xref: /openbmc/linux/fs/btrfs/relocation.c (revision c1c9ff7c94e83fae89a742df74db51156869bad5)
1 /*
2  * Copyright (C) 2009 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/sched.h>
20 #include <linux/pagemap.h>
21 #include <linux/writeback.h>
22 #include <linux/blkdev.h>
23 #include <linux/rbtree.h>
24 #include <linux/slab.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "volumes.h"
29 #include "locking.h"
30 #include "btrfs_inode.h"
31 #include "async-thread.h"
32 #include "free-space-cache.h"
33 #include "inode-map.h"
34 
35 /*
36  * backref_node, mapping_node and tree_block start with this
37  */
38 struct tree_entry {
39 	struct rb_node rb_node;
40 	u64 bytenr;
41 };
42 
43 /*
44  * present a tree block in the backref cache
45  */
46 struct backref_node {
47 	struct rb_node rb_node;
48 	u64 bytenr;
49 
50 	u64 new_bytenr;
51 	/* objectid of tree block owner, can be not uptodate */
52 	u64 owner;
53 	/* link to pending, changed or detached list */
54 	struct list_head list;
55 	/* list of upper level blocks reference this block */
56 	struct list_head upper;
57 	/* list of child blocks in the cache */
58 	struct list_head lower;
59 	/* NULL if this node is not tree root */
60 	struct btrfs_root *root;
61 	/* extent buffer got by COW the block */
62 	struct extent_buffer *eb;
63 	/* level of tree block */
64 	unsigned int level:8;
65 	/* is the block in non-reference counted tree */
66 	unsigned int cowonly:1;
67 	/* 1 if no child node in the cache */
68 	unsigned int lowest:1;
69 	/* is the extent buffer locked */
70 	unsigned int locked:1;
71 	/* has the block been processed */
72 	unsigned int processed:1;
73 	/* have backrefs of this block been checked */
74 	unsigned int checked:1;
75 	/*
76 	 * 1 if corresponding block has been cowed but some upper
77 	 * level block pointers may not point to the new location
78 	 */
79 	unsigned int pending:1;
80 	/*
81 	 * 1 if the backref node isn't connected to any other
82 	 * backref node.
83 	 */
84 	unsigned int detached:1;
85 };
86 
87 /*
88  * present a block pointer in the backref cache
89  */
90 struct backref_edge {
91 	struct list_head list[2];
92 	struct backref_node *node[2];
93 };
94 
95 #define LOWER	0
96 #define UPPER	1
97 
98 struct backref_cache {
99 	/* red black tree of all backref nodes in the cache */
100 	struct rb_root rb_root;
101 	/* for passing backref nodes to btrfs_reloc_cow_block */
102 	struct backref_node *path[BTRFS_MAX_LEVEL];
103 	/*
104 	 * list of blocks that have been cowed but some block
105 	 * pointers in upper level blocks may not reflect the
106 	 * new location
107 	 */
108 	struct list_head pending[BTRFS_MAX_LEVEL];
109 	/* list of backref nodes with no child node */
110 	struct list_head leaves;
111 	/* list of blocks that have been cowed in current transaction */
112 	struct list_head changed;
113 	/* list of detached backref node. */
114 	struct list_head detached;
115 
116 	u64 last_trans;
117 
118 	int nr_nodes;
119 	int nr_edges;
120 };
121 
122 /*
123  * map address of tree root to tree
124  */
125 struct mapping_node {
126 	struct rb_node rb_node;
127 	u64 bytenr;
128 	void *data;
129 };
130 
131 struct mapping_tree {
132 	struct rb_root rb_root;
133 	spinlock_t lock;
134 };
135 
136 /*
137  * present a tree block to process
138  */
139 struct tree_block {
140 	struct rb_node rb_node;
141 	u64 bytenr;
142 	struct btrfs_key key;
143 	unsigned int level:8;
144 	unsigned int key_ready:1;
145 };
146 
147 #define MAX_EXTENTS 128
148 
149 struct file_extent_cluster {
150 	u64 start;
151 	u64 end;
152 	u64 boundary[MAX_EXTENTS];
153 	unsigned int nr;
154 };
155 
156 struct reloc_control {
157 	/* block group to relocate */
158 	struct btrfs_block_group_cache *block_group;
159 	/* extent tree */
160 	struct btrfs_root *extent_root;
161 	/* inode for moving data */
162 	struct inode *data_inode;
163 
164 	struct btrfs_block_rsv *block_rsv;
165 
166 	struct backref_cache backref_cache;
167 
168 	struct file_extent_cluster cluster;
169 	/* tree blocks have been processed */
170 	struct extent_io_tree processed_blocks;
171 	/* map start of tree root to corresponding reloc tree */
172 	struct mapping_tree reloc_root_tree;
173 	/* list of reloc trees */
174 	struct list_head reloc_roots;
175 	/* size of metadata reservation for merging reloc trees */
176 	u64 merging_rsv_size;
177 	/* size of relocated tree nodes */
178 	u64 nodes_relocated;
179 
180 	u64 search_start;
181 	u64 extents_found;
182 
183 	unsigned int stage:8;
184 	unsigned int create_reloc_tree:1;
185 	unsigned int merge_reloc_tree:1;
186 	unsigned int found_file_extent:1;
187 	unsigned int commit_transaction:1;
188 };
189 
190 /* stages of data relocation */
191 #define MOVE_DATA_EXTENTS	0
192 #define UPDATE_DATA_PTRS	1
193 
194 static void remove_backref_node(struct backref_cache *cache,
195 				struct backref_node *node);
196 static void __mark_block_processed(struct reloc_control *rc,
197 				   struct backref_node *node);
198 
199 static void mapping_tree_init(struct mapping_tree *tree)
200 {
201 	tree->rb_root = RB_ROOT;
202 	spin_lock_init(&tree->lock);
203 }
204 
205 static void backref_cache_init(struct backref_cache *cache)
206 {
207 	int i;
208 	cache->rb_root = RB_ROOT;
209 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
210 		INIT_LIST_HEAD(&cache->pending[i]);
211 	INIT_LIST_HEAD(&cache->changed);
212 	INIT_LIST_HEAD(&cache->detached);
213 	INIT_LIST_HEAD(&cache->leaves);
214 }
215 
216 static void backref_cache_cleanup(struct backref_cache *cache)
217 {
218 	struct backref_node *node;
219 	int i;
220 
221 	while (!list_empty(&cache->detached)) {
222 		node = list_entry(cache->detached.next,
223 				  struct backref_node, list);
224 		remove_backref_node(cache, node);
225 	}
226 
227 	while (!list_empty(&cache->leaves)) {
228 		node = list_entry(cache->leaves.next,
229 				  struct backref_node, lower);
230 		remove_backref_node(cache, node);
231 	}
232 
233 	cache->last_trans = 0;
234 
235 	for (i = 0; i < BTRFS_MAX_LEVEL; i++)
236 		BUG_ON(!list_empty(&cache->pending[i]));
237 	BUG_ON(!list_empty(&cache->changed));
238 	BUG_ON(!list_empty(&cache->detached));
239 	BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root));
240 	BUG_ON(cache->nr_nodes);
241 	BUG_ON(cache->nr_edges);
242 }
243 
244 static struct backref_node *alloc_backref_node(struct backref_cache *cache)
245 {
246 	struct backref_node *node;
247 
248 	node = kzalloc(sizeof(*node), GFP_NOFS);
249 	if (node) {
250 		INIT_LIST_HEAD(&node->list);
251 		INIT_LIST_HEAD(&node->upper);
252 		INIT_LIST_HEAD(&node->lower);
253 		RB_CLEAR_NODE(&node->rb_node);
254 		cache->nr_nodes++;
255 	}
256 	return node;
257 }
258 
259 static void free_backref_node(struct backref_cache *cache,
260 			      struct backref_node *node)
261 {
262 	if (node) {
263 		cache->nr_nodes--;
264 		kfree(node);
265 	}
266 }
267 
268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache)
269 {
270 	struct backref_edge *edge;
271 
272 	edge = kzalloc(sizeof(*edge), GFP_NOFS);
273 	if (edge)
274 		cache->nr_edges++;
275 	return edge;
276 }
277 
278 static void free_backref_edge(struct backref_cache *cache,
279 			      struct backref_edge *edge)
280 {
281 	if (edge) {
282 		cache->nr_edges--;
283 		kfree(edge);
284 	}
285 }
286 
287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr,
288 				   struct rb_node *node)
289 {
290 	struct rb_node **p = &root->rb_node;
291 	struct rb_node *parent = NULL;
292 	struct tree_entry *entry;
293 
294 	while (*p) {
295 		parent = *p;
296 		entry = rb_entry(parent, struct tree_entry, rb_node);
297 
298 		if (bytenr < entry->bytenr)
299 			p = &(*p)->rb_left;
300 		else if (bytenr > entry->bytenr)
301 			p = &(*p)->rb_right;
302 		else
303 			return parent;
304 	}
305 
306 	rb_link_node(node, parent, p);
307 	rb_insert_color(node, root);
308 	return NULL;
309 }
310 
311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr)
312 {
313 	struct rb_node *n = root->rb_node;
314 	struct tree_entry *entry;
315 
316 	while (n) {
317 		entry = rb_entry(n, struct tree_entry, rb_node);
318 
319 		if (bytenr < entry->bytenr)
320 			n = n->rb_left;
321 		else if (bytenr > entry->bytenr)
322 			n = n->rb_right;
323 		else
324 			return n;
325 	}
326 	return NULL;
327 }
328 
329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr)
330 {
331 
332 	struct btrfs_fs_info *fs_info = NULL;
333 	struct backref_node *bnode = rb_entry(rb_node, struct backref_node,
334 					      rb_node);
335 	if (bnode->root)
336 		fs_info = bnode->root->fs_info;
337 	btrfs_panic(fs_info, errno, "Inconsistency in backref cache "
338 		    "found at offset %llu\n", bytenr);
339 }
340 
341 /*
342  * walk up backref nodes until reach node presents tree root
343  */
344 static struct backref_node *walk_up_backref(struct backref_node *node,
345 					    struct backref_edge *edges[],
346 					    int *index)
347 {
348 	struct backref_edge *edge;
349 	int idx = *index;
350 
351 	while (!list_empty(&node->upper)) {
352 		edge = list_entry(node->upper.next,
353 				  struct backref_edge, list[LOWER]);
354 		edges[idx++] = edge;
355 		node = edge->node[UPPER];
356 	}
357 	BUG_ON(node->detached);
358 	*index = idx;
359 	return node;
360 }
361 
362 /*
363  * walk down backref nodes to find start of next reference path
364  */
365 static struct backref_node *walk_down_backref(struct backref_edge *edges[],
366 					      int *index)
367 {
368 	struct backref_edge *edge;
369 	struct backref_node *lower;
370 	int idx = *index;
371 
372 	while (idx > 0) {
373 		edge = edges[idx - 1];
374 		lower = edge->node[LOWER];
375 		if (list_is_last(&edge->list[LOWER], &lower->upper)) {
376 			idx--;
377 			continue;
378 		}
379 		edge = list_entry(edge->list[LOWER].next,
380 				  struct backref_edge, list[LOWER]);
381 		edges[idx - 1] = edge;
382 		*index = idx;
383 		return edge->node[UPPER];
384 	}
385 	*index = 0;
386 	return NULL;
387 }
388 
389 static void unlock_node_buffer(struct backref_node *node)
390 {
391 	if (node->locked) {
392 		btrfs_tree_unlock(node->eb);
393 		node->locked = 0;
394 	}
395 }
396 
397 static void drop_node_buffer(struct backref_node *node)
398 {
399 	if (node->eb) {
400 		unlock_node_buffer(node);
401 		free_extent_buffer(node->eb);
402 		node->eb = NULL;
403 	}
404 }
405 
406 static void drop_backref_node(struct backref_cache *tree,
407 			      struct backref_node *node)
408 {
409 	BUG_ON(!list_empty(&node->upper));
410 
411 	drop_node_buffer(node);
412 	list_del(&node->list);
413 	list_del(&node->lower);
414 	if (!RB_EMPTY_NODE(&node->rb_node))
415 		rb_erase(&node->rb_node, &tree->rb_root);
416 	free_backref_node(tree, node);
417 }
418 
419 /*
420  * remove a backref node from the backref cache
421  */
422 static void remove_backref_node(struct backref_cache *cache,
423 				struct backref_node *node)
424 {
425 	struct backref_node *upper;
426 	struct backref_edge *edge;
427 
428 	if (!node)
429 		return;
430 
431 	BUG_ON(!node->lowest && !node->detached);
432 	while (!list_empty(&node->upper)) {
433 		edge = list_entry(node->upper.next, struct backref_edge,
434 				  list[LOWER]);
435 		upper = edge->node[UPPER];
436 		list_del(&edge->list[LOWER]);
437 		list_del(&edge->list[UPPER]);
438 		free_backref_edge(cache, edge);
439 
440 		if (RB_EMPTY_NODE(&upper->rb_node)) {
441 			BUG_ON(!list_empty(&node->upper));
442 			drop_backref_node(cache, node);
443 			node = upper;
444 			node->lowest = 1;
445 			continue;
446 		}
447 		/*
448 		 * add the node to leaf node list if no other
449 		 * child block cached.
450 		 */
451 		if (list_empty(&upper->lower)) {
452 			list_add_tail(&upper->lower, &cache->leaves);
453 			upper->lowest = 1;
454 		}
455 	}
456 
457 	drop_backref_node(cache, node);
458 }
459 
460 static void update_backref_node(struct backref_cache *cache,
461 				struct backref_node *node, u64 bytenr)
462 {
463 	struct rb_node *rb_node;
464 	rb_erase(&node->rb_node, &cache->rb_root);
465 	node->bytenr = bytenr;
466 	rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node);
467 	if (rb_node)
468 		backref_tree_panic(rb_node, -EEXIST, bytenr);
469 }
470 
471 /*
472  * update backref cache after a transaction commit
473  */
474 static int update_backref_cache(struct btrfs_trans_handle *trans,
475 				struct backref_cache *cache)
476 {
477 	struct backref_node *node;
478 	int level = 0;
479 
480 	if (cache->last_trans == 0) {
481 		cache->last_trans = trans->transid;
482 		return 0;
483 	}
484 
485 	if (cache->last_trans == trans->transid)
486 		return 0;
487 
488 	/*
489 	 * detached nodes are used to avoid unnecessary backref
490 	 * lookup. transaction commit changes the extent tree.
491 	 * so the detached nodes are no longer useful.
492 	 */
493 	while (!list_empty(&cache->detached)) {
494 		node = list_entry(cache->detached.next,
495 				  struct backref_node, list);
496 		remove_backref_node(cache, node);
497 	}
498 
499 	while (!list_empty(&cache->changed)) {
500 		node = list_entry(cache->changed.next,
501 				  struct backref_node, list);
502 		list_del_init(&node->list);
503 		BUG_ON(node->pending);
504 		update_backref_node(cache, node, node->new_bytenr);
505 	}
506 
507 	/*
508 	 * some nodes can be left in the pending list if there were
509 	 * errors during processing the pending nodes.
510 	 */
511 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
512 		list_for_each_entry(node, &cache->pending[level], list) {
513 			BUG_ON(!node->pending);
514 			if (node->bytenr == node->new_bytenr)
515 				continue;
516 			update_backref_node(cache, node, node->new_bytenr);
517 		}
518 	}
519 
520 	cache->last_trans = 0;
521 	return 1;
522 }
523 
524 
525 static int should_ignore_root(struct btrfs_root *root)
526 {
527 	struct btrfs_root *reloc_root;
528 
529 	if (!root->ref_cows)
530 		return 0;
531 
532 	reloc_root = root->reloc_root;
533 	if (!reloc_root)
534 		return 0;
535 
536 	if (btrfs_root_last_snapshot(&reloc_root->root_item) ==
537 	    root->fs_info->running_transaction->transid - 1)
538 		return 0;
539 	/*
540 	 * if there is reloc tree and it was created in previous
541 	 * transaction backref lookup can find the reloc tree,
542 	 * so backref node for the fs tree root is useless for
543 	 * relocation.
544 	 */
545 	return 1;
546 }
547 /*
548  * find reloc tree by address of tree root
549  */
550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc,
551 					  u64 bytenr)
552 {
553 	struct rb_node *rb_node;
554 	struct mapping_node *node;
555 	struct btrfs_root *root = NULL;
556 
557 	spin_lock(&rc->reloc_root_tree.lock);
558 	rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr);
559 	if (rb_node) {
560 		node = rb_entry(rb_node, struct mapping_node, rb_node);
561 		root = (struct btrfs_root *)node->data;
562 	}
563 	spin_unlock(&rc->reloc_root_tree.lock);
564 	return root;
565 }
566 
567 static int is_cowonly_root(u64 root_objectid)
568 {
569 	if (root_objectid == BTRFS_ROOT_TREE_OBJECTID ||
570 	    root_objectid == BTRFS_EXTENT_TREE_OBJECTID ||
571 	    root_objectid == BTRFS_CHUNK_TREE_OBJECTID ||
572 	    root_objectid == BTRFS_DEV_TREE_OBJECTID ||
573 	    root_objectid == BTRFS_TREE_LOG_OBJECTID ||
574 	    root_objectid == BTRFS_CSUM_TREE_OBJECTID)
575 		return 1;
576 	return 0;
577 }
578 
579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info,
580 					u64 root_objectid)
581 {
582 	struct btrfs_key key;
583 
584 	key.objectid = root_objectid;
585 	key.type = BTRFS_ROOT_ITEM_KEY;
586 	if (is_cowonly_root(root_objectid))
587 		key.offset = 0;
588 	else
589 		key.offset = (u64)-1;
590 
591 	return btrfs_read_fs_root_no_name(fs_info, &key);
592 }
593 
594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
595 static noinline_for_stack
596 struct btrfs_root *find_tree_root(struct reloc_control *rc,
597 				  struct extent_buffer *leaf,
598 				  struct btrfs_extent_ref_v0 *ref0)
599 {
600 	struct btrfs_root *root;
601 	u64 root_objectid = btrfs_ref_root_v0(leaf, ref0);
602 	u64 generation = btrfs_ref_generation_v0(leaf, ref0);
603 
604 	BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID);
605 
606 	root = read_fs_root(rc->extent_root->fs_info, root_objectid);
607 	BUG_ON(IS_ERR(root));
608 
609 	if (root->ref_cows &&
610 	    generation != btrfs_root_generation(&root->root_item))
611 		return NULL;
612 
613 	return root;
614 }
615 #endif
616 
617 static noinline_for_stack
618 int find_inline_backref(struct extent_buffer *leaf, int slot,
619 			unsigned long *ptr, unsigned long *end)
620 {
621 	struct btrfs_key key;
622 	struct btrfs_extent_item *ei;
623 	struct btrfs_tree_block_info *bi;
624 	u32 item_size;
625 
626 	btrfs_item_key_to_cpu(leaf, &key, slot);
627 
628 	item_size = btrfs_item_size_nr(leaf, slot);
629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
630 	if (item_size < sizeof(*ei)) {
631 		WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
632 		return 1;
633 	}
634 #endif
635 	ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item);
636 	WARN_ON(!(btrfs_extent_flags(leaf, ei) &
637 		  BTRFS_EXTENT_FLAG_TREE_BLOCK));
638 
639 	if (key.type == BTRFS_EXTENT_ITEM_KEY &&
640 	    item_size <= sizeof(*ei) + sizeof(*bi)) {
641 		WARN_ON(item_size < sizeof(*ei) + sizeof(*bi));
642 		return 1;
643 	}
644 	if (key.type == BTRFS_METADATA_ITEM_KEY &&
645 	    item_size <= sizeof(*ei)) {
646 		WARN_ON(item_size < sizeof(*ei));
647 		return 1;
648 	}
649 
650 	if (key.type == BTRFS_EXTENT_ITEM_KEY) {
651 		bi = (struct btrfs_tree_block_info *)(ei + 1);
652 		*ptr = (unsigned long)(bi + 1);
653 	} else {
654 		*ptr = (unsigned long)(ei + 1);
655 	}
656 	*end = (unsigned long)ei + item_size;
657 	return 0;
658 }
659 
660 /*
661  * build backref tree for a given tree block. root of the backref tree
662  * corresponds the tree block, leaves of the backref tree correspond
663  * roots of b-trees that reference the tree block.
