1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu\n", offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) && 202 !(type == BTRFS_ORDERED_NOCOW)) 203 entry->csum_bytes_left = disk_len; 204 entry->disk_len = disk_len; 205 entry->bytes_left = len; 206 entry->inode = igrab(inode); 207 entry->compress_type = compress_type; 208 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 209 set_bit(type, &entry->flags); 210 211 if (dio) 212 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 213 214 /* one ref for the tree */ 215 atomic_set(&entry->refs, 1); 216 init_waitqueue_head(&entry->wait); 217 INIT_LIST_HEAD(&entry->list); 218 INIT_LIST_HEAD(&entry->root_extent_list); 219 INIT_LIST_HEAD(&entry->work_list); 220 init_completion(&entry->completion); 221 INIT_LIST_HEAD(&entry->log_list); 222 223 trace_btrfs_ordered_extent_add(inode, entry); 224 225 spin_lock_irq(&tree->lock); 226 node = tree_insert(&tree->tree, file_offset, 227 &entry->rb_node); 228 if (node) 229 ordered_data_tree_panic(inode, -EEXIST, file_offset); 230 spin_unlock_irq(&tree->lock); 231 232 spin_lock(&root->ordered_extent_lock); 233 list_add_tail(&entry->root_extent_list, 234 &root->ordered_extents); 235 root->nr_ordered_extents++; 236 if (root->nr_ordered_extents == 1) { 237 spin_lock(&root->fs_info->ordered_root_lock); 238 BUG_ON(!list_empty(&root->ordered_root)); 239 list_add_tail(&root->ordered_root, 240 &root->fs_info->ordered_roots); 241 spin_unlock(&root->fs_info->ordered_root_lock); 242 } 243 spin_unlock(&root->ordered_extent_lock); 244 245 return 0; 246 } 247 248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 249 u64 start, u64 len, u64 disk_len, int type) 250 { 251 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 252 disk_len, type, 0, 253 BTRFS_COMPRESS_NONE); 254 } 255 256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 257 u64 start, u64 len, u64 disk_len, int type) 258 { 259 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 260 disk_len, type, 1, 261 BTRFS_COMPRESS_NONE); 262 } 263 264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 265 u64 start, u64 len, u64 disk_len, 266 int type, int compress_type) 267 { 268 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 269 disk_len, type, 0, 270 compress_type); 271 } 272 273 /* 274 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 275 * when an ordered extent is finished. If the list covers more than one 276 * ordered extent, it is split across multiples. 277 */ 278 void btrfs_add_ordered_sum(struct inode *inode, 279 struct btrfs_ordered_extent *entry, 280 struct btrfs_ordered_sum *sum) 281 { 282 struct btrfs_ordered_inode_tree *tree; 283 284 tree = &BTRFS_I(inode)->ordered_tree; 285 spin_lock_irq(&tree->lock); 286 list_add_tail(&sum->list, &entry->list); 287 WARN_ON(entry->csum_bytes_left < sum->len); 288 entry->csum_bytes_left -= sum->len; 289 if (entry->csum_bytes_left == 0) 290 wake_up(&entry->wait); 291 spin_unlock_irq(&tree->lock); 292 } 293 294 /* 295 * this is used to account for finished IO across a given range 296 * of the file. The IO may span ordered extents. If 297 * a given ordered_extent is completely done, 1 is returned, otherwise 298 * 0. 299 * 300 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 301 * to make sure this function only returns 1 once for a given ordered extent. 302 * 303 * file_offset is updated to one byte past the range that is recorded as 304 * complete. This allows you to walk forward in the file. 305 */ 306 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 307 struct btrfs_ordered_extent **cached, 308 u64 *file_offset, u64 io_size, int uptodate) 309 { 310 struct btrfs_ordered_inode_tree *tree; 311 struct rb_node *node; 312 struct btrfs_ordered_extent *entry = NULL; 313 int ret; 314 unsigned long flags; 315 u64 dec_end; 316 u64 dec_start; 317 u64 to_dec; 318 319 tree = &BTRFS_I(inode)->ordered_tree; 320 spin_lock_irqsave(&tree->lock, flags); 321 node = tree_search(tree, *file_offset); 322 if (!node) { 323 ret = 1; 324 goto out; 325 } 326 327 