count)
1236 				break;
1237 
1238 			ASSERT(failed_mirror_index == 0);
1239 			sblock_other = sblocks_for_recheck[1];
1240 			sblock_other->mirror_num = 1 + mirror_index;
1241 		}
1242 
1243 		/* build and submit the bios, check checksums */
1244 		scrub_recheck_block(fs_info, sblock_other, 0);
1245 
1246 		if (!sblock_other->header_error &&
1247 		    !sblock_other->checksum_error &&
1248 		    sblock_other->no_io_error_seen) {
1249 			if (sctx->is_dev_replace) {
1250 				scrub_write_block_to_dev_replace(sblock_other);
1251 				goto corrected_error;
1252 			} else {
1253 				ret = scrub_repair_block_from_good_copy(
1254 						sblock_bad, sblock_other);
1255 				if (!ret)
1256 					goto corrected_error;
1257 			}
1258 		}
1259 	}
1260 
1261 	if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace)
1262 		goto did_not_correct_error;
1263 
1264 	/*
1265 	 * In case of I/O errors in the area that is supposed to be
1266 	 * repaired, continue by picking good copies of those sectors.
1267 	 * Select the good sectors from mirrors to rewrite bad sectors from
1268 	 * the area to fix. Afterwards verify the checksum of the block
1269 	 * that is supposed to be repaired. This verification step is
1270 	 * only done for the purpose of statistic counting and for the
1271 	 * final scrub report, whether errors remain.
1272 	 * A perfect algorithm could make use of the checksum and try
1273 	 * all possible combinations of sectors from the different mirrors
1274 	 * until the checksum verification succeeds. For example, when
1275 	 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector
1276 	 * of mirror #2 is readable but the final checksum test fails,
1277 	 * then the 2nd sector of mirror #3 could be tried, whether now
1278 	 * the final checksum succeeds. But this would be a rare
1279 	 * exception and is therefore not implemented. At least it is
1280 	 * avoided that the good copy is overwritten.
1281 	 * A more useful improvement would be to pick the sectors
1282 	 * without I/O error based on sector sizes (512 bytes on legacy
1283 	 * disks) instead of on sectorsize. Then maybe 512 byte of one
1284 	 * mirror could be repaired by taking 512 byte of a different
1285 	 * mirror, even if other 512 byte sectors in the same sectorsize
1286 	 * area are unreadable.
1287 	 */
1288 	success = 1;
1289 	for (sector_num = 0; sector_num < sblock_bad->sector_count;
1290 	     sector_num++) {
1291 		struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1292 		struct scrub_block *sblock_other = NULL;
1293 
1294 		/* Skip no-io-error sectors in scrub */
1295 		if (!sector_bad->io_error && !sctx->is_dev_replace)
1296 			continue;
1297 
1298 		if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) {
1299 			/*
1300 			 * In case of dev replace, if raid56 rebuild process
1301 			 * didn't work out correct data, then copy the content
1302 			 * in sblock_bad to make sure target device is identical
1303 			 * to source device, instead of writing garbage data in
1304 			 * sblock_for_recheck array to target device.
1305 			 */
1306 			sblock_other = NULL;
1307 		} else if (sector_bad->io_error) {
1308 			/* Try to find no-io-error sector in mirrors */
1309 			for (mirror_index = 0;
1310 			     mirror_index < BTRFS_MAX_MIRRORS &&
1311 			     sblocks_for_recheck[mirror_index]->sector_count > 0;
1312 			     mirror_index++) {
1313 				if (!sblocks_for_recheck[mirror_index]->
1314 				    sectors[sector_num]->io_error) {
1315 					sblock_other = sblocks_for_recheck[mirror_index];
1316 					break;
1317 				}
1318 			}
1319 			if (!sblock_other)
1320 				success = 0;
1321 		}
1322 
1323 		if (sctx->is_dev_replace) {
1324 			/*
1325 			 * Did not find a mirror to fetch the sector from.
1326 			 * scrub_write_sector_to_dev_replace() handles this
1327 			 * case (sector->io_error), by filling the block with
1328 			 * zeros before submitting the write request
1329 			 */
1330 			if (!sblock_other)
1331 				sblock_other = sblock_bad;
1332 
1333 			if (scrub_write_sector_to_dev_replace(sblock_other,
1334 							      sector_num) != 0) {
1335 				atomic64_inc(
1336 					&fs_info->dev_replace.num_write_errors);
1337 				success = 0;
1338 			}
1339 		} else if (sblock_other) {
1340 			ret = scrub_repair_sector_from_good_copy(sblock_bad,
1341 								 sblock_other,
1342 								 sector_num, 0);
1343 			if (0 == ret)
1344 				sector_bad->io_error = 0;
1345 			else
1346 				success = 0;
1347 		}
1348 	}
1349 
1350 	if (success && !sctx->is_dev_replace) {
1351 		if (is_metadata || have_csum) {
1352 			/*
1353 			 * need to verify the checksum now that all
1354 			 * sectors on disk are repaired (the write
1355 			 * request for data to be repaired is on its way).
1356 			 * Just be lazy and use scrub_recheck_block()
1357 			 * which re-reads the data before the checksum
1358 			 * is verified, but most likely the data comes out
1359 			 * of the page cache.
1360 			 */
1361 			scrub_recheck_block(fs_info, sblock_bad, 1);
1362 			if (!sblock_bad->header_error &&
1363 			    !sblock_bad->checksum_error &&
1364 			    sblock_bad->no_io_error_seen)
1365 				goto corrected_error;
1366 			else
1367 				goto did_not_correct_error;
1368 		} else {
1369 corrected_error:
1370 			spin_lock(&sctx->stat_lock);
1371 			sctx->stat.corrected_errors++;
1372 			sblock_to_check->data_corrected = 1;
1373 			spin_unlock(&sctx->stat_lock);
1374 			btrfs_err_rl_in_rcu(fs_info,
1375 				"fixed up error at logical %llu on dev %s",
1376 				logical, rcu_str_deref(dev->name));
1377 		}
1378 	} else {
1379 did_not_correct_error:
1380 		spin_lock(&sctx->stat_lock);
1381 		sctx->stat.uncorrectable_errors++;
1382 		spin_unlock(&sctx->stat_lock);
1383 		btrfs_err_rl_in_rcu(fs_info,
1384 			"unable to fixup (regular) error at logical %llu on dev %s",
1385 			logical, rcu_str_deref(dev->name));
1386 	}
1387 
1388 out:
1389 	for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) {
1390 		struct scrub_block *sblock = sblocks_for_recheck[mirror_index];
1391 		struct scrub_recover *recover;
1392 		int sector_index;
1393 
1394 		/* Not allocated, continue checking the next mirror */
1395 		if (!sblock)
1396 			continue;
1397 
1398 		for (sector_index = 0; sector_index < sblock->sector_count;
1399 		     sector_index++) {
1400 			/*
1401 			 * Here we just cleanup the recover, each sector will be
1402 			 * properly cleaned up by later scrub_block_put()
1403 			 */
1404 			recover = sblock->sectors[sector_index]->recover;
1405 			if (recover) {
1406 				scrub_put_recover(fs_info, recover);
1407 				sblock->sectors[sector_index]->recover = NULL;
1408 			}
1409 		}
1410 		scrub_block_put(sblock);
1411 	}
1412 
1413 	ret = unlock_full_stripe(fs_info, logical, full_stripe_locked);
1414 	memalloc_nofs_restore(nofs_flag);
1415 	if (ret < 0)
1416 		return ret;
1417 	return 0;
1418 }
1419 
1420 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc)
1421 {
1422 	if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5)
1423 		return 2;
1424 	else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6)
1425 		return 3;
1426 	else
1427 		return (int)bioc->num_stripes;
1428 }
1429 
1430 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type,
1431 						 u64 *raid_map,
1432 						 int nstripes, int mirror,
1433 						 int *stripe_index,
1434 						 u64 *stripe_offset)
1435 {
1436 	int i;
1437 
1438 	if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) {
1439 		/* RAID5/6 */
1440 		for (i = 0; i < nstripes; i++) {
1441 			if (raid_map[i] == RAID6_Q_STRIPE ||
1442 			    raid_map[i] == RAID5_P_STRIPE)
1443 				continue;
1444 
1445 			if (logical >= raid_map[i] &&
1446 			    logical < raid_map[i] + BTRFS_STRIPE_LEN)
1447 				break;
1448 		}
1449 
1450 		*stripe_index = i;
1451 		*stripe_offset = logical - raid_map[i];
1452 	} else {
1453 		/* The other RAID type */
1454 		*stripe_index = mirror;
1455 		*stripe_offset = 0;
1456 	}
1457 }
1458 
1459 static int scrub_setup_recheck_block(struct scrub_block *original_sblock,
1460 				     struct scrub_block *sblocks_for_recheck[])
1461 {
1462 	struct scrub_ctx *sctx = original_sblock->sctx;
1463 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1464 	u64 logical = original_sblock->logical;
1465 	u64 length = original_sblock->sector_count << fs_info->sectorsize_bits;
1466 	u64 generation = original_sblock->sectors[0]->generation;
1467 	u64 flags = original_sblock->sectors[0]->flags;
1468 	u64 have_csum = original_sblock->sectors[0]->have_csum;
1469 	struct scrub_recover *recover;
1470 	struct btrfs_io_context *bioc;
1471 	u64 sublen;
1472 	u64 mapped_length;
1473 	u64 stripe_offset;
1474 	int stripe_index;
1475 	int sector_index = 0;
1476 	int mirror_index;
1477 	int nmirrors;
1478 	int ret;
1479 
1480 	while (length > 0) {
1481 		sublen = min_t(u64, length, fs_info->sectorsize);
1482 		mapped_length = sublen;
1483 		bioc = NULL;
1484 
1485 		/*
1486 		 * With a length of sectorsize, each returned stripe represents
1487 		 * one mirror
1488 		 */
1489 		btrfs_bio_counter_inc_blocked(fs_info);
1490 		ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS,
1491 				       logical, &mapped_length, &bioc);
1492 		if (ret || !bioc || mapped_length < sublen) {
1493 			btrfs_put_bioc(bioc);
1494 			btrfs_bio_counter_dec(fs_info);
1495 			return -EIO;
1496 		}
1497 
1498 		recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL);
1499 		if (!recover) {
1500 			btrfs_put_bioc(bioc);
1501 			btrfs_bio_counter_dec(fs_info);
1502 			return -ENOMEM;
1503 		}
1504 
1505 		refcount_set(&recover->refs, 1);
1506 		recover->bioc = bioc;
1507 		recover->map_length = mapped_length;
1508 
1509 		ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK);
1510 
1511 		nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS);
1512 
1513 		for (mirror_index = 0; mirror_index < nmirrors;
1514 		     mirror_index++) {
1515 			struct scrub_block *sblock;
1516 			struct scrub_sector *sector;
1517 
1518 			sblock = sblocks_for_recheck[mirror_index];
1519 			sblock->sctx = sctx;
1520 
1521 			sector = alloc_scrub_sector(sblock, logical);
1522 			if (!sector) {
1523 				spin_lock(&sctx->stat_lock);
1524 				sctx->stat.malloc_errors++;
1525 				spin_unlock(&sctx->stat_lock);
1526 				scrub_put_recover(fs_info, recover);
1527 				return -ENOMEM;
1528 			}
1529 			sector->flags = flags;
1530 			sector->generation = generation;
1531 			sector->have_csum = have_csum;
1532 			if (have_csum)
1533 				memcpy(sector->csum,
1534 				       original_sblock->sectors[0]->csum,
1535 				       sctx->fs_info->csum_size);
1536 
1537 			scrub_stripe_index_and_offset(logical,
1538 						      bioc->map_type,
1539 						      bioc->raid_map,
1540 						      bioc->num_stripes -
1541 						      bioc->num_tgtdevs,
1542 						      mirror_index,
1543 						      &stripe_index,
1544 						      &stripe_offset);
1545 			/*
1546 			 * We're at the first sector, also populate @sblock
1547 			 * physical and dev.
1548 			 */
1549 			if (sector_index == 0) {
1550 				sblock->physical =
1551 					bioc->stripes[stripe_index].physical +
1552 					stripe_offset;
1553 				sblock->dev = bioc->stripes[stripe_index].dev;
1554 				sblock->physical_for_dev_replace =
1555 					original_sblock->physical_for_dev_replace;
1556 			}
1557 
1558 			BUG_ON(sector_index >= original_sblock->sector_count);
1559 			scrub_get_recover(recover);
1560 			sector->recover = recover;
1561 		}
1562 		scrub_put_recover(fs_info, recover);
1563 		length -= sublen;
1564 		logical += sublen;
1565 		sector_index++;
1566 	}
1567 
1568 	return 0;
1569 }
1570 
1571 static void scrub_bio_wait_endio(struct bio *bio)
1572 {
1573 	complete(bio->bi_private);
1574 }
1575 
1576 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info,
1577 					struct bio *bio,
1578 					struct scrub_sector *sector)
1579 {
1580 	DECLARE_COMPLETION_ONSTACK(done);
1581 
1582 	bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >>
1583 				 SECTOR_SHIFT;
1584 	bio->bi_private = &done;
1585 	bio->bi_end_io = scrub_bio_wait_endio;
1586 	raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num);
1587 
1588 	wait_for_completion_io(&done);
1589 	return blk_status_to_errno(bio->bi_status);
1590 }
1591 
1592 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info,
1593 					  struct scrub_block *sblock)
1594 {
1595 	struct scrub_sector *first_sector = sblock->sectors[0];
1596 	struct bio *bio;
1597 	int i;
1598 
1599 	/* All sectors in sblock belong to the same stripe on the same device. */
1600 	ASSERT(sblock->dev);
1601 	if (!sblock->dev->bdev)
1602 		goto out;
1603 
1604 	bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
1605 
1606 	for (i = 0; i < sblock->sector_count; i++) {
1607 		struct scrub_sector *sector = sblock->sectors[i];
1608 
1609 		bio_add_scrub_sector(bio, sector, fs_info->sectorsize);
1610 	}
1611 
1612 	if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) {
1613 		bio_put(bio);
1614 		goto out;
1615 	}
1616 
1617 	bio_put(bio);
1618 
1619 	scrub_recheck_block_checksum(sblock);
1620 
1621 	return;
1622 out:
1623 	for (i = 0; i < sblock->sector_count; i++)
1624 		sblock->sectors[i]->io_error = 1;
1625 
1626 	sblock->no_io_error_seen = 0;
1627 }
1628 
1629 /*
1630  * This function will check the on disk data for checksum errors, header errors
1631  * and read I/O errors. If any I/O errors happen, the exact sectors which are
1632  * errored are marked as being bad. The goal is to enable scrub to take those
1633  * sectors that are not errored from all the mirrors so that the sectors that
1634  * are errored in the just handled mirror can be repaired.