664  *
665  * the basic idea of this function is check backrefs of a given block
666  * to find upper level blocks that refernece the block, and then check
667  * bakcrefs of these upper level blocks recursively. the recursion stop
668  * when tree root is reached or backrefs for the block is cached.
669  *
670  * NOTE: if we find backrefs for a block are cached, we know backrefs
671  * for all upper level blocks that directly/indirectly reference the
672  * block are also cached.
673  */
674 static noinline_for_stack
675 struct backref_node *build_backref_tree(struct reloc_control *rc,
676 					struct btrfs_key *node_key,
677 					int level, u64 bytenr)
678 {
679 	struct backref_cache *cache = &rc->backref_cache;
680 	struct btrfs_path *path1;
681 	struct btrfs_path *path2;
682 	struct extent_buffer *eb;
683 	struct btrfs_root *root;
684 	struct backref_node *cur;
685 	struct backref_node *upper;
686 	struct backref_node *lower;
687 	struct backref_node *node = NULL;
688 	struct backref_node *exist = NULL;
689 	struct backref_edge *edge;
690 	struct rb_node *rb_node;
691 	struct btrfs_key key;
692 	unsigned long end;
693 	unsigned long ptr;
694 	LIST_HEAD(list);
695 	LIST_HEAD(useless);
696 	int cowonly;
697 	int ret;
698 	int err = 0;
699 	bool need_check = true;
700 
701 	path1 = btrfs_alloc_path();
702 	path2 = btrfs_alloc_path();
703 	if (!path1 || !path2) {
704 		err = -ENOMEM;
705 		goto out;
706 	}
707 	path1->reada = 1;
708 	path2->reada = 2;
709 
710 	node = alloc_backref_node(cache);
711 	if (!node) {
712 		err = -ENOMEM;
713 		goto out;
714 	}
715 
716 	node->bytenr = bytenr;
717 	node->level = level;
718 	node->lowest = 1;
719 	cur = node;
720 again:
721 	end = 0;
722 	ptr = 0;
723 	key.objectid = cur->bytenr;
724 	key.type = BTRFS_METADATA_ITEM_KEY;
725 	key.offset = (u64)-1;
726 
727 	path1->search_commit_root = 1;
728 	path1->skip_locking = 1;
729 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1,
730 				0, 0);
731 	if (ret < 0) {
732 		err = ret;
733 		goto out;
734 	}
735 	BUG_ON(!ret || !path1->slots[0]);
736 
737 	path1->slots[0]--;
738 
739 	WARN_ON(cur->checked);
740 	if (!list_empty(&cur->upper)) {
741 		/*
742 		 * the backref was added previously when processing
743 		 * backref of type BTRFS_TREE_BLOCK_REF_KEY
744 		 */
745 		BUG_ON(!list_is_singular(&cur->upper));
746 		edge = list_entry(cur->upper.next, struct backref_edge,
747 				  list[LOWER]);
748 		BUG_ON(!list_empty(&edge->list[UPPER]));
749 		exist = edge->node[UPPER];
750 		/*
751 		 * add the upper level block to pending list if we need
752 		 * check its backrefs
753 		 */
754 		if (!exist->checked)
755 			list_add_tail(&edge->list[UPPER], &list);
756 	} else {
757 		exist = NULL;
758 	}
759 
760 	while (1) {
761 		cond_resched();
762 		eb = path1->nodes[0];
763 
764 		if (ptr >= end) {
765 			if (path1->slots[0] >= btrfs_header_nritems(eb)) {
766 				ret = btrfs_next_leaf(rc->extent_root, path1);
767 				if (ret < 0) {
768 					err = ret;
769 					goto out;
770 				}
771 				if (ret > 0)
772 					break;
773 				eb = path1->nodes[0];
774 			}
775 
776 			btrfs_item_key_to_cpu(eb, &key, path1->slots[0]);
777 			if (key.objectid != cur->bytenr) {
778 				WARN_ON(exist);
779 				break;
780 			}
781 
782 			if (key.type == BTRFS_EXTENT_ITEM_KEY ||
783 			    key.type == BTRFS_METADATA_ITEM_KEY) {
784 				ret = find_inline_backref(eb, path1->slots[0],
785 							  &ptr, &end);
786 				if (ret)
787 					goto next;
788 			}
789 		}
790 
791 		if (ptr < end) {
792 			/* update key for inline back ref */
793 			struct btrfs_extent_inline_ref *iref;
794 			iref = (struct btrfs_extent_inline_ref *)ptr;
795 			key.type = btrfs_extent_inline_ref_type(eb, iref);
796 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
797 			WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY &&
798 				key.type != BTRFS_SHARED_BLOCK_REF_KEY);
799 		}
800 
801 		if (exist &&
802 		    ((key.type == BTRFS_TREE_BLOCK_REF_KEY &&
803 		      exist->owner == key.offset) ||
804 		     (key.type == BTRFS_SHARED_BLOCK_REF_KEY &&
805 		      exist->bytenr == key.offset))) {
806 			exist = NULL;
807 			goto next;
808 		}
809 
810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
811 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY ||
812 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
813 			if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
814 				struct btrfs_extent_ref_v0 *ref0;
815 				ref0 = btrfs_item_ptr(eb, path1->slots[0],
816 						struct btrfs_extent_ref_v0);
817 				if (key.objectid == key.offset) {
818 					root = find_tree_root(rc, eb, ref0);
819 					if (root && !should_ignore_root(root))
820 						cur->root = root;
821 					else
822 						list_add(&cur->list, &useless);
823 					break;
824 				}
825 				if (is_cowonly_root(btrfs_ref_root_v0(eb,
826 								      ref0)))
827 					cur->cowonly = 1;
828 			}
829 #else
830 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
831 		if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) {
832 #endif
833 			if (key.objectid == key.offset) {
834 				/*
835 				 * only root blocks of reloc trees use
836 				 * backref of this type.
837 				 */
838 				root = find_reloc_root(rc, cur->bytenr);
839 				BUG_ON(!root);
840 				cur->root = root;
841 				break;
842 			}
843 
844 			edge = alloc_backref_edge(cache);
845 			if (!edge) {
846 				err = -ENOMEM;
847 				goto out;
848 			}
849 			rb_node = tree_search(&cache->rb_root, key.offset);
850 			if (!rb_node) {
851 				upper = alloc_backref_node(cache);
852 				if (!upper) {
853 					free_backref_edge(cache, edge);
854 					err = -ENOMEM;
855 					goto out;
856 				}
857 				upper->bytenr = key.offset;
858 				upper->level = cur->level + 1;
859 				/*
860 				 *  backrefs for the upper level block isn't
861 				 *  cached, add the block to pending list
862 				 */
863 				list_add_tail(&edge->list[UPPER], &list);
864 			} else {
865 				upper = rb_entry(rb_node, struct backref_node,
866 						 rb_node);
867 				BUG_ON(!upper->checked);
868 				INIT_LIST_HEAD(&edge->list[UPPER]);
869 			}
870 			list_add_tail(&edge->list[LOWER], &cur->upper);
871 			edge->node[LOWER] = cur;
872 			edge->node[UPPER] = upper;
873 
874 			goto next;
875 		} else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) {
876 			goto next;
877 		}
878 
879 		/* key.type == BTRFS_TREE_BLOCK_REF_KEY */
880 		root = read_fs_root(rc->extent_root->fs_info, key.offset);
881 		if (IS_ERR(root)) {
882 			err = PTR_ERR(root);
883 			goto out;
884 		}
885 
886 		if (!root->ref_cows)
887 			cur->cowonly = 1;
888 
889 		if (btrfs_root_level(&root->root_item) == cur->level) {
890 			/* tree root */
891 			BUG_ON(btrfs_root_bytenr(&root->root_item) !=
892 			       cur->bytenr);
893 			if (should_ignore_root(root))
894 				list_add(&cur->list, &useless);
895 			else
896 				cur->root = root;
897 			break;
898 		}
899 
900 		level = cur->level + 1;
901 
902 		/*
903 		 * searching the tree to find upper level blocks
904 		 * reference the block.
905 		 */
906 		path2->search_commit_root = 1;
907 		path2->skip_locking = 1;
908 		path2->lowest_level = level;
909 		ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0);
910 		path2->lowest_level = 0;
911 		if (ret < 0) {
912 			err = ret;
913 			goto out;
914 		}
915 		if (ret > 0 && path2->slots[level] > 0)
916 			path2->slots[level]--;
917 
918 		eb = path2->nodes[level];
919 		WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) !=
920 			cur->bytenr);
921 
922 		lower = cur;
923 		need_check = true;
924 		for (; level < BTRFS_MAX_LEVEL; level++) {
925 			if (!path2->nodes[level]) {
926 				BUG_ON(btrfs_root_bytenr(&root->root_item) !=
927 				       lower->bytenr);
928 				if (should_ignore_root(root))
929 					list_add(&lower->list, &useless);
930 				else
931 					lower->root = root;
932 				break;
933 			}
934 
935 			edge = alloc_backref_edge(cache);
936 			if (!edge) {
937 				err = -ENOMEM;
938 				goto out;
939 			}
940 
941 			eb = path2->nodes[level];
942 			rb_node = tree_search(&cache->rb_root, eb->start);
943 			if (!rb_node) {
944 				upper = alloc_backref_node(cache);
945 				if (!upper) {
946 					free_backref_edge(cache, edge);
947 					err = -ENOMEM;
948 					goto out;
949 				}
950 				upper->bytenr = eb->start;
951 				upper->owner = btrfs_header_owner(eb);
952 				upper->level = lower->level + 1;
953 				if (!root->ref_cows)
954 					upper->cowonly = 1;
955 
956 				/*
957 				 * if we know the block isn't shared
958 				 * we can void checking its backrefs.
959 				 */
960 				if (btrfs_block_can_be_shared(root, eb))
961 					upper->checked = 0;
962 				else
963 					upper->checked = 1;
964 
965 				/*
966 				 * add the block to pending list if we
967 				 * need check its backrefs, we only do this once
968 				 * while walking up a tree as we will catch
969 				 * anything else later on.
970 				 */
971 				if (!upper->checked && need_check) {
972 					need_check = false;
973 					list_add_tail(&edge->list[UPPER],
974 						      &list);
975 				} else
976 					INIT_LIST_HEAD(&edge->list[UPPER]);
977 			} else {
978 				upper = rb_entry(rb_node, struct backref_node,
979 						 rb_node);
980 				BUG_ON(!upper->checked);
981 				INIT_LIST_HEAD(&edge->list[UPPER]);
982 				if (!upper->owner)
983 					upper->owner = btrfs_header_owner(eb);
984 			}
985 			list_add_tail(&edge->list[LOWER], &lower->upper);
986 			edge->node[LOWER] = lower;
987 			edge->node[UPPER] = upper;
988 
989 			if (rb_node)
990 				break;
991 			lower = upper;
992 			upper = NULL;
993 		}
994 		btrfs_release_path(path2);
995 next:
996 		if (ptr < end) {
997 			ptr += btrfs_extent_inline_ref_size(key.type);
998 			if (ptr >= end) {
999 				WARN_ON(ptr > end);
1000 				ptr = 0;
1001 				end = 0;
1002 			}
1003 		}
1004 		if (ptr >= end)
1005 			path1->slots[0]++;
1006 	}
1007 	btrfs_release_path(path1);
1008 
1009 	cur->checked = 1;
1010 	WARN_ON(exist);
1011 
1012 	/* the pending list isn't empty, take the first block to process */
1013 	if (!list_empty(&list)) {
1014 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1015 		list_del_init(&edge->list[UPPER]);
1016 		cur = edge->node[UPPER];
1017 		goto again;
1018 	}
1019 
1020 	/*
1021 	 * everything goes well, connect backref nodes and insert backref nodes
1022 	 * into the cache.
1023 	 */
1024 	BUG_ON(!node->checked);
1025 	cowonly = node->cowonly;
1026 	if (!cowonly) {
1027 		rb_node = tree_insert(&cache->rb_root, node->bytenr,
1028 				      &node->rb_node);
1029 		if (rb_node)
1030 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1031 		list_add_tail(&node->lower, &cache->leaves);
1032 	}
1033 
1034 	list_for_each_entry(edge, &node->upper, list[LOWER])
1035 		list_add_tail(&edge->list[UPPER], &list);
1036 
1037 	while (!list_empty(&list)) {
1038 		edge = list_entry(list.next, struct backref_edge, list[UPPER]);
1039 		list_del_init(&edge->list[UPPER]);
1040 		upper = edge->node[UPPER];
1041 		if (upper->detached) {
1042 			list_del(&edge->list[LOWER]);
1043 			lower = edge->node[LOWER];
1044 			free_backref_edge(cache, edge);
1045 			if (list_empty(&lower->upper))
1046 				list_add(&lower->list, &useless);
1047 			continue;
1048 		}
1049 
1050 		if (!RB_EMPTY_NODE(&upper->rb_node)) {
1051 			if (upper->lowest) {
1052 				list_del_init(&upper->lower);
1053 				upper->lowest = 0;
1054 			}
1055 
1056 			list_add_tail(&edge->list[UPPER], &upper->lower);
1057 			continue;
1058 		}
1059 
1060 		BUG_ON(!upper->checked);
1061 		BUG_ON(cowonly != upper->cowonly);
1062 		if (!cowonly) {
1063 			rb_node = tree_insert(&cache->rb_root, upper->bytenr,
1064 					      &upper->rb_node);
1065 			if (rb_node)
1066 				backref_tree_panic(rb_node, -EEXIST,
1067 						   upper->bytenr);
1068 		}
1069 
1070 		list_add_tail(&edge->list[UPPER], &upper->lower);
1071 
1072 		list_for_each_entry(edge, &upper->upper, list[LOWER])
1073 			list_add_tail(&edge->list[UPPER], &list);
1074 	}
1075 	/*
1076 	 * process useless backref nodes. backref nodes for tree leaves
1077 	 * are deleted from the cache. backref nodes for upper level
1078 	 * tree blocks are left in the cache to avoid unnecessary backref
1079 	 * lookup.
1080 	 */
1081 	while (!list_empty(&useless)) {
1082 		upper = list_entry(useless.next, struct backref_node, list);
1083 		list_del_init(&upper->list);
1084 		BUG_ON(!list_empty(&upper->upper));
1085 		if (upper == node)
1086 			node = NULL;
1087 		if (upper->lowest) {
1088 			list_del_init(&upper->lower);
1089 			upper->lowest = 0;
1090 		}
1091 		while (!list_empty(&upper->lower)) {
1092 			edge = list_entry(upper->lower.next,
1093 					  struct backref_edge, list[UPPER]);
1094 			list_del(&edge->list[UPPER]);
1095 			list_del(&edge->list[LOWER]);
1096 			lower = edge->node[LOWER];
1097 			free_backref_edge(cache, edge);
1098 
1099 			if (list_empty(&lower->upper))
1100 				list_add(&lower->list, &useless);
1101 		}
1102 		__mark_block_processed(rc, upper);
1103 		if (upper->level > 0) {
1104 			list_add(&upper->list, &cache->detached);
1105 			upper->detached = 1;
1106 		} else {
1107 			rb_erase(&upper->rb_node, &cache->rb_root);
1108 			free_backref_node(cache, upper);
1109 		}
1110 	}
1111 out:
1112 	btrfs_free_path(path1);
1113 	btrfs_free_path(path2);
1114 	if (err) {
1115 		while (!list_empty(&useless)) {
1116 			lower = list_entry(useless.next,
1117 					   struct backref_node, upper);
1118 			list_del_init(&lower->upper);
1119 		}
1120 		upper = node;
1121 		INIT_LIST_HEAD(&list);
1122 		while (upper) {
1123 			if (RB_EMPTY_NODE(&upper->rb_node)) {
1124 				list_splice_tail(&upper->upper, &list);
1125 				free_backref_node(cache, upper);
1126 			}
1127 
1128 			if (list_empty(&list))
1129 				break;
1130 
1131 			edge = list_entry(list.next, struct backref_edge,
1132 					  list[LOWER]);
1133 			list_del(&edge->list[LOWER]);
1134 			upper = edge->node[UPPER];
1135 			free_backref_edge(cache, edge);
1136 		}
1137 		return ERR_PTR(err);
1138 	}
1139 	BUG_ON(node && node->detached);
1140 	return node;
1141 }
1142 
1143 /*
1144  * helper to add backref node for the newly created snapshot.