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 328 if (!offset_in_entry(entry, *file_offset)) { 329 ret = 1; 330 goto out; 331 } 332 333 dec_start = max(*file_offset, entry->file_offset); 334 dec_end = min(*file_offset + io_size, entry->file_offset + 335 entry->len); 336 *file_offset = dec_end; 337 if (dec_start > dec_end) { 338 printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n", 339 dec_start, dec_end); 340 } 341 to_dec = dec_end - dec_start; 342 if (to_dec > entry->bytes_left) { 343 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 344 entry->bytes_left, to_dec); 345 } 346 entry->bytes_left -= to_dec; 347 if (!uptodate) 348 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 349 350 if (entry->bytes_left == 0) 351 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 352 else 353 ret = 1; 354 out: 355 if (!ret && cached && entry) { 356 *cached = entry; 357 atomic_inc(&entry->refs); 358 } 359 spin_unlock_irqrestore(&tree->lock, flags); 360 return ret == 0; 361 } 362 363 /* 364 * this is used to account for finished IO across a given range 365 * of the file. The IO should not span ordered extents. If 366 * a given ordered_extent is completely done, 1 is returned, otherwise 367 * 0. 368 * 369 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 370 * to make sure this function only returns 1 once for a given ordered extent. 371 */ 372 int btrfs_dec_test_ordered_pending(struct inode *inode, 373 struct btrfs_ordered_extent **cached, 374 u64 file_offset, u64 io_size, int uptodate) 375 { 376 struct btrfs_ordered_inode_tree *tree; 377 struct rb_node *node; 378 struct btrfs_ordered_extent *entry = NULL; 379 unsigned long flags; 380 int ret; 381 382 tree = &BTRFS_I(inode)->ordered_tree; 383 spin_lock_irqsave(&tree->lock, flags); 384 if (cached && *cached) { 385 entry = *cached; 386 goto have_entry; 387 } 388 389 node = tree_search(tree, file_offset); 390 if (!node) { 391 ret = 1; 392 goto out; 393 } 394 395 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 396 have_entry: 397 if (!offset_in_entry(entry, file_offset)) { 398 ret = 1; 399 goto out; 400 } 401 402 if (io_size > entry->bytes_left) { 403 printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n", 404 entry->bytes_left, io_size); 405 } 406 entry->bytes_left -= io_size; 407 if (!uptodate) 408 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 409 410 if (entry->bytes_left == 0) 411 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 412 else 413 ret = 1; 414 out: 415 if (!ret && cached && entry) { 416 *cached = entry; 417 atomic_inc(&entry->refs); 418 } 419 spin_unlock_irqrestore(&tree->lock, flags); 420 return ret == 0; 421 } 422 423 /* Needs to either be called under a log transaction or the log_mutex */ 424 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode) 425 { 426 struct btrfs_ordered_inode_tree *tree; 427 struct btrfs_ordered_extent *ordered; 428 struct rb_node *n; 429 int index = log->log_transid % 2; 430 431 tree = &BTRFS_I(inode)->ordered_tree; 432 spin_lock_irq(&tree->lock); 433 for (n = rb_first(&tree->tree); n; n = rb_next(n)) { 434 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 435 spin_lock(&log->log_extents_lock[index]); 436 if (list_empty(&ordered->log_list)) { 437 list_add_tail(&ordered->log_list, &log->logged_list[index]); 438 atomic_inc(&ordered->refs); 439 } 440 spin_unlock(&log->log_extents_lock[index]); 441 } 442 spin_unlock_irq(&tree->lock); 443 } 444 445 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid) 446 { 447 struct btrfs_ordered_extent *ordered; 448 int index = transid % 2; 449 450 spin_lock_irq(&log->log_extents_lock[index]); 451 while (!list_empty(&log->logged_list[index])) { 452 ordered = list_first_entry(&log->logged_list[index], 453 struct btrfs_ordered_extent, 454 log_list); 455 list_del_init(&ordered->log_list); 456 spin_unlock_irq(&log->log_extents_lock[index]); 457 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 458 &ordered->flags)); 459 btrfs_put_ordered_extent(ordered); 460 spin_lock_irq(&log->log_extents_lock[index]); 