1635  */
1636 static void scrub_recheck_block(struct btrfs_fs_info *fs_info,
1637 				struct scrub_block *sblock,
1638 				int retry_failed_mirror)
1639 {
1640 	int i;
1641 
1642 	sblock->no_io_error_seen = 1;
1643 
1644 	/* short cut for raid56 */
1645 	if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0]))
1646 		return scrub_recheck_block_on_raid56(fs_info, sblock);
1647 
1648 	for (i = 0; i < sblock->sector_count; i++) {
1649 		struct scrub_sector *sector = sblock->sectors[i];
1650 		struct bio bio;
1651 		struct bio_vec bvec;
1652 
1653 		if (sblock->dev->bdev == NULL) {
1654 			sector->io_error = 1;
1655 			sblock->no_io_error_seen = 0;
1656 			continue;
1657 		}
1658 
1659 		bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ);
1660 		bio_add_scrub_sector(&bio, sector, fs_info->sectorsize);
1661 		bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >>
1662 					SECTOR_SHIFT;
1663 
1664 		btrfsic_check_bio(&bio);
1665 		if (submit_bio_wait(&bio)) {
1666 			sector->io_error = 1;
1667 			sblock->no_io_error_seen = 0;
1668 		}
1669 
1670 		bio_uninit(&bio);
1671 	}
1672 
1673 	if (sblock->no_io_error_seen)
1674 		scrub_recheck_block_checksum(sblock);
1675 }
1676 
1677 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector)
1678 {
1679 	struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices;
1680 	int ret;
1681 
1682 	ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE);
1683 	return !ret;
1684 }
1685 
1686 static void scrub_recheck_block_checksum(struct scrub_block *sblock)
1687 {
1688 	sblock->header_error = 0;
1689 	sblock->checksum_error = 0;
1690 	sblock->generation_error = 0;
1691 
1692 	if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA)
1693 		scrub_checksum_data(sblock);
1694 	else
1695 		scrub_checksum_tree_block(sblock);
1696 }
1697 
1698 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad,
1699 					     struct scrub_block *sblock_good)
1700 {
1701 	int i;
1702 	int ret = 0;
1703 
1704 	for (i = 0; i < sblock_bad->sector_count; i++) {
1705 		int ret_sub;
1706 
1707 		ret_sub = scrub_repair_sector_from_good_copy(sblock_bad,
1708 							     sblock_good, i, 1);
1709 		if (ret_sub)
1710 			ret = ret_sub;
1711 	}
1712 
1713 	return ret;
1714 }
1715 
1716 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad,
1717 					      struct scrub_block *sblock_good,
1718 					      int sector_num, int force_write)
1719 {
1720 	struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num];
1721 	struct scrub_sector *sector_good = sblock_good->sectors[sector_num];
1722 	struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info;
1723 	const u32 sectorsize = fs_info->sectorsize;
1724 
1725 	if (force_write || sblock_bad->header_error ||
1726 	    sblock_bad->checksum_error || sector_bad->io_error) {
1727 		struct bio bio;
1728 		struct bio_vec bvec;
1729 		int ret;
1730 
1731 		if (!sblock_bad->dev->bdev) {
1732 			btrfs_warn_rl(fs_info,
1733 				"scrub_repair_page_from_good_copy(bdev == NULL) is unexpected");
1734 			return -EIO;
1735 		}
1736 
1737 		bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE);
1738 		bio.bi_iter.bi_sector = (sblock_bad->physical +
1739 					 sector_bad->offset) >> SECTOR_SHIFT;
1740 		ret = bio_add_scrub_sector(&bio, sector_good, sectorsize);
1741 
1742 		btrfsic_check_bio(&bio);
1743 		ret = submit_bio_wait(&bio);
1744 		bio_uninit(&bio);
1745 
1746 		if (ret) {
1747 			btrfs_dev_stat_inc_and_print(sblock_bad->dev,
1748 				BTRFS_DEV_STAT_WRITE_ERRS);
1749 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1750 			return -EIO;
1751 		}
1752 	}
1753 
1754 	return 0;
1755 }
1756 
1757 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock)
1758 {
1759 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
1760 	int i;
1761 
1762 	/*
1763 	 * This block is used for the check of the parity on the source device,
1764 	 * so the data needn't be written into the destination device.
1765 	 */
1766 	if (sblock->sparity)
1767 		return;
1768 
1769 	for (i = 0; i < sblock->sector_count; i++) {
1770 		int ret;
1771 
1772 		ret = scrub_write_sector_to_dev_replace(sblock, i);
1773 		if (ret)
1774 			atomic64_inc(&fs_info->dev_replace.num_write_errors);
1775 	}
1776 }
1777 
1778 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num)
1779 {
1780 	const u32 sectorsize = sblock->sctx->fs_info->sectorsize;
1781 	struct scrub_sector *sector = sblock->sectors[sector_num];
1782 
1783 	if (sector->io_error)
1784 		memset(scrub_sector_get_kaddr(sector), 0, sectorsize);
1785 
1786 	return scrub_add_sector_to_wr_bio(sblock->sctx, sector);
1787 }
1788 
1789 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical)
1790 {
1791 	int ret = 0;
1792 	u64 length;
1793 
1794 	if (!btrfs_is_zoned(sctx->fs_info))
1795 		return 0;
1796 
1797 	if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical))
1798 		return 0;
1799 
1800 	if (sctx->write_pointer < physical) {
1801 		length = physical - sctx->write_pointer;
1802 
1803 		ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev,
1804 						sctx->write_pointer, length);
1805 		if (!ret)
1806 			sctx->write_pointer = physical;
1807 	}
1808 	return ret;
1809 }
1810 
1811 static void scrub_block_get(struct scrub_block *sblock)
1812 {
1813 	refcount_inc(&sblock->refs);
1814 }
1815 
1816 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx,
1817 				      struct scrub_sector *sector)
1818 {
1819 	struct scrub_block *sblock = sector->sblock;
1820 	struct scrub_bio *sbio;
1821 	int ret;
1822 	const u32 sectorsize = sctx->fs_info->sectorsize;
1823 
1824 	mutex_lock(&sctx->wr_lock);
1825 again:
1826 	if (!sctx->wr_curr_bio) {
1827 		sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio),
1828 					      GFP_KERNEL);
1829 		if (!sctx->wr_curr_bio) {
1830 			mutex_unlock(&sctx->wr_lock);
1831 			return -ENOMEM;
1832 		}
1833 		sctx->wr_curr_bio->sctx = sctx;
1834 		sctx->wr_curr_bio->sector_count = 0;
1835 	}
1836 	sbio = sctx->wr_curr_bio;
1837 	if (sbio->sector_count == 0) {
1838 		ret = fill_writer_pointer_gap(sctx, sector->offset +
1839 					      sblock->physical_for_dev_replace);
1840 		if (ret) {
1841 			mutex_unlock(&sctx->wr_lock);
1842 			return ret;
1843 		}
1844 
1845 		sbio->physical = sblock->physical_for_dev_replace + sector->offset;
1846 		sbio->logical = sblock->logical + sector->offset;
1847 		sbio->dev = sctx->wr_tgtdev;
1848 		if (!sbio->bio) {
1849 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
1850 					      REQ_OP_WRITE, GFP_NOFS);
1851 		}
1852 		sbio->bio->bi_private = sbio;
1853 		sbio->bio->bi_end_io = scrub_wr_bio_end_io;
1854 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
1855 		sbio->status = 0;
1856 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
1857 		   sblock->physical_for_dev_replace + sector->offset ||
1858 		   sbio->logical + sbio->sector_count * sectorsize !=
1859 		   sblock->logical + sector->offset) {
1860 		scrub_wr_submit(sctx);
1861 		goto again;
1862 	}
1863 
1864 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
1865 	if (ret != sectorsize) {
1866 		if (sbio->sector_count < 1) {
1867 			bio_put(sbio->bio);
1868 			sbio->bio = NULL;
1869 			mutex_unlock(&sctx->wr_lock);
1870 			return -EIO;
1871 		}
1872 		scrub_wr_submit(sctx);
1873 		goto again;
1874 	}
1875 
1876 	sbio->sectors[sbio->sector_count] = sector;
1877 	scrub_sector_get(sector);
1878 	/*
1879 	 * Since ssector no longer holds a page, but uses sblock::pages, we
1880 	 * have to ensure the sblock had not been freed before our write bio
1881 	 * finished.
1882 	 */
1883 	scrub_block_get(sector->sblock);
1884 
1885 	sbio->sector_count++;
1886 	if (sbio->sector_count == sctx->sectors_per_bio)
1887 		scrub_wr_submit(sctx);
1888 	mutex_unlock(&sctx->wr_lock);
1889 
1890 	return 0;
1891 }
1892 
1893 static void scrub_wr_submit(struct scrub_ctx *sctx)
1894 {
1895 	struct scrub_bio *sbio;
1896 
1897 	if (!sctx->wr_curr_bio)
1898 		return;
1899 
1900 	sbio = sctx->wr_curr_bio;
1901 	sctx->wr_curr_bio = NULL;
1902 	scrub_pending_bio_inc(sctx);
1903 	/* process all writes in a single worker thread. Then the block layer
1904 	 * orders the requests before sending them to the driver which
1905 	 * doubled the write performance on spinning disks when measured
1906 	 * with Linux 3.5 */
1907 	btrfsic_check_bio(sbio->bio);
1908 	submit_bio(sbio->bio);
1909 
1910 	if (btrfs_is_zoned(sctx->fs_info))
1911 		sctx->write_pointer = sbio->physical + sbio->sector_count *
1912 			sctx->fs_info->sectorsize;
1913 }
1914 
1915 static void scrub_wr_bio_end_io(struct bio *bio)
1916 {
1917 	struct scrub_bio *sbio = bio->bi_private;
1918 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
1919 
1920 	sbio->status = bio->bi_status;
1921 	sbio->bio = bio;
1922 
1923 	INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker);
1924 	queue_work(fs_info->scrub_wr_completion_workers, &sbio->work);
1925 }
1926 
1927 static void scrub_wr_bio_end_io_worker(struct work_struct *work)
1928 {
1929 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
1930 	struct scrub_ctx *sctx = sbio->sctx;
1931 	int i;
1932 
1933 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
1934 	if (sbio->status) {
1935 		struct btrfs_dev_replace *dev_replace =
1936 			&sbio->sctx->fs_info->dev_replace;
1937 
1938 		for (i = 0; i < sbio->sector_count; i++) {
1939 			struct scrub_sector *sector = sbio->sectors[i];
1940 
1941 			sector->io_error = 1;
1942 			atomic64_inc(&dev_replace->num_write_errors);
1943 		}
1944 	}
1945 
1946 	/*
1947 	 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in
1948 	 * endio we should put the sblock.
1949 	 */
1950 	for (i = 0; i < sbio->sector_count; i++) {
1951 		scrub_block_put(sbio->sectors[i]->sblock);
1952 		scrub_sector_put(sbio->sectors[i]);
1953 	}
1954 
1955 	bio_put(sbio->bio);
1956 	kfree(sbio);
1957 	scrub_pending_bio_dec(sctx);
1958 }
1959 
1960 static int scrub_checksum(struct scrub_block *sblock)
1961 {
1962 	u64 flags;
1963 	int ret;
1964 
1965 	/*
1966 	 * No need to initialize these stats currently,
1967 	 * because this function only use return value
1968 	 * instead of these stats value.
1969 	 *
1970 	 * Todo:
1971 	 * always use stats
1972 	 */
1973 	sblock->header_error = 0;
1974 	sblock->generation_error = 0;
1975 	sblock->checksum_error = 0;
1976 
1977 	WARN_ON(sblock->sector_count < 1);
1978 	flags = sblock->sectors[0]->flags;
1979 	ret = 0;
1980 	if (flags & BTRFS_EXTENT_FLAG_DATA)
1981 		ret = scrub_checksum_data(sblock);
1982 	else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)
1983 		ret = scrub_checksum_tree_block(sblock);
1984 	else if (flags & BTRFS_EXTENT_FLAG_SUPER)
1985 		ret = scrub_checksum_super(sblock);
1986 	else
1987 		WARN_ON(1);
1988 	if (ret)
1989 		scrub_handle_errored_block(sblock);
1990 
1991 	return ret;
1992 }
1993 
1994 static int scrub_checksum_data(struct scrub_block *sblock)
1995 {
1996 	struct scrub_ctx *sctx = sblock->sctx;
1997 	struct btrfs_fs_info *fs_info = sctx->fs_info;
1998 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
1999 	u8 csum[BTRFS_CSUM_SIZE];
2000 	struct scrub_sector *sector;
2001 	char *kaddr;
2002 
2003 	BUG_ON(sblock->sector_count < 1);
2004 	sector = sblock->sectors[0];
2005 	if (!sector->have_csum)
2006 		return 0;
2007 
2008 	kaddr = scrub_sector_get_kaddr(sector);
2009 
2010 	shash->tfm = fs_info->csum_shash;
2011 	crypto_shash_init(shash);
2012 
2013 	crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum);
2014 
2015 	if (memcmp(csum, sector->csum, fs_info->csum_size))
2016 		sblock->checksum_error = 1;
2017 	return sblock->checksum_error;
2018 }
2019 
2020 static int scrub_checksum_tree_block(struct scrub_block *sblock)
2021 {
2022 	struct scrub_ctx *sctx = sblock->sctx;
2023 	struct btrfs_header *h;
2024 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2025 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2026 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2027 	u8 on_disk_csum[BTRFS_CSUM_SIZE];
2028 	/*
2029 	 * This is done in sectorsize steps even for metadata as there's a
2030 	 * constraint for nodesize to be aligned to sectorsize. This will need
2031 	 * to change so we don't misuse data and metadata units like that.