1145  * the backref node is created by cloning backref node that
1146  * corresponds to root of source tree
1147  */
1148 static int clone_backref_node(struct btrfs_trans_handle *trans,
1149 			      struct reloc_control *rc,
1150 			      struct btrfs_root *src,
1151 			      struct btrfs_root *dest)
1152 {
1153 	struct btrfs_root *reloc_root = src->reloc_root;
1154 	struct backref_cache *cache = &rc->backref_cache;
1155 	struct backref_node *node = NULL;
1156 	struct backref_node *new_node;
1157 	struct backref_edge *edge;
1158 	struct backref_edge *new_edge;
1159 	struct rb_node *rb_node;
1160 
1161 	if (cache->last_trans > 0)
1162 		update_backref_cache(trans, cache);
1163 
1164 	rb_node = tree_search(&cache->rb_root, src->commit_root->start);
1165 	if (rb_node) {
1166 		node = rb_entry(rb_node, struct backref_node, rb_node);
1167 		if (node->detached)
1168 			node = NULL;
1169 		else
1170 			BUG_ON(node->new_bytenr != reloc_root->node->start);
1171 	}
1172 
1173 	if (!node) {
1174 		rb_node = tree_search(&cache->rb_root,
1175 				      reloc_root->commit_root->start);
1176 		if (rb_node) {
1177 			node = rb_entry(rb_node, struct backref_node,
1178 					rb_node);
1179 			BUG_ON(node->detached);
1180 		}
1181 	}
1182 
1183 	if (!node)
1184 		return 0;
1185 
1186 	new_node = alloc_backref_node(cache);
1187 	if (!new_node)
1188 		return -ENOMEM;
1189 
1190 	new_node->bytenr = dest->node->start;
1191 	new_node->level = node->level;
1192 	new_node->lowest = node->lowest;
1193 	new_node->checked = 1;
1194 	new_node->root = dest;
1195 
1196 	if (!node->lowest) {
1197 		list_for_each_entry(edge, &node->lower, list[UPPER]) {
1198 			new_edge = alloc_backref_edge(cache);
1199 			if (!new_edge)
1200 				goto fail;
1201 
1202 			new_edge->node[UPPER] = new_node;
1203 			new_edge->node[LOWER] = edge->node[LOWER];
1204 			list_add_tail(&new_edge->list[UPPER],
1205 				      &new_node->lower);
1206 		}
1207 	} else {
1208 		list_add_tail(&new_node->lower, &cache->leaves);
1209 	}
1210 
1211 	rb_node = tree_insert(&cache->rb_root, new_node->bytenr,
1212 			      &new_node->rb_node);
1213 	if (rb_node)
1214 		backref_tree_panic(rb_node, -EEXIST, new_node->bytenr);
1215 
1216 	if (!new_node->lowest) {
1217 		list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) {
1218 			list_add_tail(&new_edge->list[LOWER],
1219 				      &new_edge->node[LOWER]->upper);
1220 		}
1221 	}
1222 	return 0;
1223 fail:
1224 	while (!list_empty(&new_node->lower)) {
1225 		new_edge = list_entry(new_node->lower.next,
1226 				      struct backref_edge, list[UPPER]);
1227 		list_del(&new_edge->list[UPPER]);
1228 		free_backref_edge(cache, new_edge);
1229 	}
1230 	free_backref_node(cache, new_node);
1231 	return -ENOMEM;
1232 }
1233 
1234 /*
1235  * helper to add 'address of tree root -> reloc tree' mapping
1236  */
1237 static int __must_check __add_reloc_root(struct btrfs_root *root)
1238 {
1239 	struct rb_node *rb_node;
1240 	struct mapping_node *node;
1241 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1242 
1243 	node = kmalloc(sizeof(*node), GFP_NOFS);
1244 	if (!node)
1245 		return -ENOMEM;
1246 
1247 	node->bytenr = root->node->start;
1248 	node->data = root;
1249 
1250 	spin_lock(&rc->reloc_root_tree.lock);
1251 	rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1252 			      node->bytenr, &node->rb_node);
1253 	spin_unlock(&rc->reloc_root_tree.lock);
1254 	if (rb_node) {
1255 		btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found "
1256 			    "for start=%llu while inserting into relocation "
1257 			    "tree\n", node->bytenr);
1258 		kfree(node);
1259 		return -EEXIST;
1260 	}
1261 
1262 	list_add_tail(&root->root_list, &rc->reloc_roots);
1263 	return 0;
1264 }
1265 
1266 /*
1267  * helper to update/delete the 'address of tree root -> reloc tree'
1268  * mapping
1269  */
1270 static int __update_reloc_root(struct btrfs_root *root, int del)
1271 {
1272 	struct rb_node *rb_node;
1273 	struct mapping_node *node = NULL;
1274 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1275 
1276 	spin_lock(&rc->reloc_root_tree.lock);
1277 	rb_node = tree_search(&rc->reloc_root_tree.rb_root,
1278 			      root->commit_root->start);
1279 	if (rb_node) {
1280 		node = rb_entry(rb_node, struct mapping_node, rb_node);
1281 		rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root);
1282 	}
1283 	spin_unlock(&rc->reloc_root_tree.lock);
1284 
1285 	if (!node)
1286 		return 0;
1287 	BUG_ON((struct btrfs_root *)node->data != root);
1288 
1289 	if (!del) {
1290 		spin_lock(&rc->reloc_root_tree.lock);
1291 		node->bytenr = root->node->start;
1292 		rb_node = tree_insert(&rc->reloc_root_tree.rb_root,
1293 				      node->bytenr, &node->rb_node);
1294 		spin_unlock(&rc->reloc_root_tree.lock);
1295 		if (rb_node)
1296 			backref_tree_panic(rb_node, -EEXIST, node->bytenr);
1297 	} else {
1298 		spin_lock(&root->fs_info->trans_lock);
1299 		list_del_init(&root->root_list);
1300 		spin_unlock(&root->fs_info->trans_lock);
1301 		kfree(node);
1302 	}
1303 	return 0;
1304 }
1305 
1306 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans,
1307 					struct btrfs_root *root, u64 objectid)
1308 {
1309 	struct btrfs_root *reloc_root;
1310 	struct extent_buffer *eb;
1311 	struct btrfs_root_item *root_item;
1312 	struct btrfs_key root_key;
1313 	u64 last_snap = 0;
1314 	int ret;
1315 
1316 	root_item = kmalloc(sizeof(*root_item), GFP_NOFS);
1317 	BUG_ON(!root_item);
1318 
1319 	root_key.objectid = BTRFS_TREE_RELOC_OBJECTID;
1320 	root_key.type = BTRFS_ROOT_ITEM_KEY;
1321 	root_key.offset = objectid;
1322 
1323 	if (root->root_key.objectid == objectid) {
1324 		/* called by btrfs_init_reloc_root */
1325 		ret = btrfs_copy_root(trans, root, root->commit_root, &eb,
1326 				      BTRFS_TREE_RELOC_OBJECTID);
1327 		BUG_ON(ret);
1328 
1329 		last_snap = btrfs_root_last_snapshot(&root->root_item);
1330 		btrfs_set_root_last_snapshot(&root->root_item,
1331 					     trans->transid - 1);
1332 	} else {
1333 		/*
1334 		 * called by btrfs_reloc_post_snapshot_hook.
1335 		 * the source tree is a reloc tree, all tree blocks
1336 		 * modified after it was created have RELOC flag
1337 		 * set in their headers. so it's OK to not update
1338 		 * the 'last_snapshot'.
1339 		 */
1340 		ret = btrfs_copy_root(trans, root, root->node, &eb,
1341 				      BTRFS_TREE_RELOC_OBJECTID);
1342 		BUG_ON(ret);
1343 	}
1344 
1345 	memcpy(root_item, &root->root_item, sizeof(*root_item));
1346 	btrfs_set_root_bytenr(root_item, eb->start);
1347 	btrfs_set_root_level(root_item, btrfs_header_level(eb));
1348 	btrfs_set_root_generation(root_item, trans->transid);
1349 
1350 	if (root->root_key.objectid == objectid) {
1351 		btrfs_set_root_refs(root_item, 0);
1352 		memset(&root_item->drop_progress, 0,
1353 		       sizeof(struct btrfs_disk_key));
1354 		root_item->drop_level = 0;
1355 		/*
1356 		 * abuse rtransid, it is safe because it is impossible to
1357 		 * receive data into a relocation tree.
1358 		 */
1359 		btrfs_set_root_rtransid(root_item, last_snap);
1360 		btrfs_set_root_otransid(root_item, trans->transid);
1361 	}
1362 
1363 	btrfs_tree_unlock(eb);
1364 	free_extent_buffer(eb);
1365 
1366 	ret = btrfs_insert_root(trans, root->fs_info->tree_root,
1367 				&root_key, root_item);
1368 	BUG_ON(ret);
1369 	kfree(root_item);
1370 
1371 	reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key);
1372 	BUG_ON(IS_ERR(reloc_root));
1373 	reloc_root->last_trans = trans->transid;
1374 	return reloc_root;
1375 }
1376 
1377 /*
1378  * create reloc tree for a given fs tree. reloc tree is just a
1379  * snapshot of the fs tree with special root objectid.
1380  */
1381 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans,
1382 			  struct btrfs_root *root)
1383 {
1384 	struct btrfs_root *reloc_root;
1385 	struct reloc_control *rc = root->fs_info->reloc_ctl;
1386 	int clear_rsv = 0;
1387 	int ret;
1388 
1389 	if (root->reloc_root) {
1390 		reloc_root = root->reloc_root;
1391 		reloc_root->last_trans = trans->transid;
1392 		return 0;
1393 	}
1394 
1395 	if (!rc || !rc->create_reloc_tree ||
1396 	    root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1397 		return 0;
1398 
1399 	if (!trans->block_rsv) {
1400 		trans->block_rsv = rc->block_rsv;
1401 		clear_rsv = 1;
1402 	}
1403 	reloc_root = create_reloc_root(trans, root, root->root_key.objectid);
1404 	if (clear_rsv)
1405 		trans->block_rsv = NULL;
1406 
1407 	ret = __add_reloc_root(reloc_root);
1408 	BUG_ON(ret < 0);
1409 	root->reloc_root = reloc_root;
1410 	return 0;
1411 }
1412 
1413 /*
1414  * update root item of reloc tree
1415  */
1416 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans,
1417 			    struct btrfs_root *root)
1418 {
1419 	struct btrfs_root *reloc_root;
1420 	struct btrfs_root_item *root_item;
1421 	int del = 0;
1422 	int ret;
1423 
1424 	if (!root->reloc_root)
1425 		goto out;
1426 
1427 	reloc_root = root->reloc_root;
1428 	root_item = &reloc_root->root_item;
1429 
1430 	if (root->fs_info->reloc_ctl->merge_reloc_tree &&
1431 	    btrfs_root_refs(root_item) == 0) {
1432 		root->reloc_root = NULL;
1433 		del = 1;
1434 	}
1435 
1436 	__update_reloc_root(reloc_root, del);
1437 
1438 	if (reloc_root->commit_root != reloc_root->node) {
1439 		btrfs_set_root_node(root_item, reloc_root->node);
1440 		free_extent_buffer(reloc_root->commit_root);
1441 		reloc_root->commit_root = btrfs_root_node(reloc_root);
1442 	}
1443 
1444 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1445 				&reloc_root->root_key, root_item);
1446 	BUG_ON(ret);
1447 
1448 out:
1449 	return 0;
1450 }
1451 
1452 /*
1453  * helper to find first cached inode with inode number >= objectid
1454  * in a subvolume
1455  */
1456 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid)
1457 {
1458 	struct rb_node *node;
1459 	struct rb_node *prev;
1460 	struct btrfs_inode *entry;
1461 	struct inode *inode;
1462 
1463 	spin_lock(&root->inode_lock);
1464 again:
1465 	node = root->inode_tree.rb_node;
1466 	prev = NULL;
1467 	while (node) {
1468 		prev = node;
1469 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1470 
1471 		if (objectid < btrfs_ino(&entry->vfs_inode))
1472 			node = node->rb_left;
1473 		else if (objectid > btrfs_ino(&entry->vfs_inode))
1474 			node = node->rb_right;
1475 		else
1476 			break;
1477 	}
1478 	if (!node) {
1479 		while (prev) {
1480 			entry = rb_entry(prev, struct btrfs_inode, rb_node);
1481 			if (objectid <= btrfs_ino(&entry->vfs_inode)) {
1482 				node = prev;
1483 				break;
1484 			}
1485 			prev = rb_next(prev);
1486 		}
1487 	}
1488 	while (node) {
1489 		entry = rb_entry(node, struct btrfs_inode, rb_node);
1490 		inode = igrab(&entry->vfs_inode);
1491 		if (inode) {
1492 			spin_unlock(&root->inode_lock);
1493 			return inode;
1494 		}
1495 
1496 		objectid = btrfs_ino(&entry->vfs_inode) + 1;
1497 		if (cond_resched_lock(&root->inode_lock))
1498 			goto again;
1499 
1500 		node = rb_next(node);
1501 	}
1502 	spin_unlock(&root->inode_lock);
1503 	return NULL;
1504 }
1505 
1506 static int in_block_group(u64 bytenr,
1507 			  struct btrfs_block_group_cache *block_group)
1508 {
1509 	if (bytenr >= block_group->key.objectid &&
1510 	    bytenr < block_group->key.objectid + block_group->key.offset)
1511 		return 1;
1512 	return 0;
1513 }
1514 
1515 /*
1516  * get new location of data
1517  */
1518 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr,
1519 			    u64 bytenr, u64 num_bytes)
1520 {
1521 	struct btrfs_root *root = BTRFS_I(reloc_inode)->root;
1522 	struct btrfs_path *path;
1523 	struct btrfs_file_extent_item *fi;
1524 	struct extent_buffer *leaf;
1525 	int ret;
1526 
1527 	path = btrfs_alloc_path();
1528 	if (!path)
1529 		return -ENOMEM;
1530 
1531 	bytenr -= BTRFS_I(reloc_inode)->index_cnt;
1532 	ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode),
1533 				       bytenr, 0);
1534 	if (ret < 0)
1535 		goto out;
1536 	if (ret > 0) {
1537 		ret = -ENOENT;
1538 		goto out;
1539 	}
1540 
1541 	leaf = path->nodes[0];
1542 	fi = btrfs_item_ptr(leaf, path->slots[0],
1543 			    struct btrfs_file_extent_item);
1544 
1545 	BUG_ON(btrfs_file_extent_offset(leaf, fi) ||
1546 	       btrfs_file_extent_compression(leaf, fi) ||
1547 	       btrfs_file_extent_encryption(leaf, fi) ||
1548 	       btrfs_file_extent_other_encoding(leaf, fi));
1549 
1550 	if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) {
1551 		ret = 1;
1552 		goto out;
1553 	}
1554 
1555 	*new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1556 	ret = 0;
1557 out:
1558 	btrfs_free_path(path);
1559 	return ret;
1560 }
1561 
1562 /*
1563  * update file extent items in the tree leaf to point to
1564  * the new locations.
1565  */
1566 static noinline_for_stack
1567 int replace_file_extents(struct btrfs_trans_handle *trans,
1568 			 struct reloc_control *rc,
1569 			 struct btrfs_root *root,
1570 			 struct extent_buffer *leaf)
1571 {
1572 	struct btrfs_key key;
1573 	struct btrfs_file_extent_item *fi;
1574 	struct inode *inode = NULL;
1575 	u64 parent;
1576 	u64 bytenr;
1577 	u64 new_bytenr = 0;
1578 	u64 num_bytes;
1579 	u64 end;
1580 	u32 nritems;
1581 	u32 i;
1582 	int ret;
1583 	int first = 1;
1584 	int dirty = 0;
1585 
1586 	if (rc->stage != UPDATE_DATA_PTRS)
1587 		return 0;
1588 
1589 	/* reloc trees always use full backref */
1590 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID)
1591 		parent = leaf->start;
1592 	else
1593 		parent = 0;
1594 
1595 	nritems = btrfs_header_nritems(leaf);
1596 	for (i = 0; i < nritems; i++) {
1597 		cond_resched();
1598 		btrfs_item_key_to_cpu(leaf, &key, i);
1599 		if (key.type != BTRFS_EXTENT_DATA_KEY)
1600 			continue;
1601 		fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item);
1602 		if (btrfs_file_extent_type(leaf, fi) ==
1603 		    BTRFS_FILE_EXTENT_INLINE)
1604 			continue;
1605 		bytenr = btrfs_file_extent_disk_bytenr(leaf, fi);
1606 		num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi);
1607 		if (bytenr == 0)
1608 			continue;
1609 		if (!in_block_group(bytenr, rc->block_group))
1610 			continue;
1611 
1612 		/*
1613 		 * if we are modifying block in fs tree, wait for readpage
1614 		 * to complete and drop the extent cache
1615 		 */
1616 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
1617 			if (first) {
1618 				inode = find_next_inode(root, key.objectid);
1619 				first = 0;
1620 			} else if (inode && btrfs_ino(inode) < key.objectid) {
1621 				btrfs_add_delayed_iput(inode);
1622 				inode = find_next_inode(root, key.objectid);
1623 			}
1624 			if (inode && btrfs_ino(inode) == key.objectid) {
1625 				end = key.offset +
1626 				      btrfs_file_extent_num_bytes(leaf, fi);
1627 				WARN_ON(!IS_ALIGNED(key.offset,
1628 						    root->sectorsize));
1629 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
1630 				end--;
1631 				ret = try_lock_extent(&BTRFS_I(inode)->io_tree,
1632 						      key.offset, end);
1633 				if (!ret)
1634 					continue;
1635 
1636 				btrfs_drop_extent_cache(inode, key.offset, end,
1637 							1);
1638 				unlock_extent(&BTRFS_I(inode)->io_tree,
1639 					      key.offset, end);
1640 			}
1641 		}
1642 
1643 		ret = get_new_location(rc->data_inode, &new_bytenr,
1644 				       bytenr, num_bytes);
1645 		if (ret > 0) {
1646 			WARN_ON(1);
1647 			continue;
1648 		}
1649 		BUG_ON(ret < 0);
1650 
1651 		btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr);
1652 		dirty = 1;
1653 
1654 		key.offset -= btrfs_file_extent_offset(leaf, fi);
1655 		ret = btrfs_inc_extent_ref(trans, root, new_bytenr,
1656 					   num_bytes, parent,
1657 					   btrfs_header_owner(leaf),
1658 					   key.objectid, key.offset, 1);
1659 		BUG_ON(ret);
1660 
1661 		ret = btrfs_free_extent(trans, root, bytenr, num_bytes,
1662 					parent, btrfs_header_owner(leaf),
1663 					key.objectid, key.offset, 1);
1664 		BUG_ON(ret);
1665 	}
1666 	if (dirty)
1667 		btrfs_mark_buffer_dirty(leaf);
1668 	if (inode)
1669 		btrfs_add_delayed_iput(inode);
1670 	return 0;
1671 }
1672 
1673 static noinline_for_stack
1674 int memcmp_node_keys(struct extent_buffer *eb, int slot,
1675 		     struct btrfs_path *path, int level)
1676 {
1677 	struct btrfs_disk_key key1;
1678 	struct btrfs_disk_key key2;
1679 	btrfs_node_key(eb, &key1, slot);
1680 	btrfs_node_key(path->nodes[level], &key2, path->slots[level]);
1681 	return memcmp(&key1, &key2, sizeof(key1));
1682 }
1683 
1684 /*
1685  * try to replace tree blocks in fs tree with the new blocks
1686  * in reloc tree. tree blocks haven't been modified since the
1687  * reloc tree was create can be replaced.
1688  *
1689  * if a block was replaced, level of the block + 1 is returned.
1690  * if no block got replaced, 0 is returned. if there are other
1691  * errors, a negative error number is returned.
1692  */
1693 static noinline_for_stack
1694 int replace_path(struct btrfs_trans_handle *trans,
1695 		 struct btrfs_root *dest, struct btrfs_root *src,
1696 		 struct btrfs_path *path, struct btrfs_key *next_key,
1697 		 int lowest_level, int max_level)
1698 {
1699 	struct extent_buffer *eb;
1700 	struct extent_buffer *parent;
1701 	struct btrfs_key key;
1702 	u64 old_bytenr;
1703 	u64 new_bytenr;
1704 	u64 old_ptr_gen;
1705 	u64 new_ptr_gen;
1706 	u64 last_snapshot;
1707 	u32 blocksize;
1708 	int cow = 0;
1709 	int level;
1710 	int ret;
1711 	int slot;
1712 
1713 	BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
1714 	BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID);
1715 
1716 	last_snapshot = btrfs_root_last_snapshot(&src->root_item);
1717 again:
1718 	slot = path->slots[lowest_level];
1719 	btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot);
1720 
1721 	eb = btrfs_lock_root_node(dest);
1722 	btrfs_set_lock_blocking(eb);
1723 	level = btrfs_header_level(eb);
1724 
1725 	if (level < lowest_level) {
1726 		btrfs_tree_unlock(eb);
1727 		free_extent_buffer(eb);
1728 		return 0;
1729 	}
1730 
1731 	if (cow) {
1732 		ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb);
1733 		BUG_ON(ret);
1734 	}
1735 	btrfs_set_lock_blocking(eb);
1736 
1737 	if (next_key) {
1738 		next_key->objectid = (u64)-1;
1739 		next_key->type = (u8)-1;
1740 		next_key->offset = (u64)-1;
1741 	}
1742 
1743 	parent = eb;
1744 	while (1) {
1745 		level = btrfs_header_level(parent);
1746 		BUG_ON(level < lowest_level);
1747 
1748 		ret = btrfs_bin_search(parent, &key, level, &slot);
1749 		if (ret && slot > 0)
1750 			slot--;
1751 
1752 		if (next_key && slot + 1 < btrfs_header_nritems(parent))
1753 			btrfs_node_key_to_cpu(parent, next_key, slot + 1);
1754 
1755 		old_bytenr = btrfs_node_blockptr(parent, slot);
1756 		blocksize = btrfs_level_size(dest, level - 1);
1757 		old_ptr_gen = btrfs_node_ptr_generation(parent, slot);
1758 
1759 		if (level <= max_level) {
1760 			eb = path->nodes[level];
1761 			new_bytenr = btrfs_node_blockptr(eb,
1762 							path->slots[level]);
1763 			new_ptr_gen = btrfs_node_ptr_generation(eb,
1764 							path->slots[level]);
1765 		} else {
1766 			new_bytenr = 0;
1767 			new_ptr_gen = 0;
1768 		}
1769 
1770 		if (new_bytenr > 0 && new_bytenr == old_bytenr) {
1771 			WARN_ON(1);
1772 			ret = level;
1773 			break;
1774 		}
1775 
1776 		if (new_bytenr == 0 || old_ptr_gen > last_snapshot ||
1777 		    memcmp_node_keys(parent, slot, path, level)) {
1778 			if (level <= lowest_level) {
1779 				ret = 0;
1780 				break;
1781 			}
1782 
1783 			eb = read_tree_block(dest, old_bytenr, blocksize,
1784 					     old_ptr_gen);
1785 			if (!eb || !extent_buffer_uptodate(eb)) {
1786 				ret = (!eb) ? -ENOMEM : -EIO;
1787 				free_extent_buffer(eb);
1788 				break;
1789 			}
1790 			btrfs_tree_lock(eb);
1791 			if (cow) {
1792 				ret = btrfs_cow_block(trans, dest, eb, parent,
1793 						      slot, &eb);
1794 				BUG_ON(ret);
1795 			}
1796 			btrfs_set_lock_blocking(eb);
1797 
1798 			btrfs_tree_unlock(parent);
1799 			free_extent_buffer(parent);
1800 
1801 			parent = eb;
1802 			continue;
1803 		}
1804 
1805 		if (!cow) {
1806 			btrfs_tree_unlock(parent);
1807 			free_extent_buffer(parent);
1808 			cow = 1;
1809 			goto again;
1810 		}
1811 
1812 		btrfs_node_key_to_cpu(path->nodes[level], &key,
1813 				      path->slots[level]);
1814 		btrfs_release_path(path);
1815 
1816 		path->lowest_level = level;
1817 		ret = btrfs_search_slot(trans, src, &key, path, 0, 1);
1818 		path->lowest_level = 0;
1819 		BUG_ON(ret);
1820 
1821 		/*
1822 		 * swap blocks in fs tree and reloc tree.