461 } 462 spin_unlock_irq(&log->log_extents_lock[index]); 463 } 464 465 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 466 { 467 struct btrfs_ordered_extent *ordered; 468 int index = transid % 2; 469 470 spin_lock_irq(&log->log_extents_lock[index]); 471 while (!list_empty(&log->logged_list[index])) { 472 ordered = list_first_entry(&log->logged_list[index], 473 struct btrfs_ordered_extent, 474 log_list); 475 list_del_init(&ordered->log_list); 476 spin_unlock_irq(&log->log_extents_lock[index]); 477 btrfs_put_ordered_extent(ordered); 478 spin_lock_irq(&log->log_extents_lock[index]); 479 } 480 spin_unlock_irq(&log->log_extents_lock[index]); 481 } 482 483 /* 484 * used to drop a reference on an ordered extent. This will free 485 * the extent if the last reference is dropped 486 */ 487 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 488 { 489 struct list_head *cur; 490 struct btrfs_ordered_sum *sum; 491 492 trace_btrfs_ordered_extent_put(entry->inode, entry); 493 494 if (atomic_dec_and_test(&entry->refs)) { 495 if (entry->inode) 496 btrfs_add_delayed_iput(entry->inode); 497 while (!list_empty(&entry->list)) { 498 cur = entry->list.next; 499 sum = list_entry(cur, struct btrfs_ordered_sum, list); 500 list_del(&sum->list); 501 kfree(sum); 502 } 503 kmem_cache_free(btrfs_ordered_extent_cache, entry); 504 } 505 } 506 507 /* 508 * remove an ordered extent from the tree. No references are dropped 509 * and waiters are woken up. 510 */ 511 void btrfs_remove_ordered_extent(struct inode *inode, 512 struct btrfs_ordered_extent *entry) 513 { 514 struct btrfs_ordered_inode_tree *tree; 515 struct btrfs_root *root = BTRFS_I(inode)->root; 516 struct rb_node *node; 517 518 tree = &BTRFS_I(inode)->ordered_tree; 519 spin_lock_irq(&tree->lock); 520 node = &entry->rb_node; 521 rb_erase(node, &tree->tree); 522 tree->last = NULL; 523 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 524 spin_unlock_irq(&tree->lock); 525 526 spin_lock(&root->ordered_extent_lock); 527 list_del_init(&entry->root_extent_list); 528 root->nr_ordered_extents--; 529 530 trace_btrfs_ordered_extent_remove(inode, entry); 531 532 /* 533 * we have no more ordered extents for this inode and 534 * no dirty pages. We can safely remove it from the 535 * list of ordered extents 536 */ 537 if (RB_EMPTY_ROOT(&tree->tree) && 538 !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) { 539 list_del_init(&BTRFS_I(inode)->ordered_operations); 540 } 541 542 if (!root->nr_ordered_extents) { 543 spin_lock(&root->fs_info->ordered_root_lock); 544 BUG_ON(list_empty(&root->ordered_root)); 545 list_del_init(&root->ordered_root); 546 spin_unlock(&root->fs_info->ordered_root_lock); 547 } 548 spin_unlock(&root->ordered_extent_lock); 549 wake_up(&entry->wait); 550 } 551 552 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 553 { 554 struct btrfs_ordered_extent *ordered; 555 556 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 557 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 558 complete(&ordered->completion); 559 } 560 561 /* 562 * wait for all the ordered extents in a root. This is done when balancing 563 * space between drives. 564 */ 565 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput) 566 { 567 struct list_head splice, works; 568 struct btrfs_ordered_extent *ordered, *next; 569 struct inode *inode; 570 571 INIT_LIST_HEAD(&splice); 572 INIT_LIST_HEAD(&works); 573 574 mutex_lock(&root->fs_info->ordered_operations_mutex); 575 spin_lock(&root->ordered_extent_lock); 576 list_splice_init(&root->ordered_extents, &splice); 577 while (!list_empty(&splice)) { 578 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 579 root_extent_list); 580 list_move_tail(&ordered->root_extent_list, 581 &root->ordered_extents); 582 /* 583 * the inode may be getting freed (in sys_unlink path). 