2032 	 */
2033 	const u32 sectorsize = sctx->fs_info->sectorsize;
2034 	const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits;
2035 	int i;
2036 	struct scrub_sector *sector;
2037 	char *kaddr;
2038 
2039 	BUG_ON(sblock->sector_count < 1);
2040 
2041 	/* Each member in sectors is just one sector */
2042 	ASSERT(sblock->sector_count == num_sectors);
2043 
2044 	sector = sblock->sectors[0];
2045 	kaddr = scrub_sector_get_kaddr(sector);
2046 	h = (struct btrfs_header *)kaddr;
2047 	memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size);
2048 
2049 	/*
2050 	 * we don't use the getter functions here, as we
2051 	 * a) don't have an extent buffer and
2052 	 * b) the page is already kmapped
2053 	 */
2054 	if (sblock->logical != btrfs_stack_header_bytenr(h))
2055 		sblock->header_error = 1;
2056 
2057 	if (sector->generation != btrfs_stack_header_generation(h)) {
2058 		sblock->header_error = 1;
2059 		sblock->generation_error = 1;
2060 	}
2061 
2062 	if (!scrub_check_fsid(h->fsid, sector))
2063 		sblock->header_error = 1;
2064 
2065 	if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid,
2066 		   BTRFS_UUID_SIZE))
2067 		sblock->header_error = 1;
2068 
2069 	shash->tfm = fs_info->csum_shash;
2070 	crypto_shash_init(shash);
2071 	crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE,
2072 			    sectorsize - BTRFS_CSUM_SIZE);
2073 
2074 	for (i = 1; i < num_sectors; i++) {
2075 		kaddr = scrub_sector_get_kaddr(sblock->sectors[i]);
2076 		crypto_shash_update(shash, kaddr, sectorsize);
2077 	}
2078 
2079 	crypto_shash_final(shash, calculated_csum);
2080 	if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size))
2081 		sblock->checksum_error = 1;
2082 
2083 	return sblock->header_error || sblock->checksum_error;
2084 }
2085 
2086 static int scrub_checksum_super(struct scrub_block *sblock)
2087 {
2088 	struct btrfs_super_block *s;
2089 	struct scrub_ctx *sctx = sblock->sctx;
2090 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2091 	SHASH_DESC_ON_STACK(shash, fs_info->csum_shash);
2092 	u8 calculated_csum[BTRFS_CSUM_SIZE];
2093 	struct scrub_sector *sector;
2094 	char *kaddr;
2095 	int fail_gen = 0;
2096 	int fail_cor = 0;
2097 
2098 	BUG_ON(sblock->sector_count < 1);
2099 	sector = sblock->sectors[0];
2100 	kaddr = scrub_sector_get_kaddr(sector);
2101 	s = (struct btrfs_super_block *)kaddr;
2102 
2103 	if (sblock->logical != btrfs_super_bytenr(s))
2104 		++fail_cor;
2105 
2106 	if (sector->generation != btrfs_super_generation(s))
2107 		++fail_gen;
2108 
2109 	if (!scrub_check_fsid(s->fsid, sector))
2110 		++fail_cor;
2111 
2112 	shash->tfm = fs_info->csum_shash;
2113 	crypto_shash_init(shash);
2114 	crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE,
2115 			BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum);
2116 
2117 	if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size))
2118 		++fail_cor;
2119 
2120 	return fail_cor + fail_gen;
2121 }
2122 
2123 static void scrub_block_put(struct scrub_block *sblock)
2124 {
2125 	if (refcount_dec_and_test(&sblock->refs)) {
2126 		int i;
2127 
2128 		if (sblock->sparity)
2129 			scrub_parity_put(sblock->sparity);
2130 
2131 		for (i = 0; i < sblock->sector_count; i++)
2132 			scrub_sector_put(sblock->sectors[i]);
2133 		for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) {
2134 			if (sblock->pages[i]) {
2135 				detach_scrub_page_private(sblock->pages[i]);
2136 				__free_page(sblock->pages[i]);
2137 			}
2138 		}
2139 		kfree(sblock);
2140 	}
2141 }
2142 
2143 static void scrub_sector_get(struct scrub_sector *sector)
2144 {
2145 	atomic_inc(&sector->refs);
2146 }
2147 
2148 static void scrub_sector_put(struct scrub_sector *sector)
2149 {
2150 	if (atomic_dec_and_test(&sector->refs))
2151 		kfree(sector);
2152 }
2153 
2154 /*
2155  * Throttling of IO submission, bandwidth-limit based, the timeslice is 1
2156  * second.  Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max.
2157  */
2158 static void scrub_throttle(struct scrub_ctx *sctx)
2159 {
2160 	const int time_slice = 1000;
2161 	struct scrub_bio *sbio;
2162 	struct btrfs_device *device;
2163 	s64 delta;
2164 	ktime_t now;
2165 	u32 div;
2166 	u64 bwlimit;
2167 
2168 	sbio = sctx->bios[sctx->curr];
2169 	device = sbio->dev;
2170 	bwlimit = READ_ONCE(device->scrub_speed_max);
2171 	if (bwlimit == 0)
2172 		return;
2173 
2174 	/*
2175 	 * Slice is divided into intervals when the IO is submitted, adjust by
2176 	 * bwlimit and maximum of 64 intervals.
2177 	 */
2178 	div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024)));
2179 	div = min_t(u32, 64, div);
2180 
2181 	/* Start new epoch, set deadline */
2182 	now = ktime_get();
2183 	if (sctx->throttle_deadline == 0) {
2184 		sctx->throttle_deadline = ktime_add_ms(now, time_slice / div);
2185 		sctx->throttle_sent = 0;
2186 	}
2187 
2188 	/* Still in the time to send? */
2189 	if (ktime_before(now, sctx->throttle_deadline)) {
2190 		/* If current bio is within the limit, send it */
2191 		sctx->throttle_sent += sbio->bio->bi_iter.bi_size;
2192 		if (sctx->throttle_sent <= div_u64(bwlimit, div))
2193 			return;
2194 
2195 		/* We're over the limit, sleep until the rest of the slice */
2196 		delta = ktime_ms_delta(sctx->throttle_deadline, now);
2197 	} else {
2198 		/* New request after deadline, start new epoch */
2199 		delta = 0;
2200 	}
2201 
2202 	if (delta) {
2203 		long timeout;
2204 
2205 		timeout = div_u64(delta * HZ, 1000);
2206 		schedule_timeout_interruptible(timeout);
2207 	}
2208 
2209 	/* Next call will start the deadline period */
2210 	sctx->throttle_deadline = 0;
2211 }
2212 
2213 static void scrub_submit(struct scrub_ctx *sctx)
2214 {
2215 	struct scrub_bio *sbio;
2216 
2217 	if (sctx->curr == -1)
2218 		return;
2219 
2220 	scrub_throttle(sctx);
2221 
2222 	sbio = sctx->bios[sctx->curr];
2223 	sctx->curr = -1;
2224 	scrub_pending_bio_inc(sctx);
2225 	btrfsic_check_bio(sbio->bio);
2226 	submit_bio(sbio->bio);
2227 }
2228 
2229 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx,
2230 				      struct scrub_sector *sector)
2231 {
2232 	struct scrub_block *sblock = sector->sblock;
2233 	struct scrub_bio *sbio;
2234 	const u32 sectorsize = sctx->fs_info->sectorsize;
2235 	int ret;
2236 
2237 again:
2238 	/*
2239 	 * grab a fresh bio or wait for one to become available
2240 	 */
2241 	while (sctx->curr == -1) {
2242 		spin_lock(&sctx->list_lock);
2243 		sctx->curr = sctx->first_free;
2244 		if (sctx->curr != -1) {
2245 			sctx->first_free = sctx->bios[sctx->curr]->next_free;
2246 			sctx->bios[sctx->curr]->next_free = -1;
2247 			sctx->bios[sctx->curr]->sector_count = 0;
2248 			spin_unlock(&sctx->list_lock);
2249 		} else {
2250 			spin_unlock(&sctx->list_lock);
2251 			wait_event(sctx->list_wait, sctx->first_free != -1);
2252 		}
2253 	}
2254 	sbio = sctx->bios[sctx->curr];
2255 	if (sbio->sector_count == 0) {
2256 		sbio->physical = sblock->physical + sector->offset;
2257 		sbio->logical = sblock->logical + sector->offset;
2258 		sbio->dev = sblock->dev;
2259 		if (!sbio->bio) {
2260 			sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio,
2261 					      REQ_OP_READ, GFP_NOFS);
2262 		}
2263 		sbio->bio->bi_private = sbio;
2264 		sbio->bio->bi_end_io = scrub_bio_end_io;
2265 		sbio->bio->bi_iter.bi_sector = sbio->physical >> 9;
2266 		sbio->status = 0;
2267 	} else if (sbio->physical + sbio->sector_count * sectorsize !=
2268 		   sblock->physical + sector->offset ||
2269 		   sbio->logical + sbio->sector_count * sectorsize !=
2270 		   sblock->logical + sector->offset ||
2271 		   sbio->dev != sblock->dev) {
2272 		scrub_submit(sctx);
2273 		goto again;
2274 	}
2275 
2276 	sbio->sectors[sbio->sector_count] = sector;
2277 	ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize);
2278 	if (ret != sectorsize) {
2279 		if (sbio->sector_count < 1) {
2280 			bio_put(sbio->bio);
2281 			sbio->bio = NULL;
2282 			return -EIO;
2283 		}
2284 		scrub_submit(sctx);
2285 		goto again;
2286 	}
2287 
2288 	scrub_block_get(sblock); /* one for the page added to the bio */
2289 	atomic_inc(&sblock->outstanding_sectors);
2290 	sbio->sector_count++;
2291 	if (sbio->sector_count == sctx->sectors_per_bio)
2292 		scrub_submit(sctx);
2293 
2294 	return 0;
2295 }
2296 
2297 static void scrub_missing_raid56_end_io(struct bio *bio)
2298 {
2299 	struct scrub_block *sblock = bio->bi_private;
2300 	struct btrfs_fs_info *fs_info = sblock->sctx->fs_info;
2301 
2302 	btrfs_bio_counter_dec(fs_info);
2303 	if (bio->bi_status)
2304 		sblock->no_io_error_seen = 0;
2305 
2306 	bio_put(bio);
2307 
2308 	queue_work(fs_info->scrub_workers, &sblock->work);
2309 }
2310 
2311 static void scrub_missing_raid56_worker(struct work_struct *work)
2312 {
2313 	struct scrub_block *sblock = container_of(work, struct scrub_block, work);
2314 	struct scrub_ctx *sctx = sblock->sctx;
2315 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2316 	u64 logical;
2317 	struct btrfs_device *dev;
2318 
2319 	logical = sblock->logical;
2320 	dev = sblock->dev;
2321 
2322 	if (sblock->no_io_error_seen)
2323 		scrub_recheck_block_checksum(sblock);
2324 
2325 	if (!sblock->no_io_error_seen) {
2326 		spin_lock(&sctx->stat_lock);
2327 		sctx->stat.read_errors++;
2328 		spin_unlock(&sctx->stat_lock);
2329 		btrfs_err_rl_in_rcu(fs_info,
2330 			"IO error rebuilding logical %llu for dev %s",
2331 			logical, rcu_str_deref(dev->name));
2332 	} else if (sblock->header_error || sblock->checksum_error) {
2333 		spin_lock(&sctx->stat_lock);
2334 		sctx->stat.uncorrectable_errors++;
2335 		spin_unlock(&sctx->stat_lock);
2336 		btrfs_err_rl_in_rcu(fs_info,
2337 			"failed to rebuild valid logical %llu for dev %s",
2338 			logical, rcu_str_deref(dev->name));
2339 	} else {
2340 		scrub_write_block_to_dev_replace(sblock);
2341 	}
2342 
2343 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2344 		mutex_lock(&sctx->wr_lock);
2345 		scrub_wr_submit(sctx);
2346 		mutex_unlock(&sctx->wr_lock);
2347 	}
2348 
2349 	scrub_block_put(sblock);
2350 	scrub_pending_bio_dec(sctx);
2351 }
2352 
2353 static void scrub_missing_raid56_pages(struct scrub_block *sblock)
2354 {
2355 	struct scrub_ctx *sctx = sblock->sctx;
2356 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2357 	u64 length = sblock->sector_count << fs_info->sectorsize_bits;
2358 	u64 logical = sblock->logical;
2359 	struct btrfs_io_context *bioc = NULL;
2360 	struct bio *bio;
2361 	struct btrfs_raid_bio *rbio;
2362 	int ret;
2363 	int i;
2364 
2365 	btrfs_bio_counter_inc_blocked(fs_info);
2366 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical,
2367 			       &length, &bioc);
2368 	if (ret || !bioc || !bioc->raid_map)
2369 		goto bioc_out;
2370 
2371 	if (WARN_ON(!sctx->is_dev_replace ||
2372 		    !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) {
2373 		/*
2374 		 * We shouldn't be scrubbing a missing device. Even for dev
2375 		 * replace, we should only get here for RAID 5/6. We either
2376 		 * managed to mount something with no mirrors remaining or
2377 		 * there's a bug in scrub_find_good_copy()/btrfs_map_block().
2378 		 */
2379 		goto bioc_out;
2380 	}
2381 
2382 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2383 	bio->bi_iter.bi_sector = logical >> 9;
2384 	bio->bi_private = sblock;
2385 	bio->bi_end_io = scrub_missing_raid56_end_io;
2386 
2387 	rbio = raid56_alloc_missing_rbio(bio, bioc);
2388 	if (!rbio)
2389 		goto rbio_out;
2390 
2391 	for (i = 0; i < sblock->sector_count; i++) {
2392 		struct scrub_sector *sector = sblock->sectors[i];
2393 
2394 		raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector),
2395 				       scrub_sector_get_page_offset(sector),
2396 				       sector->offset + sector->sblock->logical);
2397 	}
2398 
2399 	INIT_WORK(&sblock->work, scrub_missing_raid56_worker);
2400 	scrub_block_get(sblock);
2401 	scrub_pending_bio_inc(sctx);
2402 	raid56_submit_missing_rbio(rbio);
2403 	btrfs_put_bioc(bioc);
2404 	return;
2405 
2406 rbio_out:
2407 	bio_put(bio);
2408 bioc_out:
2409 	btrfs_bio_counter_dec(fs_info);
2410 	btrfs_put_bioc(bioc);
2411 	spin_lock(&sctx->stat_lock);
2412 	sctx->stat.malloc_errors++;
2413 	spin_unlock(&sctx->stat_lock);
2414 }
2415 
2416 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len,
2417 		       u64 physical, struct btrfs_device *dev, u64 flags,
2418 		       u64 gen, int mirror_num, u8 *csum,
2419 		       u64 physical_for_dev_replace)
2420 {
2421 	struct scrub_block *sblock;
2422 	const u32 sectorsize = sctx->fs_info->sectorsize;
2423 	int index;
2424 
2425 	sblock = alloc_scrub_block(sctx, dev, logical, physical,
2426 				   physical_for_dev_replace, mirror_num);
2427 	if (!sblock) {
2428 		spin_lock(&sctx->stat_lock);
2429 		sctx->stat.malloc_errors++;
2430 		spin_unlock(&sctx->stat_lock);
2431 		return -ENOMEM;
2432 	}
2433 
2434 	for (index = 0; len > 0; index++) {
2435 		struct scrub_sector *sector;
2436 		/*
2437 		 * Here we will allocate one page for one sector to scrub.
2438 		 * This is fine if PAGE_SIZE == sectorsize, but will cost
2439 		 * more memory for PAGE_SIZE > sectorsize case.
2440 		 */
2441 		u32 l = min(sectorsize, len);
2442 
2443 		sector = alloc_scrub_sector(sblock, logical);
2444 		if (!sector) {
2445 			spin_lock(&sctx->stat_lock);
2446 			sctx->stat.malloc_errors++;
2447 			spin_unlock(&sctx->stat_lock);
2448 			scrub_block_put(sblock);
2449 			return -ENOMEM;
2450 		}
2451 		sector->flags = flags;
2452 		sector->generation = gen;
2453 		if (csum) {
2454 			sector->have_csum = 1;
2455 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2456 		} else {
2457 			sector->have_csum = 0;
2458 		}
2459 		len -= l;
2460 		logical += l;
2461 		physical += l;
2462 		physical_for_dev_replace += l;
2463 	}
2464 
2465 	WARN_ON(sblock->sector_count == 0);
2466 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2467 		/*
2468 		 * This case should only be hit for RAID 5/6 device replace. See
2469 		 * the comment in scrub_missing_raid56_pages() for details.