1823 		 */
1824 		btrfs_set_node_blockptr(parent, slot, new_bytenr);
1825 		btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen);
1826 		btrfs_mark_buffer_dirty(parent);
1827 
1828 		btrfs_set_node_blockptr(path->nodes[level],
1829 					path->slots[level], old_bytenr);
1830 		btrfs_set_node_ptr_generation(path->nodes[level],
1831 					      path->slots[level], old_ptr_gen);
1832 		btrfs_mark_buffer_dirty(path->nodes[level]);
1833 
1834 		ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize,
1835 					path->nodes[level]->start,
1836 					src->root_key.objectid, level - 1, 0,
1837 					1);
1838 		BUG_ON(ret);
1839 		ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize,
1840 					0, dest->root_key.objectid, level - 1,
1841 					0, 1);
1842 		BUG_ON(ret);
1843 
1844 		ret = btrfs_free_extent(trans, src, new_bytenr, blocksize,
1845 					path->nodes[level]->start,
1846 					src->root_key.objectid, level - 1, 0,
1847 					1);
1848 		BUG_ON(ret);
1849 
1850 		ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize,
1851 					0, dest->root_key.objectid, level - 1,
1852 					0, 1);
1853 		BUG_ON(ret);
1854 
1855 		btrfs_unlock_up_safe(path, 0);
1856 
1857 		ret = level;
1858 		break;
1859 	}
1860 	btrfs_tree_unlock(parent);
1861 	free_extent_buffer(parent);
1862 	return ret;
1863 }
1864 
1865 /*
1866  * helper to find next relocated block in reloc tree
1867  */
1868 static noinline_for_stack
1869 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1870 		       int *level)
1871 {
1872 	struct extent_buffer *eb;
1873 	int i;
1874 	u64 last_snapshot;
1875 	u32 nritems;
1876 
1877 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1878 
1879 	for (i = 0; i < *level; i++) {
1880 		free_extent_buffer(path->nodes[i]);
1881 		path->nodes[i] = NULL;
1882 	}
1883 
1884 	for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) {
1885 		eb = path->nodes[i];
1886 		nritems = btrfs_header_nritems(eb);
1887 		while (path->slots[i] + 1 < nritems) {
1888 			path->slots[i]++;
1889 			if (btrfs_node_ptr_generation(eb, path->slots[i]) <=
1890 			    last_snapshot)
1891 				continue;
1892 
1893 			*level = i;
1894 			return 0;
1895 		}
1896 		free_extent_buffer(path->nodes[i]);
1897 		path->nodes[i] = NULL;
1898 	}
1899 	return 1;
1900 }
1901 
1902 /*
1903  * walk down reloc tree to find relocated block of lowest level
1904  */
1905 static noinline_for_stack
1906 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path,
1907 			 int *level)
1908 {
1909 	struct extent_buffer *eb = NULL;
1910 	int i;
1911 	u64 bytenr;
1912 	u64 ptr_gen = 0;
1913 	u64 last_snapshot;
1914 	u32 blocksize;
1915 	u32 nritems;
1916 
1917 	last_snapshot = btrfs_root_last_snapshot(&root->root_item);
1918 
1919 	for (i = *level; i > 0; i--) {
1920 		eb = path->nodes[i];
1921 		nritems = btrfs_header_nritems(eb);
1922 		while (path->slots[i] < nritems) {
1923 			ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]);
1924 			if (ptr_gen > last_snapshot)
1925 				break;
1926 			path->slots[i]++;
1927 		}
1928 		if (path->slots[i] >= nritems) {
1929 			if (i == *level)
1930 				break;
1931 			*level = i + 1;
1932 			return 0;
1933 		}
1934 		if (i == 1) {
1935 			*level = i;
1936 			return 0;
1937 		}
1938 
1939 		bytenr = btrfs_node_blockptr(eb, path->slots[i]);
1940 		blocksize = btrfs_level_size(root, i - 1);
1941 		eb = read_tree_block(root, bytenr, blocksize, ptr_gen);
1942 		if (!eb || !extent_buffer_uptodate(eb)) {
1943 			free_extent_buffer(eb);
1944 			return -EIO;
1945 		}
1946 		BUG_ON(btrfs_header_level(eb) != i - 1);
1947 		path->nodes[i - 1] = eb;
1948 		path->slots[i - 1] = 0;
1949 	}
1950 	return 1;
1951 }
1952 
1953 /*
1954  * invalidate extent cache for file extents whose key in range of
1955  * [min_key, max_key)
1956  */
1957 static int invalidate_extent_cache(struct btrfs_root *root,
1958 				   struct btrfs_key *min_key,
1959 				   struct btrfs_key *max_key)
1960 {
1961 	struct inode *inode = NULL;
1962 	u64 objectid;
1963 	u64 start, end;
1964 	u64 ino;
1965 
1966 	objectid = min_key->objectid;
1967 	while (1) {
1968 		cond_resched();
1969 		iput(inode);
1970 
1971 		if (objectid > max_key->objectid)
1972 			break;
1973 
1974 		inode = find_next_inode(root, objectid);
1975 		if (!inode)
1976 			break;
1977 		ino = btrfs_ino(inode);
1978 
1979 		if (ino > max_key->objectid) {
1980 			iput(inode);
1981 			break;
1982 		}
1983 
1984 		objectid = ino + 1;
1985 		if (!S_ISREG(inode->i_mode))
1986 			continue;
1987 
1988 		if (unlikely(min_key->objectid == ino)) {
1989 			if (min_key->type > BTRFS_EXTENT_DATA_KEY)
1990 				continue;
1991 			if (min_key->type < BTRFS_EXTENT_DATA_KEY)
1992 				start = 0;
1993 			else {
1994 				start = min_key->offset;
1995 				WARN_ON(!IS_ALIGNED(start, root->sectorsize));
1996 			}
1997 		} else {
1998 			start = 0;
1999 		}
2000 
2001 		if (unlikely(max_key->objectid == ino)) {
2002 			if (max_key->type < BTRFS_EXTENT_DATA_KEY)
2003 				continue;
2004 			if (max_key->type > BTRFS_EXTENT_DATA_KEY) {
2005 				end = (u64)-1;
2006 			} else {
2007 				if (max_key->offset == 0)
2008 					continue;
2009 				end = max_key->offset;
2010 				WARN_ON(!IS_ALIGNED(end, root->sectorsize));
2011 				end--;
2012 			}
2013 		} else {
2014 			end = (u64)-1;
2015 		}
2016 
2017 		/* the lock_extent waits for readpage to complete */
2018 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
2019 		btrfs_drop_extent_cache(inode, start, end, 1);
2020 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
2021 	}
2022 	return 0;
2023 }
2024 
2025 static int find_next_key(struct btrfs_path *path, int level,
2026 			 struct btrfs_key *key)
2027 
2028 {
2029 	while (level < BTRFS_MAX_LEVEL) {
2030 		if (!path->nodes[level])
2031 			break;
2032 		if (path->slots[level] + 1 <
2033 		    btrfs_header_nritems(path->nodes[level])) {
2034 			btrfs_node_key_to_cpu(path->nodes[level], key,
2035 					      path->slots[level] + 1);
2036 			return 0;
2037 		}
2038 		level++;
2039 	}
2040 	return 1;
2041 }
2042 
2043 /*
2044  * merge the relocated tree blocks in reloc tree with corresponding
2045  * fs tree.
2046  */
2047 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc,
2048 					       struct btrfs_root *root)
2049 {
2050 	LIST_HEAD(inode_list);
2051 	struct btrfs_key key;
2052 	struct btrfs_key next_key;
2053 	struct btrfs_trans_handle *trans;
2054 	struct btrfs_root *reloc_root;
2055 	struct btrfs_root_item *root_item;
2056 	struct btrfs_path *path;
2057 	struct extent_buffer *leaf;
2058 	int level;
2059 	int max_level;
2060 	int replaced = 0;
2061 	int ret;
2062 	int err = 0;
2063 	u32 min_reserved;
2064 
2065 	path = btrfs_alloc_path();
2066 	if (!path)
2067 		return -ENOMEM;
2068 	path->reada = 1;
2069 
2070 	reloc_root = root->reloc_root;
2071 	root_item = &reloc_root->root_item;
2072 
2073 	if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
2074 		level = btrfs_root_level(root_item);
2075 		extent_buffer_get(reloc_root->node);
2076 		path->nodes[level] = reloc_root->node;
2077 		path->slots[level] = 0;
2078 	} else {
2079 		btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
2080 
2081 		level = root_item->drop_level;
2082 		BUG_ON(level == 0);
2083 		path->lowest_level = level;
2084 		ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0);
2085 		path->lowest_level = 0;
2086 		if (ret < 0) {
2087 			btrfs_free_path(path);
2088 			return ret;
2089 		}
2090 
2091 		btrfs_node_key_to_cpu(path->nodes[level], &next_key,
2092 				      path->slots[level]);
2093 		WARN_ON(memcmp(&key, &next_key, sizeof(key)));
2094 
2095 		btrfs_unlock_up_safe(path, 0);
2096 	}
2097 
2098 	min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2099 	memset(&next_key, 0, sizeof(next_key));
2100 
2101 	while (1) {
2102 		trans = btrfs_start_transaction(root, 0);
2103 		BUG_ON(IS_ERR(trans));
2104 		trans->block_rsv = rc->block_rsv;
2105 
2106 		ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved,
2107 					     BTRFS_RESERVE_FLUSH_ALL);
2108 		if (ret) {
2109 			BUG_ON(ret != -EAGAIN);
2110 			ret = btrfs_commit_transaction(trans, root);
2111 			BUG_ON(ret);
2112 			continue;
2113 		}
2114 
2115 		replaced = 0;
2116 		max_level = level;
2117 
2118 		ret = walk_down_reloc_tree(reloc_root, path, &level);
2119 		if (ret < 0) {
2120 			err = ret;
2121 			goto out;
2122 		}
2123 		if (ret > 0)
2124 			break;
2125 
2126 		if (!find_next_key(path, level, &key) &&
2127 		    btrfs_comp_cpu_keys(&next_key, &key) >= 0) {
2128 			ret = 0;
2129 		} else {
2130 			ret = replace_path(trans, root, reloc_root, path,
2131 					   &next_key, level, max_level);
2132 		}
2133 		if (ret < 0) {
2134 			err = ret;
2135 			goto out;
2136 		}
2137 
2138 		if (ret > 0) {
2139 			level = ret;
2140 			btrfs_node_key_to_cpu(path->nodes[level], &key,
2141 					      path->slots[level]);
2142 			replaced = 1;
2143 		}
2144 
2145 		ret = walk_up_reloc_tree(reloc_root, path, &level);
2146 		if (ret > 0)
2147 			break;
2148 
2149 		BUG_ON(level == 0);
2150 		/*
2151 		 * save the merging progress in the drop_progress.
2152 		 * this is OK since root refs == 1 in this case.
2153 		 */
2154 		btrfs_node_key(path->nodes[level], &root_item->drop_progress,
2155 			       path->slots[level]);
2156 		root_item->drop_level = level;
2157 
2158 		btrfs_end_transaction_throttle(trans, root);
2159 
2160 		btrfs_btree_balance_dirty(root);
2161 
2162 		if (replaced && rc->stage == UPDATE_DATA_PTRS)
2163 			invalidate_extent_cache(root, &key, &next_key);
2164 	}
2165 
2166 	/*
2167 	 * handle the case only one block in the fs tree need to be
2168 	 * relocated and the block is tree root.
2169 	 */
2170 	leaf = btrfs_lock_root_node(root);
2171 	ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf);
2172 	btrfs_tree_unlock(leaf);
2173 	free_extent_buffer(leaf);
2174 	if (ret < 0)
2175 		err = ret;
2176 out:
2177 	btrfs_free_path(path);
2178 
2179 	if (err == 0) {
2180 		memset(&root_item->drop_progress, 0,
2181 		       sizeof(root_item->drop_progress));
2182 		root_item->drop_level = 0;
2183 		btrfs_set_root_refs(root_item, 0);
2184 		btrfs_update_reloc_root(trans, root);
2185 	}
2186 
2187 	btrfs_end_transaction_throttle(trans, root);
2188 
2189 	btrfs_btree_balance_dirty(root);
2190 
2191 	if (replaced && rc->stage == UPDATE_DATA_PTRS)
2192 		invalidate_extent_cache(root, &key, &next_key);
2193 
2194 	return err;
2195 }
2196 
2197 static noinline_for_stack
2198 int prepare_to_merge(struct reloc_control *rc, int err)
2199 {
2200 	struct btrfs_root *root = rc->extent_root;
2201 	struct btrfs_root *reloc_root;
2202 	struct btrfs_trans_handle *trans;
2203 	LIST_HEAD(reloc_roots);
2204 	u64 num_bytes = 0;
2205 	int ret;
2206 
2207 	mutex_lock(&root->fs_info->reloc_mutex);
2208 	rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2;
2209 	rc->merging_rsv_size += rc->nodes_relocated * 2;
2210 	mutex_unlock(&root->fs_info->reloc_mutex);
2211 
2212 again:
2213 	if (!err) {
2214 		num_bytes = rc->merging_rsv_size;
2215 		ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2216 					  BTRFS_RESERVE_FLUSH_ALL);
2217 		if (ret)
2218 			err = ret;
2219 	}
2220 
2221 	trans = btrfs_join_transaction(rc->extent_root);
2222 	if (IS_ERR(trans)) {
2223 		if (!err)
2224 			btrfs_block_rsv_release(rc->extent_root,
2225 						rc->block_rsv, num_bytes);
2226 		return PTR_ERR(trans);
2227 	}
2228 
2229 	if (!err) {
2230 		if (num_bytes != rc->merging_rsv_size) {
2231 			btrfs_end_transaction(trans, rc->extent_root);
2232 			btrfs_block_rsv_release(rc->extent_root,
2233 						rc->block_rsv, num_bytes);
2234 			goto again;
2235 		}
2236 	}
2237 
2238 	rc->merge_reloc_tree = 1;
2239 
2240 	while (!list_empty(&rc->reloc_roots)) {
2241 		reloc_root = list_entry(rc->reloc_roots.next,
2242 					struct btrfs_root, root_list);
2243 		list_del_init(&reloc_root->root_list);
2244 
2245 		root = read_fs_root(reloc_root->fs_info,
2246 				    reloc_root->root_key.offset);
2247 		BUG_ON(IS_ERR(root));
2248 		BUG_ON(root->reloc_root != reloc_root);
2249 
2250 		/*
2251 		 * set reference count to 1, so btrfs_recover_relocation
2252 		 * knows it should resumes merging
2253 		 */
2254 		if (!err)
2255 			btrfs_set_root_refs(&reloc_root->root_item, 1);
2256 		btrfs_update_reloc_root(trans, root);
2257 
2258 		list_add(&reloc_root->root_list, &reloc_roots);
2259 	}
2260 
2261 	list_splice(&reloc_roots, &rc->reloc_roots);
2262 
2263 	if (!err)
2264 		btrfs_commit_transaction(trans, rc->extent_root);
2265 	else
2266 		btrfs_end_transaction(trans, rc->extent_root);
2267 	return err;
2268 }
2269 
2270 static noinline_for_stack
2271 void free_reloc_roots(struct list_head *list)
2272 {
2273 	struct btrfs_root *reloc_root;
2274 
2275 	while (!list_empty(list)) {
2276 		reloc_root = list_entry(list->next, struct btrfs_root,
2277 					root_list);
2278 		__update_reloc_root(reloc_root, 1);
2279 		free_extent_buffer(reloc_root->node);
2280 		free_extent_buffer(reloc_root->commit_root);
2281 		kfree(reloc_root);
2282 	}
2283 }
2284 
2285 static noinline_for_stack
2286 int merge_reloc_roots(struct reloc_control *rc)
2287 {
2288 	struct btrfs_trans_handle *trans;
2289 	struct btrfs_root *root;
2290 	struct btrfs_root *reloc_root;
2291 	u64 last_snap;
2292 	u64 otransid;
2293 	u64 objectid;
2294 	LIST_HEAD(reloc_roots);
2295 	int found = 0;
2296 	int ret = 0;
2297 again:
2298 	root = rc->extent_root;
2299 
2300 	/*
2301 	 * this serializes us with btrfs_record_root_in_transaction,
2302 	 * we have to make sure nobody is in the middle of
2303 	 * adding their roots to the list while we are
2304 	 * doing this splice
2305 	 */
2306 	mutex_lock(&root->fs_info->reloc_mutex);
2307 	list_splice_init(&rc->reloc_roots, &reloc_roots);
2308 	mutex_unlock(&root->fs_info->reloc_mutex);
2309 
2310 	while (!list_empty(&reloc_roots)) {
2311 		found = 1;
2312 		reloc_root = list_entry(reloc_roots.next,
2313 					struct btrfs_root, root_list);
2314 
2315 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
2316 			root = read_fs_root(reloc_root->fs_info,
2317 					    reloc_root->root_key.offset);
2318 			BUG_ON(IS_ERR(root));
2319 			BUG_ON(root->reloc_root != reloc_root);
2320 
2321 			ret = merge_reloc_root(rc, root);
2322 			if (ret) {
2323 				__update_reloc_root(reloc_root, 1);
2324 				free_extent_buffer(reloc_root->node);
2325 				free_extent_buffer(reloc_root->commit_root);
2326 				kfree(reloc_root);
2327 				goto out;
2328 			}
2329 		} else {
2330 			list_del_init(&reloc_root->root_list);
2331 		}
2332 
2333 		/*
2334 		 * we keep the old last snapshod transid in rtranid when we
2335 		 * created the relocation tree.
