xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision c1c9ff7c94e83fae89a742df74db51156869bad5)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu\n", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	if (!(BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM) &&
202 	    !(type == BTRFS_ORDERED_NOCOW))
203 		entry->csum_bytes_left = disk_len;
204 	entry->disk_len = disk_len;
205 	entry->bytes_left = len;
206 	entry->inode = igrab(inode);
207 	entry->compress_type = compress_type;
208 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
209 		set_bit(type, &entry->flags);
210 
211 	if (dio)
212 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
213 
214 	/* one ref for the tree */
215 	atomic_set(&entry->refs, 1);
216 	init_waitqueue_head(&entry->wait);
217 	INIT_LIST_HEAD(&entry->list);
218 	INIT_LIST_HEAD(&entry->root_extent_list);
219 	INIT_LIST_HEAD(&entry->work_list);
220 	init_completion(&entry->completion);
221 	INIT_LIST_HEAD(&entry->log_list);
222 
223 	trace_btrfs_ordered_extent_add(inode, entry);
224 
225 	spin_lock_irq(&tree->lock);
226 	node = tree_insert(&tree->tree, file_offset,
227 			   &entry->rb_node);
228 	if (node)
229 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
230 	spin_unlock_irq(&tree->lock);
231 
232 	spin_lock(&root->ordered_extent_lock);
233 	list_add_tail(&entry->root_extent_list,
234 		      &root->ordered_extents);
235 	root->nr_ordered_extents++;
236 	if (root->nr_ordered_extents == 1) {
237 		spin_lock(&root->fs_info->ordered_root_lock);
238 		BUG_ON(!list_empty(&root->ordered_root));
239 		list_add_tail(&root->ordered_root,
240 			      &root->fs_info->ordered_roots);
241 		spin_unlock(&root->fs_info->ordered_root_lock);
242 	}
243 	spin_unlock(&root->ordered_extent_lock);
244 
245 	return 0;
246 }
247 
248 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
249 			     u64 start, u64 len, u64 disk_len, int type)
250 {
251 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
252 					  disk_len, type, 0,
253 					  BTRFS_COMPRESS_NONE);
254 }
255 
256 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
257 				 u64 start, u64 len, u64 disk_len, int type)
258 {
259 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
260 					  disk_len, type, 1,
261 					  BTRFS_COMPRESS_NONE);
262 }
263 
264 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
265 				      u64 start, u64 len, u64 disk_len,
266 				      int type, int compress_type)
267 {
268 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
269 					  disk_len, type, 0,
270 					  compress_type);
271 }
272 
273 /*
274  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
275  * when an ordered extent is finished.  If the list covers more than one
276  * ordered extent, it is split across multiples.
277  */
278 void btrfs_add_ordered_sum(struct inode *inode,
279 			   struct btrfs_ordered_extent *entry,
280 			   struct btrfs_ordered_sum *sum)
281 {
282 	struct btrfs_ordered_inode_tree *tree;
283 
284 	tree = &BTRFS_I(inode)->ordered_tree;
285 	spin_lock_irq(&tree->lock);
286 	list_add_tail(&sum->list, &entry->list);
287 	WARN_ON(entry->csum_bytes_left < sum->len);
288 	entry->csum_bytes_left -= sum->len;
289 	if (entry->csum_bytes_left == 0)
290 		wake_up(&entry->wait);
291 	spin_unlock_irq(&tree->lock);
292 }
293 
294 /*
295  * this is used to account for finished IO across a given range
296  * of the file.  The IO may span ordered extents.  If
297  * a given ordered_extent is completely done, 1 is returned, otherwise
298  * 0.
299  *
300  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
301  * to make sure this function only returns 1 once for a given ordered extent.
302  *
303  * file_offset is updated to one byte past the range that is recorded as
304  * complete.  This allows you to walk forward in the file.