584 */ 585 inode = igrab(ordered->inode); 586 if (!inode) { 587 cond_resched_lock(&root->ordered_extent_lock); 588 continue; 589 } 590 591 atomic_inc(&ordered->refs); 592 spin_unlock(&root->ordered_extent_lock); 593 594 ordered->flush_work.func = btrfs_run_ordered_extent_work; 595 list_add_tail(&ordered->work_list, &works); 596 btrfs_queue_worker(&root->fs_info->flush_workers, 597 &ordered->flush_work); 598 599 cond_resched(); 600 spin_lock(&root->ordered_extent_lock); 601 } 602 spin_unlock(&root->ordered_extent_lock); 603 604 list_for_each_entry_safe(ordered, next, &works, work_list) { 605 list_del_init(&ordered->work_list); 606 wait_for_completion(&ordered->completion); 607 608 inode = ordered->inode; 609 btrfs_put_ordered_extent(ordered); 610 if (delay_iput) 611 btrfs_add_delayed_iput(inode); 612 else 613 iput(inode); 614 615 cond_resched(); 616 } 617 mutex_unlock(&root->fs_info->ordered_operations_mutex); 618 } 619 620 void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info, 621 int delay_iput) 622 { 623 struct btrfs_root *root; 624 struct list_head splice; 625 626 INIT_LIST_HEAD(&splice); 627 628 spin_lock(&fs_info->ordered_root_lock); 629 list_splice_init(&fs_info->ordered_roots, &splice); 630 while (!list_empty(&splice)) { 631 root = list_first_entry(&splice, struct btrfs_root, 632 ordered_root); 633 root = btrfs_grab_fs_root(root); 634 BUG_ON(!root); 635 list_move_tail(&root->ordered_root, 636 &fs_info->ordered_roots); 637 spin_unlock(&fs_info->ordered_root_lock); 638 639 btrfs_wait_ordered_extents(root, delay_iput); 640 btrfs_put_fs_root(root); 641 642 spin_lock(&fs_info->ordered_root_lock); 643 } 644 spin_unlock(&fs_info->ordered_root_lock); 645 } 646 647 /* 648 * this is used during transaction commit to write all the inodes 649 * added to the ordered operation list. These files must be fully on 650 * disk before the transaction commits. 651 * 652 * we have two modes here, one is to just start the IO via filemap_flush 653 * and the other is to wait for all the io. When we wait, we have an 654 * extra check to make sure the ordered operation list really is empty 655 * before we return 656 */ 657 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans, 658 struct btrfs_root *root, int wait) 659 { 660 struct btrfs_inode *btrfs_inode; 661 struct inode *inode; 662 struct btrfs_transaction *cur_trans = trans->transaction; 663 struct list_head splice; 664 struct list_head works; 665 struct btrfs_delalloc_work *work, *next; 666 int ret = 0; 667 668 INIT_LIST_HEAD(&splice); 669 INIT_LIST_HEAD(&works); 670 671 mutex_lock(&root->fs_info->ordered_extent_flush_mutex); 672 spin_lock(&root->fs_info->ordered_root_lock); 673 list_splice_init(&cur_trans->ordered_operations, &splice); 674 while (!list_empty(&splice)) { 675 btrfs_inode = list_entry(splice.next, struct btrfs_inode, 676 ordered_operations); 677 inode = &btrfs_inode->vfs_inode; 678 679 list_del_init(&btrfs_inode->ordered_operations); 680 681 /* 682 * the inode may be getting freed (in sys_unlink path). 683 */ 684 inode = igrab(inode); 685 if (!inode) 686 continue; 687 688 if (!wait) 689 list_add_tail(&BTRFS_I(inode)->ordered_operations, 690 &cur_trans->ordered_operations); 691 spin_unlock(&root->fs_info->ordered_root_lock); 692 693 work = btrfs_alloc_delalloc_work(inode, wait, 1); 694 if (!work) { 695 spin_lock(&root->fs_info->ordered_root_lock); 696 if (list_empty(&BTRFS_I(inode)->ordered_operations)) 697 list_add_tail(&btrfs_inode->ordered_operations, 698 &splice); 699 list_splice_tail(&splice, 700 &cur_trans->ordered_operations); 701 spin_unlock(&root->fs_info->ordered_root_lock); 702 ret = -ENOMEM; 703 goto out; 704 } 705 list_add_tail(&work->list, &works); 706 btrfs_queue_worker(&root->fs_info->flush_workers, 707 &work->work); 708 709 cond_resched(); 710 spin_lock(&root->fs_info->ordered_root_lock); 711 } 712 spin_unlock(&root->fs_info->ordered_root_lock); 713 out: 714 list_for_each_entry_safe(work, next, &works, list) { 715 list_del_init(&work->list); 716 btrfs_wait_and_free_delalloc_work(work); 717 } 718 mutex_unlock(&root->fs_info->ordered_extent_flush_mutex); 719 return ret; 720 } 721 722 /* 723 * Used to start IO or wait for a given ordered extent to finish. 