2470 		 */
2471 		scrub_missing_raid56_pages(sblock);
2472 	} else {
2473 		for (index = 0; index < sblock->sector_count; index++) {
2474 			struct scrub_sector *sector = sblock->sectors[index];
2475 			int ret;
2476 
2477 			ret = scrub_add_sector_to_rd_bio(sctx, sector);
2478 			if (ret) {
2479 				scrub_block_put(sblock);
2480 				return ret;
2481 			}
2482 		}
2483 
2484 		if (flags & BTRFS_EXTENT_FLAG_SUPER)
2485 			scrub_submit(sctx);
2486 	}
2487 
2488 	/* last one frees, either here or in bio completion for last page */
2489 	scrub_block_put(sblock);
2490 	return 0;
2491 }
2492 
2493 static void scrub_bio_end_io(struct bio *bio)
2494 {
2495 	struct scrub_bio *sbio = bio->bi_private;
2496 	struct btrfs_fs_info *fs_info = sbio->dev->fs_info;
2497 
2498 	sbio->status = bio->bi_status;
2499 	sbio->bio = bio;
2500 
2501 	queue_work(fs_info->scrub_workers, &sbio->work);
2502 }
2503 
2504 static void scrub_bio_end_io_worker(struct work_struct *work)
2505 {
2506 	struct scrub_bio *sbio = container_of(work, struct scrub_bio, work);
2507 	struct scrub_ctx *sctx = sbio->sctx;
2508 	int i;
2509 
2510 	ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO);
2511 	if (sbio->status) {
2512 		for (i = 0; i < sbio->sector_count; i++) {
2513 			struct scrub_sector *sector = sbio->sectors[i];
2514 
2515 			sector->io_error = 1;
2516 			sector->sblock->no_io_error_seen = 0;
2517 		}
2518 	}
2519 
2520 	/* Now complete the scrub_block items that have all pages completed */
2521 	for (i = 0; i < sbio->sector_count; i++) {
2522 		struct scrub_sector *sector = sbio->sectors[i];
2523 		struct scrub_block *sblock = sector->sblock;
2524 
2525 		if (atomic_dec_and_test(&sblock->outstanding_sectors))
2526 			scrub_block_complete(sblock);
2527 		scrub_block_put(sblock);
2528 	}
2529 
2530 	bio_put(sbio->bio);
2531 	sbio->bio = NULL;
2532 	spin_lock(&sctx->list_lock);
2533 	sbio->next_free = sctx->first_free;
2534 	sctx->first_free = sbio->index;
2535 	spin_unlock(&sctx->list_lock);
2536 
2537 	if (sctx->is_dev_replace && sctx->flush_all_writes) {
2538 		mutex_lock(&sctx->wr_lock);
2539 		scrub_wr_submit(sctx);
2540 		mutex_unlock(&sctx->wr_lock);
2541 	}
2542 
2543 	scrub_pending_bio_dec(sctx);
2544 }
2545 
2546 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity,
2547 				       unsigned long *bitmap,
2548 				       u64 start, u32 len)
2549 {
2550 	u64 offset;
2551 	u32 nsectors;
2552 	u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits;
2553 
2554 	if (len >= sparity->stripe_len) {
2555 		bitmap_set(bitmap, 0, sparity->nsectors);
2556 		return;
2557 	}
2558 
2559 	start -= sparity->logic_start;
2560 	start = div64_u64_rem(start, sparity->stripe_len, &offset);
2561 	offset = offset >> sectorsize_bits;
2562 	nsectors = len >> sectorsize_bits;
2563 
2564 	if (offset + nsectors <= sparity->nsectors) {
2565 		bitmap_set(bitmap, offset, nsectors);
2566 		return;
2567 	}
2568 
2569 	bitmap_set(bitmap, offset, sparity->nsectors - offset);
2570 	bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset));
2571 }
2572 
2573 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity,
2574 						   u64 start, u32 len)
2575 {
2576 	__scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len);
2577 }
2578 
2579 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity,
2580 						  u64 start, u32 len)
2581 {
2582 	__scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len);
2583 }
2584 
2585 static void scrub_block_complete(struct scrub_block *sblock)
2586 {
2587 	int corrupted = 0;
2588 
2589 	if (!sblock->no_io_error_seen) {
2590 		corrupted = 1;
2591 		scrub_handle_errored_block(sblock);
2592 	} else {
2593 		/*
2594 		 * if has checksum error, write via repair mechanism in
2595 		 * dev replace case, otherwise write here in dev replace
2596 		 * case.
2597 		 */
2598 		corrupted = scrub_checksum(sblock);
2599 		if (!corrupted && sblock->sctx->is_dev_replace)
2600 			scrub_write_block_to_dev_replace(sblock);
2601 	}
2602 
2603 	if (sblock->sparity && corrupted && !sblock->data_corrected) {
2604 		u64 start = sblock->logical;
2605 		u64 end = sblock->logical +
2606 			  sblock->sectors[sblock->sector_count - 1]->offset +
2607 			  sblock->sctx->fs_info->sectorsize;
2608 
2609 		ASSERT(end - start <= U32_MAX);
2610 		scrub_parity_mark_sectors_error(sblock->sparity,
2611 						start, end - start);
2612 	}
2613 }
2614 
2615 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum)
2616 {
2617 	sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits;
2618 	list_del(&sum->list);
2619 	kfree(sum);
2620 }
2621 
2622 /*
2623  * Find the desired csum for range [logical, logical + sectorsize), and store
2624  * the csum into @csum.
2625  *
2626  * The search source is sctx->csum_list, which is a pre-populated list
2627  * storing bytenr ordered csum ranges.  We're responsible to cleanup any range
2628  * that is before @logical.
2629  *
2630  * Return 0 if there is no csum for the range.
2631  * Return 1 if there is csum for the range and copied to @csum.
2632  */
2633 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum)
2634 {
2635 	bool found = false;
2636 
2637 	while (!list_empty(&sctx->csum_list)) {
2638 		struct btrfs_ordered_sum *sum = NULL;
2639 		unsigned long index;
2640 		unsigned long num_sectors;
2641 
2642 		sum = list_first_entry(&sctx->csum_list,
2643 				       struct btrfs_ordered_sum, list);
2644 		/* The current csum range is beyond our range, no csum found */
2645 		if (sum->bytenr > logical)
2646 			break;
2647 
2648 		/*
2649 		 * The current sum is before our bytenr, since scrub is always
2650 		 * done in bytenr order, the csum will never be used anymore,
2651 		 * clean it up so that later calls won't bother with the range,
2652 		 * and continue search the next range.
2653 		 */
2654 		if (sum->bytenr + sum->len <= logical) {
2655 			drop_csum_range(sctx, sum);
2656 			continue;
2657 		}
2658 
2659 		/* Now the csum range covers our bytenr, copy the csum */
2660 		found = true;
2661 		index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits;
2662 		num_sectors = sum->len >> sctx->fs_info->sectorsize_bits;
2663 
2664 		memcpy(csum, sum->sums + index * sctx->fs_info->csum_size,
2665 		       sctx->fs_info->csum_size);
2666 
2667 		/* Cleanup the range if we're at the end of the csum range */
2668 		if (index == num_sectors - 1)
2669 			drop_csum_range(sctx, sum);
2670 		break;
2671 	}
2672 	if (!found)
2673 		return 0;
2674 	return 1;
2675 }
2676 
2677 /* scrub extent tries to collect up to 64 kB for each bio */
2678 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map,
2679 			u64 logical, u32 len,
2680 			u64 physical, struct btrfs_device *dev, u64 flags,
2681 			u64 gen, int mirror_num)
2682 {
2683 	struct btrfs_device *src_dev = dev;
2684 	u64 src_physical = physical;
2685 	int src_mirror = mirror_num;
2686 	int ret;
2687 	u8 csum[BTRFS_CSUM_SIZE];
2688 	u32 blocksize;
2689 
2690 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2691 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2692 			blocksize = map->stripe_len;
2693 		else
2694 			blocksize = sctx->fs_info->sectorsize;
2695 		spin_lock(&sctx->stat_lock);
2696 		sctx->stat.data_extents_scrubbed++;
2697 		sctx->stat.data_bytes_scrubbed += len;
2698 		spin_unlock(&sctx->stat_lock);
2699 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2700 		if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK)
2701 			blocksize = map->stripe_len;
2702 		else
2703 			blocksize = sctx->fs_info->nodesize;
2704 		spin_lock(&sctx->stat_lock);
2705 		sctx->stat.tree_extents_scrubbed++;
2706 		sctx->stat.tree_bytes_scrubbed += len;
2707 		spin_unlock(&sctx->stat_lock);
2708 	} else {
2709 		blocksize = sctx->fs_info->sectorsize;
2710 		WARN_ON(1);
2711 	}
2712 
2713 	/*
2714 	 * For dev-replace case, we can have @dev being a missing device.
2715 	 * Regular scrub will avoid its execution on missing device at all,
2716 	 * as that would trigger tons of read error.
2717 	 *
2718 	 * Reading from missing device will cause read error counts to
2719 	 * increase unnecessarily.
2720 	 * So here we change the read source to a good mirror.
2721 	 */
2722 	if (sctx->is_dev_replace && !dev->bdev)
2723 		scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical,
2724 				     &src_dev, &src_mirror);
2725 	while (len) {
2726 		u32 l = min(len, blocksize);
2727 		int have_csum = 0;
2728 
2729 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2730 			/* push csums to sbio */
2731 			have_csum = scrub_find_csum(sctx, logical, csum);
2732 			if (have_csum == 0)
2733 				++sctx->stat.no_csum;
2734 		}
2735 		ret = scrub_sectors(sctx, logical, l, src_physical, src_dev,
2736 				    flags, gen, src_mirror,
2737 				    have_csum ? csum : NULL, physical);
2738 		if (ret)
2739 			return ret;
2740 		len -= l;
2741 		logical += l;
2742 		physical += l;
2743 		src_physical += l;
2744 	}
2745 	return 0;
2746 }
2747 
2748 static int scrub_sectors_for_parity(struct scrub_parity *sparity,
2749 				  u64 logical, u32 len,
2750 				  u64 physical, struct btrfs_device *dev,
2751 				  u64 flags, u64 gen, int mirror_num, u8 *csum)
2752 {
2753 	struct scrub_ctx *sctx = sparity->sctx;
2754 	struct scrub_block *sblock;
2755 	const u32 sectorsize = sctx->fs_info->sectorsize;
2756 	int index;
2757 
2758 	ASSERT(IS_ALIGNED(len, sectorsize));
2759 
2760 	sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num);
2761 	if (!sblock) {
2762 		spin_lock(&sctx->stat_lock);
2763 		sctx->stat.malloc_errors++;
2764 		spin_unlock(&sctx->stat_lock);
2765 		return -ENOMEM;
2766 	}
2767 
2768 	sblock->sparity = sparity;
2769 	scrub_parity_get(sparity);
2770 
2771 	for (index = 0; len > 0; index++) {
2772 		struct scrub_sector *sector;
2773 
2774 		sector = alloc_scrub_sector(sblock, logical);
2775 		if (!sector) {
2776 			spin_lock(&sctx->stat_lock);
2777 			sctx->stat.malloc_errors++;
2778 			spin_unlock(&sctx->stat_lock);
2779 			scrub_block_put(sblock);
2780 			return -ENOMEM;
2781 		}
2782 		sblock->sectors[index] = sector;
2783 		/* For scrub parity */
2784 		scrub_sector_get(sector);
2785 		list_add_tail(&sector->list, &sparity->sectors_list);
2786 		sector->flags = flags;
2787 		sector->generation = gen;
2788 		if (csum) {
2789 			sector->have_csum = 1;
2790 			memcpy(sector->csum, csum, sctx->fs_info->csum_size);
2791 		} else {
2792 			sector->have_csum = 0;
2793 		}
2794 
2795 		/* Iterate over the stripe range in sectorsize steps */
2796 		len -= sectorsize;
2797 		logical += sectorsize;
2798 		physical += sectorsize;
2799 	}
2800 
2801 	WARN_ON(sblock->sector_count == 0);
2802 	for (index = 0; index < sblock->sector_count; index++) {
2803 		struct scrub_sector *sector = sblock->sectors[index];
2804 		int ret;
2805 
2806 		ret = scrub_add_sector_to_rd_bio(sctx, sector);
2807 		if (ret) {
2808 			scrub_block_put(sblock);
2809 			return ret;
2810 		}
2811 	}
2812 
2813 	/* Last one frees, either here or in bio completion for last sector */
2814 	scrub_block_put(sblock);
2815 	return 0;
2816 }
2817 
2818 static int scrub_extent_for_parity(struct scrub_parity *sparity,
2819 				   u64 logical, u32 len,
2820 				   u64 physical, struct btrfs_device *dev,
2821 				   u64 flags, u64 gen, int mirror_num)
2822 {
2823 	struct scrub_ctx *sctx = sparity->sctx;
2824 	int ret;
2825 	u8 csum[BTRFS_CSUM_SIZE];
2826 	u32 blocksize;
2827 
2828 	if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) {
2829 		scrub_parity_mark_sectors_error(sparity, logical, len);
2830 		return 0;
2831 	}
2832 
2833 	if (flags & BTRFS_EXTENT_FLAG_DATA) {
2834 		blocksize = sparity->stripe_len;
2835 	} else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
2836 		blocksize = sparity->stripe_len;
2837 	} else {
2838 		blocksize = sctx->fs_info->sectorsize;
2839 		WARN_ON(1);
2840 	}
2841 
2842 	while (len) {
2843 		u32 l = min(len, blocksize);
2844 		int have_csum = 0;
2845 
2846 		if (flags & BTRFS_EXTENT_FLAG_DATA) {
2847 			/* push csums to sbio */
2848 			have_csum = scrub_find_csum(sctx, logical, csum);
2849 			if (have_csum == 0)
2850 				goto skip;
2851 		}
2852 		ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev,
2853 					     flags, gen, mirror_num,
2854 					     have_csum ? csum : NULL);
2855 		if (ret)
2856 			return ret;
2857 skip:
2858 		len -= l;
2859 		logical += l;
2860 		physical += l;
2861 	}
2862 	return 0;
2863 }
2864 
2865 /*
2866  * Given a physical address, this will calculate it's
2867  * logical offset. if this is a parity stripe, it will return
2868  * the most left data stripe's logical offset.
2869  *
2870  * return 0 if it is a data stripe, 1 means parity stripe.
