1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 static void backref_tree_panic(struct rb_node *rb_node, int errno, u64 bytenr) 330 { 331 332 struct btrfs_fs_info *fs_info = NULL; 333 struct backref_node *bnode = rb_entry(rb_node, struct backref_node, 334 rb_node); 335 if (bnode->root) 336 fs_info = bnode->root->fs_info; 337 btrfs_panic(fs_info, errno, "Inconsistency in backref cache " 338 "found at offset %llu\n", bytenr); 339 } 340 341 /* 342 * walk up backref nodes until reach node presents tree root 343 */ 344 static struct backref_node *walk_up_backref(struct backref_node *node, 345 struct backref_edge *edges[], 346 int *index) 347 { 348 struct backref_edge *edge; 349 int idx = *index; 350 351 while (!list_empty(&node->upper)) { 352 edge = list_entry(node->upper.next, 353 struct backref_edge, list[LOWER]); 354 edges[idx++] = edge; 355 node = edge->node[UPPER]; 356 } 357 BUG_ON(node->detached); 358 *index = idx; 359 return node; 360 } 361 362 /* 363 * walk down backref nodes to find start of next reference path 364 */ 365 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 366 int *index) 367 { 368 struct backref_edge *edge; 369 struct backref_node *lower; 370 int idx = *index; 371 372 while (idx > 0) { 373 edge = edges[idx - 1]; 374 lower = edge->node[LOWER]; 375 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 376 idx--; 377 continue; 378 } 379 edge = list_entry(edge->list[LOWER].next, 380 struct backref_edge, list[LOWER]); 381 edges[idx - 1] = edge; 382 *index = idx; 383 return edge->node[UPPER]; 384 } 385 *index = 0; 386 return NULL; 387 } 388 389 static void unlock_node_buffer(struct backref_node *node) 390 { 391 if (node->locked) { 392 btrfs_tree_unlock(node->eb); 393 node->locked = 0; 394 } 395 } 396 397 static void drop_node_buffer(struct backref_node *node) 398 { 399 if (node->eb) { 400 unlock_node_buffer(node); 401 free_extent_buffer(node->eb); 402 node->eb = NULL; 403 } 404 } 405 406 static void drop_backref_node(struct backref_cache *tree, 407 struct backref_node *node) 408 { 409 BUG_ON(!list_empty(&node->upper)); 410 411 drop_node_buffer(node); 412 list_del(&node->list); 413 list_del(&node->lower); 414 if (!RB_EMPTY_NODE(&node->rb_node)) 415 rb_erase(&node->rb_node, &tree->rb_root); 416 free_backref_node(tree, node); 417 } 418 419 /* 420 * remove a backref node from the backref cache 421 */ 422 static void remove_backref_node(struct backref_cache *cache, 423 struct backref_node *node) 424 { 425 struct backref_node *upper; 426 struct backref_edge *edge; 427 428 if (!node) 429 return; 430 431 BUG_ON(!node->lowest && !node->detached); 432 while (!list_empty(&node->upper)) { 433 edge = list_entry(node->upper.next, struct backref_edge, 434 list[LOWER]); 435 upper = edge->node[UPPER]; 436 list_del(&edge->list[LOWER]); 437 list_del(&edge->list[UPPER]); 438 free_backref_edge(cache, edge); 439 440 if (RB_EMPTY_NODE(&upper->rb_node)) { 441 BUG_ON(!list_empty(&node->upper)); 442 drop_backref_node(cache, node); 443 node = upper; 444 node->lowest = 1; 445 continue; 446 } 447 /* 448 * add the node to leaf node list if no other 449 * child block cached. 450 */ 451 if (list_empty(&upper->lower)) { 452 list_add_tail(&upper->lower, &cache->leaves); 453 upper->lowest = 1; 454 } 455 } 456 457 drop_backref_node(cache, node); 458 } 459 460 static void update_backref_node(struct backref_cache *cache, 461 struct backref_node *node, u64 bytenr) 462 { 463 struct rb_node *rb_node; 464 rb_erase(&node->rb_node, &cache->rb_root); 465 node->bytenr = bytenr; 466 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 467 if (rb_node) 468 backref_tree_panic(rb_node, -EEXIST, bytenr); 469 } 470 471 /* 472 * update backref cache after a transaction commit 473 */ 474 static int update_backref_cache(struct btrfs_trans_handle *trans, 475 struct backref_cache *cache) 476 { 477 struct backref_node *node; 478 int level = 0; 479 480 if (cache->last_trans == 0) { 481 cache->last_trans = trans->transid; 482 return 0; 483 } 484 485 if (cache->last_trans == trans->transid) 486 return 0; 487 488 /* 489 * detached nodes are used to avoid unnecessary backref 490 * lookup. transaction commit changes the extent tree. 491 * so the detached nodes are no longer useful. 492 */ 493 while (!list_empty(&cache->detached)) { 494 node = list_entry(cache->detached.next, 495 struct backref_node, list); 496 remove_backref_node(cache, node); 497 } 498 499 while (!list_empty(&cache->changed)) { 500 node = list_entry(cache->changed.next, 501 struct backref_node, list); 502 list_del_init(&node->list); 503 BUG_ON(node->pending); 504 update_backref_node(cache, node, node->new_bytenr); 505 } 506 507 /* 508 * some nodes can be left in the pending list if there were 509 * errors during processing the pending nodes. 510 */ 511 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 512 list_for_each_entry(node, &cache->pending[level], list) { 513 BUG_ON(!node->pending); 514 if (node->bytenr == node->new_bytenr) 515 continue; 516 update_backref_node(cache, node, node->new_bytenr); 517 } 518 } 519 520 cache->last_trans = 0; 521 return 1; 522 } 523 524 525 static int should_ignore_root(struct btrfs_root *root) 526 { 527 struct btrfs_root *reloc_root; 528 529 if (!root->ref_cows) 530 return 0; 531 532 reloc_root = root->reloc_root; 533 if (!reloc_root) 534 return 0; 535 536 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 537 root->fs_info->running_transaction->transid - 1) 538 return 0; 539 /* 540 * if there is reloc tree and it was created in previous 541 * transaction backref lookup can find the reloc tree, 542 * so backref node for the fs tree root is useless for 543 * relocation. 544 */ 545 return 1; 546 } 547 /* 548 * find reloc tree by address of tree root 549 */ 550 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 551 u64 bytenr) 552 { 553 struct rb_node *rb_node; 554 struct mapping_node *node; 555 struct btrfs_root *root = NULL; 556 557 spin_lock(&rc->reloc_root_tree.lock); 558 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 559 if (rb_node) { 560 node = rb_entry(rb_node, struct mapping_node, rb_node); 561 root = (struct btrfs_root *)node->data; 562 } 563 spin_unlock(&rc->reloc_root_tree.lock); 564 return root; 565 } 566 567 static int is_cowonly_root(u64 root_objectid) 568 { 569 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 570 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 571 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 572 root_objectid == BTRFS_DEV_TREE_OBJECTID || 573 root_objectid == BTRFS_TREE_LOG_OBJECTID || 574 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 575 return 1; 576 return 0; 577 } 578 579 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 580 u64 root_objectid) 581 { 582 struct btrfs_key key; 583 584 key.objectid = root_objectid; 585 key.type = BTRFS_ROOT_ITEM_KEY; 586 if (is_cowonly_root(root_objectid)) 587 key.offset = 0; 588 else 589 key.offset = (u64)-1; 590 591 return btrfs_read_fs_root_no_name(fs_info, &key); 592 } 593 594 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 595 static noinline_for_stack 596 struct btrfs_root *find_tree_root(struct reloc_control *rc, 597 struct extent_buffer *leaf, 598 struct btrfs_extent_ref_v0 *ref0) 599 { 600 struct btrfs_root *root; 601 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 602 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 603 604 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 605 606 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 607 BUG_ON(IS_ERR(root)); 608 609 if (root->ref_cows && 610 generation != btrfs_root_generation(&root->root_item)) 611 return NULL; 612 613 return root; 614 } 615 #endif 616 617 static noinline_for_stack 618 int find_inline_backref(struct extent_buffer *leaf, int slot, 619 unsigned long *ptr, unsigned long *end) 620 { 621 struct btrfs_key key; 622 struct btrfs_extent_item *ei; 623 struct btrfs_tree_block_info *bi; 624 u32 item_size; 625 626 btrfs_item_key_to_cpu(leaf, &key, slot); 627 628 item_size = btrfs_item_size_nr(leaf, slot); 629 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 630 if (item_size < sizeof(*ei)) { 631 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 632 return 1; 633 } 634 #endif 635 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 636 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 637 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 638 639 if (key.type == BTRFS_EXTENT_ITEM_KEY && 640 item_size <= sizeof(*ei) + sizeof(*bi)) { 641 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 642 return 1; 643 } 644 if (key.type == BTRFS_METADATA_ITEM_KEY && 645 item_size <= sizeof(*ei)) { 646 WARN_ON(item_size < sizeof(*ei)); 647 return 1; 648 } 649 650 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 651 bi = (struct btrfs_tree_block_info *)(ei + 1); 652 *ptr = (unsigned long)(bi + 1); 653 } else { 654 *ptr = (unsigned long)(ei + 1); 655 } 656 *end = (unsigned long)ei + item_size; 657 return 0; 658 } 659 660 /* 661 * build backref tree for a given tree block. root of the backref tree 662 * corresponds the tree block, leaves of the backref tree correspond 663 * roots of b-trees that reference the tree block. 664 * 665 * the basic idea of this function is check backrefs of a given block 666 * to find upper level blocks that refernece the block, and then check 667 * bakcrefs of these upper level blocks recursively. the recursion stop 668 * when tree root is reached or backrefs for the block is cached. 669 * 670 * NOTE: if we find backrefs for a block are cached, we know backrefs 671 * for all upper level blocks that directly/indirectly reference the 672 * block are also cached. 673 */ 674 static noinline_for_stack 675 struct backref_node *build_backref_tree(struct reloc_control *rc, 676 struct btrfs_key *node_key, 677 int level, u64 bytenr) 678 { 679 struct backref_cache *cache = &rc->backref_cache; 680 struct btrfs_path *path1; 681 struct btrfs_path *path2; 682 struct extent_buffer *eb; 683 struct btrfs_root *root; 684 struct backref_node *cur; 685 struct backref_node *upper; 686 struct backref_node *lower; 687 struct backref_node *node = NULL; 688 struct backref_node *exist = NULL; 689 struct backref_edge *edge; 690 struct rb_node *rb_node; 691 struct btrfs_key key; 692 unsigned long end; 693 unsigned long ptr; 694 LIST_HEAD(list); 695 LIST_HEAD(useless); 696 int cowonly; 697 int ret; 698 int err = 0; 699 bool need_check = true; 700 701 path1 = btrfs_alloc_path(); 702 path2 = btrfs_alloc_path(); 703 if (!path1 || !path2) { 704 err = -ENOMEM; 705 goto out; 706 } 707 path1->reada = 1; 708 path2->reada = 2; 709 710 node = alloc_backref_node(cache); 711 if (!node) { 712 err = -ENOMEM; 713 goto out; 714 } 715 716 node->bytenr = bytenr; 717 node->level = level; 718 node->lowest = 1; 719 cur = node; 720 again: 721 end = 0; 722 ptr = 0; 723 key.objectid = cur->bytenr; 724 key.type = BTRFS_METADATA_ITEM_KEY; 725 key.offset = (u64)-1; 726 727 path1->search_commit_root = 1; 728 path1->skip_locking = 1; 729 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 730 0, 0); 731 if (ret < 0) { 732 err = ret; 733 goto out; 734 } 735 BUG_ON(!ret || !path1->slots[0]); 736 737 path1->slots[0]--; 738 739 WARN_ON(cur->checked); 740 if (!list_empty(&cur->upper)) { 741 /* 742 * the backref was added previously when processing 743 * backref of type BTRFS_TREE_BLOCK_REF_KEY 744 */ 745 BUG_ON(!list_is_singular(&cur->upper)); 746 edge = list_entry(cur->upper.next, struct backref_edge, 747 list[LOWER]); 748 BUG_ON(!list_empty(&edge->list[UPPER])); 749 exist = edge->node[UPPER]; 750 /* 751 * add the upper level block to pending list if we need 752 * check its backrefs 753 */ 754 if (!exist->checked) 755 list_add_tail(&edge->list[UPPER], &list); 756 } else { 757 exist = NULL; 758 } 759 760 while (1) { 761 cond_resched(); 762 eb = path1->nodes[0]; 763 764 if (ptr >= end) { 765 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 766 ret = btrfs_next_leaf(rc->extent_root, path1); 767 if (ret < 0) { 768 err = ret; 769 goto out; 770 } 771 if (ret > 0) 772 break; 773 eb = path1->nodes[0]; 774 } 775 776 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 777 if (key.objectid != cur->bytenr) { 778 WARN_ON(exist); 779 break; 780 } 781 782 if (key.type == BTRFS_EXTENT_ITEM_KEY || 783 key.type == BTRFS_METADATA_ITEM_KEY) { 784 ret = find_inline_backref(eb, path1->slots[0], 785 &ptr, &end); 786 if (ret) 787 goto next; 788 } 789 } 790 791 if (ptr < end) { 792 /* update key for inline back ref */ 793 struct btrfs_extent_inline_ref *iref; 794 iref = (struct btrfs_extent_inline_ref *)ptr; 795 key.type = btrfs_extent_inline_ref_type(eb, iref); 796 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 797 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 798 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 799 } 800 801 if (exist && 802 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 803 exist->owner == key.offset) || 804 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 805 exist->bytenr == key.offset))) { 806 exist = NULL; 807 goto next; 808 } 809 810 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 811 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 812 key.type == BTRFS_EXTENT_REF_V0_KEY) { 813 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 814 struct btrfs_extent_ref_v0 *ref0; 815 ref0 = btrfs_item_ptr(eb, path1->slots[0], 816 struct btrfs_extent_ref_v0); 817 if (key.objectid == key.offset) { 818 root = find_tree_root(rc, eb, ref0); 819 if (root && !should_ignore_root(root)) 820 cur->root = root; 821 else 822 list_add(&cur->list, &useless); 823 break; 824 } 825 if (is_cowonly_root(btrfs_ref_root_v0(eb, 826 ref0))) 827 cur->cowonly = 1; 828 } 829 #else 830 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 831 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 832 #endif 833 if (key.objectid == key.offset) { 834 /* 835 * only root blocks of reloc trees use 836 * backref of this type. 837 */ 838 root = find_reloc_root(rc, cur->bytenr); 839 BUG_ON(!root); 840 cur->root = root; 841 break; 842 } 843 844 edge = alloc_backref_edge(cache); 845 if (!edge) { 846 err = -ENOMEM; 847 goto out; 848 } 849 rb_node = tree_search(&cache->rb_root, key.offset); 850 if (!rb_node) { 851 upper = alloc_backref_node(cache); 852 if (!upper) { 853 free_backref_edge(cache, edge); 854 err = -ENOMEM; 855 goto out; 856 } 857 upper->bytenr = key.offset; 858 upper->level = cur->level + 1; 859 /* 860 * backrefs for the upper level block isn't 861 * cached, add the block to pending list 862 */ 863 list_add_tail(&edge->list[UPPER], &list); 864 } else { 865 upper = rb_entry(rb_node, struct backref_node, 866 rb_node); 867 BUG_ON(!upper->checked); 868 INIT_LIST_HEAD(&edge->list[UPPER]); 869 } 870 list_add_tail(&edge->list[LOWER], &cur->upper); 871 edge->node[LOWER] = cur; 872 edge->node[UPPER] = upper; 873 874 goto next; 875 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 876 goto next; 877 } 878 879 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 880 root = read_fs_root(rc->extent_root->fs_info, key.offset); 881 if (IS_ERR(root)) { 882 err = PTR_ERR(root); 883 goto out; 884 } 885 886 if (!root->ref_cows) 887 cur->cowonly = 1; 888 889 if (btrfs_root_level(&root->root_item) == cur->level) { 890 /* tree root */ 891 BUG_ON(btrfs_root_bytenr(&root->root_item) != 892 cur->bytenr); 893 if (should_ignore_root(root)) 894 list_add(&cur->list, &useless); 895 else 896 cur->root = root; 897 break; 898 } 899 900 level = cur->level + 1; 901 902 /* 903 * searching the tree to find upper level blocks 904 * reference the block. 