1 /* 2 * Copyright (C) 2009 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/sched.h> 20 #include <linux/pagemap.h> 21 #include <linux/writeback.h> 22 #include <linux/blkdev.h> 23 #include <linux/rbtree.h> 24 #include <linux/slab.h> 25 #include "ctree.h" 26 #include "disk-io.h" 27 #include "transaction.h" 28 #include "volumes.h" 29 #include "locking.h" 30 #include "btrfs_inode.h" 31 #include "async-thread.h" 32 #include "free-space-cache.h" 33 #include "inode-map.h" 34 35 /* 36 * backref_node, mapping_node and tree_block start with this 37 */ 38 struct tree_entry { 39 struct rb_node rb_node; 40 u64 bytenr; 41 }; 42 43 /* 44 * present a tree block in the backref cache 45 */ 46 struct backref_node { 47 struct rb_node rb_node; 48 u64 bytenr; 49 50 u64 new_bytenr; 51 /* objectid of tree block owner, can be not uptodate */ 52 u64 owner; 53 /* link to pending, changed or detached list */ 54 struct list_head list; 55 /* list of upper level blocks reference this block */ 56 struct list_head upper; 57 /* list of child blocks in the cache */ 58 struct list_head lower; 59 /* NULL if this node is not tree root */ 60 struct btrfs_root *root; 61 /* extent buffer got by COW the block */ 62 struct extent_buffer *eb; 63 /* level of tree block */ 64 unsigned int level:8; 65 /* is the block in non-reference counted tree */ 66 unsigned int cowonly:1; 67 /* 1 if no child node in the cache */ 68 unsigned int lowest:1; 69 /* is the extent buffer locked */ 70 unsigned int locked:1; 71 /* has the block been processed */ 72 unsigned int processed:1; 73 /* have backrefs of this block been checked */ 74 unsigned int checked:1; 75 /* 76 * 1 if corresponding block has been cowed but some upper 77 * level block pointers may not point to the new location 78 */ 79 unsigned int pending:1; 80 /* 81 * 1 if the backref node isn't connected to any other 82 * backref node. 83 */ 84 unsigned int detached:1; 85 }; 86 87 /* 88 * present a block pointer in the backref cache 89 */ 90 struct backref_edge { 91 struct list_head list[2]; 92 struct backref_node *node[2]; 93 }; 94 95 #define LOWER 0 96 #define UPPER 1 97 98 struct backref_cache { 99 /* red black tree of all backref nodes in the cache */ 100 struct rb_root rb_root; 101 /* for passing backref nodes to btrfs_reloc_cow_block */ 102 struct backref_node *path[BTRFS_MAX_LEVEL]; 103 /* 104 * list of blocks that have been cowed but some block 105 * pointers in upper level blocks may not reflect the 106 * new location 107 */ 108 struct list_head pending[BTRFS_MAX_LEVEL]; 109 /* list of backref nodes with no child node */ 110 struct list_head leaves; 111 /* list of blocks that have been cowed in current transaction */ 112 struct list_head changed; 113 /* list of detached backref node. */ 114 struct list_head detached; 115 116 u64 last_trans; 117 118 int nr_nodes; 119 int nr_edges; 120 }; 121 122 /* 123 * map address of tree root to tree 124 */ 125 struct mapping_node { 126 struct rb_node rb_node; 127 u64 bytenr; 128 void *data; 129 }; 130 131 struct mapping_tree { 132 struct rb_root rb_root; 133 spinlock_t lock; 134 }; 135 136 /* 137 * present a tree block to process 138 */ 139 struct tree_block { 140 struct rb_node rb_node; 141 u64 bytenr; 142 struct btrfs_key key; 143 unsigned int level:8; 144 unsigned int key_ready:1; 145 }; 146 147 #define MAX_EXTENTS 128 148 149 struct file_extent_cluster { 150 u64 start; 151 u64 end; 152 u64 boundary[MAX_EXTENTS]; 153 unsigned int nr; 154 }; 155 156 struct reloc_control { 157 /* block group to relocate */ 158 struct btrfs_block_group_cache *block_group; 159 /* extent tree */ 160 struct btrfs_root *extent_root; 161 /* inode for moving data */ 162 struct inode *data_inode; 163 164 struct btrfs_block_rsv *block_rsv; 165 166 struct backref_cache backref_cache; 167 168 struct file_extent_cluster cluster; 169 /* tree blocks have been processed */ 170 struct extent_io_tree processed_blocks; 171 /* map start of tree root to corresponding reloc tree */ 172 struct mapping_tree reloc_root_tree; 173 /* list of reloc trees */ 174 struct list_head reloc_roots; 175 /* size of metadata reservation for merging reloc trees */ 176 u64 merging_rsv_size; 177 /* size of relocated tree nodes */ 178 u64 nodes_relocated; 179 180 u64 search_start; 181 u64 extents_found; 182 183 unsigned int stage:8; 184 unsigned int create_reloc_tree:1; 185 unsigned int merge_reloc_tree:1; 186 unsigned int found_file_extent:1; 187 unsigned int commit_transaction:1; 188 }; 189 190 /* stages of data relocation */ 191 #define MOVE_DATA_EXTENTS 0 192 #define UPDATE_DATA_PTRS 1 193 194 static void remove_backref_node(struct backref_cache *cache, 195 struct backref_node *node); 196 static void __mark_block_processed(struct reloc_control *rc, 197 struct backref_node *node); 198 199 static void mapping_tree_init(struct mapping_tree *tree) 200 { 201 tree->rb_root = RB_ROOT; 202 spin_lock_init(&tree->lock); 203 } 204 205 static void backref_cache_init(struct backref_cache *cache) 206 { 207 int i; 208 cache->rb_root = RB_ROOT; 209 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 210 INIT_LIST_HEAD(&cache->pending[i]); 211 INIT_LIST_HEAD(&cache->changed); 212 INIT_LIST_HEAD(&cache->detached); 213 INIT_LIST_HEAD(&cache->leaves); 214 } 215 216 static void backref_cache_cleanup(struct backref_cache *cache) 217 { 218 struct backref_node *node; 219 int i; 220 221 while (!list_empty(&cache->detached)) { 222 node = list_entry(cache->detached.next, 223 struct backref_node, list); 224 remove_backref_node(cache, node); 225 } 226 227 while (!list_empty(&cache->leaves)) { 228 node = list_entry(cache->leaves.next, 229 struct backref_node, lower); 230 remove_backref_node(cache, node); 231 } 232 233 cache->last_trans = 0; 234 235 for (i = 0; i < BTRFS_MAX_LEVEL; i++) 236 BUG_ON(!list_empty(&cache->pending[i])); 237 BUG_ON(!list_empty(&cache->changed)); 238 BUG_ON(!list_empty(&cache->detached)); 239 BUG_ON(!RB_EMPTY_ROOT(&cache->rb_root)); 240 BUG_ON(cache->nr_nodes); 241 BUG_ON(cache->nr_edges); 242 } 243 244 static struct backref_node *alloc_backref_node(struct backref_cache *cache) 245 { 246 struct backref_node *node; 247 248 node = kzalloc(sizeof(*node), GFP_NOFS); 249 if (node) { 250 INIT_LIST_HEAD(&node->list); 251 INIT_LIST_HEAD(&node->upper); 252 INIT_LIST_HEAD(&node->lower); 253 RB_CLEAR_NODE(&node->rb_node); 254 cache->nr_nodes++; 255 } 256 return node; 257 } 258 259 static void free_backref_node(struct backref_cache *cache, 260 struct backref_node *node) 261 { 262 if (node) { 263 cache->nr_nodes--; 264 kfree(node); 265 } 266 } 267 268 static struct backref_edge *alloc_backref_edge(struct backref_cache *cache) 269 { 270 struct backref_edge *edge; 271 272 edge = kzalloc(sizeof(*edge), GFP_NOFS); 273 if (edge) 274 cache->nr_edges++; 275 return edge; 276 } 277 278 static void free_backref_edge(struct backref_cache *cache, 279 struct backref_edge *edge) 280 { 281 if (edge) { 282 cache->nr_edges--; 283 kfree(edge); 284 } 285 } 286 287 static struct rb_node *tree_insert(struct rb_root *root, u64 bytenr, 288 struct rb_node *node) 289 { 290 struct rb_node **p = &root->rb_node; 291 struct rb_node *parent = NULL; 292 struct tree_entry *entry; 293 294 while (*p) { 295 parent = *p; 296 entry = rb_entry(parent, struct tree_entry, rb_node); 297 298 if (bytenr < entry->bytenr) 299 p = &(*p)->rb_left; 300 else if (bytenr > entry->bytenr) 301 p = &(*p)->rb_right; 302 else 303 return parent; 304 } 305 306 rb_link_node(node, parent, p); 307 rb_insert_color(node, root); 308 return NULL; 309 } 310 311 static struct rb_node *tree_search(struct rb_root *root, u64 bytenr) 312 { 313 struct rb_node *n = root->rb_node; 314 struct tree_entry *entry; 315 316 while (n) { 317 entry = rb_entry(n, struct tree_entry, rb_node); 318 319 if (bytenr < entry->bytenr) 320 n = n->rb_left; 321 else if (bytenr > entry->bytenr) 322 n = n->rb_right; 323 else 324 return n; 325 } 326 return NULL; 327 } 328 329 /* 330 * walk up backref nodes until reach node presents tree root 331 */ 332 static struct backref_node *walk_up_backref(struct backref_node *node, 333 struct backref_edge *edges[], 334 int *index) 335 { 336 struct backref_edge *edge; 337 int idx = *index; 338 339 while (!list_empty(&node->upper)) { 340 edge = list_entry(node->upper.next, 341 struct backref_edge, list[LOWER]); 342 edges[idx++] = edge; 343 node = edge->node[UPPER]; 344 } 345 BUG_ON(node->detached); 346 *index = idx; 347 return node; 348 } 349 350 /* 351 * walk down backref nodes to find start of next reference path 352 */ 353 static struct backref_node *walk_down_backref(struct backref_edge *edges[], 354 int *index) 355 { 356 struct backref_edge *edge; 357 struct backref_node *lower; 358 int idx = *index; 359 360 while (idx > 0) { 361 edge = edges[idx - 1]; 362 lower = edge->node[LOWER]; 363 if (list_is_last(&edge->list[LOWER], &lower->upper)) { 364 idx--; 365 continue; 366 } 367 edge = list_entry(edge->list[LOWER].next, 368 struct backref_edge, list[LOWER]); 369 edges[idx - 1] = edge; 370 *index = idx; 371 return edge->node[UPPER]; 372 } 373 *index = 0; 374 return NULL; 375 } 376 377 static void unlock_node_buffer(struct backref_node *node) 378 { 379 if (node->locked) { 380 btrfs_tree_unlock(node->eb); 381 node->locked = 0; 382 } 383 } 384 385 static void drop_node_buffer(struct backref_node *node) 386 { 387 if (node->eb) { 388 unlock_node_buffer(node); 389 free_extent_buffer(node->eb); 390 node->eb = NULL; 391 } 392 } 393 394 static void drop_backref_node(struct backref_cache *tree, 395 struct backref_node *node) 396 { 397 BUG_ON(!list_empty(&node->upper)); 398 399 drop_node_buffer(node); 400 list_del(&node->list); 401 list_del(&node->lower); 402 if (!RB_EMPTY_NODE(&node->rb_node)) 403 rb_erase(&node->rb_node, &tree->rb_root); 404 free_backref_node(tree, node); 405 } 406 407 /* 408 * remove a backref node from the backref cache 409 */ 410 static void remove_backref_node(struct backref_cache *cache, 411 struct backref_node *node) 412 { 413 struct backref_node *upper; 414 struct backref_edge *edge; 415 416 if (!node) 417 return; 418 419 BUG_ON(!node->lowest && !node->detached); 420 while (!list_empty(&node->upper)) { 421 edge = list_entry(node->upper.next, struct backref_edge, 422 list[LOWER]); 423 upper = edge->node[UPPER]; 424 list_del(&edge->list[LOWER]); 425 list_del(&edge->list[UPPER]); 426 free_backref_edge(cache, edge); 427 428 if (RB_EMPTY_NODE(&upper->rb_node)) { 429 BUG_ON(!list_empty(&node->upper)); 430 drop_backref_node(cache, node); 431 node = upper; 432 node->lowest = 1; 433 continue; 434 } 435 /* 436 * add the node to leaf node list if no other 437 * child block cached. 438 */ 439 if (list_empty(&upper->lower)) { 440 list_add_tail(&upper->lower, &cache->leaves); 441 upper->lowest = 1; 442 } 443 } 444 445 drop_backref_node(cache, node); 446 } 447 448 static void update_backref_node(struct backref_cache *cache, 449 struct backref_node *node, u64 bytenr) 450 { 451 struct rb_node *rb_node; 452 rb_erase(&node->rb_node, &cache->rb_root); 453 node->bytenr = bytenr; 454 rb_node = tree_insert(&cache->rb_root, node->bytenr, &node->rb_node); 455 BUG_ON(rb_node); 456 } 457 458 /* 459 * update backref cache after a transaction commit 460 */ 461 static int update_backref_cache(struct btrfs_trans_handle *trans, 462 struct backref_cache *cache) 463 { 464 struct backref_node *node; 465 int level = 0; 466 467 if (cache->last_trans == 0) { 468 cache->last_trans = trans->transid; 469 return 0; 470 } 471 472 if (cache->last_trans == trans->transid) 473 return 0; 474 475 /* 476 * detached nodes are used to avoid unnecessary backref 477 * lookup. transaction commit changes the extent tree. 478 * so the detached nodes are no longer useful. 479 */ 480 while (!list_empty(&cache->detached)) { 481 node = list_entry(cache->detached.next, 482 struct backref_node, list); 483 remove_backref_node(cache, node); 484 } 485 486 while (!list_empty(&cache->changed)) { 487 node = list_entry(cache->changed.next, 488 struct backref_node, list); 489 list_del_init(&node->list); 490 BUG_ON(node->pending); 491 update_backref_node(cache, node, node->new_bytenr); 492 } 493 494 /* 495 * some nodes can be left in the pending list if there were 496 * errors during processing the pending nodes. 497 */ 498 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 499 list_for_each_entry(node, &cache->pending[level], list) { 500 BUG_ON(!node->pending); 501 if (node->bytenr == node->new_bytenr) 502 continue; 503 update_backref_node(cache, node, node->new_bytenr); 504 } 505 } 506 507 cache->last_trans = 0; 508 return 1; 509 } 510 511 512 static int should_ignore_root(struct btrfs_root *root) 513 { 514 struct btrfs_root *reloc_root; 515 516 if (!root->ref_cows) 517 return 0; 518 519 reloc_root = root->reloc_root; 520 if (!reloc_root) 521 return 0; 522 523 if (btrfs_root_last_snapshot(&reloc_root->root_item) == 524 root->fs_info->running_transaction->transid - 1) 525 return 0; 526 /* 527 * if there is reloc tree and it was created in previous 528 * transaction backref lookup can find the reloc tree, 529 * so backref node for the fs tree root is useless for 530 * relocation. 531 */ 532 return 1; 533 } 534 /* 535 * find reloc tree by address of tree root 536 */ 537 static struct btrfs_root *find_reloc_root(struct reloc_control *rc, 538 u64 bytenr) 539 { 540 struct rb_node *rb_node; 541 struct mapping_node *node; 542 struct btrfs_root *root = NULL; 543 544 spin_lock(&rc->reloc_root_tree.lock); 545 rb_node = tree_search(&rc->reloc_root_tree.rb_root, bytenr); 546 if (rb_node) { 547 node = rb_entry(rb_node, struct mapping_node, rb_node); 548 root = (struct btrfs_root *)node->data; 549 } 550 spin_unlock(&rc->reloc_root_tree.lock); 551 return root; 552 } 553 554 static int is_cowonly_root(u64 root_objectid) 555 { 556 if (root_objectid == BTRFS_ROOT_TREE_OBJECTID || 557 root_objectid == BTRFS_EXTENT_TREE_OBJECTID || 558 root_objectid == BTRFS_CHUNK_TREE_OBJECTID || 559 root_objectid == BTRFS_DEV_TREE_OBJECTID || 560 root_objectid == BTRFS_TREE_LOG_OBJECTID || 561 root_objectid == BTRFS_CSUM_TREE_OBJECTID) 562 return 1; 563 return 0; 564 } 565 566 static struct btrfs_root *read_fs_root(struct btrfs_fs_info *fs_info, 567 u64 root_objectid) 568 { 569 struct btrfs_key key; 570 571 key.objectid = root_objectid; 572 key.type = BTRFS_ROOT_ITEM_KEY; 573 if (is_cowonly_root(root_objectid)) 574 key.offset = 0; 575 else 576 key.offset = (u64)-1; 577 578 return btrfs_read_fs_root_no_name(fs_info, &key); 579 } 580 581 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 582 static noinline_for_stack 583 struct btrfs_root *find_tree_root(struct reloc_control *rc, 584 struct extent_buffer *leaf, 585 struct btrfs_extent_ref_v0 *ref0) 586 { 587 struct btrfs_root *root; 588 u64 root_objectid = btrfs_ref_root_v0(leaf, ref0); 589 u64 generation = btrfs_ref_generation_v0(leaf, ref0); 590 591 BUG_ON(root_objectid == BTRFS_TREE_RELOC_OBJECTID); 592 593 root = read_fs_root(rc->extent_root->fs_info, root_objectid); 594 BUG_ON(IS_ERR(root)); 595 596 if (root->ref_cows && 597 generation != btrfs_root_generation(&root->root_item)) 598 return NULL; 599 600 return root; 601 } 602 #endif 603 604 static noinline_for_stack 605 int find_inline_backref(struct extent_buffer *leaf, int slot, 606 unsigned long *ptr, unsigned long *end) 607 { 608 struct btrfs_extent_item *ei; 609 struct btrfs_tree_block_info *bi; 610 u32 item_size; 611 612 item_size = btrfs_item_size_nr(leaf, slot); 613 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 614 if (item_size < sizeof(*ei)) { 615 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 616 return 1; 617 } 618 #endif 619 ei = btrfs_item_ptr(leaf, slot, struct btrfs_extent_item); 620 WARN_ON(!