1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2011, 2012 STRATO. All rights reserved. 4 */ 5 6 #include <linux/blkdev.h> 7 #include <linux/ratelimit.h> 8 #include <linux/sched/mm.h> 9 #include <crypto/hash.h> 10 #include "ctree.h" 11 #include "discard.h" 12 #include "volumes.h" 13 #include "disk-io.h" 14 #include "ordered-data.h" 15 #include "transaction.h" 16 #include "backref.h" 17 #include "extent_io.h" 18 #include "dev-replace.h" 19 #include "check-integrity.h" 20 #include "rcu-string.h" 21 #include "raid56.h" 22 #include "block-group.h" 23 #include "zoned.h" 24 #include "fs.h" 25 #include "accessors.h" 26 #include "file-item.h" 27 #include "scrub.h" 28 29 /* 30 * This is only the first step towards a full-features scrub. It reads all 31 * extent and super block and verifies the checksums. In case a bad checksum 32 * is found or the extent cannot be read, good data will be written back if 33 * any can be found. 34 * 35 * Future enhancements: 36 * - In case an unrepairable extent is encountered, track which files are 37 * affected and report them 38 * - track and record media errors, throw out bad devices 39 * - add a mode to also read unallocated space 40 */ 41 42 struct scrub_block; 43 struct scrub_ctx; 44 45 /* 46 * The following three values only influence the performance. 47 * 48 * The last one configures the number of parallel and outstanding I/O 49 * operations. The first one configures an upper limit for the number 50 * of (dynamically allocated) pages that are added to a bio. 51 */ 52 #define SCRUB_SECTORS_PER_BIO 32 /* 128KiB per bio for 4KiB pages */ 53 #define SCRUB_BIOS_PER_SCTX 64 /* 8MiB per device in flight for 4KiB pages */ 54 55 /* 56 * The following value times PAGE_SIZE needs to be large enough to match the 57 * largest node/leaf/sector size that shall be supported. 58 */ 59 #define SCRUB_MAX_SECTORS_PER_BLOCK (BTRFS_MAX_METADATA_BLOCKSIZE / SZ_4K) 60 61 #define SCRUB_MAX_PAGES (DIV_ROUND_UP(BTRFS_MAX_METADATA_BLOCKSIZE, PAGE_SIZE)) 62 63 /* 64 * Maximum number of mirrors that can be available for all profiles counting 65 * the target device of dev-replace as one. During an active device replace 66 * procedure, the target device of the copy operation is a mirror for the 67 * filesystem data as well that can be used to read data in order to repair 68 * read errors on other disks. 69 * 70 * Current value is derived from RAID1C4 with 4 copies. 71 */ 72 #define BTRFS_MAX_MIRRORS (4 + 1) 73 74 struct scrub_recover { 75 refcount_t refs; 76 struct btrfs_io_context *bioc; 77 u64 map_length; 78 }; 79 80 struct scrub_sector { 81 struct scrub_block *sblock; 82 struct list_head list; 83 u64 flags; /* extent flags */ 84 u64 generation; 85 /* Offset in bytes to @sblock. */ 86 u32 offset; 87 atomic_t refs; 88 unsigned int have_csum:1; 89 unsigned int io_error:1; 90 u8 csum[BTRFS_CSUM_SIZE]; 91 92 struct scrub_recover *recover; 93 }; 94 95 struct scrub_bio { 96 int index; 97 struct scrub_ctx *sctx; 98 struct btrfs_device *dev; 99 struct bio *bio; 100 blk_status_t status; 101 u64 logical; 102 u64 physical; 103 struct scrub_sector *sectors[SCRUB_SECTORS_PER_BIO]; 104 int sector_count; 105 int next_free; 106 struct work_struct work; 107 }; 108 109 struct scrub_block { 110 /* 111 * Each page will have its page::private used to record the logical 112 * bytenr. 113 */ 114 struct page *pages[SCRUB_MAX_PAGES]; 115 struct scrub_sector *sectors[SCRUB_MAX_SECTORS_PER_BLOCK]; 116 struct btrfs_device *dev; 117 /* Logical bytenr of the sblock */ 118 u64 logical; 119 u64 physical; 120 u64 physical_for_dev_replace; 121 /* Length of sblock in bytes */ 122 u32 len; 123 int sector_count; 124 int mirror_num; 125 126 atomic_t outstanding_sectors; 127 refcount_t refs; /* free mem on transition to zero */ 128 struct scrub_ctx *sctx; 129 struct scrub_parity *sparity; 130 struct { 131 unsigned int header_error:1; 132 unsigned int checksum_error:1; 133 unsigned int no_io_error_seen:1; 134 unsigned int generation_error:1; /* also sets header_error */ 135 136 /* The following is for the data used to check parity */ 137 /* It is for the data with checksum */ 138 unsigned int data_corrected:1; 139 }; 140 struct work_struct work; 141 }; 142 143 /* Used for the chunks with parity stripe such RAID5/6 */ 144 struct scrub_parity { 145 struct scrub_ctx *sctx; 146 147 struct btrfs_device *scrub_dev; 148 149 u64 logic_start; 150 151 u64 logic_end; 152 153 int nsectors; 154 155 u32 stripe_len; 156 157 refcount_t refs; 158 159 struct list_head sectors_list; 160 161 /* Work of parity check and repair */ 162 struct work_struct work; 163 164 /* Mark the parity blocks which have data */ 165 unsigned long dbitmap; 166 167 /* 168 * Mark the parity blocks which have data, but errors happen when 169 * read data or check data 170 */ 171 unsigned long ebitmap; 172 }; 173 174 struct scrub_ctx { 175 struct scrub_bio *bios[SCRUB_BIOS_PER_SCTX]; 176 struct btrfs_fs_info *fs_info; 177 int first_free; 178 int curr; 179 atomic_t bios_in_flight; 180 atomic_t workers_pending; 181 spinlock_t list_lock; 182 wait_queue_head_t list_wait; 183 struct list_head csum_list; 184 atomic_t cancel_req; 185 int readonly; 186 int sectors_per_bio; 187 188 /* State of IO submission throttling affecting the associated device */ 189 ktime_t throttle_deadline; 190 u64 throttle_sent; 191 192 int is_dev_replace; 193 u64 write_pointer; 194 195 struct scrub_bio *wr_curr_bio; 196 struct mutex wr_lock; 197 struct btrfs_device *wr_tgtdev; 198 bool flush_all_writes; 199 200 /* 201 * statistics 202 */ 203 struct btrfs_scrub_progress stat; 204 spinlock_t stat_lock; 205 206 /* 207 * Use a ref counter to avoid use-after-free issues. Scrub workers 208 * decrement bios_in_flight and workers_pending and then do a wakeup 209 * on the list_wait wait queue. We must ensure the main scrub task 210 * doesn't free the scrub context before or while the workers are 211 * doing the wakeup() call. 212 */ 213 refcount_t refs; 214 }; 215 216 struct scrub_warning { 217 struct btrfs_path *path; 218 u64 extent_item_size; 219 const char *errstr; 220 u64 physical; 221 u64 logical; 222 struct btrfs_device *dev; 223 }; 224 225 struct full_stripe_lock { 226 struct rb_node node; 227 u64 logical; 228 u64 refs; 229 struct mutex mutex; 230 }; 231 232 #ifndef CONFIG_64BIT 233 /* This structure is for archtectures whose (void *) is smaller than u64 */ 234 struct scrub_page_private { 235 u64 logical; 236 }; 237 #endif 238 239 static int attach_scrub_page_private(struct page *page, u64 logical) 240 { 241 #ifdef CONFIG_64BIT 242 attach_page_private(page, (void *)logical); 243 return 0; 244 #else 245 struct scrub_page_private *spp; 246 247 spp = kmalloc(sizeof(*spp), GFP_KERNEL); 248 if (!spp) 249 return -ENOMEM; 250 spp->logical = logical; 251 attach_page_private(page, (void *)spp); 252 return 0; 253 #endif 254 } 255 256 static void detach_scrub_page_private(struct page *page) 257 { 258 #ifdef CONFIG_64BIT 259 detach_page_private(page); 260 return; 261 #else 262 struct scrub_page_private *spp; 263 264 spp = detach_page_private(page); 265 kfree(spp); 266 return; 267 #endif 268 } 269 270 static struct scrub_block *alloc_scrub_block(struct scrub_ctx *sctx, 271 struct btrfs_device *dev, 272 u64 logical, u64 physical, 273 u64 physical_for_dev_replace, 274 int mirror_num) 275 { 276 struct scrub_block *sblock; 277 278 sblock = kzalloc(sizeof(*sblock), GFP_KERNEL); 279 if (!sblock) 280 return NULL; 281 refcount_set(&sblock->refs, 1); 282 sblock->sctx = sctx; 283 sblock->logical = logical; 284 sblock->physical = physical; 285 sblock->physical_for_dev_replace = physical_for_dev_replace; 286 sblock->dev = dev; 287 sblock->mirror_num = mirror_num; 288 sblock->no_io_error_seen = 1; 289 /* 290 * Scrub_block::pages will be allocated at alloc_scrub_sector() when 291 * the corresponding page is not allocated. 292 */ 293 return sblock; 294 } 295 296 /* 297 * Allocate a new scrub sector and attach it to @sblock. 298 * 299 * Will also allocate new pages for @sblock if needed. 300 */ 301 static struct scrub_sector *alloc_scrub_sector(struct scrub_block *sblock, 302 u64 logical) 303 { 304 const pgoff_t page_index = (logical - sblock->logical) >> PAGE_SHIFT; 305 struct scrub_sector *ssector; 306 307 /* We must never have scrub_block exceed U32_MAX in size. */ 308 ASSERT(logical - sblock->logical < U32_MAX); 309 310 ssector = kzalloc(sizeof(*ssector), GFP_KERNEL); 311 if (!ssector) 312 return NULL; 313 314 /* Allocate a new page if the slot is not allocated */ 315 if (!sblock->pages[page_index]) { 316 int ret; 317 318 sblock->pages[page_index] = alloc_page(GFP_KERNEL); 319 if (!sblock->pages[page_index]) { 320 kfree(ssector); 321 return NULL; 322 } 323 ret = attach_scrub_page_private(sblock->pages[page_index], 324 sblock->logical + (page_index << PAGE_SHIFT)); 325 if (ret < 0) { 326 kfree(ssector); 327 __free_page(sblock->pages[page_index]); 328 sblock->pages[page_index] = NULL; 329 return NULL; 330 } 331 } 332 333 atomic_set(&ssector->refs, 1); 334 ssector->sblock = sblock; 335 /* The sector to be added should not be used */ 336 ASSERT(sblock->sectors[sblock->sector_count] == NULL); 337 ssector->offset = logical - sblock->logical; 338 339 /* The sector count must be smaller than the limit */ 340 ASSERT(sblock->sector_count < SCRUB_MAX_SECTORS_PER_BLOCK); 341 342 sblock->sectors[sblock->sector_count] = ssector; 343 sblock->sector_count++; 344 sblock->len += sblock->sctx->fs_info->sectorsize; 345 346 return ssector; 347 } 348 349 static struct page *scrub_sector_get_page(struct scrub_sector *ssector) 350 { 351 struct scrub_block *sblock = ssector->sblock; 352 pgoff_t index; 353 /* 354 * When calling this function, ssector must be alreaday attached to the 355 * parent sblock. 356 */ 357 ASSERT(sblock); 358 359 /* The range should be inside the sblock range */ 360 ASSERT(ssector->offset < sblock->len); 361 362 index = ssector->offset >> PAGE_SHIFT; 363 ASSERT(index < SCRUB_MAX_PAGES); 364 ASSERT(sblock->pages[index]); 365 ASSERT(PagePrivate(sblock->pages[index])); 366 return sblock->pages[index]; 367 } 368 369 static unsigned int scrub_sector_get_page_offset(struct scrub_sector *ssector) 370 { 371 struct scrub_block *sblock = ssector->sblock; 372 373 /* 374 * When calling this function, ssector must be already attached to the 375 * parent sblock. 376 */ 377 ASSERT(sblock); 378 379 /* The range should be inside the sblock range */ 380 ASSERT(ssector->offset < sblock->len); 381 382 return offset_in_page(ssector->offset); 383 } 384 385 static char *scrub_sector_get_kaddr(struct scrub_sector *ssector) 386 { 387 return page_address(scrub_sector_get_page(ssector)) + 388 scrub_sector_get_page_offset(ssector); 389 } 390 391 static int bio_add_scrub_sector(struct bio *bio, struct scrub_sector *ssector, 392 unsigned int len) 393 { 394 return bio_add_page(bio, scrub_sector_get_page(ssector), len, 395 scrub_sector_get_page_offset(ssector)); 396 } 397 398 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 399 struct scrub_block *sblocks_for_recheck[]); 400 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 401 struct scrub_block *sblock, 402 int retry_failed_mirror); 403 static void scrub_recheck_block_checksum(struct scrub_block *sblock); 404 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 405 struct scrub_block *sblock_good); 406 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, 407 struct scrub_block *sblock_good, 408 int sector_num, int force_write); 409 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock); 410 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, 411 int sector_num); 412 static int scrub_checksum_data(struct scrub_block *sblock); 413 static int scrub_checksum_tree_block(struct scrub_block *sblock); 414 static int scrub_checksum_super(struct scrub_block *sblock); 415 static void scrub_block_put(struct scrub_block *sblock); 416 static void scrub_sector_get(struct scrub_sector *sector); 417 static void scrub_sector_put(struct scrub_sector *sector); 418 static void scrub_parity_get(struct scrub_parity *sparity); 419 static void scrub_parity_put(struct scrub_parity *sparity); 420 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, 421 u64 physical, struct btrfs_device *dev, u64 flags, 422 u64 gen, int mirror_num, u8 *csum, 423 u64 physical_for_dev_replace); 424 static void scrub_bio_end_io(struct bio *bio); 425 static void scrub_bio_end_io_worker(struct work_struct *work); 426 static void scrub_block_complete(struct scrub_block *sblock); 427 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, 428 u64 extent_logical, u32 extent_len, 429 u64 *extent_physical, 430 struct btrfs_device **extent_dev, 431 int *extent_mirror_num); 432 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, 433 struct scrub_sector *sector); 434 static void scrub_wr_submit(struct scrub_ctx *sctx); 435 static void scrub_wr_bio_end_io(struct bio *bio); 436 static void scrub_wr_bio_end_io_worker(struct work_struct *work); 437 static void scrub_put_ctx(struct scrub_ctx *sctx); 438 439 static inline int scrub_is_page_on_raid56(struct scrub_sector *sector) 440 { 441 return sector->recover && 442 (sector->recover->bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK); 443 } 444 445 static void scrub_pending_bio_inc(struct scrub_ctx *sctx) 446 { 447 refcount_inc(&sctx->refs); 448 atomic_inc(&sctx->bios_in_flight); 449 } 450 451 static void scrub_pending_bio_dec(struct scrub_ctx *sctx) 452 { 453 atomic_dec(&sctx->bios_in_flight); 454 wake_up(&sctx->list_wait); 455 scrub_put_ctx(sctx); 456 } 457 458 static void __scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 459 { 460 while (atomic_read(&fs_info->scrub_pause_req)) { 461 mutex_unlock(&fs_info->scrub_lock); 462 wait_event(fs_info->scrub_pause_wait, 463 atomic_read(&fs_info->scrub_pause_req) == 0); 464 mutex_lock(&fs_info->scrub_lock); 465 } 466 } 467 468 static void scrub_pause_on(struct btrfs_fs_info *fs_info) 469 { 470 atomic_inc(&fs_info->scrubs_paused); 471 wake_up(&fs_info->scrub_pause_wait); 472 } 473 474 static void scrub_pause_off(struct btrfs_fs_info *fs_info) 475 { 476 mutex_lock(&fs_info->scrub_lock); 477 __scrub_blocked_if_needed(fs_info); 478 atomic_dec(&fs_info->scrubs_paused); 479 mutex_unlock(&fs_info->scrub_lock); 480 481 wake_up(&fs_info->scrub_pause_wait); 482 } 483 484 static void scrub_blocked_if_needed(struct btrfs_fs_info *fs_info) 485 { 486 scrub_pause_on(fs_info); 487 scrub_pause_off(fs_info); 488 } 489 490 /* 491 * Insert new full stripe lock into full stripe locks tree 492 * 493 * Return pointer to existing or newly inserted full_stripe_lock structure if 494 * everything works well. 495 * Return ERR_PTR(-ENOMEM) if we failed to allocate memory 496 * 497 * NOTE: caller must hold full_stripe_locks_root->lock before calling this 498 * function 499 */ 500 static struct full_stripe_lock *insert_full_stripe_lock( 501 struct btrfs_full_stripe_locks_tree *locks_root, 502 u64 fstripe_logical) 503 { 504 struct rb_node **p; 505 struct rb_node *parent = NULL; 506 struct full_stripe_lock *entry; 507 struct full_stripe_lock *ret; 508 509 lockdep_assert_held(&locks_root->lock); 510 511 p = &locks_root->root.rb_node; 512 while (*p) { 513 parent = *p; 514 entry = rb_entry(parent, struct full_stripe_lock, node); 515 if (fstripe_logical < entry->logical) { 516 p = &(*p)->rb_left; 517 } else if (fstripe_logical > entry->logical) { 518 p = &(*p)->rb_right; 519 } else { 520 entry->refs++; 521 return entry; 522 } 523 } 524 525 /* 526 * Insert new lock. 527 */ 528 ret = kmalloc(sizeof(*ret), GFP_KERNEL); 529 if (!ret) 530 return ERR_PTR(-ENOMEM); 531 ret->logical = fstripe_logical; 532 ret->refs = 1; 533 mutex_init(&ret->mutex); 534 535 rb_link_node(&ret->node, parent, p); 536 rb_insert_color(&ret->node, &locks_root->root); 537 return ret; 538 } 539 540 /* 541 * Search for a full stripe lock of a block group 542 * 543 * Return pointer to existing full stripe lock if found 544 * Return NULL if not found 545 */ 546 static struct full_stripe_lock *search_full_stripe_lock( 547 struct btrfs_full_stripe_locks_tree *locks_root, 548 u64 fstripe_logical) 549 { 550 struct rb_node *node; 551 struct full_stripe_lock *entry; 552 553 lockdep_assert_held(&locks_root->lock); 554 555 node = locks_root->root.rb_node; 556 while (node) { 557 entry = rb_entry(node, struct full_stripe_lock, node); 558 if (fstripe_logical < entry->logical) 559 node = node->rb_left; 560 else if (fstripe_logical > entry->logical) 561 node = node->rb_right; 562 else 563 return entry; 564 } 565 return NULL; 566 } 567 568 /* 569 * Helper to get full stripe logical from a normal bytenr. 570 * 571 * Caller must ensure @cache is a RAID56 block group. 572 */ 573 static u64 get_full_stripe_logical(struct btrfs_block_group *cache, u64 bytenr) 574 { 575 u64 ret; 576 577 /* 578 * Due to chunk item size limit, full stripe length should not be 579 * larger than U32_MAX. Just a sanity check here. 580 */ 581 WARN_ON_ONCE(cache->full_stripe_len >= U32_MAX); 582 583 /* 584 * round_down() can only handle power of 2, while RAID56 full 585 * stripe length can be 64KiB * n, so we need to manually round down. 586 */ 587 ret = div64_u64(bytenr - cache->start, cache->full_stripe_len) * 588 cache->full_stripe_len + cache->start; 589 return ret; 590 } 591 592 /* 593 * Lock a full stripe to avoid concurrency of recovery and read 594 * 595 * It's only used for profiles with parities (RAID5/6), for other profiles it 596 * does nothing. 597 * 598 * Return 0 if we locked full stripe covering @bytenr, with a mutex held. 599 * So caller must call unlock_full_stripe() at the same context. 