305  */
306 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
307 				   struct btrfs_ordered_extent **cached,
308 				   u64 *file_offset, u64 io_size, int uptodate)
309 {
310 	struct btrfs_ordered_inode_tree *tree;
311 	struct rb_node *node;
312 	struct btrfs_ordered_extent *entry = NULL;
313 	int ret;
314 	unsigned long flags;
315 	u64 dec_end;
316 	u64 dec_start;
317 	u64 to_dec;
318 
319 	tree = &BTRFS_I(inode)->ordered_tree;
320 	spin_lock_irqsave(&tree->lock, flags);
321 	node = tree_search(tree, *file_offset);
322 	if (!node) {
323 		ret = 1;
324 		goto out;
325 	}
326 
327 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
328 	if (!offset_in_entry(entry, *file_offset)) {
329 		ret = 1;
330 		goto out;
331 	}
332 
333 	dec_start = max(*file_offset, entry->file_offset);
334 	dec_end = min(*file_offset + io_size, entry->file_offset +
335 		      entry->len);
336 	*file_offset = dec_end;
337 	if (dec_start > dec_end) {
338 		printk(KERN_CRIT "bad ordering dec_start %llu end %llu\n",
339 		       dec_start, dec_end);
340 	}
341 	to_dec = dec_end - dec_start;
342 	if (to_dec > entry->bytes_left) {
343 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
344 		       entry->bytes_left, to_dec);
345 	}
346 	entry->bytes_left -= to_dec;
347 	if (!uptodate)
348 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
349 
350 	if (entry->bytes_left == 0)
351 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
352 	else
353 		ret = 1;
354 out:
355 	if (!ret && cached && entry) {
356 		*cached = entry;
357 		atomic_inc(&entry->refs);
358 	}
359 	spin_unlock_irqrestore(&tree->lock, flags);
360 	return ret == 0;
361 }
362 
363 /*
364  * this is used to account for finished IO across a given range
365  * of the file.  The IO should not span ordered extents.  If
366  * a given ordered_extent is completely done, 1 is returned, otherwise
367  * 0.
368  *
369  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
370  * to make sure this function only returns 1 once for a given ordered extent.
371  */
372 int btrfs_dec_test_ordered_pending(struct inode *inode,
373 				   struct btrfs_ordered_extent **cached,
374 				   u64 file_offset, u64 io_size, int uptodate)
375 {
376 	struct btrfs_ordered_inode_tree *tree;
377 	struct rb_node *node;
378 	struct btrfs_ordered_extent *entry = NULL;
379 	unsigned long flags;
380 	int ret;
381 
382 	tree = &BTRFS_I(inode)->ordered_tree;
383 	spin_lock_irqsave(&tree->lock, flags);
384 	if (cached && *cached) {
385 		entry = *cached;
386 		goto have_entry;
387 	}
388 
389 	node = tree_search(tree, file_offset);
390 	if (!node) {
391 		ret = 1;
392 		goto out;
393 	}
394 
395 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
396 have_entry:
397 	if (!offset_in_entry(entry, file_offset)) {
398 		ret = 1;
399 		goto out;
400 	}
401 
402 	if (io_size > entry->bytes_left) {
403 		printk(KERN_CRIT "bad ordered accounting left %llu size %llu\n",
404 		       entry->bytes_left, io_size);
405 	}
406 	entry->bytes_left -= io_size;
407 	if (!uptodate)
408 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
409 
410 	if (entry->bytes_left == 0)
411 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
412 	else
413 		ret = 1;
414 out:
415 	if (!ret && cached && entry) {
416 		*cached = entry;
417 		atomic_inc(&entry->refs);
418 	}
419 	spin_unlock_irqrestore(&tree->lock, flags);
420 	return ret == 0;
421 }
422 
423 /* Needs to either be called under a log transaction or the log_mutex */
424 void btrfs_get_logged_extents(struct btrfs_root *log, struct inode *inode)
425 {
426 	struct btrfs_ordered_inode_tree *tree;
427 	struct btrfs_ordered_extent *ordered;
428 	struct rb_node *n;
429 	int index = log->log_transid % 2;
430 
431 	tree = &BTRFS_I(inode)->ordered_tree;
432 	spin_lock_irq(&tree->lock);
433 	for (n = rb_first(&tree->tree); n; n = rb_next(n)) {
434 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
435 		spin_lock(&log->log_extents_lock[index]);
436 		if (list_empty(&ordered->log_list)) {
437 			list_add_tail(&ordered->log_list, &log->logged_list[index]);