(btrfs_extent_flags(leaf, ei) & 621 BTRFS_EXTENT_FLAG_TREE_BLOCK)); 622 623 if (item_size <= sizeof(*ei) + sizeof(*bi)) { 624 WARN_ON(item_size < sizeof(*ei) + sizeof(*bi)); 625 return 1; 626 } 627 628 bi = (struct btrfs_tree_block_info *)(ei + 1); 629 *ptr = (unsigned long)(bi + 1); 630 *end = (unsigned long)ei + item_size; 631 return 0; 632 } 633 634 /* 635 * build backref tree for a given tree block. root of the backref tree 636 * corresponds the tree block, leaves of the backref tree correspond 637 * roots of b-trees that reference the tree block. 638 * 639 * the basic idea of this function is check backrefs of a given block 640 * to find upper level blocks that refernece the block, and then check 641 * bakcrefs of these upper level blocks recursively. the recursion stop 642 * when tree root is reached or backrefs for the block is cached. 643 * 644 * NOTE: if we find backrefs for a block are cached, we know backrefs 645 * for all upper level blocks that directly/indirectly reference the 646 * block are also cached. 647 */ 648 static noinline_for_stack 649 struct backref_node *build_backref_tree(struct reloc_control *rc, 650 struct btrfs_key *node_key, 651 int level, u64 bytenr) 652 { 653 struct backref_cache *cache = &rc->backref_cache; 654 struct btrfs_path *path1; 655 struct btrfs_path *path2; 656 struct extent_buffer *eb; 657 struct btrfs_root *root; 658 struct backref_node *cur; 659 struct backref_node *upper; 660 struct backref_node *lower; 661 struct backref_node *node = NULL; 662 struct backref_node *exist = NULL; 663 struct backref_edge *edge; 664 struct rb_node *rb_node; 665 struct btrfs_key key; 666 unsigned long end; 667 unsigned long ptr; 668 LIST_HEAD(list); 669 LIST_HEAD(useless); 670 int cowonly; 671 int ret; 672 int err = 0; 673 674 path1 = btrfs_alloc_path(); 675 path2 = btrfs_alloc_path(); 676 if (!path1 || !path2) { 677 err = -ENOMEM; 678 goto out; 679 } 680 path1->reada = 1; 681 path2->reada = 2; 682 683 node = alloc_backref_node(cache); 684 if (!node) { 685 err = -ENOMEM; 686 goto out; 687 } 688 689 node->bytenr = bytenr; 690 node->level = level; 691 node->lowest = 1; 692 cur = node; 693 again: 694 end = 0; 695 ptr = 0; 696 key.objectid = cur->bytenr; 697 key.type = BTRFS_EXTENT_ITEM_KEY; 698 key.offset = (u64)-1; 699 700 path1->search_commit_root = 1; 701 path1->skip_locking = 1; 702 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path1, 703 0, 0); 704 if (ret < 0) { 705 err = ret; 706 goto out; 707 } 708 BUG_ON(!ret || !path1->slots[0]); 709 710 path1->slots[0]--; 711 712 WARN_ON(cur->checked); 713 if (!list_empty(&cur->upper)) { 714 /* 715 * the backref was added previously when processing 716 * backref of type BTRFS_TREE_BLOCK_REF_KEY 717 */ 718 BUG_ON(!list_is_singular(&cur->upper)); 719 edge = list_entry(cur->upper.next, struct backref_edge, 720 list[LOWER]); 721 BUG_ON(!list_empty(&edge->list[UPPER])); 722 exist = edge->node[UPPER]; 723 /* 724 * add the upper level block to pending list if we need 725 * check its backrefs 726 */ 727 if (!exist->checked) 728 list_add_tail(&edge->list[UPPER], &list); 729 } else { 730 exist = NULL; 731 } 732 733 while (1) { 734 cond_resched(); 735 eb = path1->nodes[0]; 736 737 if (ptr >= end) { 738 if (path1->slots[0] >= btrfs_header_nritems(eb)) { 739 ret = btrfs_next_leaf(rc->extent_root, path1); 740 if (ret < 0) { 741 err = ret; 742 goto out; 743 } 744 if (ret > 0) 745 break; 746 eb = path1->nodes[0]; 747 } 748 749 btrfs_item_key_to_cpu(eb, &key, path1->slots[0]); 750 if (key.objectid != cur->bytenr) { 751 WARN_ON(exist); 752 break; 753 } 754 755 if (key.type == BTRFS_EXTENT_ITEM_KEY) { 756 ret = find_inline_backref(eb, path1->slots[0], 757 &ptr, &end); 758 if (ret) 759 goto next; 760 } 761 } 762 763 if (ptr < end) { 764 /* update key for inline back ref */ 765 struct btrfs_extent_inline_ref *iref; 766 iref = (struct btrfs_extent_inline_ref *)ptr; 767 key.type = btrfs_extent_inline_ref_type(eb, iref); 768 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 769 WARN_ON(key.type != BTRFS_TREE_BLOCK_REF_KEY && 770 key.type != BTRFS_SHARED_BLOCK_REF_KEY); 771 } 772 773 if (exist && 774 ((key.type == BTRFS_TREE_BLOCK_REF_KEY && 775 exist->owner == key.offset) || 776 (key.type == BTRFS_SHARED_BLOCK_REF_KEY && 777 exist->bytenr == key.offset))) { 778 exist = NULL; 779 goto next; 780 } 781 782 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 783 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY || 784 key.type == BTRFS_EXTENT_REF_V0_KEY) { 785 if (key.type == BTRFS_EXTENT_REF_V0_KEY) { 786 struct btrfs_extent_ref_v0 *ref0; 787 ref0 = btrfs_item_ptr(eb, path1->slots[0], 788 struct btrfs_extent_ref_v0); 789 if (key.objectid == key.offset) { 790 root = find_tree_root(rc, eb, ref0); 791 if (root && !should_ignore_root(root)) 792 cur->root = root; 793 else 794 list_add(&cur->list, &useless); 795 break; 796 } 797 if (is_cowonly_root(btrfs_ref_root_v0(eb, 798 ref0))) 799 cur->cowonly = 1; 800 } 801 #else 802 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 803 if (key.type == BTRFS_SHARED_BLOCK_REF_KEY) { 804 #endif 805 if (key.objectid == key.offset) { 806 /* 807 * only root blocks of reloc trees use 808 * backref of this type. 809 */ 810 root = find_reloc_root(rc, cur->bytenr); 811 BUG_ON(!root); 812 cur->root = root; 813 break; 814 } 815 816 edge = alloc_backref_edge(cache); 817 if (!edge) { 818 err = -ENOMEM; 819 goto out; 820 } 821 rb_node = tree_search(&cache->rb_root, key.offset); 822 if (!rb_node) { 823 upper = alloc_backref_node(cache); 824 if (!upper) { 825 free_backref_edge(cache, edge); 826 err = -ENOMEM; 827 goto out; 828 } 829 upper->bytenr = key.offset; 830 upper->level = cur->level + 1; 831 /* 832 * backrefs for the upper level block isn't 833 * cached, add the block to pending list 834 */ 835 list_add_tail(&edge->list[UPPER], &list); 836 } else { 837 upper = rb_entry(rb_node, struct backref_node, 838 rb_node); 839 BUG_ON(!upper->checked); 840 INIT_LIST_HEAD(&edge->list[UPPER]); 841 } 842 list_add_tail(&edge->list[LOWER], &cur->upper); 843 edge->node[LOWER] = cur; 844 edge->node[UPPER] = upper; 845 846 goto next; 847 } else if (key.type != BTRFS_TREE_BLOCK_REF_KEY) { 848 goto next; 849 } 850 851 /* key.type == BTRFS_TREE_BLOCK_REF_KEY */ 852 root = read_fs_root(rc->extent_root->fs_info, key.offset); 853 if (IS_ERR(root)) { 854 err = PTR_ERR(root); 855 goto out; 856 } 857 858 if (!root->ref_cows) 859 cur->cowonly = 1; 860 861 if (btrfs_root_level(&root->root_item) == cur->level) { 862 /* tree root */ 863 BUG_ON(btrfs_root_bytenr(&root->root_item) != 864 cur->bytenr); 865 if (should_ignore_root(root)) 866 list_add(&cur->list, &useless); 867 else 868 cur->root = root; 869 break; 870 } 871 872 level = cur->level + 1; 873 874 /* 875 * searching the tree to find upper level blocks 876 * reference the block. 877 */ 878 path2->search_commit_root = 1; 879 path2->skip_locking = 1; 880 path2->lowest_level = level; 881 ret = btrfs_search_slot(NULL, root, node_key, path2, 0, 0); 882 path2->lowest_level = 0; 883 if (ret < 0) { 884 err = ret; 885 goto out; 886 } 887 if (ret > 0 && path2->slots[level] > 0) 888 path2->slots[level]--; 889 890 eb = path2->nodes[level]; 891 WARN_ON(btrfs_node_blockptr(eb, path2->slots[level]) != 892 cur->bytenr); 893 894 lower = cur; 895 for (; level < BTRFS_MAX_LEVEL; level++) { 896 if (!path2->nodes[level]) { 897 BUG_ON(btrfs_root_bytenr(&root->root_item) != 898 lower->bytenr); 899 if (should_ignore_root(root)) 900 list_add(&lower->list, &useless); 901 else 902 lower->root = root; 903 break; 904 } 905 906 edge = alloc_backref_edge(cache); 907 if (!edge) { 908 err = -ENOMEM; 909 goto out; 910 } 911 912 eb = path2->nodes[level]; 913 rb_node = tree_search(&cache->rb_root, eb->start); 914 if (!rb_node) { 915 upper = alloc_backref_node(cache); 916 if (!upper) { 917 free_backref_edge(cache, edge); 918 err = -ENOMEM; 919 goto out; 920 } 921 upper->bytenr = eb->start; 922 upper->owner = btrfs_header_owner(eb); 923 upper->level = lower->level + 1; 924 if (!root->ref_cows) 925 upper->cowonly = 1; 926 927 /* 928 * if we know the block isn't shared 929 * we can void checking its backrefs. 930 */ 931 if (btrfs_block_can_be_shared(root, eb)) 932 upper->checked = 0; 933 else 934 upper->checked = 1; 935 936 /* 937 * add the block to pending list if we 938 * need check its backrefs. only block 939 * at 'cur->level + 1' is added to the 940 * tail of pending list. this guarantees 941 * we check backrefs from lower level 942 * blocks to upper level blocks. 943 */ 944 if (!upper->checked && 945 level == cur->level + 1) { 946 list_add_tail(&edge->list[UPPER], 947 &list); 948 } else 949 INIT_LIST_HEAD(&edge->list[UPPER]); 950 } else { 951 upper = rb_entry(rb_node, struct backref_node, 952 rb_node); 953 BUG_ON(!upper->checked); 954 INIT_LIST_HEAD(&edge->list[UPPER]); 955 if (!upper->owner) 956 upper->owner = btrfs_header_owner(eb); 957 } 958 list_add_tail(&edge->list[LOWER], &lower->upper); 959 edge->node[LOWER] = lower; 960 edge->node[UPPER] = upper; 961 962 if (rb_node) 963 break; 964 lower = upper; 965 upper = NULL; 966 } 967 btrfs_release_path(path2); 968 next: 969 if (ptr < end) { 970 ptr += btrfs_extent_inline_ref_size(key.type); 971 if (ptr >= end) { 972 WARN_ON(ptr > end); 973 ptr = 0; 974 end = 0; 975 } 976 } 977 if (ptr >= end) 978 path1->slots[0]++; 979 } 980 btrfs_release_path(path1); 981 982 cur->checked = 1; 983 WARN_ON(exist); 984 985 /* the pending list isn't empty, take the first block to process */ 986 if (!list_empty(&list)) { 987 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 988 list_del_init(&edge->list[UPPER]); 989 cur = edge->node[UPPER]; 990 goto again; 991 } 992 993 /* 994 * everything goes well, connect backref nodes and insert backref nodes 995 * into the cache. 996 */ 997 BUG_ON(!node->checked); 998 cowonly = node->cowonly; 999 if (!cowonly) { 1000 rb_node = tree_insert(&cache->rb_root, node->bytenr, 1001 &node->rb_node); 1002 BUG_ON(rb_node); 1003 list_add_tail(&node->lower, &cache->leaves); 1004 } 1005 1006 list_for_each_entry(edge, &node->upper, list[LOWER]) 1007 list_add_tail(&edge->list[UPPER], &list); 1008 1009 while (!list_empty(&list)) { 1010 edge = list_entry(list.next, struct backref_edge, list[UPPER]); 1011 list_del_init(&edge->list[UPPER]); 1012 upper = edge->node[UPPER]; 1013 if (upper->detached) { 1014 list_del(&edge->list[LOWER]); 1015 lower = edge->node[LOWER]; 1016 free_backref_edge(cache, edge); 1017 if (list_empty(&lower->upper)) 1018 list_add(&lower->list, &useless); 1019 continue; 1020 } 1021 1022 if (!RB_EMPTY_NODE(&upper->rb_node)) { 1023 if (upper->lowest) { 1024 list_del_init(&upper->lower); 1025 upper->lowest = 0; 1026 } 1027 1028 list_add_tail(&edge->list[UPPER], &upper->lower); 1029 continue; 1030 } 1031 1032 BUG_ON(!upper->checked); 1033 BUG_ON(cowonly != upper->cowonly); 1034 if (!cowonly) { 1035 rb_node = tree_insert(&cache->rb_root, upper->bytenr, 1036 &upper->rb_node); 1037 BUG_ON(rb_node); 1038 } 1039 1040 list_add_tail(&edge->list[UPPER], &upper->lower); 1041 1042 list_for_each_entry(edge, &upper->upper, list[LOWER]) 1043 list_add_tail(&edge->list[UPPER], &list); 1044 } 1045 /* 1046 * process useless backref nodes. backref nodes for tree leaves 1047 * are deleted from the cache. backref nodes for upper level 1048 * tree blocks are left in the cache to avoid unnecessary backref 1049 * lookup. 1050 */ 1051 while (!list_empty(&useless)) { 1052 upper = list_entry(useless.next, struct backref_node, list); 1053 list_del_init(&upper->list); 1054 BUG_ON(!list_empty(&upper->upper)); 1055 if (upper == node) 1056 node = NULL; 1057 if (upper->lowest) { 1058 list_del_init(&upper->lower); 1059 upper->lowest = 0; 1060 } 1061 while (!list_empty(&upper->lower)) { 1062 edge = list_entry(upper->lower.next, 1063 struct backref_edge, list[UPPER]); 1064 list_del(&edge->list[UPPER]); 1065 list_del(&edge->list[LOWER]); 1066 lower = edge->node[LOWER]; 1067 free_backref_edge(cache, edge); 1068 1069 if (list_empty(&lower->upper)) 1070 list_add(&lower->list, &useless); 1071 } 1072 __mark_block_processed(rc, upper); 1073 if (upper->level > 0) { 1074 list_add(&upper->list, &cache->detached); 1075 upper->detached = 1; 1076 } else { 1077 rb_erase(&upper->rb_node, &cache->rb_root); 1078 free_backref_node(cache, upper); 1079 } 1080 } 1081 out: 1082 btrfs_free_path(path1); 1083 btrfs_free_path(path2); 1084 if (err) { 1085 while (!list_empty(&useless)) { 1086 lower = list_entry(useless.next, 1087 struct backref_node, upper); 1088 list_del_init(&lower->upper); 1089 } 1090 upper = node; 1091 INIT_LIST_HEAD(&list); 1092 while (upper) { 1093 if (RB_EMPTY_NODE(&upper->rb_node)) { 1094 list_splice_tail(&upper->upper, &list); 1095 free_backref_node(cache, upper); 1096 } 1097 1098 if (list_empty(&list)) 1099 break; 1100 1101 edge = list_entry(list.next, struct backref_edge, 1102 list[LOWER]); 1103 list_del(&edge->list[LOWER]); 1104 upper = edge->node[UPPER]; 1105 free_backref_edge(cache, edge); 1106 } 1107 return ERR_PTR(err); 1108 } 1109 BUG_ON(node && node->detached); 1110 return node; 1111 } 1112 1113 /* 1114 * helper to add backref node for the newly created snapshot. 