905 */ 906 path2->search_commit_root = 1; 907 path2->skip_locking = 1; 908 path2->lowest_level = level; 909 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 910 path2->lowest_level = 0; 911 if (ret < 0) { 912 err = ret; 913 goto out; 914 } 915 if (ret > 0 && path2->slots[level] > 0) 916 path2->slots[level]--; 917 918 eb = path2->nodes[level]; 919 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 920 cur->bytenr); 921 922 lower = cur; 923 need_check = true; 924 for (; level < BTRFS_MAX_LEVEL; level++) { 925 if (!path2->nodes[level]) { 926 BUG_ON(btrfs_root_bytenr(&root->root_item) != 927 lower->bytenr); 928 if (should_ignore_root(root)) 929 list_add(&lower->list, &useless); 930 else 931 lower->root = root; 932 break; 933 } 934 935 edge = alloc_backref_edge(cache); 936 if (!edge) { 937 err = -ENOMEM; 938 goto out; 939 } 940 941 eb = path2->nodes[level]; 942 rb_node = tree_search(&cache->rb_root, eb->start); 943 if (!rb_node) { 944 upper = alloc_backref_node(cache); 945 if (!upper) { 946 free_backref_edge(cache, edge); 947 err = -ENOMEM; 948 goto out; 949 } 950 upper->bytenr = eb->start; 951 upper->owner = btrfs_header_owner(eb); 952 upper->level = lower->level + 1; 953 if (!root->ref_cows) 954 upper->cowonly = 1; 955 956 /* 957 * if we know the block isn't shared 958 * we can void checking its backrefs. 959 */ 960 if (btrfs_block_can_be_shared(root, eb)) 961 upper->checked = 0; 962 else 963 upper->checked = 1; 964 965 /* 966 * add the block to pending list if we 967 * need check its backrefs, we only do this once 968 * while walking up a tree as we will catch 969 * anything else later on. 970 */ 971 if (!upper->checked && need_check) { 972 need_check = false; 973 list_add_tail(&edge->list[UPPER], 974 &list); 975 } else 976 INIT_LIST_HEAD(&edge->list[UPPER]); 977 } else { 978 upper = rb_entry(rb_node, struct backref_node, 979 rb_node); 980 BUG_ON(!upper->checked); 981 INIT_LIST_HEAD(&edge->list[UPPER]); 982 if (!upper->owner) 983 upper->owner = btrfs_header_owner(eb); 984 } 985 list_add_tail(&edge->list[LOWER], &lower->upper); 986 edge->node[LOWER] = lower; 987 edge->node[UPPER] = upper; 988 989 if (rb_node) 990 break; 991 lower = upper; 992 upper = NULL; 993 } 994 btrfs_release_path(path2); 995 next: 996 if (ptr < end) { 997 ptr += btrfs_extent_inline_ref_size(key.type); 998 if (ptr >= end) { 999 WARN_ON(ptr > end); 1000 ptr = 0; 1001 end = 0; 1002 } 1003 } 1004 if (ptr >= end) 1005 path1->slots[0]++; 1006 } 1007 btrfs_release_path(path1); 1008 1009 cur->checked = 1; 1010 WARN_ON(exist); 1011 1012 /* the pending list isn't empty, take the first block to process */ 1013 if (!list_empty(&list)) { 1014 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1015 list_del_init(&edge->list[UPPER]); 1016 cur = edge->node[UPPER]; 1017 goto again; 1018 } 1019 1020 /* 1021 * everything goes well, connect backref nodes and insert backref nodes 1022 * into the cache. 1023 */ 1024 BUG_ON(!node->checked); 1025 cowonly = node->cowonly; 1026 if (!cowonly) { 1027 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1028 &node->rb_node); 1029 if (rb_node) 1030 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1031 list_add_tail(&node->lower, &cache->leaves); 1032 } 1033 1034 list_for_each_entry(edge, &node->upper, list[LOWER]) 1035 list_add_tail(&edge->list[UPPER], &list); 1036 1037 while (!list_empty(&list)) { 1038 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1039 list_del_init(&edge->list[UPPER]); 1040 upper = edge->node[UPPER]; 1041 if (upper->detached) { 1042 list_del(&edge->list[LOWER]); 1043 lower = edge->node[LOWER]; 1044 free_backref_edge(cache, edge); 1045 if (list_empty(&lower->upper)) 1046 list_add(&lower->list, &useless); 1047 continue; 1048 } 1049 1050 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1051 if (upper->lowest) { 1052 list_del_init(&upper->lower); 1053 upper->lowest = 0; 1054 } 1055 1056 list_add_tail(&edge->list[UPPER], &upper->lower); 1057 continue; 1058 } 1059 1060 BUG_ON(!upper->checked); 1061 BUG_ON(cowonly != upper->cowonly); 1062 if (!cowonly) { 1063 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1064 &upper->rb_node); 1065 if (rb_node) 1066 backref_tree_panic(rb_node, -EEXIST, 1067 upper->bytenr); 1068 } 1069 1070 list_add_tail(&edge->list[UPPER], &upper->lower); 1071 1072 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1073 list_add_tail(&edge->list[UPPER], &list); 1074 } 1075 /* 1076 * process useless backref nodes. backref nodes for tree leaves 1077 * are deleted from the cache. backref nodes for upper level 1078 * tree blocks are left in the cache to avoid unnecessary backref 1079 * lookup. 1080 */ 1081 while (!list_empty(&useless)) { 1082 upper = list_entry(useless.next, struct backref_node, list); 1083 list_del_init(&upper->list); 1084 BUG_ON(!list_empty(&upper->upper)); 1085 if (upper == node) 1086 node = NULL; 1087 if (upper->lowest) { 1088 list_del_init(&upper->lower); 1089 upper->lowest = 0; 1090 } 1091 while (!list_empty(&upper->lower)) { 1092 edge = list_entry(upper->lower.next, 1093 struct backref_edge, list[UPPER]); 1094 list_del(&edge->list[UPPER]); 1095 list_del(&edge->list[LOWER]); 1096 lower = edge->node[LOWER]; 1097 free_backref_edge(cache, edge); 1098 1099 if (list_empty(&lower->upper)) 1100 list_add(&lower->list, &useless); 1101 } 1102 __mark_block_processed(rc, upper); 1103 if (upper->level > 0) { 1104 list_add(&upper->list, &cache->detached); 1105 upper->detached = 1; 1106 } else { 1107 rb_erase(&upper->rb_node, &cache->rb_root); 1108 free_backref_node(cache, upper); 1109 } 1110 } 1111 out: 1112 btrfs_free_path(path1); 1113 btrfs_free_path(path2); 1114 if (err) { 1115 while (!list_empty(&useless)) { 1116 lower = list_entry(useless.next, 1117 struct backref_node, upper); 1118 list_del_init(&lower->upper); 1119 } 1120 upper = node; 1121 INIT_LIST_HEAD(&list); 1122 while (upper) { 1123 if (RB_EMPTY_NODE(&upper->rb_node)) { 1124 list_splice_tail(&upper->upper, &list); 1125 free_backref_node(cache, upper); 1126 } 1127 1128 if (list_empty(&list)) 1129 break; 1130 1131 edge = list_entry(list.next, struct backref_edge, 1132 list[LOWER]); 1133 list_del(&edge->list[LOWER]); 1134 upper = edge->node[UPPER]; 1135 free_backref_edge(cache, edge); 1136 } 1137 return ERR_PTR(err); 1138 } 1139 BUG_ON(node && node->detached); 1140 return node; 1141 } 1142 1143 /* 1144 * helper to add backref node for the newly created snapshot. 1145 * the backref node is created by cloning backref node that 1146 * corresponds to root of source tree 1147 */ 1148 static int clone_backref_node(struct btrfs_trans_handle *trans, 1149 struct reloc_control *rc, 1150 struct btrfs_root *src, 1151 struct btrfs_root *dest) 1152 { 1153 struct btrfs_root *reloc_root = src->reloc_root; 1154 struct backref_cache *cache = &rc->backref_cache; 1155 struct backref_node *node = NULL; 1156 struct backref_node *new_node; 1157 struct backref_edge *edge; 1158 struct backref_edge *new_edge; 1159 struct rb_node *rb_node; 1160 1161 if (cache->last_trans > 0) 1162 update_backref_cache(trans, cache); 1163 1164 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1165 if (rb_node) { 1166 node = rb_entry(rb_node, struct backref_node, rb_node); 1167 if (node->detached) 1168 node = NULL; 1169 else 1170 BUG_ON(node->new_bytenr != reloc_root->node->start); 1171 } 1172 1173 if (!node) { 1174 rb_node = tree_search(&cache->rb_root, 1175 reloc_root->commit_root->start); 1176 if (rb_node) { 1177 node = rb_entry(rb_node, struct backref_node, 1178 rb_node); 1179 BUG_ON(node->detached); 1180 } 1181 } 1182 1183 if (!node) 1184 return 0; 1185 1186 new_node = alloc_backref_node(cache); 1187 if (!new_node) 1188 return -ENOMEM; 1189 1190 new_node->bytenr = dest->node->start; 1191 new_node->level = node->level; 1192 new_node->lowest = node->lowest; 1193 new_node->checked = 1; 1194 new_node->root = dest; 1195 1196 if (!node->lowest) { 1197 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1198 new_edge = alloc_backref_edge(cache); 1199 if (!new_edge) 1200 goto fail; 1201 1202 new_edge->node[UPPER] = new_node; 1203 new_edge->node[LOWER] = edge->node[LOWER]; 1204 list_add_tail(&new_edge->list[UPPER], 1205 &new_node->lower); 1206 } 1207 } else { 1208 list_add_tail(&new_node->lower, &cache->leaves); 1209 } 1210 1211 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1212 &new_node->rb_node); 1213 if (rb_node) 1214 backref_tree_panic(rb_node, -EEXIST, new_node->bytenr); 1215 1216 if (!new_node->lowest) { 1217 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1218 list_add_tail(&new_edge->list[LOWER], 1219 &new_edge->node[LOWER]->upper); 1220 } 1221 } 1222 return 0; 1223 fail: 1224 while (!list_empty(&new_node->lower)) { 1225 new_edge = list_entry(new_node->lower.next, 1226 struct backref_edge, list[UPPER]); 1227 list_del(&new_edge->list[UPPER]); 1228 free_backref_edge(cache, new_edge); 1229 } 1230 free_backref_node(cache, new_node); 1231 return -ENOMEM; 1232 } 1233 1234 /* 1235 * helper to add 'address of tree root -> reloc tree' mapping 1236 */ 1237 static int __must_check __add_reloc_root(struct btrfs_root *root) 1238 { 1239 struct rb_node *rb_node; 1240 struct mapping_node *node; 1241 struct reloc_control *rc = root->fs_info->reloc_ctl; 1242 1243 node = kmalloc(sizeof(*node), GFP_NOFS); 1244 if (!node) 1245 return -ENOMEM; 1246 1247 node->bytenr = root->node->start; 1248 node->data = root; 1249 1250 spin_lock(&rc->reloc_root_tree.lock); 1251 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1252 node->bytenr, &node->rb_node); 1253 spin_unlock(&rc->reloc_root_tree.lock); 1254 if (rb_node) { 1255 btrfs_panic(root->fs_info, -EEXIST, "Duplicate root found " 1256 "for start=%llu while inserting into relocation " 1257 "tree\n", node->bytenr); 1258 kfree(node); 1259 return -EEXIST; 1260 } 1261 1262 list_add_tail(&root->root_list, &rc->reloc_roots); 1263 return 0; 1264 } 1265 1266 /* 1267 * helper to update/delete the 'address of tree root -> reloc tree' 1268 * mapping 1269 */ 1270 static int __update_reloc_root(struct btrfs_root *root, int del) 1271 { 1272 struct rb_node *rb_node; 1273 struct mapping_node *node = NULL; 1274 struct reloc_control *rc = root->fs_info->reloc_ctl; 1275 1276 spin_lock(&rc->reloc_root_tree.lock); 1277 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1278 root->commit_root->start); 1279 if (rb_node) { 1280 node = rb_entry(rb_node, struct mapping_node, rb_node); 1281 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1282 } 1283 spin_unlock(&rc->reloc_root_tree.lock); 1284 1285 if (!node) 1286 return 0; 1287 BUG_ON((struct btrfs_root *)node->data != root); 1288 1289 if (!del) { 1290 spin_lock(&rc->reloc_root_tree.lock); 1291 node->bytenr = root->node->start; 1292 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1293 node->bytenr, &node->rb_node); 1294 spin_unlock(&rc->reloc_root_tree.lock); 1295 if (rb_node) 1296 backref_tree_panic(rb_node, -EEXIST, node->bytenr); 1297 } else { 1298 spin_lock(&root->fs_info->trans_lock); 1299 list_del_init(&root->root_list); 1300 spin_unlock(&root->fs_info->trans_lock); 1301 kfree(node); 1302 } 1303 return 0; 1304 } 1305 1306 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1307 struct btrfs_root *root, u64 objectid) 1308 { 1309 struct btrfs_root *reloc_root; 1310 struct extent_buffer *eb; 1311 struct btrfs_root_item *root_item; 1312 struct btrfs_key root_key; 1313 u64 last_snap = 0; 1314 int ret; 1315 1316 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1317 BUG_ON(!root_item); 1318 1319 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1320 root_key.type = BTRFS_ROOT_ITEM_KEY; 1321 root_key.offset = objectid; 1322 1323 if (root->root_key.objectid == objectid) { 1324 /* called by btrfs_init_reloc_root */ 1325 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1326 BTRFS_TREE_RELOC_OBJECTID); 1327 BUG_ON(ret); 1328 1329 last_snap = btrfs_root_last_snapshot(&root->root_item); 1330 btrfs_set_root_last_snapshot(&root->root_item, 1331 trans->transid - 1); 1332 } else { 1333 /* 1334 * called by btrfs_reloc_post_snapshot_hook. 1335 * the source tree is a reloc tree, all tree blocks 1336 * modified after it was created have RELOC flag 1337 * set in their headers. so it's OK to not update 1338 * the 'last_snapshot'. 1339 */ 1340 ret = btrfs_copy_root(trans, root, root->node, &eb, 1341 BTRFS_TREE_RELOC_OBJECTID); 1342 BUG_ON(ret); 1343 } 1344 1345 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1346 btrfs_set_root_bytenr(root_item, eb->start); 1347 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1348 btrfs_set_root_generation(root_item, trans->transid); 1349 1350 if (root->root_key.objectid == objectid) { 1351 btrfs_set_root_refs(root_item, 0); 1352 memset(&root_item->drop_progress, 0, 1353 sizeof(struct btrfs_disk_key)); 1354 root_item->drop_level = 0; 1355 /* 1356 * abuse rtransid, it is safe because it is impossible to 1357 * receive data into a relocation tree. 1358 */ 1359 btrfs_set_root_rtransid(root_item, last_snap); 1360 btrfs_set_root_otransid(root_item, trans->transid); 1361 } 1362 1363 btrfs_tree_unlock(eb); 1364 free_extent_buffer(eb); 1365 1366 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1367 &root_key, root_item); 1368 BUG_ON(ret); 1369 kfree(root_item); 1370 1371 reloc_root = btrfs_read_fs_root(root->fs_info->tree_root, &root_key); 1372 BUG_ON(IS_ERR(reloc_root)); 1373 reloc_root->last_trans = trans->transid; 1374 return reloc_root; 1375 } 1376 1377 /* 1378 * create reloc tree for a given fs tree. reloc tree is just a 1379 * snapshot of the fs tree with special root objectid. 