438 			atomic_inc(&ordered->refs);
439 		}
440 		spin_unlock(&log->log_extents_lock[index]);
441 	}
442 	spin_unlock_irq(&tree->lock);
443 }
444 
445 void btrfs_wait_logged_extents(struct btrfs_root *log, u64 transid)
446 {
447 	struct btrfs_ordered_extent *ordered;
448 	int index = transid % 2;
449 
450 	spin_lock_irq(&log->log_extents_lock[index]);
451 	while (!list_empty(&log->logged_list[index])) {
452 		ordered = list_first_entry(&log->logged_list[index],
453 					   struct btrfs_ordered_extent,
454 					   log_list);
455 		list_del_init(&ordered->log_list);
456 		spin_unlock_irq(&log->log_extents_lock[index]);
457 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
458 						   &ordered->flags));
459 		btrfs_put_ordered_extent(ordered);
460 		spin_lock_irq(&log->log_extents_lock[index]);
461 	}
462 	spin_unlock_irq(&log->log_extents_lock[index]);
463 }
464 
465 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
466 {
467 	struct btrfs_ordered_extent *ordered;
468 	int index = transid % 2;
469 
470 	spin_lock_irq(&log->log_extents_lock[index]);
471 	while (!list_empty(&log->logged_list[index])) {
472 		ordered = list_first_entry(&log->logged_list[index],
473 					   struct btrfs_ordered_extent,
474 					   log_list);
475 		list_del_init(&ordered->log_list);
476 		spin_unlock_irq(&log->log_extents_lock[index]);
477 		btrfs_put_ordered_extent(ordered);
478 		spin_lock_irq(&log->log_extents_lock[index]);
479 	}
480 	spin_unlock_irq(&log->log_extents_lock[index]);
481 }
482 
483 /*
484  * used to drop a reference on an ordered extent.  This will free
485  * the extent if the last reference is dropped
486  */
487 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
488 {
489 	struct list_head *cur;
490 	struct btrfs_ordered_sum *sum;
491 
492 	trace_btrfs_ordered_extent_put(entry->inode, entry);
493 
494 	if (atomic_dec_and_test(&entry->refs)) {
495 		if (entry->inode)
496 			btrfs_add_delayed_iput(entry->inode);
497 		while (!list_empty(&entry->list)) {
498 			cur = entry->list.next;
499 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
500 			list_del(&sum->list);
501 			kfree(sum);
502 		}
503 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
504 	}
505 }
506 
507 /*
508  * remove an ordered extent from the tree.  No references are dropped
509  * and waiters are woken up.
510  */
511 void btrfs_remove_ordered_extent(struct inode *inode,
512 				 struct btrfs_ordered_extent *entry)
513 {
514 	struct btrfs_ordered_inode_tree *tree;
515 	struct btrfs_root *root = BTRFS_I(inode)->root;
516 	struct rb_node *node;
517 
518 	tree = &BTRFS_I(inode)->ordered_tree;
519 	spin_lock_irq(&tree->lock);
520 	node = &entry->rb_node;
521 	rb_erase(node, &tree->tree);
522 	tree->last = NULL;
523 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
524 	spin_unlock_irq(&tree->lock);
525 
526 	spin_lock(&root->ordered_extent_lock);
527 	list_del_init(&entry->root_extent_list);
528 	root->nr_ordered_extents--;
529 
530 	trace_btrfs_ordered_extent_remove(inode, entry);
531 
532 	/*
533 	 * we have no more ordered extents for this inode and
534 	 * no dirty pages.  We can safely remove it from the
535 	 * list of ordered extents
536 	 */
537 	if (RB_EMPTY_ROOT(&tree->tree) &&
538 	    !mapping_tagged(inode->i_mapping, PAGECACHE_TAG_DIRTY)) {
539 		list_del_init(&BTRFS_I(inode)->ordered_operations);
540 	}
541 
542 	if (!root->nr_ordered_extents) {
543 		spin_lock(&root->fs_info->ordered_root_lock);
544 		BUG_ON(list_empty(&root->ordered_root));
545 		list_del_init(&root->ordered_root);
546 		spin_unlock(&root->fs_info->ordered_root_lock);
547 	}
548 	spin_unlock(&root->ordered_extent_lock);
549 	wake_up(&entry->wait);
550 }
551 
552 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
553 {
554 	struct btrfs_ordered_extent *ordered;
555 
556 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
557 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
558 	complete(&ordered->completion);
559 }
560 
561 /*
562  * wait for all the ordered extents in a root.  This is done when balancing
563  * space between drives.