600 * 601 * Return <0 if encounters error. 602 */ 603 static int lock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 604 bool *locked_ret) 605 { 606 struct btrfs_block_group *bg_cache; 607 struct btrfs_full_stripe_locks_tree *locks_root; 608 struct full_stripe_lock *existing; 609 u64 fstripe_start; 610 int ret = 0; 611 612 *locked_ret = false; 613 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 614 if (!bg_cache) { 615 ASSERT(0); 616 return -ENOENT; 617 } 618 619 /* Profiles not based on parity don't need full stripe lock */ 620 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 621 goto out; 622 locks_root = &bg_cache->full_stripe_locks_root; 623 624 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 625 626 /* Now insert the full stripe lock */ 627 mutex_lock(&locks_root->lock); 628 existing = insert_full_stripe_lock(locks_root, fstripe_start); 629 mutex_unlock(&locks_root->lock); 630 if (IS_ERR(existing)) { 631 ret = PTR_ERR(existing); 632 goto out; 633 } 634 mutex_lock(&existing->mutex); 635 *locked_ret = true; 636 out: 637 btrfs_put_block_group(bg_cache); 638 return ret; 639 } 640 641 /* 642 * Unlock a full stripe. 643 * 644 * NOTE: Caller must ensure it's the same context calling corresponding 645 * lock_full_stripe(). 646 * 647 * Return 0 if we unlock full stripe without problem. 648 * Return <0 for error 649 */ 650 static int unlock_full_stripe(struct btrfs_fs_info *fs_info, u64 bytenr, 651 bool locked) 652 { 653 struct btrfs_block_group *bg_cache; 654 struct btrfs_full_stripe_locks_tree *locks_root; 655 struct full_stripe_lock *fstripe_lock; 656 u64 fstripe_start; 657 bool freeit = false; 658 int ret = 0; 659 660 /* If we didn't acquire full stripe lock, no need to continue */ 661 if (!locked) 662 return 0; 663 664 bg_cache = btrfs_lookup_block_group(fs_info, bytenr); 665 if (!bg_cache) { 666 ASSERT(0); 667 return -ENOENT; 668 } 669 if (!(bg_cache->flags & BTRFS_BLOCK_GROUP_RAID56_MASK)) 670 goto out; 671 672 locks_root = &bg_cache->full_stripe_locks_root; 673 fstripe_start = get_full_stripe_logical(bg_cache, bytenr); 674 675 mutex_lock(&locks_root->lock); 676 fstripe_lock = search_full_stripe_lock(locks_root, fstripe_start); 677 /* Unpaired unlock_full_stripe() detected */ 678 if (!fstripe_lock) { 679 WARN_ON(1); 680 ret = -ENOENT; 681 mutex_unlock(&locks_root->lock); 682 goto out; 683 } 684 685 if (fstripe_lock->refs == 0) { 686 WARN_ON(1); 687 btrfs_warn(fs_info, "full stripe lock at %llu refcount underflow", 688 fstripe_lock->logical); 689 } else { 690 fstripe_lock->refs--; 691 } 692 693 if (fstripe_lock->refs == 0) { 694 rb_erase(&fstripe_lock->node, &locks_root->root); 695 freeit = true; 696 } 697 mutex_unlock(&locks_root->lock); 698 699 mutex_unlock(&fstripe_lock->mutex); 700 if (freeit) 701 kfree(fstripe_lock); 702 out: 703 btrfs_put_block_group(bg_cache); 704 return ret; 705 } 706 707 static void scrub_free_csums(struct scrub_ctx *sctx) 708 { 709 while (!list_empty(&sctx->csum_list)) { 710 struct btrfs_ordered_sum *sum; 711 sum = list_first_entry(&sctx->csum_list, 712 struct btrfs_ordered_sum, list); 713 list_del(&sum->list); 714 kfree(sum); 715 } 716 } 717 718 static noinline_for_stack void scrub_free_ctx(struct scrub_ctx *sctx) 719 { 720 int i; 721 722 if (!sctx) 723 return; 724 725 /* this can happen when scrub is cancelled */ 726 if (sctx->curr != -1) { 727 struct scrub_bio *sbio = sctx->bios[sctx->curr]; 728 729 for (i = 0; i < sbio->sector_count; i++) 730 scrub_block_put(sbio->sectors[i]->sblock); 731 bio_put(sbio->bio); 732 } 733 734 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 735 struct scrub_bio *sbio = sctx->bios[i]; 736 737 if (!sbio) 738 break; 739 kfree(sbio); 740 } 741 742 kfree(sctx->wr_curr_bio); 743 scrub_free_csums(sctx); 744 kfree(sctx); 745 } 746 747 static void scrub_put_ctx(struct scrub_ctx *sctx) 748 { 749 if (refcount_dec_and_test(&sctx->refs)) 750 scrub_free_ctx(sctx); 751 } 752 753 static noinline_for_stack struct scrub_ctx *scrub_setup_ctx( 754 struct btrfs_fs_info *fs_info, int is_dev_replace) 755 { 756 struct scrub_ctx *sctx; 757 int i; 758 759 sctx = kzalloc(sizeof(*sctx), GFP_KERNEL); 760 if (!sctx) 761 goto nomem; 762 refcount_set(&sctx->refs, 1); 763 sctx->is_dev_replace = is_dev_replace; 764 sctx->sectors_per_bio = SCRUB_SECTORS_PER_BIO; 765 sctx->curr = -1; 766 sctx->fs_info = fs_info; 767 INIT_LIST_HEAD(&sctx->csum_list); 768 for (i = 0; i < SCRUB_BIOS_PER_SCTX; ++i) { 769 struct scrub_bio *sbio; 770 771 sbio = kzalloc(sizeof(*sbio), GFP_KERNEL); 772 if (!sbio) 773 goto nomem; 774 sctx->bios[i] = sbio; 775 776 sbio->index = i; 777 sbio->sctx = sctx; 778 sbio->sector_count = 0; 779 INIT_WORK(&sbio->work, scrub_bio_end_io_worker); 780 781 if (i != SCRUB_BIOS_PER_SCTX - 1) 782 sctx->bios[i]->next_free = i + 1; 783 else 784 sctx->bios[i]->next_free = -1; 785 } 786 sctx->first_free = 0; 787 atomic_set(&sctx->bios_in_flight, 0); 788 atomic_set(&sctx->workers_pending, 0); 789 atomic_set(&sctx->cancel_req, 0); 790 791 spin_lock_init(&sctx->list_lock); 792 spin_lock_init(&sctx->stat_lock); 793 init_waitqueue_head(&sctx->list_wait); 794 sctx->throttle_deadline = 0; 795 796 WARN_ON(sctx->wr_curr_bio != NULL); 797 mutex_init(&sctx->wr_lock); 798 sctx->wr_curr_bio = NULL; 799 if (is_dev_replace) { 800 WARN_ON(!fs_info->dev_replace.tgtdev); 801 sctx->wr_tgtdev = fs_info->dev_replace.tgtdev; 802 sctx->flush_all_writes = false; 803 } 804 805 return sctx; 806 807 nomem: 808 scrub_free_ctx(sctx); 809 return ERR_PTR(-ENOMEM); 810 } 811 812 static int scrub_print_warning_inode(u64 inum, u64 offset, u64 root, 813 void *warn_ctx) 814 { 815 u32 nlink; 816 int ret; 817 int i; 818 unsigned nofs_flag; 819 struct extent_buffer *eb; 820 struct btrfs_inode_item *inode_item; 821 struct scrub_warning *swarn = warn_ctx; 822 struct btrfs_fs_info *fs_info = swarn->dev->fs_info; 823 struct inode_fs_paths *ipath = NULL; 824 struct btrfs_root *local_root; 825 struct btrfs_key key; 826 827 local_root = btrfs_get_fs_root(fs_info, root, true); 828 if (IS_ERR(local_root)) { 829 ret = PTR_ERR(local_root); 830 goto err; 831 } 832 833 /* 834 * this makes the path point to (inum INODE_ITEM ioff) 835 */ 836 key.objectid = inum; 837 key.type = BTRFS_INODE_ITEM_KEY; 838 key.offset = 0; 839 840 ret = btrfs_search_slot(NULL, local_root, &key, swarn->path, 0, 0); 841 if (ret) { 842 btrfs_put_root(local_root); 843 btrfs_release_path(swarn->path); 844 goto err; 845 } 846 847 eb = swarn->path->nodes[0]; 848 inode_item = btrfs_item_ptr(eb, swarn->path->slots[0], 849 struct btrfs_inode_item); 850 nlink = btrfs_inode_nlink(eb, inode_item); 851 btrfs_release_path(swarn->path); 852 853 /* 854 * init_path might indirectly call vmalloc, or use GFP_KERNEL. Scrub 855 * uses GFP_NOFS in this context, so we keep it consistent but it does 856 * not seem to be strictly necessary. 857 */ 858 nofs_flag = memalloc_nofs_save(); 859 ipath = init_ipath(4096, local_root, swarn->path); 860 memalloc_nofs_restore(nofs_flag); 861 if (IS_ERR(ipath)) { 862 btrfs_put_root(local_root); 863 ret = PTR_ERR(ipath); 864 ipath = NULL; 865 goto err; 866 } 867 ret = paths_from_inode(inum, ipath); 868 869 if (ret < 0) 870 goto err; 871 872 /* 873 * we deliberately ignore the bit ipath might have been too small to 874 * hold all of the paths here 875 */ 876 for (i = 0; i < ipath->fspath->elem_cnt; ++i) 877 btrfs_warn_in_rcu(fs_info, 878 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu, length %u, links %u (path: %s)", 879 swarn->errstr, swarn->logical, 880 rcu_str_deref(swarn->dev->name), 881 swarn->physical, 882 root, inum, offset, 883 fs_info->sectorsize, nlink, 884 (char *)(unsigned long)ipath->fspath->val[i]); 885 886 btrfs_put_root(local_root); 887 free_ipath(ipath); 888 return 0; 889 890 err: 891 btrfs_warn_in_rcu(fs_info, 892 "%s at logical %llu on dev %s, physical %llu, root %llu, inode %llu, offset %llu: path resolving failed with ret=%d", 893 swarn->errstr, swarn->logical, 894 rcu_str_deref(swarn->dev->name), 895 swarn->physical, 896 root, inum, offset, ret); 897 898 free_ipath(ipath); 899 return 0; 900 } 901 902 static void scrub_print_warning(const char *errstr, struct scrub_block *sblock) 903 { 904 struct btrfs_device *dev; 905 struct btrfs_fs_info *fs_info; 906 struct btrfs_path *path; 907 struct btrfs_key found_key; 908 struct extent_buffer *eb; 909 struct btrfs_extent_item *ei; 910 struct scrub_warning swarn; 911 unsigned long ptr = 0; 912 u64 extent_item_pos; 913 u64 flags = 0; 914 u64 ref_root; 915 u32 item_size; 916 u8 ref_level = 0; 917 int ret; 918 919 WARN_ON(sblock->sector_count < 1); 920 dev = sblock->dev; 921 fs_info = sblock->sctx->fs_info; 922 923 /* Super block error, no need to search extent tree. */ 924 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 925 btrfs_warn_in_rcu(fs_info, "%s on device %s, physical %llu", 926 errstr, rcu_str_deref(dev->name), 927 sblock->physical); 928 return; 929 } 930 path = btrfs_alloc_path(); 931 if (!path) 932 return; 933 934 swarn.physical = sblock->physical; 935 swarn.logical = sblock->logical; 936 swarn.errstr = errstr; 937 swarn.dev = NULL; 938 939 ret = extent_from_logical(fs_info, swarn.logical, path, &found_key, 940 &flags); 941 if (ret < 0) 942 goto out; 943 944 extent_item_pos = swarn.logical - found_key.objectid; 945 swarn.extent_item_size = found_key.offset; 946 947 eb = path->nodes[0]; 948 ei = btrfs_item_ptr(eb, path->slots[0], struct btrfs_extent_item); 949 item_size = btrfs_item_size(eb, path->slots[0]); 950 951 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 952 do { 953 ret = tree_backref_for_extent(&ptr, eb, &found_key, ei, 954 item_size, &ref_root, 955 &ref_level); 956 btrfs_warn_in_rcu(fs_info, 957 "%s at logical %llu on dev %s, physical %llu: metadata %s (level %d) in tree %llu", 958 errstr, swarn.logical, 959 rcu_str_deref(dev->name), 960 swarn.physical, 961 ref_level ? "node" : "leaf", 962 ret < 0 ? -1 : ref_level, 963 ret < 0 ? -1 : ref_root); 964 } while (ret != 1); 965 btrfs_release_path(path); 966 } else { 967 btrfs_release_path(path); 968 swarn.path = path; 969 swarn.dev = dev; 970 iterate_extent_inodes(fs_info, found_key.objectid, 971 extent_item_pos, 1, 972 scrub_print_warning_inode, &swarn, false); 973 } 974 975 out: 976 btrfs_free_path(path); 977 } 978 979 static inline void scrub_get_recover(struct scrub_recover *recover) 980 { 981 refcount_inc(&recover->refs); 982 } 983 984 static inline void scrub_put_recover(struct btrfs_fs_info *fs_info, 985 struct scrub_recover *recover) 986 { 987 if (refcount_dec_and_test(&recover->refs)) { 988 btrfs_bio_counter_dec(fs_info); 989 btrfs_put_bioc(recover->bioc); 990 kfree(recover); 991 } 992 } 993 994 /* 995 * scrub_handle_errored_block gets called when either verification of the 996 * sectors failed or the bio failed to read, e.g. with EIO. In the latter 997 * case, this function handles all sectors in the bio, even though only one 998 * may be bad. 999 * The goal of this function is to repair the errored block by using the 1000 * contents of one of the mirrors. 1001 */ 1002 static int scrub_handle_errored_block(struct scrub_block *sblock_to_check) 1003 { 1004 struct scrub_ctx *sctx = sblock_to_check->sctx; 1005 struct btrfs_device *dev = sblock_to_check->dev; 1006 struct btrfs_fs_info *fs_info; 1007 u64 logical; 1008 unsigned int failed_mirror_index; 1009 unsigned int is_metadata; 1010 unsigned int have_csum; 1011 /* One scrub_block for each mirror */ 1012 struct scrub_block *sblocks_for_recheck[BTRFS_MAX_MIRRORS] = { 0 }; 1013 struct scrub_block *sblock_bad; 1014 int ret; 1015 int mirror_index; 1016 int sector_num; 1017 int success; 1018 bool full_stripe_locked; 1019 unsigned int nofs_flag; 1020 static DEFINE_RATELIMIT_STATE(rs, DEFAULT_RATELIMIT_INTERVAL, 1021 DEFAULT_RATELIMIT_BURST); 1022 1023 BUG_ON(sblock_to_check->sector_count < 1); 1024 fs_info = sctx->fs_info; 1025 if (sblock_to_check->sectors[0]->flags & BTRFS_EXTENT_FLAG_SUPER) { 1026 /* 1027 * If we find an error in a super block, we just report it. 1028 * They will get written with the next transaction commit 1029 * anyway 1030 */ 1031 scrub_print_warning("super block error", sblock_to_check); 1032 spin_lock(&sctx->stat_lock); 1033 ++sctx->stat.super_errors; 1034 spin_unlock(&sctx->stat_lock); 1035 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_CORRUPTION_ERRS); 1036 return 0; 1037 } 1038 logical = sblock_to_check->logical; 1039 ASSERT(sblock_to_check->mirror_num); 1040 failed_mirror_index = sblock_to_check->mirror_num - 1; 1041 is_metadata = !(sblock_to_check->sectors[0]->flags & 1042 BTRFS_EXTENT_FLAG_DATA); 1043 have_csum = sblock_to_check->sectors[0]->have_csum; 1044 1045 if (!sctx->is_dev_replace && btrfs_repair_one_zone(fs_info, logical)) 1046 return 0; 1047 1048 /* 1049 * We must use GFP_NOFS because the scrub task might be waiting for a 1050 * worker task executing this function and in turn a transaction commit 1051 * might be waiting the scrub task to pause (which needs to wait for all 1052 * the worker tasks to complete before pausing). 1053 * We do allocations in the workers through insert_full_stripe_lock() 1054 * and scrub_add_sector_to_wr_bio(), which happens down the call chain of 1055 * this function. 1056 */ 1057 nofs_flag = memalloc_nofs_save(); 1058 /* 1059 * For RAID5/6, race can happen for a different device scrub thread. 1060 * For data corruption, Parity and Data threads will both try 1061 * to recovery the data. 1062 * Race can lead to doubly added csum error, or even unrecoverable 1063 * error. 1064 */ 1065 ret = lock_full_stripe(fs_info, logical, &full_stripe_locked); 1066 if (ret < 0) { 1067 memalloc_nofs_restore(nofs_flag); 1068 spin_lock(&sctx->stat_lock); 1069 if (ret == -ENOMEM) 1070 sctx->stat.malloc_errors++; 1071 sctx->stat.read_errors++; 1072 sctx->stat.uncorrectable_errors++; 1073 spin_unlock(&sctx->stat_lock); 1074 return ret; 1075 } 1076 1077 /* 1078 * read all mirrors one after the other. This includes to 1079 * re-read the extent or metadata block that failed (that was 1080 * the cause that this fixup code is called) another time, 1081 * sector by sector this time in order to know which sectors 1082 * caused I/O errors and which ones are good (for all mirrors). 1083 * It is the goal to handle the situation when more than one 1084 * mirror contains I/O errors, but the errors do not 1085 * overlap, i.e. the data can be repaired by selecting the 1086 * sectors from those mirrors without I/O error on the 1087 * particular sectors. One example (with blocks >= 2 * sectorsize) 1088 * would be that mirror #1 has an I/O error on the first sector, 1089 * the second sector is good, and mirror #2 has an I/O error on 1090 * the second sector, but the first sector is good. 1091 * Then the first sector of the first mirror can be repaired by 1092 * taking the first sector of the second mirror, and the 1093 * second sector of the second mirror can be repaired by 1094 * copying the contents of the 2nd sector of the 1st mirror. 1095 * One more note: if the sectors of one mirror contain I/O 1096 * errors, the checksum cannot be verified. In order to get 1097 * the best data for repairing, the first attempt is to find 1098 * a mirror without I/O errors and with a validated checksum. 1099 * Only if this is not possible, the sectors are picked from 1100 * mirrors with I/O errors without considering the checksum. 1101 * If the latter is the case, at the end, the checksum of the 1102 * repaired area is verified in order to correctly maintain 1103 * the statistics. 1104 */ 1105 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { 1106 /* 1107 * Note: the two members refs and outstanding_sectors are not 1108 * used in the blocks that are used for the recheck procedure. 1109 * 1110 * But alloc_scrub_block() will initialize sblock::ref anyway, 1111 * so we can use scrub_block_put() to clean them up. 1112 * 1113 * And here we don't setup the physical/dev for the sblock yet, 1114 * they will be correctly initialized in scrub_setup_recheck_block(). 1115 */ 1116 sblocks_for_recheck[mirror_index] = alloc_scrub_block(sctx, NULL, 1117 logical, 0, 0, mirror_index); 1118 if (!sblocks_for_recheck[mirror_index]) { 1119 spin_lock(&sctx->stat_lock); 1120 sctx->stat.malloc_errors++; 1121 sctx->stat.read_errors++; 1122 sctx->stat.uncorrectable_errors++; 1123 spin_unlock(&sctx->stat_lock); 1124 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1125 goto out; 1126 } 1127 } 1128 1129 /* Setup the context, map the logical blocks and alloc the sectors */ 1130 ret = scrub_setup_recheck_block(sblock_to_check, sblocks_for_recheck); 1131 if (ret) { 1132 spin_lock(&sctx->stat_lock); 1133 sctx->stat.read_errors++; 1134 sctx->stat.uncorrectable_errors++; 1135 spin_unlock(&sctx->stat_lock); 1136 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1137 goto out; 1138 } 1139 BUG_ON(failed_mirror_index >= BTRFS_MAX_MIRRORS); 1140 sblock_bad = sblocks_for_recheck[failed_mirror_index]; 1141 1142 /* build and submit the bios for the failed mirror, check checksums */ 1143 scrub_recheck_block(fs_info, sblock_bad, 1); 1144 1145 if (!sblock_bad->header_error && !sblock_bad->checksum_error && 1146 sblock_bad->no_io_error_seen) { 1147 /* 1148 * The error disappeared after reading sector by sector, or 1149 * the area was part of a huge bio and other parts of the 1150 * bio caused I/O errors, or the block layer merged several 1151 * read requests into one and the error is caused by a 1152 * different bio (usually one of the two latter cases is 1153 * the cause) 1154 */ 1155 spin_lock(&sctx->stat_lock); 1156 sctx->stat.unverified_errors++; 1157 sblock_to_check->data_corrected = 1; 1158 spin_unlock(&sctx->stat_lock); 1159 1160 if (sctx->is_dev_replace) 1161 scrub_write_block_to_dev_replace(sblock_bad); 1162 goto out; 1163 } 1164 1165 if (!sblock_bad->no_io_error_seen) { 1166 spin_lock(&sctx->stat_lock); 1167 sctx->stat.read_errors++; 1168 spin_unlock(&sctx->stat_lock); 1169 if (__ratelimit(&rs)) 1170 scrub_print_warning("i/o error", sblock_to_check); 1171 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_READ_ERRS); 1172 } else if (sblock_bad->checksum_error) { 1173 spin_lock(&sctx->stat_lock); 1174 sctx->stat.csum_errors++; 1175 spin_unlock(&sctx->stat_lock); 1176 if (__ratelimit(&rs)) 1177 scrub_print_warning("checksum error", sblock_to_check); 1178 btrfs_dev_stat_inc_and_print(dev, 1179 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1180 } else if (sblock_bad->header_error) { 1181 spin_lock(&sctx->stat_lock); 1182 sctx->stat.verify_errors++; 1183 spin_unlock(&sctx->stat_lock); 1184 if (__ratelimit(&rs)) 1185 scrub_print_warning("checksum/header error", 1186 sblock_to_check); 1187 if (sblock_bad->generation_error) 1188 btrfs_dev_stat_inc_and_print(dev, 1189 BTRFS_DEV_STAT_GENERATION_ERRS); 1190 else 1191 btrfs_dev_stat_inc_and_print(dev, 1192 BTRFS_DEV_STAT_CORRUPTION_ERRS); 1193 } 1194 1195 if (sctx->readonly) { 1196 ASSERT(!sctx->is_dev_replace); 1197 goto out; 1198 } 1199 1200 /* 1201 * now build and submit the bios for the other mirrors, check 1202 * checksums. 