1380 */ 1381 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1382 struct btrfs_root *root) 1383 { 1384 struct btrfs_root *reloc_root; 1385 struct reloc_control *rc = root->fs_info->reloc_ctl; 1386 int clear_rsv = 0; 1387 int ret; 1388 1389 if (root->reloc_root) { 1390 reloc_root = root->reloc_root; 1391 reloc_root->last_trans = trans->transid; 1392 return 0; 1393 } 1394 1395 if (!rc || !rc->create_reloc_tree || 1396 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1397 return 0; 1398 1399 if (!trans->block_rsv) { 1400 trans->block_rsv = rc->block_rsv; 1401 clear_rsv = 1; 1402 } 1403 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1404 if (clear_rsv) 1405 trans->block_rsv = NULL; 1406 1407 ret = __add_reloc_root(reloc_root); 1408 BUG_ON(ret < 0); 1409 root->reloc_root = reloc_root; 1410 return 0; 1411 } 1412 1413 /* 1414 * update root item of reloc tree 1415 */ 1416 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1417 struct btrfs_root *root) 1418 { 1419 struct btrfs_root *reloc_root; 1420 struct btrfs_root_item *root_item; 1421 int del = 0; 1422 int ret; 1423 1424 if (!root->reloc_root) 1425 goto out; 1426 1427 reloc_root = root->reloc_root; 1428 root_item = &reloc_root->root_item; 1429 1430 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1431 btrfs_root_refs(root_item) == 0) { 1432 root->reloc_root = NULL; 1433 del = 1; 1434 } 1435 1436 __update_reloc_root(reloc_root, del); 1437 1438 if (reloc_root->commit_root != reloc_root->node) { 1439 btrfs_set_root_node(root_item, reloc_root->node); 1440 free_extent_buffer(reloc_root->commit_root); 1441 reloc_root->commit_root = btrfs_root_node(reloc_root); 1442 } 1443 1444 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1445 &reloc_root->root_key, root_item); 1446 BUG_ON(ret); 1447 1448 out: 1449 return 0; 1450 } 1451 1452 /* 1453 * helper to find first cached inode with inode number >= objectid 1454 * in a subvolume 1455 */ 1456 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1457 { 1458 struct rb_node *node; 1459 struct rb_node *prev; 1460 struct btrfs_inode *entry; 1461 struct inode *inode; 1462 1463 spin_lock(&root->inode_lock); 1464 again: 1465 node = root->inode_tree.rb_node; 1466 prev = NULL; 1467 while (node) { 1468 prev = node; 1469 entry = rb_entry(node, struct btrfs_inode, rb_node); 1470 1471 if (objectid < btrfs_ino(&entry->vfs_inode)) 1472 node = node->rb_left; 1473 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1474 node = node->rb_right; 1475 else 1476 break; 1477 } 1478 if (!node) { 1479 while (prev) { 1480 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1481 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1482 node = prev; 1483 break; 1484 } 1485 prev = rb_next(prev); 1486 } 1487 } 1488 while (node) { 1489 entry = rb_entry(node, struct btrfs_inode, rb_node); 1490 inode = igrab(&entry->vfs_inode); 1491 if (inode) { 1492 spin_unlock(&root->inode_lock); 1493 return inode; 1494 } 1495 1496 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1497 if (cond_resched_lock(&root->inode_lock)) 1498 goto again; 1499 1500 node = rb_next(node); 1501 } 1502 spin_unlock(&root->inode_lock); 1503 return NULL; 1504 } 1505 1506 static int in_block_group(u64 bytenr, 1507 struct btrfs_block_group_cache *block_group) 1508 { 1509 if (bytenr >= block_group->key.objectid && 1510 bytenr < block_group->key.objectid + block_group->key.offset) 1511 return 1; 1512 return 0; 1513 } 1514 1515 /* 1516 * get new location of data 1517 */ 1518 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1519 u64 bytenr, u64 num_bytes) 1520 { 1521 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1522 struct btrfs_path *path; 1523 struct btrfs_file_extent_item *fi; 1524 struct extent_buffer *leaf; 1525 int ret; 1526 1527 path = btrfs_alloc_path(); 1528 if (!path) 1529 return -ENOMEM; 1530 1531 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1532 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1533 bytenr, 0); 1534 if (ret < 0) 1535 goto out; 1536 if (ret > 0) { 1537 ret = -ENOENT; 1538 goto out; 1539 } 1540 1541 leaf = path->nodes[0]; 1542 fi = btrfs_item_ptr(leaf, path->slots[0], 1543 struct btrfs_file_extent_item); 1544 1545 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1546 btrfs_file_extent_compression(leaf, fi) || 1547 btrfs_file_extent_encryption(leaf, fi) || 1548 btrfs_file_extent_other_encoding(leaf, fi)); 1549 1550 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1551 ret = 1; 1552 goto out; 1553 } 1554 1555 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1556 ret = 0; 1557 out: 1558 btrfs_free_path(path); 1559 return ret; 1560 } 1561 1562 /* 1563 * update file extent items in the tree leaf to point to 1564 * the new locations. 1565 */ 1566 static noinline_for_stack 1567 int replace_file_extents(struct btrfs_trans_handle *trans, 1568 struct reloc_control *rc, 1569 struct btrfs_root *root, 1570 struct extent_buffer *leaf) 1571 { 1572 struct btrfs_key key; 1573 struct btrfs_file_extent_item *fi; 1574 struct inode *inode = NULL; 1575 u64 parent; 1576 u64 bytenr; 1577 u64 new_bytenr = 0; 1578 u64 num_bytes; 1579 u64 end; 1580 u32 nritems; 1581 u32 i; 1582 int ret; 1583 int first = 1; 1584 int dirty = 0; 1585 1586 if (rc->stage != UPDATE_DATA_PTRS) 1587 return 0; 1588 1589 /* reloc trees always use full backref */ 1590 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1591 parent = leaf->start; 1592 else 1593 parent = 0; 1594 1595 nritems = btrfs_header_nritems(leaf); 1596 for (i = 0; i < nritems; i++) { 1597 cond_resched(); 1598 btrfs_item_key_to_cpu(leaf, &key, i); 1599 if (key.type != BTRFS_EXTENT_DATA_KEY) 1600 continue; 1601 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1602 if (btrfs_file_extent_type(leaf, fi) == 1603 BTRFS_FILE_EXTENT_INLINE) 1604 continue; 1605 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1606 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1607 if (bytenr == 0) 1608 continue; 1609 if (!in_block_group(bytenr, rc->block_group)) 1610 continue; 1611 1612 /* 1613 * if we are modifying block in fs tree, wait for readpage 1614 * to complete and drop the extent cache 1615 */ 1616 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1617 if (first) { 1618 inode = find_next_inode(root, key.objectid); 1619 first = 0; 1620 } else if (inode && btrfs_ino(inode) < key.objectid) { 1621 btrfs_add_delayed_iput(inode); 1622 inode = find_next_inode(root, key.objectid); 1623 } 1624 if (inode && btrfs_ino(inode) == key.objectid) { 1625 end = key.offset + 1626 btrfs_file_extent_num_bytes(leaf, fi); 1627 WARN_ON(!IS_ALIGNED(key.offset, 1628 root->sectorsize)); 1629 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1630 end--; 1631 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1632 key.offset, end); 1633 if (!ret) 1634 continue; 1635 1636 btrfs_drop_extent_cache(inode, key.offset, end, 1637 1); 1638 unlock_extent(&BTRFS_I(inode)->io_tree, 1639 key.offset, end); 1640 } 1641 } 1642 1643 ret = get_new_location(rc->data_inode, &new_bytenr, 1644 bytenr, num_bytes); 1645 if (ret > 0) { 1646 WARN_ON(1); 1647 continue; 1648 } 1649 BUG_ON(ret < 0); 1650 1651 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1652 dirty = 1; 1653 1654 key.offset -= btrfs_file_extent_offset(leaf, fi); 1655 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1656 num_bytes, parent, 1657 btrfs_header_owner(leaf), 1658 key.objectid, key.offset, 1); 1659 BUG_ON(ret); 1660 1661 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1662 parent, btrfs_header_owner(leaf), 1663 key.objectid, key.offset, 1); 1664 BUG_ON(ret); 1665 } 1666 if (dirty) 1667 btrfs_mark_buffer_dirty(leaf); 1668 if (inode) 1669 btrfs_add_delayed_iput(inode); 1670 return 0; 1671 } 1672 1673 static noinline_for_stack 1674 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1675 struct btrfs_path *path, int level) 1676 { 1677 struct btrfs_disk_key key1; 1678 struct btrfs_disk_key key2; 1679 btrfs_node_key(eb, &key1, slot); 1680 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1681 return memcmp(&key1, &key2, sizeof(key1)); 1682 } 1683 1684 /* 1685 * try to replace tree blocks in fs tree with the new blocks 1686 * in reloc tree. tree blocks haven't been modified since the 1687 * reloc tree was create can be replaced. 1688 * 1689 * if a block was replaced, level of the block + 1 is returned. 1690 * if no block got replaced, 0 is returned. if there are other 1691 * errors, a negative error number is returned. 1692 */ 1693 static noinline_for_stack 1694 int replace_path(struct btrfs_trans_handle *trans, 1695 struct btrfs_root *dest, struct btrfs_root *src, 1696 struct btrfs_path *path, struct btrfs_key *next_key, 1697 int lowest_level, int max_level) 1698 { 1699 struct extent_buffer *eb; 1700 struct extent_buffer *parent; 1701 struct btrfs_key key; 1702 u64 old_bytenr; 1703 u64 new_bytenr; 1704 u64 old_ptr_gen; 1705 u64 new_ptr_gen; 1706 u64 last_snapshot; 1707 u32 blocksize; 1708 int cow = 0; 1709 int level; 1710 int ret; 1711 int slot; 1712 1713 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1714 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1715 1716 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1717 again: 1718 slot = path->slots[lowest_level]; 1719 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1720 1721 eb = btrfs_lock_root_node(dest); 1722 btrfs_set_lock_blocking(eb); 1723 level = btrfs_header_level(eb); 1724 1725 if (level < lowest_level) { 1726 btrfs_tree_unlock(eb); 1727 free_extent_buffer(eb); 1728 return 0; 1729 } 1730 1731 if (cow) { 1732 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1733 BUG_ON(ret); 1734 } 1735 btrfs_set_lock_blocking(eb); 1736 1737 if (next_key) { 1738 next_key->objectid = (u64)-1; 1739 next_key->type = (u8)-1; 1740 next_key->offset = (u64)-1; 1741 } 1742 1743 parent = eb; 1744 while (1) { 1745 level = btrfs_header_level(parent); 1746 BUG_ON(level < lowest_level); 1747 1748 ret = btrfs_bin_search(parent, &key, level, &slot); 1749 if (ret && slot > 0) 1750 slot--; 1751 1752 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1753 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1754 1755 old_bytenr = btrfs_node_blockptr(parent, slot); 1756 blocksize = btrfs_level_size(dest, level - 1); 1757 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1758 1759 if (level <= max_level) { 1760 eb = path->nodes[level]; 1761 new_bytenr = btrfs_node_blockptr(eb, 1762 path->slots[level]); 1763 new_ptr_gen = btrfs_node_ptr_generation(eb, 1764 path->slots[level]); 1765 } else { 1766 new_bytenr = 0; 1767 new_ptr_gen = 0; 1768 } 1769 1770 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1771 WARN_ON(1); 1772 ret = level; 1773 break; 1774 } 1775 1776 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1777 memcmp_node_keys(parent, slot, path, level)) { 1778 if (level <= lowest_level) { 1779 ret = 0; 1780 break; 1781 } 1782 1783 eb = read_tree_block(dest, old_bytenr, blocksize, 1784 old_ptr_gen); 1785 if (!eb || !extent_buffer_uptodate(eb)) { 1786 ret = (!eb) ? -ENOMEM : -EIO; 1787 free_extent_buffer(eb); 1788 break; 1789 } 1790 btrfs_tree_lock(eb); 1791 if (cow) { 1792 ret = btrfs_cow_block(trans, dest, eb, parent, 1793 slot, &eb); 1794 BUG_ON(ret); 1795 } 1796 btrfs_set_lock_blocking(eb); 1797 1798 btrfs_tree_unlock(parent); 1799 free_extent_buffer(parent); 1800 1801 parent = eb; 1802 continue; 1803 } 1804 1805 if (!cow) { 1806 btrfs_tree_unlock(parent); 1807 free_extent_buffer(parent); 1808 cow = 1; 1809 goto again; 1810 } 1811 1812 btrfs_node_key_to_cpu(path->nodes[level], &key, 1813 path->slots[level]); 1814 btrfs_release_path(path); 1815 1816 path->lowest_level = level; 1817 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1818 path->lowest_level = 0; 1819 BUG_ON(ret); 1820 1821 /* 1822 * swap blocks in fs tree and reloc tree. 1823 */ 1824 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1825 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1826 btrfs_mark_buffer_dirty(parent); 1827 1828 btrfs_set_node_blockptr(path->nodes[level], 1829 path->slots[level], old_bytenr); 1830 btrfs_set_node_ptr_generation(path->nodes[level], 1831 path->slots[level], old_ptr_gen); 1832 btrfs_mark_buffer_dirty(path->nodes[level]); 1833 1834 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1835 path->nodes[level]->start, 1836 src->root_key.objectid, level - 1, 0, 1837 1); 1838 BUG_ON(ret); 1839 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1840 0, dest->root_key.objectid, level - 1, 1841 0, 1); 1842 BUG_ON(ret); 1843 1844 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1845 path->nodes[level]->start, 1846 src->root_key.objectid, level - 1, 0, 1847 1); 1848 BUG_ON(ret); 1849 1850 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1851 0, dest->root_key.objectid, level - 1, 1852 0, 1); 1853 BUG_ON(ret); 1854 1855 btrfs_unlock_up_safe(path, 0); 1856 1857 ret = level; 1858 break; 1859 } 1860 btrfs_tree_unlock(parent); 1861 free_extent_buffer(parent); 1862 return ret; 1863 } 1864 1865 /* 1866 * helper to find next relocated block in reloc tree 1867 */ 1868 static noinline_for_stack 1869 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1870 int *level) 1871 { 1872 struct extent_buffer *eb; 1873 int i; 1874 u64 last_snapshot; 1875 u32 nritems; 1876 1877 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1878 1879 for (i = 0; i < *level; i++) { 1880 free_extent_buffer(path->nodes[i]); 1881 path->nodes[i] = NULL; 1882 } 1883 1884 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1885 eb = path->nodes[i]; 1886 nritems = btrfs_header_nritems(eb); 1887 while (path->slots[i] + 1 < nritems) { 1888 path->slots[i]++; 1889 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1890 last_snapshot) 1891 continue; 1892 1893 *level = i; 1894 return 0; 1895 } 1896 free_extent_buffer(path->nodes[i]); 1897 path->nodes[i] = NULL; 1898 } 1899 return 1; 1900 } 1901 1902 /* 1903 * walk down reloc tree to find relocated block of lowest level 1904 */ 