564  */
565 void btrfs_wait_ordered_extents(struct btrfs_root *root, int delay_iput)
566 {
567 	struct list_head splice, works;
568 	struct btrfs_ordered_extent *ordered, *next;
569 	struct inode *inode;
570 
571 	INIT_LIST_HEAD(&splice);
572 	INIT_LIST_HEAD(&works);
573 
574 	mutex_lock(&root->fs_info->ordered_operations_mutex);
575 	spin_lock(&root->ordered_extent_lock);
576 	list_splice_init(&root->ordered_extents, &splice);
577 	while (!list_empty(&splice)) {
578 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
579 					   root_extent_list);
580 		list_move_tail(&ordered->root_extent_list,
581 			       &root->ordered_extents);
582 		/*
583 		 * the inode may be getting freed (in sys_unlink path).
584 		 */
585 		inode = igrab(ordered->inode);
586 		if (!inode) {
587 			cond_resched_lock(&root->ordered_extent_lock);
588 			continue;
589 		}
590 
591 		atomic_inc(&ordered->refs);
592 		spin_unlock(&root->ordered_extent_lock);
593 
594 		ordered->flush_work.func = btrfs_run_ordered_extent_work;
595 		list_add_tail(&ordered->work_list, &works);
596 		btrfs_queue_worker(&root->fs_info->flush_workers,
597 				   &ordered->flush_work);
598 
599 		cond_resched();
600 		spin_lock(&root->ordered_extent_lock);
601 	}
602 	spin_unlock(&root->ordered_extent_lock);
603 
604 	list_for_each_entry_safe(ordered, next, &works, work_list) {
605 		list_del_init(&ordered->work_list);
606 		wait_for_completion(&ordered->completion);
607 
608 		inode = ordered->inode;
609 		btrfs_put_ordered_extent(ordered);
610 		if (delay_iput)
611 			btrfs_add_delayed_iput(inode);
612 		else
613 			iput(inode);
614 
615 		cond_resched();
616 	}
617 	mutex_unlock(&root->fs_info->ordered_operations_mutex);
618 }
619 
620 void btrfs_wait_all_ordered_extents(struct btrfs_fs_info *fs_info,
621 				    int delay_iput)
622 {
623 	struct btrfs_root *root;
624 	struct list_head splice;
625 
626 	INIT_LIST_HEAD(&splice);
627 
628 	spin_lock(&fs_info->ordered_root_lock);
629 	list_splice_init(&fs_info->ordered_roots, &splice);
630 	while (!list_empty(&splice)) {
631 		root = list_first_entry(&splice, struct btrfs_root,
632 					ordered_root);
633 		root = btrfs_grab_fs_root(root);
634 		BUG_ON(!root);
635 		list_move_tail(&root->ordered_root,
636 			       &fs_info->ordered_roots);
637 		spin_unlock(&fs_info->ordered_root_lock);
638 
639 		btrfs_wait_ordered_extents(root, delay_iput);
640 		btrfs_put_fs_root(root);
641 
642 		spin_lock(&fs_info->ordered_root_lock);
643 	}
644 	spin_unlock(&fs_info->ordered_root_lock);
645 }
646 
647 /*
648  * this is used during transaction commit to write all the inodes
649  * added to the ordered operation list.  These files must be fully on
650  * disk before the transaction commits.