724 * 725 * If wait is one, this effectively waits on page writeback for all the pages 726 * in the extent, and it waits on the io completion code to insert 727 * metadata into the btree corresponding to the extent 728 */ 729 void btrfs_start_ordered_extent(struct inode *inode, 730 struct btrfs_ordered_extent *entry, 731 int wait) 732 { 733 u64 start = entry->file_offset; 734 u64 end = start + entry->len - 1; 735 736 trace_btrfs_ordered_extent_start(inode, entry); 737 738 /* 739 * pages in the range can be dirty, clean or writeback. We 740 * start IO on any dirty ones so the wait doesn't stall waiting 741 * for the flusher thread to find them 742 */ 743 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 744 filemap_fdatawrite_range(inode->i_mapping, start, end); 745 if (wait) { 746 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 747 &entry->flags)); 748 } 749 } 750 751 /* 752 * Used to wait on ordered extents across a large range of bytes. 753 */ 754 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 755 { 756 u64 end; 757 u64 orig_end; 758 struct btrfs_ordered_extent *ordered; 759 760 if (start + len < start) { 761 orig_end = INT_LIMIT(loff_t); 762 } else { 763 orig_end = start + len - 1; 764 if (orig_end > INT_LIMIT(loff_t)) 765 orig_end = INT_LIMIT(loff_t); 766 } 767 768 /* start IO across the range first to instantiate any delalloc 769 * extents 770 */ 771 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 772 773 /* 774 * So with compression we will find and lock a dirty page and clear the 775 * first one as dirty, setup an async extent, and immediately return 776 * with the entire range locked but with nobody actually marked with 777 * writeback. So we can't just filemap_write_and_wait_range() and 778 * expect it to work since it will just kick off a thread to do the 779 * actual work. So we need to call filemap_fdatawrite_range _again_ 780 * since it will wait on the page lock, which won't be unlocked until 781 * after the pages have been marked as writeback and so we're good to go 782 * from there. We have to do this otherwise we'll miss the ordered 783 * extents and that results in badness. Please Josef, do not think you 784 * know better and pull this out at some point in the future, it is 785 * right and you are wrong. 786 */ 787 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 788 &BTRFS_I(inode)->runtime_flags)) 789 filemap_fdatawrite_range(inode->i_mapping, start, orig_end); 790 791 filemap_fdatawait_range(inode->i_mapping, start, orig_end); 792 793 end = orig_end; 794 while (1) { 795 ordered = btrfs_lookup_first_ordered_extent(inode, end); 796 if (!ordered) 797 break; 798 if (ordered->file_offset > orig_end) { 799 btrfs_put_ordered_extent(ordered); 800 break; 801 } 802 if (ordered->file_offset + ordered->len < start) { 803 btrfs_put_ordered_extent(ordered); 804 break; 805 } 806 btrfs_start_ordered_extent(inode, ordered, 1); 807 end = ordered->file_offset; 808 btrfs_put_ordered_extent(ordered); 809 if (end == 0 || end == start) 810 break; 811 end--; 812 } 813 } 814 815 /* 816 * find an ordered extent corresponding to file_offset. return NULL if 817 * nothing is found, otherwise take a reference on the extent and return it 818 */ 819 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 820 u64 file_offset) 821 { 822 struct btrfs_ordered_inode_tree *tree; 823 struct rb_node *node; 824 struct btrfs_ordered_extent *entry = NULL; 825 826 tree = &BTRFS_I(inode)->ordered_tree; 827 spin_lock_irq(&tree->lock); 828 node = tree_search(tree, file_offset); 829 if (!node) 830 goto out; 831 832 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 833 if (!offset_in_entry(entry, file_offset)) 834 entry = NULL; 835 if (entry) 836 atomic_inc(&entry->refs); 837 out: 838 spin_unlock_irq(&tree->lock); 839 return entry; 840 } 841 842 /* Since the DIO code tries to lock a wide area we need to look for any ordered 843 * extents that exist in the range, rather than just the start of the range. 