1905 static noinline_for_stack 1906 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1907 int *level) 1908 { 1909 struct extent_buffer *eb = NULL; 1910 int i; 1911 u64 bytenr; 1912 u64 ptr_gen = 0; 1913 u64 last_snapshot; 1914 u32 blocksize; 1915 u32 nritems; 1916 1917 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1918 1919 for (i = *level; i > 0; i--) { 1920 eb = path->nodes[i]; 1921 nritems = btrfs_header_nritems(eb); 1922 while (path->slots[i] < nritems) { 1923 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1924 if (ptr_gen > last_snapshot) 1925 break; 1926 path->slots[i]++; 1927 } 1928 if (path->slots[i] >= nritems) { 1929 if (i == *level) 1930 break; 1931 *level = i + 1; 1932 return 0; 1933 } 1934 if (i == 1) { 1935 *level = i; 1936 return 0; 1937 } 1938 1939 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1940 blocksize = btrfs_level_size(root, i - 1); 1941 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1942 if (!eb || !extent_buffer_uptodate(eb)) { 1943 free_extent_buffer(eb); 1944 return -EIO; 1945 } 1946 BUG_ON(btrfs_header_level(eb) != i - 1); 1947 path->nodes[i - 1] = eb; 1948 path->slots[i - 1] = 0; 1949 } 1950 return 1; 1951 } 1952 1953 /* 1954 * invalidate extent cache for file extents whose key in range of 1955 * [min_key, max_key) 1956 */ 1957 static int invalidate_extent_cache(struct btrfs_root *root, 1958 struct btrfs_key *min_key, 1959 struct btrfs_key *max_key) 1960 { 1961 struct inode *inode = NULL; 1962 u64 objectid; 1963 u64 start, end; 1964 u64 ino; 1965 1966 objectid = min_key->objectid; 1967 while (1) { 1968 cond_resched(); 1969 iput(inode); 1970 1971 if (objectid > max_key->objectid) 1972 break; 1973 1974 inode = find_next_inode(root, objectid); 1975 if (!inode) 1976 break; 1977 ino = btrfs_ino(inode); 1978 1979 if (ino > max_key->objectid) { 1980 iput(inode); 1981 break; 1982 } 1983 1984 objectid = ino + 1; 1985 if (!S_ISREG(inode->i_mode)) 1986 continue; 1987 1988 if (unlikely(min_key->objectid == ino)) { 1989 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1990 continue; 1991 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1992 start = 0; 1993 else { 1994 start = min_key->offset; 1995 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1996 } 1997 } else { 1998 start = 0; 1999 } 2000 2001 if (unlikely(max_key->objectid == ino)) { 2002 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 2003 continue; 2004 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 2005 end = (u64)-1; 2006 } else { 2007 if (max_key->offset == 0) 2008 continue; 2009 end = max_key->offset; 2010 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 2011 end--; 2012 } 2013 } else { 2014 end = (u64)-1; 2015 } 2016 2017 /* the lock_extent waits for readpage to complete */ 2018 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 2019 btrfs_drop_extent_cache(inode, start, end, 1); 2020 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 2021 } 2022 return 0; 2023 } 2024 2025 static int find_next_key(struct btrfs_path *path, int level, 2026 struct btrfs_key *key) 2027 2028 { 2029 while (level < BTRFS_MAX_LEVEL) { 2030 if (!path->nodes[level]) 2031 break; 2032 if (path->slots[level] + 1 < 2033 btrfs_header_nritems(path->nodes[level])) { 2034 btrfs_node_key_to_cpu(path->nodes[level], key, 2035 path->slots[level] + 1); 2036 return 0; 2037 } 2038 level++; 2039 } 2040 return 1; 2041 } 2042 2043 /* 2044 * merge the relocated tree blocks in reloc tree with corresponding 2045 * fs tree. 2046 */ 2047 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 2048 struct btrfs_root *root) 2049 { 2050 LIST_HEAD(inode_list); 2051 struct btrfs_key key; 2052 struct btrfs_key next_key; 2053 struct btrfs_trans_handle *trans; 2054 struct btrfs_root *reloc_root; 2055 struct btrfs_root_item *root_item; 2056 struct btrfs_path *path; 2057 struct extent_buffer *leaf; 2058 int level; 2059 int max_level; 2060 int replaced = 0; 2061 int ret; 2062 int err = 0; 2063 u32 min_reserved; 2064 2065 path = btrfs_alloc_path(); 2066 if (!path) 2067 return -ENOMEM; 2068 path->reada = 1; 2069 2070 reloc_root = root->reloc_root; 2071 root_item = &reloc_root->root_item; 2072 2073 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2074 level = btrfs_root_level(root_item); 2075 extent_buffer_get(reloc_root->node); 2076 path->nodes[level] = reloc_root->node; 2077 path->slots[level] = 0; 2078 } else { 2079 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2080 2081 level = root_item->drop_level; 2082 BUG_ON(level == 0); 2083 path->lowest_level = level; 2084 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2085 path->lowest_level = 0; 2086 if (ret < 0) { 2087 btrfs_free_path(path); 2088 return ret; 2089 } 2090 2091 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2092 path->slots[level]); 2093 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2094 2095 btrfs_unlock_up_safe(path, 0); 2096 } 2097 2098 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2099 memset(&next_key, 0, sizeof(next_key)); 2100 2101 while (1) { 2102 trans = btrfs_start_transaction(root, 0); 2103 BUG_ON(IS_ERR(trans)); 2104 trans->block_rsv = rc->block_rsv; 2105 2106 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved, 2107 BTRFS_RESERVE_FLUSH_ALL); 2108 if (ret) { 2109 BUG_ON(ret != -EAGAIN); 2110 ret = btrfs_commit_transaction(trans, root); 2111 BUG_ON(ret); 2112 continue; 2113 } 2114 2115 replaced = 0; 2116 max_level = level; 2117 2118 ret = walk_down_reloc_tree(reloc_root, path, &level); 2119 if (ret < 0) { 2120 err = ret; 2121 goto out; 2122 } 2123 if (ret > 0) 2124 break; 2125 2126 if (!find_next_key(path, level, &key) && 2127 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2128 ret = 0; 2129 } else { 2130 ret = replace_path(trans, root, reloc_root, path, 2131 &next_key, level, max_level); 2132 } 2133 if (ret < 0) { 2134 err = ret; 2135 goto out; 2136 } 2137 2138 if (ret > 0) { 2139 level = ret; 2140 btrfs_node_key_to_cpu(path->nodes[level], &key, 2141 path->slots[level]); 2142 replaced = 1; 2143 } 2144 2145 ret = walk_up_reloc_tree(reloc_root, path, &level); 2146 if (ret > 0) 2147 break; 2148 2149 BUG_ON(level == 0); 2150 /* 2151 * save the merging progress in the drop_progress. 2152 * this is OK since root refs == 1 in this case. 2153 */ 2154 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2155 path->slots[level]); 2156 root_item->drop_level = level; 2157 2158 btrfs_end_transaction_throttle(trans, root); 2159 2160 btrfs_btree_balance_dirty(root); 2161 2162 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2163 invalidate_extent_cache(root, &key, &next_key); 2164 } 2165 2166 /* 2167 * handle the case only one block in the fs tree need to be 2168 * relocated and the block is tree root. 2169 */ 2170 leaf = btrfs_lock_root_node(root); 2171 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2172 btrfs_tree_unlock(leaf); 2173 free_extent_buffer(leaf); 2174 if (ret < 0) 2175 err = ret; 2176 out: 2177 btrfs_free_path(path); 2178 2179 if (err == 0) { 2180 memset(&root_item->drop_progress, 0, 2181 sizeof(root_item->drop_progress)); 2182 root_item->drop_level = 0; 2183 btrfs_set_root_refs(root_item, 0); 2184 btrfs_update_reloc_root(trans, root); 2185 } 2186 2187 btrfs_end_transaction_throttle(trans, root); 2188 2189 btrfs_btree_balance_dirty(root); 2190 2191 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2192 invalidate_extent_cache(root, &key, &next_key); 2193 2194 return err; 2195 } 2196 2197 static noinline_for_stack 2198 int prepare_to_merge(struct reloc_control *rc, int err) 2199 { 2200 struct btrfs_root *root = rc->extent_root; 2201 struct btrfs_root *reloc_root; 2202 struct btrfs_trans_handle *trans; 2203 LIST_HEAD(reloc_roots); 2204 u64 num_bytes = 0; 2205 int ret; 2206 2207 mutex_lock(&root->fs_info->reloc_mutex); 2208 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2209 rc->merging_rsv_size += rc->nodes_relocated * 2; 2210 mutex_unlock(&root->fs_info->reloc_mutex); 2211 2212 again: 2213 if (!err) { 2214 num_bytes = rc->merging_rsv_size; 2215 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2216 BTRFS_RESERVE_FLUSH_ALL); 2217 if (ret) 2218 err = ret; 2219 } 2220 2221 trans = btrfs_join_transaction(rc->extent_root); 2222 if (IS_ERR(trans)) { 2223 if (!err) 2224 btrfs_block_rsv_release(rc->extent_root, 2225 rc->block_rsv, num_bytes); 2226 return PTR_ERR(trans); 2227 } 2228 2229 if (!err) { 2230 if (num_bytes != rc->merging_rsv_size) { 2231 btrfs_end_transaction(trans, rc->extent_root); 2232 btrfs_block_rsv_release(rc->extent_root, 2233 rc->block_rsv, num_bytes); 2234 goto again; 2235 } 2236 } 2237 2238 rc->merge_reloc_tree = 1; 2239 2240 while (!list_empty(&rc->reloc_roots)) { 2241 reloc_root = list_entry(rc->reloc_roots.next, 2242 struct btrfs_root, root_list); 2243 list_del_init(&reloc_root->root_list); 2244 2245 root = read_fs_root(reloc_root->fs_info, 2246 reloc_root->root_key.offset); 2247 BUG_ON(IS_ERR(root)); 2248 BUG_ON(root->reloc_root != reloc_root); 2249 2250 /* 2251 * set reference count to 1, so btrfs_recover_relocation 2252 * knows it should resumes merging 2253 */ 2254 if (!err) 2255 btrfs_set_root_refs(&reloc_root->root_item, 1); 2256 btrfs_update_reloc_root(trans, root); 2257 2258 list_add(&reloc_root->root_list, &reloc_roots); 2259 } 2260 2261 list_splice(&reloc_roots, &rc->reloc_roots); 2262 2263 if (!err) 2264 btrfs_commit_transaction(trans, rc->extent_root); 2265 else 2266 btrfs_end_transaction(trans, rc->extent_root); 2267 return err; 2268 } 2269 2270 static noinline_for_stack 2271 void free_reloc_roots(struct list_head *list) 2272 { 2273 struct btrfs_root *reloc_root; 2274 2275 while (!list_empty(list)) { 2276 reloc_root = list_entry(list->next, struct btrfs_root, 2277 root_list); 2278 __update_reloc_root(reloc_root, 1); 2279 free_extent_buffer(reloc_root->node); 2280 free_extent_buffer(reloc_root->commit_root); 2281 kfree(reloc_root); 2282 } 2283 } 2284 2285 static noinline_for_stack 2286 int merge_reloc_roots(struct reloc_control *rc) 2287 { 2288 struct btrfs_trans_handle *trans; 2289 struct btrfs_root *root; 2290 struct btrfs_root *reloc_root; 2291 u64 last_snap; 2292 u64 otransid; 2293 u64 objectid; 2294 LIST_HEAD(reloc_roots); 2295 int found = 0; 2296 int ret = 0; 2297 again: 2298 root = rc->extent_root; 2299 2300 /* 2301 * this serializes us with btrfs_record_root_in_transaction, 2302 * we have to make sure nobody is in the middle of 2303 * adding their roots to the list while we are 2304 * doing this splice 2305 */ 2306 mutex_lock(&root->fs_info->reloc_mutex); 2307 list_splice_init(&rc->reloc_roots, &reloc_roots); 2308 mutex_unlock(&root->fs_info->reloc_mutex); 2309 2310 while (!list_empty(&reloc_roots)) { 2311 found = 1; 2312 reloc_root = list_entry(reloc_roots.next, 2313 struct btrfs_root, root_list); 2314 2315 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2316 root = read_fs_root(reloc_root->fs_info, 2317 reloc_root->root_key.offset); 2318 BUG_ON(IS_ERR(root)); 2319 BUG_ON(root->reloc_root != reloc_root); 2320 2321 ret = merge_reloc_root(rc, root); 2322 if (ret) { 2323 __update_reloc_root(reloc_root, 1); 2324 free_extent_buffer(reloc_root->node); 2325 free_extent_buffer(reloc_root->commit_root); 2326 kfree(reloc_root); 2327 goto out; 2328 } 2329 } else { 2330 list_del_init(&reloc_root->root_list); 2331 } 2332 2333 /* 2334 * we keep the old last snapshod transid in rtranid when we 2335 * created the relocation tree. 2336 */ 2337 last_snap = btrfs_root_rtransid(&reloc_root->root_item); 2338 otransid = btrfs_root_otransid(&reloc_root->root_item); 2339 objectid = reloc_root->root_key.offset; 2340 2341 ret = btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2342 if (ret < 0) { 2343 if (list_empty(&reloc_root->root_list)) 2344 list_add_tail(&reloc_root->root_list, 2345 &reloc_roots); 2346 goto out; 2347 } else if (!ret) { 2348 /* 2349 * recover the last snapshot tranid to avoid 2350 * the space balance break NOCOW. 2351 */ 2352 root = read_fs_root(rc->extent_root->fs_info, 2353 objectid); 2354 if (IS_ERR(root)) 2355 continue; 2356 2357 if (btrfs_root_refs(&root->root_item) == 0) 2358 continue; 2359 2360 trans = btrfs_join_transaction(root); 2361 BUG_ON(IS_ERR(trans)); 2362 2363 /* Check if the fs/file tree was snapshoted or not. */ 2364 if (btrfs_root_last_snapshot(&root->root_item) == 2365 otransid - 1) 2366 btrfs_set_root_last_snapshot(&root->root_item, 2367 last_snap); 2368 2369 btrfs_end_transaction(trans, root); 2370 } 2371 } 2372 2373 if (found) { 2374 found = 0; 2375 goto again; 2376 } 2377 out: 2378 if (ret) { 2379 btrfs_std_error(root->fs_info, ret); 2380 if (!list_empty(&reloc_roots)) 2381 free_reloc_roots(&reloc_roots); 2382 } 2383 2384 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2385 return ret; 2386 } 2387 2388 static void free_block_list(struct rb_root *blocks) 2389 { 2390 struct tree_block *block; 2391 struct rb_node *rb_node; 2392 while ((rb_node = rb_first(blocks))) { 2393 block = rb_entry(rb_node, struct tree_block, rb_node); 2394 rb_erase(rb_node, blocks); 2395 kfree(block); 2396 } 2397 } 2398 2399 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2400 struct btrfs_root *reloc_root) 2401 { 2402 struct btrfs_root *root; 2403 2404 if (reloc_root->last_trans == trans->transid) 2405 return 0; 2406 2407 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2408 BUG_ON(IS_ERR(root)); 2409 BUG_ON(root->reloc_root != reloc_root); 2410 2411 return btrfs_record_root_in_trans(trans, root); 2412 } 2413 2414 static noinline_for_stack 2415 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2416 struct reloc_control *rc, 2417 struct backref_node *node, 2418 struct backref_edge *edges[], int *nr) 2419 { 2420 struct backref_node *next; 2421 struct btrfs_root *root; 2422 int index = 0; 2423 2424 next = node; 2425 while (1) { 2426 cond_resched(); 2427 next = walk_up_backref(next, edges, &index); 2428 root = next->root; 2429 BUG_ON(!root); 2430 BUG_ON(!root->ref_cows); 2431 2432 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2433 record_reloc_root_in_trans(trans, root); 2434 break; 2435 } 2436 2437 btrfs_record_root_in_trans(trans, root); 2438 root = root->reloc_root; 2439 2440 if (next->new_bytenr != root->node->start) { 2441 BUG_ON(next->new_bytenr); 2442 BUG_ON(!list_empty(&next->list)); 2443 next->new_bytenr = root->node->start; 2444 next->root = root; 2445 list_add_tail(&next->list, 