2336 		 */
2337 		last_snap = btrfs_root_rtransid(&reloc_root->root_item);
2338 		otransid = btrfs_root_otransid(&reloc_root->root_item);
2339 		objectid = reloc_root->root_key.offset;
2340 
2341 		ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1);
2342 		if (ret < 0) {
2343 			if (list_empty(&reloc_root->root_list))
2344 				list_add_tail(&reloc_root->root_list,
2345 					      &reloc_roots);
2346 			goto out;
2347 		} else if (!ret) {
2348 			/*
2349 			 * recover the last snapshot tranid to avoid
2350 			 * the space balance break NOCOW.
2351 			 */
2352 			root = read_fs_root(rc->extent_root->fs_info,
2353 					    objectid);
2354 			if (IS_ERR(root))
2355 				continue;
2356 
2357 			if (btrfs_root_refs(&root->root_item) == 0)
2358 				continue;
2359 
2360 			trans = btrfs_join_transaction(root);
2361 			BUG_ON(IS_ERR(trans));
2362 
2363 			/* Check if the fs/file tree was snapshoted or not. */
2364 			if (btrfs_root_last_snapshot(&root->root_item) ==
2365 			    otransid - 1)
2366 				btrfs_set_root_last_snapshot(&root->root_item,
2367 							     last_snap);
2368 
2369 			btrfs_end_transaction(trans, root);
2370 		}
2371 	}
2372 
2373 	if (found) {
2374 		found = 0;
2375 		goto again;
2376 	}
2377 out:
2378 	if (ret) {
2379 		btrfs_std_error(root->fs_info, ret);
2380 		if (!list_empty(&reloc_roots))
2381 			free_reloc_roots(&reloc_roots);
2382 	}
2383 
2384 	BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root));
2385 	return ret;
2386 }
2387 
2388 static void free_block_list(struct rb_root *blocks)
2389 {
2390 	struct tree_block *block;
2391 	struct rb_node *rb_node;
2392 	while ((rb_node = rb_first(blocks))) {
2393 		block = rb_entry(rb_node, struct tree_block, rb_node);
2394 		rb_erase(rb_node, blocks);
2395 		kfree(block);
2396 	}
2397 }
2398 
2399 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans,
2400 				      struct btrfs_root *reloc_root)
2401 {
2402 	struct btrfs_root *root;
2403 
2404 	if (reloc_root->last_trans == trans->transid)
2405 		return 0;
2406 
2407 	root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset);
2408 	BUG_ON(IS_ERR(root));
2409 	BUG_ON(root->reloc_root != reloc_root);
2410 
2411 	return btrfs_record_root_in_trans(trans, root);
2412 }
2413 
2414 static noinline_for_stack
2415 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans,
2416 				     struct reloc_control *rc,
2417 				     struct backref_node *node,
2418 				     struct backref_edge *edges[], int *nr)
2419 {
2420 	struct backref_node *next;
2421 	struct btrfs_root *root;
2422 	int index = 0;
2423 
2424 	next = node;
2425 	while (1) {
2426 		cond_resched();
2427 		next = walk_up_backref(next, edges, &index);
2428 		root = next->root;
2429 		BUG_ON(!root);
2430 		BUG_ON(!root->ref_cows);
2431 
2432 		if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) {
2433 			record_reloc_root_in_trans(trans, root);
2434 			break;
2435 		}
2436 
2437 		btrfs_record_root_in_trans(trans, root);
2438 		root = root->reloc_root;
2439 
2440 		if (next->new_bytenr != root->node->start) {
2441 			BUG_ON(next->new_bytenr);
2442 			BUG_ON(!list_empty(&next->list));
2443 			next->new_bytenr = root->node->start;
2444 			next->root = root;
2445 			list_add_tail(&next->list,
2446 				      &rc->backref_cache.changed);
2447 			__mark_block_processed(rc, next);
2448 			break;
2449 		}
2450 
2451 		WARN_ON(1);
2452 		root = NULL;
2453 		next = walk_down_backref(edges, &index);
2454 		if (!next || next->level <= node->level)
2455 			break;
2456 	}
2457 	if (!root)
2458 		return NULL;
2459 
2460 	*nr = index;
2461 	next = node;
2462 	/* setup backref node path for btrfs_reloc_cow_block */
2463 	while (1) {
2464 		rc->backref_cache.path[next->level] = next;
2465 		if (--index < 0)
2466 			break;
2467 		next = edges[index]->node[UPPER];
2468 	}
2469 	return root;
2470 }
2471 
2472 /*
2473  * select a tree root for relocation. return NULL if the block
2474  * is reference counted. we should use do_relocation() in this
2475  * case. return a tree root pointer if the block isn't reference
2476  * counted. return -ENOENT if the block is root of reloc tree.
2477  */
2478 static noinline_for_stack
2479 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans,
2480 				   struct backref_node *node)
2481 {
2482 	struct backref_node *next;
2483 	struct btrfs_root *root;
2484 	struct btrfs_root *fs_root = NULL;
2485 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2486 	int index = 0;
2487 
2488 	next = node;
2489 	while (1) {
2490 		cond_resched();
2491 		next = walk_up_backref(next, edges, &index);
2492 		root = next->root;
2493 		BUG_ON(!root);
2494 
2495 		/* no other choice for non-references counted tree */
2496 		if (!root->ref_cows)
2497 			return root;
2498 
2499 		if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID)
2500 			fs_root = root;
2501 
2502 		if (next != node)
2503 			return NULL;
2504 
2505 		next = walk_down_backref(edges, &index);
2506 		if (!next || next->level <= node->level)
2507 			break;
2508 	}
2509 
2510 	if (!fs_root)
2511 		return ERR_PTR(-ENOENT);
2512 	return fs_root;
2513 }
2514 
2515 static noinline_for_stack
2516 u64 calcu_metadata_size(struct reloc_control *rc,
2517 			struct backref_node *node, int reserve)
2518 {
2519 	struct backref_node *next = node;
2520 	struct backref_edge *edge;
2521 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2522 	u64 num_bytes = 0;
2523 	int index = 0;
2524 
2525 	BUG_ON(reserve && node->processed);
2526 
2527 	while (next) {
2528 		cond_resched();
2529 		while (1) {
2530 			if (next->processed && (reserve || next != node))
2531 				break;
2532 
2533 			num_bytes += btrfs_level_size(rc->extent_root,
2534 						      next->level);
2535 
2536 			if (list_empty(&next->upper))
2537 				break;
2538 
2539 			edge = list_entry(next->upper.next,
2540 					  struct backref_edge, list[LOWER]);
2541 			edges[index++] = edge;
2542 			next = edge->node[UPPER];
2543 		}
2544 		next = walk_down_backref(edges, &index);
2545 	}
2546 	return num_bytes;
2547 }
2548 
2549 static int reserve_metadata_space(struct btrfs_trans_handle *trans,
2550 				  struct reloc_control *rc,
2551 				  struct backref_node *node)
2552 {
2553 	struct btrfs_root *root = rc->extent_root;
2554 	u64 num_bytes;
2555 	int ret;
2556 
2557 	num_bytes = calcu_metadata_size(rc, node, 1) * 2;
2558 
2559 	trans->block_rsv = rc->block_rsv;
2560 	ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes,
2561 				  BTRFS_RESERVE_FLUSH_ALL);
2562 	if (ret) {
2563 		if (ret == -EAGAIN)
2564 			rc->commit_transaction = 1;
2565 		return ret;
2566 	}
2567 
2568 	return 0;
2569 }
2570 
2571 static void release_metadata_space(struct reloc_control *rc,
2572 				   struct backref_node *node)
2573 {
2574 	u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2;
2575 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes);
2576 }
2577 
2578 /*
2579  * relocate a block tree, and then update pointers in upper level
2580  * blocks that reference the block to point to the new location.
2581  *
2582  * if called by link_to_upper, the block has already been relocated.
2583  * in that case this function just updates pointers.
2584  */
2585 static int do_relocation(struct btrfs_trans_handle *trans,
2586 			 struct reloc_control *rc,
2587 			 struct backref_node *node,
2588 			 struct btrfs_key *key,
2589 			 struct btrfs_path *path, int lowest)
2590 {
2591 	struct backref_node *upper;
2592 	struct backref_edge *edge;
2593 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2594 	struct btrfs_root *root;
2595 	struct extent_buffer *eb;
2596 	u32 blocksize;
2597 	u64 bytenr;
2598 	u64 generation;
2599 	int nr;
2600 	int slot;
2601 	int ret;
2602 	int err = 0;
2603 
2604 	BUG_ON(lowest && node->eb);
2605 
2606 	path->lowest_level = node->level + 1;
2607 	rc->backref_cache.path[node->level] = node;
2608 	list_for_each_entry(edge, &node->upper, list[LOWER]) {
2609 		cond_resched();
2610 
2611 		upper = edge->node[UPPER];
2612 		root = select_reloc_root(trans, rc, upper, edges, &nr);
2613 		BUG_ON(!root);
2614 
2615 		if (upper->eb && !upper->locked) {
2616 			if (!lowest) {
2617 				ret = btrfs_bin_search(upper->eb, key,
2618 						       upper->level, &slot);
2619 				BUG_ON(ret);
2620 				bytenr = btrfs_node_blockptr(upper->eb, slot);
2621 				if (node->eb->start == bytenr)
2622 					goto next;
2623 			}
2624 			drop_node_buffer(upper);
2625 		}
2626 
2627 		if (!upper->eb) {
2628 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2629 			if (ret < 0) {
2630 				err = ret;
2631 				break;
2632 			}
2633 			BUG_ON(ret > 0);
2634 
2635 			if (!upper->eb) {
2636 				upper->eb = path->nodes[upper->level];
2637 				path->nodes[upper->level] = NULL;
2638 			} else {
2639 				BUG_ON(upper->eb != path->nodes[upper->level]);
2640 			}
2641 
2642 			upper->locked = 1;
2643 			path->locks[upper->level] = 0;
2644 
2645 			slot = path->slots[upper->level];
2646 			btrfs_release_path(path);
2647 		} else {
2648 			ret = btrfs_bin_search(upper->eb, key, upper->level,
2649 					       &slot);
2650 			BUG_ON(ret);
2651 		}
2652 
2653 		bytenr = btrfs_node_blockptr(upper->eb, slot);
2654 		if (lowest) {
2655 			BUG_ON(bytenr != node->bytenr);
2656 		} else {
2657 			if (node->eb->start == bytenr)
2658 				goto next;
2659 		}
2660 
2661 		blocksize = btrfs_level_size(root, node->level);
2662 		generation = btrfs_node_ptr_generation(upper->eb, slot);
2663 		eb = read_tree_block(root, bytenr, blocksize, generation);
2664 		if (!eb || !extent_buffer_uptodate(eb)) {
2665 			free_extent_buffer(eb);
2666 			err = -EIO;
2667 			goto next;
2668 		}
2669 		btrfs_tree_lock(eb);
2670 		btrfs_set_lock_blocking(eb);
2671 
2672 		if (!node->eb) {
2673 			ret = btrfs_cow_block(trans, root, eb, upper->eb,
2674 					      slot, &eb);
2675 			btrfs_tree_unlock(eb);
2676 			free_extent_buffer(eb);
2677 			if (ret < 0) {
2678 				err = ret;
2679 				goto next;
2680 			}
2681 			BUG_ON(node->eb != eb);
2682 		} else {
2683 			btrfs_set_node_blockptr(upper->eb, slot,
2684 						node->eb->start);
2685 			btrfs_set_node_ptr_generation(upper->eb, slot,
2686 						      trans->transid);
2687 			btrfs_mark_buffer_dirty(upper->eb);
2688 
2689 			ret = btrfs_inc_extent_ref(trans, root,
2690 						node->eb->start, blocksize,
2691 						upper->eb->start,
2692 						btrfs_header_owner(upper->eb),
2693 						node->level, 0, 1);
2694 			BUG_ON(ret);
2695 
2696 			ret = btrfs_drop_subtree(trans, root, eb, upper->eb);
2697 			BUG_ON(ret);
2698 		}
2699 next:
2700 		if (!upper->pending)
2701 			drop_node_buffer(upper);
2702 		else
2703 			unlock_node_buffer(upper);
2704 		if (err)
2705 			break;
2706 	}
2707 
2708 	if (!err && node->pending) {
2709 		drop_node_buffer(node);
2710 		list_move_tail(&node->list, &rc->backref_cache.changed);
2711 		node->pending = 0;
2712 	}
2713 
2714 	path->lowest_level = 0;
2715 	BUG_ON(err == -ENOSPC);
2716 	return err;
2717 }
2718 
2719 static int link_to_upper(struct btrfs_trans_handle *trans,
2720 			 struct reloc_control *rc,
2721 			 struct backref_node *node,
2722 			 struct btrfs_path *path)
2723 {
2724 	struct btrfs_key key;
2725 
2726 	btrfs_node_key_to_cpu(node->eb, &key, 0);
2727 	return do_relocation(trans, rc, node, &key, path, 0);
2728 }
2729 
2730 static int finish_pending_nodes(struct btrfs_trans_handle *trans,
2731 				struct reloc_control *rc,
2732 				struct btrfs_path *path, int err)
2733 {
2734 	LIST_HEAD(list);
2735 	struct backref_cache *cache = &rc->backref_cache;
2736 	struct backref_node *node;
2737 	int level;
2738 	int ret;
2739 
2740 	for (level = 0; level < BTRFS_MAX_LEVEL; level++) {
2741 		while (!list_empty(&cache->pending[level])) {
2742 			node = list_entry(cache->pending[level].next,
2743 					  struct backref_node, list);
2744 			list_move_tail(&node->list, &list);
2745 			BUG_ON(!node->pending);
2746 
2747 			if (!err) {
2748 				ret = link_to_upper(trans, rc, node, path);
2749 				if (ret < 0)
2750 					err = ret;
2751 			}
2752 		}
2753 		list_splice_init(&list, &cache->pending[level]);
2754 	}
2755 	return err;
2756 }
2757 
2758 static void mark_block_processed(struct reloc_control *rc,
2759 				 u64 bytenr, u32 blocksize)
2760 {
2761 	set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1,
2762 			EXTENT_DIRTY, GFP_NOFS);
2763 }
2764 
2765 static void __mark_block_processed(struct reloc_control *rc,
2766 				   struct backref_node *node)
2767 {
2768 	u32 blocksize;
2769 	if (node->level == 0 ||
2770 	    in_block_group(node->bytenr, rc->block_group)) {
2771 		blocksize = btrfs_level_size(rc->extent_root, node->level);
2772 		mark_block_processed(rc, node->bytenr, blocksize);
2773 	}
2774 	node->processed = 1;
2775 }
2776 
2777 /*
2778  * mark a block and all blocks directly/indirectly reference the block
2779  * as processed.
