1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/slab.h> 20 #include <linux/blkdev.h> 21 #include <linux/writeback.h> 22 #include <linux/pagevec.h> 23 #include "ctree.h" 24 #include "transaction.h" 25 #include "btrfs_inode.h" 26 #include "extent_io.h" 27 #include "disk-io.h" 28 29 static struct kmem_cache *btrfs_ordered_extent_cache; 30 31 static u64 entry_end(struct btrfs_ordered_extent *entry) 32 { 33 if (entry->file_offset + entry->len < entry->file_offset) 34 return (u64)-1; 35 return entry->file_offset + entry->len; 36 } 37 38 /* returns NULL if the insertion worked, or it returns the node it did find 39 * in the tree 40 */ 41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset, 42 struct rb_node *node) 43 { 44 struct rb_node **p = &root->rb_node; 45 struct rb_node *parent = NULL; 46 struct btrfs_ordered_extent *entry; 47 48 while (*p) { 49 parent = *p; 50 entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node); 51 52 if (file_offset < entry->file_offset) 53 p = &(*p)->rb_left; 54 else if (file_offset >= entry_end(entry)) 55 p = &(*p)->rb_right; 56 else 57 return parent; 58 } 59 60 rb_link_node(node, parent, p); 61 rb_insert_color(node, root); 62 return NULL; 63 } 64 65 static void ordered_data_tree_panic(struct inode *inode, int errno, 66 u64 offset) 67 { 68 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 69 btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset " 70 "%llu", offset); 71 } 72 73 /* 74 * look for a given offset in the tree, and if it can't be found return the 75 * first lesser offset 76 */ 77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset, 78 struct rb_node **prev_ret) 79 { 80 struct rb_node *n = root->rb_node; 81 struct rb_node *prev = NULL; 82 struct rb_node *test; 83 struct btrfs_ordered_extent *entry; 84 struct btrfs_ordered_extent *prev_entry = NULL; 85 86 while (n) { 87 entry = rb_entry(n, struct btrfs_ordered_extent, rb_node); 88 prev = n; 89 prev_entry = entry; 90 91 if (file_offset < entry->file_offset) 92 n = n->rb_left; 93 else if (file_offset >= entry_end(entry)) 94 n = n->rb_right; 95 else 96 return n; 97 } 98 if (!prev_ret) 99 return NULL; 100 101 while (prev && file_offset >= entry_end(prev_entry)) { 102 test = rb_next(prev); 103 if (!test) 104 break; 105 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 106 rb_node); 107 if (file_offset < entry_end(prev_entry)) 108 break; 109 110 prev = test; 111 } 112 if (prev) 113 prev_entry = rb_entry(prev, struct btrfs_ordered_extent, 114 rb_node); 115 while (prev && file_offset < entry_end(prev_entry)) { 116 test = rb_prev(prev); 117 if (!test) 118 break; 119 prev_entry = rb_entry(test, struct btrfs_ordered_extent, 120 rb_node); 121 prev = test; 122 } 123 *prev_ret = prev; 124 return NULL; 125 } 126 127 /* 128 * helper to check if a given offset is inside a given entry 129 */ 130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset) 131 { 132 if (file_offset < entry->file_offset || 133 entry->file_offset + entry->len <= file_offset) 134 return 0; 135 return 1; 136 } 137 138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset, 139 u64 len) 140 { 141 if (file_offset + len <= entry->file_offset || 142 entry->file_offset + entry->len <= file_offset) 143 return 0; 144 return 1; 145 } 146 147 /* 148 * look find the first ordered struct that has this offset, otherwise 149 * the first one less than this offset 150 */ 151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree, 152 u64 file_offset) 153 { 154 struct rb_root *root = &tree->tree; 155 struct rb_node *prev = NULL; 156 struct rb_node *ret; 157 struct btrfs_ordered_extent *entry; 158 159 if (tree->last) { 160 entry = rb_entry(tree->last, struct btrfs_ordered_extent, 161 rb_node); 162 if (offset_in_entry(entry, file_offset)) 163 return tree->last; 164 } 165 ret = __tree_search(root, file_offset, &prev); 166 if (!ret) 167 ret = prev; 168 if (ret) 169 tree->last = ret; 170 return ret; 171 } 172 173 /* allocate and add a new ordered_extent into the per-inode tree. 174 * file_offset is the logical offset in the file 175 * 176 * start is the disk block number of an extent already reserved in the 177 * extent allocation tree 178 * 179 * len is the length of the extent 180 * 181 * The tree is given a single reference on the ordered extent that was 182 * inserted. 