844 */ 845 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 846 u64 file_offset, 847 u64 len) 848 { 849 struct btrfs_ordered_inode_tree *tree; 850 struct rb_node *node; 851 struct btrfs_ordered_extent *entry = NULL; 852 853 tree = &BTRFS_I(inode)->ordered_tree; 854 spin_lock_irq(&tree->lock); 855 node = tree_search(tree, file_offset); 856 if (!node) { 857 node = tree_search(tree, file_offset + len); 858 if (!node) 859 goto out; 860 } 861 862 while (1) { 863 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 864 if (range_overlaps(entry, file_offset, len)) 865 break; 866 867 if (entry->file_offset >= file_offset + len) { 868 entry = NULL; 869 break; 870 } 871 entry = NULL; 872 node = rb_next(node); 873 if (!node) 874 break; 875 } 876 out: 877 if (entry) 878 atomic_inc(&entry->refs); 879 spin_unlock_irq(&tree->lock); 880 return entry; 881 } 882 883 /* 884 * lookup and return any extent before 'file_offset'. NULL is returned 885 * if none is found 886 */ 887 struct btrfs_ordered_extent * 888 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 889 { 890 struct btrfs_ordered_inode_tree *tree; 891 struct rb_node *node; 892 struct btrfs_ordered_extent *entry = NULL; 893 894 tree = &BTRFS_I(inode)->ordered_tree; 895 spin_lock_irq(&tree->lock); 896 node = tree_search(tree, file_offset); 897 if (!node) 898 goto out; 899 900 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 901 atomic_inc(&entry->refs); 902 out: 903 spin_unlock_irq(&tree->lock); 904 return entry; 905 } 906 907 /* 908 * After an extent is done, call this to conditionally update the on disk 909 * i_size. i_size is updated to cover any fully written part of the file. 910 */ 911 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 912 struct btrfs_ordered_extent *ordered) 913 { 914 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 915 u64 disk_i_size; 916 u64 new_i_size; 917 u64 i_size = i_size_read(inode); 918 struct rb_node *node; 919 struct rb_node *prev = NULL; 920 struct btrfs_ordered_extent *test; 921 int ret = 1; 922 923 if (ordered) 924 offset = entry_end(ordered); 925 else 926 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 927 928 spin_lock_irq(&tree->lock); 929 disk_i_size = BTRFS_I(inode)->disk_i_size; 930 931 /* truncate file */ 932 if (disk_i_size > i_size) { 933 BTRFS_I(inode)->disk_i_size = i_size; 934 ret = 0; 935 goto out; 936 } 937 938 /* 939 * if the disk i_size is already at the inode->i_size, or 940 * this ordered extent is inside the disk i_size, we're done 941 */ 942 if (disk_i_size == i_size) 943 goto out; 944 945 /* 946 * We still need to update disk_i_size if outstanding_isize is greater 947 * than disk_i_size. 948 */ 949 if (offset <= disk_i_size && 950 (!ordered || ordered->outstanding_isize <= disk_i_size)) 951 goto out; 952 953 /* 954 * walk backward from this ordered extent to disk_i_size. 955 * if we find an ordered extent then we can't update disk i_size 956 * yet 957 */ 958 if (ordered) { 959 node = rb_prev(&ordered->rb_node); 960 } else { 961 prev = tree_search(tree, offset); 962 /* 963 * we insert file extents without involving ordered struct, 964 * so there should be no ordered struct cover this offset 965 */ 966 if (prev) { 967 test = rb_entry(prev, struct btrfs_ordered_extent, 968 rb_node); 969 BUG_ON(offset_in_entry(test, offset)); 970 } 971 node = prev; 972 } 973 for (; node; node = rb_prev(node)) { 974 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 975 976 /* We treat this entry as if it doesnt exist */ 977 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 978 continue; 979 if (test->file_offset + test->len <= disk_i_size) 980 break; 981 if (test->file_offset >= i_size) 982 break; 983 if (entry_end(test) > disk_i_size) { 984 /* 985 * we don't update disk_i_size now, so record this 986 * undealt i_size. Or we will not know the real 987 * i_size. 988 */ 989 if (test->outstanding_isize < offset) 990 test->outstanding_isize = offset; 991 if (ordered && 992 ordered->outstanding_isize > 993 test->outstanding_isize) 994 test->outstanding_isize = 995 ordered->outstanding_isize; 996 goto out; 997 } 998 } 999 new_i_size = min_t(u64, offset, i_size); 1000 1001 /* 1002 * Some ordered extents may completed before the current one, and 1003 * we hold the real i_size in ->outstanding_isize. 