2446 &rc->backref_cache.changed); 2447 __mark_block_processed(rc, next); 2448 break; 2449 } 2450 2451 WARN_ON(1); 2452 root = NULL; 2453 next = walk_down_backref(edges, &index); 2454 if (!next || next->level <= node->level) 2455 break; 2456 } 2457 if (!root) 2458 return NULL; 2459 2460 *nr = index; 2461 next = node; 2462 /* setup backref node path for btrfs_reloc_cow_block */ 2463 while (1) { 2464 rc->backref_cache.path[next->level] = next; 2465 if (--index < 0) 2466 break; 2467 next = edges[index]->node[UPPER]; 2468 } 2469 return root; 2470 } 2471 2472 /* 2473 * select a tree root for relocation. return NULL if the block 2474 * is reference counted. we should use do_relocation() in this 2475 * case. return a tree root pointer if the block isn't reference 2476 * counted. return -ENOENT if the block is root of reloc tree. 2477 */ 2478 static noinline_for_stack 2479 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2480 struct backref_node *node) 2481 { 2482 struct backref_node *next; 2483 struct btrfs_root *root; 2484 struct btrfs_root *fs_root = NULL; 2485 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2486 int index = 0; 2487 2488 next = node; 2489 while (1) { 2490 cond_resched(); 2491 next = walk_up_backref(next, edges, &index); 2492 root = next->root; 2493 BUG_ON(!root); 2494 2495 /* no other choice for non-references counted tree */ 2496 if (!root->ref_cows) 2497 return root; 2498 2499 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2500 fs_root = root; 2501 2502 if (next != node) 2503 return NULL; 2504 2505 next = walk_down_backref(edges, &index); 2506 if (!next || next->level <= node->level) 2507 break; 2508 } 2509 2510 if (!fs_root) 2511 return ERR_PTR(-ENOENT); 2512 return fs_root; 2513 } 2514 2515 static noinline_for_stack 2516 u64 calcu_metadata_size(struct reloc_control *rc, 2517 struct backref_node *node, int reserve) 2518 { 2519 struct backref_node *next = node; 2520 struct backref_edge *edge; 2521 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2522 u64 num_bytes = 0; 2523 int index = 0; 2524 2525 BUG_ON(reserve && node->processed); 2526 2527 while (next) { 2528 cond_resched(); 2529 while (1) { 2530 if (next->processed && (reserve || next != node)) 2531 break; 2532 2533 num_bytes += btrfs_level_size(rc->extent_root, 2534 next->level); 2535 2536 if (list_empty(&next->upper)) 2537 break; 2538 2539 edge = list_entry(next->upper.next, 2540 struct backref_edge, list[LOWER]); 2541 edges[index++] = edge; 2542 next = edge->node[UPPER]; 2543 } 2544 next = walk_down_backref(edges, &index); 2545 } 2546 return num_bytes; 2547 } 2548 2549 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2550 struct reloc_control *rc, 2551 struct backref_node *node) 2552 { 2553 struct btrfs_root *root = rc->extent_root; 2554 u64 num_bytes; 2555 int ret; 2556 2557 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2558 2559 trans->block_rsv = rc->block_rsv; 2560 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes, 2561 BTRFS_RESERVE_FLUSH_ALL); 2562 if (ret) { 2563 if (ret == -EAGAIN) 2564 rc->commit_transaction = 1; 2565 return ret; 2566 } 2567 2568 return 0; 2569 } 2570 2571 static void release_metadata_space(struct reloc_control *rc, 2572 struct backref_node *node) 2573 { 2574 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2575 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2576 } 2577 2578 /* 2579 * relocate a block tree, and then update pointers in upper level 2580 * blocks that reference the block to point to the new location. 2581 * 2582 * if called by link_to_upper, the block has already been relocated. 2583 * in that case this function just updates pointers. 2584 */ 2585 static int do_relocation(struct btrfs_trans_handle *trans, 2586 struct reloc_control *rc, 2587 struct backref_node *node, 2588 struct btrfs_key *key, 2589 struct btrfs_path *path, int lowest) 2590 { 2591 struct backref_node *upper; 2592 struct backref_edge *edge; 2593 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2594 struct btrfs_root *root; 2595 struct extent_buffer *eb; 2596 u32 blocksize; 2597 u64 bytenr; 2598 u64 generation; 2599 int nr; 2600 int slot; 2601 int ret; 2602 int err = 0; 2603 2604 BUG_ON(lowest && node->eb); 2605 2606 path->lowest_level = node->level + 1; 2607 rc->backref_cache.path[node->level] = node; 2608 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2609 cond_resched(); 2610 2611 upper = edge->node[UPPER]; 2612 root = select_reloc_root(trans, rc, upper, edges, &nr); 2613 BUG_ON(!root); 2614 2615 if (upper->eb && !upper->locked) { 2616 if (!lowest) { 2617 ret = btrfs_bin_search(upper->eb, key, 2618 upper->level, &slot); 2619 BUG_ON(ret); 2620 bytenr = btrfs_node_blockptr(upper->eb, slot); 2621 if (node->eb->start == bytenr) 2622 goto next; 2623 } 2624 drop_node_buffer(upper); 2625 } 2626 2627 if (!upper->eb) { 2628 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2629 if (ret < 0) { 2630 err = ret; 2631 break; 2632 } 2633 BUG_ON(ret > 0); 2634 2635 if (!upper->eb) { 2636 upper->eb = path->nodes[upper->level]; 2637 path->nodes[upper->level] = NULL; 2638 } else { 2639 BUG_ON(upper->eb != path->nodes[upper->level]); 2640 } 2641 2642 upper->locked = 1; 2643 path->locks[upper->level] = 0; 2644 2645 slot = path->slots[upper->level]; 2646 btrfs_release_path(path); 2647 } else { 2648 ret = btrfs_bin_search(upper->eb, key, upper->level, 2649 &slot); 2650 BUG_ON(ret); 2651 } 2652 2653 bytenr = btrfs_node_blockptr(upper->eb, slot); 2654 if (lowest) { 2655 BUG_ON(bytenr != node->bytenr); 2656 } else { 2657 if (node->eb->start == bytenr) 2658 goto next; 2659 } 2660 2661 blocksize = btrfs_level_size(root, node->level); 2662 generation = btrfs_node_ptr_generation(upper->eb, slot); 2663 eb = read_tree_block(root, bytenr, blocksize, generation); 2664 if (!eb || !extent_buffer_uptodate(eb)) { 2665 free_extent_buffer(eb); 2666 err = -EIO; 2667 goto next; 2668 } 2669 btrfs_tree_lock(eb); 2670 btrfs_set_lock_blocking(eb); 2671 2672 if (!node->eb) { 2673 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2674 slot, &eb); 2675 btrfs_tree_unlock(eb); 2676 free_extent_buffer(eb); 2677 if (ret < 0) { 2678 err = ret; 2679 goto next; 2680 } 2681 BUG_ON(node->eb != eb); 2682 } else { 2683 btrfs_set_node_blockptr(upper->eb, slot, 2684 node->eb->start); 2685 btrfs_set_node_ptr_generation(upper->eb, slot, 2686 trans->transid); 2687 btrfs_mark_buffer_dirty(upper->eb); 2688 2689 ret = btrfs_inc_extent_ref(trans, root, 2690 node->eb->start, blocksize, 2691 upper->eb->start, 2692 btrfs_header_owner(upper->eb), 2693 node->level, 0, 1); 2694 BUG_ON(ret); 2695 2696 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2697 BUG_ON(ret); 2698 } 2699 next: 2700 if (!upper->pending) 2701 drop_node_buffer(upper); 2702 else 2703 unlock_node_buffer(upper); 2704 if (err) 2705 break; 2706 } 2707 2708 if (!err && node->pending) { 2709 drop_node_buffer(node); 2710 list_move_tail(&node->list, &rc->backref_cache.changed); 2711 node->pending = 0; 2712 } 2713 2714 path->lowest_level = 0; 2715 BUG_ON(err == -ENOSPC); 2716 return err; 2717 } 2718 2719 static int link_to_upper(struct btrfs_trans_handle *trans, 2720 struct reloc_control *rc, 2721 struct backref_node *node, 2722 struct btrfs_path *path) 2723 { 2724 struct btrfs_key key; 2725 2726 btrfs_node_key_to_cpu(node->eb, &key, 0); 2727 return do_relocation(trans, rc, node, &key, path, 0); 2728 } 2729 2730 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2731 struct reloc_control *rc, 2732 struct btrfs_path *path, int err) 2733 { 2734 LIST_HEAD(list); 2735 struct backref_cache *cache = &rc->backref_cache; 2736 struct backref_node *node; 2737 int level; 2738 int ret; 2739 2740 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2741 while (!list_empty(&cache->pending[level])) { 2742 node = list_entry(cache->pending[level].next, 2743 struct backref_node, list); 2744 list_move_tail(&node->list, &list); 2745 BUG_ON(!node->pending); 2746 2747 if (!err) { 2748 ret = link_to_upper(trans, rc, node, path); 2749 if (ret < 0) 2750 err = ret; 2751 } 2752 } 2753 list_splice_init(&list, &cache->pending[level]); 2754 } 2755 return err; 2756 } 2757 2758 static void mark_block_processed(struct reloc_control *rc, 2759 u64 bytenr, u32 blocksize) 2760 { 2761 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2762 EXTENT_DIRTY, GFP_NOFS); 2763 } 2764 2765 static void __mark_block_processed(struct reloc_control *rc, 2766 struct backref_node *node) 2767 { 2768 u32 blocksize; 2769 if (node->level == 0 || 2770 in_block_group(node->bytenr, rc->block_group)) { 2771 blocksize = btrfs_level_size(rc->extent_root, node->level); 2772 mark_block_processed(rc, node->bytenr, blocksize); 2773 } 2774 node->processed = 1; 2775 } 2776 2777 /* 2778 * mark a block and all blocks directly/indirectly reference the block 2779 * as processed. 2780 */ 2781 static void update_processed_blocks(struct reloc_control *rc, 2782 struct backref_node *node) 2783 { 2784 struct backref_node *next = node; 2785 struct backref_edge *edge; 2786 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2787 int index = 0; 2788 2789 while (next) { 2790 cond_resched(); 2791 while (1) { 2792 if (next->processed) 2793 break; 2794 2795 __mark_block_processed(rc, next); 2796 2797 if (list_empty(&next->upper)) 2798 break; 2799 2800 edge = list_entry(next->upper.next, 2801 struct backref_edge, list[LOWER]); 2802 edges[index++] = edge; 2803 next = edge->node[UPPER]; 2804 } 2805 next = walk_down_backref(edges, &index); 2806 } 2807 } 2808 2809 static int tree_block_processed(u64 bytenr, u32 blocksize, 2810 struct reloc_control *rc) 2811 { 2812 if (test_range_bit(&rc->processed_blocks, bytenr, 2813 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2814 return 1; 2815 return 0; 2816 } 2817 2818 static int get_tree_block_key(struct reloc_control *rc, 2819 struct tree_block *block) 2820 { 2821 struct extent_buffer *eb; 2822 2823 BUG_ON(block->key_ready); 2824 eb = read_tree_block(rc->extent_root, block->bytenr, 2825 block->key.objectid, block->key.offset); 2826 if (!eb || !extent_buffer_uptodate(eb)) { 2827 free_extent_buffer(eb); 2828 return -EIO; 2829 } 2830 WARN_ON(btrfs_header_level(eb) != block->level); 2831 if (block->level == 0) 2832 btrfs_item_key_to_cpu(eb, &block->key, 0); 2833 else 2834 btrfs_node_key_to_cpu(eb, &block->key, 0); 2835 free_extent_buffer(eb); 2836 block->key_ready = 1; 2837 return 0; 2838 } 2839 2840 static int reada_tree_block(struct reloc_control *rc, 2841 struct tree_block *block) 2842 { 2843 BUG_ON(block->key_ready); 2844 if (block->key.type == BTRFS_METADATA_ITEM_KEY) 2845 readahead_tree_block(rc->extent_root, block->bytenr, 2846 block->key.objectid, 2847 rc->extent_root->leafsize); 2848 else 2849 readahead_tree_block(rc->extent_root, block->bytenr, 2850 block->key.objectid, block->key.offset); 2851 return 0; 2852 } 2853 2854 /* 2855 * helper function to relocate a tree block 2856 */ 2857 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2858 struct reloc_control *rc, 2859 struct backref_node *node, 2860 struct btrfs_key *key, 2861 struct btrfs_path *path) 2862 { 2863 struct btrfs_root *root; 2864 int release = 0; 2865 int ret = 0; 2866 2867 if (!node) 2868 return 0; 2869 2870 BUG_ON(node->processed); 2871 root = select_one_root(trans, node); 2872 if (root == ERR_PTR(-ENOENT)) { 2873 update_processed_blocks(rc, node); 2874 goto out; 2875 } 2876 2877 if (!root || root->ref_cows) { 2878 ret = reserve_metadata_space(trans, rc, node); 2879 if (ret) 2880 goto out; 2881 release = 1; 2882 } 2883 2884 if (root) { 2885 if (root->ref_cows) { 2886 BUG_ON(node->new_bytenr); 2887 BUG_ON(!list_empty(&node->list)); 2888 btrfs_record_root_in_trans(trans, root); 2889 root = root->reloc_root; 2890 node->new_bytenr = root->node->start; 2891 node->root = root; 2892 list_add_tail(&node->list, &rc->backref_cache.changed); 2893 } else { 2894 path->lowest_level = node->level; 2895 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2896 btrfs_release_path(path); 2897 if (ret > 0) 2898 ret = 0; 2899 } 2900 if (!ret) 2901 update_processed_blocks(rc, node); 2902 } else { 2903 ret = do_relocation(trans, rc, node, key, path, 1); 2904 } 2905 out: 2906 if (ret || node->level == 0 || node->cowonly) { 2907 if (release) 2908 release_metadata_space(rc, node); 2909 remove_backref_node(&rc->backref_cache, node); 2910 } 2911 return ret; 2912 } 2913 2914 /* 2915 * relocate a list of blocks 2916 */ 2917 static noinline_for_stack 2918 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2919 struct reloc_control *rc, struct rb_root *blocks) 2920 { 2921 struct backref_node *node; 2922 struct btrfs_path *path; 2923 struct tree_block *block; 2924 struct rb_node *rb_node; 2925 int ret; 2926 int err = 0; 2927 2928 path = btrfs_alloc_path(); 2929 if (!path) { 2930 err = -ENOMEM; 2931 goto out_free_blocks; 2932 } 2933 2934 rb_node = rb_first(blocks); 2935 while (rb_node) { 2936 block = rb_entry(rb_node, struct tree_block, rb_node); 2937 if (!block->key_ready) 2938 reada_tree_block(rc, block); 2939 rb_node = rb_next(rb_node); 2940 } 2941 2942 rb_node = rb_first(blocks); 2943 while (rb_node) { 2944 block = rb_entry(rb_node, struct tree_block, rb_node); 2945 if (!block->key_ready) { 2946 err = get_tree_block_key(rc, block); 2947 if (err) 2948 goto out_free_path; 2949 } 2950 rb_node = rb_next(rb_node); 2951 } 2952 2953 rb_node = rb_first(blocks); 2954 while (rb_node) { 2955 block = rb_entry(rb_node, struct tree_block, rb_node); 2956 2957 node = build_backref_tree(rc, &block->key, 2958 block->level, block->bytenr); 2959 if (IS_ERR(node)) { 2960 err = PTR_ERR(node); 2961 goto out; 2962 } 2963 2964 ret = relocate_tree_block(trans, rc, node, &block->key, 2965 path); 2966 if (ret < 0) { 2967 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2968 err = ret; 2969 goto out; 2970 } 2971 rb_node = rb_next(rb_node); 2972 } 2973 out: 2974 err = finish_pending_nodes(trans, rc, path, err); 2975 2976 out_free_path: 2977 btrfs_free_path(path); 2978 out_free_blocks: 2979 free_block_list(blocks); 2980 return err; 2981 } 2982 2983 static noinline_for_stack 2984 int prealloc_file_extent_cluster(struct inode *inode, 2985 struct file_extent_cluster *cluster) 2986 { 2987 u64 alloc_hint = 0; 2988 u64 start; 2989 u64 end; 2990 u64 offset = BTRFS_I(inode)->index_cnt; 2991 u64 num_bytes; 2992 int nr = 0; 2993 int ret = 0; 2994 2995 