1115 * the backref node is created by cloning backref node that 1116 * corresponds to root of source tree 1117 */ 1118 static int clone_backref_node(struct btrfs_trans_handle *trans, 1119 struct reloc_control *rc, 1120 struct btrfs_root *src, 1121 struct btrfs_root *dest) 1122 { 1123 struct btrfs_root *reloc_root = src->reloc_root; 1124 struct backref_cache *cache = &rc->backref_cache; 1125 struct backref_node *node = NULL; 1126 struct backref_node *new_node; 1127 struct backref_edge *edge; 1128 struct backref_edge *new_edge; 1129 struct rb_node *rb_node; 1130 1131 if (cache->last_trans > 0) 1132 update_backref_cache(trans, cache); 1133 1134 rb_node = tree_search(&cache->rb_root, src->commit_root->start); 1135 if (rb_node) { 1136 node = rb_entry(rb_node, struct backref_node, rb_node); 1137 if (node->detached) 1138 node = NULL; 1139 else 1140 BUG_ON(node->new_bytenr != reloc_root->node->start); 1141 } 1142 1143 if (!node) { 1144 rb_node = tree_search(&cache->rb_root, 1145 reloc_root->commit_root->start); 1146 if (rb_node) { 1147 node = rb_entry(rb_node, struct backref_node, 1148 rb_node); 1149 BUG_ON(node->detached); 1150 } 1151 } 1152 1153 if (!node) 1154 return 0; 1155 1156 new_node = alloc_backref_node(cache); 1157 if (!new_node) 1158 return -ENOMEM; 1159 1160 new_node->bytenr = dest->node->start; 1161 new_node->level = node->level; 1162 new_node->lowest = node->lowest; 1163 new_node->checked = 1; 1164 new_node->root = dest; 1165 1166 if (!node->lowest) { 1167 list_for_each_entry(edge, &node->lower, list[UPPER]) { 1168 new_edge = alloc_backref_edge(cache); 1169 if (!new_edge) 1170 goto fail; 1171 1172 new_edge->node[UPPER] = new_node; 1173 new_edge->node[LOWER] = edge->node[LOWER]; 1174 list_add_tail(&new_edge->list[UPPER], 1175 &new_node->lower); 1176 } 1177 } else { 1178 list_add_tail(&new_node->lower, &cache->leaves); 1179 } 1180 1181 rb_node = tree_insert(&cache->rb_root, new_node->bytenr, 1182 &new_node->rb_node); 1183 BUG_ON(rb_node); 1184 1185 if (!new_node->lowest) { 1186 list_for_each_entry(new_edge, &new_node->lower, list[UPPER]) { 1187 list_add_tail(&new_edge->list[LOWER], 1188 &new_edge->node[LOWER]->upper); 1189 } 1190 } 1191 return 0; 1192 fail: 1193 while (!list_empty(&new_node->lower)) { 1194 new_edge = list_entry(new_node->lower.next, 1195 struct backref_edge, list[UPPER]); 1196 list_del(&new_edge->list[UPPER]); 1197 free_backref_edge(cache, new_edge); 1198 } 1199 free_backref_node(cache, new_node); 1200 return -ENOMEM; 1201 } 1202 1203 /* 1204 * helper to add 'address of tree root -> reloc tree' mapping 1205 */ 1206 static int __add_reloc_root(struct btrfs_root *root) 1207 { 1208 struct rb_node *rb_node; 1209 struct mapping_node *node; 1210 struct reloc_control *rc = root->fs_info->reloc_ctl; 1211 1212 node = kmalloc(sizeof(*node), GFP_NOFS); 1213 BUG_ON(!node); 1214 1215 node->bytenr = root->node->start; 1216 node->data = root; 1217 1218 spin_lock(&rc->reloc_root_tree.lock); 1219 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1220 node->bytenr, &node->rb_node); 1221 spin_unlock(&rc->reloc_root_tree.lock); 1222 BUG_ON(rb_node); 1223 1224 list_add_tail(&root->root_list, &rc->reloc_roots); 1225 return 0; 1226 } 1227 1228 /* 1229 * helper to update/delete the 'address of tree root -> reloc tree' 1230 * mapping 1231 */ 1232 static int __update_reloc_root(struct btrfs_root *root, int del) 1233 { 1234 struct rb_node *rb_node; 1235 struct mapping_node *node = NULL; 1236 struct reloc_control *rc = root->fs_info->reloc_ctl; 1237 1238 spin_lock(&rc->reloc_root_tree.lock); 1239 rb_node = tree_search(&rc->reloc_root_tree.rb_root, 1240 root->commit_root->start); 1241 if (rb_node) { 1242 node = rb_entry(rb_node, struct mapping_node, rb_node); 1243 rb_erase(&node->rb_node, &rc->reloc_root_tree.rb_root); 1244 } 1245 spin_unlock(&rc->reloc_root_tree.lock); 1246 1247 BUG_ON((struct btrfs_root *)node->data != root); 1248 1249 if (!del) { 1250 spin_lock(&rc->reloc_root_tree.lock); 1251 node->bytenr = root->node->start; 1252 rb_node = tree_insert(&rc->reloc_root_tree.rb_root, 1253 node->bytenr, &node->rb_node); 1254 spin_unlock(&rc->reloc_root_tree.lock); 1255 BUG_ON(rb_node); 1256 } else { 1257 list_del_init(&root->root_list); 1258 kfree(node); 1259 } 1260 return 0; 1261 } 1262 1263 static struct btrfs_root *create_reloc_root(struct btrfs_trans_handle *trans, 1264 struct btrfs_root *root, u64 objectid) 1265 { 1266 struct btrfs_root *reloc_root; 1267 struct extent_buffer *eb; 1268 struct btrfs_root_item *root_item; 1269 struct btrfs_key root_key; 1270 int ret; 1271 1272 root_item = kmalloc(sizeof(*root_item), GFP_NOFS); 1273 BUG_ON(!root_item); 1274 1275 root_key.objectid = BTRFS_TREE_RELOC_OBJECTID; 1276 root_key.type = BTRFS_ROOT_ITEM_KEY; 1277 root_key.offset = objectid; 1278 1279 if (root->root_key.objectid == objectid) { 1280 /* called by btrfs_init_reloc_root */ 1281 ret = btrfs_copy_root(trans, root, root->commit_root, &eb, 1282 BTRFS_TREE_RELOC_OBJECTID); 1283 BUG_ON(ret); 1284 1285 btrfs_set_root_last_snapshot(&root->root_item, 1286 trans->transid - 1); 1287 } else { 1288 /* 1289 * called by btrfs_reloc_post_snapshot_hook. 1290 * the source tree is a reloc tree, all tree blocks 1291 * modified after it was created have RELOC flag 1292 * set in their headers. so it's OK to not update 1293 * the 'last_snapshot'. 1294 */ 1295 ret = btrfs_copy_root(trans, root, root->node, &eb, 1296 BTRFS_TREE_RELOC_OBJECTID); 1297 BUG_ON(ret); 1298 } 1299 1300 memcpy(root_item, &root->root_item, sizeof(*root_item)); 1301 btrfs_set_root_bytenr(root_item, eb->start); 1302 btrfs_set_root_level(root_item, btrfs_header_level(eb)); 1303 btrfs_set_root_generation(root_item, trans->transid); 1304 1305 if (root->root_key.objectid == objectid) { 1306 btrfs_set_root_refs(root_item, 0); 1307 memset(&root_item->drop_progress, 0, 1308 sizeof(struct btrfs_disk_key)); 1309 root_item->drop_level = 0; 1310 } 1311 1312 btrfs_tree_unlock(eb); 1313 free_extent_buffer(eb); 1314 1315 ret = btrfs_insert_root(trans, root->fs_info->tree_root, 1316 &root_key, root_item); 1317 BUG_ON(ret); 1318 kfree(root_item); 1319 1320 reloc_root = btrfs_read_fs_root_no_radix(root->fs_info->tree_root, 1321 &root_key); 1322 BUG_ON(IS_ERR(reloc_root)); 1323 reloc_root->last_trans = trans->transid; 1324 return reloc_root; 1325 } 1326 1327 /* 1328 * create reloc tree for a given fs tree. reloc tree is just a 1329 * snapshot of the fs tree with special root objectid. 1330 */ 1331 int btrfs_init_reloc_root(struct btrfs_trans_handle *trans, 1332 struct btrfs_root *root) 1333 { 1334 struct btrfs_root *reloc_root; 1335 struct reloc_control *rc = root->fs_info->reloc_ctl; 1336 int clear_rsv = 0; 1337 1338 if (root->reloc_root) { 1339 reloc_root = root->reloc_root; 1340 reloc_root->last_trans = trans->transid; 1341 return 0; 1342 } 1343 1344 if (!rc || !rc->create_reloc_tree || 1345 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1346 return 0; 1347 1348 if (!trans->block_rsv) { 1349 trans->block_rsv = rc->block_rsv; 1350 clear_rsv = 1; 1351 } 1352 reloc_root = create_reloc_root(trans, root, root->root_key.objectid); 1353 if (clear_rsv) 1354 trans->block_rsv = NULL; 1355 1356 __add_reloc_root(reloc_root); 1357 root->reloc_root = reloc_root; 1358 return 0; 1359 } 1360 1361 /* 1362 * update root item of reloc tree 1363 */ 1364 int btrfs_update_reloc_root(struct btrfs_trans_handle *trans, 1365 struct btrfs_root *root) 1366 { 1367 struct btrfs_root *reloc_root; 1368 struct btrfs_root_item *root_item; 1369 int del = 0; 1370 int ret; 1371 1372 if (!root->reloc_root) 1373 goto out; 1374 1375 reloc_root = root->reloc_root; 1376 root_item = &reloc_root->root_item; 1377 1378 if (root->fs_info->reloc_ctl->merge_reloc_tree && 1379 btrfs_root_refs(root_item) == 0) { 1380 root->reloc_root = NULL; 1381 del = 1; 1382 } 1383 1384 __update_reloc_root(reloc_root, del); 1385 1386 if (reloc_root->commit_root != reloc_root->node) { 1387 btrfs_set_root_node(root_item, reloc_root->node); 1388 free_extent_buffer(reloc_root->commit_root); 1389 reloc_root->commit_root = btrfs_root_node(reloc_root); 1390 } 1391 1392 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1393 &reloc_root->root_key, root_item); 1394 BUG_ON(ret); 1395 1396 out: 1397 return 0; 1398 } 1399 1400 /* 1401 * helper to find first cached inode with inode number >= objectid 1402 * in a subvolume 1403 */ 1404 static struct inode *find_next_inode(struct btrfs_root *root, u64 objectid) 1405 { 1406 struct rb_node *node; 1407 struct rb_node *prev; 1408 struct btrfs_inode *entry; 1409 struct inode *inode; 1410 1411 spin_lock(&root->inode_lock); 1412 again: 1413 node = root->inode_tree.rb_node; 1414 prev = NULL; 1415 while (node) { 1416 prev = node; 1417 entry = rb_entry(node, struct btrfs_inode, rb_node); 1418 1419 if (objectid < btrfs_ino(&entry->vfs_inode)) 1420 node = node->rb_left; 1421 else if (objectid > btrfs_ino(&entry->vfs_inode)) 1422 node = node->rb_right; 1423 else 1424 break; 1425 } 1426 if (!node) { 1427 while (prev) { 1428 entry = rb_entry(prev, struct btrfs_inode, rb_node); 1429 if (objectid <= btrfs_ino(&entry->vfs_inode)) { 1430 node = prev; 1431 break; 1432 } 1433 prev = rb_next(prev); 1434 } 1435 } 1436 while (node) { 1437 entry = rb_entry(node, struct btrfs_inode, rb_node); 1438 inode = igrab(&entry->vfs_inode); 1439 if (inode) { 1440 spin_unlock(&root->inode_lock); 1441 return inode; 1442 } 1443 1444 objectid = btrfs_ino(&entry->vfs_inode) + 1; 1445 if (cond_resched_lock(&root->inode_lock)) 1446 goto again; 1447 1448 node = rb_next(node); 1449 } 1450 spin_unlock(&root->inode_lock); 1451 return NULL; 1452 } 1453 1454 static int in_block_group(u64 bytenr, 1455 struct btrfs_block_group_cache *block_group) 1456 { 1457 if (bytenr >= block_group->key.objectid && 1458 bytenr < block_group->key.objectid + block_group->key.offset) 1459 return 1; 1460 return 0; 1461 } 1462 1463 /* 1464 * get new location of data 1465 */ 1466 static int get_new_location(struct inode *reloc_inode, u64 *new_bytenr, 1467 u64 bytenr, u64 num_bytes) 1468 { 1469 struct btrfs_root *root = BTRFS_I(reloc_inode)->root; 1470 struct btrfs_path *path; 1471 struct btrfs_file_extent_item *fi; 1472 struct extent_buffer *leaf; 1473 int ret; 1474 1475 path = btrfs_alloc_path(); 1476 if (!path) 1477 return -ENOMEM; 1478 1479 bytenr -= BTRFS_I(reloc_inode)->index_cnt; 1480 ret = btrfs_lookup_file_extent(NULL, root, path, btrfs_ino(reloc_inode), 1481 bytenr, 0); 1482 if (ret < 0) 1483 goto out; 1484 if (ret > 0) { 1485 ret = -ENOENT; 1486 goto out; 1487 } 1488 1489 leaf = path->nodes[0]; 1490 fi = btrfs_item_ptr(leaf, path->slots[0], 1491 struct btrfs_file_extent_item); 1492 1493 BUG_ON(btrfs_file_extent_offset(leaf, fi) || 1494 btrfs_file_extent_compression(leaf, fi) || 1495 btrfs_file_extent_encryption(leaf, fi) || 1496 btrfs_file_extent_other_encoding(leaf, fi)); 1497 1498 if (num_bytes != btrfs_file_extent_disk_num_bytes(leaf, fi)) { 1499 ret = 1; 1500 goto out; 1501 } 1502 1503 *new_bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1504 ret = 0; 1505 out: 1506 btrfs_free_path(path); 1507 return ret; 1508 } 1509 1510 /* 1511 * update file extent items in the tree leaf to point to 1512 * the new locations. 1513 */ 1514 static noinline_for_stack 1515 int replace_file_extents(struct btrfs_trans_handle *trans, 1516 struct reloc_control *rc, 1517 struct btrfs_root *root, 1518 struct extent_buffer *leaf) 1519 { 1520 struct btrfs_key key; 1521 struct btrfs_file_extent_item *fi; 1522 struct inode *inode = NULL; 1523 u64 parent; 1524 u64 bytenr; 1525 u64 new_bytenr = 0; 1526 u64 num_bytes; 1527 u64 end; 1528 u32 nritems; 1529 u32 i; 1530 int ret; 1531 int first = 1; 1532 int dirty = 0; 1533 1534 if (rc->stage != UPDATE_DATA_PTRS) 1535 return 0; 1536 1537 /* reloc trees always use full backref */ 1538 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) 1539 parent = leaf->start; 1540 else 1541 parent = 0; 1542 1543 nritems = btrfs_header_nritems(leaf); 1544 for (i = 0; i < nritems; i++) { 1545 cond_resched(); 1546 btrfs_item_key_to_cpu(leaf, &key, i); 1547 if (key.type != BTRFS_EXTENT_DATA_KEY) 1548 continue; 1549 fi = btrfs_item_ptr(leaf, i, struct btrfs_file_extent_item); 1550 if (btrfs_file_extent_type(leaf, fi) == 1551 BTRFS_FILE_EXTENT_INLINE) 1552 continue; 1553 bytenr = btrfs_file_extent_disk_bytenr(leaf, fi); 1554 num_bytes = btrfs_file_extent_disk_num_bytes(leaf, fi); 1555 if (bytenr == 0) 1556 continue; 1557 if (!in_block_group(bytenr, rc->block_group)) 1558 continue; 1559 1560 /* 1561 * if we are modifying block in fs tree, wait for readpage 1562 * to complete and drop the extent cache 1563 */ 1564 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) { 1565 if (first) { 1566 inode = find_next_inode(root, key.objectid); 1567 first = 0; 1568 } else if (inode && btrfs_ino(inode) < key.objectid) { 1569 btrfs_add_delayed_iput(inode); 1570 inode = find_next_inode(root, key.objectid); 1571 } 1572 if (inode && btrfs_ino(inode) == key.objectid) { 1573 end = key.offset + 1574 btrfs_file_extent_num_bytes(leaf, fi); 1575 WARN_ON(!IS_ALIGNED(key.offset, 1576 root->sectorsize)); 1577 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1578 end--; 1579 ret = try_lock_extent(&BTRFS_I(inode)->io_tree, 1580 key.offset, end, 1581 GFP_NOFS); 1582 if (!ret) 1583 continue; 1584 1585 btrfs_drop_extent_cache(inode, key.offset, end, 1586 1); 1587 unlock_extent(&BTRFS_I(inode)->io_tree, 1588 key.offset, end, GFP_NOFS); 1589 } 1590 } 1591 1592 ret = get_new_location(rc->data_inode, &new_bytenr, 1593 bytenr, num_bytes); 1594 if (ret > 0) { 1595 WARN_ON(1); 1596 continue; 1597 } 1598 BUG_ON(ret < 0); 1599 1600 btrfs_set_file_extent_disk_bytenr(leaf, fi, new_bytenr); 1601 dirty = 1; 1602 1603 key.offset -= btrfs_file_extent_offset(leaf, fi); 1604 ret = btrfs_inc_extent_ref(trans, root, new_bytenr, 1605 num_bytes, parent, 1606 btrfs_header_owner(leaf), 1607 key.objectid, key.offset, 1); 1608 BUG_ON(ret); 1609 1610 ret = btrfs_free_extent(trans, root, bytenr, num_bytes, 1611 parent, btrfs_header_owner(leaf), 1612 key.objectid, key.offset, 1); 1613 BUG_ON(ret); 1614 } 1615 if (dirty) 1616 btrfs_mark_buffer_dirty(leaf); 1617 if (inode) 1618 btrfs_add_delayed_iput(inode); 1619 return 0; 1620 } 1621 1622 static noinline_for_stack 1623 int memcmp_node_keys(struct extent_buffer *eb, int slot, 1624 struct btrfs_path *path, int level) 1625 { 1626 struct btrfs_disk_key key1; 1627 struct btrfs_disk_key key2; 1628 btrfs_node_key(eb, &key1, slot); 1629 btrfs_node_key(path->nodes[level], &key2, path->slots[level]); 1630 return memcmp(&key1, &key2, sizeof(key1)); 1631 } 1632 1633 /* 1634 * try to replace tree blocks in fs tree with the new blocks 1635 * in reloc tree. tree blocks haven't been modified since the 1636 * reloc tree was create can be replaced. 1637 * 1638 * if a block was replaced, level of the block + 1 is returned. 1639 * if no block got replaced, 0 is returned. if there are other 1640 * errors, a negative error number is returned. 