1004 */ 1005 if (ordered && ordered->outstanding_isize > new_i_size) 1006 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1007 BTRFS_I(inode)->disk_i_size = new_i_size; 1008 ret = 0; 1009 out: 1010 /* 1011 * We need to do this because we can't remove ordered extents until 1012 * after the i_disk_size has been updated and then the inode has been 1013 * updated to reflect the change, so we need to tell anybody who finds 1014 * this ordered extent that we've already done all the real work, we 1015 * just haven't completed all the other work. 1016 */ 1017 if (ordered) 1018 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1019 spin_unlock_irq(&tree->lock); 1020 return ret; 1021 } 1022 1023 /* 1024 * search the ordered extents for one corresponding to 'offset' and 1025 * try to find a checksum. This is used because we allow pages to 1026 * be reclaimed before their checksum is actually put into the btree 1027 */ 1028 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1029 u32 *sum, int len) 1030 { 1031 struct btrfs_ordered_sum *ordered_sum; 1032 struct btrfs_ordered_extent *ordered; 1033 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1034 unsigned long num_sectors; 1035 unsigned long i; 1036 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1037 int index = 0; 1038 1039 ordered = btrfs_lookup_ordered_extent(inode, offset); 1040 if (!ordered) 1041 return 0; 1042 1043 spin_lock_irq(&tree->lock); 1044 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1045 if (disk_bytenr >= ordered_sum->bytenr && 1046 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1047 i = (disk_bytenr - ordered_sum->bytenr) >> 1048 inode->i_sb->s_blocksize_bits; 1049 num_sectors = ordered_sum->len >> 1050 inode->i_sb->s_blocksize_bits; 1051 num_sectors = min_t(int, len - index, num_sectors - i); 1052 memcpy(sum + index, ordered_sum->sums + i, 1053 num_sectors); 1054 1055 index += (int)num_sectors; 1056 if (index == len) 1057 goto out; 1058 disk_bytenr += num_sectors * sectorsize; 1059 } 1060 } 1061 out: 1062 spin_unlock_irq(&tree->lock); 1063 btrfs_put_ordered_extent(ordered); 1064 return index; 1065 } 1066 1067 1068 /* 1069 * add a given inode to the list of inodes that must be fully on 1070 * disk before a transaction commit finishes. 1071 * 1072 * This basically gives us the ext3 style data=ordered mode, and it is mostly 1073 * used to make sure renamed files are fully on disk. 1074 * 1075 * It is a noop if the inode is already fully on disk. 1076 * 1077 * If trans is not null, we'll do a friendly check for a transaction that 1078 * is already flushing things and force the IO down ourselves. 1079 */ 1080 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans, 1081 struct btrfs_root *root, struct inode *inode) 1082 { 1083 struct btrfs_transaction *cur_trans = trans->transaction; 1084 u64 last_mod; 1085 1086 last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans); 1087 1088 /* 1089 * if this file hasn't been changed since the last transaction 1090 * commit, we can safely return without doing anything 1091 */ 1092 if (last_mod < root->fs_info->last_trans_committed) 1093 return; 1094 1095 spin_lock(&root->fs_info->ordered_root_lock); 1096 if (list_empty(&BTRFS_I(inode)->ordered_operations)) { 1097 list_add_tail(&BTRFS_I(inode)->ordered_operations, 1098 &cur_trans->ordered_operations); 1099 } 1100 spin_unlock(&root->fs_info->ordered_root_lock); 1101 } 1102 1103 int __init ordered_data_init(void) 1104 { 1105 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1106 sizeof(struct btrfs_ordered_extent), 0, 1107 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1108 NULL); 1109 if (!btrfs_ordered_extent_cache) 1110 return -ENOMEM; 1111 1112 return 0; 1113 } 1114 1115 void ordered_data_exit(void) 1116 { 1117 if (btrfs_ordered_extent_cache) 1118 kmem_cache_destroy(btrfs_ordered_extent_cache); 1119 } 1120