1203 * First try to pick the mirror which is completely without I/O 1204 * errors and also does not have a checksum error. 1205 * If one is found, and if a checksum is present, the full block 1206 * that is known to contain an error is rewritten. Afterwards 1207 * the block is known to be corrected. 1208 * If a mirror is found which is completely correct, and no 1209 * checksum is present, only those sectors are rewritten that had 1210 * an I/O error in the block to be repaired, since it cannot be 1211 * determined, which copy of the other sectors is better (and it 1212 * could happen otherwise that a correct sector would be 1213 * overwritten by a bad one). 1214 */ 1215 for (mirror_index = 0; ;mirror_index++) { 1216 struct scrub_block *sblock_other; 1217 1218 if (mirror_index == failed_mirror_index) 1219 continue; 1220 1221 /* raid56's mirror can be more than BTRFS_MAX_MIRRORS */ 1222 if (!scrub_is_page_on_raid56(sblock_bad->sectors[0])) { 1223 if (mirror_index >= BTRFS_MAX_MIRRORS) 1224 break; 1225 if (!sblocks_for_recheck[mirror_index]->sector_count) 1226 break; 1227 1228 sblock_other = sblocks_for_recheck[mirror_index]; 1229 } else { 1230 struct scrub_recover *r = sblock_bad->sectors[0]->recover; 1231 int max_allowed = r->bioc->num_stripes - r->bioc->num_tgtdevs; 1232 1233 if (mirror_index >= max_allowed) 1234 break; 1235 if (!sblocks_for_recheck[1]->sector_count) 1236 break; 1237 1238 ASSERT(failed_mirror_index == 0); 1239 sblock_other = sblocks_for_recheck[1]; 1240 sblock_other->mirror_num = 1 + mirror_index; 1241 } 1242 1243 /* build and submit the bios, check checksums */ 1244 scrub_recheck_block(fs_info, sblock_other, 0); 1245 1246 if (!sblock_other->header_error && 1247 !sblock_other->checksum_error && 1248 sblock_other->no_io_error_seen) { 1249 if (sctx->is_dev_replace) { 1250 scrub_write_block_to_dev_replace(sblock_other); 1251 goto corrected_error; 1252 } else { 1253 ret = scrub_repair_block_from_good_copy( 1254 sblock_bad, sblock_other); 1255 if (!ret) 1256 goto corrected_error; 1257 } 1258 } 1259 } 1260 1261 if (sblock_bad->no_io_error_seen && !sctx->is_dev_replace) 1262 goto did_not_correct_error; 1263 1264 /* 1265 * In case of I/O errors in the area that is supposed to be 1266 * repaired, continue by picking good copies of those sectors. 1267 * Select the good sectors from mirrors to rewrite bad sectors from 1268 * the area to fix. Afterwards verify the checksum of the block 1269 * that is supposed to be repaired. This verification step is 1270 * only done for the purpose of statistic counting and for the 1271 * final scrub report, whether errors remain. 1272 * A perfect algorithm could make use of the checksum and try 1273 * all possible combinations of sectors from the different mirrors 1274 * until the checksum verification succeeds. For example, when 1275 * the 2nd sector of mirror #1 faces I/O errors, and the 2nd sector 1276 * of mirror #2 is readable but the final checksum test fails, 1277 * then the 2nd sector of mirror #3 could be tried, whether now 1278 * the final checksum succeeds. But this would be a rare 1279 * exception and is therefore not implemented. At least it is 1280 * avoided that the good copy is overwritten. 1281 * A more useful improvement would be to pick the sectors 1282 * without I/O error based on sector sizes (512 bytes on legacy 1283 * disks) instead of on sectorsize. Then maybe 512 byte of one 1284 * mirror could be repaired by taking 512 byte of a different 1285 * mirror, even if other 512 byte sectors in the same sectorsize 1286 * area are unreadable. 1287 */ 1288 success = 1; 1289 for (sector_num = 0; sector_num < sblock_bad->sector_count; 1290 sector_num++) { 1291 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; 1292 struct scrub_block *sblock_other = NULL; 1293 1294 /* Skip no-io-error sectors in scrub */ 1295 if (!sector_bad->io_error && !sctx->is_dev_replace) 1296 continue; 1297 1298 if (scrub_is_page_on_raid56(sblock_bad->sectors[0])) { 1299 /* 1300 * In case of dev replace, if raid56 rebuild process 1301 * didn't work out correct data, then copy the content 1302 * in sblock_bad to make sure target device is identical 1303 * to source device, instead of writing garbage data in 1304 * sblock_for_recheck array to target device. 1305 */ 1306 sblock_other = NULL; 1307 } else if (sector_bad->io_error) { 1308 /* Try to find no-io-error sector in mirrors */ 1309 for (mirror_index = 0; 1310 mirror_index < BTRFS_MAX_MIRRORS && 1311 sblocks_for_recheck[mirror_index]->sector_count > 0; 1312 mirror_index++) { 1313 if (!sblocks_for_recheck[mirror_index]-> 1314 sectors[sector_num]->io_error) { 1315 sblock_other = sblocks_for_recheck[mirror_index]; 1316 break; 1317 } 1318 } 1319 if (!sblock_other) 1320 success = 0; 1321 } 1322 1323 if (sctx->is_dev_replace) { 1324 /* 1325 * Did not find a mirror to fetch the sector from. 1326 * scrub_write_sector_to_dev_replace() handles this 1327 * case (sector->io_error), by filling the block with 1328 * zeros before submitting the write request 1329 */ 1330 if (!sblock_other) 1331 sblock_other = sblock_bad; 1332 1333 if (scrub_write_sector_to_dev_replace(sblock_other, 1334 sector_num) != 0) { 1335 atomic64_inc( 1336 &fs_info->dev_replace.num_write_errors); 1337 success = 0; 1338 } 1339 } else if (sblock_other) { 1340 ret = scrub_repair_sector_from_good_copy(sblock_bad, 1341 sblock_other, 1342 sector_num, 0); 1343 if (0 == ret) 1344 sector_bad->io_error = 0; 1345 else 1346 success = 0; 1347 } 1348 } 1349 1350 if (success && !sctx->is_dev_replace) { 1351 if (is_metadata || have_csum) { 1352 /* 1353 * need to verify the checksum now that all 1354 * sectors on disk are repaired (the write 1355 * request for data to be repaired is on its way). 1356 * Just be lazy and use scrub_recheck_block() 1357 * which re-reads the data before the checksum 1358 * is verified, but most likely the data comes out 1359 * of the page cache. 1360 */ 1361 scrub_recheck_block(fs_info, sblock_bad, 1); 1362 if (!sblock_bad->header_error && 1363 !sblock_bad->checksum_error && 1364 sblock_bad->no_io_error_seen) 1365 goto corrected_error; 1366 else 1367 goto did_not_correct_error; 1368 } else { 1369 corrected_error: 1370 spin_lock(&sctx->stat_lock); 1371 sctx->stat.corrected_errors++; 1372 sblock_to_check->data_corrected = 1; 1373 spin_unlock(&sctx->stat_lock); 1374 btrfs_err_rl_in_rcu(fs_info, 1375 "fixed up error at logical %llu on dev %s", 1376 logical, rcu_str_deref(dev->name)); 1377 } 1378 } else { 1379 did_not_correct_error: 1380 spin_lock(&sctx->stat_lock); 1381 sctx->stat.uncorrectable_errors++; 1382 spin_unlock(&sctx->stat_lock); 1383 btrfs_err_rl_in_rcu(fs_info, 1384 "unable to fixup (regular) error at logical %llu on dev %s", 1385 logical, rcu_str_deref(dev->name)); 1386 } 1387 1388 out: 1389 for (mirror_index = 0; mirror_index < BTRFS_MAX_MIRRORS; mirror_index++) { 1390 struct scrub_block *sblock = sblocks_for_recheck[mirror_index]; 1391 struct scrub_recover *recover; 1392 int sector_index; 1393 1394 /* Not allocated, continue checking the next mirror */ 1395 if (!sblock) 1396 continue; 1397 1398 for (sector_index = 0; sector_index < sblock->sector_count; 1399 sector_index++) { 1400 /* 1401 * Here we just cleanup the recover, each sector will be 1402 * properly cleaned up by later scrub_block_put() 1403 */ 1404 recover = sblock->sectors[sector_index]->recover; 1405 if (recover) { 1406 scrub_put_recover(fs_info, recover); 1407 sblock->sectors[sector_index]->recover = NULL; 1408 } 1409 } 1410 scrub_block_put(sblock); 1411 } 1412 1413 ret = unlock_full_stripe(fs_info, logical, full_stripe_locked); 1414 memalloc_nofs_restore(nofs_flag); 1415 if (ret < 0) 1416 return ret; 1417 return 0; 1418 } 1419 1420 static inline int scrub_nr_raid_mirrors(struct btrfs_io_context *bioc) 1421 { 1422 if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID5) 1423 return 2; 1424 else if (bioc->map_type & BTRFS_BLOCK_GROUP_RAID6) 1425 return 3; 1426 else 1427 return (int)bioc->num_stripes; 1428 } 1429 1430 static inline void scrub_stripe_index_and_offset(u64 logical, u64 map_type, 1431 u64 *raid_map, 1432 int nstripes, int mirror, 1433 int *stripe_index, 1434 u64 *stripe_offset) 1435 { 1436 int i; 1437 1438 if (map_type & BTRFS_BLOCK_GROUP_RAID56_MASK) { 1439 /* RAID5/6 */ 1440 for (i = 0; i < nstripes; i++) { 1441 if (raid_map[i] == RAID6_Q_STRIPE || 1442 raid_map[i] == RAID5_P_STRIPE) 1443 continue; 1444 1445 if (logical >= raid_map[i] && 1446 logical < raid_map[i] + BTRFS_STRIPE_LEN) 1447 break; 1448 } 1449 1450 *stripe_index = i; 1451 *stripe_offset = logical - raid_map[i]; 1452 } else { 1453 /* The other RAID type */ 1454 *stripe_index = mirror; 1455 *stripe_offset = 0; 1456 } 1457 } 1458 1459 static int scrub_setup_recheck_block(struct scrub_block *original_sblock, 1460 struct scrub_block *sblocks_for_recheck[]) 1461 { 1462 struct scrub_ctx *sctx = original_sblock->sctx; 1463 struct btrfs_fs_info *fs_info = sctx->fs_info; 1464 u64 logical = original_sblock->logical; 1465 u64 length = original_sblock->sector_count << fs_info->sectorsize_bits; 1466 u64 generation = original_sblock->sectors[0]->generation; 1467 u64 flags = original_sblock->sectors[0]->flags; 1468 u64 have_csum = original_sblock->sectors[0]->have_csum; 1469 struct scrub_recover *recover; 1470 struct btrfs_io_context *bioc; 1471 u64 sublen; 1472 u64 mapped_length; 1473 u64 stripe_offset; 1474 int stripe_index; 1475 int sector_index = 0; 1476 int mirror_index; 1477 int nmirrors; 1478 int ret; 1479 1480 while (length > 0) { 1481 sublen = min_t(u64, length, fs_info->sectorsize); 1482 mapped_length = sublen; 1483 bioc = NULL; 1484 1485 /* 1486 * With a length of sectorsize, each returned stripe represents 1487 * one mirror 1488 */ 1489 btrfs_bio_counter_inc_blocked(fs_info); 1490 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, 1491 logical, &mapped_length, &bioc); 1492 if (ret || !bioc || mapped_length < sublen) { 1493 btrfs_put_bioc(bioc); 1494 btrfs_bio_counter_dec(fs_info); 1495 return -EIO; 1496 } 1497 1498 recover = kzalloc(sizeof(struct scrub_recover), GFP_KERNEL); 1499 if (!recover) { 1500 btrfs_put_bioc(bioc); 1501 btrfs_bio_counter_dec(fs_info); 1502 return -ENOMEM; 1503 } 1504 1505 refcount_set(&recover->refs, 1); 1506 recover->bioc = bioc; 1507 recover->map_length = mapped_length; 1508 1509 ASSERT(sector_index < SCRUB_MAX_SECTORS_PER_BLOCK); 1510 1511 nmirrors = min(scrub_nr_raid_mirrors(bioc), BTRFS_MAX_MIRRORS); 1512 1513 for (mirror_index = 0; mirror_index < nmirrors; 1514 mirror_index++) { 1515 struct scrub_block *sblock; 1516 struct scrub_sector *sector; 1517 1518 sblock = sblocks_for_recheck[mirror_index]; 1519 sblock->sctx = sctx; 1520 1521 sector = alloc_scrub_sector(sblock, logical); 1522 if (!sector) { 1523 spin_lock(&sctx->stat_lock); 1524 sctx->stat.malloc_errors++; 1525 spin_unlock(&sctx->stat_lock); 1526 scrub_put_recover(fs_info, recover); 1527 return -ENOMEM; 1528 } 1529 sector->flags = flags; 1530 sector->generation = generation; 1531 sector->have_csum = have_csum; 1532 if (have_csum) 1533 memcpy(sector->csum, 1534 original_sblock->sectors[0]->csum, 1535 sctx->fs_info->csum_size); 1536 1537 scrub_stripe_index_and_offset(logical, 1538 bioc->map_type, 1539 bioc->raid_map, 1540 bioc->num_stripes - 1541 bioc->num_tgtdevs, 1542 mirror_index, 1543 &stripe_index, 1544 &stripe_offset); 1545 /* 1546 * We're at the first sector, also populate @sblock 1547 * physical and dev. 1548 */ 1549 if (sector_index == 0) { 1550 sblock->physical = 1551 bioc->stripes[stripe_index].physical + 1552 stripe_offset; 1553 sblock->dev = bioc->stripes[stripe_index].dev; 1554 sblock->physical_for_dev_replace = 1555 original_sblock->physical_for_dev_replace; 1556 } 1557 1558 BUG_ON(sector_index >= original_sblock->sector_count); 1559 scrub_get_recover(recover); 1560 sector->recover = recover; 1561 } 1562 scrub_put_recover(fs_info, recover); 1563 length -= sublen; 1564 logical += sublen; 1565 sector_index++; 1566 } 1567 1568 return 0; 1569 } 1570 1571 static void scrub_bio_wait_endio(struct bio *bio) 1572 { 1573 complete(bio->bi_private); 1574 } 1575 1576 static int scrub_submit_raid56_bio_wait(struct btrfs_fs_info *fs_info, 1577 struct bio *bio, 1578 struct scrub_sector *sector) 1579 { 1580 DECLARE_COMPLETION_ONSTACK(done); 1581 1582 bio->bi_iter.bi_sector = (sector->offset + sector->sblock->logical) >> 1583 SECTOR_SHIFT; 1584 bio->bi_private = &done; 1585 bio->bi_end_io = scrub_bio_wait_endio; 1586 raid56_parity_recover(bio, sector->recover->bioc, sector->sblock->mirror_num); 1587 1588 wait_for_completion_io(&done); 1589 return blk_status_to_errno(bio->bi_status); 1590 } 1591 1592 static void scrub_recheck_block_on_raid56(struct btrfs_fs_info *fs_info, 1593 struct scrub_block *sblock) 1594 { 1595 struct scrub_sector *first_sector = sblock->sectors[0]; 1596 struct bio *bio; 1597 int i; 1598 1599 /* All sectors in sblock belong to the same stripe on the same device. */ 1600 ASSERT(sblock->dev); 1601 if (!sblock->dev->bdev) 1602 goto out; 1603 1604 bio = bio_alloc(sblock->dev->bdev, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 1605 1606 for (i = 0; i < sblock->sector_count; i++) { 1607 struct scrub_sector *sector = sblock->sectors[i]; 1608 1609 bio_add_scrub_sector(bio, sector, fs_info->sectorsize); 1610 } 1611 1612 if (scrub_submit_raid56_bio_wait(fs_info, bio, first_sector)) { 1613 bio_put(bio); 1614 goto out; 1615 } 1616 1617 bio_put(bio); 1618 1619 scrub_recheck_block_checksum(sblock); 1620 1621 return; 1622 out: 1623 for (i = 0; i < sblock->sector_count; i++) 1624 sblock->sectors[i]->io_error = 1; 1625 1626 sblock->no_io_error_seen = 0; 1627 } 1628 1629 /* 1630 * This function will check the on disk data for checksum errors, header errors 1631 * and read I/O errors. If any I/O errors happen, the exact sectors which are 1632 * errored are marked as being bad. The goal is to enable scrub to take those 1633 * sectors that are not errored from all the mirrors so that the sectors that 1634 * are errored in the just handled mirror can be repaired. 1635 */ 1636 static void scrub_recheck_block(struct btrfs_fs_info *fs_info, 1637 struct scrub_block *sblock, 1638 int retry_failed_mirror) 1639 { 1640 int i; 1641 1642 sblock->no_io_error_seen = 1; 1643 1644 /* short cut for raid56 */ 1645 if (!retry_failed_mirror && scrub_is_page_on_raid56(sblock->sectors[0])) 1646 return scrub_recheck_block_on_raid56(fs_info, sblock); 1647 1648 for (i = 0; i < sblock->sector_count; i++) { 1649 struct scrub_sector *sector = sblock->sectors[i]; 1650 struct bio bio; 1651 struct bio_vec bvec; 1652 1653 if (sblock->dev->bdev == NULL) { 1654 sector->io_error = 1; 1655 sblock->no_io_error_seen = 0; 1656 continue; 1657 } 1658 1659 bio_init(&bio, sblock->dev->bdev, &bvec, 1, REQ_OP_READ); 1660 bio_add_scrub_sector(&bio, sector, fs_info->sectorsize); 1661 bio.bi_iter.bi_sector = (sblock->physical + sector->offset) >> 1662 SECTOR_SHIFT; 1663 1664 btrfsic_check_bio(&bio); 1665 if (submit_bio_wait(&bio)) { 1666 sector->io_error = 1; 1667 sblock->no_io_error_seen = 0; 1668 } 1669 1670 bio_uninit(&bio); 1671 } 1672 1673 if (sblock->no_io_error_seen) 1674 scrub_recheck_block_checksum(sblock); 1675 } 1676 1677 static inline int scrub_check_fsid(u8 fsid[], struct scrub_sector *sector) 1678 { 1679 struct btrfs_fs_devices *fs_devices = sector->sblock->dev->fs_devices; 1680 int ret; 1681 1682 ret = memcmp(fsid, fs_devices->fsid, BTRFS_FSID_SIZE); 1683 return !ret; 1684 } 1685 1686 static void scrub_recheck_block_checksum(struct scrub_block *sblock) 1687 { 1688 sblock->header_error = 0; 1689 sblock->checksum_error = 0; 1690 sblock->generation_error = 0; 1691 1692 if (sblock->sectors[0]->flags & BTRFS_EXTENT_FLAG_DATA) 1693 scrub_checksum_data(sblock); 1694 else 1695 scrub_checksum_tree_block(sblock); 1696 } 1697 1698 static int scrub_repair_block_from_good_copy(struct scrub_block *sblock_bad, 1699 struct scrub_block *sblock_good) 1700 { 1701 int i; 1702 int ret = 0; 1703 1704 for (i = 0; i < sblock_bad->sector_count; i++) { 1705 int ret_sub; 1706 1707 ret_sub = scrub_repair_sector_from_good_copy(sblock_bad, 1708 sblock_good, i, 1); 1709 if (ret_sub) 1710 ret = ret_sub; 1711 } 1712 1713 return ret; 1714 } 1715 1716 static int scrub_repair_sector_from_good_copy(struct scrub_block *sblock_bad, 1717 struct scrub_block *sblock_good, 1718 int sector_num, int force_write) 1719 { 1720 struct scrub_sector *sector_bad = sblock_bad->sectors[sector_num]; 1721 struct scrub_sector *sector_good = sblock_good->sectors[sector_num]; 1722 struct btrfs_fs_info *fs_info = sblock_bad->sctx->fs_info; 1723 const u32 sectorsize = fs_info->sectorsize; 1724 1725 if (force_write || sblock_bad->header_error || 1726 sblock_bad->checksum_error || sector_bad->io_error) { 1727 struct bio bio; 1728 struct bio_vec bvec; 1729 int ret; 1730 1731 if (!sblock_bad->dev->bdev) { 1732 btrfs_warn_rl(fs_info, 1733 "scrub_repair_page_from_good_copy(bdev == NULL) is unexpected"); 1734 return -EIO; 1735 } 1736 1737 bio_init(&bio, sblock_bad->dev->bdev, &bvec, 1, REQ_OP_WRITE); 1738 bio.bi_iter.bi_sector = (sblock_bad->physical + 1739 sector_bad->offset) >> SECTOR_SHIFT; 1740 ret = bio_add_scrub_sector(&bio, sector_good, sectorsize); 1741 1742 btrfsic_check_bio(&bio); 1743 ret = submit_bio_wait(&bio); 1744 bio_uninit(&bio); 1745 1746 if (ret) { 1747 btrfs_dev_stat_inc_and_print(sblock_bad->dev, 1748 BTRFS_DEV_STAT_WRITE_ERRS); 1749 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1750 return -EIO; 1751 } 1752 } 1753 1754 return 0; 1755 } 1756 1757 static void scrub_write_block_to_dev_replace(struct scrub_block *sblock) 1758 { 1759 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 1760 int i; 1761 1762 /* 1763 * This block is used for the check of the parity on the source device, 1764 * so the data needn't be written into the destination device. 