BUG_ON(cluster->start != cluster->boundary[0]); 2996 mutex_lock(&inode->i_mutex); 2997 2998 ret = btrfs_check_data_free_space(inode, cluster->end + 2999 1 - cluster->start); 3000 if (ret) 3001 goto out; 3002 3003 while (nr < cluster->nr) { 3004 start = cluster->boundary[nr] - offset; 3005 if (nr + 1 < cluster->nr) 3006 end = cluster->boundary[nr + 1] - 1 - offset; 3007 else 3008 end = cluster->end - offset; 3009 3010 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3011 num_bytes = end + 1 - start; 3012 ret = btrfs_prealloc_file_range(inode, 0, start, 3013 num_bytes, num_bytes, 3014 end + 1, &alloc_hint); 3015 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3016 if (ret) 3017 break; 3018 nr++; 3019 } 3020 btrfs_free_reserved_data_space(inode, cluster->end + 3021 1 - cluster->start); 3022 out: 3023 mutex_unlock(&inode->i_mutex); 3024 return ret; 3025 } 3026 3027 static noinline_for_stack 3028 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 3029 u64 block_start) 3030 { 3031 struct btrfs_root *root = BTRFS_I(inode)->root; 3032 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3033 struct extent_map *em; 3034 int ret = 0; 3035 3036 em = alloc_extent_map(); 3037 if (!em) 3038 return -ENOMEM; 3039 3040 em->start = start; 3041 em->len = end + 1 - start; 3042 em->block_len = em->len; 3043 em->block_start = block_start; 3044 em->bdev = root->fs_info->fs_devices->latest_bdev; 3045 set_bit(EXTENT_FLAG_PINNED, &em->flags); 3046 3047 lock_extent(&BTRFS_I(inode)->io_tree, start, end); 3048 while (1) { 3049 write_lock(&em_tree->lock); 3050 ret = add_extent_mapping(em_tree, em, 0); 3051 write_unlock(&em_tree->lock); 3052 if (ret != -EEXIST) { 3053 free_extent_map(em); 3054 break; 3055 } 3056 btrfs_drop_extent_cache(inode, start, end, 0); 3057 } 3058 unlock_extent(&BTRFS_I(inode)->io_tree, start, end); 3059 return ret; 3060 } 3061 3062 static int relocate_file_extent_cluster(struct inode *inode, 3063 struct file_extent_cluster *cluster) 3064 { 3065 u64 page_start; 3066 u64 page_end; 3067 u64 offset = BTRFS_I(inode)->index_cnt; 3068 unsigned long index; 3069 unsigned long last_index; 3070 struct page *page; 3071 struct file_ra_state *ra; 3072 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 3073 int nr = 0; 3074 int ret = 0; 3075 3076 if (!cluster->nr) 3077 return 0; 3078 3079 ra = kzalloc(sizeof(*ra), GFP_NOFS); 3080 if (!ra) 3081 return -ENOMEM; 3082 3083 ret = prealloc_file_extent_cluster(inode, cluster); 3084 if (ret) 3085 goto out; 3086 3087 file_ra_state_init(ra, inode->i_mapping); 3088 3089 ret = setup_extent_mapping(inode, cluster->start - offset, 3090 cluster->end - offset, cluster->start); 3091 if (ret) 3092 goto out; 3093 3094 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 3095 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 3096 while (index <= last_index) { 3097 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 3098 if (ret) 3099 goto out; 3100 3101 page = find_lock_page(inode->i_mapping, index); 3102 if (!page) { 3103 page_cache_sync_readahead(inode->i_mapping, 3104 ra, NULL, index, 3105 last_index + 1 - index); 3106 page = find_or_create_page(inode->i_mapping, index, 3107 mask); 3108 if (!page) { 3109 btrfs_delalloc_release_metadata(inode, 3110 PAGE_CACHE_SIZE); 3111 ret = -ENOMEM; 3112 goto out; 3113 } 3114 } 3115 3116 if (PageReadahead(page)) { 3117 page_cache_async_readahead(inode->i_mapping, 3118 ra, NULL, page, index, 3119 last_index + 1 - index); 3120 } 3121 3122 if (!PageUptodate(page)) { 3123 btrfs_readpage(NULL, page); 3124 lock_page(page); 3125 if (!PageUptodate(page)) { 3126 unlock_page(page); 3127 page_cache_release(page); 3128 btrfs_delalloc_release_metadata(inode, 3129 PAGE_CACHE_SIZE); 3130 ret = -EIO; 3131 goto out; 3132 } 3133 } 3134 3135 page_start = page_offset(page); 3136 page_end = page_start + PAGE_CACHE_SIZE - 1; 3137 3138 lock_extent(&BTRFS_I(inode)->io_tree, page_start, page_end); 3139 3140 set_page_extent_mapped(page); 3141 3142 if (nr < cluster->nr && 3143 page_start + offset == cluster->boundary[nr]) { 3144 set_extent_bits(&BTRFS_I(inode)->io_tree, 3145 page_start, page_end, 3146 EXTENT_BOUNDARY, GFP_NOFS); 3147 nr++; 3148 } 3149 3150 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3151 set_page_dirty(page); 3152 3153 unlock_extent(&BTRFS_I(inode)->io_tree, 3154 page_start, page_end); 3155 unlock_page(page); 3156 page_cache_release(page); 3157 3158 index++; 3159 balance_dirty_pages_ratelimited(inode->i_mapping); 3160 btrfs_throttle(BTRFS_I(inode)->root); 3161 } 3162 WARN_ON(nr != cluster->nr); 3163 out: 3164 kfree(ra); 3165 return ret; 3166 } 3167 3168 static noinline_for_stack 3169 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3170 struct file_extent_cluster *cluster) 3171 { 3172 int ret; 3173 3174 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3175 ret = relocate_file_extent_cluster(inode, cluster); 3176 if (ret) 3177 return ret; 3178 cluster->nr = 0; 3179 } 3180 3181 if (!cluster->nr) 3182 cluster->start = extent_key->objectid; 3183 else 3184 BUG_ON(cluster->nr >= MAX_EXTENTS); 3185 cluster->end = extent_key->objectid + extent_key->offset - 1; 3186 cluster->boundary[cluster->nr] = extent_key->objectid; 3187 cluster->nr++; 3188 3189 if (cluster->nr >= MAX_EXTENTS) { 3190 ret = relocate_file_extent_cluster(inode, cluster); 3191 if (ret) 3192 return ret; 3193 cluster->nr = 0; 3194 } 3195 return 0; 3196 } 3197 3198 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3199 static int get_ref_objectid_v0(struct reloc_control *rc, 3200 struct btrfs_path *path, 3201 struct btrfs_key *extent_key, 3202 u64 *ref_objectid, int *path_change) 3203 { 3204 struct btrfs_key key; 3205 struct extent_buffer *leaf; 3206 struct btrfs_extent_ref_v0 *ref0; 3207 int ret; 3208 int slot; 3209 3210 leaf = path->nodes[0]; 3211 slot = path->slots[0]; 3212 while (1) { 3213 if (slot >= btrfs_header_nritems(leaf)) { 3214 ret = btrfs_next_leaf(rc->extent_root, path); 3215 if (ret < 0) 3216 return ret; 3217 BUG_ON(ret > 0); 3218 leaf = path->nodes[0]; 3219 slot = path->slots[0]; 3220 if (path_change) 3221 *path_change = 1; 3222 } 3223 btrfs_item_key_to_cpu(leaf, &key, slot); 3224 if (key.objectid != extent_key->objectid) 3225 return -ENOENT; 3226 3227 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3228 slot++; 3229 continue; 3230 } 3231 ref0 = btrfs_item_ptr(leaf, slot, 3232 struct btrfs_extent_ref_v0); 3233 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3234 break; 3235 } 3236 return 0; 3237 } 3238 #endif 3239 3240 /* 3241 * helper to add a tree block to the list. 3242 * the major work is getting the generation and level of the block 3243 */ 3244 static int add_tree_block(struct reloc_control *rc, 3245 struct btrfs_key *extent_key, 3246 struct btrfs_path *path, 3247 struct rb_root *blocks) 3248 { 3249 struct extent_buffer *eb; 3250 struct btrfs_extent_item *ei; 3251 struct btrfs_tree_block_info *bi; 3252 struct tree_block *block; 3253 struct rb_node *rb_node; 3254 u32 item_size; 3255 int level = -1; 3256 int generation; 3257 3258 eb = path->nodes[0]; 3259 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3260 3261 if (extent_key->type == BTRFS_METADATA_ITEM_KEY || 3262 item_size >= sizeof(*ei) + sizeof(*bi)) { 3263 ei = btrfs_item_ptr(eb, path->slots[0], 3264 struct btrfs_extent_item); 3265 if (extent_key->type == BTRFS_EXTENT_ITEM_KEY) { 3266 bi = (struct btrfs_tree_block_info *)(ei + 1); 3267 level = btrfs_tree_block_level(eb, bi); 3268 } else { 3269 level = (int)extent_key->offset; 3270 } 3271 generation = btrfs_extent_generation(eb, ei); 3272 } else { 3273 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3274 u64 ref_owner; 3275 int ret; 3276 3277 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3278 ret = get_ref_objectid_v0(rc, path, extent_key, 3279 &ref_owner, NULL); 3280 if (ret < 0) 3281 return ret; 3282 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3283 level = (int)ref_owner; 3284 /* FIXME: get real generation */ 3285 generation = 0; 3286 #else 3287 BUG(); 3288 #endif 3289 } 3290 3291 btrfs_release_path(path); 3292 3293 BUG_ON(level == -1); 3294 3295 block = kmalloc(sizeof(*block), GFP_NOFS); 3296 if (!block) 3297 return -ENOMEM; 3298 3299 block->bytenr = extent_key->objectid; 3300 block->key.objectid = rc->extent_root->leafsize; 3301 block->key.offset = generation; 3302 block->level = level; 3303 block->key_ready = 0; 3304 3305 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3306 if (rb_node) 3307 backref_tree_panic(rb_node, -EEXIST, block->bytenr); 3308 3309 return 0; 3310 } 3311 3312 /* 3313 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3314 */ 3315 static int __add_tree_block(struct reloc_control *rc, 3316 u64 bytenr, u32 blocksize, 3317 struct rb_root *blocks) 3318 { 3319 struct btrfs_path *path; 3320 struct btrfs_key key; 3321 int ret; 3322 bool skinny = btrfs_fs_incompat(rc->extent_root->fs_info, 3323 SKINNY_METADATA); 3324 3325 if (tree_block_processed(bytenr, blocksize, rc)) 3326 return 0; 3327 3328 if (tree_search(blocks, bytenr)) 3329 return 0; 3330 3331 path = btrfs_alloc_path(); 3332 if (!path) 3333 return -ENOMEM; 3334 again: 3335 key.objectid = bytenr; 3336 if (skinny) { 3337 key.type = BTRFS_METADATA_ITEM_KEY; 3338 key.offset = (u64)-1; 3339 } else { 3340 key.type = BTRFS_EXTENT_ITEM_KEY; 3341 key.offset = blocksize; 3342 } 3343 3344 path->search_commit_root = 1; 3345 path->skip_locking = 1; 3346 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3347 if (ret < 0) 3348 goto out; 3349 3350 if (ret > 0 && skinny) { 3351 if (path->slots[0]) { 3352 path->slots[0]--; 3353 btrfs_item_key_to_cpu(path->nodes[0], &key, 3354 path->slots[0]); 3355 if (key.objectid == bytenr && 3356 (key.type == BTRFS_METADATA_ITEM_KEY || 3357 (key.type == BTRFS_EXTENT_ITEM_KEY && 3358 key.offset == blocksize))) 3359 ret = 0; 3360 } 3361 3362 if (ret) { 3363 skinny = false; 3364 btrfs_release_path(path); 3365 goto again; 3366 } 3367 } 3368 BUG_ON(ret); 3369 3370 ret = add_tree_block(rc, &key, path, blocks); 3371 out: 3372 btrfs_free_path(path); 3373 return ret; 3374 } 3375 3376 /* 3377 * helper to check if the block use full backrefs for pointers in it 3378 */ 3379 static int block_use_full_backref(struct reloc_control *rc, 3380 struct extent_buffer *eb) 3381 { 3382 u64 flags; 3383 int ret; 3384 3385 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3386 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3387 return 1; 3388 3389 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3390 eb->start, btrfs_header_level(eb), 1, 3391 NULL, &flags); 3392 BUG_ON(ret); 3393 3394 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3395 ret = 1; 3396 else 3397 ret = 0; 3398 return ret; 3399 } 3400 3401 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3402 struct inode *inode, u64 ino) 3403 { 3404 struct btrfs_key key; 3405 struct btrfs_path *path; 3406 struct btrfs_root *root = fs_info->tree_root; 3407 struct btrfs_trans_handle *trans; 3408 int ret = 0; 3409 3410 if (inode) 3411 goto truncate; 3412 3413 key.objectid = ino; 3414 key.type = BTRFS_INODE_ITEM_KEY; 3415 key.offset = 0; 3416 3417 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3418 if (IS_ERR(inode) || is_bad_inode(inode)) { 3419 if (!IS_ERR(inode)) 3420 iput(inode); 3421 return -ENOENT; 3422 } 3423 3424 truncate: 3425 ret = btrfs_check_trunc_cache_free_space(root, 3426 &fs_info->global_block_rsv); 3427 if (ret) 3428 goto out; 3429 3430 path = btrfs_alloc_path(); 3431 if (!path) { 3432 ret = -ENOMEM; 3433 goto out; 3434 } 3435 3436 trans = btrfs_join_transaction(root); 3437 if (IS_ERR(trans)) { 3438 btrfs_free_path(path); 3439 ret = PTR_ERR(trans); 3440 goto out; 3441 } 3442 3443 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3444 3445 btrfs_free_path(path); 3446 btrfs_end_transaction(trans, root); 3447 btrfs_btree_balance_dirty(root); 3448 out: 3449 iput(inode); 3450 return ret; 3451 } 3452 3453 /* 3454 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3455 * this function scans fs tree to find blocks reference the data extent 3456 */ 3457 static int find_data_references(struct reloc_control *rc, 3458 struct btrfs_key *extent_key, 3459 struct extent_buffer *leaf, 3460 struct btrfs_extent_data_ref *ref, 3461 struct rb_root *blocks) 3462 { 3463 struct btrfs_path *path; 3464 struct tree_block *block; 3465 struct btrfs_root *root; 3466 struct btrfs_file_extent_item *fi; 3467 struct rb_node *rb_node; 3468 struct btrfs_key key; 3469 u64 ref_root; 3470 u64 ref_objectid; 3471 u64 ref_offset; 3472 u32 ref_count; 3473 u32 nritems; 3474 int err = 0; 3475 int added = 0; 3476 int counted; 3477 int ret; 3478 3479 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3480 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3481 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3482 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3483 3484 /* 3485 * This is an extent belonging to the free space cache, lets just delete 3486 * it and redo the search. 