1641 */ 1642 static noinline_for_stack 1643 int replace_path(struct btrfs_trans_handle *trans, 1644 struct btrfs_root *dest, struct btrfs_root *src, 1645 struct btrfs_path *path, struct btrfs_key *next_key, 1646 int lowest_level, int max_level) 1647 { 1648 struct extent_buffer *eb; 1649 struct extent_buffer *parent; 1650 struct btrfs_key key; 1651 u64 old_bytenr; 1652 u64 new_bytenr; 1653 u64 old_ptr_gen; 1654 u64 new_ptr_gen; 1655 u64 last_snapshot; 1656 u32 blocksize; 1657 int cow = 0; 1658 int level; 1659 int ret; 1660 int slot; 1661 1662 BUG_ON(src->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID); 1663 BUG_ON(dest->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID); 1664 1665 last_snapshot = btrfs_root_last_snapshot(&src->root_item); 1666 again: 1667 slot = path->slots[lowest_level]; 1668 btrfs_node_key_to_cpu(path->nodes[lowest_level], &key, slot); 1669 1670 eb = btrfs_lock_root_node(dest); 1671 btrfs_set_lock_blocking(eb); 1672 level = btrfs_header_level(eb); 1673 1674 if (level < lowest_level) { 1675 btrfs_tree_unlock(eb); 1676 free_extent_buffer(eb); 1677 return 0; 1678 } 1679 1680 if (cow) { 1681 ret = btrfs_cow_block(trans, dest, eb, NULL, 0, &eb); 1682 BUG_ON(ret); 1683 } 1684 btrfs_set_lock_blocking(eb); 1685 1686 if (next_key) { 1687 next_key->objectid = (u64)-1; 1688 next_key->type = (u8)-1; 1689 next_key->offset = (u64)-1; 1690 } 1691 1692 parent = eb; 1693 while (1) { 1694 level = btrfs_header_level(parent); 1695 BUG_ON(level < lowest_level); 1696 1697 ret = btrfs_bin_search(parent, &key, level, &slot); 1698 if (ret && slot > 0) 1699 slot--; 1700 1701 if (next_key && slot + 1 < btrfs_header_nritems(parent)) 1702 btrfs_node_key_to_cpu(parent, next_key, slot + 1); 1703 1704 old_bytenr = btrfs_node_blockptr(parent, slot); 1705 blocksize = btrfs_level_size(dest, level - 1); 1706 old_ptr_gen = btrfs_node_ptr_generation(parent, slot); 1707 1708 if (level <= max_level) { 1709 eb = path->nodes[level]; 1710 new_bytenr = btrfs_node_blockptr(eb, 1711 path->slots[level]); 1712 new_ptr_gen = btrfs_node_ptr_generation(eb, 1713 path->slots[level]); 1714 } else { 1715 new_bytenr = 0; 1716 new_ptr_gen = 0; 1717 } 1718 1719 if (new_bytenr > 0 && new_bytenr == old_bytenr) { 1720 WARN_ON(1); 1721 ret = level; 1722 break; 1723 } 1724 1725 if (new_bytenr == 0 || old_ptr_gen > last_snapshot || 1726 memcmp_node_keys(parent, slot, path, level)) { 1727 if (level <= lowest_level) { 1728 ret = 0; 1729 break; 1730 } 1731 1732 eb = read_tree_block(dest, old_bytenr, blocksize, 1733 old_ptr_gen); 1734 BUG_ON(!eb); 1735 btrfs_tree_lock(eb); 1736 if (cow) { 1737 ret = btrfs_cow_block(trans, dest, eb, parent, 1738 slot, &eb); 1739 BUG_ON(ret); 1740 } 1741 btrfs_set_lock_blocking(eb); 1742 1743 btrfs_tree_unlock(parent); 1744 free_extent_buffer(parent); 1745 1746 parent = eb; 1747 continue; 1748 } 1749 1750 if (!cow) { 1751 btrfs_tree_unlock(parent); 1752 free_extent_buffer(parent); 1753 cow = 1; 1754 goto again; 1755 } 1756 1757 btrfs_node_key_to_cpu(path->nodes[level], &key, 1758 path->slots[level]); 1759 btrfs_release_path(path); 1760 1761 path->lowest_level = level; 1762 ret = btrfs_search_slot(trans, src, &key, path, 0, 1); 1763 path->lowest_level = 0; 1764 BUG_ON(ret); 1765 1766 /* 1767 * swap blocks in fs tree and reloc tree. 1768 */ 1769 btrfs_set_node_blockptr(parent, slot, new_bytenr); 1770 btrfs_set_node_ptr_generation(parent, slot, new_ptr_gen); 1771 btrfs_mark_buffer_dirty(parent); 1772 1773 btrfs_set_node_blockptr(path->nodes[level], 1774 path->slots[level], old_bytenr); 1775 btrfs_set_node_ptr_generation(path->nodes[level], 1776 path->slots[level], old_ptr_gen); 1777 btrfs_mark_buffer_dirty(path->nodes[level]); 1778 1779 ret = btrfs_inc_extent_ref(trans, src, old_bytenr, blocksize, 1780 path->nodes[level]->start, 1781 src->root_key.objectid, level - 1, 0, 1782 1); 1783 BUG_ON(ret); 1784 ret = btrfs_inc_extent_ref(trans, dest, new_bytenr, blocksize, 1785 0, dest->root_key.objectid, level - 1, 1786 0, 1); 1787 BUG_ON(ret); 1788 1789 ret = btrfs_free_extent(trans, src, new_bytenr, blocksize, 1790 path->nodes[level]->start, 1791 src->root_key.objectid, level - 1, 0, 1792 1); 1793 BUG_ON(ret); 1794 1795 ret = btrfs_free_extent(trans, dest, old_bytenr, blocksize, 1796 0, dest->root_key.objectid, level - 1, 1797 0, 1); 1798 BUG_ON(ret); 1799 1800 btrfs_unlock_up_safe(path, 0); 1801 1802 ret = level; 1803 break; 1804 } 1805 btrfs_tree_unlock(parent); 1806 free_extent_buffer(parent); 1807 return ret; 1808 } 1809 1810 /* 1811 * helper to find next relocated block in reloc tree 1812 */ 1813 static noinline_for_stack 1814 int walk_up_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1815 int *level) 1816 { 1817 struct extent_buffer *eb; 1818 int i; 1819 u64 last_snapshot; 1820 u32 nritems; 1821 1822 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1823 1824 for (i = 0; i < *level; i++) { 1825 free_extent_buffer(path->nodes[i]); 1826 path->nodes[i] = NULL; 1827 } 1828 1829 for (i = *level; i < BTRFS_MAX_LEVEL && path->nodes[i]; i++) { 1830 eb = path->nodes[i]; 1831 nritems = btrfs_header_nritems(eb); 1832 while (path->slots[i] + 1 < nritems) { 1833 path->slots[i]++; 1834 if (btrfs_node_ptr_generation(eb, path->slots[i]) <= 1835 last_snapshot) 1836 continue; 1837 1838 *level = i; 1839 return 0; 1840 } 1841 free_extent_buffer(path->nodes[i]); 1842 path->nodes[i] = NULL; 1843 } 1844 return 1; 1845 } 1846 1847 /* 1848 * walk down reloc tree to find relocated block of lowest level 1849 */ 1850 static noinline_for_stack 1851 int walk_down_reloc_tree(struct btrfs_root *root, struct btrfs_path *path, 1852 int *level) 1853 { 1854 struct extent_buffer *eb = NULL; 1855 int i; 1856 u64 bytenr; 1857 u64 ptr_gen = 0; 1858 u64 last_snapshot; 1859 u32 blocksize; 1860 u32 nritems; 1861 1862 last_snapshot = btrfs_root_last_snapshot(&root->root_item); 1863 1864 for (i = *level; i > 0; i--) { 1865 eb = path->nodes[i]; 1866 nritems = btrfs_header_nritems(eb); 1867 while (path->slots[i] < nritems) { 1868 ptr_gen = btrfs_node_ptr_generation(eb, path->slots[i]); 1869 if (ptr_gen > last_snapshot) 1870 break; 1871 path->slots[i]++; 1872 } 1873 if (path->slots[i] >= nritems) { 1874 if (i == *level) 1875 break; 1876 *level = i + 1; 1877 return 0; 1878 } 1879 if (i == 1) { 1880 *level = i; 1881 return 0; 1882 } 1883 1884 bytenr = btrfs_node_blockptr(eb, path->slots[i]); 1885 blocksize = btrfs_level_size(root, i - 1); 1886 eb = read_tree_block(root, bytenr, blocksize, ptr_gen); 1887 BUG_ON(btrfs_header_level(eb) != i - 1); 1888 path->nodes[i - 1] = eb; 1889 path->slots[i - 1] = 0; 1890 } 1891 return 1; 1892 } 1893 1894 /* 1895 * invalidate extent cache for file extents whose key in range of 1896 * [min_key, max_key) 1897 */ 1898 static int invalidate_extent_cache(struct btrfs_root *root, 1899 struct btrfs_key *min_key, 1900 struct btrfs_key *max_key) 1901 { 1902 struct inode *inode = NULL; 1903 u64 objectid; 1904 u64 start, end; 1905 u64 ino; 1906 1907 objectid = min_key->objectid; 1908 while (1) { 1909 cond_resched(); 1910 iput(inode); 1911 1912 if (objectid > max_key->objectid) 1913 break; 1914 1915 inode = find_next_inode(root, objectid); 1916 if (!inode) 1917 break; 1918 ino = btrfs_ino(inode); 1919 1920 if (ino > max_key->objectid) { 1921 iput(inode); 1922 break; 1923 } 1924 1925 objectid = ino + 1; 1926 if (!S_ISREG(inode->i_mode)) 1927 continue; 1928 1929 if (unlikely(min_key->objectid == ino)) { 1930 if (min_key->type > BTRFS_EXTENT_DATA_KEY) 1931 continue; 1932 if (min_key->type < BTRFS_EXTENT_DATA_KEY) 1933 start = 0; 1934 else { 1935 start = min_key->offset; 1936 WARN_ON(!IS_ALIGNED(start, root->sectorsize)); 1937 } 1938 } else { 1939 start = 0; 1940 } 1941 1942 if (unlikely(max_key->objectid == ino)) { 1943 if (max_key->type < BTRFS_EXTENT_DATA_KEY) 1944 continue; 1945 if (max_key->type > BTRFS_EXTENT_DATA_KEY) { 1946 end = (u64)-1; 1947 } else { 1948 if (max_key->offset == 0) 1949 continue; 1950 end = max_key->offset; 1951 WARN_ON(!IS_ALIGNED(end, root->sectorsize)); 1952 end--; 1953 } 1954 } else { 1955 end = (u64)-1; 1956 } 1957 1958 /* the lock_extent waits for readpage to complete */ 1959 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 1960 btrfs_drop_extent_cache(inode, start, end, 1); 1961 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 1962 } 1963 return 0; 1964 } 1965 1966 static int find_next_key(struct btrfs_path *path, int level, 1967 struct btrfs_key *key) 1968 1969 { 1970 while (level < BTRFS_MAX_LEVEL) { 1971 if (!path->nodes[level]) 1972 break; 1973 if (path->slots[level] + 1 < 1974 btrfs_header_nritems(path->nodes[level])) { 1975 btrfs_node_key_to_cpu(path->nodes[level], key, 1976 path->slots[level] + 1); 1977 return 0; 1978 } 1979 level++; 1980 } 1981 return 1; 1982 } 1983 1984 /* 1985 * merge the relocated tree blocks in reloc tree with corresponding 1986 * fs tree. 1987 */ 1988 static noinline_for_stack int merge_reloc_root(struct reloc_control *rc, 1989 struct btrfs_root *root) 1990 { 1991 LIST_HEAD(inode_list); 1992 struct btrfs_key key; 1993 struct btrfs_key next_key; 1994 struct btrfs_trans_handle *trans; 1995 struct btrfs_root *reloc_root; 1996 struct btrfs_root_item *root_item; 1997 struct btrfs_path *path; 1998 struct extent_buffer *leaf; 1999 unsigned long nr; 2000 int level; 2001 int max_level; 2002 int replaced = 0; 2003 int ret; 2004 int err = 0; 2005 u32 min_reserved; 2006 2007 path = btrfs_alloc_path(); 2008 if (!path) 2009 return -ENOMEM; 2010 path->reada = 1; 2011 2012 reloc_root = root->reloc_root; 2013 root_item = &reloc_root->root_item; 2014 2015 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) { 2016 level = btrfs_root_level(root_item); 2017 extent_buffer_get(reloc_root->node); 2018 path->nodes[level] = reloc_root->node; 2019 path->slots[level] = 0; 2020 } else { 2021 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress); 2022 2023 level = root_item->drop_level; 2024 BUG_ON(level == 0); 2025 path->lowest_level = level; 2026 ret = btrfs_search_slot(NULL, reloc_root, &key, path, 0, 0); 2027 path->lowest_level = 0; 2028 if (ret < 0) { 2029 btrfs_free_path(path); 2030 return ret; 2031 } 2032 2033 btrfs_node_key_to_cpu(path->nodes[level], &next_key, 2034 path->slots[level]); 2035 WARN_ON(memcmp(&key, &next_key, sizeof(key))); 2036 2037 btrfs_unlock_up_safe(path, 0); 2038 } 2039 2040 min_reserved = root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2041 memset(&next_key, 0, sizeof(next_key)); 2042 2043 while (1) { 2044 trans = btrfs_start_transaction(root, 0); 2045 BUG_ON(IS_ERR(trans)); 2046 trans->block_rsv = rc->block_rsv; 2047 2048 ret = btrfs_block_rsv_refill(root, rc->block_rsv, min_reserved); 2049 if (ret) { 2050 BUG_ON(ret != -EAGAIN); 2051 ret = btrfs_commit_transaction(trans, root); 2052 BUG_ON(ret); 2053 continue; 2054 } 2055 2056 replaced = 0; 2057 max_level = level; 2058 2059 ret = walk_down_reloc_tree(reloc_root, path, &level); 2060 if (ret < 0) { 2061 err = ret; 2062 goto out; 2063 } 2064 if (ret > 0) 2065 break; 2066 2067 if (!find_next_key(path, level, &key) && 2068 btrfs_comp_cpu_keys(&next_key, &key) >= 0) { 2069 ret = 0; 2070 } else { 2071 ret = replace_path(trans, root, reloc_root, path, 2072 &next_key, level, max_level); 2073 } 2074 if (ret < 0) { 2075 err = ret; 2076 goto out; 2077 } 2078 2079 if (ret > 0) { 2080 level = ret; 2081 btrfs_node_key_to_cpu(path->nodes[level], &key, 2082 path->slots[level]); 2083 replaced = 1; 2084 } 2085 2086 ret = walk_up_reloc_tree(reloc_root, path, &level); 2087 if (ret > 0) 2088 break; 2089 2090 BUG_ON(level == 0); 2091 /* 2092 * save the merging progress in the drop_progress. 2093 * this is OK since root refs == 1 in this case. 2094 */ 2095 btrfs_node_key(path->nodes[level], &root_item->drop_progress, 2096 path->slots[level]); 2097 root_item->drop_level = level; 2098 2099 nr = trans->blocks_used; 2100 btrfs_end_transaction_throttle(trans, root); 2101 2102 btrfs_btree_balance_dirty(root, nr); 2103 2104 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2105 invalidate_extent_cache(root, &key, &next_key); 2106 } 2107 2108 /* 2109 * handle the case only one block in the fs tree need to be 2110 * relocated and the block is tree root. 2111 */ 2112 leaf = btrfs_lock_root_node(root); 2113 ret = btrfs_cow_block(trans, root, leaf, NULL, 0, &leaf); 2114 btrfs_tree_unlock(leaf); 2115 free_extent_buffer(leaf); 2116 if (ret < 0) 2117 err = ret; 2118 out: 2119 btrfs_free_path(path); 2120 2121 if (err == 0) { 2122 memset(&root_item->drop_progress, 0, 2123 sizeof(root_item->drop_progress)); 2124 root_item->drop_level = 0; 2125 btrfs_set_root_refs(root_item, 0); 2126 btrfs_update_reloc_root(trans, root); 2127 } 2128 2129 nr = trans->blocks_used; 2130 btrfs_end_transaction_throttle(trans, root); 2131 2132 btrfs_btree_balance_dirty(root, nr); 2133 2134 if (replaced && rc->stage == UPDATE_DATA_PTRS) 2135 invalidate_extent_cache(root, &key, &next_key); 2136 2137 return err; 2138 } 2139 2140 static noinline_for_stack 2141 int prepare_to_merge(struct reloc_control *rc, int err) 2142 { 2143 struct btrfs_root *root = rc->extent_root; 2144 struct btrfs_root *reloc_root; 2145 struct btrfs_trans_handle *trans; 2146 LIST_HEAD(reloc_roots); 2147 u64 num_bytes = 0; 2148 int ret; 2149 2150 mutex_lock(&root->fs_info->reloc_mutex); 2151 rc->merging_rsv_size += root->nodesize * (BTRFS_MAX_LEVEL - 1) * 2; 2152 rc->merging_rsv_size += rc->nodes_relocated * 2; 2153 mutex_unlock(&root->fs_info->reloc_mutex); 2154 2155 again: 2156 if (!err) { 2157 num_bytes = rc->merging_rsv_size; 2158 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2159 if (ret) 2160 err = ret; 2161 } 2162 2163 trans = btrfs_join_transaction(rc->extent_root); 2164 if (IS_ERR(trans)) { 2165 if (!err) 2166 btrfs_block_rsv_release(rc->extent_root, 2167 rc->block_rsv, num_bytes); 2168 return PTR_ERR(trans); 2169 } 2170 2171 if (!err) { 2172 if (num_bytes != rc->merging_rsv_size) { 2173 btrfs_end_transaction(trans, rc->extent_root); 2174 btrfs_block_rsv_release(rc->extent_root, 2175 rc->block_rsv, num_bytes); 2176 goto again; 2177 } 2178 } 2179 2180 rc->merge_reloc_tree = 1; 2181 2182 while (!list_empty(&rc->reloc_roots)) { 2183 reloc_root = list_entry(rc->reloc_roots.next, 2184 struct btrfs_root, root_list); 2185 list_del_init(&reloc_root->root_list); 2186 2187 root = read_fs_root(reloc_root->fs_info, 2188 reloc_root->root_key.offset); 2189 BUG_ON(IS_ERR(root)); 2190 BUG_ON(root->reloc_root != reloc_root); 2191 2192 /* 2193 * set reference count to 1, so btrfs_recover_relocation 2194 * knows it should resumes merging 2195 */ 2196 if (!err) 2197 btrfs_set_root_refs(&reloc_root->root_item, 1); 2198 btrfs_update_reloc_root(trans, root); 2199 2200 list_add(&reloc_root->root_list, &reloc_roots); 2201 } 2202 2203 list_splice(&reloc_roots, &rc->reloc_roots); 2204 2205 if (!err) 2206 btrfs_commit_transaction(trans, rc->extent_root); 2207 else 2208 btrfs_end_transaction(trans, rc->extent_root); 2209 return err; 2210 } 2211 2212 static noinline_for_stack 2213 int merge_reloc_roots(struct reloc_control *rc) 2214 { 2215 struct btrfs_root *root; 2216 struct btrfs_root *reloc_root; 2217 LIST_HEAD(reloc_roots); 2218 int found = 0; 2219 int ret; 2220 again: 2221 root = rc->extent_root; 2222 2223 /* 2224 * this serializes us with btrfs_record_root_in_transaction, 2225 * we have to make sure nobody is in the middle of 2226 * adding their roots to the list while we are 2227 * doing this splice 2228 */ 2229 mutex_lock(&root->fs_info->reloc_mutex); 2230 list_splice_init(&rc->reloc_roots, &reloc_roots); 2231 mutex_unlock(&root->fs_info->reloc_mutex); 2232 2233 while (!list_empty(&reloc_roots)) { 2234 found = 1; 2235 reloc_root = list_entry(reloc_roots.next, 2236 struct btrfs_root, root_list); 2237 2238 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 2239 root = read_fs_root(reloc_root->fs_info, 2240 reloc_root->root_key.offset); 2241 BUG_ON(IS_ERR(root)); 2242 BUG_ON(root->reloc_root != reloc_root); 2243 2244 ret = merge_reloc_root(rc, root); 2245 BUG_ON(ret); 2246 } else { 2247 list_del_init(&reloc_root->root_list); 2248 } 2249 btrfs_drop_snapshot(reloc_root, rc->block_rsv, 0, 1); 2250 } 2251 2252 if (found) { 2253 found = 0; 2254 goto again; 2255 } 2256 BUG_ON(!RB_EMPTY_ROOT(&rc->reloc_root_tree.rb_root)); 2257 return 0; 2258 } 2259 2260 static void free_block_list(struct rb_root *blocks) 2261 { 2262 struct tree_block *block; 2263 struct rb_node *rb_node; 2264 while ((rb_node = rb_first(blocks))) { 2265 block = rb_entry(rb_node, struct tree_block, rb_node); 2266 rb_erase(rb_node, blocks); 2267 kfree(block); 2268 } 2269 } 2270 2271 static int record_reloc_root_in_trans(struct btrfs_trans_handle *trans, 2272 struct btrfs_root *reloc_root) 2273 { 2274 struct btrfs_root *root; 2275 2276 if (reloc_root->last_trans == trans->transid) 2277 return 0; 2278 2279 root = read_fs_root(reloc_root->fs_info, reloc_root->root_key.offset); 2280 BUG_ON(IS_ERR(root)); 2281 BUG_ON(root->reloc_root != reloc_root); 2282 2283 return btrfs_record_root_in_trans(trans, root); 2284 } 2285 2286 static noinline_for_stack 2287 struct btrfs_root *select_reloc_root(struct btrfs_trans_handle *trans, 2288 struct reloc_control *rc, 2289 struct backref_node *node, 2290 struct backref_edge *edges[], int *nr) 2291 { 2292 struct backref_node *next; 2293 struct btrfs_root *root; 2294 int index = 0; 2295 2296 next = node; 2297 while (1) { 2298 cond_resched(); 2299 next = walk_up_backref(next, edges, &index); 2300 root = next->root; 2301 BUG_ON(!root); 2302 BUG_ON(!root->ref_cows); 2303 2304 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID) { 2305 record_reloc_root_in_trans(trans, root); 2306 break; 2307 } 2308 2309 btrfs_record_root_in_trans(trans, root); 2310 root = root->reloc_root; 2311 2312 if (next->new_bytenr != root->node->start) { 2313 BUG_ON(next->new_bytenr); 2314 BUG_ON(!list_empty(&next->list)); 2315 next->new_bytenr = root->node->start; 2316 next->root = root; 2317 list_add_tail(&next->list, 2318 &rc->backref_cache.changed); 2319 __mark_block_processed(rc, next); 2320 break; 2321 } 2322 2323 WARN_ON(1); 2324 root = NULL; 2325 next = walk_down_backref(edges, &index); 2326 if (!next || next->level <= node->level) 2327 break; 2328 } 2329 if (!root) 2330 return NULL; 2331 2332 *nr = index; 2333 next = node; 2334 /* setup backref node path for btrfs_reloc_cow_block */ 2335 while (1) { 2336 rc->backref_cache.path[next->level] = next; 2337 if (--index < 0) 2338 break; 2339 next = edges[index]->node[UPPER]; 2340 } 2341 return root; 2342 } 2343 2344 /* 2345 * select a tree root for relocation. return NULL if the block 2346 * is reference counted. we should use do_relocation() in this 2347 * case. return a tree root pointer if the block isn't reference 2348 * counted. return -ENOENT if the block is root of reloc tree. 2349 */ 2350 static noinline_for_stack 2351 struct btrfs_root *select_one_root(struct btrfs_trans_handle *trans, 2352 struct backref_node *node) 2353 { 2354 struct backref_node *next; 2355 struct btrfs_root *root; 2356 struct btrfs_root *fs_root = NULL; 2357 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2358 int index = 0; 2359 2360 next = node; 2361 while (1) { 2362 cond_resched(); 2363 next = walk_up_backref(next, edges, &index); 2364 root = next->root; 2365 BUG_ON(!root); 2366 2367 /* no other choice for non-references counted tree */ 2368 if (!root->ref_cows) 2369 return root; 2370 2371 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) 2372 fs_root = root; 2373 2374 if (next != node) 2375 return NULL; 2376 2377 next = walk_down_backref(edges, &index); 2378 if (!next || next->level <= node->level) 2379 break; 2380 } 2381 2382 if (!fs_root) 2383 return ERR_PTR(-ENOENT); 2384 return fs_root; 2385 } 2386 2387 static noinline_for_stack 2388 u64 calcu_metadata_size(struct reloc_control *rc, 2389 struct backref_node *node, int reserve) 2390 { 2391 struct backref_node *next = node; 2392 struct backref_edge *edge; 2393 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2394 u64 num_bytes = 0; 2395 int index = 0; 2396 2397 BUG_ON(reserve && node->processed); 2398 2399 while (next) { 2400 cond_resched(); 2401 while (1) { 2402 if (next->processed && (reserve || next != node)) 2403 break; 2404 2405 num_bytes += btrfs_level_size(rc->extent_root, 2406 next->level); 2407 2408 if (list_empty(&next->upper)) 2409 break; 2410 2411 edge = list_entry(next->upper.next, 2412 struct backref_edge, list[LOWER]); 2413 edges[index++] = edge; 2414 next = edge->node[UPPER]; 2415 } 2416 next = walk_down_backref(edges, &index); 2417 } 2418 return num_bytes; 2419 } 2420 2421 static int reserve_metadata_space(struct btrfs_trans_handle *trans, 2422 struct reloc_control *rc, 2423 struct backref_node *node) 2424 { 2425 struct btrfs_root *root = rc->extent_root; 2426 u64 num_bytes; 2427 int ret; 2428 2429 num_bytes = calcu_metadata_size(rc, node, 1) * 2; 2430 2431 trans->block_rsv = rc->block_rsv; 2432 ret = btrfs_block_rsv_add(root, rc->block_rsv, num_bytes); 2433 if (ret) { 2434 if (ret == -EAGAIN) 2435 rc->commit_transaction = 1; 2436 return ret; 2437 } 2438 2439 return 0; 2440 } 2441 2442 static void release_metadata_space(struct reloc_control *rc, 2443 struct backref_node *node) 2444 { 2445 u64 num_bytes = calcu_metadata_size(rc, node, 0) * 2; 2446 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, num_bytes); 2447 } 2448 2449 /* 2450 * relocate a block tree, and then update pointers in upper level 2451 * blocks that reference the block to point to the new location. 2452 * 2453 * if called by link_to_upper, the block has already been relocated. 2454 * in that case this function just updates pointers. 2455 */ 2456 static int do_relocation(struct btrfs_trans_handle *trans, 2457 struct reloc_control *rc, 2458 struct backref_node *node, 2459 struct btrfs_key *key, 2460 struct btrfs_path *path, int lowest) 2461 { 2462 struct backref_node *upper; 2463 struct backref_edge *edge; 2464 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2465 struct btrfs_root *root; 2466 struct extent_buffer *eb; 2467 u32 blocksize; 2468 u64 bytenr; 2469 u64 generation; 2470 int nr; 2471 int slot; 2472 int ret; 2473 int err = 0; 2474 2475 BUG_ON(lowest && node->eb); 2476 2477 path->lowest_level = node->level + 1; 2478 rc->backref_cache.path[node->level] = node; 2479 list_for_each_entry(edge, &node->upper, list[LOWER]) { 2480 cond_resched(); 2481 2482 upper = edge->node[UPPER]; 2483 root = select_reloc_root(trans, rc, upper, edges, &nr); 2484 BUG_ON(!root); 2485 2486 if (upper->eb && !upper->locked) { 2487 if (!lowest) { 2488 ret = btrfs_bin_search(upper->eb, key, 2489 upper->level, &slot); 2490 BUG_ON(ret); 2491 bytenr = btrfs_node_blockptr(upper->eb, slot); 2492 if (node->eb->start == bytenr) 2493 goto next; 2494 } 2495 drop_node_buffer(upper); 2496 } 2497 2498 if (!upper->eb) { 2499 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2500 if (ret < 0) { 2501 err = ret; 2502 break; 2503 } 2504 BUG_ON(ret > 0); 2505 2506 if (!upper->eb) { 2507 upper->eb = path->nodes[upper->level]; 2508 path->nodes[upper->level] = NULL; 2509 } else { 2510 BUG_ON(upper->eb != path->nodes[upper->level]); 2511 } 2512 2513 upper->locked = 1; 2514 path->locks[upper->level] = 0; 2515 2516 slot = path->slots[upper->level]; 2517 btrfs_release_path(path); 2518 } else { 2519 ret = btrfs_bin_search(upper->eb, key, upper->level, 2520 &slot); 2521 BUG_ON(ret); 2522 } 2523 2524 bytenr = btrfs_node_blockptr(upper->eb, slot); 2525 if (lowest) { 2526 BUG_ON(bytenr != node->bytenr); 2527 } else { 2528 if (node->eb->start == bytenr) 2529 goto next; 2530 } 2531 2532 blocksize = btrfs_level_size(root, node->level); 2533 generation = btrfs_node_ptr_generation(upper->eb, slot); 2534 eb = read_tree_block(root, bytenr, blocksize, generation); 2535 if (!eb) { 2536 err = -EIO; 2537 goto next; 2538 } 2539 btrfs_tree_lock(eb); 2540 btrfs_set_lock_blocking(eb); 2541 2542 if (!node->eb) { 2543 ret = btrfs_cow_block(trans, root, eb, upper->eb, 2544 slot, &eb); 2545 btrfs_tree_unlock(eb); 2546 free_extent_buffer(eb); 2547 if (ret < 0) { 2548 err = ret; 2549 goto next; 2550 } 2551 BUG_ON(node->eb != eb); 2552 } else { 2553 btrfs_set_node_blockptr(upper->eb, slot, 2554 node->eb->start); 2555 btrfs_set_node_ptr_generation(upper->eb, slot, 2556 trans->transid); 2557 btrfs_mark_buffer_dirty(upper->eb); 2558 2559 ret = btrfs_inc_extent_ref(trans, root, 2560 node->eb->start, blocksize, 2561 upper->eb->start, 2562 btrfs_header_owner(upper->eb), 2563 node->level, 0, 1); 2564 BUG_ON(ret); 2565 2566 ret = btrfs_drop_subtree(trans, root, eb, upper->eb); 2567 BUG_ON(ret); 2568 } 2569 next: 2570 if (!upper->pending) 2571 drop_node_buffer(upper); 2572 else 2573 unlock_node_buffer(upper); 2574 if (err) 2575 break; 2576 } 2577 2578 if (!err && node->pending) { 2579 drop_node_buffer(node); 2580 list_move_tail(&node->list, &rc->backref_cache.changed); 2581 node->pending = 0; 2582 } 2583 2584 path->lowest_level = 0; 2585 BUG_ON(err == -ENOSPC); 2586 return err; 2587 } 2588 2589 static int link_to_upper(struct btrfs_trans_handle *trans, 2590 struct reloc_control *rc, 2591 struct backref_node *node, 2592 struct btrfs_path *path) 2593 { 2594 struct btrfs_key key; 2595 2596 btrfs_node_key_to_cpu(node->eb, &key, 0); 2597 return do_relocation(trans, rc, node, &key, path, 0); 2598 } 2599 2600 static int finish_pending_nodes(struct btrfs_trans_handle *trans, 2601 struct reloc_control *rc, 2602 struct btrfs_path *path, int err) 2603 { 2604 LIST_HEAD(list); 2605 struct backref_cache *cache = &rc->backref_cache; 2606 struct backref_node *node; 2607 int level; 2608 int ret; 2609 2610 for (level = 0; level < BTRFS_MAX_LEVEL; level++) { 2611 while (!list_empty(&cache->pending[level])) { 2612 node = list_entry(cache->pending[level].next, 2613 struct backref_node, list); 2614 list_move_tail(&node->list, &list); 2615 BUG_ON(!node->pending); 2616 2617 if (!err) { 2618 ret = link_to_upper(trans, rc, node, path); 2619 if (ret < 0) 2620 err = ret; 2621 } 2622 } 2623 list_splice_init(&list, &cache->pending[level]); 2624 } 2625 return err; 2626 } 2627 2628 static void mark_block_processed(struct reloc_control *rc, 2629 u64 bytenr, u32 blocksize) 2630 { 2631 set_extent_bits(&rc->processed_blocks, bytenr, bytenr + blocksize - 1, 2632 EXTENT_DIRTY, GFP_NOFS); 2633 } 2634 2635 static void __mark_block_processed(struct reloc_control *rc, 2636 struct backref_node *node) 2637 { 2638 u32 blocksize; 2639 if (node->level == 0 || 2640 in_block_group(node->bytenr, rc->block_group)) { 2641 blocksize = btrfs_level_size(rc->extent_root, node->level); 2642 mark_block_processed(rc, node->bytenr, blocksize); 2643 } 2644 node->processed = 1; 2645 } 2646 2647 /* 2648 * mark a block and all blocks directly/indirectly reference the block 2649 * as processed. 2650 */ 2651 static void update_processed_blocks(struct reloc_control *rc, 2652 struct backref_node *node) 2653 { 2654 struct backref_node *next = node; 2655 struct backref_edge *edge; 2656 struct backref_edge *edges[BTRFS_MAX_LEVEL - 1]; 2657 int index = 0; 2658 2659 while (next) { 2660 cond_resched(); 2661 while (1) { 2662 if (next->processed) 2663 break; 2664 2665 __mark_block_processed(rc, next); 2666 2667 if (list_empty(&next->upper)) 2668 break; 2669 2670 edge = list_entry(next->upper.next, 2671 struct backref_edge, list[LOWER]); 2672 edges[index++] = edge; 2673 next = edge->node[UPPER]; 2674 } 2675 next = walk_down_backref(edges, &index); 2676 } 2677 } 2678 2679 static int tree_block_processed(u64 bytenr, u32 blocksize, 2680 struct reloc_control *rc) 2681 { 2682 if (test_range_bit(&rc->processed_blocks, bytenr, 2683 bytenr + blocksize - 1, EXTENT_DIRTY, 1, NULL)) 2684 return 1; 2685 return 0; 2686 } 2687 2688 static int get_tree_block_key(struct reloc_control *rc, 2689 struct tree_block *block) 2690 { 2691 struct extent_buffer *eb; 2692 2693 BUG_ON(block->key_ready); 2694 eb = read_tree_block(rc->extent_root, block->bytenr, 2695 block->key.objectid, block->key.offset); 2696 BUG_ON(!eb); 2697 WARN_ON(btrfs_header_level(eb) != block->level); 2698 if (block->level == 0) 2699 btrfs_item_key_to_cpu(eb, &block->key, 0); 2700 else 2701 btrfs_node_key_to_cpu(eb, &block->key, 0); 2702 free_extent_buffer(eb); 2703 block->key_ready = 1; 2704 return 0; 2705 } 2706 2707 static int reada_tree_block(struct reloc_control *rc, 2708 struct tree_block *block) 2709 { 2710 BUG_ON(block->key_ready); 2711 readahead_tree_block(rc->extent_root, block->bytenr, 2712 block->key.objectid, block->key.offset); 2713 return 0; 2714 } 2715 2716 /* 2717 * helper function to relocate a tree block 2718 */ 2719 static int relocate_tree_block(struct btrfs_trans_handle *trans, 2720 struct reloc_control *rc, 2721 struct backref_node *node, 2722 struct btrfs_key *key, 2723 struct btrfs_path *path) 2724 { 2725 struct btrfs_root *root; 2726 int release = 0; 2727 int ret = 0; 2728 2729 if (!node) 2730 return 0; 2731 2732 BUG_ON(node->processed); 2733 root = select_one_root(trans, node); 2734 if (root == ERR_PTR(-ENOENT)) { 2735 update_processed_blocks(rc, node); 2736 goto out; 2737 } 2738 2739 if (!root || root->ref_cows) { 2740 ret = reserve_metadata_space(trans, rc, node); 2741 if (ret) 2742 goto out; 2743 release = 1; 2744 } 2745 2746 if (root) { 2747 if (root->ref_cows) { 2748 BUG_ON(node->new_bytenr); 2749 BUG_ON(!list_empty(&node->list)); 2750 btrfs_record_root_in_trans(trans, root); 2751 root = root->reloc_root; 2752 node->new_bytenr = root->node->start; 2753 node->root = root; 2754 list_add_tail(&node->list, &rc->backref_cache.changed); 2755 } else { 2756 path->lowest_level = node->level; 2757 ret = btrfs_search_slot(trans, root, key, path, 0, 1); 2758 btrfs_release_path(path); 2759 if (ret > 0) 2760 ret = 0; 2761 } 2762 if (!ret) 2763 update_processed_blocks(rc, node); 2764 } else { 2765 ret = do_relocation(trans, rc, node, key, path, 1); 2766 } 2767 out: 2768 if (ret || node->level == 0 || node->cowonly) { 2769 if (release) 2770 release_metadata_space(rc, node); 2771 remove_backref_node(&rc->backref_cache, node); 2772 } 2773 return ret; 2774 } 2775 2776 /* 2777 * relocate a list of blocks 2778 */ 2779 static noinline_for_stack 2780 int relocate_tree_blocks(struct btrfs_trans_handle *trans, 2781 struct reloc_control *rc, struct rb_root *blocks) 2782 { 2783 struct backref_node *node; 2784 struct btrfs_path *path; 2785 struct tree_block *block; 2786 struct rb_node *rb_node; 2787 int ret; 2788 int err = 0; 2789 2790 path = btrfs_alloc_path(); 2791 if (!path) 2792 return -ENOMEM; 2793 2794 rb_node = rb_first(blocks); 2795 while (rb_node) { 2796 block = rb_entry(rb_node, struct tree_block, rb_node); 2797 if (!block->key_ready) 2798 reada_tree_block(rc, block); 2799 rb_node = rb_next(rb_node); 2800 } 2801 2802 rb_node = rb_first(blocks); 2803 while (rb_node) { 2804 block = rb_entry(rb_node, struct tree_block, rb_node); 2805 if (!block->key_ready) 2806 get_tree_block_key(rc, block); 2807 rb_node = rb_next(rb_node); 2808 } 2809 2810 rb_node = rb_first(blocks); 2811 while (rb_node) { 2812 block = rb_entry(rb_node, struct tree_block, rb_node); 2813 2814 node = build_backref_tree(rc, &block->key, 2815 block->level, block->bytenr); 2816 if (IS_ERR(node)) { 2817 err = PTR_ERR(node); 2818 goto out; 2819 } 2820 2821 ret = relocate_tree_block(trans, rc, node, &block->key, 2822 path); 2823 if (ret < 0) { 2824 if (ret != -EAGAIN || rb_node == rb_first(blocks)) 2825 err = ret; 2826 goto out; 2827 } 2828 rb_node = rb_next(rb_node); 2829 } 2830 out: 2831 free_block_list(blocks); 2832 err = finish_pending_nodes(trans, rc, path, err); 2833 2834 btrfs_free_path(path); 2835 return err; 2836 } 2837 2838 static noinline_for_stack 2839 int prealloc_file_extent_cluster(struct inode *inode, 2840 struct file_extent_cluster *cluster) 2841 { 2842 u64 alloc_hint = 0; 2843 u64 start; 2844 u64 end; 2845 u64 offset = BTRFS_I(inode)->index_cnt; 2846 u64 num_bytes; 2847 int nr = 0; 2848 int ret = 0; 2849 2850 BUG_ON(cluster->start != cluster->boundary[0]); 2851 mutex_lock(&inode->i_mutex); 2852 2853 ret = btrfs_check_data_free_space(inode, cluster->end + 2854 1 - cluster->start); 2855 if (ret) 2856 goto out; 2857 2858 while (nr < cluster->nr) { 2859 start = cluster->boundary[nr] - offset; 2860 if (nr + 1 < cluster->nr) 2861 end = cluster->boundary[nr + 1] - 1 - offset; 2862 else 2863 end = cluster->end - offset; 2864 2865 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2866 num_bytes = end + 1 - start; 2867 ret = btrfs_prealloc_file_range(inode, 0, start, 2868 num_bytes, num_bytes, 2869 end + 1, &alloc_hint); 2870 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2871 if (ret) 2872 break; 2873 nr++; 2874 } 2875 btrfs_free_reserved_data_space(inode, cluster->end + 2876 1 - cluster->start); 2877 out: 2878 mutex_unlock(&inode->i_mutex); 2879 return ret; 2880 } 2881 2882 static noinline_for_stack 2883 int setup_extent_mapping(struct inode *inode, u64 start, u64 end, 2884 u64 block_start) 2885 { 2886 struct btrfs_root *root = BTRFS_I(inode)->root; 2887 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2888 struct extent_map *em; 2889 int ret = 0; 2890 2891 em = alloc_extent_map(); 2892 if (!em) 2893 return -ENOMEM; 2894 2895 em->start = start; 2896 em->len = end + 1 - start; 2897 em->block_len = em->len; 2898 em->block_start = block_start; 2899 em->bdev = root->fs_info->fs_devices->latest_bdev; 2900 set_bit(EXTENT_FLAG_PINNED, &em->flags); 2901 2902 lock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2903 while (1) { 2904 write_lock(&em_tree->lock); 2905 ret = add_extent_mapping(em_tree, em); 2906 write_unlock(&em_tree->lock); 2907 if (ret != -EEXIST) { 2908 free_extent_map(em); 2909 break; 2910 } 2911 btrfs_drop_extent_cache(inode, start, end, 0); 2912 } 2913 unlock_extent(&BTRFS_I(inode)->io_tree, start, end, GFP_NOFS); 2914 return ret; 2915 } 2916 2917 static int relocate_file_extent_cluster(struct inode *inode, 2918 struct file_extent_cluster *cluster) 2919 { 2920 u64 page_start; 2921 u64 page_end; 2922 u64 offset = BTRFS_I(inode)->index_cnt; 2923 unsigned long index; 2924 unsigned long last_index; 2925 struct page *page; 2926 struct file_ra_state *ra; 2927 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 2928 int nr = 0; 2929 int ret = 0; 2930 2931 if (!cluster->nr) 2932 return 0; 2933 2934 ra = kzalloc(sizeof(*ra), GFP_NOFS); 2935 if (!ra) 2936 return -ENOMEM; 2937 2938 ret = prealloc_file_extent_cluster(inode, cluster); 2939 if (ret) 2940 goto out; 2941 2942 file_ra_state_init(ra, inode->i_mapping); 2943 2944 ret = setup_extent_mapping(inode, cluster->start - offset, 2945 cluster->end - offset, cluster->start); 2946 if (ret) 2947 goto out; 2948 2949 index = (cluster->start - offset) >> PAGE_CACHE_SHIFT; 2950 last_index = (cluster->end - offset) >> PAGE_CACHE_SHIFT; 2951 while (index <= last_index) { 2952 mutex_lock(&inode->i_mutex); 2953 ret = btrfs_delalloc_reserve_metadata(inode, PAGE_CACHE_SIZE); 2954 mutex_unlock(&inode->i_mutex); 2955 if (ret) 2956 goto out; 2957 2958 page = find_lock_page(inode->i_mapping, index); 2959 if (!page) { 2960 page_cache_sync_readahead(inode->i_mapping, 2961 ra, NULL, index, 2962 last_index + 1 - index); 2963 page = find_or_create_page(inode->i_mapping, index, 2964 mask); 2965 if (!page) { 2966 btrfs_delalloc_release_metadata(inode, 2967 PAGE_CACHE_SIZE); 2968 ret = -ENOMEM; 2969 goto out; 2970 } 2971 } 2972 2973 if (PageReadahead(page)) { 2974 page_cache_async_readahead(inode->i_mapping, 2975 ra, NULL, page, index, 2976 last_index + 1 - index); 2977 } 2978 2979 if (!PageUptodate(page)) { 2980 btrfs_readpage(NULL, page); 2981 lock_page(page); 2982 if (!PageUptodate(page)) { 2983 unlock_page(page); 2984 page_cache_release(page); 2985 btrfs_delalloc_release_metadata(inode, 2986 PAGE_CACHE_SIZE); 2987 ret = -EIO; 2988 goto out; 2989 } 2990 } 2991 2992 page_start = (u64)page->index << PAGE_CACHE_SHIFT; 2993 page_end = page_start + PAGE_CACHE_SIZE - 1; 2994 2995 lock_extent(&BTRFS_I(inode)->io_tree, 2996 page_start, page_end, GFP_NOFS); 2997 2998 set_page_extent_mapped(page); 2999 3000 if (nr < cluster->nr && 3001 page_start + offset == cluster->boundary[nr]) { 3002 set_extent_bits(&BTRFS_I(inode)->io_tree, 3003 page_start, page_end, 3004 EXTENT_BOUNDARY, GFP_NOFS); 3005 nr++; 3006 } 3007 3008 btrfs_set_extent_delalloc(inode, page_start, page_end, NULL); 3009 set_page_dirty(page); 3010 3011 unlock_extent(&BTRFS_I(inode)->io_tree, 3012 page_start, page_end, GFP_NOFS); 3013 unlock_page(page); 3014 page_cache_release(page); 3015 3016 index++; 3017 balance_dirty_pages_ratelimited(inode->i_mapping); 3018 btrfs_throttle(BTRFS_I(inode)->root); 3019 } 3020 WARN_ON(nr != cluster->nr); 3021 out: 3022 kfree(ra); 3023 return ret; 3024 } 3025 3026 static noinline_for_stack 3027 int relocate_data_extent(struct inode *inode, struct btrfs_key *extent_key, 3028 struct file_extent_cluster *cluster) 3029 { 3030 int ret; 3031 3032 if (cluster->nr > 0 && extent_key->objectid != cluster->end + 1) { 3033 ret = relocate_file_extent_cluster(inode, cluster); 3034 if (ret) 3035 return ret; 3036 cluster->nr = 0; 3037 } 3038 3039 if (!cluster->nr) 3040 cluster->start = extent_key->objectid; 3041 else 3042 BUG_ON(cluster->nr >= MAX_EXTENTS); 3043 cluster->end = extent_key->objectid + extent_key->offset - 1; 3044 cluster->boundary[cluster->nr] = extent_key->objectid; 3045 cluster->nr++; 3046 3047 if (cluster->nr >= MAX_EXTENTS) { 3048 ret = relocate_file_extent_cluster(inode, cluster); 3049 if (ret) 3050 return ret; 3051 cluster->nr = 0; 3052 } 3053 return 0; 3054 } 3055 3056 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3057 static int get_ref_objectid_v0(struct reloc_control *rc, 3058 struct btrfs_path *path, 3059 struct btrfs_key *extent_key, 3060 u64 *ref_objectid, int *path_change) 3061 { 3062 struct btrfs_key key; 3063 struct extent_buffer *leaf; 3064 struct btrfs_extent_ref_v0 *ref0; 3065 int ret; 3066 int slot; 3067 3068 leaf = path->nodes[0]; 3069 slot = path->slots[0]; 3070 while (1) { 3071 if (slot >= btrfs_header_nritems(leaf)) { 3072 ret = btrfs_next_leaf(rc->extent_root, path); 3073 if (ret < 0) 3074 return ret; 3075 BUG_ON(ret > 0); 3076 leaf = path->nodes[0]; 3077 slot = path->slots[0]; 3078 if (path_change) 3079 *path_change = 1; 3080 } 3081 btrfs_item_key_to_cpu(leaf, &key, slot); 3082 if (key.objectid != extent_key->objectid) 3083 return -ENOENT; 3084 3085 if (key.type != BTRFS_EXTENT_REF_V0_KEY) { 3086 slot++; 3087 continue; 3088 } 3089 ref0 = btrfs_item_ptr(leaf, slot, 3090 struct btrfs_extent_ref_v0); 3091 *ref_objectid = btrfs_ref_objectid_v0(leaf, ref0); 3092 break; 3093 } 3094 return 0; 3095 } 3096 #endif 3097 3098 /* 3099 * helper to add a tree block to the list. 3100 * the major work is getting the generation and level of the block 3101 */ 3102 static int add_tree_block(struct reloc_control *rc, 3103 struct btrfs_key *extent_key, 3104 struct btrfs_path *path, 3105 struct rb_root *blocks) 3106 { 3107 struct extent_buffer *eb; 3108 struct btrfs_extent_item *ei; 3109 struct btrfs_tree_block_info *bi; 3110 struct tree_block *block; 3111 struct rb_node *rb_node; 3112 u32 item_size; 3113 int level = -1; 3114 int generation; 3115 3116 eb = path->nodes[0]; 3117 item_size = btrfs_item_size_nr(eb, path->slots[0]); 3118 3119 if (item_size >= sizeof(*ei) + sizeof(*bi)) { 3120 ei = btrfs_item_ptr(eb, path->slots[0], 3121 struct btrfs_extent_item); 3122 bi = (struct btrfs_tree_block_info *)(ei + 1); 3123 generation = btrfs_extent_generation(eb, ei); 3124 level = btrfs_tree_block_level(eb, bi); 3125 } else { 3126 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3127 u64 ref_owner; 3128 int ret; 3129 3130 BUG_ON(item_size != sizeof(struct btrfs_extent_item_v0)); 3131 ret = get_ref_objectid_v0(rc, path, extent_key, 3132 &ref_owner, NULL); 3133 if (ret < 0) 3134 return ret; 3135 BUG_ON(ref_owner >= BTRFS_MAX_LEVEL); 3136 level = (int)ref_owner; 3137 /* FIXME: get real generation */ 3138 generation = 0; 3139 #else 3140 BUG(); 3141 #endif 3142 } 3143 3144 btrfs_release_path(path); 3145 3146 BUG_ON(level == -1); 3147 3148 block = kmalloc(sizeof(*block), GFP_NOFS); 3149 if (!block) 3150 return -ENOMEM; 3151 3152 block->bytenr = extent_key->objectid; 3153 block->key.objectid = extent_key->offset; 3154 block->key.offset = generation; 3155 block->level = level; 3156 block->key_ready = 0; 3157 3158 rb_node = tree_insert(blocks, block->bytenr, &block->rb_node); 3159 BUG_ON(rb_node); 3160 3161 return 0; 3162 } 3163 3164 /* 3165 * helper to add tree blocks for backref of type BTRFS_SHARED_DATA_REF_KEY 3166 */ 3167 static int __add_tree_block(struct reloc_control *rc, 3168 u64 bytenr, u32 blocksize, 3169 struct rb_root *blocks) 3170 { 3171 struct btrfs_path *path; 3172 struct btrfs_key key; 3173 int ret; 3174 3175 if (tree_block_processed(bytenr, blocksize, rc)) 3176 return 0; 3177 3178 if (tree_search(blocks, bytenr)) 3179 return 0; 3180 3181 path = btrfs_alloc_path(); 3182 if (!path) 3183 return -ENOMEM; 3184 3185 key.objectid = bytenr; 3186 key.type = BTRFS_EXTENT_ITEM_KEY; 3187 key.offset = blocksize; 3188 3189 path->search_commit_root = 1; 3190 path->skip_locking = 1; 3191 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 0, 0); 3192 if (ret < 0) 3193 goto out; 3194 BUG_ON(ret); 3195 3196 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 3197 ret = add_tree_block(rc, &key, path, blocks); 3198 out: 3199 btrfs_free_path(path); 3200 return ret; 3201 } 3202 3203 /* 3204 * helper to check if the block use full backrefs for pointers in it 3205 */ 3206 static int block_use_full_backref(struct reloc_control *rc, 3207 struct extent_buffer *eb) 3208 { 3209 u64 flags; 3210 int ret; 3211 3212 if (btrfs_header_flag(eb, BTRFS_HEADER_FLAG_RELOC) || 3213 btrfs_header_backref_rev(eb) < BTRFS_MIXED_BACKREF_REV) 3214 return 1; 3215 3216 ret = btrfs_lookup_extent_info(NULL, rc->extent_root, 3217 eb->start, eb->len, NULL, &flags); 3218 BUG_ON(ret); 3219 3220 if (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF) 3221 ret = 1; 3222 else 3223 ret = 0; 3224 return ret; 3225 } 3226 3227 static int delete_block_group_cache(struct btrfs_fs_info *fs_info, 3228 struct inode *inode, u64 ino) 3229 { 3230 struct btrfs_key key; 3231 struct btrfs_path *path; 3232 struct btrfs_root *root = fs_info->tree_root; 3233 struct btrfs_trans_handle *trans; 3234 unsigned long nr; 3235 int ret = 0; 3236 3237 if (inode) 3238 goto truncate; 3239 3240 key.objectid = ino; 3241 key.type = BTRFS_INODE_ITEM_KEY; 3242 key.offset = 0; 3243 3244 inode = btrfs_iget(fs_info->sb, &key, root, NULL); 3245 if (IS_ERR_OR_NULL(inode) || is_bad_inode(inode)) { 3246 if (inode && !IS_ERR(inode)) 3247 iput(inode); 3248 return -ENOENT; 3249 } 3250 3251 truncate: 3252 path = btrfs_alloc_path(); 3253 if (!path) { 3254 ret = -ENOMEM; 3255 goto out; 3256 } 3257 3258 trans = btrfs_join_transaction(root); 3259 if (IS_ERR(trans)) { 3260 btrfs_free_path(path); 3261 ret = PTR_ERR(trans); 3262 goto out; 3263 } 3264 3265 ret = btrfs_truncate_free_space_cache(root, trans, path, inode); 3266 3267 btrfs_free_path(path); 3268 nr = trans->blocks_used; 3269 btrfs_end_transaction(trans, root); 3270 btrfs_btree_balance_dirty(root, nr); 3271 out: 3272 iput(inode); 3273 return ret; 3274 } 3275 3276 /* 3277 * helper to add tree blocks for backref of type BTRFS_EXTENT_DATA_REF_KEY 3278 * this function scans fs tree to find blocks reference the data extent 3279 */ 3280 static int find_data_references(struct reloc_control *rc, 3281 struct btrfs_key *extent_key, 3282 struct extent_buffer *leaf, 3283 struct btrfs_extent_data_ref *ref, 3284 struct rb_root *blocks) 3285 { 3286 struct btrfs_path *path; 3287 struct tree_block *block; 3288 struct btrfs_root *root; 3289 struct btrfs_file_extent_item *fi; 3290 struct rb_node *rb_node; 3291 struct btrfs_key key; 3292 u64 ref_root; 3293 u64 ref_objectid; 3294 u64 ref_offset; 3295 u32 ref_count; 3296 u32 nritems; 3297 int err = 0; 3298 int added = 0; 3299 int counted; 3300 int ret; 3301 3302 ref_root = btrfs_extent_data_ref_root(leaf, ref); 3303 ref_objectid = btrfs_extent_data_ref_objectid(leaf, ref); 3304 ref_offset = btrfs_extent_data_ref_offset(leaf, ref); 3305 ref_count = btrfs_extent_data_ref_count(leaf, ref); 3306 3307 /* 3308 * This is an extent belonging to the free space cache, lets just delete 3309 * it and redo the search. 