1765 */ 1766 if (sblock->sparity) 1767 return; 1768 1769 for (i = 0; i < sblock->sector_count; i++) { 1770 int ret; 1771 1772 ret = scrub_write_sector_to_dev_replace(sblock, i); 1773 if (ret) 1774 atomic64_inc(&fs_info->dev_replace.num_write_errors); 1775 } 1776 } 1777 1778 static int scrub_write_sector_to_dev_replace(struct scrub_block *sblock, int sector_num) 1779 { 1780 const u32 sectorsize = sblock->sctx->fs_info->sectorsize; 1781 struct scrub_sector *sector = sblock->sectors[sector_num]; 1782 1783 if (sector->io_error) 1784 memset(scrub_sector_get_kaddr(sector), 0, sectorsize); 1785 1786 return scrub_add_sector_to_wr_bio(sblock->sctx, sector); 1787 } 1788 1789 static int fill_writer_pointer_gap(struct scrub_ctx *sctx, u64 physical) 1790 { 1791 int ret = 0; 1792 u64 length; 1793 1794 if (!btrfs_is_zoned(sctx->fs_info)) 1795 return 0; 1796 1797 if (!btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) 1798 return 0; 1799 1800 if (sctx->write_pointer < physical) { 1801 length = physical - sctx->write_pointer; 1802 1803 ret = btrfs_zoned_issue_zeroout(sctx->wr_tgtdev, 1804 sctx->write_pointer, length); 1805 if (!ret) 1806 sctx->write_pointer = physical; 1807 } 1808 return ret; 1809 } 1810 1811 static void scrub_block_get(struct scrub_block *sblock) 1812 { 1813 refcount_inc(&sblock->refs); 1814 } 1815 1816 static int scrub_add_sector_to_wr_bio(struct scrub_ctx *sctx, 1817 struct scrub_sector *sector) 1818 { 1819 struct scrub_block *sblock = sector->sblock; 1820 struct scrub_bio *sbio; 1821 int ret; 1822 const u32 sectorsize = sctx->fs_info->sectorsize; 1823 1824 mutex_lock(&sctx->wr_lock); 1825 again: 1826 if (!sctx->wr_curr_bio) { 1827 sctx->wr_curr_bio = kzalloc(sizeof(*sctx->wr_curr_bio), 1828 GFP_KERNEL); 1829 if (!sctx->wr_curr_bio) { 1830 mutex_unlock(&sctx->wr_lock); 1831 return -ENOMEM; 1832 } 1833 sctx->wr_curr_bio->sctx = sctx; 1834 sctx->wr_curr_bio->sector_count = 0; 1835 } 1836 sbio = sctx->wr_curr_bio; 1837 if (sbio->sector_count == 0) { 1838 ret = fill_writer_pointer_gap(sctx, sector->offset + 1839 sblock->physical_for_dev_replace); 1840 if (ret) { 1841 mutex_unlock(&sctx->wr_lock); 1842 return ret; 1843 } 1844 1845 sbio->physical = sblock->physical_for_dev_replace + sector->offset; 1846 sbio->logical = sblock->logical + sector->offset; 1847 sbio->dev = sctx->wr_tgtdev; 1848 if (!sbio->bio) { 1849 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, 1850 REQ_OP_WRITE, GFP_NOFS); 1851 } 1852 sbio->bio->bi_private = sbio; 1853 sbio->bio->bi_end_io = scrub_wr_bio_end_io; 1854 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; 1855 sbio->status = 0; 1856 } else if (sbio->physical + sbio->sector_count * sectorsize != 1857 sblock->physical_for_dev_replace + sector->offset || 1858 sbio->logical + sbio->sector_count * sectorsize != 1859 sblock->logical + sector->offset) { 1860 scrub_wr_submit(sctx); 1861 goto again; 1862 } 1863 1864 ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); 1865 if (ret != sectorsize) { 1866 if (sbio->sector_count < 1) { 1867 bio_put(sbio->bio); 1868 sbio->bio = NULL; 1869 mutex_unlock(&sctx->wr_lock); 1870 return -EIO; 1871 } 1872 scrub_wr_submit(sctx); 1873 goto again; 1874 } 1875 1876 sbio->sectors[sbio->sector_count] = sector; 1877 scrub_sector_get(sector); 1878 /* 1879 * Since ssector no longer holds a page, but uses sblock::pages, we 1880 * have to ensure the sblock had not been freed before our write bio 1881 * finished. 1882 */ 1883 scrub_block_get(sector->sblock); 1884 1885 sbio->sector_count++; 1886 if (sbio->sector_count == sctx->sectors_per_bio) 1887 scrub_wr_submit(sctx); 1888 mutex_unlock(&sctx->wr_lock); 1889 1890 return 0; 1891 } 1892 1893 static void scrub_wr_submit(struct scrub_ctx *sctx) 1894 { 1895 struct scrub_bio *sbio; 1896 1897 if (!sctx->wr_curr_bio) 1898 return; 1899 1900 sbio = sctx->wr_curr_bio; 1901 sctx->wr_curr_bio = NULL; 1902 scrub_pending_bio_inc(sctx); 1903 /* process all writes in a single worker thread. Then the block layer 1904 * orders the requests before sending them to the driver which 1905 * doubled the write performance on spinning disks when measured 1906 * with Linux 3.5 */ 1907 btrfsic_check_bio(sbio->bio); 1908 submit_bio(sbio->bio); 1909 1910 if (btrfs_is_zoned(sctx->fs_info)) 1911 sctx->write_pointer = sbio->physical + sbio->sector_count * 1912 sctx->fs_info->sectorsize; 1913 } 1914 1915 static void scrub_wr_bio_end_io(struct bio *bio) 1916 { 1917 struct scrub_bio *sbio = bio->bi_private; 1918 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 1919 1920 sbio->status = bio->bi_status; 1921 sbio->bio = bio; 1922 1923 INIT_WORK(&sbio->work, scrub_wr_bio_end_io_worker); 1924 queue_work(fs_info->scrub_wr_completion_workers, &sbio->work); 1925 } 1926 1927 static void scrub_wr_bio_end_io_worker(struct work_struct *work) 1928 { 1929 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 1930 struct scrub_ctx *sctx = sbio->sctx; 1931 int i; 1932 1933 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); 1934 if (sbio->status) { 1935 struct btrfs_dev_replace *dev_replace = 1936 &sbio->sctx->fs_info->dev_replace; 1937 1938 for (i = 0; i < sbio->sector_count; i++) { 1939 struct scrub_sector *sector = sbio->sectors[i]; 1940 1941 sector->io_error = 1; 1942 atomic64_inc(&dev_replace->num_write_errors); 1943 } 1944 } 1945 1946 /* 1947 * In scrub_add_sector_to_wr_bio() we grab extra ref for sblock, now in 1948 * endio we should put the sblock. 1949 */ 1950 for (i = 0; i < sbio->sector_count; i++) { 1951 scrub_block_put(sbio->sectors[i]->sblock); 1952 scrub_sector_put(sbio->sectors[i]); 1953 } 1954 1955 bio_put(sbio->bio); 1956 kfree(sbio); 1957 scrub_pending_bio_dec(sctx); 1958 } 1959 1960 static int scrub_checksum(struct scrub_block *sblock) 1961 { 1962 u64 flags; 1963 int ret; 1964 1965 /* 1966 * No need to initialize these stats currently, 1967 * because this function only use return value 1968 * instead of these stats value. 1969 * 1970 * Todo: 1971 * always use stats 1972 */ 1973 sblock->header_error = 0; 1974 sblock->generation_error = 0; 1975 sblock->checksum_error = 0; 1976 1977 WARN_ON(sblock->sector_count < 1); 1978 flags = sblock->sectors[0]->flags; 1979 ret = 0; 1980 if (flags & BTRFS_EXTENT_FLAG_DATA) 1981 ret = scrub_checksum_data(sblock); 1982 else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) 1983 ret = scrub_checksum_tree_block(sblock); 1984 else if (flags & BTRFS_EXTENT_FLAG_SUPER) 1985 ret = scrub_checksum_super(sblock); 1986 else 1987 WARN_ON(1); 1988 if (ret) 1989 scrub_handle_errored_block(sblock); 1990 1991 return ret; 1992 } 1993 1994 static int scrub_checksum_data(struct scrub_block *sblock) 1995 { 1996 struct scrub_ctx *sctx = sblock->sctx; 1997 struct btrfs_fs_info *fs_info = sctx->fs_info; 1998 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 1999 u8 csum[BTRFS_CSUM_SIZE]; 2000 struct scrub_sector *sector; 2001 char *kaddr; 2002 2003 BUG_ON(sblock->sector_count < 1); 2004 sector = sblock->sectors[0]; 2005 if (!sector->have_csum) 2006 return 0; 2007 2008 kaddr = scrub_sector_get_kaddr(sector); 2009 2010 shash->tfm = fs_info->csum_shash; 2011 crypto_shash_init(shash); 2012 2013 crypto_shash_digest(shash, kaddr, fs_info->sectorsize, csum); 2014 2015 if (memcmp(csum, sector->csum, fs_info->csum_size)) 2016 sblock->checksum_error = 1; 2017 return sblock->checksum_error; 2018 } 2019 2020 static int scrub_checksum_tree_block(struct scrub_block *sblock) 2021 { 2022 struct scrub_ctx *sctx = sblock->sctx; 2023 struct btrfs_header *h; 2024 struct btrfs_fs_info *fs_info = sctx->fs_info; 2025 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2026 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2027 u8 on_disk_csum[BTRFS_CSUM_SIZE]; 2028 /* 2029 * This is done in sectorsize steps even for metadata as there's a 2030 * constraint for nodesize to be aligned to sectorsize. This will need 2031 * to change so we don't misuse data and metadata units like that. 2032 */ 2033 const u32 sectorsize = sctx->fs_info->sectorsize; 2034 const int num_sectors = fs_info->nodesize >> fs_info->sectorsize_bits; 2035 int i; 2036 struct scrub_sector *sector; 2037 char *kaddr; 2038 2039 BUG_ON(sblock->sector_count < 1); 2040 2041 /* Each member in sectors is just one sector */ 2042 ASSERT(sblock->sector_count == num_sectors); 2043 2044 sector = sblock->sectors[0]; 2045 kaddr = scrub_sector_get_kaddr(sector); 2046 h = (struct btrfs_header *)kaddr; 2047 memcpy(on_disk_csum, h->csum, sctx->fs_info->csum_size); 2048 2049 /* 2050 * we don't use the getter functions here, as we 2051 * a) don't have an extent buffer and 2052 * b) the page is already kmapped 2053 */ 2054 if (sblock->logical != btrfs_stack_header_bytenr(h)) 2055 sblock->header_error = 1; 2056 2057 if (sector->generation != btrfs_stack_header_generation(h)) { 2058 sblock->header_error = 1; 2059 sblock->generation_error = 1; 2060 } 2061 2062 if (!scrub_check_fsid(h->fsid, sector)) 2063 sblock->header_error = 1; 2064 2065 if (memcmp(h->chunk_tree_uuid, fs_info->chunk_tree_uuid, 2066 BTRFS_UUID_SIZE)) 2067 sblock->header_error = 1; 2068 2069 shash->tfm = fs_info->csum_shash; 2070 crypto_shash_init(shash); 2071 crypto_shash_update(shash, kaddr + BTRFS_CSUM_SIZE, 2072 sectorsize - BTRFS_CSUM_SIZE); 2073 2074 for (i = 1; i < num_sectors; i++) { 2075 kaddr = scrub_sector_get_kaddr(sblock->sectors[i]); 2076 crypto_shash_update(shash, kaddr, sectorsize); 2077 } 2078 2079 crypto_shash_final(shash, calculated_csum); 2080 if (memcmp(calculated_csum, on_disk_csum, sctx->fs_info->csum_size)) 2081 sblock->checksum_error = 1; 2082 2083 return sblock->header_error || sblock->checksum_error; 2084 } 2085 2086 static int scrub_checksum_super(struct scrub_block *sblock) 2087 { 2088 struct btrfs_super_block *s; 2089 struct scrub_ctx *sctx = sblock->sctx; 2090 struct btrfs_fs_info *fs_info = sctx->fs_info; 2091 SHASH_DESC_ON_STACK(shash, fs_info->csum_shash); 2092 u8 calculated_csum[BTRFS_CSUM_SIZE]; 2093 struct scrub_sector *sector; 2094 char *kaddr; 2095 int fail_gen = 0; 2096 int fail_cor = 0; 2097 2098 BUG_ON(sblock->sector_count < 1); 2099 sector = sblock->sectors[0]; 2100 kaddr = scrub_sector_get_kaddr(sector); 2101 s = (struct btrfs_super_block *)kaddr; 2102 2103 if (sblock->logical != btrfs_super_bytenr(s)) 2104 ++fail_cor; 2105 2106 if (sector->generation != btrfs_super_generation(s)) 2107 ++fail_gen; 2108 2109 if (!scrub_check_fsid(s->fsid, sector)) 2110 ++fail_cor; 2111 2112 shash->tfm = fs_info->csum_shash; 2113 crypto_shash_init(shash); 2114 crypto_shash_digest(shash, kaddr + BTRFS_CSUM_SIZE, 2115 BTRFS_SUPER_INFO_SIZE - BTRFS_CSUM_SIZE, calculated_csum); 2116 2117 if (memcmp(calculated_csum, s->csum, sctx->fs_info->csum_size)) 2118 ++fail_cor; 2119 2120 return fail_cor + fail_gen; 2121 } 2122 2123 static void scrub_block_put(struct scrub_block *sblock) 2124 { 2125 if (refcount_dec_and_test(&sblock->refs)) { 2126 int i; 2127 2128 if (sblock->sparity) 2129 scrub_parity_put(sblock->sparity); 2130 2131 for (i = 0; i < sblock->sector_count; i++) 2132 scrub_sector_put(sblock->sectors[i]); 2133 for (i = 0; i < DIV_ROUND_UP(sblock->len, PAGE_SIZE); i++) { 2134 if (sblock->pages[i]) { 2135 detach_scrub_page_private(sblock->pages[i]); 2136 __free_page(sblock->pages[i]); 2137 } 2138 } 2139 kfree(sblock); 2140 } 2141 } 2142 2143 static void scrub_sector_get(struct scrub_sector *sector) 2144 { 2145 atomic_inc(§or->refs); 2146 } 2147 2148 static void scrub_sector_put(struct scrub_sector *sector) 2149 { 2150 if (atomic_dec_and_test(§or->refs)) 2151 kfree(sector); 2152 } 2153 2154 /* 2155 * Throttling of IO submission, bandwidth-limit based, the timeslice is 1 2156 * second. Limit can be set via /sys/fs/UUID/devinfo/devid/scrub_speed_max. 2157 */ 2158 static void scrub_throttle(struct scrub_ctx *sctx) 2159 { 2160 const int time_slice = 1000; 2161 struct scrub_bio *sbio; 2162 struct btrfs_device *device; 2163 s64 delta; 2164 ktime_t now; 2165 u32 div; 2166 u64 bwlimit; 2167 2168 sbio = sctx->bios[sctx->curr]; 2169 device = sbio->dev; 2170 bwlimit = READ_ONCE(device->scrub_speed_max); 2171 if (bwlimit == 0) 2172 return; 2173 2174 /* 2175 * Slice is divided into intervals when the IO is submitted, adjust by 2176 * bwlimit and maximum of 64 intervals. 2177 */ 2178 div = max_t(u32, 1, (u32)(bwlimit / (16 * 1024 * 1024))); 2179 div = min_t(u32, 64, div); 2180 2181 /* Start new epoch, set deadline */ 2182 now = ktime_get(); 2183 if (sctx->throttle_deadline == 0) { 2184 sctx->throttle_deadline = ktime_add_ms(now, time_slice / div); 2185 sctx->throttle_sent = 0; 2186 } 2187 2188 /* Still in the time to send? */ 2189 if (ktime_before(now, sctx->throttle_deadline)) { 2190 /* If current bio is within the limit, send it */ 2191 sctx->throttle_sent += sbio->bio->bi_iter.bi_size; 2192 if (sctx->throttle_sent <= div_u64(bwlimit, div)) 2193 return; 2194 2195 /* We're over the limit, sleep until the rest of the slice */ 2196 delta = ktime_ms_delta(sctx->throttle_deadline, now); 2197 } else { 2198 /* New request after deadline, start new epoch */ 2199 delta = 0; 2200 } 2201 2202 if (delta) { 2203 long timeout; 2204 2205 timeout = div_u64(delta * HZ, 1000); 2206 schedule_timeout_interruptible(timeout); 2207 } 2208 2209 /* Next call will start the deadline period */ 2210 sctx->throttle_deadline = 0; 2211 } 2212 2213 static void scrub_submit(struct scrub_ctx *sctx) 2214 { 2215 struct scrub_bio *sbio; 2216 2217 if (sctx->curr == -1) 2218 return; 2219 2220 scrub_throttle(sctx); 2221 2222 sbio = sctx->bios[sctx->curr]; 2223 sctx->curr = -1; 2224 scrub_pending_bio_inc(sctx); 2225 btrfsic_check_bio(sbio->bio); 2226 submit_bio(sbio->bio); 2227 } 2228 2229 static int scrub_add_sector_to_rd_bio(struct scrub_ctx *sctx, 2230 struct scrub_sector *sector) 2231 { 2232 struct scrub_block *sblock = sector->sblock; 2233 struct scrub_bio *sbio; 2234 const u32 sectorsize = sctx->fs_info->sectorsize; 2235 int ret; 2236 2237 again: 2238 /* 2239 * grab a fresh bio or wait for one to become available 2240 */ 2241 while (sctx->curr == -1) { 2242 spin_lock(&sctx->list_lock); 2243 sctx->curr = sctx->first_free; 2244 if (sctx->curr != -1) { 2245 sctx->first_free = sctx->bios[sctx->curr]->next_free; 2246 sctx->bios[sctx->curr]->next_free = -1; 2247 sctx->bios[sctx->curr]->sector_count = 0; 2248 spin_unlock(&sctx->list_lock); 2249 } else { 2250 spin_unlock(&sctx->list_lock); 2251 wait_event(sctx->list_wait, sctx->first_free != -1); 2252 } 2253 } 2254 sbio = sctx->bios[sctx->curr]; 2255 if (sbio->sector_count == 0) { 2256 sbio->physical = sblock->physical + sector->offset; 2257 sbio->logical = sblock->logical + sector->offset; 2258 sbio->dev = sblock->dev; 2259 if (!sbio->bio) { 2260 sbio->bio = bio_alloc(sbio->dev->bdev, sctx->sectors_per_bio, 2261 REQ_OP_READ, GFP_NOFS); 2262 } 2263 sbio->bio->bi_private = sbio; 2264 sbio->bio->bi_end_io = scrub_bio_end_io; 2265 sbio->bio->bi_iter.bi_sector = sbio->physical >> 9; 2266 sbio->status = 0; 2267 } else if (sbio->physical + sbio->sector_count * sectorsize != 2268 sblock->physical + sector->offset || 2269 sbio->logical + sbio->sector_count * sectorsize != 2270 sblock->logical + sector->offset || 2271 sbio->dev != sblock->dev) { 2272 scrub_submit(sctx); 2273 goto again; 2274 } 2275 2276 sbio->sectors[sbio->sector_count] = sector; 2277 ret = bio_add_scrub_sector(sbio->bio, sector, sectorsize); 2278 if (ret != sectorsize) { 2279 if (sbio->sector_count < 1) { 2280 bio_put(sbio->bio); 2281 sbio->bio = NULL; 2282 return -EIO; 2283 } 2284 scrub_submit(sctx); 2285 goto again; 2286 } 2287 2288 scrub_block_get(sblock); /* one for the page added to the bio */ 2289 atomic_inc(&sblock->outstanding_sectors); 2290 sbio->sector_count++; 2291 if (sbio->sector_count == sctx->sectors_per_bio) 2292 scrub_submit(sctx); 2293 2294 return 0; 2295 } 2296 2297 static void scrub_missing_raid56_end_io(struct bio *bio) 2298 { 2299 struct scrub_block *sblock = bio->bi_private; 2300 struct btrfs_fs_info *fs_info = sblock->sctx->fs_info; 2301 2302 btrfs_bio_counter_dec(fs_info); 2303 if (bio->bi_status) 2304 sblock->no_io_error_seen = 0; 2305 2306 bio_put(bio); 2307 2308 queue_work(fs_info->scrub_workers, &sblock->work); 2309 } 2310 2311 static void scrub_missing_raid56_worker(struct work_struct *work) 2312 { 2313 struct scrub_block *sblock = container_of(work, struct scrub_block, work); 2314 struct scrub_ctx *sctx = sblock->sctx; 2315 struct btrfs_fs_info *fs_info = sctx->fs_info; 2316 u64 logical; 2317 struct btrfs_device *dev; 2318 2319 logical = sblock->logical; 2320 dev = sblock->dev; 2321 2322 if (sblock->no_io_error_seen) 2323 scrub_recheck_block_checksum(sblock); 2324 2325 if (!sblock->no_io_error_seen) { 2326 spin_lock(&sctx->stat_lock); 2327 sctx->stat.read_errors++; 2328 spin_unlock(&sctx->stat_lock); 2329 btrfs_err_rl_in_rcu(fs_info, 2330 "IO error rebuilding logical %llu for dev %s", 2331 logical, rcu_str_deref(dev->name)); 2332 } else if (sblock->header_error || sblock->checksum_error) { 2333 spin_lock(&sctx->stat_lock); 2334 sctx->stat.uncorrectable_errors++; 2335 spin_unlock(&sctx->stat_lock); 2336 btrfs_err_rl_in_rcu(fs_info, 2337 "failed to rebuild valid logical %llu for dev %s", 2338 logical, rcu_str_deref(dev->name)); 2339 } else { 2340 scrub_write_block_to_dev_replace(sblock); 2341 } 2342 2343 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2344 mutex_lock(&sctx->wr_lock); 2345 scrub_wr_submit(sctx); 2346 mutex_unlock(&sctx->wr_lock); 2347 } 2348 2349 scrub_block_put(sblock); 2350 scrub_pending_bio_dec(sctx); 2351 } 2352 2353 static void scrub_missing_raid56_pages(struct scrub_block *sblock) 2354 { 2355 struct scrub_ctx *sctx = sblock->sctx; 2356 struct btrfs_fs_info *fs_info = sctx->fs_info; 2357 u64 length = sblock->sector_count << fs_info->sectorsize_bits; 2358 u64 logical = sblock->logical; 2359 struct btrfs_io_context *bioc = NULL; 2360 struct bio *bio; 2361 struct btrfs_raid_bio *rbio; 2362 int ret; 2363 int i; 2364 2365 btrfs_bio_counter_inc_blocked(fs_info); 2366 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_GET_READ_MIRRORS, logical, 2367 &length, &bioc); 2368 if (ret || !bioc || !bioc->raid_map) 2369 goto bioc_out; 2370 2371 if (WARN_ON(!sctx->is_dev_replace || 2372 !