3487 */ 3488 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3489 ret = delete_block_group_cache(rc->extent_root->fs_info, 3490 NULL, ref_objectid); 3491 if (ret != -ENOENT) 3492 return ret; 3493 ret = 0; 3494 } 3495 3496 path = btrfs_alloc_path(); 3497 if (!path) 3498 return -ENOMEM; 3499 path->reada = 1; 3500 3501 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3502 if (IS_ERR(root)) { 3503 err = PTR_ERR(root); 3504 goto out; 3505 } 3506 3507 key.objectid = ref_objectid; 3508 key.type = BTRFS_EXTENT_DATA_KEY; 3509 if (ref_offset > ((u64)-1 << 32)) 3510 key.offset = 0; 3511 else 3512 key.offset = ref_offset; 3513 3514 path->search_commit_root = 1; 3515 path->skip_locking = 1; 3516 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3517 if (ret < 0) { 3518 err = ret; 3519 goto out; 3520 } 3521 3522 leaf = path->nodes[0]; 3523 nritems = btrfs_header_nritems(leaf); 3524 /* 3525 * the references in tree blocks that use full backrefs 3526 * are not counted in 3527 */ 3528 if (block_use_full_backref(rc, leaf)) 3529 counted = 0; 3530 else 3531 counted = 1; 3532 rb_node = tree_search(blocks, leaf->start); 3533 if (rb_node) { 3534 if (counted) 3535 added = 1; 3536 else 3537 path->slots[0] = nritems; 3538 } 3539 3540 while (ref_count > 0) { 3541 while (path->slots[0] >= nritems) { 3542 ret = btrfs_next_leaf(root, path); 3543 if (ret < 0) { 3544 err = ret; 3545 goto out; 3546 } 3547 if (ret > 0) { 3548 WARN_ON(1); 3549 goto out; 3550 } 3551 3552 leaf = path->nodes[0]; 3553 nritems = btrfs_header_nritems(leaf); 3554 added = 0; 3555 3556 if (block_use_full_backref(rc, leaf)) 3557 counted = 0; 3558 else 3559 counted = 1; 3560 rb_node = tree_search(blocks, leaf->start); 3561 if (rb_node) { 3562 if (counted) 3563 added = 1; 3564 else 3565 path->slots[0] = nritems; 3566 } 3567 } 3568 3569 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3570 if (key.objectid != ref_objectid || 3571 key.type != BTRFS_EXTENT_DATA_KEY) { 3572 WARN_ON(1); 3573 break; 3574 } 3575 3576 fi = btrfs_item_ptr(leaf, path->slots[0], 3577 struct btrfs_file_extent_item); 3578 3579 if (btrfs_file_extent_type(leaf, fi) == 3580 BTRFS_FILE_EXTENT_INLINE) 3581 goto next; 3582 3583 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3584 extent_key->objectid) 3585 goto next; 3586 3587 key.offset -= btrfs_file_extent_offset(leaf, fi); 3588 if (key.offset != ref_offset) 3589 goto next; 3590 3591 if (counted) 3592 ref_count--; 3593 if (added) 3594 goto next; 3595 3596 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3597 block = kmalloc(sizeof(*block), GFP_NOFS); 3598 if (!block) { 3599 err = -ENOMEM; 3600 break; 3601 } 3602 block->bytenr = leaf->start; 3603 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3604 block->level = 0; 3605 block->key_ready = 1; 3606 rb_node = tree_insert(blocks, block->bytenr, 3607 &block->rb_node); 3608 if (rb_node) 3609 backref_tree_panic(rb_node, -EEXIST, 3610 block->bytenr); 3611 } 3612 if (counted) 3613 added = 1; 3614 else 3615 path->slots[0] = nritems; 3616 next: 3617 path->slots[0]++; 3618 3619 } 3620 out: 3621 btrfs_free_path(path); 3622 return err; 3623 } 3624 3625 /* 3626 * helper to find all tree blocks that reference a given data extent 3627 */ 3628 static noinline_for_stack 3629 int add_data_references(struct reloc_control *rc, 3630 struct btrfs_key *extent_key, 3631 struct btrfs_path *path, 3632 struct rb_root *blocks) 3633 { 3634 struct btrfs_key key; 3635 struct extent_buffer *eb; 3636 struct btrfs_extent_data_ref *dref; 3637 struct btrfs_extent_inline_ref *iref; 3638 unsigned long ptr; 3639 unsigned long end; 3640 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3641 int ret = 0; 3642 int err = 0; 3643 3644 eb = path->nodes[0]; 3645 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3646 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3647 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3648 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3649 ptr = end; 3650 else 3651 #endif 3652 ptr += sizeof(struct btrfs_extent_item); 3653 3654 while (ptr < end) { 3655 iref = (struct btrfs_extent_inline_ref *)ptr; 3656 key.type = btrfs_extent_inline_ref_type(eb, iref); 3657 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3658 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3659 ret = __add_tree_block(rc, key.offset, blocksize, 3660 blocks); 3661 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3662 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3663 ret = find_data_references(rc, extent_key, 3664 eb, dref, blocks); 3665 } else { 3666 BUG(); 3667 } 3668 if (ret) { 3669 err = ret; 3670 goto out; 3671 } 3672 ptr += btrfs_extent_inline_ref_size(key.type); 3673 } 3674 WARN_ON(ptr > end); 3675 3676 while (1) { 3677 cond_resched(); 3678 eb = path->nodes[0]; 3679 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3680 ret = btrfs_next_leaf(rc->extent_root, path); 3681 if (ret < 0) { 3682 err = ret; 3683 break; 3684 } 3685 if (ret > 0) 3686 break; 3687 eb = path->nodes[0]; 3688 } 3689 3690 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3691 if (key.objectid != extent_key->objectid) 3692 break; 3693 3694 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3695 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3696 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3697 #else 3698 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3699 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3700 #endif 3701 ret = __add_tree_block(rc, key.offset, blocksize, 3702 blocks); 3703 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3704 dref = btrfs_item_ptr(eb, path->slots[0], 3705 struct btrfs_extent_data_ref); 3706 ret = find_data_references(rc, extent_key, 3707 eb, dref, blocks); 3708 } else { 3709 ret = 0; 3710 } 3711 if (ret) { 3712 err = ret; 3713 break; 3714 } 3715 path->slots[0]++; 3716 } 3717 out: 3718 btrfs_release_path(path); 3719 if (err) 3720 free_block_list(blocks); 3721 return err; 3722 } 3723 3724 /* 3725 * helper to find next unprocessed extent 3726 */ 3727 static noinline_for_stack 3728 int find_next_extent(struct btrfs_trans_handle *trans, 3729 struct reloc_control *rc, struct btrfs_path *path, 3730 struct btrfs_key *extent_key) 3731 { 3732 struct btrfs_key key; 3733 struct extent_buffer *leaf; 3734 u64 start, end, last; 3735 int ret; 3736 3737 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3738 while (1) { 3739 cond_resched(); 3740 if (rc->search_start >= last) { 3741 ret = 1; 3742 break; 3743 } 3744 3745 key.objectid = rc->search_start; 3746 key.type = BTRFS_EXTENT_ITEM_KEY; 3747 key.offset = 0; 3748 3749 path->search_commit_root = 1; 3750 path->skip_locking = 1; 3751 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3752 0, 0); 3753 if (ret < 0) 3754 break; 3755 next: 3756 leaf = path->nodes[0]; 3757 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3758 ret = btrfs_next_leaf(rc->extent_root, path); 3759 if (ret != 0) 3760 break; 3761 leaf = path->nodes[0]; 3762 } 3763 3764 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3765 if (key.objectid >= last) { 3766 ret = 1; 3767 break; 3768 } 3769 3770 if (key.type != BTRFS_EXTENT_ITEM_KEY && 3771 key.type != BTRFS_METADATA_ITEM_KEY) { 3772 path->slots[0]++; 3773 goto next; 3774 } 3775 3776 if (key.type == BTRFS_EXTENT_ITEM_KEY && 3777 key.objectid + key.offset <= rc->search_start) { 3778 path->slots[0]++; 3779 goto next; 3780 } 3781 3782 if (key.type == BTRFS_METADATA_ITEM_KEY && 3783 key.objectid + rc->extent_root->leafsize <= 3784 rc->search_start) { 3785 path->slots[0]++; 3786 goto next; 3787 } 3788 3789 ret = find_first_extent_bit(&rc->processed_blocks, 3790 key.objectid, &start, &end, 3791 EXTENT_DIRTY, NULL); 3792 3793 if (ret == 0 && start <= key.objectid) { 3794 btrfs_release_path(path); 3795 rc->search_start = end + 1; 3796 } else { 3797 if (key.type == BTRFS_EXTENT_ITEM_KEY) 3798 rc->search_start = key.objectid + key.offset; 3799 else 3800 rc->search_start = key.objectid + 3801 rc->extent_root->leafsize; 3802 memcpy(extent_key, &key, sizeof(key)); 3803 return 0; 3804 } 3805 } 3806 btrfs_release_path(path); 3807 return ret; 3808 } 3809 3810 static void set_reloc_control(struct reloc_control *rc) 3811 { 3812 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3813 3814 mutex_lock(&fs_info->reloc_mutex); 3815 fs_info->reloc_ctl = rc; 3816 mutex_unlock(&fs_info->reloc_mutex); 3817 } 3818 3819 static void unset_reloc_control(struct reloc_control *rc) 3820 { 3821 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3822 3823 mutex_lock(&fs_info->reloc_mutex); 3824 fs_info->reloc_ctl = NULL; 3825 mutex_unlock(&fs_info->reloc_mutex); 3826 } 3827 3828 static int check_extent_flags(u64 flags) 3829 { 3830 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3831 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3832 return 1; 3833 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3834 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3835 return 1; 3836 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3837 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3838 return 1; 3839 return 0; 3840 } 3841 3842 static noinline_for_stack 3843 int prepare_to_relocate(struct reloc_control *rc) 3844 { 3845 struct btrfs_trans_handle *trans; 3846 int ret; 3847 3848 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root, 3849 BTRFS_BLOCK_RSV_TEMP); 3850 if (!rc->block_rsv) 3851 return -ENOMEM; 3852 3853 /* 3854 * reserve some space for creating reloc trees. 3855 * btrfs_init_reloc_root will use them when there 3856 * is no reservation in transaction handle. 3857 */ 3858 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3859 rc->extent_root->nodesize * 256, 3860 BTRFS_RESERVE_FLUSH_ALL); 3861 if (ret) 3862 return ret; 3863 3864 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3865 rc->search_start = rc->block_group->key.objectid; 3866 rc->extents_found = 0; 3867 rc->nodes_relocated = 0; 3868 rc->merging_rsv_size = 0; 3869 3870 rc->create_reloc_tree = 1; 3871 set_reloc_control(rc); 3872 3873 trans = btrfs_join_transaction(rc->extent_root); 3874 if (IS_ERR(trans)) { 3875 unset_reloc_control(rc); 3876 /* 3877 * extent tree is not a ref_cow tree and has no reloc_root to 3878 * cleanup. And callers are responsible to free the above 3879 * block rsv. 3880 */ 3881 return PTR_ERR(trans); 3882 } 3883 btrfs_commit_transaction(trans, rc->extent_root); 3884 return 0; 3885 } 3886 3887 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3888 { 3889 struct rb_root blocks = RB_ROOT; 3890 struct btrfs_key key; 3891 struct btrfs_trans_handle *trans = NULL; 3892 struct btrfs_path *path; 3893 struct btrfs_extent_item *ei; 3894 u64 flags; 3895 u32 item_size; 3896 int ret; 3897 int err = 0; 3898 int progress = 0; 3899 3900 path = btrfs_alloc_path(); 3901 if (!path) 3902 return -ENOMEM; 3903 path->reada = 1; 3904 3905 ret = prepare_to_relocate(rc); 3906 if (ret) { 3907 err = ret; 3908 goto out_free; 3909 } 3910 3911 while (1) { 3912 progress++; 3913 trans = btrfs_start_transaction(rc->extent_root, 0); 3914 if (IS_ERR(trans)) { 3915 err = PTR_ERR(trans); 3916 trans = NULL; 3917 break; 3918 } 3919 restart: 3920 if (update_backref_cache(trans, &rc->backref_cache)) { 3921 btrfs_end_transaction(trans, rc->extent_root); 3922 continue; 3923 } 3924 3925 ret = find_next_extent(trans, rc, path, &key); 3926 if (ret < 0) 3927 err = ret; 3928 if (ret != 0) 3929 break; 3930 3931 rc->extents_found++; 3932 3933 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3934 struct btrfs_extent_item); 3935 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3936 if (item_size >= sizeof(*ei)) { 3937 flags = btrfs_extent_flags(path->nodes[0], ei); 3938 ret = check_extent_flags(flags); 3939 BUG_ON(ret); 3940 3941 } else { 3942 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3943 u64 ref_owner; 3944 int path_change = 0; 3945 3946 BUG_ON(item_size != 3947 sizeof(struct btrfs_extent_item_v0)); 3948 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3949 &path_change); 3950 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3951 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3952 else 3953 flags = BTRFS_EXTENT_FLAG_DATA; 3954 3955 if (path_change) { 3956 btrfs_release_path(path); 3957 3958 path->search_commit_root = 1; 3959 path->skip_locking = 1; 3960 ret = btrfs_search_slot(NULL, rc->extent_root, 3961 &key, path, 0, 0); 3962 if (ret < 0) { 3963 err = ret; 3964 break; 3965 } 3966 BUG_ON(ret > 0); 3967 } 3968 #else 3969 BUG(); 3970 #endif 3971 } 3972 3973 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3974 ret = add_tree_block(rc, &key, path, &blocks); 3975 } else if (rc->stage == UPDATE_DATA_PTRS && 3976 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3977 ret = add_data_references(rc, &key, path, &blocks); 3978 } else { 3979 btrfs_release_path(path); 3980 ret = 0; 3981 } 3982 if (ret < 0) { 3983 err = ret; 3984 break; 3985 } 3986 3987 if (!RB_EMPTY_ROOT(&blocks)) { 3988 ret = relocate_tree_blocks(trans, rc, &blocks); 3989 if (ret < 0) { 3990 if (ret != -EAGAIN) { 3991 err = ret; 3992 break; 3993 } 3994 rc->extents_found--; 3995 rc->search_start = key.objectid; 3996 } 3997 } 3998 3999 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 4000 if (ret < 0) { 4001 if (ret != -ENOSPC) { 4002 err = ret; 4003 WARN_ON(1); 4004 break; 4005 } 4006 rc->commit_transaction = 1; 4007 } 4008 4009 if (rc->commit_transaction) { 4010 rc->commit_transaction = 0; 4011 ret = btrfs_commit_transaction(trans, rc->extent_root); 4012 BUG_ON(ret); 4013 } else { 4014 btrfs_end_transaction_throttle(trans, rc->extent_root); 4015 btrfs_btree_balance_dirty(rc->extent_root); 4016 } 4017 trans = NULL; 4018 4019 if (rc->stage == MOVE_DATA_EXTENTS && 4020 (flags & BTRFS_EXTENT_FLAG_DATA)) { 4021 rc->found_file_extent = 1; 4022 ret = relocate_data_extent(rc->data_inode, 4023 &key, &rc->cluster); 4024 if (ret < 0) { 4025 err = ret; 4026 break; 4027 } 4028 } 4029 } 4030 if (trans && progress && err == -ENOSPC) { 4031 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 4032 rc->block_group->flags); 4033 if (ret == 0) { 4034 err = 0; 4035 progress = 0; 4036 goto restart; 4037 } 4038 } 4039 4040 btrfs_release_path(path); 4041 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 4042 GFP_NOFS); 4043 4044 if (trans) { 4045 btrfs_end_transaction_throttle(trans, rc->extent_root); 4046 btrfs_btree_balance_dirty(rc->extent_root); 4047 } 4048 4049 if (!err) { 4050 ret = relocate_file_extent_cluster(rc->data_inode, 4051 &rc->cluster); 4052 if (ret < 0) 4053 err = ret; 4054 } 4055 4056 rc->create_reloc_tree = 0; 4057 set_reloc_control(rc); 4058 4059 backref_cache_cleanup(&rc->backref_cache); 4060 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4061 4062 err = prepare_to_merge(rc, err); 4063 4064 merge_reloc_roots(rc); 4065 4066 rc->merge_reloc_tree = 0; 4067 unset_reloc_control(rc); 4068 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 4069 4070 /* get rid of pinned extents */ 4071 trans = btrfs_join_transaction(rc->extent_root); 4072 if (IS_ERR(trans)) 4073 err = PTR_ERR(trans); 4074 else 4075 btrfs_commit_transaction(trans, rc->extent_root); 4076 out_free: 4077 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 4078 btrfs_free_path(path); 4079 return err; 4080 } 4081 4082 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 4083 struct btrfs_root *root, u64 objectid) 4084 { 4085 struct btrfs_path *path; 4086 struct btrfs_inode_item *item; 4087 struct extent_buffer *leaf; 4088 int ret; 4089 4090 path = btrfs_alloc_path(); 4091 if (!path) 4092 return -ENOMEM; 4093 4094 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 4095 if (ret) 4096 goto out; 4097 4098 leaf = path->nodes[0]; 4099 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 4100 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 4101 btrfs_set_inode_generation(leaf, item, 1); 4102 btrfs_set_inode_size(leaf, item, 0); 4103 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 4104 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 4105 BTRFS_INODE_PREALLOC); 4106 btrfs_mark_buffer_dirty(leaf); 4107 btrfs_release_path(path); 4108 out: 4109 btrfs_free_path(path); 4110 return ret; 4111 } 4112 4113 /* 4114 * helper to create inode for data relocation. 