651  *
652  * we have two modes here, one is to just start the IO via filemap_flush
653  * and the other is to wait for all the io.  When we wait, we have an
654  * extra check to make sure the ordered operation list really is empty
655  * before we return
656  */
657 int btrfs_run_ordered_operations(struct btrfs_trans_handle *trans,
658 				 struct btrfs_root *root, int wait)
659 {
660 	struct btrfs_inode *btrfs_inode;
661 	struct inode *inode;
662 	struct btrfs_transaction *cur_trans = trans->transaction;
663 	struct list_head splice;
664 	struct list_head works;
665 	struct btrfs_delalloc_work *work, *next;
666 	int ret = 0;
667 
668 	INIT_LIST_HEAD(&splice);
669 	INIT_LIST_HEAD(&works);
670 
671 	mutex_lock(&root->fs_info->ordered_extent_flush_mutex);
672 	spin_lock(&root->fs_info->ordered_root_lock);
673 	list_splice_init(&cur_trans->ordered_operations, &splice);
674 	while (!list_empty(&splice)) {
675 		btrfs_inode = list_entry(splice.next, struct btrfs_inode,
676 				   ordered_operations);
677 		inode = &btrfs_inode->vfs_inode;
678 
679 		list_del_init(&btrfs_inode->ordered_operations);
680 
681 		/*
682 		 * the inode may be getting freed (in sys_unlink path).
683 		 */
684 		inode = igrab(inode);
685 		if (!inode)
686 			continue;
687 
688 		if (!wait)
689 			list_add_tail(&BTRFS_I(inode)->ordered_operations,
690 				      &cur_trans->ordered_operations);
691 		spin_unlock(&root->fs_info->ordered_root_lock);
692 
693 		work = btrfs_alloc_delalloc_work(inode, wait, 1);
694 		if (!work) {
695 			spin_lock(&root->fs_info->ordered_root_lock);
696 			if (list_empty(&BTRFS_I(inode)->ordered_operations))
697 				list_add_tail(&btrfs_inode->ordered_operations,
698 					      &splice);
699 			list_splice_tail(&splice,
700 					 &cur_trans->ordered_operations);
701 			spin_unlock(&root->fs_info->ordered_root_lock);
702 			ret = -ENOMEM;
703 			goto out;
704 		}
705 		list_add_tail(&work->list, &works);
706 		btrfs_queue_worker(&root->fs_info->flush_workers,
707 				   &work->work);
708 
709 		cond_resched();
710 		spin_lock(&root->fs_info->ordered_root_lock);
711 	}
712 	spin_unlock(&root->fs_info->ordered_root_lock);
713 out:
714 	list_for_each_entry_safe(work, next, &works, list) {
715 		list_del_init(&work->list);
716 		btrfs_wait_and_free_delalloc_work(work);
717 	}
718 	mutex_unlock(&root->fs_info->ordered_extent_flush_mutex);
719 	return ret;
720 }
721 
722 /*
723  * Used to start IO or wait for a given ordered extent to finish.
724  *
725  * If wait is one, this effectively waits on page writeback for all the pages
726  * in the extent, and it waits on the io completion code to insert
727  * metadata into the btree corresponding to the extent
728  */
729 void btrfs_start_ordered_extent(struct inode *inode,
730 				       struct btrfs_ordered_extent *entry,
731 				       int wait)
732 {
733 	u64 start = entry->file_offset;
734 	u64 end = start + entry->len - 1;
735 
736 	trace_btrfs_ordered_extent_start(inode, entry);
737 
738 	/*
739 	 * pages in the range can be dirty, clean or writeback.  We
740 	 * start IO on any dirty ones so the wait doesn't stall waiting
741 	 * for the flusher thread to find them
742 	 */
743 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
744 		filemap_fdatawrite_range(inode->i_mapping, start, end);
745 	if (wait) {
746 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
747 						 &entry->flags));
748 	}
749 }
750 
751 /*
752  * Used to wait on ordered extents across a large range of bytes.