2871  */
2872 static int get_raid56_logic_offset(u64 physical, int num,
2873 				   struct map_lookup *map, u64 *offset,
2874 				   u64 *stripe_start)
2875 {
2876 	int i;
2877 	int j = 0;
2878 	u64 stripe_nr;
2879 	u64 last_offset;
2880 	u32 stripe_index;
2881 	u32 rot;
2882 	const int data_stripes = nr_data_stripes(map);
2883 
2884 	last_offset = (physical - map->stripes[num].physical) * data_stripes;
2885 	if (stripe_start)
2886 		*stripe_start = last_offset;
2887 
2888 	*offset = last_offset;
2889 	for (i = 0; i < data_stripes; i++) {
2890 		*offset = last_offset + i * map->stripe_len;
2891 
2892 		stripe_nr = div64_u64(*offset, map->stripe_len);
2893 		stripe_nr = div_u64(stripe_nr, data_stripes);
2894 
2895 		/* Work out the disk rotation on this stripe-set */
2896 		stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot);
2897 		/* calculate which stripe this data locates */
2898 		rot += i;
2899 		stripe_index = rot % map->num_stripes;
2900 		if (stripe_index == num)
2901 			return 0;
2902 		if (stripe_index < num)
2903 			j++;
2904 	}
2905 	*offset = last_offset + j * map->stripe_len;
2906 	return 1;
2907 }
2908 
2909 static void scrub_free_parity(struct scrub_parity *sparity)
2910 {
2911 	struct scrub_ctx *sctx = sparity->sctx;
2912 	struct scrub_sector *curr, *next;
2913 	int nbits;
2914 
2915 	nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors);
2916 	if (nbits) {
2917 		spin_lock(&sctx->stat_lock);
2918 		sctx->stat.read_errors += nbits;
2919 		sctx->stat.uncorrectable_errors += nbits;
2920 		spin_unlock(&sctx->stat_lock);
2921 	}
2922 
2923 	list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) {
2924 		list_del_init(&curr->list);
2925 		scrub_sector_put(curr);
2926 	}
2927 
2928 	kfree(sparity);
2929 }
2930 
2931 static void scrub_parity_bio_endio_worker(struct work_struct *work)
2932 {
2933 	struct scrub_parity *sparity = container_of(work, struct scrub_parity,
2934 						    work);
2935 	struct scrub_ctx *sctx = sparity->sctx;
2936 
2937 	btrfs_bio_counter_dec(sctx->fs_info);
2938 	scrub_free_parity(sparity);
2939 	scrub_pending_bio_dec(sctx);
2940 }
2941 
2942 static void scrub_parity_bio_endio(struct bio *bio)
2943 {
2944 	struct scrub_parity *sparity = bio->bi_private;
2945 	struct btrfs_fs_info *fs_info = sparity->sctx->fs_info;
2946 
2947 	if (bio->bi_status)
2948 		bitmap_or(&sparity->ebitmap, &sparity->ebitmap,
2949 			  &sparity->dbitmap, sparity->nsectors);
2950 
2951 	bio_put(bio);
2952 
2953 	INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker);
2954 	queue_work(fs_info->scrub_parity_workers, &sparity->work);
2955 }
2956 
2957 static void scrub_parity_check_and_repair(struct scrub_parity *sparity)
2958 {
2959 	struct scrub_ctx *sctx = sparity->sctx;
2960 	struct btrfs_fs_info *fs_info = sctx->fs_info;
2961 	struct bio *bio;
2962 	struct btrfs_raid_bio *rbio;
2963 	struct btrfs_io_context *bioc = NULL;
2964 	u64 length;
2965 	int ret;
2966 
2967 	if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap,
2968 			   &sparity->ebitmap, sparity->nsectors))
2969 		goto out;
2970 
2971 	length = sparity->logic_end - sparity->logic_start;
2972 
2973 	btrfs_bio_counter_inc_blocked(fs_info);
2974 	ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start,
2975 			       &length, &bioc);
2976 	if (ret || !bioc || !bioc->raid_map)
2977 		goto bioc_out;
2978 
2979 	bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS);
2980 	bio->bi_iter.bi_sector = sparity->logic_start >> 9;
2981 	bio->bi_private = sparity;
2982 	bio->bi_end_io = scrub_parity_bio_endio;
2983 
2984 	rbio = raid56_parity_alloc_scrub_rbio(bio, bioc,
2985 					      sparity->scrub_dev,
2986 					      &sparity->dbitmap,
2987 					      sparity->nsectors);
2988 	btrfs_put_bioc(bioc);
2989 	if (!rbio)
2990 		goto rbio_out;
2991 
2992 	scrub_pending_bio_inc(sctx);
2993 	raid56_parity_submit_scrub_rbio(rbio);
2994 	return;
2995 
2996 rbio_out:
2997 	bio_put(bio);
2998 bioc_out:
2999 	btrfs_bio_counter_dec(fs_info);
3000 	bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap,
3001 		  sparity->nsectors);
3002 	spin_lock(&sctx->stat_lock);
3003 	sctx->stat.malloc_errors++;
3004 	spin_unlock(&sctx->stat_lock);
3005 out:
3006 	scrub_free_parity(sparity);
3007 }
3008 
3009 static void scrub_parity_get(struct scrub_parity *sparity)
3010 {
3011 	refcount_inc(&sparity->refs);
3012 }
3013 
3014 static void scrub_parity_put(struct scrub_parity *sparity)
3015 {
3016 	if (!refcount_dec_and_test(&sparity->refs))
3017 		return;
3018 
3019 	scrub_parity_check_and_repair(sparity);
3020 }
3021 
3022 /*
3023  * Return 0 if the extent item range covers any byte of the range.
3024  * Return <0 if the extent item is before @search_start.
3025  * Return >0 if the extent item is after @start_start + @search_len.
3026  */
3027 static int compare_extent_item_range(struct btrfs_path *path,
3028 				     u64 search_start, u64 search_len)
3029 {
3030 	struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info;
3031 	u64 len;
3032 	struct btrfs_key key;
3033 
3034 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3035 	ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY ||
3036 	       key.type == BTRFS_METADATA_ITEM_KEY);
3037 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3038 		len = fs_info->nodesize;
3039 	else
3040 		len = key.offset;
3041 
3042 	if (key.objectid + len <= search_start)
3043 		return -1;
3044 	if (key.objectid >= search_start + search_len)
3045 		return 1;
3046 	return 0;
3047 }
3048 
3049 /*
3050  * Locate one extent item which covers any byte in range
3051  * [@search_start, @search_start + @search_length)
3052  *
3053  * If the path is not initialized, we will initialize the search by doing
3054  * a btrfs_search_slot().
3055  * If the path is already initialized, we will use the path as the initial
3056  * slot, to avoid duplicated btrfs_search_slot() calls.
3057  *
3058  * NOTE: If an extent item starts before @search_start, we will still
3059  * return the extent item. This is for data extent crossing stripe boundary.
3060  *
3061  * Return 0 if we found such extent item, and @path will point to the extent item.
3062  * Return >0 if no such extent item can be found, and @path will be released.
3063  * Return <0 if hit fatal error, and @path will be released.
3064  */
3065 static int find_first_extent_item(struct btrfs_root *extent_root,
3066 				  struct btrfs_path *path,
3067 				  u64 search_start, u64 search_len)
3068 {
3069 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
3070 	struct btrfs_key key;
3071 	int ret;
3072 
3073 	/* Continue using the existing path */
3074 	if (path->nodes[0])
3075 		goto search_forward;
3076 
3077 	if (btrfs_fs_incompat(fs_info, SKINNY_METADATA))
3078 		key.type = BTRFS_METADATA_ITEM_KEY;
3079 	else
3080 		key.type = BTRFS_EXTENT_ITEM_KEY;
3081 	key.objectid = search_start;
3082 	key.offset = (u64)-1;
3083 
3084 	ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
3085 	if (ret < 0)
3086 		return ret;
3087 
3088 	ASSERT(ret > 0);
3089 	/*
3090 	 * Here we intentionally pass 0 as @min_objectid, as there could be
3091 	 * an extent item starting before @search_start.
3092 	 */
3093 	ret = btrfs_previous_extent_item(extent_root, path, 0);
3094 	if (ret < 0)
3095 		return ret;
3096 	/*
3097 	 * No matter whether we have found an extent item, the next loop will
3098 	 * properly do every check on the key.
3099 	 */
3100 search_forward:
3101 	while (true) {
3102 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3103 		if (key.objectid >= search_start + search_len)
3104 			break;
3105 		if (key.type != BTRFS_METADATA_ITEM_KEY &&
3106 		    key.type != BTRFS_EXTENT_ITEM_KEY)
3107 			goto next;
3108 
3109 		ret = compare_extent_item_range(path, search_start, search_len);
3110 		if (ret == 0)
3111 			return ret;
3112 		if (ret > 0)
3113 			break;
3114 next:
3115 		path->slots[0]++;
3116 		if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) {
3117 			ret = btrfs_next_leaf(extent_root, path);
3118 			if (ret) {
3119 				/* Either no more item or fatal error */
3120 				btrfs_release_path(path);
3121 				return ret;
3122 			}
3123 		}
3124 	}
3125 	btrfs_release_path(path);
3126 	return 1;
3127 }
3128 
3129 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret,
3130 			    u64 *size_ret, u64 *flags_ret, u64 *generation_ret)
3131 {
3132 	struct btrfs_key key;
3133 	struct btrfs_extent_item *ei;
3134 
3135 	btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
3136 	ASSERT(key.type == BTRFS_METADATA_ITEM_KEY ||
3137 	       key.type == BTRFS_EXTENT_ITEM_KEY);
3138 	*extent_start_ret = key.objectid;
3139 	if (key.type == BTRFS_METADATA_ITEM_KEY)
3140 		*size_ret = path->nodes[0]->fs_info->nodesize;
3141 	else
3142 		*size_ret = key.offset;
3143 	ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item);
3144 	*flags_ret = btrfs_extent_flags(path->nodes[0], ei);
3145 	*generation_ret = btrfs_extent_generation(path->nodes[0], ei);
3146 }
3147 
3148 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len,
3149 				      u64 boundary_start, u64 boudary_len)
3150 {
3151 	return (extent_start < boundary_start &&
3152 		extent_start + extent_len > boundary_start) ||
3153 	       (extent_start < boundary_start + boudary_len &&
3154 		extent_start + extent_len > boundary_start + boudary_len);
3155 }
3156 
3157 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx,
3158 					       struct scrub_parity *sparity,
3159 					       struct map_lookup *map,
3160 					       struct btrfs_device *sdev,
3161 					       struct btrfs_path *path,
3162 					       u64 logical)
3163 {
3164 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3165 	struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical);
3166 	struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical);
3167 	u64 cur_logical = logical;
3168 	int ret;
3169 
3170 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3171 
3172 	/* Path must not be populated */
3173 	ASSERT(!path->nodes[0]);
3174 
3175 	while (cur_logical < logical + map->stripe_len) {
3176 		struct btrfs_io_context *bioc = NULL;
3177 		struct btrfs_device *extent_dev;
3178 		u64 extent_start;
3179 		u64 extent_size;
3180 		u64 mapped_length;
3181 		u64 extent_flags;
3182 		u64 extent_gen;
3183 		u64 extent_physical;
3184 		u64 extent_mirror_num;
3185 
3186 		ret = find_first_extent_item(extent_root, path, cur_logical,
3187 					     logical + map->stripe_len - cur_logical);
3188 		/* No more extent item in this data stripe */
3189 		if (ret > 0) {
3190 			ret = 0;
3191 			break;
3192 		}
3193 		if (ret < 0)
3194 			break;
3195 		get_extent_info(path, &extent_start, &extent_size, &extent_flags,
3196 				&extent_gen);
3197 
3198 		/* Metadata should not cross stripe boundaries */
3199 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3200 		    does_range_cross_boundary(extent_start, extent_size,
3201 					      logical, map->stripe_len)) {
3202 			btrfs_err(fs_info,
3203 	"scrub: tree block %llu spanning stripes, ignored. logical=%llu",
3204 				  extent_start, logical);
3205 			spin_lock(&sctx->stat_lock);
3206 			sctx->stat.uncorrectable_errors++;
3207 			spin_unlock(&sctx->stat_lock);
3208 			cur_logical += extent_size;
3209 			continue;
3210 		}
3211 
3212 		/* Skip hole range which doesn't have any extent */
3213 		cur_logical = max(extent_start, cur_logical);
3214 
3215 		/* Truncate the range inside this data stripe */
3216 		extent_size = min(extent_start + extent_size,
3217 				  logical + map->stripe_len) - cur_logical;
3218 		extent_start = cur_logical;
3219 		ASSERT(extent_size <= U32_MAX);
3220 
3221 		scrub_parity_mark_sectors_data(sparity, extent_start, extent_size);
3222 
3223 		mapped_length = extent_size;
3224 		ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start,
3225 				      &mapped_length, &bioc, 0);
3226 		if (!ret && (!bioc || mapped_length < extent_size))
3227 			ret = -EIO;
3228 		if (ret) {
3229 			btrfs_put_bioc(bioc);
3230 			scrub_parity_mark_sectors_error(sparity, extent_start,
3231 							extent_size);
3232 			break;
3233 		}
3234 		extent_physical = bioc->stripes[0].physical;
3235 		extent_mirror_num = bioc->mirror_num;
3236 		extent_dev = bioc->stripes[0].dev;
3237 		btrfs_put_bioc(bioc);
3238 
3239 		ret = btrfs_lookup_csums_range(csum_root, extent_start,
3240 					       extent_start + extent_size - 1,
3241 					       &sctx->csum_list, 1, false);
3242 		if (ret) {
3243 			scrub_parity_mark_sectors_error(sparity, extent_start,
3244 							extent_size);
3245 			break;
3246 		}
3247 
3248 		ret = scrub_extent_for_parity(sparity, extent_start,
3249 					      extent_size, extent_physical,
3250 					      extent_dev, extent_flags,
3251 					      extent_gen, extent_mirror_num);
3252 		scrub_free_csums(sctx);
3253 
3254 		if (ret) {
3255 			scrub_parity_mark_sectors_error(sparity, extent_start,
3256 							extent_size);
3257 			break;
3258 		}
3259 
3260 		cond_resched();
3261 		cur_logical += extent_size;
3262 	}
3263 	btrfs_release_path(path);
3264 	return ret;
3265 }
3266 
3267 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx,
3268 						  struct map_lookup *map,
3269 						  struct btrfs_device *sdev,
3270 						  u64 logic_start,
3271 						  u64 logic_end)
3272 {
3273 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3274 	struct btrfs_path *path;
3275 	u64 cur_logical;
3276 	int ret;
3277 	struct scrub_parity *sparity;
3278 	int nsectors;
3279 
3280 	path = btrfs_alloc_path();
3281 	if (!path) {
3282 		spin_lock(&sctx->stat_lock);
3283 		sctx->stat.malloc_errors++;
3284 		spin_unlock(&sctx->stat_lock);
3285 		return -ENOMEM;
3286 	}
3287 	path->search_commit_root = 1;
3288 	path->skip_locking = 1;
3289 
3290 	ASSERT(map->stripe_len <= U32_MAX);
3291 	nsectors = map->stripe_len >> fs_info->sectorsize_bits;
3292 	ASSERT(nsectors <= BITS_PER_LONG);
3293 	sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS);
3294 	if (!sparity) {
3295 		spin_lock(&sctx->stat_lock);
3296 		sctx->stat.malloc_errors++;
3297 		spin_unlock(&sctx->stat_lock);
3298 		btrfs_free_path(path);
3299 		return -ENOMEM;
3300 	}
3301 
3302 	ASSERT(map->stripe_len <= U32_MAX);
3303 	sparity->stripe_len = map->stripe_len;
3304 	sparity->nsectors = nsectors;
3305 	sparity->sctx = sctx;
3306 	sparity->scrub_dev = sdev;
3307 	sparity->logic_start = logic_start;
3308 	sparity->logic_end = logic_end;
3309 	refcount_set(&sparity->refs, 1);
3310 	INIT_LIST_HEAD(&sparity->sectors_list);
3311 
3312 	ret = 0;
3313 	for (cur_logical = logic_start; cur_logical < logic_end;
3314 	     cur_logical += map->stripe_len) {
3315 		ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map,
3316 							  sdev, path, cur_logical);
3317 		if (ret < 0)
3318 			break;
3319 	}
3320 
3321 	scrub_parity_put(sparity);
3322 	scrub_submit(sctx);
3323 	mutex_lock(&sctx->wr_lock);
3324 	scrub_wr_submit(sctx);
3325 	mutex_unlock(&sctx->wr_lock);
3326 
3327 	btrfs_free_path(path);
3328 	return ret < 0 ? ret : 0;
3329 }
3330 
3331 static void sync_replace_for_zoned(struct scrub_ctx *sctx)
3332 {
3333 	if (!btrfs_is_zoned(sctx->fs_info))
3334 		return;
3335 
3336 	sctx->flush_all_writes = true;
3337 	scrub_submit(sctx);
3338 	mutex_lock(&sctx->wr_lock);
3339 	scrub_wr_submit(sctx);
3340 	mutex_unlock(&sctx->wr_lock);
3341 
3342 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3343 }
3344 
3345 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical,
3346 					u64 physical, u64 physical_end)
3347 {
3348 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3349 	int ret = 0;
3350 
3351 	if (!btrfs_is_zoned(fs_info))
3352 		return 0;
3353 
3354 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
3355 
3356 	mutex_lock(&sctx->wr_lock);
3357 	if (sctx->write_pointer < physical_end) {
3358 		ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical,
3359 						    physical,
3360 						    sctx->write_pointer);
3361 		if (ret)
3362 			btrfs_err(fs_info,
3363 				  "zoned: failed to recover write pointer");
3364 	}
3365 	mutex_unlock(&sctx->wr_lock);
3366 	btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical);
3367 
3368 	return ret;
3369 }
3370 
3371 /*
3372  * Scrub one range which can only has simple mirror based profile.