(bioc->map_type & BTRFS_BLOCK_GROUP_RAID56_MASK))) { 2373 /* 2374 * We shouldn't be scrubbing a missing device. Even for dev 2375 * replace, we should only get here for RAID 5/6. We either 2376 * managed to mount something with no mirrors remaining or 2377 * there's a bug in scrub_find_good_copy()/btrfs_map_block(). 2378 */ 2379 goto bioc_out; 2380 } 2381 2382 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 2383 bio->bi_iter.bi_sector = logical >> 9; 2384 bio->bi_private = sblock; 2385 bio->bi_end_io = scrub_missing_raid56_end_io; 2386 2387 rbio = raid56_alloc_missing_rbio(bio, bioc); 2388 if (!rbio) 2389 goto rbio_out; 2390 2391 for (i = 0; i < sblock->sector_count; i++) { 2392 struct scrub_sector *sector = sblock->sectors[i]; 2393 2394 raid56_add_scrub_pages(rbio, scrub_sector_get_page(sector), 2395 scrub_sector_get_page_offset(sector), 2396 sector->offset + sector->sblock->logical); 2397 } 2398 2399 INIT_WORK(&sblock->work, scrub_missing_raid56_worker); 2400 scrub_block_get(sblock); 2401 scrub_pending_bio_inc(sctx); 2402 raid56_submit_missing_rbio(rbio); 2403 btrfs_put_bioc(bioc); 2404 return; 2405 2406 rbio_out: 2407 bio_put(bio); 2408 bioc_out: 2409 btrfs_bio_counter_dec(fs_info); 2410 btrfs_put_bioc(bioc); 2411 spin_lock(&sctx->stat_lock); 2412 sctx->stat.malloc_errors++; 2413 spin_unlock(&sctx->stat_lock); 2414 } 2415 2416 static int scrub_sectors(struct scrub_ctx *sctx, u64 logical, u32 len, 2417 u64 physical, struct btrfs_device *dev, u64 flags, 2418 u64 gen, int mirror_num, u8 *csum, 2419 u64 physical_for_dev_replace) 2420 { 2421 struct scrub_block *sblock; 2422 const u32 sectorsize = sctx->fs_info->sectorsize; 2423 int index; 2424 2425 sblock = alloc_scrub_block(sctx, dev, logical, physical, 2426 physical_for_dev_replace, mirror_num); 2427 if (!sblock) { 2428 spin_lock(&sctx->stat_lock); 2429 sctx->stat.malloc_errors++; 2430 spin_unlock(&sctx->stat_lock); 2431 return -ENOMEM; 2432 } 2433 2434 for (index = 0; len > 0; index++) { 2435 struct scrub_sector *sector; 2436 /* 2437 * Here we will allocate one page for one sector to scrub. 2438 * This is fine if PAGE_SIZE == sectorsize, but will cost 2439 * more memory for PAGE_SIZE > sectorsize case. 2440 */ 2441 u32 l = min(sectorsize, len); 2442 2443 sector = alloc_scrub_sector(sblock, logical); 2444 if (!sector) { 2445 spin_lock(&sctx->stat_lock); 2446 sctx->stat.malloc_errors++; 2447 spin_unlock(&sctx->stat_lock); 2448 scrub_block_put(sblock); 2449 return -ENOMEM; 2450 } 2451 sector->flags = flags; 2452 sector->generation = gen; 2453 if (csum) { 2454 sector->have_csum = 1; 2455 memcpy(sector->csum, csum, sctx->fs_info->csum_size); 2456 } else { 2457 sector->have_csum = 0; 2458 } 2459 len -= l; 2460 logical += l; 2461 physical += l; 2462 physical_for_dev_replace += l; 2463 } 2464 2465 WARN_ON(sblock->sector_count == 0); 2466 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2467 /* 2468 * This case should only be hit for RAID 5/6 device replace. See 2469 * the comment in scrub_missing_raid56_pages() for details. 2470 */ 2471 scrub_missing_raid56_pages(sblock); 2472 } else { 2473 for (index = 0; index < sblock->sector_count; index++) { 2474 struct scrub_sector *sector = sblock->sectors[index]; 2475 int ret; 2476 2477 ret = scrub_add_sector_to_rd_bio(sctx, sector); 2478 if (ret) { 2479 scrub_block_put(sblock); 2480 return ret; 2481 } 2482 } 2483 2484 if (flags & BTRFS_EXTENT_FLAG_SUPER) 2485 scrub_submit(sctx); 2486 } 2487 2488 /* last one frees, either here or in bio completion for last page */ 2489 scrub_block_put(sblock); 2490 return 0; 2491 } 2492 2493 static void scrub_bio_end_io(struct bio *bio) 2494 { 2495 struct scrub_bio *sbio = bio->bi_private; 2496 struct btrfs_fs_info *fs_info = sbio->dev->fs_info; 2497 2498 sbio->status = bio->bi_status; 2499 sbio->bio = bio; 2500 2501 queue_work(fs_info->scrub_workers, &sbio->work); 2502 } 2503 2504 static void scrub_bio_end_io_worker(struct work_struct *work) 2505 { 2506 struct scrub_bio *sbio = container_of(work, struct scrub_bio, work); 2507 struct scrub_ctx *sctx = sbio->sctx; 2508 int i; 2509 2510 ASSERT(sbio->sector_count <= SCRUB_SECTORS_PER_BIO); 2511 if (sbio->status) { 2512 for (i = 0; i < sbio->sector_count; i++) { 2513 struct scrub_sector *sector = sbio->sectors[i]; 2514 2515 sector->io_error = 1; 2516 sector->sblock->no_io_error_seen = 0; 2517 } 2518 } 2519 2520 /* Now complete the scrub_block items that have all pages completed */ 2521 for (i = 0; i < sbio->sector_count; i++) { 2522 struct scrub_sector *sector = sbio->sectors[i]; 2523 struct scrub_block *sblock = sector->sblock; 2524 2525 if (atomic_dec_and_test(&sblock->outstanding_sectors)) 2526 scrub_block_complete(sblock); 2527 scrub_block_put(sblock); 2528 } 2529 2530 bio_put(sbio->bio); 2531 sbio->bio = NULL; 2532 spin_lock(&sctx->list_lock); 2533 sbio->next_free = sctx->first_free; 2534 sctx->first_free = sbio->index; 2535 spin_unlock(&sctx->list_lock); 2536 2537 if (sctx->is_dev_replace && sctx->flush_all_writes) { 2538 mutex_lock(&sctx->wr_lock); 2539 scrub_wr_submit(sctx); 2540 mutex_unlock(&sctx->wr_lock); 2541 } 2542 2543 scrub_pending_bio_dec(sctx); 2544 } 2545 2546 static inline void __scrub_mark_bitmap(struct scrub_parity *sparity, 2547 unsigned long *bitmap, 2548 u64 start, u32 len) 2549 { 2550 u64 offset; 2551 u32 nsectors; 2552 u32 sectorsize_bits = sparity->sctx->fs_info->sectorsize_bits; 2553 2554 if (len >= sparity->stripe_len) { 2555 bitmap_set(bitmap, 0, sparity->nsectors); 2556 return; 2557 } 2558 2559 start -= sparity->logic_start; 2560 start = div64_u64_rem(start, sparity->stripe_len, &offset); 2561 offset = offset >> sectorsize_bits; 2562 nsectors = len >> sectorsize_bits; 2563 2564 if (offset + nsectors <= sparity->nsectors) { 2565 bitmap_set(bitmap, offset, nsectors); 2566 return; 2567 } 2568 2569 bitmap_set(bitmap, offset, sparity->nsectors - offset); 2570 bitmap_set(bitmap, 0, nsectors - (sparity->nsectors - offset)); 2571 } 2572 2573 static inline void scrub_parity_mark_sectors_error(struct scrub_parity *sparity, 2574 u64 start, u32 len) 2575 { 2576 __scrub_mark_bitmap(sparity, &sparity->ebitmap, start, len); 2577 } 2578 2579 static inline void scrub_parity_mark_sectors_data(struct scrub_parity *sparity, 2580 u64 start, u32 len) 2581 { 2582 __scrub_mark_bitmap(sparity, &sparity->dbitmap, start, len); 2583 } 2584 2585 static void scrub_block_complete(struct scrub_block *sblock) 2586 { 2587 int corrupted = 0; 2588 2589 if (!sblock->no_io_error_seen) { 2590 corrupted = 1; 2591 scrub_handle_errored_block(sblock); 2592 } else { 2593 /* 2594 * if has checksum error, write via repair mechanism in 2595 * dev replace case, otherwise write here in dev replace 2596 * case. 2597 */ 2598 corrupted = scrub_checksum(sblock); 2599 if (!corrupted && sblock->sctx->is_dev_replace) 2600 scrub_write_block_to_dev_replace(sblock); 2601 } 2602 2603 if (sblock->sparity && corrupted && !sblock->data_corrected) { 2604 u64 start = sblock->logical; 2605 u64 end = sblock->logical + 2606 sblock->sectors[sblock->sector_count - 1]->offset + 2607 sblock->sctx->fs_info->sectorsize; 2608 2609 ASSERT(end - start <= U32_MAX); 2610 scrub_parity_mark_sectors_error(sblock->sparity, 2611 start, end - start); 2612 } 2613 } 2614 2615 static void drop_csum_range(struct scrub_ctx *sctx, struct btrfs_ordered_sum *sum) 2616 { 2617 sctx->stat.csum_discards += sum->len >> sctx->fs_info->sectorsize_bits; 2618 list_del(&sum->list); 2619 kfree(sum); 2620 } 2621 2622 /* 2623 * Find the desired csum for range [logical, logical + sectorsize), and store 2624 * the csum into @csum. 2625 * 2626 * The search source is sctx->csum_list, which is a pre-populated list 2627 * storing bytenr ordered csum ranges. We're responsible to cleanup any range 2628 * that is before @logical. 2629 * 2630 * Return 0 if there is no csum for the range. 2631 * Return 1 if there is csum for the range and copied to @csum. 2632 */ 2633 static int scrub_find_csum(struct scrub_ctx *sctx, u64 logical, u8 *csum) 2634 { 2635 bool found = false; 2636 2637 while (!list_empty(&sctx->csum_list)) { 2638 struct btrfs_ordered_sum *sum = NULL; 2639 unsigned long index; 2640 unsigned long num_sectors; 2641 2642 sum = list_first_entry(&sctx->csum_list, 2643 struct btrfs_ordered_sum, list); 2644 /* The current csum range is beyond our range, no csum found */ 2645 if (sum->bytenr > logical) 2646 break; 2647 2648 /* 2649 * The current sum is before our bytenr, since scrub is always 2650 * done in bytenr order, the csum will never be used anymore, 2651 * clean it up so that later calls won't bother with the range, 2652 * and continue search the next range. 2653 */ 2654 if (sum->bytenr + sum->len <= logical) { 2655 drop_csum_range(sctx, sum); 2656 continue; 2657 } 2658 2659 /* Now the csum range covers our bytenr, copy the csum */ 2660 found = true; 2661 index = (logical - sum->bytenr) >> sctx->fs_info->sectorsize_bits; 2662 num_sectors = sum->len >> sctx->fs_info->sectorsize_bits; 2663 2664 memcpy(csum, sum->sums + index * sctx->fs_info->csum_size, 2665 sctx->fs_info->csum_size); 2666 2667 /* Cleanup the range if we're at the end of the csum range */ 2668 if (index == num_sectors - 1) 2669 drop_csum_range(sctx, sum); 2670 break; 2671 } 2672 if (!found) 2673 return 0; 2674 return 1; 2675 } 2676 2677 /* scrub extent tries to collect up to 64 kB for each bio */ 2678 static int scrub_extent(struct scrub_ctx *sctx, struct map_lookup *map, 2679 u64 logical, u32 len, 2680 u64 physical, struct btrfs_device *dev, u64 flags, 2681 u64 gen, int mirror_num) 2682 { 2683 struct btrfs_device *src_dev = dev; 2684 u64 src_physical = physical; 2685 int src_mirror = mirror_num; 2686 int ret; 2687 u8 csum[BTRFS_CSUM_SIZE]; 2688 u32 blocksize; 2689 2690 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2691 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2692 blocksize = map->stripe_len; 2693 else 2694 blocksize = sctx->fs_info->sectorsize; 2695 spin_lock(&sctx->stat_lock); 2696 sctx->stat.data_extents_scrubbed++; 2697 sctx->stat.data_bytes_scrubbed += len; 2698 spin_unlock(&sctx->stat_lock); 2699 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2700 if (map->type & BTRFS_BLOCK_GROUP_RAID56_MASK) 2701 blocksize = map->stripe_len; 2702 else 2703 blocksize = sctx->fs_info->nodesize; 2704 spin_lock(&sctx->stat_lock); 2705 sctx->stat.tree_extents_scrubbed++; 2706 sctx->stat.tree_bytes_scrubbed += len; 2707 spin_unlock(&sctx->stat_lock); 2708 } else { 2709 blocksize = sctx->fs_info->sectorsize; 2710 WARN_ON(1); 2711 } 2712 2713 /* 2714 * For dev-replace case, we can have @dev being a missing device. 2715 * Regular scrub will avoid its execution on missing device at all, 2716 * as that would trigger tons of read error. 2717 * 2718 * Reading from missing device will cause read error counts to 2719 * increase unnecessarily. 2720 * So here we change the read source to a good mirror. 2721 */ 2722 if (sctx->is_dev_replace && !dev->bdev) 2723 scrub_find_good_copy(sctx->fs_info, logical, len, &src_physical, 2724 &src_dev, &src_mirror); 2725 while (len) { 2726 u32 l = min(len, blocksize); 2727 int have_csum = 0; 2728 2729 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2730 /* push csums to sbio */ 2731 have_csum = scrub_find_csum(sctx, logical, csum); 2732 if (have_csum == 0) 2733 ++sctx->stat.no_csum; 2734 } 2735 ret = scrub_sectors(sctx, logical, l, src_physical, src_dev, 2736 flags, gen, src_mirror, 2737 have_csum ? csum : NULL, physical); 2738 if (ret) 2739 return ret; 2740 len -= l; 2741 logical += l; 2742 physical += l; 2743 src_physical += l; 2744 } 2745 return 0; 2746 } 2747 2748 static int scrub_sectors_for_parity(struct scrub_parity *sparity, 2749 u64 logical, u32 len, 2750 u64 physical, struct btrfs_device *dev, 2751 u64 flags, u64 gen, int mirror_num, u8 *csum) 2752 { 2753 struct scrub_ctx *sctx = sparity->sctx; 2754 struct scrub_block *sblock; 2755 const u32 sectorsize = sctx->fs_info->sectorsize; 2756 int index; 2757 2758 ASSERT(IS_ALIGNED(len, sectorsize)); 2759 2760 sblock = alloc_scrub_block(sctx, dev, logical, physical, physical, mirror_num); 2761 if (!sblock) { 2762 spin_lock(&sctx->stat_lock); 2763 sctx->stat.malloc_errors++; 2764 spin_unlock(&sctx->stat_lock); 2765 return -ENOMEM; 2766 } 2767 2768 sblock->sparity = sparity; 2769 scrub_parity_get(sparity); 2770 2771 for (index = 0; len > 0; index++) { 2772 struct scrub_sector *sector; 2773 2774 sector = alloc_scrub_sector(sblock, logical); 2775 if (!sector) { 2776 spin_lock(&sctx->stat_lock); 2777 sctx->stat.malloc_errors++; 2778 spin_unlock(&sctx->stat_lock); 2779 scrub_block_put(sblock); 2780 return -ENOMEM; 2781 } 2782 sblock->sectors[index] = sector; 2783 /* For scrub parity */ 2784 scrub_sector_get(sector); 2785 list_add_tail(§or->list, &sparity->sectors_list); 2786 sector->flags = flags; 2787 sector->generation = gen; 2788 if (csum) { 2789 sector->have_csum = 1; 2790 memcpy(sector->csum, csum, sctx->fs_info->csum_size); 2791 } else { 2792 sector->have_csum = 0; 2793 } 2794 2795 /* Iterate over the stripe range in sectorsize steps */ 2796 len -= sectorsize; 2797 logical += sectorsize; 2798 physical += sectorsize; 2799 } 2800 2801 WARN_ON(sblock->sector_count == 0); 2802 for (index = 0; index < sblock->sector_count; index++) { 2803 struct scrub_sector *sector = sblock->sectors[index]; 2804 int ret; 2805 2806 ret = scrub_add_sector_to_rd_bio(sctx, sector); 2807 if (ret) { 2808 scrub_block_put(sblock); 2809 return ret; 2810 } 2811 } 2812 2813 /* Last one frees, either here or in bio completion for last sector */ 2814 scrub_block_put(sblock); 2815 return 0; 2816 } 2817 2818 static int scrub_extent_for_parity(struct scrub_parity *sparity, 2819 u64 logical, u32 len, 2820 u64 physical, struct btrfs_device *dev, 2821 u64 flags, u64 gen, int mirror_num) 2822 { 2823 struct scrub_ctx *sctx = sparity->sctx; 2824 int ret; 2825 u8 csum[BTRFS_CSUM_SIZE]; 2826 u32 blocksize; 2827 2828 if (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state)) { 2829 scrub_parity_mark_sectors_error(sparity, logical, len); 2830 return 0; 2831 } 2832 2833 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2834 blocksize = sparity->stripe_len; 2835 } else if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 2836 blocksize = sparity->stripe_len; 2837 } else { 2838 blocksize = sctx->fs_info->sectorsize; 2839 WARN_ON(1); 2840 } 2841 2842 while (len) { 2843 u32 l = min(len, blocksize); 2844 int have_csum = 0; 2845 2846 if (flags & BTRFS_EXTENT_FLAG_DATA) { 2847 /* push csums to sbio */ 2848 have_csum = scrub_find_csum(sctx, logical, csum); 2849 if (have_csum == 0) 2850 goto skip; 2851 } 2852 ret = scrub_sectors_for_parity(sparity, logical, l, physical, dev, 2853 flags, gen, mirror_num, 2854 have_csum ? csum : NULL); 2855 if (ret) 2856 return ret; 2857 skip: 2858 len -= l; 2859 logical += l; 2860 physical += l; 2861 } 2862 return 0; 2863 } 2864 2865 /* 2866 * Given a physical address, this will calculate it's 2867 * logical offset. if this is a parity stripe, it will return 2868 * the most left data stripe's logical offset. 2869 * 2870 * return 0 if it is a data stripe, 1 means parity stripe. 