753  */
754 void btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
755 {
756 	u64 end;
757 	u64 orig_end;
758 	struct btrfs_ordered_extent *ordered;
759 
760 	if (start + len < start) {
761 		orig_end = INT_LIMIT(loff_t);
762 	} else {
763 		orig_end = start + len - 1;
764 		if (orig_end > INT_LIMIT(loff_t))
765 			orig_end = INT_LIMIT(loff_t);
766 	}
767 
768 	/* start IO across the range first to instantiate any delalloc
769 	 * extents
770 	 */
771 	filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
772 
773 	/*
774 	 * So with compression we will find and lock a dirty page and clear the
775 	 * first one as dirty, setup an async extent, and immediately return
776 	 * with the entire range locked but with nobody actually marked with
777 	 * writeback.  So we can't just filemap_write_and_wait_range() and
778 	 * expect it to work since it will just kick off a thread to do the
779 	 * actual work.  So we need to call filemap_fdatawrite_range _again_
780 	 * since it will wait on the page lock, which won't be unlocked until
781 	 * after the pages have been marked as writeback and so we're good to go
782 	 * from there.  We have to do this otherwise we'll miss the ordered
783 	 * extents and that results in badness.  Please Josef, do not think you
784 	 * know better and pull this out at some point in the future, it is
785 	 * right and you are wrong.
786 	 */
787 	if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
788 		     &BTRFS_I(inode)->runtime_flags))
789 		filemap_fdatawrite_range(inode->i_mapping, start, orig_end);
790 
791 	filemap_fdatawait_range(inode->i_mapping, start, orig_end);
792 
793 	end = orig_end;
794 	while (1) {
795 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
796 		if (!ordered)
797 			break;
798 		if (ordered->file_offset > orig_end) {
799 			btrfs_put_ordered_extent(ordered);
800 			break;
801 		}
802 		if (ordered->file_offset + ordered->len < start) {
803 			btrfs_put_ordered_extent(ordered);
804 			break;
805 		}
806 		btrfs_start_ordered_extent(inode, ordered, 1);
807 		end = ordered->file_offset;
808 		btrfs_put_ordered_extent(ordered);
809 		if (end == 0 || end == start)
810 			break;
811 		end--;
812 	}
813 }
814 
815 /*
816  * find an ordered extent corresponding to file_offset.  return NULL if
817  * nothing is found, otherwise take a reference on the extent and return it
818  */
819 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
820 							 u64 file_offset)
821 {
822 	struct btrfs_ordered_inode_tree *tree;
823 	struct rb_node *node;
824 	struct btrfs_ordered_extent *entry = NULL;
825 
826 	tree = &BTRFS_I(inode)->ordered_tree;
827 	spin_lock_irq(&tree->lock);
828 	node = tree_search(tree, file_offset);
829 	if (!node)
830 		goto out;
831 
832 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
833 	if (!offset_in_entry(entry, file_offset))
834 		entry = NULL;
835 	if (entry)
836 		atomic_inc(&entry->refs);
837 out:
838 	spin_unlock_irq(&tree->lock);
839 	return entry;
840 }
841 
842 /* Since the DIO code tries to lock a wide area we need to look for any ordered
843  * extents that exist in the range, rather than just the start of the range.
844  */
845 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
846 							u64 file_offset,
847 							u64 len)
848 {
849 	struct btrfs_ordered_inode_tree *tree;
850 	struct rb_node *node;
851 	struct btrfs_ordered_extent *entry = NULL;
852 
853 	tree = &BTRFS_I(inode)->ordered_tree;
854 	spin_lock_irq(&tree->lock);
855 	node = tree_search(tree, file_offset);
856 	if (!node) {
857 		node = tree_search(tree, file_offset + len);
858 		if (!node)
859 			goto out;
860 	}
861 
862 	while (1) {
863 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
864 		if (range_overlaps(entry, file_offset, len))
865 			break;
866 
867 		if (entry->file_offset >= file_offset + len) {
868 			entry = NULL;
869 			break;
870 		}
871 		entry = NULL;
872 		node = rb_next(node);
873 		if (!node)
874 			break;
875 	}
876 out:
877 	if (entry)
878 		atomic_inc(&entry->refs);
879 	spin_unlock_irq(&tree->lock);
880 	return entry;
881 }
882 
883 /*
884  * lookup and return any extent before 'file_offset'.  NULL is returned
885  * if none is found
886  */
887 struct btrfs_ordered_extent *
888 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
889 {
890 	struct btrfs_ordered_inode_tree *tree;
891 	struct rb_node *node;
892 	struct btrfs_ordered_extent *entry = NULL;
893 
894 	tree = &BTRFS_I(inode)->ordered_tree;
895 	spin_lock_irq(&tree->lock);
896 	node = tree_search(tree, file_offset);
897 	if (!node)
898 		goto out;
899 
900 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
901 	atomic_inc(&entry->refs);
902 out:
903 	spin_unlock_irq(&tree->lock);
904 	return entry;
905 }
906 
907 /*
908  * After an extent is done, call this to conditionally update the on disk
909  * i_size.  i_size is updated to cover any fully written part of the file.