4115 * the inode is in data relocation tree and its link count is 0 4116 */ 4117 static noinline_for_stack 4118 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 4119 struct btrfs_block_group_cache *group) 4120 { 4121 struct inode *inode = NULL; 4122 struct btrfs_trans_handle *trans; 4123 struct btrfs_root *root; 4124 struct btrfs_key key; 4125 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 4126 int err = 0; 4127 4128 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 4129 if (IS_ERR(root)) 4130 return ERR_CAST(root); 4131 4132 trans = btrfs_start_transaction(root, 6); 4133 if (IS_ERR(trans)) 4134 return ERR_CAST(trans); 4135 4136 err = btrfs_find_free_objectid(root, &objectid); 4137 if (err) 4138 goto out; 4139 4140 err = __insert_orphan_inode(trans, root, objectid); 4141 BUG_ON(err); 4142 4143 key.objectid = objectid; 4144 key.type = BTRFS_INODE_ITEM_KEY; 4145 key.offset = 0; 4146 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 4147 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 4148 BTRFS_I(inode)->index_cnt = group->key.objectid; 4149 4150 err = btrfs_orphan_add(trans, inode); 4151 out: 4152 btrfs_end_transaction(trans, root); 4153 btrfs_btree_balance_dirty(root); 4154 if (err) { 4155 if (inode) 4156 iput(inode); 4157 inode = ERR_PTR(err); 4158 } 4159 return inode; 4160 } 4161 4162 static struct reloc_control *alloc_reloc_control(struct btrfs_fs_info *fs_info) 4163 { 4164 struct reloc_control *rc; 4165 4166 rc = kzalloc(sizeof(*rc), GFP_NOFS); 4167 if (!rc) 4168 return NULL; 4169 4170 INIT_LIST_HEAD(&rc->reloc_roots); 4171 backref_cache_init(&rc->backref_cache); 4172 mapping_tree_init(&rc->reloc_root_tree); 4173 extent_io_tree_init(&rc->processed_blocks, 4174 fs_info->btree_inode->i_mapping); 4175 return rc; 4176 } 4177 4178 /* 4179 * function to relocate all extents in a block group. 4180 */ 4181 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 4182 { 4183 struct btrfs_fs_info *fs_info = extent_root->fs_info; 4184 struct reloc_control *rc; 4185 struct inode *inode; 4186 struct btrfs_path *path; 4187 int ret; 4188 int rw = 0; 4189 int err = 0; 4190 4191 rc = alloc_reloc_control(fs_info); 4192 if (!rc) 4193 return -ENOMEM; 4194 4195 rc->extent_root = extent_root; 4196 4197 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 4198 BUG_ON(!rc->block_group); 4199 4200 if (!rc->block_group->ro) { 4201 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 4202 if (ret) { 4203 err = ret; 4204 goto out; 4205 } 4206 rw = 1; 4207 } 4208 4209 path = btrfs_alloc_path(); 4210 if (!path) { 4211 err = -ENOMEM; 4212 goto out; 4213 } 4214 4215 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4216 path); 4217 btrfs_free_path(path); 4218 4219 if (!IS_ERR(inode)) 4220 ret = delete_block_group_cache(fs_info, inode, 0); 4221 else 4222 ret = PTR_ERR(inode); 4223 4224 if (ret && ret != -ENOENT) { 4225 err = ret; 4226 goto out; 4227 } 4228 4229 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4230 if (IS_ERR(rc->data_inode)) { 4231 err = PTR_ERR(rc->data_inode); 4232 rc->data_inode = NULL; 4233 goto out; 4234 } 4235 4236 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4237 rc->block_group->key.objectid, rc->block_group->flags); 4238 4239 ret = btrfs_start_all_delalloc_inodes(fs_info, 0); 4240 if (ret < 0) { 4241 err = ret; 4242 goto out; 4243 } 4244 btrfs_wait_all_ordered_extents(fs_info, 0); 4245 4246 while (1) { 4247 mutex_lock(&fs_info->cleaner_mutex); 4248 ret = relocate_block_group(rc); 4249 mutex_unlock(&fs_info->cleaner_mutex); 4250 if (ret < 0) { 4251 err = ret; 4252 goto out; 4253 } 4254 4255 if (rc->extents_found == 0) 4256 break; 4257 4258 printk(KERN_INFO "btrfs: found %llu extents\n", 4259 rc->extents_found); 4260 4261 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4262 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4263 invalidate_mapping_pages(rc->data_inode->i_mapping, 4264 0, -1); 4265 rc->stage = UPDATE_DATA_PTRS; 4266 } 4267 } 4268 4269 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4270 rc->block_group->key.objectid, 4271 rc->block_group->key.objectid + 4272 rc->block_group->key.offset - 1); 4273 4274 WARN_ON(rc->block_group->pinned > 0); 4275 WARN_ON(rc->block_group->reserved > 0); 4276 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4277 out: 4278 if (err && rw) 4279 btrfs_set_block_group_rw(extent_root, rc->block_group); 4280 iput(rc->data_inode); 4281 btrfs_put_block_group(rc->block_group); 4282 kfree(rc); 4283 return err; 4284 } 4285 4286 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4287 { 4288 struct btrfs_trans_handle *trans; 4289 int ret, err; 4290 4291 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4292 if (IS_ERR(trans)) 4293 return PTR_ERR(trans); 4294 4295 memset(&root->root_item.drop_progress, 0, 4296 sizeof(root->root_item.drop_progress)); 4297 root->root_item.drop_level = 0; 4298 btrfs_set_root_refs(&root->root_item, 0); 4299 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4300 &root->root_key, &root->root_item); 4301 4302 err = btrfs_end_transaction(trans, root->fs_info->tree_root); 4303 if (err) 4304 return err; 4305 return ret; 4306 } 4307 4308 /* 4309 * recover relocation interrupted by system crash. 4310 * 4311 * this function resumes merging reloc trees with corresponding fs trees. 4312 * this is important for keeping the sharing of tree blocks 4313 */ 4314 int btrfs_recover_relocation(struct btrfs_root *root) 4315 { 4316 LIST_HEAD(reloc_roots); 4317 struct btrfs_key key; 4318 struct btrfs_root *fs_root; 4319 struct btrfs_root *reloc_root; 4320 struct btrfs_path *path; 4321 struct extent_buffer *leaf; 4322 struct reloc_control *rc = NULL; 4323 struct btrfs_trans_handle *trans; 4324 int ret; 4325 int err = 0; 4326 4327 path = btrfs_alloc_path(); 4328 if (!path) 4329 return -ENOMEM; 4330 path->reada = -1; 4331 4332 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4333 key.type = BTRFS_ROOT_ITEM_KEY; 4334 key.offset = (u64)-1; 4335 4336 while (1) { 4337 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4338 path, 0, 0); 4339 if (ret < 0) { 4340 err = ret; 4341 goto out; 4342 } 4343 if (ret > 0) { 4344 if (path->slots[0] == 0) 4345 break; 4346 path->slots[0]--; 4347 } 4348 leaf = path->nodes[0]; 4349 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4350 btrfs_release_path(path); 4351 4352 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4353 key.type != BTRFS_ROOT_ITEM_KEY) 4354 break; 4355 4356 reloc_root = btrfs_read_fs_root(root, &key); 4357 if (IS_ERR(reloc_root)) { 4358 err = PTR_ERR(reloc_root); 4359 goto out; 4360 } 4361 4362 list_add(&reloc_root->root_list, &reloc_roots); 4363 4364 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4365 fs_root = read_fs_root(root->fs_info, 4366 reloc_root->root_key.offset); 4367 if (IS_ERR(fs_root)) { 4368 ret = PTR_ERR(fs_root); 4369 if (ret != -ENOENT) { 4370 err = ret; 4371 goto out; 4372 } 4373 ret = mark_garbage_root(reloc_root); 4374 if (ret < 0) { 4375 err = ret; 4376 goto out; 4377 } 4378 } 4379 } 4380 4381 if (key.offset == 0) 4382 break; 4383 4384 key.offset--; 4385 } 4386 btrfs_release_path(path); 4387 4388 if (list_empty(&reloc_roots)) 4389 goto out; 4390 4391 rc = alloc_reloc_control(root->fs_info); 4392 if (!rc) { 4393 err = -ENOMEM; 4394 goto out; 4395 } 4396 4397 rc->extent_root = root->fs_info->extent_root; 4398 4399 set_reloc_control(rc); 4400 4401 trans = btrfs_join_transaction(rc->extent_root); 4402 if (IS_ERR(trans)) { 4403 unset_reloc_control(rc); 4404 err = PTR_ERR(trans); 4405 goto out_free; 4406 } 4407 4408 rc->merge_reloc_tree = 1; 4409 4410 while (!list_empty(&reloc_roots)) { 4411 reloc_root = list_entry(reloc_roots.next, 4412 struct btrfs_root, root_list); 4413 list_del(&reloc_root->root_list); 4414 4415 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4416 list_add_tail(&reloc_root->root_list, 4417 &rc->reloc_roots); 4418 continue; 4419 } 4420 4421 fs_root = read_fs_root(root->fs_info, 4422 reloc_root->root_key.offset); 4423 if (IS_ERR(fs_root)) { 4424 err = PTR_ERR(fs_root); 4425 goto out_free; 4426 } 4427 4428 err = __add_reloc_root(reloc_root); 4429 BUG_ON(err < 0); /* -ENOMEM or logic error */ 4430 fs_root->reloc_root = reloc_root; 4431 } 4432 4433 err = btrfs_commit_transaction(trans, rc->extent_root); 4434 if (err) 4435 goto out_free; 4436 4437 merge_reloc_roots(rc); 4438 4439 unset_reloc_control(rc); 4440 4441 trans = btrfs_join_transaction(rc->extent_root); 4442 if (IS_ERR(trans)) 4443 err = PTR_ERR(trans); 4444 else 4445 err = btrfs_commit_transaction(trans, rc->extent_root); 4446 out_free: 4447 kfree(rc); 4448 out: 4449 if (!list_empty(&reloc_roots)) 4450 free_reloc_roots(&reloc_roots); 4451 4452 btrfs_free_path(path); 4453 4454 if (err == 0) { 4455 /* cleanup orphan inode in data relocation tree */ 4456 fs_root = read_fs_root(root->fs_info, 4457 BTRFS_DATA_RELOC_TREE_OBJECTID); 4458 if (IS_ERR(fs_root)) 4459 err = PTR_ERR(fs_root); 4460 else 4461 err = btrfs_orphan_cleanup(fs_root); 4462 } 4463 return err; 4464 } 4465 4466 /* 4467 * helper to add ordered checksum for data relocation. 4468 * 4469 * cloning checksum properly handles the nodatasum extents. 4470 * it also saves CPU time to re-calculate the checksum. 4471 */ 4472 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4473 { 4474 struct btrfs_ordered_sum *sums; 4475 struct btrfs_ordered_extent *ordered; 4476 struct btrfs_root *root = BTRFS_I(inode)->root; 4477 int ret; 4478 u64 disk_bytenr; 4479 LIST_HEAD(list); 4480 4481 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4482 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4483 4484 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4485 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4486 disk_bytenr + len - 1, &list, 0); 4487 if (ret) 4488 goto out; 4489 4490 disk_bytenr = ordered->start; 4491 while (!list_empty(&list)) { 4492 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4493 list_del_init(&sums->list); 4494 4495 sums->bytenr = disk_bytenr; 4496 disk_bytenr += sums->len; 4497 4498 btrfs_add_ordered_sum(inode, ordered, sums); 4499 } 4500 out: 4501 btrfs_put_ordered_extent(ordered); 4502 return ret; 4503 } 4504 4505 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4506 struct btrfs_root *root, struct extent_buffer *buf, 4507 struct extent_buffer *cow) 4508 { 4509 struct reloc_control *rc; 4510 struct backref_node *node; 4511 int first_cow = 0; 4512 int level; 4513 int ret; 4514 4515 rc = root->fs_info->reloc_ctl; 4516 if (!rc) 4517 return; 4518 4519 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4520 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4521 4522 level = btrfs_header_level(buf); 4523 if (btrfs_header_generation(buf) <= 4524 btrfs_root_last_snapshot(&root->root_item)) 4525 first_cow = 1; 4526 4527 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4528 rc->create_reloc_tree) { 4529 WARN_ON(!first_cow && level == 0); 4530 4531 node = rc->backref_cache.path[level]; 4532 BUG_ON(node->bytenr != buf->start && 4533 node->new_bytenr != buf->start); 4534 4535 drop_node_buffer(node); 4536 extent_buffer_get(cow); 4537 node->eb = cow; 4538 node->new_bytenr = cow->start; 4539 4540 if (!node->pending) { 4541 list_move_tail(&node->list, 4542 &rc->backref_cache.pending[level]); 4543 node->pending = 1; 4544 } 4545 4546 if (first_cow) 4547 __mark_block_processed(rc, node); 4548 4549 if (first_cow && level > 0) 4550 rc->nodes_relocated += buf->len; 4551 } 4552 4553 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4554 ret = replace_file_extents(trans, rc, root, cow); 4555 BUG_ON(ret); 4556 } 4557 } 4558 4559 /* 4560 * called before creating snapshot. it calculates metadata reservation 4561 * requried for relocating tree blocks in the snapshot 4562 */ 4563 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4564 struct btrfs_pending_snapshot *pending, 4565 u64 *bytes_to_reserve) 4566 { 4567 struct btrfs_root *root; 4568 struct reloc_control *rc; 4569 4570 root = pending->root; 4571 if (!root->reloc_root) 4572 return; 4573 4574 rc = root->fs_info->reloc_ctl; 4575 if (!rc->merge_reloc_tree) 4576 return; 4577 4578 root = root->reloc_root; 4579 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4580 /* 4581 * relocation is in the stage of merging trees. the space 4582 * used by merging a reloc tree is twice the size of 4583 * relocated tree nodes in the worst case. half for cowing 4584 * the reloc tree, half for cowing the fs tree. the space 4585 * used by cowing the reloc tree will be freed after the 4586 * tree is dropped. if we create snapshot, cowing the fs 4587 * tree may use more space than it frees. so we need 4588 * reserve extra space. 4589 */ 4590 *bytes_to_reserve += rc->nodes_relocated; 4591 } 4592 4593 /* 4594 * called after snapshot is created. migrate block reservation 4595 * and create reloc root for the newly created snapshot 4596 */ 4597 int btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4598 struct btrfs_pending_snapshot *pending) 4599 { 4600 struct btrfs_root *root = pending->root; 4601 struct btrfs_root *reloc_root; 4602 struct btrfs_root *new_root; 4603 struct reloc_control *rc; 4604 int ret; 4605 4606 if (!root->reloc_root) 4607 return 0; 4608 4609 rc = root->fs_info->reloc_ctl; 4610 rc->merging_rsv_size += rc->nodes_relocated; 4611 4612 if (rc->merge_reloc_tree) { 4613 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4614 rc->block_rsv, 4615 rc->nodes_relocated); 4616 if (ret) 4617 return ret; 4618 } 4619 4620 new_root = pending->snap; 4621 reloc_root = create_reloc_root(trans, root->reloc_root, 4622 new_root->root_key.objectid); 4623 if (IS_ERR(reloc_root)) 4624 return PTR_ERR(reloc_root); 4625 4626 ret = __add_reloc_root(reloc_root); 4627 BUG_ON(ret < 0); 4628 new_root->reloc_root = reloc_root; 4629 4630 if (rc->create_reloc_tree) 4631 ret = clone_backref_node(trans, rc, root, reloc_root); 4632 return ret; 4633 } 4634