2871 */ 2872 static int get_raid56_logic_offset(u64 physical, int num, 2873 struct map_lookup *map, u64 *offset, 2874 u64 *stripe_start) 2875 { 2876 int i; 2877 int j = 0; 2878 u64 stripe_nr; 2879 u64 last_offset; 2880 u32 stripe_index; 2881 u32 rot; 2882 const int data_stripes = nr_data_stripes(map); 2883 2884 last_offset = (physical - map->stripes[num].physical) * data_stripes; 2885 if (stripe_start) 2886 *stripe_start = last_offset; 2887 2888 *offset = last_offset; 2889 for (i = 0; i < data_stripes; i++) { 2890 *offset = last_offset + i * map->stripe_len; 2891 2892 stripe_nr = div64_u64(*offset, map->stripe_len); 2893 stripe_nr = div_u64(stripe_nr, data_stripes); 2894 2895 /* Work out the disk rotation on this stripe-set */ 2896 stripe_nr = div_u64_rem(stripe_nr, map->num_stripes, &rot); 2897 /* calculate which stripe this data locates */ 2898 rot += i; 2899 stripe_index = rot % map->num_stripes; 2900 if (stripe_index == num) 2901 return 0; 2902 if (stripe_index < num) 2903 j++; 2904 } 2905 *offset = last_offset + j * map->stripe_len; 2906 return 1; 2907 } 2908 2909 static void scrub_free_parity(struct scrub_parity *sparity) 2910 { 2911 struct scrub_ctx *sctx = sparity->sctx; 2912 struct scrub_sector *curr, *next; 2913 int nbits; 2914 2915 nbits = bitmap_weight(&sparity->ebitmap, sparity->nsectors); 2916 if (nbits) { 2917 spin_lock(&sctx->stat_lock); 2918 sctx->stat.read_errors += nbits; 2919 sctx->stat.uncorrectable_errors += nbits; 2920 spin_unlock(&sctx->stat_lock); 2921 } 2922 2923 list_for_each_entry_safe(curr, next, &sparity->sectors_list, list) { 2924 list_del_init(&curr->list); 2925 scrub_sector_put(curr); 2926 } 2927 2928 kfree(sparity); 2929 } 2930 2931 static void scrub_parity_bio_endio_worker(struct work_struct *work) 2932 { 2933 struct scrub_parity *sparity = container_of(work, struct scrub_parity, 2934 work); 2935 struct scrub_ctx *sctx = sparity->sctx; 2936 2937 btrfs_bio_counter_dec(sctx->fs_info); 2938 scrub_free_parity(sparity); 2939 scrub_pending_bio_dec(sctx); 2940 } 2941 2942 static void scrub_parity_bio_endio(struct bio *bio) 2943 { 2944 struct scrub_parity *sparity = bio->bi_private; 2945 struct btrfs_fs_info *fs_info = sparity->sctx->fs_info; 2946 2947 if (bio->bi_status) 2948 bitmap_or(&sparity->ebitmap, &sparity->ebitmap, 2949 &sparity->dbitmap, sparity->nsectors); 2950 2951 bio_put(bio); 2952 2953 INIT_WORK(&sparity->work, scrub_parity_bio_endio_worker); 2954 queue_work(fs_info->scrub_parity_workers, &sparity->work); 2955 } 2956 2957 static void scrub_parity_check_and_repair(struct scrub_parity *sparity) 2958 { 2959 struct scrub_ctx *sctx = sparity->sctx; 2960 struct btrfs_fs_info *fs_info = sctx->fs_info; 2961 struct bio *bio; 2962 struct btrfs_raid_bio *rbio; 2963 struct btrfs_io_context *bioc = NULL; 2964 u64 length; 2965 int ret; 2966 2967 if (!bitmap_andnot(&sparity->dbitmap, &sparity->dbitmap, 2968 &sparity->ebitmap, sparity->nsectors)) 2969 goto out; 2970 2971 length = sparity->logic_end - sparity->logic_start; 2972 2973 btrfs_bio_counter_inc_blocked(fs_info); 2974 ret = btrfs_map_sblock(fs_info, BTRFS_MAP_WRITE, sparity->logic_start, 2975 &length, &bioc); 2976 if (ret || !bioc || !bioc->raid_map) 2977 goto bioc_out; 2978 2979 bio = bio_alloc(NULL, BIO_MAX_VECS, REQ_OP_READ, GFP_NOFS); 2980 bio->bi_iter.bi_sector = sparity->logic_start >> 9; 2981 bio->bi_private = sparity; 2982 bio->bi_end_io = scrub_parity_bio_endio; 2983 2984 rbio = raid56_parity_alloc_scrub_rbio(bio, bioc, 2985 sparity->scrub_dev, 2986 &sparity->dbitmap, 2987 sparity->nsectors); 2988 btrfs_put_bioc(bioc); 2989 if (!rbio) 2990 goto rbio_out; 2991 2992 scrub_pending_bio_inc(sctx); 2993 raid56_parity_submit_scrub_rbio(rbio); 2994 return; 2995 2996 rbio_out: 2997 bio_put(bio); 2998 bioc_out: 2999 btrfs_bio_counter_dec(fs_info); 3000 bitmap_or(&sparity->ebitmap, &sparity->ebitmap, &sparity->dbitmap, 3001 sparity->nsectors); 3002 spin_lock(&sctx->stat_lock); 3003 sctx->stat.malloc_errors++; 3004 spin_unlock(&sctx->stat_lock); 3005 out: 3006 scrub_free_parity(sparity); 3007 } 3008 3009 static void scrub_parity_get(struct scrub_parity *sparity) 3010 { 3011 refcount_inc(&sparity->refs); 3012 } 3013 3014 static void scrub_parity_put(struct scrub_parity *sparity) 3015 { 3016 if (!refcount_dec_and_test(&sparity->refs)) 3017 return; 3018 3019 scrub_parity_check_and_repair(sparity); 3020 } 3021 3022 /* 3023 * Return 0 if the extent item range covers any byte of the range. 3024 * Return <0 if the extent item is before @search_start. 3025 * Return >0 if the extent item is after @start_start + @search_len. 3026 */ 3027 static int compare_extent_item_range(struct btrfs_path *path, 3028 u64 search_start, u64 search_len) 3029 { 3030 struct btrfs_fs_info *fs_info = path->nodes[0]->fs_info; 3031 u64 len; 3032 struct btrfs_key key; 3033 3034 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3035 ASSERT(key.type == BTRFS_EXTENT_ITEM_KEY || 3036 key.type == BTRFS_METADATA_ITEM_KEY); 3037 if (key.type == BTRFS_METADATA_ITEM_KEY) 3038 len = fs_info->nodesize; 3039 else 3040 len = key.offset; 3041 3042 if (key.objectid + len <= search_start) 3043 return -1; 3044 if (key.objectid >= search_start + search_len) 3045 return 1; 3046 return 0; 3047 } 3048 3049 /* 3050 * Locate one extent item which covers any byte in range 3051 * [@search_start, @search_start + @search_length) 3052 * 3053 * If the path is not initialized, we will initialize the search by doing 3054 * a btrfs_search_slot(). 3055 * If the path is already initialized, we will use the path as the initial 3056 * slot, to avoid duplicated btrfs_search_slot() calls. 3057 * 3058 * NOTE: If an extent item starts before @search_start, we will still 3059 * return the extent item. This is for data extent crossing stripe boundary. 3060 * 3061 * Return 0 if we found such extent item, and @path will point to the extent item. 3062 * Return >0 if no such extent item can be found, and @path will be released. 3063 * Return <0 if hit fatal error, and @path will be released. 3064 */ 3065 static int find_first_extent_item(struct btrfs_root *extent_root, 3066 struct btrfs_path *path, 3067 u64 search_start, u64 search_len) 3068 { 3069 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3070 struct btrfs_key key; 3071 int ret; 3072 3073 /* Continue using the existing path */ 3074 if (path->nodes[0]) 3075 goto search_forward; 3076 3077 if (btrfs_fs_incompat(fs_info, SKINNY_METADATA)) 3078 key.type = BTRFS_METADATA_ITEM_KEY; 3079 else 3080 key.type = BTRFS_EXTENT_ITEM_KEY; 3081 key.objectid = search_start; 3082 key.offset = (u64)-1; 3083 3084 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0); 3085 if (ret < 0) 3086 return ret; 3087 3088 ASSERT(ret > 0); 3089 /* 3090 * Here we intentionally pass 0 as @min_objectid, as there could be 3091 * an extent item starting before @search_start. 3092 */ 3093 ret = btrfs_previous_extent_item(extent_root, path, 0); 3094 if (ret < 0) 3095 return ret; 3096 /* 3097 * No matter whether we have found an extent item, the next loop will 3098 * properly do every check on the key. 3099 */ 3100 search_forward: 3101 while (true) { 3102 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3103 if (key.objectid >= search_start + search_len) 3104 break; 3105 if (key.type != BTRFS_METADATA_ITEM_KEY && 3106 key.type != BTRFS_EXTENT_ITEM_KEY) 3107 goto next; 3108 3109 ret = compare_extent_item_range(path, search_start, search_len); 3110 if (ret == 0) 3111 return ret; 3112 if (ret > 0) 3113 break; 3114 next: 3115 path->slots[0]++; 3116 if (path->slots[0] >= btrfs_header_nritems(path->nodes[0])) { 3117 ret = btrfs_next_leaf(extent_root, path); 3118 if (ret) { 3119 /* Either no more item or fatal error */ 3120 btrfs_release_path(path); 3121 return ret; 3122 } 3123 } 3124 } 3125 btrfs_release_path(path); 3126 return 1; 3127 } 3128 3129 static void get_extent_info(struct btrfs_path *path, u64 *extent_start_ret, 3130 u64 *size_ret, u64 *flags_ret, u64 *generation_ret) 3131 { 3132 struct btrfs_key key; 3133 struct btrfs_extent_item *ei; 3134 3135 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3136 ASSERT(key.type == BTRFS_METADATA_ITEM_KEY || 3137 key.type == BTRFS_EXTENT_ITEM_KEY); 3138 *extent_start_ret = key.objectid; 3139 if (key.type == BTRFS_METADATA_ITEM_KEY) 3140 *size_ret = path->nodes[0]->fs_info->nodesize; 3141 else 3142 *size_ret = key.offset; 3143 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], struct btrfs_extent_item); 3144 *flags_ret = btrfs_extent_flags(path->nodes[0], ei); 3145 *generation_ret = btrfs_extent_generation(path->nodes[0], ei); 3146 } 3147 3148 static bool does_range_cross_boundary(u64 extent_start, u64 extent_len, 3149 u64 boundary_start, u64 boudary_len) 3150 { 3151 return (extent_start < boundary_start && 3152 extent_start + extent_len > boundary_start) || 3153 (extent_start < boundary_start + boudary_len && 3154 extent_start + extent_len > boundary_start + boudary_len); 3155 } 3156 3157 static int scrub_raid56_data_stripe_for_parity(struct scrub_ctx *sctx, 3158 struct scrub_parity *sparity, 3159 struct map_lookup *map, 3160 struct btrfs_device *sdev, 3161 struct btrfs_path *path, 3162 u64 logical) 3163 { 3164 struct btrfs_fs_info *fs_info = sctx->fs_info; 3165 struct btrfs_root *extent_root = btrfs_extent_root(fs_info, logical); 3166 struct btrfs_root *csum_root = btrfs_csum_root(fs_info, logical); 3167 u64 cur_logical = logical; 3168 int ret; 3169 3170 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 3171 3172 /* Path must not be populated */ 3173 ASSERT(!path->nodes[0]); 3174 3175 while (cur_logical < logical + map->stripe_len) { 3176 struct btrfs_io_context *bioc = NULL; 3177 struct btrfs_device *extent_dev; 3178 u64 extent_start; 3179 u64 extent_size; 3180 u64 mapped_length; 3181 u64 extent_flags; 3182 u64 extent_gen; 3183 u64 extent_physical; 3184 u64 extent_mirror_num; 3185 3186 ret = find_first_extent_item(extent_root, path, cur_logical, 3187 logical + map->stripe_len - cur_logical); 3188 /* No more extent item in this data stripe */ 3189 if (ret > 0) { 3190 ret = 0; 3191 break; 3192 } 3193 if (ret < 0) 3194 break; 3195 get_extent_info(path, &extent_start, &extent_size, &extent_flags, 3196 &extent_gen); 3197 3198 /* Metadata should not cross stripe boundaries */ 3199 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3200 does_range_cross_boundary(extent_start, extent_size, 3201 logical, map->stripe_len)) { 3202 btrfs_err(fs_info, 3203 "scrub: tree block %llu spanning stripes, ignored. logical=%llu", 3204 extent_start, logical); 3205 spin_lock(&sctx->stat_lock); 3206 sctx->stat.uncorrectable_errors++; 3207 spin_unlock(&sctx->stat_lock); 3208 cur_logical += extent_size; 3209 continue; 3210 } 3211 3212 /* Skip hole range which doesn't have any extent */ 3213 cur_logical = max(extent_start, cur_logical); 3214 3215 /* Truncate the range inside this data stripe */ 3216 extent_size = min(extent_start + extent_size, 3217 logical + map->stripe_len) - cur_logical; 3218 extent_start = cur_logical; 3219 ASSERT(extent_size <= U32_MAX); 3220 3221 scrub_parity_mark_sectors_data(sparity, extent_start, extent_size); 3222 3223 mapped_length = extent_size; 3224 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_start, 3225 &mapped_length, &bioc, 0); 3226 if (!ret && (!bioc || mapped_length < extent_size)) 3227 ret = -EIO; 3228 if (ret) { 3229 btrfs_put_bioc(bioc); 3230 scrub_parity_mark_sectors_error(sparity, extent_start, 3231 extent_size); 3232 break; 3233 } 3234 extent_physical = bioc->stripes[0].physical; 3235 extent_mirror_num = bioc->mirror_num; 3236 extent_dev = bioc->stripes[0].dev; 3237 btrfs_put_bioc(bioc); 3238 3239 ret = btrfs_lookup_csums_range(csum_root, extent_start, 3240 extent_start + extent_size - 1, 3241 &sctx->csum_list, 1, false); 3242 if (ret) { 3243 scrub_parity_mark_sectors_error(sparity, extent_start, 3244 extent_size); 3245 break; 3246 } 3247 3248 ret = scrub_extent_for_parity(sparity, extent_start, 3249 extent_size, extent_physical, 3250 extent_dev, extent_flags, 3251 extent_gen, extent_mirror_num); 3252 scrub_free_csums(sctx); 3253 3254 if (ret) { 3255 scrub_parity_mark_sectors_error(sparity, extent_start, 3256 extent_size); 3257 break; 3258 } 3259 3260 cond_resched(); 3261 cur_logical += extent_size; 3262 } 3263 btrfs_release_path(path); 3264 return ret; 3265 } 3266 3267 static noinline_for_stack int scrub_raid56_parity(struct scrub_ctx *sctx, 3268 struct map_lookup *map, 3269 struct btrfs_device *sdev, 3270 u64 logic_start, 3271 u64 logic_end) 3272 { 3273 struct btrfs_fs_info *fs_info = sctx->fs_info; 3274 struct btrfs_path *path; 3275 u64 cur_logical; 3276 int ret; 3277 struct scrub_parity *sparity; 3278 int nsectors; 3279 3280 path = btrfs_alloc_path(); 3281 if (!path) { 3282 spin_lock(&sctx->stat_lock); 3283 sctx->stat.malloc_errors++; 3284 spin_unlock(&sctx->stat_lock); 3285 return -ENOMEM; 3286 } 3287 path->search_commit_root = 1; 3288 path->skip_locking = 1; 3289 3290 ASSERT(map->stripe_len <= U32_MAX); 3291 nsectors = map->stripe_len >> fs_info->sectorsize_bits; 3292 ASSERT(nsectors <= BITS_PER_LONG); 3293 sparity = kzalloc(sizeof(struct scrub_parity), GFP_NOFS); 3294 if (!sparity) { 3295 spin_lock(&sctx->stat_lock); 3296 sctx->stat.malloc_errors++; 3297 spin_unlock(&sctx->stat_lock); 3298 btrfs_free_path(path); 3299 return -ENOMEM; 3300 } 3301 3302 ASSERT(map->stripe_len <= U32_MAX); 3303 sparity->stripe_len = map->stripe_len; 3304 sparity->nsectors = nsectors; 3305 sparity->sctx = sctx; 3306 sparity->scrub_dev = sdev; 3307 sparity->logic_start = logic_start; 3308 sparity->logic_end = logic_end; 3309 refcount_set(&sparity->refs, 1); 3310 INIT_LIST_HEAD(&sparity->sectors_list); 3311 3312 ret = 0; 3313 for (cur_logical = logic_start; cur_logical < logic_end; 3314 cur_logical += map->stripe_len) { 3315 ret = scrub_raid56_data_stripe_for_parity(sctx, sparity, map, 3316 sdev, path, cur_logical); 3317 if (ret < 0) 3318 break; 3319 } 3320 3321 scrub_parity_put(sparity); 3322 scrub_submit(sctx); 3323 mutex_lock(&sctx->wr_lock); 3324 scrub_wr_submit(sctx); 3325 mutex_unlock(&sctx->wr_lock); 3326 3327 btrfs_free_path(path); 3328 return ret < 0 ? ret : 0; 3329 } 3330 3331 static void sync_replace_for_zoned(struct scrub_ctx *sctx) 3332 { 3333 if (!btrfs_is_zoned(sctx->fs_info)) 3334 return; 3335 3336 sctx->flush_all_writes = true; 3337 scrub_submit(sctx); 3338 mutex_lock(&sctx->wr_lock); 3339 scrub_wr_submit(sctx); 3340 mutex_unlock(&sctx->wr_lock); 3341 3342 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3343 } 3344 3345 static int sync_write_pointer_for_zoned(struct scrub_ctx *sctx, u64 logical, 3346 u64 physical, u64 physical_end) 3347 { 3348 struct btrfs_fs_info *fs_info = sctx->fs_info; 3349 int ret = 0; 3350 3351 if (!btrfs_is_zoned(fs_info)) 3352 return 0; 3353 3354 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 3355 3356 mutex_lock(&sctx->wr_lock); 3357 if (sctx->write_pointer < physical_end) { 3358 ret = btrfs_sync_zone_write_pointer(sctx->wr_tgtdev, logical, 3359 physical, 3360 sctx->write_pointer); 3361 if (ret) 3362 btrfs_err(fs_info, 3363 "zoned: failed to recover write pointer"); 3364 } 3365 mutex_unlock(&sctx->wr_lock); 3366 btrfs_dev_clear_zone_empty(sctx->wr_tgtdev, physical); 3367 3368 return ret; 3369 } 3370 3371 /* 3372 * Scrub one range which can only has simple mirror based profile. 3373 * (Including all range in SINGLE/DUP/RAID1/RAID1C*, and each stripe in 3374 * RAID0/RAID10). 3375 * 3376 * Since we may need to handle a subset of block group, we need @logical_start 3377 * and @logical_length parameter. 