3310 */ 3311 if (ref_root == BTRFS_ROOT_TREE_OBJECTID) { 3312 ret = delete_block_group_cache(rc->extent_root->fs_info, 3313 NULL, ref_objectid); 3314 if (ret != -ENOENT) 3315 return ret; 3316 ret = 0; 3317 } 3318 3319 path = btrfs_alloc_path(); 3320 if (!path) 3321 return -ENOMEM; 3322 path->reada = 1; 3323 3324 root = read_fs_root(rc->extent_root->fs_info, ref_root); 3325 if (IS_ERR(root)) { 3326 err = PTR_ERR(root); 3327 goto out; 3328 } 3329 3330 key.objectid = ref_objectid; 3331 key.type = BTRFS_EXTENT_DATA_KEY; 3332 if (ref_offset > ((u64)-1 << 32)) 3333 key.offset = 0; 3334 else 3335 key.offset = ref_offset; 3336 3337 path->search_commit_root = 1; 3338 path->skip_locking = 1; 3339 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 3340 if (ret < 0) { 3341 err = ret; 3342 goto out; 3343 } 3344 3345 leaf = path->nodes[0]; 3346 nritems = btrfs_header_nritems(leaf); 3347 /* 3348 * the references in tree blocks that use full backrefs 3349 * are not counted in 3350 */ 3351 if (block_use_full_backref(rc, leaf)) 3352 counted = 0; 3353 else 3354 counted = 1; 3355 rb_node = tree_search(blocks, leaf->start); 3356 if (rb_node) { 3357 if (counted) 3358 added = 1; 3359 else 3360 path->slots[0] = nritems; 3361 } 3362 3363 while (ref_count > 0) { 3364 while (path->slots[0] >= nritems) { 3365 ret = btrfs_next_leaf(root, path); 3366 if (ret < 0) { 3367 err = ret; 3368 goto out; 3369 } 3370 if (ret > 0) { 3371 WARN_ON(1); 3372 goto out; 3373 } 3374 3375 leaf = path->nodes[0]; 3376 nritems = btrfs_header_nritems(leaf); 3377 added = 0; 3378 3379 if (block_use_full_backref(rc, leaf)) 3380 counted = 0; 3381 else 3382 counted = 1; 3383 rb_node = tree_search(blocks, leaf->start); 3384 if (rb_node) { 3385 if (counted) 3386 added = 1; 3387 else 3388 path->slots[0] = nritems; 3389 } 3390 } 3391 3392 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3393 if (key.objectid != ref_objectid || 3394 key.type != BTRFS_EXTENT_DATA_KEY) { 3395 WARN_ON(1); 3396 break; 3397 } 3398 3399 fi = btrfs_item_ptr(leaf, path->slots[0], 3400 struct btrfs_file_extent_item); 3401 3402 if (btrfs_file_extent_type(leaf, fi) == 3403 BTRFS_FILE_EXTENT_INLINE) 3404 goto next; 3405 3406 if (btrfs_file_extent_disk_bytenr(leaf, fi) != 3407 extent_key->objectid) 3408 goto next; 3409 3410 key.offset -= btrfs_file_extent_offset(leaf, fi); 3411 if (key.offset != ref_offset) 3412 goto next; 3413 3414 if (counted) 3415 ref_count--; 3416 if (added) 3417 goto next; 3418 3419 if (!tree_block_processed(leaf->start, leaf->len, rc)) { 3420 block = kmalloc(sizeof(*block), GFP_NOFS); 3421 if (!block) { 3422 err = -ENOMEM; 3423 break; 3424 } 3425 block->bytenr = leaf->start; 3426 btrfs_item_key_to_cpu(leaf, &block->key, 0); 3427 block->level = 0; 3428 block->key_ready = 1; 3429 rb_node = tree_insert(blocks, block->bytenr, 3430 &block->rb_node); 3431 BUG_ON(rb_node); 3432 } 3433 if (counted) 3434 added = 1; 3435 else 3436 path->slots[0] = nritems; 3437 next: 3438 path->slots[0]++; 3439 3440 } 3441 out: 3442 btrfs_free_path(path); 3443 return err; 3444 } 3445 3446 /* 3447 * hepler to find all tree blocks that reference a given data extent 3448 */ 3449 static noinline_for_stack 3450 int add_data_references(struct reloc_control *rc, 3451 struct btrfs_key *extent_key, 3452 struct btrfs_path *path, 3453 struct rb_root *blocks) 3454 { 3455 struct btrfs_key key; 3456 struct extent_buffer *eb; 3457 struct btrfs_extent_data_ref *dref; 3458 struct btrfs_extent_inline_ref *iref; 3459 unsigned long ptr; 3460 unsigned long end; 3461 u32 blocksize = btrfs_level_size(rc->extent_root, 0); 3462 int ret; 3463 int err = 0; 3464 3465 eb = path->nodes[0]; 3466 ptr = btrfs_item_ptr_offset(eb, path->slots[0]); 3467 end = ptr + btrfs_item_size_nr(eb, path->slots[0]); 3468 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3469 if (ptr + sizeof(struct btrfs_extent_item_v0) == end) 3470 ptr = end; 3471 else 3472 #endif 3473 ptr += sizeof(struct btrfs_extent_item); 3474 3475 while (ptr < end) { 3476 iref = (struct btrfs_extent_inline_ref *)ptr; 3477 key.type = btrfs_extent_inline_ref_type(eb, iref); 3478 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3479 key.offset = btrfs_extent_inline_ref_offset(eb, iref); 3480 ret = __add_tree_block(rc, key.offset, blocksize, 3481 blocks); 3482 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3483 dref = (struct btrfs_extent_data_ref *)(&iref->offset); 3484 ret = find_data_references(rc, extent_key, 3485 eb, dref, blocks); 3486 } else { 3487 BUG(); 3488 } 3489 ptr += btrfs_extent_inline_ref_size(key.type); 3490 } 3491 WARN_ON(ptr > end); 3492 3493 while (1) { 3494 cond_resched(); 3495 eb = path->nodes[0]; 3496 if (path->slots[0] >= btrfs_header_nritems(eb)) { 3497 ret = btrfs_next_leaf(rc->extent_root, path); 3498 if (ret < 0) { 3499 err = ret; 3500 break; 3501 } 3502 if (ret > 0) 3503 break; 3504 eb = path->nodes[0]; 3505 } 3506 3507 btrfs_item_key_to_cpu(eb, &key, path->slots[0]); 3508 if (key.objectid != extent_key->objectid) 3509 break; 3510 3511 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3512 if (key.type == BTRFS_SHARED_DATA_REF_KEY || 3513 key.type == BTRFS_EXTENT_REF_V0_KEY) { 3514 #else 3515 BUG_ON(key.type == BTRFS_EXTENT_REF_V0_KEY); 3516 if (key.type == BTRFS_SHARED_DATA_REF_KEY) { 3517 #endif 3518 ret = __add_tree_block(rc, key.offset, blocksize, 3519 blocks); 3520 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) { 3521 dref = btrfs_item_ptr(eb, path->slots[0], 3522 struct btrfs_extent_data_ref); 3523 ret = find_data_references(rc, extent_key, 3524 eb, dref, blocks); 3525 } else { 3526 ret = 0; 3527 } 3528 if (ret) { 3529 err = ret; 3530 break; 3531 } 3532 path->slots[0]++; 3533 } 3534 btrfs_release_path(path); 3535 if (err) 3536 free_block_list(blocks); 3537 return err; 3538 } 3539 3540 /* 3541 * hepler to find next unprocessed extent 3542 */ 3543 static noinline_for_stack 3544 int find_next_extent(struct btrfs_trans_handle *trans, 3545 struct reloc_control *rc, struct btrfs_path *path, 3546 struct btrfs_key *extent_key) 3547 { 3548 struct btrfs_key key; 3549 struct extent_buffer *leaf; 3550 u64 start, end, last; 3551 int ret; 3552 3553 last = rc->block_group->key.objectid + rc->block_group->key.offset; 3554 while (1) { 3555 cond_resched(); 3556 if (rc->search_start >= last) { 3557 ret = 1; 3558 break; 3559 } 3560 3561 key.objectid = rc->search_start; 3562 key.type = BTRFS_EXTENT_ITEM_KEY; 3563 key.offset = 0; 3564 3565 path->search_commit_root = 1; 3566 path->skip_locking = 1; 3567 ret = btrfs_search_slot(NULL, rc->extent_root, &key, path, 3568 0, 0); 3569 if (ret < 0) 3570 break; 3571 next: 3572 leaf = path->nodes[0]; 3573 if (path->slots[0] >= btrfs_header_nritems(leaf)) { 3574 ret = btrfs_next_leaf(rc->extent_root, path); 3575 if (ret != 0) 3576 break; 3577 leaf = path->nodes[0]; 3578 } 3579 3580 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 3581 if (key.objectid >= last) { 3582 ret = 1; 3583 break; 3584 } 3585 3586 if (key.type != BTRFS_EXTENT_ITEM_KEY || 3587 key.objectid + key.offset <= rc->search_start) { 3588 path->slots[0]++; 3589 goto next; 3590 } 3591 3592 ret = find_first_extent_bit(&rc->processed_blocks, 3593 key.objectid, &start, &end, 3594 EXTENT_DIRTY); 3595 3596 if (ret == 0 && start <= key.objectid) { 3597 btrfs_release_path(path); 3598 rc->search_start = end + 1; 3599 } else { 3600 rc->search_start = key.objectid + key.offset; 3601 memcpy(extent_key, &key, sizeof(key)); 3602 return 0; 3603 } 3604 } 3605 btrfs_release_path(path); 3606 return ret; 3607 } 3608 3609 static void set_reloc_control(struct reloc_control *rc) 3610 { 3611 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3612 3613 mutex_lock(&fs_info->reloc_mutex); 3614 fs_info->reloc_ctl = rc; 3615 mutex_unlock(&fs_info->reloc_mutex); 3616 } 3617 3618 static void unset_reloc_control(struct reloc_control *rc) 3619 { 3620 struct btrfs_fs_info *fs_info = rc->extent_root->fs_info; 3621 3622 mutex_lock(&fs_info->reloc_mutex); 3623 fs_info->reloc_ctl = NULL; 3624 mutex_unlock(&fs_info->reloc_mutex); 3625 } 3626 3627 static int check_extent_flags(u64 flags) 3628 { 3629 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3630 (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3631 return 1; 3632 if (!(flags & BTRFS_EXTENT_FLAG_DATA) && 3633 !(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK)) 3634 return 1; 3635 if ((flags & BTRFS_EXTENT_FLAG_DATA) && 3636 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF)) 3637 return 1; 3638 return 0; 3639 } 3640 3641 static noinline_for_stack 3642 int prepare_to_relocate(struct reloc_control *rc) 3643 { 3644 struct btrfs_trans_handle *trans; 3645 int ret; 3646 3647 rc->block_rsv = btrfs_alloc_block_rsv(rc->extent_root); 3648 if (!rc->block_rsv) 3649 return -ENOMEM; 3650 3651 /* 3652 * reserve some space for creating reloc trees. 3653 * btrfs_init_reloc_root will use them when there 3654 * is no reservation in transaction handle. 3655 */ 3656 ret = btrfs_block_rsv_add(rc->extent_root, rc->block_rsv, 3657 rc->extent_root->nodesize * 256); 3658 if (ret) 3659 return ret; 3660 3661 memset(&rc->cluster, 0, sizeof(rc->cluster)); 3662 rc->search_start = rc->block_group->key.objectid; 3663 rc->extents_found = 0; 3664 rc->nodes_relocated = 0; 3665 rc->merging_rsv_size = 0; 3666 3667 rc->create_reloc_tree = 1; 3668 set_reloc_control(rc); 3669 3670 trans = btrfs_join_transaction(rc->extent_root); 3671 BUG_ON(IS_ERR(trans)); 3672 btrfs_commit_transaction(trans, rc->extent_root); 3673 return 0; 3674 } 3675 3676 static noinline_for_stack int relocate_block_group(struct reloc_control *rc) 3677 { 3678 struct rb_root blocks = RB_ROOT; 3679 struct btrfs_key key; 3680 struct btrfs_trans_handle *trans = NULL; 3681 struct btrfs_path *path; 3682 struct btrfs_extent_item *ei; 3683 unsigned long nr; 3684 u64 flags; 3685 u32 item_size; 3686 int ret; 3687 int err = 0; 3688 int progress = 0; 3689 3690 path = btrfs_alloc_path(); 3691 if (!path) 3692 return -ENOMEM; 3693 path->reada = 1; 3694 3695 ret = prepare_to_relocate(rc); 3696 if (ret) { 3697 err = ret; 3698 goto out_free; 3699 } 3700 3701 while (1) { 3702 progress++; 3703 trans = btrfs_start_transaction(rc->extent_root, 0); 3704 BUG_ON(IS_ERR(trans)); 3705 restart: 3706 if (update_backref_cache(trans, &rc->backref_cache)) { 3707 btrfs_end_transaction(trans, rc->extent_root); 3708 continue; 3709 } 3710 3711 ret = find_next_extent(trans, rc, path, &key); 3712 if (ret < 0) 3713 err = ret; 3714 if (ret != 0) 3715 break; 3716 3717 rc->extents_found++; 3718 3719 ei = btrfs_item_ptr(path->nodes[0], path->slots[0], 3720 struct btrfs_extent_item); 3721 item_size = btrfs_item_size_nr(path->nodes[0], path->slots[0]); 3722 if (item_size >= sizeof(*ei)) { 3723 flags = btrfs_extent_flags(path->nodes[0], ei); 3724 ret = check_extent_flags(flags); 3725 BUG_ON(ret); 3726 3727 } else { 3728 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0 3729 u64 ref_owner; 3730 int path_change = 0; 3731 3732 BUG_ON(item_size != 3733 sizeof(struct btrfs_extent_item_v0)); 3734 ret = get_ref_objectid_v0(rc, path, &key, &ref_owner, 3735 &path_change); 3736 if (ref_owner < BTRFS_FIRST_FREE_OBJECTID) 3737 flags = BTRFS_EXTENT_FLAG_TREE_BLOCK; 3738 else 3739 flags = BTRFS_EXTENT_FLAG_DATA; 3740 3741 if (path_change) { 3742 btrfs_release_path(path); 3743 3744 path->search_commit_root = 1; 3745 path->skip_locking = 1; 3746 ret = btrfs_search_slot(NULL, rc->extent_root, 3747 &key, path, 0, 0); 3748 if (ret < 0) { 3749 err = ret; 3750 break; 3751 } 3752 BUG_ON(ret > 0); 3753 } 3754 #else 3755 BUG(); 3756 #endif 3757 } 3758 3759 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) { 3760 ret = add_tree_block(rc, &key, path, &blocks); 3761 } else if (rc->stage == UPDATE_DATA_PTRS && 3762 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3763 ret = add_data_references(rc, &key, path, &blocks); 3764 } else { 3765 btrfs_release_path(path); 3766 ret = 0; 3767 } 3768 if (ret < 0) { 3769 err = ret; 3770 break; 3771 } 3772 3773 if (!RB_EMPTY_ROOT(&blocks)) { 3774 ret = relocate_tree_blocks(trans, rc, &blocks); 3775 if (ret < 0) { 3776 if (ret != -EAGAIN) { 3777 err = ret; 3778 break; 3779 } 3780 rc->extents_found--; 3781 rc->search_start = key.objectid; 3782 } 3783 } 3784 3785 ret = btrfs_block_rsv_check(rc->extent_root, rc->block_rsv, 5); 3786 if (ret < 0) { 3787 if (ret != -EAGAIN) { 3788 err = ret; 3789 WARN_ON(1); 3790 break; 3791 } 3792 rc->commit_transaction = 1; 3793 } 3794 3795 if (rc->commit_transaction) { 3796 rc->commit_transaction = 0; 3797 ret = btrfs_commit_transaction(trans, rc->extent_root); 3798 BUG_ON(ret); 3799 } else { 3800 nr = trans->blocks_used; 3801 btrfs_end_transaction_throttle(trans, rc->extent_root); 3802 btrfs_btree_balance_dirty(rc->extent_root, nr); 3803 } 3804 trans = NULL; 3805 3806 if (rc->stage == MOVE_DATA_EXTENTS && 3807 (flags & BTRFS_EXTENT_FLAG_DATA)) { 3808 rc->found_file_extent = 1; 3809 ret = relocate_data_extent(rc->data_inode, 3810 &key, &rc->cluster); 3811 if (ret < 0) { 3812 err = ret; 3813 break; 3814 } 3815 } 3816 } 3817 if (trans && progress && err == -ENOSPC) { 3818 ret = btrfs_force_chunk_alloc(trans, rc->extent_root, 3819 rc->block_group->flags); 3820 if (ret == 0) { 3821 err = 0; 3822 progress = 0; 3823 goto restart; 3824 } 3825 } 3826 3827 btrfs_release_path(path); 3828 clear_extent_bits(&rc->processed_blocks, 0, (u64)-1, EXTENT_DIRTY, 3829 GFP_NOFS); 3830 3831 if (trans) { 3832 nr = trans->blocks_used; 3833 btrfs_end_transaction_throttle(trans, rc->extent_root); 3834 btrfs_btree_balance_dirty(rc->extent_root, nr); 3835 } 3836 3837 if (!err) { 3838 ret = relocate_file_extent_cluster(rc->data_inode, 3839 &rc->cluster); 3840 if (ret < 0) 3841 err = ret; 3842 } 3843 3844 rc->create_reloc_tree = 0; 3845 set_reloc_control(rc); 3846 3847 backref_cache_cleanup(&rc->backref_cache); 3848 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3849 3850 err = prepare_to_merge(rc, err); 3851 3852 merge_reloc_roots(rc); 3853 3854 rc->merge_reloc_tree = 0; 3855 unset_reloc_control(rc); 3856 btrfs_block_rsv_release(rc->extent_root, rc->block_rsv, (u64)-1); 3857 3858 /* get rid of pinned extents */ 3859 trans = btrfs_join_transaction(rc->extent_root); 3860 if (IS_ERR(trans)) 3861 err = PTR_ERR(trans); 3862 else 3863 btrfs_commit_transaction(trans, rc->extent_root); 3864 out_free: 3865 btrfs_free_block_rsv(rc->extent_root, rc->block_rsv); 3866 btrfs_free_path(path); 3867 return err; 3868 } 3869 3870 static int __insert_orphan_inode(struct btrfs_trans_handle *trans, 3871 struct btrfs_root *root, u64 objectid) 3872 { 3873 struct btrfs_path *path; 3874 struct btrfs_inode_item *item; 3875 struct extent_buffer *leaf; 3876 int ret; 3877 3878 path = btrfs_alloc_path(); 3879 if (!path) 3880 return -ENOMEM; 3881 3882 ret = btrfs_insert_empty_inode(trans, root, path, objectid); 3883 if (ret) 3884 goto out; 3885 3886 leaf = path->nodes[0]; 3887 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_inode_item); 3888 memset_extent_buffer(leaf, 0, (unsigned long)item, sizeof(*item)); 3889 btrfs_set_inode_generation(leaf, item, 1); 3890 btrfs_set_inode_size(leaf, item, 0); 3891 btrfs_set_inode_mode(leaf, item, S_IFREG | 0600); 3892 btrfs_set_inode_flags(leaf, item, BTRFS_INODE_NOCOMPRESS | 3893 BTRFS_INODE_PREALLOC); 3894 btrfs_mark_buffer_dirty(leaf); 3895 btrfs_release_path(path); 3896 out: 3897 btrfs_free_path(path); 3898 return ret; 3899 } 3900 3901 /* 3902 * helper to create inode for data relocation. 