2780  */
2781 static void update_processed_blocks(struct reloc_control *rc,
2782 				    struct backref_node *node)
2783 {
2784 	struct backref_node *next = node;
2785 	struct backref_edge *edge;
2786 	struct backref_edge *edges[BTRFS_MAX_LEVEL - 1];
2787 	int index = 0;
2788 
2789 	while (next) {
2790 		cond_resched();
2791 		while (1) {
2792 			if (next->processed)
2793 				break;
2794 
2795 			__mark_block_processed(rc, next);
2796 
2797 			if (list_empty(&next->upper))
2798 				break;
2799 
2800 			edge = list_entry(next->upper.next,
2801 					  struct backref_edge, list[LOWER]);
2802 			edges[index++] = edge;
2803 			next = edge->node[UPPER];
2804 		}
2805 		next = walk_down_backref(edges, &index);
2806 	}
2807 }
2808 
2809 static int tree_block_processed(u64 bytenr, u32 blocksize,
2810 				struct reloc_control *rc)
2811 {
2812 	if (test_range_bit(&rc->processed_blocks, bytenr,
2813 			   bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL))
2814 		return 1;
2815 	return 0;
2816 }
2817 
2818 static int get_tree_block_key(struct reloc_control *rc,
2819 			      struct tree_block *block)
2820 {
2821 	struct extent_buffer *eb;
2822 
2823 	BUG_ON(block->key_ready);
2824 	eb = read_tree_block(rc->extent_root, block->bytenr,
2825 			     block->key.objectid, block->key.offset);
2826 	if (!eb || !extent_buffer_uptodate(eb)) {
2827 		free_extent_buffer(eb);
2828 		return -EIO;
2829 	}
2830 	WARN_ON(btrfs_header_level(eb) != block->level);
2831 	if (block->level == 0)
2832 		btrfs_item_key_to_cpu(eb, &block->key, 0);
2833 	else
2834 		btrfs_node_key_to_cpu(eb, &block->key, 0);
2835 	free_extent_buffer(eb);
2836 	block->key_ready = 1;
2837 	return 0;
2838 }
2839 
2840 static int reada_tree_block(struct reloc_control *rc,
2841 			    struct tree_block *block)
2842 {
2843 	BUG_ON(block->key_ready);
2844 	if (block->key.type == BTRFS_METADATA_ITEM_KEY)
2845 		readahead_tree_block(rc->extent_root, block->bytenr,
2846 				     block->key.objectid,
2847 				     rc->extent_root->leafsize);
2848 	else
2849 		readahead_tree_block(rc->extent_root, block->bytenr,
2850 				     block->key.objectid, block->key.offset);
2851 	return 0;
2852 }
2853 
2854 /*
2855  * helper function to relocate a tree block
2856  */
2857 static int relocate_tree_block(struct btrfs_trans_handle *trans,
2858 				struct reloc_control *rc,
2859 				struct backref_node *node,
2860 				struct btrfs_key *key,
2861 				struct btrfs_path *path)
2862 {
2863 	struct btrfs_root *root;
2864 	int release = 0;
2865 	int ret = 0;
2866 
2867 	if (!node)
2868 		return 0;
2869 
2870 	BUG_ON(node->processed);
2871 	root = select_one_root(trans, node);
2872 	if (root == ERR_PTR(-ENOENT)) {
2873 		update_processed_blocks(rc, node);
2874 		goto out;
2875 	}
2876 
2877 	if (!root || root->ref_cows) {
2878 		ret = reserve_metadata_space(trans, rc, node);
2879 		if (ret)
2880 			goto out;
2881 		release = 1;
2882 	}
2883 
2884 	if (root) {
2885 		if (root->ref_cows) {
2886 			BUG_ON(node->new_bytenr);
2887 			BUG_ON(!list_empty(&node->list));
2888 			btrfs_record_root_in_trans(trans, root);
2889 			root = root->reloc_root;
2890 			node->new_bytenr = root->node->start;
2891 			node->root = root;
2892 			list_add_tail(&node->list, &rc->backref_cache.changed);
2893 		} else {
2894 			path->lowest_level = node->level;
2895 			ret = btrfs_search_slot(trans, root, key, path, 0, 1);
2896 			btrfs_release_path(path);
2897 			if (ret > 0)
2898 				ret = 0;
2899 		}
2900 		if (!ret)
2901 			update_processed_blocks(rc, node);
2902 	} else {
2903 		ret = do_relocation(trans, rc, node, key, path, 1);
2904 	}
2905 out:
2906 	if (ret || node->level == 0 || node->cowonly) {
2907 		if (release)
2908 			release_metadata_space(rc, node);
2909 		remove_backref_node(&rc->backref_cache, node);
2910 	}
2911 	return ret;
2912 }
2913 
2914 /*
2915  * relocate a list of blocks
2916  */
2917 static noinline_for_stack
2918 int relocate_tree_blocks(struct btrfs_trans_handle *trans,
2919 			 struct reloc_control *rc, struct rb_root *blocks)
2920 {
2921 	struct backref_node *node;
2922 	struct btrfs_path *path;
2923 	struct tree_block *block;
2924 	struct rb_node *rb_node;
2925 	int ret;
2926 	int err = 0;
2927 
2928 	path = btrfs_alloc_path();
2929 	if (!path) {
2930 		err = -ENOMEM;
2931 		goto out_free_blocks;
2932 	}
2933 
2934 	rb_node = rb_first(blocks);
2935 	while (rb_node) {
2936 		block = rb_entry(rb_node, struct tree_block, rb_node);
2937 		if (!block->key_ready)
2938 			reada_tree_block(rc, block);
2939 		rb_node = rb_next(rb_node);
2940 	}
2941 
2942 	rb_node = rb_first(blocks);
2943 	while (rb_node) {
2944 		block = rb_entry(rb_node, struct tree_block, rb_node);
2945 		if (!block->key_ready) {
2946 			err = get_tree_block_key(rc, block);
2947 			if (err)
2948 				goto out_free_path;
2949 		}
2950 		rb_node = rb_next(rb_node);
2951 	}
2952 
2953 	rb_node = rb_first(blocks);
2954 	while (rb_node) {
2955 		block = rb_entry(rb_node, struct tree_block, rb_node);
2956 
2957 		node = build_backref_tree(rc, &block->key,
2958 					  block->level, block->bytenr);
2959 		if (IS_ERR(node)) {
2960 			err = PTR_ERR(node);
2961 			goto out;
2962 		}
2963 
2964 		ret = relocate_tree_block(trans, rc, node, &block->key,
2965 					  path);
2966 		if (ret < 0) {
2967 			if (ret != -EAGAIN || rb_node == rb_first(blocks))
2968 				err = ret;
2969 			goto out;
2970 		}
2971 		rb_node = rb_next(rb_node);
2972 	}
2973 out:
2974 	err = finish_pending_nodes(trans, rc, path, err);
2975 
2976 out_free_path:
2977 	btrfs_free_path(path);
2978 out_free_blocks:
2979 	free_block_list(blocks);
2980 	return err;
2981 }
2982 
2983 static noinline_for_stack
2984 int prealloc_file_extent_cluster(struct inode *inode,
2985 				 struct file_extent_cluster *cluster)
2986 {
2987 	u64 alloc_hint = 0;
2988 	u64 start;
2989 	u64 end;
2990 	u64 offset = BTRFS_I(inode)->index_cnt;
2991 	u64 num_bytes;
2992 	int nr = 0;
2993 	int ret = 0;
2994 
2995 	BUG_ON(cluster->start != cluster->boundary[0]);
2996 	mutex_lock(&inode->i_mutex);
2997 
2998 	ret = btrfs_check_data_free_space(inode, cluster->end +
2999 					  1 - cluster->start);
3000 	if (ret)
3001 		goto out;
3002 
3003 	while (nr < cluster->nr) {
3004 		start = cluster->boundary[nr] - offset;
3005 		if (nr + 1 < cluster->nr)
3006 			end = cluster->boundary[nr + 1] - 1 - offset;
3007 		else
3008 			end = cluster->end - offset;
3009 
3010 		lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3011 		num_bytes = end + 1 - start;
3012 		ret = btrfs_prealloc_file_range(inode, 0, start,
3013 						num_bytes, num_bytes,
3014 						end + 1, &alloc_hint);
3015 		unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3016 		if (ret)
3017 			break;
3018 		nr++;
3019 	}
3020 	btrfs_free_reserved_data_space(inode, cluster->end +
3021 				       1 - cluster->start);
3022 out:
3023 	mutex_unlock(&inode->i_mutex);
3024 	return ret;
3025 }
3026 
3027 static noinline_for_stack
3028 int setup_extent_mapping(struct inode *inode, u64 start, u64 end,
3029 			 u64 block_start)
3030 {
3031 	struct btrfs_root *root = BTRFS_I(inode)->root;
3032 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3033 	struct extent_map *em;
3034 	int ret = 0;
3035 
3036 	em = alloc_extent_map();
3037 	if (!em)
3038 		return -ENOMEM;
3039 
3040 	em->start = start;
3041 	em->len = end + 1 - start;
3042 	em->block_len = em->len;
3043 	em->block_start = block_start;
3044 	em->bdev = root->fs_info->fs_devices->latest_bdev;
3045 	set_bit(EXTENT_FLAG_PINNED, &em->flags);
3046 
3047 	lock_extent(&BTRFS_I(inode)->io_tree, start, end);
3048 	while (1) {
3049 		write_lock(&em_tree->lock);
3050 		ret = add_extent_mapping(em_tree, em, 0);
3051 		write_unlock(&em_tree->lock);
3052 		if (ret != -EEXIST) {
3053 			free_extent_map(em);
3054 			break;
3055 		}
3056 		btrfs_drop_extent_cache(inode, start, end, 0);
3057 	}
3058 	unlock_extent(&BTRFS_I(inode)->io_tree, start, end);
3059 	return ret;
3060 }
3061 
3062 static int relocate_file_extent_cluster(struct inode *inode,
3063 					struct file_extent_cluster *cluster)
3064 {
3065 	u64 page_start;
3066 	u64 page_end;
3067 	u64 offset = BTRFS_I(inode)->index_cnt;
3068 	unsigned long index;
3069 	unsigned long last_index;
3070 	struct page *page;
3071 	struct file_ra_state *ra;
3072 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
3073 	int nr = 0;
3074 	int ret = 0;
3075 
3076 	if (!cluster->nr)
3077 		return 0;
3078 
3079 	ra = kzalloc(sizeof(*ra), GFP_NOFS);
3080 	if (!ra)
3081 		return -ENOMEM;
3082 
3083 	ret = prealloc_file_extent_cluster(inode, cluster);
3084 	if (ret)
3085 		goto out;
3086 
3087 	file_ra_state_init(ra, inode->i_mapping);
3088 
3089 	ret = setup_extent_mapping(inode, cluster->start - offset,
3090 				   cluster->end - offset, cluster->start);
3091 	if (ret)
3092 		goto out;
3093 
3094 	index = (cluster->start - offset) >> PAGE_CACHE_SHIFT;
3095 	last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT;
3096 	while (index <= last_index) {
3097 		ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE);
3098 		if (ret)
3099 			goto out;
3100 
3101 		page = find_lock_page(inode->i_mapping, index);
3102 		if (!page) {
3103 			page_cache_sync_readahead(inode->i_mapping,
3104 						  ra, NULL, index,
3105 						  last_index + 1 - index);
3106 			page = find_or_create_page(inode->i_mapping, index,
3107 						   mask);
3108 			if (!page) {
3109 				btrfs_delalloc_release_metadata(inode,
3110 							PAGE_CACHE_SIZE);
3111 				ret = -ENOMEM;
3112 				goto out;
3113 			}
3114 		}
3115 
3116 		if (PageReadahead(page)) {
3117 			page_cache_async_readahead(inode->i_mapping,
3118 						   ra, NULL, page, index,
3119 						   last_index + 1 - index);
3120 		}
3121 
3122 		if (!PageUptodate(page)) {
3123 			btrfs_readpage(NULL, page);
3124 			lock_page(page);
3125 			if (!PageUptodate(page)) {
3126 				unlock_page(page);
3127 				page_cache_release(page);
3128 				btrfs_delalloc_release_metadata(inode,
3129 							PAGE_CACHE_SIZE);
3130 				ret = -EIO;
3131 				goto out;
3132 			}
3133 		}
3134 
3135 		page_start = page_offset(page);
3136 		page_end = page_start + PAGE_CACHE_SIZE - 1;
3137 
3138 		lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end);
3139 
3140 		set_page_extent_mapped(page);
3141 
3142 		if (nr < cluster->nr &&
3143 		    page_start + offset == cluster->boundary[nr]) {
3144 			set_extent_bits(&BTRFS_I(inode)->io_tree,
3145 					page_start, page_end,
3146 					EXTENT_BOUNDARY, GFP_NOFS);
3147 			nr++;
3148 		}
3149 
3150 		btrfs_set_extent_delalloc(inode, page_start, page_end, NULL);
3151 		set_page_dirty(page);
3152 
3153 		unlock_extent(&BTRFS_I(inode)->io_tree,
3154 			      page_start, page_end);
3155 		unlock_page(page);
3156 		page_cache_release(page);
3157 
3158 		index++;
3159 		balance_dirty_pages_ratelimited(inode->i_mapping);
3160 		btrfs_throttle(BTRFS_I(inode)->root);
3161 	}
3162 	WARN_ON(nr != cluster->nr);
3163 out:
3164 	kfree(ra);
3165 	return ret;
3166 }
3167 
3168 static noinline_for_stack
3169 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key,
3170 			 struct file_extent_cluster *cluster)
3171 {
3172 	int ret;
3173 
3174 	if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) {
3175 		ret = relocate_file_extent_cluster(inode, cluster);
3176 		if (ret)
3177 			return ret;
3178 		cluster->nr = 0;
3179 	}
3180 
3181 	if (!cluster->nr)
3182 		cluster->start = extent_key->objectid;
3183 	else
3184 		BUG_ON(cluster->nr >= MAX_EXTENTS);
3185 	cluster->end = extent_key->objectid + extent_key->offset - 1;
3186 	cluster->boundary[cluster->nr] = extent_key->objectid;
3187 	cluster->nr++;
3188 
3189 	if (cluster->nr >= MAX_EXTENTS) {
3190 		ret = relocate_file_extent_cluster(inode, cluster);
3191 		if (ret)
3192 			return ret;
3193 		cluster->nr = 0;
3194 	}
3195 	return 0;
3196 }
3197 
3198 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3199 static int get_ref_objectid_v0(struct reloc_control *rc,
3200 			       struct btrfs_path *path,
3201 			       struct btrfs_key *extent_key,
3202 			       u64 *ref_objectid, int *path_change)
3203 {
3204 	struct btrfs_key key;
3205 	struct extent_buffer *leaf;
3206 	struct btrfs_extent_ref_v0 *ref0;
3207 	int ret;
3208 	int slot;
3209 
3210 	leaf = path->nodes[0];
3211 	slot = path->slots[0];
3212 	while (1) {
3213 		if (slot >= btrfs_header_nritems(leaf)) {
3214 			ret = btrfs_next_leaf(rc->extent_root, path);
3215 			if (ret < 0)
3216 				return ret;
3217 			BUG_ON(ret > 0);
3218 			leaf = path->nodes[0];
3219 			slot = path->slots[0];
3220 			if (path_change)
3221 				*path_change = 1;
3222 		}
3223 		btrfs_item_key_to_cpu(leaf, &key, slot);
3224 		if (key.objectid != extent_key->objectid)
3225 			return -ENOENT;
3226 
3227 		if (key.type != BTRFS_EXTENT_REF_V0_KEY) {
3228 			slot++;
3229 			continue;
3230 		}
3231 		ref0 = btrfs_item_ptr(leaf, slot,
3232 				struct btrfs_extent_ref_v0);
3233 		*ref_objectid = btrfs_ref_objectid_v0(leaf, ref0);
3234 		break;
3235 	}
3236 	return 0;
3237 }
3238 #endif
3239 
3240 /*
3241  * helper to add a tree block to the list.
3242  * the major work is getting the generation and level of the block
3243  */
3244 static int add_tree_block(struct reloc_control *rc,
3245 			  struct btrfs_key *extent_key,
3246 			  struct btrfs_path *path,
3247 			  struct rb_root *blocks)
3248 {
3249 	struct extent_buffer *eb;
3250 	struct btrfs_extent_item *ei;
3251 	struct btrfs_tree_block_info *bi;
3252 	struct tree_block *block;
3253 	struct rb_node *rb_node;
3254 	u32 item_size;
3255 	int level = -1;
3256 	int generation;
3257 
3258 	eb =  path->nodes[0];
3259 	item_size = btrfs_item_size_nr(eb, path->slots[0]);
3260 
3261 	if (extent_key->type == BTRFS_METADATA_ITEM_KEY ||
3262 	    item_size >= sizeof(*ei) + sizeof(*bi)) {
3263 		ei = btrfs_item_ptr(eb, path->slots[0],
3264 				struct btrfs_extent_item);
3265 		if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) {
3266 			bi = (struct btrfs_tree_block_info *)(ei + 1);
3267 			level = btrfs_tree_block_level(eb, bi);
3268 		} else {
3269 			level = (int)extent_key->offset;
3270 		}
3271 		generation = btrfs_extent_generation(eb, ei);
3272 	} else {
3273 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3274 		u64 ref_owner;
3275 		int ret;
3276 
3277 		BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0));
3278 		ret = get_ref_objectid_v0(rc, path, extent_key,
3279 					  &ref_owner, NULL);
3280 		if (ret < 0)
3281 			return ret;
3282 		BUG_ON(ref_owner >= BTRFS_MAX_LEVEL);
3283 		level = (int)ref_owner;
3284 		/* FIXME: get real generation */
3285 		generation = 0;
3286 #else
3287 		BUG();
3288 #endif
3289 	}
3290 
3291 	btrfs_release_path(path);
3292 
3293 	BUG_ON(level == -1);
3294 
3295 	block = kmalloc(sizeof(*block), GFP_NOFS);
3296 	if (!block)
3297 		return -ENOMEM;
3298 
3299 	block->bytenr = extent_key->objectid;
3300 	block->key.objectid = rc->extent_root->leafsize;
3301 	block->key.offset = generation;
3302 	block->level = level;
3303 	block->key_ready = 0;
3304 
3305 	rb_node = tree_insert(blocks, block->bytenr, &block->rb_node);
3306 	if (rb_node)
3307 		backref_tree_panic(rb_node, -EEXIST, block->bytenr);
3308 
3309 	return 0;
3310 }
3311 
3312 /*
3313  * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY
3314  */
3315 static int __add_tree_block(struct reloc_control *rc,
3316 			    u64 bytenr, u32 blocksize,
3317 			    struct rb_root *blocks)
3318 {
3319 	struct btrfs_path *path;
3320 	struct btrfs_key key;
3321 	int ret;
3322 	bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info,
3323 					SKINNY_METADATA);
3324 
3325 	if (tree_block_processed(bytenr, blocksize, rc))
3326 		return 0;
3327 
3328 	if (tree_search(blocks, bytenr))
3329 		return 0;
3330 
3331 	path = btrfs_alloc_path();
3332 	if (!path)
3333 		return -ENOMEM;
3334 again:
3335 	key.objectid = bytenr;
3336 	if (skinny) {
3337 		key.type = BTRFS_METADATA_ITEM_KEY;
3338 		key.offset = (u64)-1;
3339 	} else {
3340 		key.type = BTRFS_EXTENT_ITEM_KEY;
3341 		key.offset = blocksize;
3342 	}
3343 
3344 	path->search_commit_root = 1;
3345 	path->skip_locking = 1;
3346 	ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0);
3347 	if (ret < 0)
3348 		goto out;
3349 
3350 	if (ret > 0 && skinny) {
3351 		if (path->slots[0]) {
3352 			path->slots[0]--;
3353 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3354 					      path->slots[0]);
3355 			if (key.objectid == bytenr &&
3356 			    (key.type == BTRFS_METADATA_ITEM_KEY ||
3357 			     (key.type == BTRFS_EXTENT_ITEM_KEY &&
3358 			      key.offset == blocksize)))
3359 				ret = 0;
3360 		}
3361 
3362 		if (ret) {
3363 			skinny = false;
3364 			btrfs_release_path(path);
3365 			goto again;
3366 		}
3367 	}
3368 	BUG_ON(ret);
3369 
3370 	ret = add_tree_block(rc, &key, path, blocks);
3371 out:
3372 	btrfs_free_path(path);
3373 	return ret;
3374 }
3375 
3376 /*
3377  * helper to check if the block use full backrefs for pointers in it
3378  */
3379 static int block_use_full_backref(struct reloc_control *rc,
3380 				  struct extent_buffer *eb)
3381 {
3382 	u64 flags;
3383 	int ret;
3384 
3385 	if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) ||
3386 	    btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV)
3387 		return 1;
3388 
3389 	ret = btrfs_lookup_extent_info(NULL, rc->extent_root,
3390 				       eb->start, btrfs_header_level(eb), 1,
3391 				       NULL, &flags);
3392 	BUG_ON(ret);
3393 
3394 	if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)
3395 		ret = 1;
3396 	else
3397 		ret = 0;
3398 	return ret;
3399 }
3400 
3401 static int delete_block_group_cache(struct btrfs_fs_info *fs_info,
3402 				    struct inode *inode, u64 ino)
3403 {
3404 	struct btrfs_key key;
3405 	struct btrfs_path *path;
3406 	struct btrfs_root *root = fs_info->tree_root;
3407 	struct btrfs_trans_handle *trans;
3408 	int ret = 0;
3409 
3410 	if (inode)
3411 		goto truncate;
3412 
3413 	key.objectid = ino;
3414 	key.type = BTRFS_INODE_ITEM_KEY;
3415 	key.offset = 0;
3416 
3417 	inode = btrfs_iget(fs_info->sb, &key, root, NULL);
3418 	if (IS_ERR(inode) || is_bad_inode(inode)) {
3419 		if (!IS_ERR(inode))
3420 			iput(inode);
3421 		return -ENOENT;
3422 	}
3423 
3424 truncate:
3425 	ret = btrfs_check_trunc_cache_free_space(root,
3426 						 &fs_info->global_block_rsv);
3427 	if (ret)
3428 		goto out;
3429 
3430 	path = btrfs_alloc_path();
3431 	if (!path) {
3432 		ret = -ENOMEM;
3433 		goto out;
3434 	}
3435 
3436 	trans = btrfs_join_transaction(root);
3437 	if (IS_ERR(trans)) {
3438 		btrfs_free_path(path);
3439 		ret = PTR_ERR(trans);
3440 		goto out;
3441 	}
3442 
3443 	ret = btrfs_truncate_free_space_cache(root, trans, path, inode);
3444 
3445 	btrfs_free_path(path);
3446 	btrfs_end_transaction(trans, root);
3447 	btrfs_btree_balance_dirty(root);
3448 out:
3449 	iput(inode);
3450 	return ret;
3451 }
3452 
3453 /*
3454  * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY
3455  * this function scans fs tree to find blocks reference the data extent
3456  */
3457 static int find_data_references(struct reloc_control *rc,
3458 				struct btrfs_key *extent_key,
3459 				struct extent_buffer *leaf,
3460 				struct btrfs_extent_data_ref *ref,
3461 				struct rb_root *blocks)
3462 {
3463 	struct btrfs_path *path;
3464 	struct tree_block *block;
3465 	struct btrfs_root *root;
3466 	struct btrfs_file_extent_item *fi;
3467 	struct rb_node *rb_node;
3468 	struct btrfs_key key;
3469 	u64 ref_root;
3470 	u64 ref_objectid;
3471 	u64 ref_offset;
3472 	u32 ref_count;
3473 	u32 nritems;
3474 	int err = 0;
3475 	int added = 0;
3476 	int counted;
3477 	int ret;
3478 
3479 	ref_root = btrfs_extent_data_ref_root(leaf, ref);
3480 	ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref);
3481 	ref_offset = btrfs_extent_data_ref_offset(leaf, ref);
3482 	ref_count = btrfs_extent_data_ref_count(leaf, ref);
3483 
3484 	/*
3485 	 * This is an extent belonging to the free space cache, lets just delete
3486 	 * it and redo the search.