3378 */ 3379 static int scrub_simple_mirror(struct scrub_ctx *sctx, 3380 struct btrfs_root *extent_root, 3381 struct btrfs_root *csum_root, 3382 struct btrfs_block_group *bg, 3383 struct map_lookup *map, 3384 u64 logical_start, u64 logical_length, 3385 struct btrfs_device *device, 3386 u64 physical, int mirror_num) 3387 { 3388 struct btrfs_fs_info *fs_info = sctx->fs_info; 3389 const u64 logical_end = logical_start + logical_length; 3390 /* An artificial limit, inherit from old scrub behavior */ 3391 const u32 max_length = SZ_64K; 3392 struct btrfs_path path = { 0 }; 3393 u64 cur_logical = logical_start; 3394 int ret; 3395 3396 /* The range must be inside the bg */ 3397 ASSERT(logical_start >= bg->start && logical_end <= bg->start + bg->length); 3398 3399 path.search_commit_root = 1; 3400 path.skip_locking = 1; 3401 /* Go through each extent items inside the logical range */ 3402 while (cur_logical < logical_end) { 3403 u64 extent_start; 3404 u64 extent_len; 3405 u64 extent_flags; 3406 u64 extent_gen; 3407 u64 scrub_len; 3408 3409 /* Canceled? */ 3410 if (atomic_read(&fs_info->scrub_cancel_req) || 3411 atomic_read(&sctx->cancel_req)) { 3412 ret = -ECANCELED; 3413 break; 3414 } 3415 /* Paused? */ 3416 if (atomic_read(&fs_info->scrub_pause_req)) { 3417 /* Push queued extents */ 3418 sctx->flush_all_writes = true; 3419 scrub_submit(sctx); 3420 mutex_lock(&sctx->wr_lock); 3421 scrub_wr_submit(sctx); 3422 mutex_unlock(&sctx->wr_lock); 3423 wait_event(sctx->list_wait, 3424 atomic_read(&sctx->bios_in_flight) == 0); 3425 sctx->flush_all_writes = false; 3426 scrub_blocked_if_needed(fs_info); 3427 } 3428 /* Block group removed? */ 3429 spin_lock(&bg->lock); 3430 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) { 3431 spin_unlock(&bg->lock); 3432 ret = 0; 3433 break; 3434 } 3435 spin_unlock(&bg->lock); 3436 3437 ret = find_first_extent_item(extent_root, &path, cur_logical, 3438 logical_end - cur_logical); 3439 if (ret > 0) { 3440 /* No more extent, just update the accounting */ 3441 sctx->stat.last_physical = physical + logical_length; 3442 ret = 0; 3443 break; 3444 } 3445 if (ret < 0) 3446 break; 3447 get_extent_info(&path, &extent_start, &extent_len, 3448 &extent_flags, &extent_gen); 3449 /* Skip hole range which doesn't have any extent */ 3450 cur_logical = max(extent_start, cur_logical); 3451 3452 /* 3453 * Scrub len has three limits: 3454 * - Extent size limit 3455 * - Scrub range limit 3456 * This is especially imporatant for RAID0/RAID10 to reuse 3457 * this function 3458 * - Max scrub size limit 3459 */ 3460 scrub_len = min(min(extent_start + extent_len, 3461 logical_end), cur_logical + max_length) - 3462 cur_logical; 3463 3464 if (extent_flags & BTRFS_EXTENT_FLAG_DATA) { 3465 ret = btrfs_lookup_csums_range(csum_root, cur_logical, 3466 cur_logical + scrub_len - 1, 3467 &sctx->csum_list, 1, false); 3468 if (ret) 3469 break; 3470 } 3471 if ((extent_flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) && 3472 does_range_cross_boundary(extent_start, extent_len, 3473 logical_start, logical_length)) { 3474 btrfs_err(fs_info, 3475 "scrub: tree block %llu spanning boundaries, ignored. boundary=[%llu, %llu)", 3476 extent_start, logical_start, logical_end); 3477 spin_lock(&sctx->stat_lock); 3478 sctx->stat.uncorrectable_errors++; 3479 spin_unlock(&sctx->stat_lock); 3480 cur_logical += scrub_len; 3481 continue; 3482 } 3483 ret = scrub_extent(sctx, map, cur_logical, scrub_len, 3484 cur_logical - logical_start + physical, 3485 device, extent_flags, extent_gen, 3486 mirror_num); 3487 scrub_free_csums(sctx); 3488 if (ret) 3489 break; 3490 if (sctx->is_dev_replace) 3491 sync_replace_for_zoned(sctx); 3492 cur_logical += scrub_len; 3493 /* Don't hold CPU for too long time */ 3494 cond_resched(); 3495 } 3496 btrfs_release_path(&path); 3497 return ret; 3498 } 3499 3500 /* Calculate the full stripe length for simple stripe based profiles */ 3501 static u64 simple_stripe_full_stripe_len(const struct map_lookup *map) 3502 { 3503 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3504 BTRFS_BLOCK_GROUP_RAID10)); 3505 3506 return map->num_stripes / map->sub_stripes * map->stripe_len; 3507 } 3508 3509 /* Get the logical bytenr for the stripe */ 3510 static u64 simple_stripe_get_logical(struct map_lookup *map, 3511 struct btrfs_block_group *bg, 3512 int stripe_index) 3513 { 3514 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3515 BTRFS_BLOCK_GROUP_RAID10)); 3516 ASSERT(stripe_index < map->num_stripes); 3517 3518 /* 3519 * (stripe_index / sub_stripes) gives how many data stripes we need to 3520 * skip. 3521 */ 3522 return (stripe_index / map->sub_stripes) * map->stripe_len + bg->start; 3523 } 3524 3525 /* Get the mirror number for the stripe */ 3526 static int simple_stripe_mirror_num(struct map_lookup *map, int stripe_index) 3527 { 3528 ASSERT(map->type & (BTRFS_BLOCK_GROUP_RAID0 | 3529 BTRFS_BLOCK_GROUP_RAID10)); 3530 ASSERT(stripe_index < map->num_stripes); 3531 3532 /* For RAID0, it's fixed to 1, for RAID10 it's 0,1,0,1... */ 3533 return stripe_index % map->sub_stripes + 1; 3534 } 3535 3536 static int scrub_simple_stripe(struct scrub_ctx *sctx, 3537 struct btrfs_root *extent_root, 3538 struct btrfs_root *csum_root, 3539 struct btrfs_block_group *bg, 3540 struct map_lookup *map, 3541 struct btrfs_device *device, 3542 int stripe_index) 3543 { 3544 const u64 logical_increment = simple_stripe_full_stripe_len(map); 3545 const u64 orig_logical = simple_stripe_get_logical(map, bg, stripe_index); 3546 const u64 orig_physical = map->stripes[stripe_index].physical; 3547 const int mirror_num = simple_stripe_mirror_num(map, stripe_index); 3548 u64 cur_logical = orig_logical; 3549 u64 cur_physical = orig_physical; 3550 int ret = 0; 3551 3552 while (cur_logical < bg->start + bg->length) { 3553 /* 3554 * Inside each stripe, RAID0 is just SINGLE, and RAID10 is 3555 * just RAID1, so we can reuse scrub_simple_mirror() to scrub 3556 * this stripe. 3557 */ 3558 ret = scrub_simple_mirror(sctx, extent_root, csum_root, bg, map, 3559 cur_logical, map->stripe_len, device, 3560 cur_physical, mirror_num); 3561 if (ret) 3562 return ret; 3563 /* Skip to next stripe which belongs to the target device */ 3564 cur_logical += logical_increment; 3565 /* For physical offset, we just go to next stripe */ 3566 cur_physical += map->stripe_len; 3567 } 3568 return ret; 3569 } 3570 3571 static noinline_for_stack int scrub_stripe(struct scrub_ctx *sctx, 3572 struct btrfs_block_group *bg, 3573 struct extent_map *em, 3574 struct btrfs_device *scrub_dev, 3575 int stripe_index) 3576 { 3577 struct btrfs_path *path; 3578 struct btrfs_fs_info *fs_info = sctx->fs_info; 3579 struct btrfs_root *root; 3580 struct btrfs_root *csum_root; 3581 struct blk_plug plug; 3582 struct map_lookup *map = em->map_lookup; 3583 const u64 profile = map->type & BTRFS_BLOCK_GROUP_PROFILE_MASK; 3584 const u64 chunk_logical = bg->start; 3585 int ret; 3586 u64 physical = map->stripes[stripe_index].physical; 3587 const u64 dev_stripe_len = btrfs_calc_stripe_length(em); 3588 const u64 physical_end = physical + dev_stripe_len; 3589 u64 logical; 3590 u64 logic_end; 3591 /* The logical increment after finishing one stripe */ 3592 u64 increment; 3593 /* Offset inside the chunk */ 3594 u64 offset; 3595 u64 stripe_logical; 3596 u64 stripe_end; 3597 int stop_loop = 0; 3598 3599 path = btrfs_alloc_path(); 3600 if (!path) 3601 return -ENOMEM; 3602 3603 /* 3604 * work on commit root. The related disk blocks are static as 3605 * long as COW is applied. This means, it is save to rewrite 3606 * them to repair disk errors without any race conditions 3607 */ 3608 path->search_commit_root = 1; 3609 path->skip_locking = 1; 3610 path->reada = READA_FORWARD; 3611 3612 wait_event(sctx->list_wait, 3613 atomic_read(&sctx->bios_in_flight) == 0); 3614 scrub_blocked_if_needed(fs_info); 3615 3616 root = btrfs_extent_root(fs_info, bg->start); 3617 csum_root = btrfs_csum_root(fs_info, bg->start); 3618 3619 /* 3620 * collect all data csums for the stripe to avoid seeking during 3621 * the scrub. This might currently (crc32) end up to be about 1MB 3622 */ 3623 blk_start_plug(&plug); 3624 3625 if (sctx->is_dev_replace && 3626 btrfs_dev_is_sequential(sctx->wr_tgtdev, physical)) { 3627 mutex_lock(&sctx->wr_lock); 3628 sctx->write_pointer = physical; 3629 mutex_unlock(&sctx->wr_lock); 3630 sctx->flush_all_writes = true; 3631 } 3632 3633 /* 3634 * There used to be a big double loop to handle all profiles using the 3635 * same routine, which grows larger and more gross over time. 3636 * 3637 * So here we handle each profile differently, so simpler profiles 3638 * have simpler scrubbing function. 3639 */ 3640 if (!(profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10 | 3641 BTRFS_BLOCK_GROUP_RAID56_MASK))) { 3642 /* 3643 * Above check rules out all complex profile, the remaining 3644 * profiles are SINGLE|DUP|RAID1|RAID1C*, which is simple 3645 * mirrored duplication without stripe. 3646 * 3647 * Only @physical and @mirror_num needs to calculated using 3648 * @stripe_index. 3649 */ 3650 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, 3651 bg->start, bg->length, scrub_dev, 3652 map->stripes[stripe_index].physical, 3653 stripe_index + 1); 3654 offset = 0; 3655 goto out; 3656 } 3657 if (profile & (BTRFS_BLOCK_GROUP_RAID0 | BTRFS_BLOCK_GROUP_RAID10)) { 3658 ret = scrub_simple_stripe(sctx, root, csum_root, bg, map, 3659 scrub_dev, stripe_index); 3660 offset = map->stripe_len * (stripe_index / map->sub_stripes); 3661 goto out; 3662 } 3663 3664 /* Only RAID56 goes through the old code */ 3665 ASSERT(map->type & BTRFS_BLOCK_GROUP_RAID56_MASK); 3666 ret = 0; 3667 3668 /* Calculate the logical end of the stripe */ 3669 get_raid56_logic_offset(physical_end, stripe_index, 3670 map, &logic_end, NULL); 3671 logic_end += chunk_logical; 3672 3673 /* Initialize @offset in case we need to go to out: label */ 3674 get_raid56_logic_offset(physical, stripe_index, map, &offset, NULL); 3675 increment = map->stripe_len * nr_data_stripes(map); 3676 3677 /* 3678 * Due to the rotation, for RAID56 it's better to iterate each stripe 3679 * using their physical offset. 3680 */ 3681 while (physical < physical_end) { 3682 ret = get_raid56_logic_offset(physical, stripe_index, map, 3683 &logical, &stripe_logical); 3684 logical += chunk_logical; 3685 if (ret) { 3686 /* it is parity strip */ 3687 stripe_logical += chunk_logical; 3688 stripe_end = stripe_logical + increment; 3689 ret = scrub_raid56_parity(sctx, map, scrub_dev, 3690 stripe_logical, 3691 stripe_end); 3692 if (ret) 3693 goto out; 3694 goto next; 3695 } 3696 3697 /* 3698 * Now we're at a data stripe, scrub each extents in the range. 3699 * 3700 * At this stage, if we ignore the repair part, inside each data 3701 * stripe it is no different than SINGLE profile. 3702 * We can reuse scrub_simple_mirror() here, as the repair part 3703 * is still based on @mirror_num. 3704 */ 3705 ret = scrub_simple_mirror(sctx, root, csum_root, bg, map, 3706 logical, map->stripe_len, 3707 scrub_dev, physical, 1); 3708 if (ret < 0) 3709 goto out; 3710 next: 3711 logical += increment; 3712 physical += map->stripe_len; 3713 spin_lock(&sctx->stat_lock); 3714 if (stop_loop) 3715 sctx->stat.last_physical = 3716 map->stripes[stripe_index].physical + dev_stripe_len; 3717 else 3718 sctx->stat.last_physical = physical; 3719 spin_unlock(&sctx->stat_lock); 3720 if (stop_loop) 3721 break; 3722 } 3723 out: 3724 /* push queued extents */ 3725 scrub_submit(sctx); 3726 mutex_lock(&sctx->wr_lock); 3727 scrub_wr_submit(sctx); 3728 mutex_unlock(&sctx->wr_lock); 3729 3730 blk_finish_plug(&plug); 3731 btrfs_free_path(path); 3732 3733 if (sctx->is_dev_replace && ret >= 0) { 3734 int ret2; 3735 3736 ret2 = sync_write_pointer_for_zoned(sctx, 3737 chunk_logical + offset, 3738 map->stripes[stripe_index].physical, 3739 physical_end); 3740 if (ret2) 3741 ret = ret2; 3742 } 3743 3744 return ret < 0 ? ret : 0; 3745 } 3746 3747 static noinline_for_stack int scrub_chunk(struct scrub_ctx *sctx, 3748 struct btrfs_block_group *bg, 3749 struct btrfs_device *scrub_dev, 3750 u64 dev_offset, 3751 u64 dev_extent_len) 3752 { 3753 struct btrfs_fs_info *fs_info = sctx->fs_info; 3754 struct extent_map_tree *map_tree = &fs_info->mapping_tree; 3755 struct map_lookup *map; 3756 struct extent_map *em; 3757 int i; 3758 int ret = 0; 3759 3760 read_lock(&map_tree->lock); 3761 em = lookup_extent_mapping(map_tree, bg->start, bg->length); 3762 read_unlock(&map_tree->lock); 3763 3764 if (!em) { 3765 /* 3766 * Might have been an unused block group deleted by the cleaner 3767 * kthread or relocation. 3768 */ 3769 spin_lock(&bg->lock); 3770 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &bg->runtime_flags)) 3771 ret = -EINVAL; 3772 spin_unlock(&bg->lock); 3773 3774 return ret; 3775 } 3776 if (em->start != bg->start) 3777 goto out; 3778 if (em->len < dev_extent_len) 3779 goto out; 3780 3781 map = em->map_lookup; 3782 for (i = 0; i < map->num_stripes; ++i) { 3783 if (map->stripes[i].dev->bdev == scrub_dev->bdev && 3784 map->stripes[i].physical == dev_offset) { 3785 ret = scrub_stripe(sctx, bg, em, scrub_dev, i); 3786 if (ret) 3787 goto out; 3788 } 3789 } 3790 out: 3791 free_extent_map(em); 3792 3793 return ret; 3794 } 3795 3796 static int finish_extent_writes_for_zoned(struct btrfs_root *root, 3797 struct btrfs_block_group *cache) 3798 { 3799 struct btrfs_fs_info *fs_info = cache->fs_info; 3800 struct btrfs_trans_handle *trans; 3801 3802 if (!btrfs_is_zoned(fs_info)) 3803 return 0; 3804 3805 btrfs_wait_block_group_reservations(cache); 3806 btrfs_wait_nocow_writers(cache); 3807 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, cache->length); 3808 3809 trans = btrfs_join_transaction(root); 3810 if (IS_ERR(trans)) 3811 return PTR_ERR(trans); 3812 return btrfs_commit_transaction(trans); 3813 } 3814 3815 static noinline_for_stack 3816 int scrub_enumerate_chunks(struct scrub_ctx *sctx, 3817 struct btrfs_device *scrub_dev, u64 start, u64 end) 3818 { 3819 struct btrfs_dev_extent *dev_extent = NULL; 3820 struct btrfs_path *path; 3821 struct btrfs_fs_info *fs_info = sctx->fs_info; 3822 struct btrfs_root *root = fs_info->dev_root; 3823 u64 chunk_offset; 3824 int ret = 0; 3825 int ro_set; 3826 int slot; 3827 struct extent_buffer *l; 3828 struct btrfs_key key; 3829 struct btrfs_key found_key; 3830 struct btrfs_block_group *cache; 3831 struct btrfs_dev_replace *dev_replace = &fs_info->dev_replace; 3832 3833 path = btrfs_alloc_path(); 3834 if (!path) 3835 return -ENOMEM; 3836 3837 path->reada = READA_FORWARD; 3838 path->search_commit_root = 1; 3839 path->skip_locking = 1; 3840 3841 key.objectid = scrub_dev->devid; 3842 key.offset = 0ull; 3843 key.type = BTRFS_DEV_EXTENT_KEY; 3844 3845 while (1) { 3846 u64 dev_extent_len; 3847 3848 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3849 if (ret < 0) 3850 break; 3851 if (ret > 0) { 3852 if (path->slots[0] >= 3853 btrfs_header_nritems(path->nodes[0])) { 3854 ret = btrfs_next_leaf(root, path); 3855 if (ret < 0) 3856 break; 3857 if (ret > 0) { 3858 ret = 0; 3859 break; 3860 } 3861 } else { 3862 ret = 0; 3863 } 3864 } 3865 3866 l = path->nodes[0]; 3867 slot = path->slots[0]; 3868 3869 btrfs_item_key_to_cpu(l, &found_key, slot); 3870 3871 if (found_key.objectid != scrub_dev->devid) 3872 break; 3873 3874 if (found_key.type != BTRFS_DEV_EXTENT_KEY) 3875 break; 3876 3877 if (found_key.offset >= end) 3878 break; 3879 3880 if (found_key.offset < key.offset) 3881 break; 3882 3883 dev_extent = btrfs_item_ptr(l, slot, struct btrfs_dev_extent); 3884 dev_extent_len = btrfs_dev_extent_length(l, dev_extent); 3885 3886 if (found_key.offset + dev_extent_len <= start) 3887 goto skip; 3888 3889 chunk_offset = btrfs_dev_extent_chunk_offset(l, dev_extent); 3890 3891 /* 3892 * get a reference on the corresponding block group to prevent 3893 * the chunk from going away while we scrub it 3894 */ 3895 cache = btrfs_lookup_block_group(fs_info, chunk_offset); 3896 3897 /* some chunks are removed but not committed to disk yet, 3898 * continue scrubbing */ 3899 if (!cache) 3900 goto skip; 3901 3902 ASSERT(cache->start <= chunk_offset); 3903 /* 3904 * We are using the commit root to search for device extents, so 3905 * that means we could have found a device extent item from a 3906 * block group that was deleted in the current transaction. The 3907 * logical start offset of the deleted block group, stored at 3908 * @chunk_offset, might be part of the logical address range of 3909 * a new block group (which uses different physical extents). 3910 * In this case btrfs_lookup_block_group() has returned the new 3911 * block group, and its start address is less than @chunk_offset. 3912 * 3913 * We skip such new block groups, because it's pointless to 3914 * process them, as we won't find their extents because we search 3915 * for them using the commit root of the extent tree. For a device 3916 * replace it's also fine to skip it, we won't miss copying them 3917 * to the target device because we have the write duplication 3918 * setup through the regular write path (by btrfs_map_block()), 3919 * and we have committed a transaction when we started the device 3920 * replace, right after setting up the device replace state. 3921 */ 3922 if (cache->start < chunk_offset) { 3923 btrfs_put_block_group(cache); 3924 goto skip; 3925 } 3926 3927 if (sctx->is_dev_replace && btrfs_is_zoned(fs_info)) { 3928 if (!test_bit(BLOCK_GROUP_FLAG_TO_COPY, &cache->runtime_flags)) { 3929 btrfs_put_block_group(cache); 3930 goto skip; 3931 } 3932 } 3933 3934 /* 3935 * Make sure that while we are scrubbing the corresponding block 3936 * group doesn't get its logical address and its device extents 3937 * reused for another block group, which can possibly be of a 3938 * different type and different profile. We do this to prevent 3939 * false error detections and crashes due to bogus attempts to 3940 * repair extents. 3941 */ 3942 spin_lock(&cache->lock); 3943 if (test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags)) { 3944 spin_unlock(&cache->lock); 3945 btrfs_put_block_group(cache); 3946 goto skip; 3947 } 3948 btrfs_freeze_block_group(cache); 3949 spin_unlock(&cache->lock); 3950 3951 /* 3952 * we need call btrfs_inc_block_group_ro() with scrubs_paused, 3953 * to avoid deadlock caused by: 3954 * btrfs_inc_block_group_ro() 3955 * -> btrfs_wait_for_commit() 3956 * -> btrfs_commit_transaction() 3957 * -> btrfs_scrub_pause() 3958 */ 3959 scrub_pause_on(fs_info); 3960 3961 /* 3962 * Don't do chunk preallocation for scrub. 3963 * 3964 * This is especially important for SYSTEM bgs, or we can hit 3965 * -EFBIG from btrfs_finish_chunk_alloc() like: 3966 * 1. The only SYSTEM bg is marked RO. 3967 * Since SYSTEM bg is small, that's pretty common. 3968 * 2. New SYSTEM bg will be allocated 3969 * Due to regular version will allocate new chunk. 3970 * 3. New SYSTEM bg is empty and will get cleaned up 3971 * Before cleanup really happens, it's marked RO again. 3972 * 4. Empty SYSTEM bg get scrubbed 3973 * We go back to 2. 3974 * 3975 * This can easily boost the amount of SYSTEM chunks if cleaner 3976 * thread can't be triggered fast enough, and use up all space 3977 * of btrfs_super_block::sys_chunk_array 3978 * 3979 * While for dev replace, we need to try our best to mark block 3980 * group RO, to prevent race between: 3981 * - Write duplication 3982 * Contains latest data 3983 * - Scrub copy 3984 * Contains data from commit tree 3985 * 3986 * If target block group is not marked RO, nocow writes can 3987 * be overwritten by scrub copy, causing data corruption. 