910  */
911 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
912 				struct btrfs_ordered_extent *ordered)
913 {
914 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
915 	u64 disk_i_size;
916 	u64 new_i_size;
917 	u64 i_size = i_size_read(inode);
918 	struct rb_node *node;
919 	struct rb_node *prev = NULL;
920 	struct btrfs_ordered_extent *test;
921 	int ret = 1;
922 
923 	if (ordered)
924 		offset = entry_end(ordered);
925 	else
926 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
927 
928 	spin_lock_irq(&tree->lock);
929 	disk_i_size = BTRFS_I(inode)->disk_i_size;
930 
931 	/* truncate file */
932 	if (disk_i_size > i_size) {
933 		BTRFS_I(inode)->disk_i_size = i_size;
934 		ret = 0;
935 		goto out;
936 	}
937 
938 	/*
939 	 * if the disk i_size is already at the inode->i_size, or
940 	 * this ordered extent is inside the disk i_size, we're done
941 	 */
942 	if (disk_i_size == i_size)
943 		goto out;
944 
945 	/*
946 	 * We still need to update disk_i_size if outstanding_isize is greater
947 	 * than disk_i_size.
948 	 */
949 	if (offset <= disk_i_size &&
950 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
951 		goto out;
952 
953 	/*
954 	 * walk backward from this ordered extent to disk_i_size.
955 	 * if we find an ordered extent then we can't update disk i_size
956 	 * yet
957 	 */
958 	if (ordered) {
959 		node = rb_prev(&ordered->rb_node);
960 	} else {
961 		prev = tree_search(tree, offset);
962 		/*
963 		 * we insert file extents without involving ordered struct,
964 		 * so there should be no ordered struct cover this offset
965 		 */
966 		if (prev) {
967 			test = rb_entry(prev, struct btrfs_ordered_extent,
968 					rb_node);
969 			BUG_ON(offset_in_entry(test, offset));
970 		}
971 		node = prev;
972 	}
973 	for (; node; node = rb_prev(node)) {
974 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
975 
976 		/* We treat this entry as if it doesnt exist */
977 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
978 			continue;
979 		if (test->file_offset + test->len <= disk_i_size)
980 			break;
981 		if (test->file_offset >= i_size)
982 			break;
983 		if (entry_end(test) > disk_i_size) {
984 			/*
985 			 * we don't update disk_i_size now, so record this
986 			 * undealt i_size. Or we will not know the real
987 			 * i_size.
988 			 */
989 			if (test->outstanding_isize < offset)
990 				test->outstanding_isize = offset;
991 			if (ordered &&
992 			    ordered->outstanding_isize >
993 			    test->outstanding_isize)
994 				test->outstanding_isize =
995 						ordered->outstanding_isize;
996 			goto out;
997 		}
998 	}
999 	new_i_size = min_t(u64, offset, i_size);
1000 
1001 	/*
1002 	 * Some ordered extents may completed before the current one, and
1003 	 * we hold the real i_size in ->outstanding_isize.