3373  * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in
3374  *  RAID0/RAID10).
3375  *
3376  * Since we may need to handle a subset of block group, we need @logical_start
3377  * and @logical_length parameter.
3378  */
3379 static int scrub_simple_mirror(struct scrub_ctx *sctx,
3380 			       struct btrfs_root *extent_root,
3381 			       struct btrfs_root *csum_root,
3382 			       struct btrfs_block_group *bg,
3383 			       struct map_lookup *map,
3384 			       u64 logical_start, u64 logical_length,
3385 			       struct btrfs_device *device,
3386 			       u64 physical, int mirror_num)
3387 {
3388 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3389 	const u64 logical_end = logical_start + logical_length;
3390 	/* An artificial limit, inherit from old scrub behavior */
3391 	const u32 max_length = SZ_64K;
3392 	struct btrfs_path path = { 0 };
3393 	u64 cur_logical = logical_start;
3394 	int ret;
3395 
3396 	/* The range must be inside the bg */
3397 	ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length);
3398 
3399 	path.search_commit_root = 1;
3400 	path.skip_locking = 1;
3401 	/* Go through each extent items inside the logical range */
3402 	while (cur_logical < logical_end) {
3403 		u64 extent_start;
3404 		u64 extent_len;
3405 		u64 extent_flags;
3406 		u64 extent_gen;
3407 		u64 scrub_len;
3408 
3409 		/* Canceled? */
3410 		if (atomic_read(&fs_info->scrub_cancel_req) ||
3411 		    atomic_read(&sctx->cancel_req)) {
3412 			ret = -ECANCELED;
3413 			break;
3414 		}
3415 		/* Paused? */
3416 		if (atomic_read(&fs_info->scrub_pause_req)) {
3417 			/* Push queued extents */
3418 			sctx->flush_all_writes = true;
3419 			scrub_submit(sctx);
3420 			mutex_lock(&sctx->wr_lock);
3421 			scrub_wr_submit(sctx);
3422 			mutex_unlock(&sctx->wr_lock);
3423 			wait_event(sctx->list_wait,
3424 				   atomic_read(&sctx->bios_in_flight) == 0);
3425 			sctx->flush_all_writes = false;
3426 			scrub_blocked_if_needed(fs_info);
3427 		}
3428 		/* Block group removed? */
3429 		spin_lock(&bg->lock);
3430 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) {
3431 			spin_unlock(&bg->lock);
3432 			ret = 0;
3433 			break;
3434 		}
3435 		spin_unlock(&bg->lock);
3436 
3437 		ret = find_first_extent_item(extent_root, &path, cur_logical,
3438 					     logical_end - cur_logical);
3439 		if (ret > 0) {
3440 			/* No more extent, just update the accounting */
3441 			sctx->stat.last_physical = physical + logical_length;
3442 			ret = 0;
3443 			break;
3444 		}
3445 		if (ret < 0)
3446 			break;
3447 		get_extent_info(&path, &extent_start, &extent_len,
3448 				&extent_flags, &extent_gen);
3449 		/* Skip hole range which doesn't have any extent */
3450 		cur_logical = max(extent_start, cur_logical);
3451 
3452 		/*
3453 		 * Scrub len has three limits:
3454 		 * - Extent size limit
3455 		 * - Scrub range limit
3456 		 *   This is especially imporatant for RAID0/RAID10 to reuse
3457 		 *   this function
3458 		 * - Max scrub size limit
3459 		 */
3460 		scrub_len = min(min(extent_start + extent_len,
3461 				    logical_end), cur_logical + max_length) -
3462 			    cur_logical;
3463 
3464 		if (extent_flags & BTRFS_EXTENT_FLAG_DATA) {
3465 			ret = btrfs_lookup_csums_range(csum_root, cur_logical,
3466 					cur_logical + scrub_len - 1,
3467 					&sctx->csum_list, 1, false);
3468 			if (ret)
3469 				break;
3470 		}
3471 		if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) &&
3472 		    does_range_cross_boundary(extent_start, extent_len,
3473 					      logical_start, logical_length)) {
3474 			btrfs_err(fs_info,
3475 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)",
3476 				  extent_start, logical_start, logical_end);
3477 			spin_lock(&sctx->stat_lock);
3478 			sctx->stat.uncorrectable_errors++;
3479 			spin_unlock(&sctx->stat_lock);
3480 			cur_logical += scrub_len;
3481 			continue;
3482 		}
3483 		ret = scrub_extent(sctx, map, cur_logical, scrub_len,
3484 				   cur_logical - logical_start + physical,
3485 				   device, extent_flags, extent_gen,
3486 				   mirror_num);
3487 		scrub_free_csums(sctx);
3488 		if (ret)
3489 			break;
3490 		if (sctx->is_dev_replace)
3491 			sync_replace_for_zoned(sctx);
3492 		cur_logical += scrub_len;
3493 		/* Don't hold CPU for too long time */
3494 		cond_resched();
3495 	}
3496 	btrfs_release_path(&path);
3497 	return ret;
3498 }
3499 
3500 /* Calculate the full stripe length for simple stripe based profiles */
3501 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map)
3502 {
3503 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3504 			    BTRFS_BLOCK_GROUP_RAID10));
3505 
3506 	return map->num_stripes / map->sub_stripes * map->stripe_len;
3507 }
3508 
3509 /* Get the logical bytenr for the stripe */
3510 static u64 simple_stripe_get_logical(struct map_lookup *map,
3511 				     struct btrfs_block_group *bg,
3512 				     int stripe_index)
3513 {
3514 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3515 			    BTRFS_BLOCK_GROUP_RAID10));
3516 	ASSERT(stripe_index < map->num_stripes);
3517 
3518 	/*
3519 	 * (stripe_index / sub_stripes) gives how many data stripes we need to
3520 	 * skip.
3521 	 */
3522 	return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start;
3523 }
3524 
3525 /* Get the mirror number for the stripe */
3526 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index)
3527 {
3528 	ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 |
3529 			    BTRFS_BLOCK_GROUP_RAID10));
3530 	ASSERT(stripe_index < map->num_stripes);
3531 
3532 	/* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */
3533 	return stripe_index % map->sub_stripes + 1;
3534 }
3535 
3536 static int scrub_simple_stripe(struct scrub_ctx *sctx,
3537 			       struct btrfs_root *extent_root,
3538 			       struct btrfs_root *csum_root,
3539 			       struct btrfs_block_group *bg,
3540 			       struct map_lookup *map,
3541 			       struct btrfs_device *device,
3542 			       int stripe_index)
3543 {
3544 	const u64 logical_increment = simple_stripe_full_stripe_len(map);
3545 	const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index);
3546 	const u64 orig_physical = map->stripes[stripe_index].physical;
3547 	const int mirror_num = simple_stripe_mirror_num(map, stripe_index);
3548 	u64 cur_logical = orig_logical;
3549 	u64 cur_physical = orig_physical;
3550 	int ret = 0;
3551 
3552 	while (cur_logical < bg->start + bg->length) {
3553 		/*
3554 		 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is
3555 		 * just RAID1, so we can reuse scrub_simple_mirror() to scrub
3556 		 * this stripe.
3557 		 */
3558 		ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map,
3559 					  cur_logical, map->stripe_len, device,
3560 					  cur_physical, mirror_num);
3561 		if (ret)
3562 			return ret;
3563 		/* Skip to next stripe which belongs to the target device */
3564 		cur_logical += logical_increment;
3565 		/* For physical offset, we just go to next stripe */
3566 		cur_physical += map->stripe_len;
3567 	}
3568 	return ret;
3569 }
3570 
3571 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx,
3572 					   struct btrfs_block_group *bg,
3573 					   struct extent_map *em,
3574 					   struct btrfs_device *scrub_dev,
3575 					   int stripe_index)
3576 {
3577 	struct btrfs_path *path;
3578 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3579 	struct btrfs_root *root;
3580 	struct btrfs_root *csum_root;
3581 	struct blk_plug plug;
3582 	struct map_lookup *map = em->map_lookup;
3583 	const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK;
3584 	const u64 chunk_logical = bg->start;
3585 	int ret;
3586 	u64 physical = map->stripes[stripe_index].physical;
3587 	const u64 dev_stripe_len = btrfs_calc_stripe_length(em);
3588 	const u64 physical_end = physical + dev_stripe_len;
3589 	u64 logical;
3590 	u64 logic_end;
3591 	/* The logical increment after finishing one stripe */
3592 	u64 increment;
3593 	/* Offset inside the chunk */
3594 	u64 offset;
3595 	u64 stripe_logical;
3596 	u64 stripe_end;
3597 	int stop_loop = 0;
3598 
3599 	path = btrfs_alloc_path();
3600 	if (!path)
3601 		return -ENOMEM;
3602 
3603 	/*
3604 	 * work on commit root. The related disk blocks are static as
3605 	 * long as COW is applied. This means, it is save to rewrite
3606 	 * them to repair disk errors without any race conditions
3607 	 */
3608 	path->search_commit_root = 1;
3609 	path->skip_locking = 1;
3610 	path->reada = READA_FORWARD;
3611 
3612 	wait_event(sctx->list_wait,
3613 		   atomic_read(&sctx->bios_in_flight) == 0);
3614 	scrub_blocked_if_needed(fs_info);
3615 
3616 	root = btrfs_extent_root(fs_info, bg->start);
3617 	csum_root = btrfs_csum_root(fs_info, bg->start);
3618 
3619 	/*
3620 	 * collect all data csums for the stripe to avoid seeking during
3621 	 * the scrub. This might currently (crc32) end up to be about 1MB
3622 	 */
3623 	blk_start_plug(&plug);
3624 
3625 	if (sctx->is_dev_replace &&
3626 	    btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) {
3627 		mutex_lock(&sctx->wr_lock);
3628 		sctx->write_pointer = physical;
3629 		mutex_unlock(&sctx->wr_lock);
3630 		sctx->flush_all_writes = true;
3631 	}
3632 
3633 	/*
3634 	 * There used to be a big double loop to handle all profiles using the
3635 	 * same routine, which grows larger and more gross over time.
3636 	 *
3637 	 * So here we handle each profile differently, so simpler profiles
3638 	 * have simpler scrubbing function.
3639 	 */
3640 	if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 |
3641 			 BTRFS_BLOCK_GROUP_RAID56_MASK))) {
3642 		/*
3643 		 * Above check rules out all complex profile, the remaining
3644 		 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple
3645 		 * mirrored duplication without stripe.
3646 		 *
3647 		 * Only @physical and @mirror_num needs to calculated using
3648 		 * @stripe_index.
3649 		 */
3650 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3651 				bg->start, bg->length, scrub_dev,
3652 				map->stripes[stripe_index].physical,
3653 				stripe_index + 1);
3654 		offset = 0;
3655 		goto out;
3656 	}
3657 	if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) {
3658 		ret = scrub_simple_stripe(sctx, root, csum_root, bg, map,
3659 					  scrub_dev, stripe_index);
3660 		offset = map->stripe_len * (stripe_index / map->sub_stripes);
3661 		goto out;
3662 	}
3663 
3664 	/* Only RAID56 goes through the old code */
3665 	ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK);
3666 	ret = 0;
3667 
3668 	/* Calculate the logical end of the stripe */
3669 	get_raid56_logic_offset(physical_end, stripe_index,
3670 				map, &logic_end, NULL);
3671 	logic_end += chunk_logical;
3672 
3673 	/* Initialize @offset in case we need to go to out: label */
3674 	get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL);
3675 	increment = map->stripe_len * nr_data_stripes(map);
3676 
3677 	/*
3678 	 * Due to the rotation, for RAID56 it's better to iterate each stripe
3679 	 * using their physical offset.
3680 	 */
3681 	while (physical < physical_end) {
3682 		ret = get_raid56_logic_offset(physical, stripe_index, map,
3683 					      &logical, &stripe_logical);
3684 		logical += chunk_logical;
3685 		if (ret) {
3686 			/* it is parity strip */
3687 			stripe_logical += chunk_logical;
3688 			stripe_end = stripe_logical + increment;
3689 			ret = scrub_raid56_parity(sctx, map, scrub_dev,
3690 						  stripe_logical,
3691 						  stripe_end);
3692 			if (ret)
3693 				goto out;
3694 			goto next;
3695 		}
3696 
3697 		/*
3698 		 * Now we're at a data stripe, scrub each extents in the range.
3699 		 *
3700 		 * At this stage, if we ignore the repair part, inside each data
3701 		 * stripe it is no different than SINGLE profile.
3702 		 * We can reuse scrub_simple_mirror() here, as the repair part
3703 		 * is still based on @mirror_num.
3704 		 */
3705 		ret = scrub_simple_mirror(sctx, root, csum_root, bg, map,
3706 					  logical, map->stripe_len,
3707 					  scrub_dev, physical, 1);
3708 		if (ret < 0)
3709 			goto out;
3710 next:
3711 		logical += increment;
3712 		physical += map->stripe_len;
3713 		spin_lock(&sctx->stat_lock);
3714 		if (stop_loop)
3715 			sctx->stat.last_physical =
3716 				map->stripes[stripe_index].physical + dev_stripe_len;
3717 		else
3718 			sctx->stat.last_physical = physical;
3719 		spin_unlock(&sctx->stat_lock);
3720 		if (stop_loop)
3721 			break;
3722 	}
3723 out:
3724 	/* push queued extents */
3725 	scrub_submit(sctx);
3726 	mutex_lock(&sctx->wr_lock);
3727 	scrub_wr_submit(sctx);
3728 	mutex_unlock(&sctx->wr_lock);
3729 
3730 	blk_finish_plug(&plug);
3731 	btrfs_free_path(path);
3732 
3733 	if (sctx->is_dev_replace && ret >= 0) {
3734 		int ret2;
3735 
3736 		ret2 = sync_write_pointer_for_zoned(sctx,
3737 				chunk_logical + offset,
3738 				map->stripes[stripe_index].physical,
3739 				physical_end);
3740 		if (ret2)
3741 			ret = ret2;
3742 	}
3743 
3744 	return ret < 0 ? ret : 0;
3745 }
3746 
3747 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx,
3748 					  struct btrfs_block_group *bg,
3749 					  struct btrfs_device *scrub_dev,
3750 					  u64 dev_offset,
3751 					  u64 dev_extent_len)
3752 {
3753 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3754 	struct extent_map_tree *map_tree = &fs_info->mapping_tree;
3755 	struct map_lookup *map;
3756 	struct extent_map *em;
3757 	int i;
3758 	int ret = 0;
3759 
3760 	read_lock(&map_tree->lock);
3761 	em = lookup_extent_mapping(map_tree, bg->start, bg->length);
3762 	read_unlock(&map_tree->lock);
3763 
3764 	if (!em) {
3765 		/*
3766 		 * Might have been an unused block group deleted by the cleaner
3767 		 * kthread or relocation.