3487 	 */
3488 	if (ref_root == BTRFS_ROOT_TREE_OBJECTID) {
3489 		ret = delete_block_group_cache(rc->extent_root->fs_info,
3490 					       NULL, ref_objectid);
3491 		if (ret != -ENOENT)
3492 			return ret;
3493 		ret = 0;
3494 	}
3495 
3496 	path = btrfs_alloc_path();
3497 	if (!path)
3498 		return -ENOMEM;
3499 	path->reada = 1;
3500 
3501 	root = read_fs_root(rc->extent_root->fs_info, ref_root);
3502 	if (IS_ERR(root)) {
3503 		err = PTR_ERR(root);
3504 		goto out;
3505 	}
3506 
3507 	key.objectid = ref_objectid;
3508 	key.type = BTRFS_EXTENT_DATA_KEY;
3509 	if (ref_offset > ((u64)-1 << 32))
3510 		key.offset = 0;
3511 	else
3512 		key.offset = ref_offset;
3513 
3514 	path->search_commit_root = 1;
3515 	path->skip_locking = 1;
3516 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
3517 	if (ret < 0) {
3518 		err = ret;
3519 		goto out;
3520 	}
3521 
3522 	leaf = path->nodes[0];
3523 	nritems = btrfs_header_nritems(leaf);
3524 	/*
3525 	 * the references in tree blocks that use full backrefs
3526 	 * are not counted in
3527 	 */
3528 	if (block_use_full_backref(rc, leaf))
3529 		counted = 0;
3530 	else
3531 		counted = 1;
3532 	rb_node = tree_search(blocks, leaf->start);
3533 	if (rb_node) {
3534 		if (counted)
3535 			added = 1;
3536 		else
3537 			path->slots[0] = nritems;
3538 	}
3539 
3540 	while (ref_count > 0) {
3541 		while (path->slots[0] >= nritems) {
3542 			ret = btrfs_next_leaf(root, path);
3543 			if (ret < 0) {
3544 				err = ret;
3545 				goto out;
3546 			}
3547 			if (ret > 0) {
3548 				WARN_ON(1);
3549 				goto out;
3550 			}
3551 
3552 			leaf = path->nodes[0];
3553 			nritems = btrfs_header_nritems(leaf);
3554 			added = 0;
3555 
3556 			if (block_use_full_backref(rc, leaf))
3557 				counted = 0;
3558 			else
3559 				counted = 1;
3560 			rb_node = tree_search(blocks, leaf->start);
3561 			if (rb_node) {
3562 				if (counted)
3563 					added = 1;
3564 				else
3565 					path->slots[0] = nritems;
3566 			}
3567 		}
3568 
3569 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3570 		if (key.objectid != ref_objectid ||
3571 		    key.type != BTRFS_EXTENT_DATA_KEY) {
3572 			WARN_ON(1);
3573 			break;
3574 		}
3575 
3576 		fi = btrfs_item_ptr(leaf, path->slots[0],
3577 				    struct btrfs_file_extent_item);
3578 
3579 		if (btrfs_file_extent_type(leaf, fi) ==
3580 		    BTRFS_FILE_EXTENT_INLINE)
3581 			goto next;
3582 
3583 		if (btrfs_file_extent_disk_bytenr(leaf, fi) !=
3584 		    extent_key->objectid)
3585 			goto next;
3586 
3587 		key.offset -= btrfs_file_extent_offset(leaf, fi);
3588 		if (key.offset != ref_offset)
3589 			goto next;
3590 
3591 		if (counted)
3592 			ref_count--;
3593 		if (added)
3594 			goto next;
3595 
3596 		if (!tree_block_processed(leaf->start, leaf->len, rc)) {
3597 			block = kmalloc(sizeof(*block), GFP_NOFS);
3598 			if (!block) {
3599 				err = -ENOMEM;
3600 				break;
3601 			}
3602 			block->bytenr = leaf->start;
3603 			btrfs_item_key_to_cpu(leaf, &block->key, 0);
3604 			block->level = 0;
3605 			block->key_ready = 1;
3606 			rb_node = tree_insert(blocks, block->bytenr,
3607 					      &block->rb_node);
3608 			if (rb_node)
3609 				backref_tree_panic(rb_node, -EEXIST,
3610 						   block->bytenr);
3611 		}
3612 		if (counted)
3613 			added = 1;
3614 		else
3615 			path->slots[0] = nritems;
3616 next:
3617 		path->slots[0]++;
3618 
3619 	}
3620 out:
3621 	btrfs_free_path(path);
3622 	return err;
3623 }
3624 
3625 /*
3626  * helper to find all tree blocks that reference a given data extent
3627  */
3628 static noinline_for_stack
3629 int add_data_references(struct reloc_control *rc,
3630 			struct btrfs_key *extent_key,
3631 			struct btrfs_path *path,
3632 			struct rb_root *blocks)
3633 {
3634 	struct btrfs_key key;
3635 	struct extent_buffer *eb;
3636 	struct btrfs_extent_data_ref *dref;
3637 	struct btrfs_extent_inline_ref *iref;
3638 	unsigned long ptr;
3639 	unsigned long end;
3640 	u32 blocksize = btrfs_level_size(rc->extent_root, 0);
3641 	int ret = 0;
3642 	int err = 0;
3643 
3644 	eb = path->nodes[0];
3645 	ptr = btrfs_item_ptr_offset(eb, path->slots[0]);
3646 	end = ptr + btrfs_item_size_nr(eb, path->slots[0]);
3647 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3648 	if (ptr + sizeof(struct btrfs_extent_item_v0) == end)
3649 		ptr = end;
3650 	else
3651 #endif
3652 		ptr += sizeof(struct btrfs_extent_item);
3653 
3654 	while (ptr < end) {
3655 		iref = (struct btrfs_extent_inline_ref *)ptr;
3656 		key.type = btrfs_extent_inline_ref_type(eb, iref);
3657 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3658 			key.offset = btrfs_extent_inline_ref_offset(eb, iref);
3659 			ret = __add_tree_block(rc, key.offset, blocksize,
3660 					       blocks);
3661 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3662 			dref = (struct btrfs_extent_data_ref *)(&iref->offset);
3663 			ret = find_data_references(rc, extent_key,
3664 						   eb, dref, blocks);
3665 		} else {
3666 			BUG();
3667 		}
3668 		if (ret) {
3669 			err = ret;
3670 			goto out;
3671 		}
3672 		ptr += btrfs_extent_inline_ref_size(key.type);
3673 	}
3674 	WARN_ON(ptr > end);
3675 
3676 	while (1) {
3677 		cond_resched();
3678 		eb = path->nodes[0];
3679 		if (path->slots[0] >= btrfs_header_nritems(eb)) {
3680 			ret = btrfs_next_leaf(rc->extent_root, path);
3681 			if (ret < 0) {
3682 				err = ret;
3683 				break;
3684 			}
3685 			if (ret > 0)
3686 				break;
3687 			eb = path->nodes[0];
3688 		}
3689 
3690 		btrfs_item_key_to_cpu(eb, &key, path->slots[0]);
3691 		if (key.objectid != extent_key->objectid)
3692 			break;
3693 
3694 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3695 		if (key.type == BTRFS_SHARED_DATA_REF_KEY ||
3696 		    key.type == BTRFS_EXTENT_REF_V0_KEY) {
3697 #else
3698 		BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY);
3699 		if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
3700 #endif
3701 			ret = __add_tree_block(rc, key.offset, blocksize,
3702 					       blocks);
3703 		} else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
3704 			dref = btrfs_item_ptr(eb, path->slots[0],
3705 					      struct btrfs_extent_data_ref);
3706 			ret = find_data_references(rc, extent_key,
3707 						   eb, dref, blocks);
3708 		} else {
3709 			ret = 0;
3710 		}
3711 		if (ret) {
3712 			err = ret;
3713 			break;
3714 		}
3715 		path->slots[0]++;
3716 	}
3717 out:
3718 	btrfs_release_path(path);
3719 	if (err)
3720 		free_block_list(blocks);
3721 	return err;
3722 }
3723 
3724 /*
3725  * helper to find next unprocessed extent
3726  */
3727 static noinline_for_stack
3728 int find_next_extent(struct btrfs_trans_handle *trans,
3729 		     struct reloc_control *rc, struct btrfs_path *path,
3730 		     struct btrfs_key *extent_key)
3731 {
3732 	struct btrfs_key key;
3733 	struct extent_buffer *leaf;
3734 	u64 start, end, last;
3735 	int ret;
3736 
3737 	last = rc->block_group->key.objectid + rc->block_group->key.offset;
3738 	while (1) {
3739 		cond_resched();
3740 		if (rc->search_start >= last) {
3741 			ret = 1;
3742 			break;
3743 		}
3744 
3745 		key.objectid = rc->search_start;
3746 		key.type = BTRFS_EXTENT_ITEM_KEY;
3747 		key.offset = 0;
3748 
3749 		path->search_commit_root = 1;
3750 		path->skip_locking = 1;
3751 		ret = btrfs_search_slot(NULL, rc->extent_root, &key, path,
3752 					0, 0);
3753 		if (ret < 0)
3754 			break;
3755 next:
3756 		leaf = path->nodes[0];
3757 		if (path->slots[0] >= btrfs_header_nritems(leaf)) {
3758 			ret = btrfs_next_leaf(rc->extent_root, path);
3759 			if (ret != 0)
3760 				break;
3761 			leaf = path->nodes[0];
3762 		}
3763 
3764 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
3765 		if (key.objectid >= last) {
3766 			ret = 1;
3767 			break;
3768 		}
3769 
3770 		if (key.type != BTRFS_EXTENT_ITEM_KEY &&
3771 		    key.type != BTRFS_METADATA_ITEM_KEY) {
3772 			path->slots[0]++;
3773 			goto next;
3774 		}
3775 
3776 		if (key.type == BTRFS_EXTENT_ITEM_KEY &&
3777 		    key.objectid + key.offset <= rc->search_start) {
3778 			path->slots[0]++;
3779 			goto next;
3780 		}
3781 
3782 		if (key.type == BTRFS_METADATA_ITEM_KEY &&
3783 		    key.objectid + rc->extent_root->leafsize <=
3784 		    rc->search_start) {
3785 			path->slots[0]++;
3786 			goto next;
3787 		}
3788 
3789 		ret = find_first_extent_bit(&rc->processed_blocks,
3790 					    key.objectid, &start, &end,
3791 					    EXTENT_DIRTY, NULL);
3792 
3793 		if (ret == 0 && start <= key.objectid) {
3794 			btrfs_release_path(path);
3795 			rc->search_start = end + 1;
3796 		} else {
3797 			if (key.type == BTRFS_EXTENT_ITEM_KEY)
3798 				rc->search_start = key.objectid + key.offset;
3799 			else
3800 				rc->search_start = key.objectid +
3801 					rc->extent_root->leafsize;
3802 			memcpy(extent_key, &key, sizeof(key));
3803 			return 0;
3804 		}
3805 	}
3806 	btrfs_release_path(path);
3807 	return ret;
3808 }
3809 
3810 static void set_reloc_control(struct reloc_control *rc)
3811 {
3812 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3813 
3814 	mutex_lock(&fs_info->reloc_mutex);
3815 	fs_info->reloc_ctl = rc;
3816 	mutex_unlock(&fs_info->reloc_mutex);
3817 }
3818 
3819 static void unset_reloc_control(struct reloc_control *rc)
3820 {
3821 	struct btrfs_fs_info *fs_info = rc->extent_root->fs_info;
3822 
3823 	mutex_lock(&fs_info->reloc_mutex);
3824 	fs_info->reloc_ctl = NULL;
3825 	mutex_unlock(&fs_info->reloc_mutex);
3826 }
3827 
3828 static int check_extent_flags(u64 flags)
3829 {
3830 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3831 	    (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3832 		return 1;
3833 	if (!(flags & BTRFS_EXTENT_FLAG_DATA) &&
3834 	    !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK))
3835 		return 1;
3836 	if ((flags & BTRFS_EXTENT_FLAG_DATA) &&
3837 	    (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
3838 		return 1;
3839 	return 0;
3840 }
3841 
3842 static noinline_for_stack
3843 int prepare_to_relocate(struct reloc_control *rc)
3844 {
3845 	struct btrfs_trans_handle *trans;
3846 	int ret;
3847 
3848 	rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root,
3849 					      BTRFS_BLOCK_RSV_TEMP);
3850 	if (!rc->block_rsv)
3851 		return -ENOMEM;
3852 
3853 	/*
3854 	 * reserve some space for creating reloc trees.
3855 	 * btrfs_init_reloc_root will use them when there
3856 	 * is no reservation in transaction handle.
3857 	 */
3858 	ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv,
3859 				  rc->extent_root->nodesize * 256,
3860 				  BTRFS_RESERVE_FLUSH_ALL);
3861 	if (ret)
3862 		return ret;
3863 
3864 	memset(&rc->cluster, 0, sizeof(rc->cluster));
3865 	rc->search_start = rc->block_group->key.objectid;
3866 	rc->extents_found = 0;
3867 	rc->nodes_relocated = 0;
3868 	rc->merging_rsv_size = 0;
3869 
3870 	rc->create_reloc_tree = 1;
3871 	set_reloc_control(rc);
3872 
3873 	trans = btrfs_join_transaction(rc->extent_root);
3874 	if (IS_ERR(trans)) {
3875 		unset_reloc_control(rc);
3876 		/*
3877 		 * extent tree is not a ref_cow tree and has no reloc_root to
3878 		 * cleanup.  And callers are responsible to free the above
3879 		 * block rsv.
3880 		 */
3881 		return PTR_ERR(trans);
3882 	}
3883 	btrfs_commit_transaction(trans, rc->extent_root);
3884 	return 0;
3885 }
3886 
3887 static noinline_for_stack int relocate_block_group(struct reloc_control *rc)
3888 {
3889 	struct rb_root blocks = RB_ROOT;
3890 	struct btrfs_key key;
3891 	struct btrfs_trans_handle *trans = NULL;
3892 	struct btrfs_path *path;
3893 	struct btrfs_extent_item *ei;
3894 	u64 flags;
3895 	u32 item_size;
3896 	int ret;
3897 	int err = 0;
3898 	int progress = 0;
3899 
3900 	path = btrfs_alloc_path();
3901 	if (!path)
3902 		return -ENOMEM;
3903 	path->reada = 1;
3904 
3905 	ret = prepare_to_relocate(rc);
3906 	if (ret) {
3907 		err = ret;
3908 		goto out_free;
3909 	}
3910 
3911 	while (1) {
3912 		progress++;
3913 		trans = btrfs_start_transaction(rc->extent_root, 0);
3914 		if (IS_ERR(trans)) {
3915 			err = PTR_ERR(trans);
3916 			trans = NULL;
3917 			break;
3918 		}
3919 restart:
3920 		if (update_backref_cache(trans, &rc->backref_cache)) {
3921 			btrfs_end_transaction(trans, rc->extent_root);
3922 			continue;
3923 		}
3924 
3925 		ret = find_next_extent(trans, rc, path, &key);
3926 		if (ret < 0)
3927 			err = ret;
3928 		if (ret != 0)
3929 			break;
3930 
3931 		rc->extents_found++;
3932 
3933 		ei = btrfs_item_ptr(path->nodes[0], path->slots[0],
3934 				    struct btrfs_extent_item);
3935 		item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]);
3936 		if (item_size >= sizeof(*ei)) {
3937 			flags = btrfs_extent_flags(path->nodes[0], ei);
3938 			ret = check_extent_flags(flags);
3939 			BUG_ON(ret);
3940 
3941 		} else {
3942 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
3943 			u64 ref_owner;
3944 			int path_change = 0;
3945 
3946 			BUG_ON(item_size !=
3947 			       sizeof(struct btrfs_extent_item_v0));
3948 			ret = get_ref_objectid_v0(rc, path, &key, &ref_owner,
3949 						  &path_change);
3950 			if (ref_owner < BTRFS_FIRST_FREE_OBJECTID)
3951 				flags = BTRFS_EXTENT_FLAG_TREE_BLOCK;
3952 			else
3953 				flags = BTRFS_EXTENT_FLAG_DATA;
3954 
3955 			if (path_change) {
3956 				btrfs_release_path(path);
3957 
3958 				path->search_commit_root = 1;
3959 				path->skip_locking = 1;
3960 				ret = btrfs_search_slot(NULL, rc->extent_root,
3961 							&key, path, 0, 0);
3962 				if (ret < 0) {
3963 					err = ret;
3964 					break;
3965 				}
3966 				BUG_ON(ret > 0);
3967 			}
3968 #else
3969 			BUG();
3970 #endif
3971 		}
3972 
3973 		if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
3974 			ret = add_tree_block(rc, &key, path, &blocks);
3975 		} else if (rc->stage == UPDATE_DATA_PTRS &&
3976 			   (flags & BTRFS_EXTENT_FLAG_DATA)) {
3977 			ret = add_data_references(rc, &key, path, &blocks);
3978 		} else {
3979 			btrfs_release_path(path);
3980 			ret = 0;
3981 		}
3982 		if (ret < 0) {
3983 			err = ret;
3984 			break;
3985 		}
3986 
3987 		if (!RB_EMPTY_ROOT(&blocks)) {
3988 			ret = relocate_tree_blocks(trans, rc, &blocks);
3989 			if (ret < 0) {
3990 				if (ret != -EAGAIN) {
3991 					err = ret;
3992 					break;
3993 				}
3994 				rc->extents_found--;
3995 				rc->search_start = key.objectid;
3996 			}
3997 		}
3998 
3999 		ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5);
4000 		if (ret < 0) {
4001 			if (ret != -ENOSPC) {
4002 				err = ret;
4003 				WARN_ON(1);
4004 				break;
4005 			}
4006 			rc->commit_transaction = 1;
4007 		}
4008 
4009 		if (rc->commit_transaction) {
4010 			rc->commit_transaction = 0;
4011 			ret = btrfs_commit_transaction(trans, rc->extent_root);
4012 			BUG_ON(ret);
4013 		} else {
4014 			btrfs_end_transaction_throttle(trans, rc->extent_root);
4015 			btrfs_btree_balance_dirty(rc->extent_root);
4016 		}
4017 		trans = NULL;
4018 
4019 		if (rc->stage == MOVE_DATA_EXTENTS &&
4020 		    (flags & BTRFS_EXTENT_FLAG_DATA)) {
4021 			rc->found_file_extent = 1;
4022 			ret = relocate_data_extent(rc->data_inode,
4023 						   &key, &rc->cluster);
4024 			if (ret < 0) {
4025 				err = ret;
4026 				break;
4027 			}
4028 		}
4029 	}
4030 	if (trans && progress && err == -ENOSPC) {
4031 		ret = btrfs_force_chunk_alloc(trans, rc->extent_root,
4032 					      rc->block_group->flags);
4033 		if (ret == 0) {
4034 			err = 0;
4035 			progress = 0;
4036 			goto restart;
4037 		}
4038 	}
4039 
4040 	btrfs_release_path(path);
4041 	clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY,
4042 			  GFP_NOFS);
4043 
4044 	if (trans) {
4045 		btrfs_end_transaction_throttle(trans, rc->extent_root);
4046 		btrfs_btree_balance_dirty(rc->extent_root);
4047 	}
4048 
4049 	if (!err) {
4050 		ret = relocate_file_extent_cluster(rc->data_inode,
4051 						   &rc->cluster);
4052 		if (ret < 0)
4053 			err = ret;
4054 	}
4055 
4056 	rc->create_reloc_tree = 0;
4057 	set_reloc_control(rc);
4058 
4059 	backref_cache_cleanup(&rc->backref_cache);
4060 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4061 
4062 	err = prepare_to_merge(rc, err);
4063 
4064 	merge_reloc_roots(rc);
4065 
4066 	rc->merge_reloc_tree = 0;
4067 	unset_reloc_control(rc);
4068 	btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1);
4069 
4070 	/* get rid of pinned extents */
4071 	trans = btrfs_join_transaction(rc->extent_root);
4072 	if (IS_ERR(trans))
4073 		err = PTR_ERR(trans);
4074 	else
4075 		btrfs_commit_transaction(trans, rc->extent_root);
4076 out_free:
4077 	btrfs_free_block_rsv(rc->extent_root, rc->block_rsv);
4078 	btrfs_free_path(path);
4079 	return err;
4080 }
4081 
4082 static int __insert_orphan_inode(struct btrfs_trans_handle *trans,
4083 				 struct btrfs_root *root, u64 objectid)
4084 {
4085 	struct btrfs_path *path;
4086 	struct btrfs_inode_item *item;
4087 	struct extent_buffer *leaf;
4088 	int ret;
4089 
4090 	path = btrfs_alloc_path();
4091 	if (!path)
4092 		return -ENOMEM;
4093 
4094 	ret = btrfs_insert_empty_inode(trans, root, path, objectid);
4095 	if (ret)
4096 		goto out;
4097 
4098 	leaf = path->nodes[0];
4099 	item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item);
4100 	memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item));
4101 	btrfs_set_inode_generation(leaf, item, 1);
4102 	btrfs_set_inode_size(leaf, item, 0);
4103 	btrfs_set_inode_mode(leaf, item, S_IFREG | 0600);
4104 	btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS |
4105 					  BTRFS_INODE_PREALLOC);
4106 	btrfs_mark_buffer_dirty(leaf);
4107 	btrfs_release_path(path);
4108 out:
4109 	btrfs_free_path(path);
4110 	return ret;
4111 }
4112 
4113 /*
4114  * helper to create inode for data relocation.