3988 * So for dev-replace, it's not allowed to continue if a block 3989 * group is not RO. 3990 */ 3991 ret = btrfs_inc_block_group_ro(cache, sctx->is_dev_replace); 3992 if (!ret && sctx->is_dev_replace) { 3993 ret = finish_extent_writes_for_zoned(root, cache); 3994 if (ret) { 3995 btrfs_dec_block_group_ro(cache); 3996 scrub_pause_off(fs_info); 3997 btrfs_put_block_group(cache); 3998 break; 3999 } 4000 } 4001 4002 if (ret == 0) { 4003 ro_set = 1; 4004 } else if (ret == -ENOSPC && !sctx->is_dev_replace) { 4005 /* 4006 * btrfs_inc_block_group_ro return -ENOSPC when it 4007 * failed in creating new chunk for metadata. 4008 * It is not a problem for scrub, because 4009 * metadata are always cowed, and our scrub paused 4010 * commit_transactions. 4011 */ 4012 ro_set = 0; 4013 } else if (ret == -ETXTBSY) { 4014 btrfs_warn(fs_info, 4015 "skipping scrub of block group %llu due to active swapfile", 4016 cache->start); 4017 scrub_pause_off(fs_info); 4018 ret = 0; 4019 goto skip_unfreeze; 4020 } else { 4021 btrfs_warn(fs_info, 4022 "failed setting block group ro: %d", ret); 4023 btrfs_unfreeze_block_group(cache); 4024 btrfs_put_block_group(cache); 4025 scrub_pause_off(fs_info); 4026 break; 4027 } 4028 4029 /* 4030 * Now the target block is marked RO, wait for nocow writes to 4031 * finish before dev-replace. 4032 * COW is fine, as COW never overwrites extents in commit tree. 4033 */ 4034 if (sctx->is_dev_replace) { 4035 btrfs_wait_nocow_writers(cache); 4036 btrfs_wait_ordered_roots(fs_info, U64_MAX, cache->start, 4037 cache->length); 4038 } 4039 4040 scrub_pause_off(fs_info); 4041 down_write(&dev_replace->rwsem); 4042 dev_replace->cursor_right = found_key.offset + dev_extent_len; 4043 dev_replace->cursor_left = found_key.offset; 4044 dev_replace->item_needs_writeback = 1; 4045 up_write(&dev_replace->rwsem); 4046 4047 ret = scrub_chunk(sctx, cache, scrub_dev, found_key.offset, 4048 dev_extent_len); 4049 4050 /* 4051 * flush, submit all pending read and write bios, afterwards 4052 * wait for them. 4053 * Note that in the dev replace case, a read request causes 4054 * write requests that are submitted in the read completion 4055 * worker. Therefore in the current situation, it is required 4056 * that all write requests are flushed, so that all read and 4057 * write requests are really completed when bios_in_flight 4058 * changes to 0. 4059 */ 4060 sctx->flush_all_writes = true; 4061 scrub_submit(sctx); 4062 mutex_lock(&sctx->wr_lock); 4063 scrub_wr_submit(sctx); 4064 mutex_unlock(&sctx->wr_lock); 4065 4066 wait_event(sctx->list_wait, 4067 atomic_read(&sctx->bios_in_flight) == 0); 4068 4069 scrub_pause_on(fs_info); 4070 4071 /* 4072 * must be called before we decrease @scrub_paused. 4073 * make sure we don't block transaction commit while 4074 * we are waiting pending workers finished. 4075 */ 4076 wait_event(sctx->list_wait, 4077 atomic_read(&sctx->workers_pending) == 0); 4078 sctx->flush_all_writes = false; 4079 4080 scrub_pause_off(fs_info); 4081 4082 if (sctx->is_dev_replace && 4083 !btrfs_finish_block_group_to_copy(dev_replace->srcdev, 4084 cache, found_key.offset)) 4085 ro_set = 0; 4086 4087 down_write(&dev_replace->rwsem); 4088 dev_replace->cursor_left = dev_replace->cursor_right; 4089 dev_replace->item_needs_writeback = 1; 4090 up_write(&dev_replace->rwsem); 4091 4092 if (ro_set) 4093 btrfs_dec_block_group_ro(cache); 4094 4095 /* 4096 * We might have prevented the cleaner kthread from deleting 4097 * this block group if it was already unused because we raced 4098 * and set it to RO mode first. So add it back to the unused 4099 * list, otherwise it might not ever be deleted unless a manual 4100 * balance is triggered or it becomes used and unused again. 4101 */ 4102 spin_lock(&cache->lock); 4103 if (!test_bit(BLOCK_GROUP_FLAG_REMOVED, &cache->runtime_flags) && 4104 !cache->ro && cache->reserved == 0 && cache->used == 0) { 4105 spin_unlock(&cache->lock); 4106 if (btrfs_test_opt(fs_info, DISCARD_ASYNC)) 4107 btrfs_discard_queue_work(&fs_info->discard_ctl, 4108 cache); 4109 else 4110 btrfs_mark_bg_unused(cache); 4111 } else { 4112 spin_unlock(&cache->lock); 4113 } 4114 skip_unfreeze: 4115 btrfs_unfreeze_block_group(cache); 4116 btrfs_put_block_group(cache); 4117 if (ret) 4118 break; 4119 if (sctx->is_dev_replace && 4120 atomic64_read(&dev_replace->num_write_errors) > 0) { 4121 ret = -EIO; 4122 break; 4123 } 4124 if (sctx->stat.malloc_errors > 0) { 4125 ret = -ENOMEM; 4126 break; 4127 } 4128 skip: 4129 key.offset = found_key.offset + dev_extent_len; 4130 btrfs_release_path(path); 4131 } 4132 4133 btrfs_free_path(path); 4134 4135 return ret; 4136 } 4137 4138 static noinline_for_stack int scrub_supers(struct scrub_ctx *sctx, 4139 struct btrfs_device *scrub_dev) 4140 { 4141 int i; 4142 u64 bytenr; 4143 u64 gen; 4144 int ret; 4145 struct btrfs_fs_info *fs_info = sctx->fs_info; 4146 4147 if (BTRFS_FS_ERROR(fs_info)) 4148 return -EROFS; 4149 4150 /* Seed devices of a new filesystem has their own generation. */ 4151 if (scrub_dev->fs_devices != fs_info->fs_devices) 4152 gen = scrub_dev->generation; 4153 else 4154 gen = fs_info->last_trans_committed; 4155 4156 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) { 4157 bytenr = btrfs_sb_offset(i); 4158 if (bytenr + BTRFS_SUPER_INFO_SIZE > 4159 scrub_dev->commit_total_bytes) 4160 break; 4161 if (!btrfs_check_super_location(scrub_dev, bytenr)) 4162 continue; 4163 4164 ret = scrub_sectors(sctx, bytenr, BTRFS_SUPER_INFO_SIZE, bytenr, 4165 scrub_dev, BTRFS_EXTENT_FLAG_SUPER, gen, i, 4166 NULL, bytenr); 4167 if (ret) 4168 return ret; 4169 } 4170 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4171 4172 return 0; 4173 } 4174 4175 static void scrub_workers_put(struct btrfs_fs_info *fs_info) 4176 { 4177 if (refcount_dec_and_mutex_lock(&fs_info->scrub_workers_refcnt, 4178 &fs_info->scrub_lock)) { 4179 struct workqueue_struct *scrub_workers = fs_info->scrub_workers; 4180 struct workqueue_struct *scrub_wr_comp = 4181 fs_info->scrub_wr_completion_workers; 4182 struct workqueue_struct *scrub_parity = 4183 fs_info->scrub_parity_workers; 4184 4185 fs_info->scrub_workers = NULL; 4186 fs_info->scrub_wr_completion_workers = NULL; 4187 fs_info->scrub_parity_workers = NULL; 4188 mutex_unlock(&fs_info->scrub_lock); 4189 4190 if (scrub_workers) 4191 destroy_workqueue(scrub_workers); 4192 if (scrub_wr_comp) 4193 destroy_workqueue(scrub_wr_comp); 4194 if (scrub_parity) 4195 destroy_workqueue(scrub_parity); 4196 } 4197 } 4198 4199 /* 4200 * get a reference count on fs_info->scrub_workers. start worker if necessary 4201 */ 4202 static noinline_for_stack int scrub_workers_get(struct btrfs_fs_info *fs_info, 4203 int is_dev_replace) 4204 { 4205 struct workqueue_struct *scrub_workers = NULL; 4206 struct workqueue_struct *scrub_wr_comp = NULL; 4207 struct workqueue_struct *scrub_parity = NULL; 4208 unsigned int flags = WQ_FREEZABLE | WQ_UNBOUND; 4209 int max_active = fs_info->thread_pool_size; 4210 int ret = -ENOMEM; 4211 4212 if (refcount_inc_not_zero(&fs_info->scrub_workers_refcnt)) 4213 return 0; 4214 4215 scrub_workers = alloc_workqueue("btrfs-scrub", flags, 4216 is_dev_replace ? 1 : max_active); 4217 if (!scrub_workers) 4218 goto fail_scrub_workers; 4219 4220 scrub_wr_comp = alloc_workqueue("btrfs-scrubwrc", flags, max_active); 4221 if (!scrub_wr_comp) 4222 goto fail_scrub_wr_completion_workers; 4223 4224 scrub_parity = alloc_workqueue("btrfs-scrubparity", flags, max_active); 4225 if (!scrub_parity) 4226 goto fail_scrub_parity_workers; 4227 4228 mutex_lock(&fs_info->scrub_lock); 4229 if (refcount_read(&fs_info->scrub_workers_refcnt) == 0) { 4230 ASSERT(fs_info->scrub_workers == NULL && 4231 fs_info->scrub_wr_completion_workers == NULL && 4232 fs_info->scrub_parity_workers == NULL); 4233 fs_info->scrub_workers = scrub_workers; 4234 fs_info->scrub_wr_completion_workers = scrub_wr_comp; 4235 fs_info->scrub_parity_workers = scrub_parity; 4236 refcount_set(&fs_info->scrub_workers_refcnt, 1); 4237 mutex_unlock(&fs_info->scrub_lock); 4238 return 0; 4239 } 4240 /* Other thread raced in and created the workers for us */ 4241 refcount_inc(&fs_info->scrub_workers_refcnt); 4242 mutex_unlock(&fs_info->scrub_lock); 4243 4244 ret = 0; 4245 destroy_workqueue(scrub_parity); 4246 fail_scrub_parity_workers: 4247 destroy_workqueue(scrub_wr_comp); 4248 fail_scrub_wr_completion_workers: 4249 destroy_workqueue(scrub_workers); 4250 fail_scrub_workers: 4251 return ret; 4252 } 4253 4254 int btrfs_scrub_dev(struct btrfs_fs_info *fs_info, u64 devid, u64 start, 4255 u64 end, struct btrfs_scrub_progress *progress, 4256 int readonly, int is_dev_replace) 4257 { 4258 struct btrfs_dev_lookup_args args = { .devid = devid }; 4259 struct scrub_ctx *sctx; 4260 int ret; 4261 struct btrfs_device *dev; 4262 unsigned int nofs_flag; 4263 bool need_commit = false; 4264 4265 if (btrfs_fs_closing(fs_info)) 4266 return -EAGAIN; 4267 4268 /* At mount time we have ensured nodesize is in the range of [4K, 64K]. */ 4269 ASSERT(fs_info->nodesize <= BTRFS_STRIPE_LEN); 4270 4271 /* 4272 * SCRUB_MAX_SECTORS_PER_BLOCK is calculated using the largest possible 4273 * value (max nodesize / min sectorsize), thus nodesize should always 4274 * be fine. 4275 */ 4276 ASSERT(fs_info->nodesize <= 4277 SCRUB_MAX_SECTORS_PER_BLOCK << fs_info->sectorsize_bits); 4278 4279 /* Allocate outside of device_list_mutex */ 4280 sctx = scrub_setup_ctx(fs_info, is_dev_replace); 4281 if (IS_ERR(sctx)) 4282 return PTR_ERR(sctx); 4283 4284 ret = scrub_workers_get(fs_info, is_dev_replace); 4285 if (ret) 4286 goto out_free_ctx; 4287 4288 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4289 dev = btrfs_find_device(fs_info->fs_devices, &args); 4290 if (!dev || (test_bit(BTRFS_DEV_STATE_MISSING, &dev->dev_state) && 4291 !is_dev_replace)) { 4292 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4293 ret = -ENODEV; 4294 goto out; 4295 } 4296 4297 if (!is_dev_replace && !readonly && 4298 !test_bit(BTRFS_DEV_STATE_WRITEABLE, &dev->dev_state)) { 4299 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4300 btrfs_err_in_rcu(fs_info, 4301 "scrub on devid %llu: filesystem on %s is not writable", 4302 devid, rcu_str_deref(dev->name)); 4303 ret = -EROFS; 4304 goto out; 4305 } 4306 4307 mutex_lock(&fs_info->scrub_lock); 4308 if (!test_bit(BTRFS_DEV_STATE_IN_FS_METADATA, &dev->dev_state) || 4309 test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &dev->dev_state)) { 4310 mutex_unlock(&fs_info->scrub_lock); 4311 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4312 ret = -EIO; 4313 goto out; 4314 } 4315 4316 down_read(&fs_info->dev_replace.rwsem); 4317 if (dev->scrub_ctx || 4318 (!is_dev_replace && 4319 btrfs_dev_replace_is_ongoing(&fs_info->dev_replace))) { 4320 up_read(&fs_info->dev_replace.rwsem); 4321 mutex_unlock(&fs_info->scrub_lock); 4322 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4323 ret = -EINPROGRESS; 4324 goto out; 4325 } 4326 up_read(&fs_info->dev_replace.rwsem); 4327 4328 sctx->readonly = readonly; 4329 dev->scrub_ctx = sctx; 4330 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4331 4332 /* 4333 * checking @scrub_pause_req here, we can avoid 4334 * race between committing transaction and scrubbing. 4335 */ 4336 __scrub_blocked_if_needed(fs_info); 4337 atomic_inc(&fs_info->scrubs_running); 4338 mutex_unlock(&fs_info->scrub_lock); 4339 4340 /* 4341 * In order to avoid deadlock with reclaim when there is a transaction 4342 * trying to pause scrub, make sure we use GFP_NOFS for all the 4343 * allocations done at btrfs_scrub_sectors() and scrub_sectors_for_parity() 4344 * invoked by our callees. The pausing request is done when the 4345 * transaction commit starts, and it blocks the transaction until scrub 4346 * is paused (done at specific points at scrub_stripe() or right above 4347 * before incrementing fs_info->scrubs_running). 4348 */ 4349 nofs_flag = memalloc_nofs_save(); 4350 if (!is_dev_replace) { 4351 u64 old_super_errors; 4352 4353 spin_lock(&sctx->stat_lock); 4354 old_super_errors = sctx->stat.super_errors; 4355 spin_unlock(&sctx->stat_lock); 4356 4357 btrfs_info(fs_info, "scrub: started on devid %llu", devid); 4358 /* 4359 * by holding device list mutex, we can 4360 * kick off writing super in log tree sync. 4361 */ 4362 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4363 ret = scrub_supers(sctx, dev); 4364 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4365 4366 spin_lock(&sctx->stat_lock); 4367 /* 4368 * Super block errors found, but we can not commit transaction 4369 * at current context, since btrfs_commit_transaction() needs 4370 * to pause the current running scrub (hold by ourselves). 4371 */ 4372 if (sctx->stat.super_errors > old_super_errors && !sctx->readonly) 4373 need_commit = true; 4374 spin_unlock(&sctx->stat_lock); 4375 } 4376 4377 if (!ret) 4378 ret = scrub_enumerate_chunks(sctx, dev, start, end); 4379 memalloc_nofs_restore(nofs_flag); 4380 4381 wait_event(sctx->list_wait, atomic_read(&sctx->bios_in_flight) == 0); 4382 atomic_dec(&fs_info->scrubs_running); 4383 wake_up(&fs_info->scrub_pause_wait); 4384 4385 wait_event(sctx->list_wait, atomic_read(&sctx->workers_pending) == 0); 4386 4387 if (progress) 4388 memcpy(progress, &sctx->stat, sizeof(*progress)); 4389 4390 if (!is_dev_replace) 4391 btrfs_info(fs_info, "scrub: %s on devid %llu with status: %d", 4392 ret ? "not finished" : "finished", devid, ret); 4393 4394 mutex_lock(&fs_info->scrub_lock); 4395 dev->scrub_ctx = NULL; 4396 mutex_unlock(&fs_info->scrub_lock); 4397 4398 scrub_workers_put(fs_info); 4399 scrub_put_ctx(sctx); 4400 4401 /* 4402 * We found some super block errors before, now try to force a 4403 * transaction commit, as scrub has finished. 4404 */ 4405 if (need_commit) { 4406 struct btrfs_trans_handle *trans; 4407 4408 trans = btrfs_start_transaction(fs_info->tree_root, 0); 4409 if (IS_ERR(trans)) { 4410 ret = PTR_ERR(trans); 4411 btrfs_err(fs_info, 4412 "scrub: failed to start transaction to fix super block errors: %d", ret); 4413 return ret; 4414 } 4415 ret = btrfs_commit_transaction(trans); 4416 if (ret < 0) 4417 btrfs_err(fs_info, 4418 "scrub: failed to commit transaction to fix super block errors: %d", ret); 4419 } 4420 return ret; 4421 out: 4422 scrub_workers_put(fs_info); 4423 out_free_ctx: 4424 scrub_free_ctx(sctx); 4425 4426 return ret; 4427 } 4428 4429 void btrfs_scrub_pause(struct btrfs_fs_info *fs_info) 4430 { 4431 mutex_lock(&fs_info->scrub_lock); 4432 atomic_inc(&fs_info->scrub_pause_req); 4433 while (atomic_read(&fs_info->scrubs_paused) != 4434 atomic_read(&fs_info->scrubs_running)) { 4435 mutex_unlock(&fs_info->scrub_lock); 4436 wait_event(fs_info->scrub_pause_wait, 4437 atomic_read(&fs_info->scrubs_paused) == 4438 atomic_read(&fs_info->scrubs_running)); 4439 mutex_lock(&fs_info->scrub_lock); 4440 } 4441 mutex_unlock(&fs_info->scrub_lock); 4442 } 4443 4444 void btrfs_scrub_continue(struct btrfs_fs_info *fs_info) 4445 { 4446 atomic_dec(&fs_info->scrub_pause_req); 4447 wake_up(&fs_info->scrub_pause_wait); 4448 } 4449 4450 int btrfs_scrub_cancel(struct btrfs_fs_info *fs_info) 4451 { 4452 mutex_lock(&fs_info->scrub_lock); 4453 if (!atomic_read(&fs_info->scrubs_running)) { 4454 mutex_unlock(&fs_info->scrub_lock); 4455 return -ENOTCONN; 4456 } 4457 4458 atomic_inc(&fs_info->scrub_cancel_req); 4459 while (atomic_read(&fs_info->scrubs_running)) { 4460 mutex_unlock(&fs_info->scrub_lock); 4461 wait_event(fs_info->scrub_pause_wait, 4462 atomic_read(&fs_info->scrubs_running) == 0); 4463 mutex_lock(&fs_info->scrub_lock); 4464 } 4465 atomic_dec(&fs_info->scrub_cancel_req); 4466 mutex_unlock(&fs_info->scrub_lock); 4467 4468 return 0; 4469 } 4470 4471 int btrfs_scrub_cancel_dev(struct btrfs_device *dev) 4472 { 4473 struct btrfs_fs_info *fs_info = dev->fs_info; 4474 struct scrub_ctx *sctx; 4475 4476 mutex_lock(&fs_info->scrub_lock); 4477 sctx = dev->scrub_ctx; 4478 if (!sctx) { 4479 mutex_unlock(&fs_info->scrub_lock); 4480 return -ENOTCONN; 4481 } 4482 atomic_inc(&sctx->cancel_req); 4483 while (dev->scrub_ctx) { 4484 mutex_unlock(&fs_info->scrub_lock); 4485 wait_event(fs_info->scrub_pause_wait, 4486 dev->scrub_ctx == NULL); 4487 mutex_lock(&fs_info->scrub_lock); 4488 } 4489 mutex_unlock(&fs_info->scrub_lock); 4490 4491 return 0; 4492 } 4493 4494 int btrfs_scrub_progress(struct btrfs_fs_info *fs_info, u64 devid, 4495 struct btrfs_scrub_progress *progress) 4496 { 4497 struct btrfs_dev_lookup_args args = { .devid = devid }; 4498 struct btrfs_device *dev; 4499 struct scrub_ctx *sctx = NULL; 4500 4501 mutex_lock(&fs_info->fs_devices->device_list_mutex); 4502 dev = btrfs_find_device(fs_info->fs_devices, &args); 4503 if (dev) 4504 sctx = dev->scrub_ctx; 4505 if (sctx) 4506 memcpy(progress, &sctx->stat, sizeof(*progress)); 4507 mutex_unlock(&fs_info->fs_devices->device_list_mutex); 4508 4509 return dev ? (sctx ? 0 : -ENOTCONN) : -ENODEV; 4510 } 4511 4512 static void scrub_find_good_copy(struct btrfs_fs_info *fs_info, 4513 u64 extent_logical, u32 extent_len, 4514 u64 *extent_physical, 4515 struct btrfs_device **extent_dev, 4516 int *extent_mirror_num) 4517 { 4518 u64 mapped_length; 4519 struct btrfs_io_context *bioc = NULL; 4520 int ret; 4521 4522 mapped_length = extent_len; 4523 ret = btrfs_map_block(fs_info, BTRFS_MAP_READ, extent_logical, 4524 &mapped_length, &bioc, 0); 4525 if (ret || !bioc || mapped_length < extent_len || 4526 !bioc->stripes[0].dev->bdev) { 4527 btrfs_put_bioc(bioc); 4528 return; 4529 } 4530 4531 *extent_physical = bioc->stripes[0].physical; 4532 *extent_mirror_num = bioc->mirror_num; 4533 *extent_dev = bioc->stripes[0].dev; 4534 btrfs_put_bioc(bioc); 4535 } 4536