3768 		 */
3769 		spin_lock(&bg->lock);
3770 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags))
3771 			ret = -EINVAL;
3772 		spin_unlock(&bg->lock);
3773 
3774 		return ret;
3775 	}
3776 	if (em->start != bg->start)
3777 		goto out;
3778 	if (em->len < dev_extent_len)
3779 		goto out;
3780 
3781 	map = em->map_lookup;
3782 	for (i = 0; i < map->num_stripes; ++i) {
3783 		if (map->stripes[i].dev->bdev == scrub_dev->bdev &&
3784 		    map->stripes[i].physical == dev_offset) {
3785 			ret = scrub_stripe(sctx, bg, em, scrub_dev, i);
3786 			if (ret)
3787 				goto out;
3788 		}
3789 	}
3790 out:
3791 	free_extent_map(em);
3792 
3793 	return ret;
3794 }
3795 
3796 static int finish_extent_writes_for_zoned(struct btrfs_root *root,
3797 					  struct btrfs_block_group *cache)
3798 {
3799 	struct btrfs_fs_info *fs_info = cache->fs_info;
3800 	struct btrfs_trans_handle *trans;
3801 
3802 	if (!btrfs_is_zoned(fs_info))
3803 		return 0;
3804 
3805 	btrfs_wait_block_group_reservations(cache);
3806 	btrfs_wait_nocow_writers(cache);
3807 	btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length);
3808 
3809 	trans = btrfs_join_transaction(root);
3810 	if (IS_ERR(trans))
3811 		return PTR_ERR(trans);
3812 	return btrfs_commit_transaction(trans);
3813 }
3814 
3815 static noinline_for_stack
3816 int scrub_enumerate_chunks(struct scrub_ctx *sctx,
3817 			   struct btrfs_device *scrub_dev, u64 start, u64 end)
3818 {
3819 	struct btrfs_dev_extent *dev_extent = NULL;
3820 	struct btrfs_path *path;
3821 	struct btrfs_fs_info *fs_info = sctx->fs_info;
3822 	struct btrfs_root *root = fs_info->dev_root;
3823 	u64 chunk_offset;
3824 	int ret = 0;
3825 	int ro_set;
3826 	int slot;
3827 	struct extent_buffer *l;
3828 	struct btrfs_key key;
3829 	struct btrfs_key found_key;
3830 	struct btrfs_block_group *cache;
3831 	struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace;
3832 
3833 	path = btrfs_alloc_path();
3834 	if (!path)
3835 		return -ENOMEM;
3836 
3837 	path->reada = READA_FORWARD;
3838 	path->search_commit_root = 1;
3839 	path->skip_locking = 1;
3840 
3841 	key.objectid = scrub_dev->devid;
3842 	key.offset = 0ull;
3843 	key.type = BTRFS_DEV_EXTENT_KEY;
3844 
3845 	while (1) {
3846 		u64 dev_extent_len;
3847 
3848 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3849 		if (ret < 0)
3850 			break;
3851 		if (ret > 0) {
3852 			if (path->slots[0] >=
3853 			    btrfs_header_nritems(path->nodes[0])) {
3854 				ret = btrfs_next_leaf(root, path);
3855 				if (ret < 0)
3856 					break;
3857 				if (ret > 0) {
3858 					ret = 0;
3859 					break;
3860 				}
3861 			} else {
3862 				ret = 0;
3863 			}
3864 		}
3865 
3866 		l = path->nodes[0];
3867 		slot = path->slots[0];
3868 
3869 		btrfs_item_key_to_cpu(l, &found_key, slot);
3870 
3871 		if (found_key.objectid != scrub_dev->devid)
3872 			break;
3873 
3874 		if (found_key.type != BTRFS_DEV_EXTENT_KEY)
3875 			break;
3876 
3877 		if (found_key.offset >= end)
3878 			break;
3879 
3880 		if (found_key.offset < key.offset)
3881 			break;
3882 
3883 		dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent);
3884 		dev_extent_len = btrfs_dev_extent_length(l, dev_extent);
3885 
3886 		if (found_key.offset + dev_extent_len <= start)
3887 			goto skip;
3888 
3889 		chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent);
3890 
3891 		/*
3892 		 * get a reference on the corresponding block group to prevent
3893 		 * the chunk from going away while we scrub it
3894 		 */
3895 		cache = btrfs_lookup_block_group(fs_info, chunk_offset);
3896 
3897 		/* some chunks are removed but not committed to disk yet,
3898 		 * continue scrubbing */
3899 		if (!cache)
3900 			goto skip;
3901 
3902 		ASSERT(cache->start <= chunk_offset);
3903 		/*
3904 		 * We are using the commit root to search for device extents, so
3905 		 * that means we could have found a device extent item from a
3906 		 * block group that was deleted in the current transaction. The
3907 		 * logical start offset of the deleted block group, stored at
3908 		 * @chunk_offset, might be part of the logical address range of
3909 		 * a new block group (which uses different physical extents).
3910 		 * In this case btrfs_lookup_block_group() has returned the new
3911 		 * block group, and its start address is less than @chunk_offset.
3912 		 *
3913 		 * We skip such new block groups, because it's pointless to
3914 		 * process them, as we won't find their extents because we search
3915 		 * for them using the commit root of the extent tree. For a device
3916 		 * replace it's also fine to skip it, we won't miss copying them
3917 		 * to the target device because we have the write duplication
3918 		 * setup through the regular write path (by btrfs_map_block()),
3919 		 * and we have committed a transaction when we started the device
3920 		 * replace, right after setting up the device replace state.
3921 		 */
3922 		if (cache->start < chunk_offset) {
3923 			btrfs_put_block_group(cache);
3924 			goto skip;
3925 		}
3926 
3927 		if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) {
3928 			if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) {
3929 				btrfs_put_block_group(cache);
3930 				goto skip;
3931 			}
3932 		}
3933 
3934 		/*
3935 		 * Make sure that while we are scrubbing the corresponding block
3936 		 * group doesn't get its logical address and its device extents
3937 		 * reused for another block group, which can possibly be of a
3938 		 * different type and different profile. We do this to prevent
3939 		 * false error detections and crashes due to bogus attempts to
3940 		 * repair extents.
3941 		 */
3942 		spin_lock(&cache->lock);
3943 		if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) {
3944 			spin_unlock(&cache->lock);
3945 			btrfs_put_block_group(cache);
3946 			goto skip;
3947 		}
3948 		btrfs_freeze_block_group(cache);
3949 		spin_unlock(&cache->lock);
3950 
3951 		/*
3952 		 * we need call btrfs_inc_block_group_ro() with scrubs_paused,
3953 		 * to avoid deadlock caused by:
3954 		 * btrfs_inc_block_group_ro()
3955 		 * -> btrfs_wait_for_commit()
3956 		 * -> btrfs_commit_transaction()
3957 		 * -> btrfs_scrub_pause()
3958 		 */
3959 		scrub_pause_on(fs_info);
3960 
3961 		/*
3962 		 * Don't do chunk preallocation for scrub.
3963 		 *
3964 		 * This is especially important for SYSTEM bgs, or we can hit
3965 		 * -EFBIG from btrfs_finish_chunk_alloc() like:
3966 		 * 1. The only SYSTEM bg is marked RO.
3967 		 *    Since SYSTEM bg is small, that's pretty common.
3968 		 * 2. New SYSTEM bg will be allocated
3969 		 *    Due to regular version will allocate new chunk.
3970 		 * 3. New SYSTEM bg is empty and will get cleaned up
3971 		 *    Before cleanup really happens, it's marked RO again.
3972 		 * 4. Empty SYSTEM bg get scrubbed
3973 		 *    We go back to 2.
3974 		 *
3975 		 * This can easily boost the amount of SYSTEM chunks if cleaner
3976 		 * thread can't be triggered fast enough, and use up all space
3977 		 * of btrfs_super_block::sys_chunk_array
3978 		 *
3979 		 * While for dev replace, we need to try our best to mark block
3980 		 * group RO, to prevent race between:
3981 		 * - Write duplication
3982 		 *   Contains latest data
3983 		 * - Scrub copy
3984 		 *   Contains data from commit tree
3985 		 *
3986 		 * If target block group is not marked RO, nocow writes can
3987 		 * be overwritten by scrub copy, causing data corruption.
3988 		 * So for dev-replace, it's not allowed to continue if a block
3989 		 * group is not RO.
3990 		 */
3991 		ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace);
3992 		if (!ret && sctx->is_dev_replace) {
3993 			ret = finish_extent_writes_for_zoned(root, cache);
3994 			if (ret) {
3995 				btrfs_dec_block_group_ro(cache);
3996 				scrub_pause_off(fs_info);
3997 				btrfs_put_block_group(cache);
3998 				break;
3999 			}
4000 		}
4001 
4002 		if (ret == 0) {
4003 			ro_set = 1;
4004 		} else if (ret == -ENOSPC && !sctx->is_dev_replace) {
4005 			/*
4006 			 * btrfs_inc_block_group_ro return -ENOSPC when it
4007 			 * failed in creating new chunk for metadata.
4008 			 * It is not a problem for scrub, because
4009 			 * metadata are always cowed, and our scrub paused
4010 			 * commit_transactions.
4011 			 */
4012 			ro_set = 0;
4013 		} else if (ret == -ETXTBSY) {
4014 			btrfs_warn(fs_info,
4015 		   "skipping scrub of block group %llu due to active swapfile",
4016 				   cache->start);
4017 			scrub_pause_off(fs_info);
4018 			ret = 0;
4019 			goto skip_unfreeze;
4020 		} else {
4021 			btrfs_warn(fs_info,
4022 				   "failed setting block group ro: %d", ret);
4023 			btrfs_unfreeze_block_group(cache);
4024 			btrfs_put_block_group(cache);
4025 			scrub_pause_off(fs_info);
4026 			break;
4027 		}
4028 
4029 		/*
4030 		 * Now the target block is marked RO, wait for nocow writes to
4031 		 * finish before dev-replace.
4032 		 * COW is fine, as COW never overwrites extents in commit tree.
4033 		 */
4034 		if (sctx->is_dev_replace) {
4035 			btrfs_wait_nocow_writers(cache);
4036 			btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start,
4037 					cache->length);
4038 		}
4039 
4040 		scrub_pause_off(fs_info);
4041 		down_write(&dev_replace->rwsem);
4042 		dev_replace->cursor_right = found_key.offset + dev_extent_len;
4043 		dev_replace->cursor_left = found_key.offset;
4044 		dev_replace->item_needs_writeback = 1;
4045 		up_write(&dev_replace->rwsem);
4046 
4047 		ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset,
4048 				  dev_extent_len);
4049 
4050 		/*
4051 		 * flush, submit all pending read and write bios, afterwards
4052 		 * wait for them.
4053 		 * Note that in the dev replace case, a read request causes
4054 		 * write requests that are submitted in the read completion
4055 		 * worker. Therefore in the current situation, it is required
4056 		 * that all write requests are flushed, so that all read and
4057 		 * write requests are really completed when bios_in_flight
4058 		 * changes to 0.
4059 		 */
4060 		sctx->flush_all_writes = true;
4061 		scrub_submit(sctx);
4062 		mutex_lock(&sctx->wr_lock);
4063 		scrub_wr_submit(sctx);
4064 		mutex_unlock(&sctx->wr_lock);
4065 
4066 		wait_event(sctx->list_wait,
4067 			   atomic_read(&sctx->bios_in_flight) == 0);
4068 
4069 		scrub_pause_on(fs_info);
4070 
4071 		/*
4072 		 * must be called before we decrease @scrub_paused.
4073 		 * make sure we don't block transaction commit while
4074 		 * we are waiting pending workers finished.
4075 		 */
4076 		wait_event(sctx->list_wait,
4077 			   atomic_read(&sctx->workers_pending) == 0);
4078 		sctx->flush_all_writes = false;
4079 
4080 		scrub_pause_off(fs_info);
4081 
4082 		if (sctx->is_dev_replace &&
4083 		    !btrfs_finish_block_group_to_copy(dev_replace->srcdev,
4084 						      cache, found_key.offset))
4085 			ro_set = 0;
4086 
4087 		down_write(&dev_replace->rwsem);
4088 		dev_replace->cursor_left = dev_replace->cursor_right;
4089 		dev_replace->item_needs_writeback = 1;
4090 		up_write(&dev_replace->rwsem);
4091 
4092 		if (ro_set)
4093 			btrfs_dec_block_group_ro(cache);
4094 
4095 		/*
4096 		 * We might have prevented the cleaner kthread from deleting
4097 		 * this block group if it was already unused because we raced
4098 		 * and set it to RO mode first. So add it back to the unused
4099 		 * list, otherwise it might not ever be deleted unless a manual
4100 		 * balance is triggered or it becomes used and unused again.