4115  * the inode is in data relocation tree and its link count is 0
4116  */
4117 static noinline_for_stack
4118 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info,
4119 				 struct btrfs_block_group_cache *group)
4120 {
4121 	struct inode *inode = NULL;
4122 	struct btrfs_trans_handle *trans;
4123 	struct btrfs_root *root;
4124 	struct btrfs_key key;
4125 	u64 objectid = BTRFS_FIRST_FREE_OBJECTID;
4126 	int err = 0;
4127 
4128 	root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID);
4129 	if (IS_ERR(root))
4130 		return ERR_CAST(root);
4131 
4132 	trans = btrfs_start_transaction(root, 6);
4133 	if (IS_ERR(trans))
4134 		return ERR_CAST(trans);
4135 
4136 	err = btrfs_find_free_objectid(root, &objectid);
4137 	if (err)
4138 		goto out;
4139 
4140 	err = __insert_orphan_inode(trans, root, objectid);
4141 	BUG_ON(err);
4142 
4143 	key.objectid = objectid;
4144 	key.type = BTRFS_INODE_ITEM_KEY;
4145 	key.offset = 0;
4146 	inode = btrfs_iget(root->fs_info->sb, &key, root, NULL);
4147 	BUG_ON(IS_ERR(inode) || is_bad_inode(inode));
4148 	BTRFS_I(inode)->index_cnt = group->key.objectid;
4149 
4150 	err = btrfs_orphan_add(trans, inode);
4151 out:
4152 	btrfs_end_transaction(trans, root);
4153 	btrfs_btree_balance_dirty(root);
4154 	if (err) {
4155 		if (inode)
4156 			iput(inode);
4157 		inode = ERR_PTR(err);
4158 	}
4159 	return inode;
4160 }
4161 
4162 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info)
4163 {
4164 	struct reloc_control *rc;
4165 
4166 	rc = kzalloc(sizeof(*rc), GFP_NOFS);
4167 	if (!rc)
4168 		return NULL;
4169 
4170 	INIT_LIST_HEAD(&rc->reloc_roots);
4171 	backref_cache_init(&rc->backref_cache);
4172 	mapping_tree_init(&rc->reloc_root_tree);
4173 	extent_io_tree_init(&rc->processed_blocks,
4174 			    fs_info->btree_inode->i_mapping);
4175 	return rc;
4176 }
4177 
4178 /*
4179  * function to relocate all extents in a block group.
4180  */
4181 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start)
4182 {
4183 	struct btrfs_fs_info *fs_info = extent_root->fs_info;
4184 	struct reloc_control *rc;
4185 	struct inode *inode;
4186 	struct btrfs_path *path;
4187 	int ret;
4188 	int rw = 0;
4189 	int err = 0;
4190 
4191 	rc = alloc_reloc_control(fs_info);
4192 	if (!rc)
4193 		return -ENOMEM;
4194 
4195 	rc->extent_root = extent_root;
4196 
4197 	rc->block_group = btrfs_lookup_block_group(fs_info, group_start);
4198 	BUG_ON(!rc->block_group);
4199 
4200 	if (!rc->block_group->ro) {
4201 		ret = btrfs_set_block_group_ro(extent_root, rc->block_group);
4202 		if (ret) {
4203 			err = ret;
4204 			goto out;
4205 		}
4206 		rw = 1;
4207 	}
4208 
4209 	path = btrfs_alloc_path();
4210 	if (!path) {
4211 		err = -ENOMEM;
4212 		goto out;
4213 	}
4214 
4215 	inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group,
4216 					path);
4217 	btrfs_free_path(path);
4218 
4219 	if (!IS_ERR(inode))
4220 		ret = delete_block_group_cache(fs_info, inode, 0);
4221 	else
4222 		ret = PTR_ERR(inode);
4223 
4224 	if (ret && ret != -ENOENT) {
4225 		err = ret;
4226 		goto out;
4227 	}
4228 
4229 	rc->data_inode = create_reloc_inode(fs_info, rc->block_group);
4230 	if (IS_ERR(rc->data_inode)) {
4231 		err = PTR_ERR(rc->data_inode);
4232 		rc->data_inode = NULL;
4233 		goto out;
4234 	}
4235 
4236 	printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n",
4237 	       rc->block_group->key.objectid, rc->block_group->flags);
4238 
4239 	ret = btrfs_start_all_delalloc_inodes(fs_info, 0);
4240 	if (ret < 0) {
4241 		err = ret;
4242 		goto out;
4243 	}
4244 	btrfs_wait_all_ordered_extents(fs_info, 0);
4245 
4246 	while (1) {
4247 		mutex_lock(&fs_info->cleaner_mutex);
4248 		ret = relocate_block_group(rc);
4249 		mutex_unlock(&fs_info->cleaner_mutex);
4250 		if (ret < 0) {
4251 			err = ret;
4252 			goto out;
4253 		}
4254 
4255 		if (rc->extents_found == 0)
4256 			break;
4257 
4258 		printk(KERN_INFO "btrfs: found %llu extents\n",
4259 			rc->extents_found);
4260 
4261 		if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) {
4262 			btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1);
4263 			invalidate_mapping_pages(rc->data_inode->i_mapping,
4264 						 0, -1);
4265 			rc->stage = UPDATE_DATA_PTRS;
4266 		}
4267 	}
4268 
4269 	filemap_write_and_wait_range(fs_info->btree_inode->i_mapping,
4270 				     rc->block_group->key.objectid,
4271 				     rc->block_group->key.objectid +
4272 				     rc->block_group->key.offset - 1);
4273 
4274 	WARN_ON(rc->block_group->pinned > 0);
4275 	WARN_ON(rc->block_group->reserved > 0);
4276 	WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0);
4277 out:
4278 	if (err && rw)
4279 		btrfs_set_block_group_rw(extent_root, rc->block_group);
4280 	iput(rc->data_inode);
4281 	btrfs_put_block_group(rc->block_group);
4282 	kfree(rc);
4283 	return err;
4284 }
4285 
4286 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root)
4287 {
4288 	struct btrfs_trans_handle *trans;
4289 	int ret, err;
4290 
4291 	trans = btrfs_start_transaction(root->fs_info->tree_root, 0);
4292 	if (IS_ERR(trans))
4293 		return PTR_ERR(trans);
4294 
4295 	memset(&root->root_item.drop_progress, 0,
4296 		sizeof(root->root_item.drop_progress));
4297 	root->root_item.drop_level = 0;
4298 	btrfs_set_root_refs(&root->root_item, 0);
4299 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4300 				&root->root_key, &root->root_item);
4301 
4302 	err = btrfs_end_transaction(trans, root->fs_info->tree_root);
4303 	if (err)
4304 		return err;
4305 	return ret;
4306 }
4307 
4308 /*
4309  * recover relocation interrupted by system crash.
4310  *
4311  * this function resumes merging reloc trees with corresponding fs trees.
4312  * this is important for keeping the sharing of tree blocks
4313  */
4314 int btrfs_recover_relocation(struct btrfs_root *root)
4315 {
4316 	LIST_HEAD(reloc_roots);
4317 	struct btrfs_key key;
4318 	struct btrfs_root *fs_root;
4319 	struct btrfs_root *reloc_root;
4320 	struct btrfs_path *path;
4321 	struct extent_buffer *leaf;
4322 	struct reloc_control *rc = NULL;
4323 	struct btrfs_trans_handle *trans;
4324 	int ret;
4325 	int err = 0;
4326 
4327 	path = btrfs_alloc_path();
4328 	if (!path)
4329 		return -ENOMEM;
4330 	path->reada = -1;
4331 
4332 	key.objectid = BTRFS_TREE_RELOC_OBJECTID;
4333 	key.type = BTRFS_ROOT_ITEM_KEY;
4334 	key.offset = (u64)-1;
4335 
4336 	while (1) {
4337 		ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key,
4338 					path, 0, 0);
4339 		if (ret < 0) {
4340 			err = ret;
4341 			goto out;
4342 		}
4343 		if (ret > 0) {
4344 			if (path->slots[0] == 0)
4345 				break;
4346 			path->slots[0]--;
4347 		}
4348 		leaf = path->nodes[0];
4349 		btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
4350 		btrfs_release_path(path);
4351 
4352 		if (key.objectid != BTRFS_TREE_RELOC_OBJECTID ||
4353 		    key.type != BTRFS_ROOT_ITEM_KEY)
4354 			break;
4355 
4356 		reloc_root = btrfs_read_fs_root(root, &key);
4357 		if (IS_ERR(reloc_root)) {
4358 			err = PTR_ERR(reloc_root);
4359 			goto out;
4360 		}
4361 
4362 		list_add(&reloc_root->root_list, &reloc_roots);
4363 
4364 		if (btrfs_root_refs(&reloc_root->root_item) > 0) {
4365 			fs_root = read_fs_root(root->fs_info,
4366 					       reloc_root->root_key.offset);
4367 			if (IS_ERR(fs_root)) {
4368 				ret = PTR_ERR(fs_root);
4369 				if (ret != -ENOENT) {
4370 					err = ret;
4371 					goto out;
4372 				}
4373 				ret = mark_garbage_root(reloc_root);
4374 				if (ret < 0) {
4375 					err = ret;
4376 					goto out;
4377 				}
4378 			}
4379 		}
4380 
4381 		if (key.offset == 0)
4382 			break;
4383 
4384 		key.offset--;
4385 	}
4386 	btrfs_release_path(path);
4387 
4388 	if (list_empty(&reloc_roots))
4389 		goto out;
4390 
4391 	rc = alloc_reloc_control(root->fs_info);
4392 	if (!rc) {
4393 		err = -ENOMEM;
4394 		goto out;
4395 	}
4396 
4397 	rc->extent_root = root->fs_info->extent_root;
4398 
4399 	set_reloc_control(rc);
4400 
4401 	trans = btrfs_join_transaction(rc->extent_root);
4402 	if (IS_ERR(trans)) {
4403 		unset_reloc_control(rc);
4404 		err = PTR_ERR(trans);
4405 		goto out_free;
4406 	}
4407 
4408 	rc->merge_reloc_tree = 1;
4409 
4410 	while (!list_empty(&reloc_roots)) {
4411 		reloc_root = list_entry(reloc_roots.next,
4412 					struct btrfs_root, root_list);
4413 		list_del(&reloc_root->root_list);
4414 
4415 		if (btrfs_root_refs(&reloc_root->root_item) == 0) {
4416 			list_add_tail(&reloc_root->root_list,
4417 				      &rc->reloc_roots);
4418 			continue;
4419 		}
4420 
4421 		fs_root = read_fs_root(root->fs_info,
4422 				       reloc_root->root_key.offset);
4423 		if (IS_ERR(fs_root)) {
4424 			err = PTR_ERR(fs_root);
4425 			goto out_free;
4426 		}
4427 
4428 		err = __add_reloc_root(reloc_root);
4429 		BUG_ON(err < 0); /* -ENOMEM or logic error */
4430 		fs_root->reloc_root = reloc_root;
4431 	}
4432 
4433 	err = btrfs_commit_transaction(trans, rc->extent_root);
4434 	if (err)
4435 		goto out_free;
4436 
4437 	merge_reloc_roots(rc);
4438 
4439 	unset_reloc_control(rc);
4440 
4441 	trans = btrfs_join_transaction(rc->extent_root);
4442 	if (IS_ERR(trans))
4443 		err = PTR_ERR(trans);
4444 	else
4445 		err = btrfs_commit_transaction(trans, rc->extent_root);
4446 out_free:
4447 	kfree(rc);
4448 out:
4449 	if (!list_empty(&reloc_roots))
4450 		free_reloc_roots(&reloc_roots);
4451 
4452 	btrfs_free_path(path);
4453 
4454 	if (err == 0) {
4455 		/* cleanup orphan inode in data relocation tree */
4456 		fs_root = read_fs_root(root->fs_info,
4457 				       BTRFS_DATA_RELOC_TREE_OBJECTID);
4458 		if (IS_ERR(fs_root))
4459 			err = PTR_ERR(fs_root);
4460 		else
4461 			err = btrfs_orphan_cleanup(fs_root);
4462 	}
4463 	return err;
4464 }
4465 
4466 /*
4467  * helper to add ordered checksum for data relocation.
4468  *
4469  * cloning checksum properly handles the nodatasum extents.
4470  * it also saves CPU time to re-calculate the checksum.
4471  */
4472 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len)
4473 {
4474 	struct btrfs_ordered_sum *sums;
4475 	struct btrfs_ordered_extent *ordered;
4476 	struct btrfs_root *root = BTRFS_I(inode)->root;
4477 	int ret;
4478 	u64 disk_bytenr;
4479 	LIST_HEAD(list);
4480 
4481 	ordered = btrfs_lookup_ordered_extent(inode, file_pos);
4482 	BUG_ON(ordered->file_offset != file_pos || ordered->len != len);
4483 
4484 	disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt;
4485 	ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr,
4486 				       disk_bytenr + len - 1, &list, 0);
4487 	if (ret)
4488 		goto out;
4489 
4490 	disk_bytenr = ordered->start;
4491 	while (!list_empty(&list)) {
4492 		sums = list_entry(list.next, struct btrfs_ordered_sum, list);
4493 		list_del_init(&sums->list);
4494 
4495 		sums->bytenr = disk_bytenr;
4496 		disk_bytenr += sums->len;
4497 
4498 		btrfs_add_ordered_sum(inode, ordered, sums);
4499 	}
4500 out:
4501 	btrfs_put_ordered_extent(ordered);
4502 	return ret;
4503 }
4504 
4505 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans,
4506 			   struct btrfs_root *root, struct extent_buffer *buf,
4507 			   struct extent_buffer *cow)
4508 {
4509 	struct reloc_control *rc;
4510 	struct backref_node *node;
4511 	int first_cow = 0;
4512 	int level;
4513 	int ret;
4514 
4515 	rc = root->fs_info->reloc_ctl;
4516 	if (!rc)
4517 		return;
4518 
4519 	BUG_ON(rc->stage == UPDATE_DATA_PTRS &&
4520 	       root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID);
4521 
4522 	level = btrfs_header_level(buf);
4523 	if (btrfs_header_generation(buf) <=
4524 	    btrfs_root_last_snapshot(&root->root_item))
4525 		first_cow = 1;
4526 
4527 	if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID &&
4528 	    rc->create_reloc_tree) {
4529 		WARN_ON(!first_cow && level == 0);
4530 
4531 		node = rc->backref_cache.path[level];
4532 		BUG_ON(node->bytenr != buf->start &&
4533 		       node->new_bytenr != buf->start);
4534 
4535 		drop_node_buffer(node);
4536 		extent_buffer_get(cow);
4537 		node->eb = cow;
4538 		node->new_bytenr = cow->start;
4539 
4540 		if (!node->pending) {
4541 			list_move_tail(&node->list,
4542 				       &rc->backref_cache.pending[level]);
4543 			node->pending = 1;
4544 		}
4545 
4546 		if (first_cow)
4547 			__mark_block_processed(rc, node);
4548 
4549 		if (first_cow && level > 0)
4550 			rc->nodes_relocated += buf->len;
4551 	}
4552 
4553 	if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) {
4554 		ret = replace_file_extents(trans, rc, root, cow);
4555 		BUG_ON(ret);
4556 	}
4557 }
4558 
4559 /*
4560  * called before creating snapshot. it calculates metadata reservation
4561  * requried for relocating tree blocks in the snapshot
4562  */
4563 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans,
4564 			      struct btrfs_pending_snapshot *pending,
4565 			      u64 *bytes_to_reserve)
4566 {
4567 	struct btrfs_root *root;
4568 	struct reloc_control *rc;
4569 
4570 	root = pending->root;
4571 	if (!root->reloc_root)
4572 		return;
4573 
4574 	rc = root->fs_info->reloc_ctl;
4575 	if (!rc->merge_reloc_tree)
4576 		return;
4577 
4578 	root = root->reloc_root;
4579 	BUG_ON(btrfs_root_refs(&root->root_item) == 0);
4580 	/*
4581 	 * relocation is in the stage of merging trees. the space
4582 	 * used by merging a reloc tree is twice the size of
4583 	 * relocated tree nodes in the worst case. half for cowing
4584 	 * the reloc tree, half for cowing the fs tree. the space
4585 	 * used by cowing the reloc tree will be freed after the
4586 	 * tree is dropped. if we create snapshot, cowing the fs
4587 	 * tree may use more space than it frees. so we need
4588 	 * reserve extra space.
4589 	 */
4590 	*bytes_to_reserve += rc->nodes_relocated;
4591 }
4592 
4593 /*
4594  * called after snapshot is created. migrate block reservation
4595  * and create reloc root for the newly created snapshot
4596  */
4597 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans,
4598 			       struct btrfs_pending_snapshot *pending)
4599 {
4600 	struct btrfs_root *root = pending->root;
4601 	struct btrfs_root *reloc_root;
4602 	struct btrfs_root *new_root;
4603 	struct reloc_control *rc;
4604 	int ret;
4605 
4606 	if (!root->reloc_root)
4607 		return 0;
4608 
4609 	rc = root->fs_info->reloc_ctl;
4610 	rc->merging_rsv_size += rc->nodes_relocated;
4611 
4612 	if (rc->merge_reloc_tree) {
4613 		ret = btrfs_block_rsv_migrate(&pending->block_rsv,
4614 					      rc->block_rsv,
4615 					      rc->nodes_relocated);
4616 		if (ret)
4617 			return ret;
4618 	}
4619 
4620 	new_root = pending->snap;
4621 	reloc_root = create_reloc_root(trans, root->reloc_root,
4622 				       new_root->root_key.objectid);
4623 	if (IS_ERR(reloc_root))
4624 		return PTR_ERR(reloc_root);
4625 
4626 	ret = __add_reloc_root(reloc_root);
4627 	BUG_ON(ret < 0);
4628 	new_root->reloc_root = reloc_root;
4629 
4630 	if (rc->create_reloc_tree)
4631 		ret = clone_backref_node(trans, rc, root, reloc_root);
4632 	return ret;
4633 }
4634