3903 * the inode is in data relocation tree and its link count is 0 3904 */ 3905 static noinline_for_stack 3906 struct inode *create_reloc_inode(struct btrfs_fs_info *fs_info, 3907 struct btrfs_block_group_cache *group) 3908 { 3909 struct inode *inode = NULL; 3910 struct btrfs_trans_handle *trans; 3911 struct btrfs_root *root; 3912 struct btrfs_key key; 3913 unsigned long nr; 3914 u64 objectid = BTRFS_FIRST_FREE_OBJECTID; 3915 int err = 0; 3916 3917 root = read_fs_root(fs_info, BTRFS_DATA_RELOC_TREE_OBJECTID); 3918 if (IS_ERR(root)) 3919 return ERR_CAST(root); 3920 3921 trans = btrfs_start_transaction(root, 6); 3922 if (IS_ERR(trans)) 3923 return ERR_CAST(trans); 3924 3925 err = btrfs_find_free_objectid(root, &objectid); 3926 if (err) 3927 goto out; 3928 3929 err = __insert_orphan_inode(trans, root, objectid); 3930 BUG_ON(err); 3931 3932 key.objectid = objectid; 3933 key.type = BTRFS_INODE_ITEM_KEY; 3934 key.offset = 0; 3935 inode = btrfs_iget(root->fs_info->sb, &key, root, NULL); 3936 BUG_ON(IS_ERR(inode) || is_bad_inode(inode)); 3937 BTRFS_I(inode)->index_cnt = group->key.objectid; 3938 3939 err = btrfs_orphan_add(trans, inode); 3940 out: 3941 nr = trans->blocks_used; 3942 btrfs_end_transaction(trans, root); 3943 btrfs_btree_balance_dirty(root, nr); 3944 if (err) { 3945 if (inode) 3946 iput(inode); 3947 inode = ERR_PTR(err); 3948 } 3949 return inode; 3950 } 3951 3952 static struct reloc_control *alloc_reloc_control(void) 3953 { 3954 struct reloc_control *rc; 3955 3956 rc = kzalloc(sizeof(*rc), GFP_NOFS); 3957 if (!rc) 3958 return NULL; 3959 3960 INIT_LIST_HEAD(&rc->reloc_roots); 3961 backref_cache_init(&rc->backref_cache); 3962 mapping_tree_init(&rc->reloc_root_tree); 3963 extent_io_tree_init(&rc->processed_blocks, NULL); 3964 return rc; 3965 } 3966 3967 /* 3968 * function to relocate all extents in a block group. 3969 */ 3970 int btrfs_relocate_block_group(struct btrfs_root *extent_root, u64 group_start) 3971 { 3972 struct btrfs_fs_info *fs_info = extent_root->fs_info; 3973 struct reloc_control *rc; 3974 struct inode *inode; 3975 struct btrfs_path *path; 3976 int ret; 3977 int rw = 0; 3978 int err = 0; 3979 3980 rc = alloc_reloc_control(); 3981 if (!rc) 3982 return -ENOMEM; 3983 3984 rc->extent_root = extent_root; 3985 3986 rc->block_group = btrfs_lookup_block_group(fs_info, group_start); 3987 BUG_ON(!rc->block_group); 3988 3989 if (!rc->block_group->ro) { 3990 ret = btrfs_set_block_group_ro(extent_root, rc->block_group); 3991 if (ret) { 3992 err = ret; 3993 goto out; 3994 } 3995 rw = 1; 3996 } 3997 3998 path = btrfs_alloc_path(); 3999 if (!path) { 4000 err = -ENOMEM; 4001 goto out; 4002 } 4003 4004 inode = lookup_free_space_inode(fs_info->tree_root, rc->block_group, 4005 path); 4006 btrfs_free_path(path); 4007 4008 if (!IS_ERR(inode)) 4009 ret = delete_block_group_cache(fs_info, inode, 0); 4010 else 4011 ret = PTR_ERR(inode); 4012 4013 if (ret && ret != -ENOENT) { 4014 err = ret; 4015 goto out; 4016 } 4017 4018 rc->data_inode = create_reloc_inode(fs_info, rc->block_group); 4019 if (IS_ERR(rc->data_inode)) { 4020 err = PTR_ERR(rc->data_inode); 4021 rc->data_inode = NULL; 4022 goto out; 4023 } 4024 4025 printk(KERN_INFO "btrfs: relocating block group %llu flags %llu\n", 4026 (unsigned long long)rc->block_group->key.objectid, 4027 (unsigned long long)rc->block_group->flags); 4028 4029 btrfs_start_delalloc_inodes(fs_info->tree_root, 0); 4030 btrfs_wait_ordered_extents(fs_info->tree_root, 0, 0); 4031 4032 while (1) { 4033 mutex_lock(&fs_info->cleaner_mutex); 4034 4035 btrfs_clean_old_snapshots(fs_info->tree_root); 4036 ret = relocate_block_group(rc); 4037 4038 mutex_unlock(&fs_info->cleaner_mutex); 4039 if (ret < 0) { 4040 err = ret; 4041 goto out; 4042 } 4043 4044 if (rc->extents_found == 0) 4045 break; 4046 4047 printk(KERN_INFO "btrfs: found %llu extents\n", 4048 (unsigned long long)rc->extents_found); 4049 4050 if (rc->stage == MOVE_DATA_EXTENTS && rc->found_file_extent) { 4051 btrfs_wait_ordered_range(rc->data_inode, 0, (u64)-1); 4052 invalidate_mapping_pages(rc->data_inode->i_mapping, 4053 0, -1); 4054 rc->stage = UPDATE_DATA_PTRS; 4055 } 4056 } 4057 4058 filemap_write_and_wait_range(fs_info->btree_inode->i_mapping, 4059 rc->block_group->key.objectid, 4060 rc->block_group->key.objectid + 4061 rc->block_group->key.offset - 1); 4062 4063 WARN_ON(rc->block_group->pinned > 0); 4064 WARN_ON(rc->block_group->reserved > 0); 4065 WARN_ON(btrfs_block_group_used(&rc->block_group->item) > 0); 4066 out: 4067 if (err && rw) 4068 btrfs_set_block_group_rw(extent_root, rc->block_group); 4069 iput(rc->data_inode); 4070 btrfs_put_block_group(rc->block_group); 4071 kfree(rc); 4072 return err; 4073 } 4074 4075 static noinline_for_stack int mark_garbage_root(struct btrfs_root *root) 4076 { 4077 struct btrfs_trans_handle *trans; 4078 int ret; 4079 4080 trans = btrfs_start_transaction(root->fs_info->tree_root, 0); 4081 BUG_ON(IS_ERR(trans)); 4082 4083 memset(&root->root_item.drop_progress, 0, 4084 sizeof(root->root_item.drop_progress)); 4085 root->root_item.drop_level = 0; 4086 btrfs_set_root_refs(&root->root_item, 0); 4087 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4088 &root->root_key, &root->root_item); 4089 BUG_ON(ret); 4090 4091 ret = btrfs_end_transaction(trans, root->fs_info->tree_root); 4092 BUG_ON(ret); 4093 return 0; 4094 } 4095 4096 /* 4097 * recover relocation interrupted by system crash. 4098 * 4099 * this function resumes merging reloc trees with corresponding fs trees. 4100 * this is important for keeping the sharing of tree blocks 4101 */ 4102 int btrfs_recover_relocation(struct btrfs_root *root) 4103 { 4104 LIST_HEAD(reloc_roots); 4105 struct btrfs_key key; 4106 struct btrfs_root *fs_root; 4107 struct btrfs_root *reloc_root; 4108 struct btrfs_path *path; 4109 struct extent_buffer *leaf; 4110 struct reloc_control *rc = NULL; 4111 struct btrfs_trans_handle *trans; 4112 int ret; 4113 int err = 0; 4114 4115 path = btrfs_alloc_path(); 4116 if (!path) 4117 return -ENOMEM; 4118 path->reada = -1; 4119 4120 key.objectid = BTRFS_TREE_RELOC_OBJECTID; 4121 key.type = BTRFS_ROOT_ITEM_KEY; 4122 key.offset = (u64)-1; 4123 4124 while (1) { 4125 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, &key, 4126 path, 0, 0); 4127 if (ret < 0) { 4128 err = ret; 4129 goto out; 4130 } 4131 if (ret > 0) { 4132 if (path->slots[0] == 0) 4133 break; 4134 path->slots[0]--; 4135 } 4136 leaf = path->nodes[0]; 4137 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]); 4138 btrfs_release_path(path); 4139 4140 if (key.objectid != BTRFS_TREE_RELOC_OBJECTID || 4141 key.type != BTRFS_ROOT_ITEM_KEY) 4142 break; 4143 4144 reloc_root = btrfs_read_fs_root_no_radix(root, &key); 4145 if (IS_ERR(reloc_root)) { 4146 err = PTR_ERR(reloc_root); 4147 goto out; 4148 } 4149 4150 list_add(&reloc_root->root_list, &reloc_roots); 4151 4152 if (btrfs_root_refs(&reloc_root->root_item) > 0) { 4153 fs_root = read_fs_root(root->fs_info, 4154 reloc_root->root_key.offset); 4155 if (IS_ERR(fs_root)) { 4156 ret = PTR_ERR(fs_root); 4157 if (ret != -ENOENT) { 4158 err = ret; 4159 goto out; 4160 } 4161 mark_garbage_root(reloc_root); 4162 } 4163 } 4164 4165 if (key.offset == 0) 4166 break; 4167 4168 key.offset--; 4169 } 4170 btrfs_release_path(path); 4171 4172 if (list_empty(&reloc_roots)) 4173 goto out; 4174 4175 rc = alloc_reloc_control(); 4176 if (!rc) { 4177 err = -ENOMEM; 4178 goto out; 4179 } 4180 4181 rc->extent_root = root->fs_info->extent_root; 4182 4183 set_reloc_control(rc); 4184 4185 trans = btrfs_join_transaction(rc->extent_root); 4186 if (IS_ERR(trans)) { 4187 unset_reloc_control(rc); 4188 err = PTR_ERR(trans); 4189 goto out_free; 4190 } 4191 4192 rc->merge_reloc_tree = 1; 4193 4194 while (!list_empty(&reloc_roots)) { 4195 reloc_root = list_entry(reloc_roots.next, 4196 struct btrfs_root, root_list); 4197 list_del(&reloc_root->root_list); 4198 4199 if (btrfs_root_refs(&reloc_root->root_item) == 0) { 4200 list_add_tail(&reloc_root->root_list, 4201 &rc->reloc_roots); 4202 continue; 4203 } 4204 4205 fs_root = read_fs_root(root->fs_info, 4206 reloc_root->root_key.offset); 4207 BUG_ON(IS_ERR(fs_root)); 4208 4209 __add_reloc_root(reloc_root); 4210 fs_root->reloc_root = reloc_root; 4211 } 4212 4213 btrfs_commit_transaction(trans, rc->extent_root); 4214 4215 merge_reloc_roots(rc); 4216 4217 unset_reloc_control(rc); 4218 4219 trans = btrfs_join_transaction(rc->extent_root); 4220 if (IS_ERR(trans)) 4221 err = PTR_ERR(trans); 4222 else 4223 btrfs_commit_transaction(trans, rc->extent_root); 4224 out_free: 4225 kfree(rc); 4226 out: 4227 while (!list_empty(&reloc_roots)) { 4228 reloc_root = list_entry(reloc_roots.next, 4229 struct btrfs_root, root_list); 4230 list_del(&reloc_root->root_list); 4231 free_extent_buffer(reloc_root->node); 4232 free_extent_buffer(reloc_root->commit_root); 4233 kfree(reloc_root); 4234 } 4235 btrfs_free_path(path); 4236 4237 if (err == 0) { 4238 /* cleanup orphan inode in data relocation tree */ 4239 fs_root = read_fs_root(root->fs_info, 4240 BTRFS_DATA_RELOC_TREE_OBJECTID); 4241 if (IS_ERR(fs_root)) 4242 err = PTR_ERR(fs_root); 4243 else 4244 err = btrfs_orphan_cleanup(fs_root); 4245 } 4246 return err; 4247 } 4248 4249 /* 4250 * helper to add ordered checksum for data relocation. 4251 * 4252 * cloning checksum properly handles the nodatasum extents. 4253 * it also saves CPU time to re-calculate the checksum. 4254 */ 4255 int btrfs_reloc_clone_csums(struct inode *inode, u64 file_pos, u64 len) 4256 { 4257 struct btrfs_ordered_sum *sums; 4258 struct btrfs_sector_sum *sector_sum; 4259 struct btrfs_ordered_extent *ordered; 4260 struct btrfs_root *root = BTRFS_I(inode)->root; 4261 size_t offset; 4262 int ret; 4263 u64 disk_bytenr; 4264 LIST_HEAD(list); 4265 4266 ordered = btrfs_lookup_ordered_extent(inode, file_pos); 4267 BUG_ON(ordered->file_offset != file_pos || ordered->len != len); 4268 4269 disk_bytenr = file_pos + BTRFS_I(inode)->index_cnt; 4270 ret = btrfs_lookup_csums_range(root->fs_info->csum_root, disk_bytenr, 4271 disk_bytenr + len - 1, &list, 0); 4272 4273 while (!list_empty(&list)) { 4274 sums = list_entry(list.next, struct btrfs_ordered_sum, list); 4275 list_del_init(&sums->list); 4276 4277 sector_sum = sums->sums; 4278 sums->bytenr = ordered->start; 4279 4280 offset = 0; 4281 while (offset < sums->len) { 4282 sector_sum->bytenr += ordered->start - disk_bytenr; 4283 sector_sum++; 4284 offset += root->sectorsize; 4285 } 4286 4287 btrfs_add_ordered_sum(inode, ordered, sums); 4288 } 4289 btrfs_put_ordered_extent(ordered); 4290 return ret; 4291 } 4292 4293 void btrfs_reloc_cow_block(struct btrfs_trans_handle *trans, 4294 struct btrfs_root *root, struct extent_buffer *buf, 4295 struct extent_buffer *cow) 4296 { 4297 struct reloc_control *rc; 4298 struct backref_node *node; 4299 int first_cow = 0; 4300 int level; 4301 int ret; 4302 4303 rc = root->fs_info->reloc_ctl; 4304 if (!rc) 4305 return; 4306 4307 BUG_ON(rc->stage == UPDATE_DATA_PTRS && 4308 root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID); 4309 4310 level = btrfs_header_level(buf); 4311 if (btrfs_header_generation(buf) <= 4312 btrfs_root_last_snapshot(&root->root_item)) 4313 first_cow = 1; 4314 4315 if (root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID && 4316 rc->create_reloc_tree) { 4317 WARN_ON(!first_cow && level == 0); 4318 4319 node = rc->backref_cache.path[level]; 4320 BUG_ON(node->bytenr != buf->start && 4321 node->new_bytenr != buf->start); 4322 4323 drop_node_buffer(node); 4324 extent_buffer_get(cow); 4325 node->eb = cow; 4326 node->new_bytenr = cow->start; 4327 4328 if (!node->pending) { 4329 list_move_tail(&node->list, 4330 &rc->backref_cache.pending[level]); 4331 node->pending = 1; 4332 } 4333 4334 if (first_cow) 4335 __mark_block_processed(rc, node); 4336 4337 if (first_cow && level > 0) 4338 rc->nodes_relocated += buf->len; 4339 } 4340 4341 if (level == 0 && first_cow && rc->stage == UPDATE_DATA_PTRS) { 4342 ret = replace_file_extents(trans, rc, root, cow); 4343 BUG_ON(ret); 4344 } 4345 } 4346 4347 /* 4348 * called before creating snapshot. it calculates metadata reservation 4349 * requried for relocating tree blocks in the snapshot 4350 */ 4351 void btrfs_reloc_pre_snapshot(struct btrfs_trans_handle *trans, 4352 struct btrfs_pending_snapshot *pending, 4353 u64 *bytes_to_reserve) 4354 { 4355 struct btrfs_root *root; 4356 struct reloc_control *rc; 4357 4358 root = pending->root; 4359 if (!root->reloc_root) 4360 return; 4361 4362 rc = root->fs_info->reloc_ctl; 4363 if (!rc->merge_reloc_tree) 4364 return; 4365 4366 root = root->reloc_root; 4367 BUG_ON(btrfs_root_refs(&root->root_item) == 0); 4368 /* 4369 * relocation is in the stage of merging trees. the space 4370 * used by merging a reloc tree is twice the size of 4371 * relocated tree nodes in the worst case. half for cowing 4372 * the reloc tree, half for cowing the fs tree. the space 4373 * used by cowing the reloc tree will be freed after the 4374 * tree is dropped. if we create snapshot, cowing the fs 4375 * tree may use more space than it frees. so we need 4376 * reserve extra space. 4377 */ 4378 *bytes_to_reserve += rc->nodes_relocated; 4379 } 4380 4381 /* 4382 * called after snapshot is created. migrate block reservation 4383 * and create reloc root for the newly created snapshot 4384 */ 4385 void btrfs_reloc_post_snapshot(struct btrfs_trans_handle *trans, 4386 struct btrfs_pending_snapshot *pending) 4387 { 4388 struct btrfs_root *root = pending->root; 4389 struct btrfs_root *reloc_root; 4390 struct btrfs_root *new_root; 4391 struct reloc_control *rc; 4392 int ret; 4393 4394 if (!root->reloc_root) 4395 return; 4396 4397 rc = root->fs_info->reloc_ctl; 4398 rc->merging_rsv_size += rc->nodes_relocated; 4399 4400 if (rc->merge_reloc_tree) { 4401 ret = btrfs_block_rsv_migrate(&pending->block_rsv, 4402 rc->block_rsv, 4403 rc->nodes_relocated); 4404 BUG_ON(ret); 4405 } 4406 4407 new_root = pending->snap; 4408 reloc_root = create_reloc_root(trans, root->reloc_root, 4409 new_root->root_key.objectid); 4410 4411 __add_reloc_root(reloc_root); 4412 new_root->reloc_root = reloc_root; 4413 4414 if (rc->create_reloc_tree) { 4415 ret = clone_backref_node(trans, rc, root, reloc_root); 4416 BUG_ON(ret); 4417 } 4418 } 4419