1004 	 */
1005 	if (ordered && ordered->outstanding_isize > new_i_size)
1006 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1007 	BTRFS_I(inode)->disk_i_size = new_i_size;
1008 	ret = 0;
1009 out:
1010 	/*
1011 	 * We need to do this because we can't remove ordered extents until
1012 	 * after the i_disk_size has been updated and then the inode has been
1013 	 * updated to reflect the change, so we need to tell anybody who finds
1014 	 * this ordered extent that we've already done all the real work, we
1015 	 * just haven't completed all the other work.
1016 	 */
1017 	if (ordered)
1018 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1019 	spin_unlock_irq(&tree->lock);
1020 	return ret;
1021 }
1022 
1023 /*
1024  * search the ordered extents for one corresponding to 'offset' and
1025  * try to find a checksum.  This is used because we allow pages to
1026  * be reclaimed before their checksum is actually put into the btree
1027  */
1028 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1029 			   u32 *sum, int len)
1030 {
1031 	struct btrfs_ordered_sum *ordered_sum;
1032 	struct btrfs_ordered_extent *ordered;
1033 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1034 	unsigned long num_sectors;
1035 	unsigned long i;
1036 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1037 	int index = 0;
1038 
1039 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1040 	if (!ordered)
1041 		return 0;
1042 
1043 	spin_lock_irq(&tree->lock);
1044 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1045 		if (disk_bytenr >= ordered_sum->bytenr &&
1046 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1047 			i = (disk_bytenr - ordered_sum->bytenr) >>
1048 			    inode->i_sb->s_blocksize_bits;
1049 			num_sectors = ordered_sum->len >>
1050 				      inode->i_sb->s_blocksize_bits;
1051 			num_sectors = min_t(int, len - index, num_sectors - i);
1052 			memcpy(sum + index, ordered_sum->sums + i,
1053 			       num_sectors);
1054 
1055 			index += (int)num_sectors;
1056 			if (index == len)
1057 				goto out;
1058 			disk_bytenr += num_sectors * sectorsize;
1059 		}
1060 	}
1061 out:
1062 	spin_unlock_irq(&tree->lock);
1063 	btrfs_put_ordered_extent(ordered);
1064 	return index;
1065 }
1066 
1067 
1068 /*
1069  * add a given inode to the list of inodes that must be fully on
1070  * disk before a transaction commit finishes.
1071  *
1072  * This basically gives us the ext3 style data=ordered mode, and it is mostly
1073  * used to make sure renamed files are fully on disk.
1074  *
1075  * It is a noop if the inode is already fully on disk.
1076  *
1077  * If trans is not null, we'll do a friendly check for a transaction that
1078  * is already flushing things and force the IO down ourselves.
1079  */
1080 void btrfs_add_ordered_operation(struct btrfs_trans_handle *trans,
1081 				 struct btrfs_root *root, struct inode *inode)
1082 {
1083 	struct btrfs_transaction *cur_trans = trans->transaction;
1084 	u64 last_mod;
1085 
1086 	last_mod = max(BTRFS_I(inode)->generation, BTRFS_I(inode)->last_trans);
1087 
1088 	/*
1089 	 * if this file hasn't been changed since the last transaction
1090 	 * commit, we can safely return without doing anything
1091 	 */
1092 	if (last_mod < root->fs_info->last_trans_committed)
1093 		return;
1094 
1095 	spin_lock(&root->fs_info->ordered_root_lock);
1096 	if (list_empty(&BTRFS_I(inode)->ordered_operations)) {
1097 		list_add_tail(&BTRFS_I(inode)->ordered_operations,
1098 			      &cur_trans->ordered_operations);
1099 	}
1100 	spin_unlock(&root->fs_info->ordered_root_lock);
1101 }
1102 
1103 int __init ordered_data_init(void)
1104 {
1105 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1106 				     sizeof(struct btrfs_ordered_extent), 0,
1107 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1108 				     NULL);
1109 	if (!btrfs_ordered_extent_cache)
1110 		return -ENOMEM;
1111 
1112 	return 0;
1113 }
1114 
1115 void ordered_data_exit(void)
1116 {
1117 	if (btrfs_ordered_extent_cache)
1118 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1119 }
1120