4101 		 */
4102 		spin_lock(&cache->lock);
4103 		if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) &&
4104 		    !cache->ro && cache->reserved == 0 && cache->used == 0) {
4105 			spin_unlock(&cache->lock);
4106 			if (btrfs_test_opt(fs_info, DISCARD_ASYNC))
4107 				btrfs_discard_queue_work(&fs_info->discard_ctl,
4108 							 cache);
4109 			else
4110 				btrfs_mark_bg_unused(cache);
4111 		} else {
4112 			spin_unlock(&cache->lock);
4113 		}
4114 skip_unfreeze:
4115 		btrfs_unfreeze_block_group(cache);
4116 		btrfs_put_block_group(cache);
4117 		if (ret)
4118 			break;
4119 		if (sctx->is_dev_replace &&
4120 		    atomic64_read(&dev_replace->num_write_errors) > 0) {
4121 			ret = -EIO;
4122 			break;
4123 		}
4124 		if (sctx->stat.malloc_errors > 0) {
4125 			ret = -ENOMEM;
4126 			break;
4127 		}
4128 skip:
4129 		key.offset = found_key.offset + dev_extent_len;
4130 		btrfs_release_path(path);
4131 	}
4132 
4133 	btrfs_free_path(path);
4134 
4135 	return ret;
4136 }
4137 
4138 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx,
4139 					   struct btrfs_device *scrub_dev)
4140 {
4141 	int	i;
4142 	u64	bytenr;
4143 	u64	gen;
4144 	int	ret;
4145 	struct btrfs_fs_info *fs_info = sctx->fs_info;
4146 
4147 	if (BTRFS_FS_ERROR(fs_info))
4148 		return -EROFS;
4149 
4150 	/* Seed devices of a new filesystem has their own generation. */
4151 	if (scrub_dev->fs_devices != fs_info->fs_devices)
4152 		gen = scrub_dev->generation;
4153 	else
4154 		gen = fs_info->last_trans_committed;
4155 
4156 	for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
4157 		bytenr = btrfs_sb_offset(i);
4158 		if (bytenr + BTRFS_SUPER_INFO_SIZE >
4159 		    scrub_dev->commit_total_bytes)
4160 			break;
4161 		if (!btrfs_check_super_location(scrub_dev, bytenr))
4162 			continue;
4163 
4164 		ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr,
4165 				    scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i,
4166 				    NULL, bytenr);
4167 		if (ret)
4168 			return ret;
4169 	}
4170 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4171 
4172 	return 0;
4173 }
4174 
4175 static void scrub_workers_put(struct btrfs_fs_info *fs_info)
4176 {
4177 	if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt,
4178 					&fs_info->scrub_lock)) {
4179 		struct workqueue_struct *scrub_workers = fs_info->scrub_workers;
4180 		struct workqueue_struct *scrub_wr_comp =
4181 						fs_info->scrub_wr_completion_workers;
4182 		struct workqueue_struct *scrub_parity =
4183 						fs_info->scrub_parity_workers;
4184 
4185 		fs_info->scrub_workers = NULL;
4186 		fs_info->scrub_wr_completion_workers = NULL;
4187 		fs_info->scrub_parity_workers = NULL;
4188 		mutex_unlock(&fs_info->scrub_lock);
4189 
4190 		if (scrub_workers)
4191 			destroy_workqueue(scrub_workers);
4192 		if (scrub_wr_comp)
4193 			destroy_workqueue(scrub_wr_comp);
4194 		if (scrub_parity)
4195 			destroy_workqueue(scrub_parity);
4196 	}
4197 }
4198 
4199 /*
4200  * get a reference count on fs_info->scrub_workers. start worker if necessary
4201  */
4202 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info,
4203 						int is_dev_replace)
4204 {
4205 	struct workqueue_struct *scrub_workers = NULL;
4206 	struct workqueue_struct *scrub_wr_comp = NULL;
4207 	struct workqueue_struct *scrub_parity = NULL;
4208 	unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND;
4209 	int max_active = fs_info->thread_pool_size;
4210 	int ret = -ENOMEM;
4211 
4212 	if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt))
4213 		return 0;
4214 
4215 	scrub_workers = alloc_workqueue("btrfs-scrub", flags,
4216 					is_dev_replace ? 1 : max_active);
4217 	if (!scrub_workers)
4218 		goto fail_scrub_workers;
4219 
4220 	scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active);
4221 	if (!scrub_wr_comp)
4222 		goto fail_scrub_wr_completion_workers;
4223 
4224 	scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active);
4225 	if (!scrub_parity)
4226 		goto fail_scrub_parity_workers;
4227 
4228 	mutex_lock(&fs_info->scrub_lock);
4229 	if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) {
4230 		ASSERT(fs_info->scrub_workers == NULL &&
4231 		       fs_info->scrub_wr_completion_workers == NULL &&
4232 		       fs_info->scrub_parity_workers == NULL);
4233 		fs_info->scrub_workers = scrub_workers;
4234 		fs_info->scrub_wr_completion_workers = scrub_wr_comp;
4235 		fs_info->scrub_parity_workers = scrub_parity;
4236 		refcount_set(&fs_info->scrub_workers_refcnt, 1);
4237 		mutex_unlock(&fs_info->scrub_lock);
4238 		return 0;
4239 	}
4240 	/* Other thread raced in and created the workers for us */
4241 	refcount_inc(&fs_info->scrub_workers_refcnt);
4242 	mutex_unlock(&fs_info->scrub_lock);
4243 
4244 	ret = 0;
4245 	destroy_workqueue(scrub_parity);
4246 fail_scrub_parity_workers:
4247 	destroy_workqueue(scrub_wr_comp);
4248 fail_scrub_wr_completion_workers:
4249 	destroy_workqueue(scrub_workers);
4250 fail_scrub_workers:
4251 	return ret;
4252 }
4253 
4254 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start,
4255 		    u64 end, struct btrfs_scrub_progress *progress,
4256 		    int readonly, int is_dev_replace)
4257 {
4258 	struct btrfs_dev_lookup_args args = { .devid = devid };
4259 	struct scrub_ctx *sctx;
4260 	int ret;
4261 	struct btrfs_device *dev;
4262 	unsigned int nofs_flag;
4263 	bool need_commit = false;
4264 
4265 	if (btrfs_fs_closing(fs_info))
4266 		return -EAGAIN;
4267 
4268 	/* At mount time we have ensured nodesize is in the range of [4K, 64K]. */
4269 	ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN);
4270 
4271 	/*
4272 	 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible
4273 	 * value (max nodesize / min sectorsize), thus nodesize should always
4274 	 * be fine.
4275 	 */
4276 	ASSERT(fs_info->nodesize <=
4277 	       SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits);
4278 
4279 	/* Allocate outside of device_list_mutex */
4280 	sctx = scrub_setup_ctx(fs_info, is_dev_replace);
4281 	if (IS_ERR(sctx))
4282 		return PTR_ERR(sctx);
4283 
4284 	ret = scrub_workers_get(fs_info, is_dev_replace);
4285 	if (ret)
4286 		goto out_free_ctx;
4287 
4288 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4289 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4290 	if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) &&
4291 		     !is_dev_replace)) {
4292 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4293 		ret = -ENODEV;
4294 		goto out;
4295 	}
4296 
4297 	if (!is_dev_replace && !readonly &&
4298 	    !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) {
4299 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4300 		btrfs_err_in_rcu(fs_info,
4301 			"scrub on devid %llu: filesystem on %s is not writable",
4302 				 devid, rcu_str_deref(dev->name));
4303 		ret = -EROFS;
4304 		goto out;
4305 	}
4306 
4307 	mutex_lock(&fs_info->scrub_lock);
4308 	if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) ||
4309 	    test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) {
4310 		mutex_unlock(&fs_info->scrub_lock);
4311 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4312 		ret = -EIO;
4313 		goto out;
4314 	}
4315 
4316 	down_read(&fs_info->dev_replace.rwsem);
4317 	if (dev->scrub_ctx ||
4318 	    (!is_dev_replace &&
4319 	     btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) {
4320 		up_read(&fs_info->dev_replace.rwsem);
4321 		mutex_unlock(&fs_info->scrub_lock);
4322 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4323 		ret = -EINPROGRESS;
4324 		goto out;
4325 	}
4326 	up_read(&fs_info->dev_replace.rwsem);
4327 
4328 	sctx->readonly = readonly;
4329 	dev->scrub_ctx = sctx;
4330 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4331 
4332 	/*
4333 	 * checking @scrub_pause_req here, we can avoid
4334 	 * race between committing transaction and scrubbing.
4335 	 */
4336 	__scrub_blocked_if_needed(fs_info);
4337 	atomic_inc(&fs_info->scrubs_running);
4338 	mutex_unlock(&fs_info->scrub_lock);
4339 
4340 	/*
4341 	 * In order to avoid deadlock with reclaim when there is a transaction
4342 	 * trying to pause scrub, make sure we use GFP_NOFS for all the
4343 	 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity()
4344 	 * invoked by our callees. The pausing request is done when the
4345 	 * transaction commit starts, and it blocks the transaction until scrub
4346 	 * is paused (done at specific points at scrub_stripe() or right above
4347 	 * before incrementing fs_info->scrubs_running).
4348 	 */
4349 	nofs_flag = memalloc_nofs_save();
4350 	if (!is_dev_replace) {
4351 		u64 old_super_errors;
4352 
4353 		spin_lock(&sctx->stat_lock);
4354 		old_super_errors = sctx->stat.super_errors;
4355 		spin_unlock(&sctx->stat_lock);
4356 
4357 		btrfs_info(fs_info, "scrub: started on devid %llu", devid);
4358 		/*
4359 		 * by holding device list mutex, we can
4360 		 * kick off writing super in log tree sync.
4361 		 */
4362 		mutex_lock(&fs_info->fs_devices->device_list_mutex);
4363 		ret = scrub_supers(sctx, dev);
4364 		mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4365 
4366 		spin_lock(&sctx->stat_lock);
4367 		/*
4368 		 * Super block errors found, but we can not commit transaction
4369 		 * at current context, since btrfs_commit_transaction() needs
4370 		 * to pause the current running scrub (hold by ourselves).
4371 		 */
4372 		if (sctx->stat.super_errors > old_super_errors && !sctx->readonly)
4373 			need_commit = true;
4374 		spin_unlock(&sctx->stat_lock);
4375 	}
4376 
4377 	if (!ret)
4378 		ret = scrub_enumerate_chunks(sctx, dev, start, end);
4379 	memalloc_nofs_restore(nofs_flag);
4380 
4381 	wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0);
4382 	atomic_dec(&fs_info->scrubs_running);
4383 	wake_up(&fs_info->scrub_pause_wait);
4384 
4385 	wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0);
4386 
4387 	if (progress)
4388 		memcpy(progress, &sctx->stat, sizeof(*progress));
4389 
4390 	if (!is_dev_replace)
4391 		btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d",
4392 			ret ? "not finished" : "finished", devid, ret);
4393 
4394 	mutex_lock(&fs_info->scrub_lock);
4395 	dev->scrub_ctx = NULL;
4396 	mutex_unlock(&fs_info->scrub_lock);
4397 
4398 	scrub_workers_put(fs_info);
4399 	scrub_put_ctx(sctx);
4400 
4401 	/*
4402 	 * We found some super block errors before, now try to force a
4403 	 * transaction commit, as scrub has finished.
4404 	 */
4405 	if (need_commit) {
4406 		struct btrfs_trans_handle *trans;
4407 
4408 		trans = btrfs_start_transaction(fs_info->tree_root, 0);
4409 		if (IS_ERR(trans)) {
4410 			ret = PTR_ERR(trans);
4411 			btrfs_err(fs_info,
4412 	"scrub: failed to start transaction to fix super block errors: %d", ret);
4413 			return ret;
4414 		}
4415 		ret = btrfs_commit_transaction(trans);
4416 		if (ret < 0)
4417 			btrfs_err(fs_info,
4418 	"scrub: failed to commit transaction to fix super block errors: %d", ret);
4419 	}
4420 	return ret;
4421 out:
4422 	scrub_workers_put(fs_info);
4423 out_free_ctx:
4424 	scrub_free_ctx(sctx);
4425 
4426 	return ret;
4427 }
4428 
4429 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info)
4430 {
4431 	mutex_lock(&fs_info->scrub_lock);
4432 	atomic_inc(&fs_info->scrub_pause_req);
4433 	while (atomic_read(&fs_info->scrubs_paused) !=
4434 	       atomic_read(&fs_info->scrubs_running)) {
4435 		mutex_unlock(&fs_info->scrub_lock);
4436 		wait_event(fs_info->scrub_pause_wait,
4437 			   atomic_read(&fs_info->scrubs_paused) ==
4438 			   atomic_read(&fs_info->scrubs_running));
4439 		mutex_lock(&fs_info->scrub_lock);
4440 	}
4441 	mutex_unlock(&fs_info->scrub_lock);
4442 }
4443 
4444 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info)
4445 {
4446 	atomic_dec(&fs_info->scrub_pause_req);
4447 	wake_up(&fs_info->scrub_pause_wait);
4448 }
4449 
4450 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info)
4451 {
4452 	mutex_lock(&fs_info->scrub_lock);
4453 	if (!atomic_read(&fs_info->scrubs_running)) {
4454 		mutex_unlock(&fs_info->scrub_lock);
4455 		return -ENOTCONN;
4456 	}
4457 
4458 	atomic_inc(&fs_info->scrub_cancel_req);
4459 	while (atomic_read(&fs_info->scrubs_running)) {
4460 		mutex_unlock(&fs_info->scrub_lock);
4461 		wait_event(fs_info->scrub_pause_wait,
4462 			   atomic_read(&fs_info->scrubs_running) == 0);
4463 		mutex_lock(&fs_info->scrub_lock);
4464 	}
4465 	atomic_dec(&fs_info->scrub_cancel_req);
4466 	mutex_unlock(&fs_info->scrub_lock);
4467 
4468 	return 0;
4469 }
4470 
4471 int btrfs_scrub_cancel_dev(struct btrfs_device *dev)
4472 {
4473 	struct btrfs_fs_info *fs_info = dev->fs_info;
4474 	struct scrub_ctx *sctx;
4475 
4476 	mutex_lock(&fs_info->scrub_lock);
4477 	sctx = dev->scrub_ctx;
4478 	if (!sctx) {
4479 		mutex_unlock(&fs_info->scrub_lock);
4480 		return -ENOTCONN;
4481 	}
4482 	atomic_inc(&sctx->cancel_req);
4483 	while (dev->scrub_ctx) {
4484 		mutex_unlock(&fs_info->scrub_lock);
4485 		wait_event(fs_info->scrub_pause_wait,
4486 			   dev->scrub_ctx == NULL);
4487 		mutex_lock(&fs_info->scrub_lock);
4488 	}
4489 	mutex_unlock(&fs_info->scrub_lock);
4490 
4491 	return 0;
4492 }
4493 
4494 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid,
4495 			 struct btrfs_scrub_progress *progress)
4496 {
4497 	struct btrfs_dev_lookup_args args = { .devid = devid };
4498 	struct btrfs_device *dev;
4499 	struct scrub_ctx *sctx = NULL;
4500 
4501 	mutex_lock(&fs_info->fs_devices->device_list_mutex);
4502 	dev = btrfs_find_device(fs_info->fs_devices, &args);
4503 	if (dev)
4504 		sctx = dev->scrub_ctx;
4505 	if (sctx)
4506 		memcpy(progress, &sctx->stat, sizeof(*progress));
4507 	mutex_unlock(&fs_info->fs_devices->device_list_mutex);
4508 
4509 	return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV;
4510 }
4511 
4512 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info,
4513 				 u64 extent_logical, u32 extent_len,
4514 				 u64 *extent_physical,
4515 				 struct btrfs_device **extent_dev,
4516 				 int *extent_mirror_num)
4517 {
4518 	u64 mapped_length;
4519 	struct btrfs_io_context *bioc = NULL;
4520 	int ret;
4521 
4522 	mapped_length = extent_len;
4523 	ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical,
4524 			      &mapped_length, &bioc, 0);
4525 	if (ret || !bioc || mapped_length < extent_len ||
4526 	    !bioc->stripes[0].dev->bdev) {
4527 		btrfs_put_bioc(bioc);
4528 		return;
4529 	}
4530 
4531 	*extent_physical = bioc->stripes[0].physical;
4532 	*extent_mirror_num = bioc->mirror_num;
4533 	*extent_dev = bioc->stripes[0].dev;
4534 	btrfs_put_bioc(bioc);
4535 }
4536