183 */ 184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 185 u64 start, u64 len, u64 disk_len, 186 int type, int dio, int compress_type) 187 { 188 struct btrfs_root *root = BTRFS_I(inode)->root; 189 struct btrfs_ordered_inode_tree *tree; 190 struct rb_node *node; 191 struct btrfs_ordered_extent *entry; 192 193 tree = &BTRFS_I(inode)->ordered_tree; 194 entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS); 195 if (!entry) 196 return -ENOMEM; 197 198 entry->file_offset = file_offset; 199 entry->start = start; 200 entry->len = len; 201 entry->disk_len = disk_len; 202 entry->bytes_left = len; 203 entry->inode = igrab(inode); 204 entry->compress_type = compress_type; 205 entry->truncated_len = (u64)-1; 206 if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE) 207 set_bit(type, &entry->flags); 208 209 if (dio) 210 set_bit(BTRFS_ORDERED_DIRECT, &entry->flags); 211 212 /* one ref for the tree */ 213 atomic_set(&entry->refs, 1); 214 init_waitqueue_head(&entry->wait); 215 INIT_LIST_HEAD(&entry->list); 216 INIT_LIST_HEAD(&entry->root_extent_list); 217 INIT_LIST_HEAD(&entry->work_list); 218 init_completion(&entry->completion); 219 INIT_LIST_HEAD(&entry->log_list); 220 INIT_LIST_HEAD(&entry->trans_list); 221 222 trace_btrfs_ordered_extent_add(inode, entry); 223 224 spin_lock_irq(&tree->lock); 225 node = tree_insert(&tree->tree, file_offset, 226 &entry->rb_node); 227 if (node) 228 ordered_data_tree_panic(inode, -EEXIST, file_offset); 229 spin_unlock_irq(&tree->lock); 230 231 spin_lock(&root->ordered_extent_lock); 232 list_add_tail(&entry->root_extent_list, 233 &root->ordered_extents); 234 root->nr_ordered_extents++; 235 if (root->nr_ordered_extents == 1) { 236 spin_lock(&root->fs_info->ordered_root_lock); 237 BUG_ON(!list_empty(&root->ordered_root)); 238 list_add_tail(&root->ordered_root, 239 &root->fs_info->ordered_roots); 240 spin_unlock(&root->fs_info->ordered_root_lock); 241 } 242 spin_unlock(&root->ordered_extent_lock); 243 244 return 0; 245 } 246 247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset, 248 u64 start, u64 len, u64 disk_len, int type) 249 { 250 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 251 disk_len, type, 0, 252 BTRFS_COMPRESS_NONE); 253 } 254 255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset, 256 u64 start, u64 len, u64 disk_len, int type) 257 { 258 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 259 disk_len, type, 1, 260 BTRFS_COMPRESS_NONE); 261 } 262 263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset, 264 u64 start, u64 len, u64 disk_len, 265 int type, int compress_type) 266 { 267 return __btrfs_add_ordered_extent(inode, file_offset, start, len, 268 disk_len, type, 0, 269 compress_type); 270 } 271 272 /* 273 * Add a struct btrfs_ordered_sum into the list of checksums to be inserted 274 * when an ordered extent is finished. If the list covers more than one 275 * ordered extent, it is split across multiples. 276 */ 277 void btrfs_add_ordered_sum(struct inode *inode, 278 struct btrfs_ordered_extent *entry, 279 struct btrfs_ordered_sum *sum) 280 { 281 struct btrfs_ordered_inode_tree *tree; 282 283 tree = &BTRFS_I(inode)->ordered_tree; 284 spin_lock_irq(&tree->lock); 285 list_add_tail(&sum->list, &entry->list); 286 spin_unlock_irq(&tree->lock); 287 } 288 289 /* 290 * this is used to account for finished IO across a given range 291 * of the file. The IO may span ordered extents. If 292 * a given ordered_extent is completely done, 1 is returned, otherwise 293 * 0. 294 * 295 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 296 * to make sure this function only returns 1 once for a given ordered extent. 297 * 298 * file_offset is updated to one byte past the range that is recorded as 299 * complete. This allows you to walk forward in the file. 300 */ 301 int btrfs_dec_test_first_ordered_pending(struct inode *inode, 302 struct btrfs_ordered_extent **cached, 303 u64 *file_offset, u64 io_size, int uptodate) 304 { 305 struct btrfs_ordered_inode_tree *tree; 306 struct rb_node *node; 307 struct btrfs_ordered_extent *entry = NULL; 308 int ret; 309 unsigned long flags; 310 u64 dec_end; 311 u64 dec_start; 312 u64 to_dec; 313 314 tree = &BTRFS_I(inode)->ordered_tree; 315 spin_lock_irqsave(&tree->lock, flags); 316 node = tree_search(tree, *file_offset); 317 if (!node) { 318 ret = 1; 319 goto out; 320 } 321 322 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 323 if (!offset_in_entry(entry, *file_offset)) { 324 ret = 1; 325 goto out; 326 } 327 328 dec_start = max(*file_offset, entry->file_offset); 329 dec_end = min(*file_offset + io_size, entry->file_offset + 330 entry->len); 331 *file_offset = dec_end; 332 if (dec_start > dec_end) { 333 btrfs_crit(BTRFS_I(inode)->root->fs_info, 334 "bad ordering dec_start %llu end %llu", dec_start, dec_end); 335 } 336 to_dec = dec_end - dec_start; 337 if (to_dec > entry->bytes_left) { 338 btrfs_crit(BTRFS_I(inode)->root->fs_info, 339 "bad ordered accounting left %llu size %llu", 340 entry->bytes_left, to_dec); 341 } 342 entry->bytes_left -= to_dec; 343 if (!uptodate) 344 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 345 346 if (entry->bytes_left == 0) { 347 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 348 /* 349 * Implicit memory barrier after test_and_set_bit 350 */ 351 if (waitqueue_active(&entry->wait)) 352 wake_up(&entry->wait); 353 } else { 354 ret = 1; 355 } 356 out: 357 if (!ret && cached && entry) { 358 *cached = entry; 359 atomic_inc(&entry->refs); 360 } 361 spin_unlock_irqrestore(&tree->lock, flags); 362 return ret == 0; 363 } 364 365 /* 366 * this is used to account for finished IO across a given range 367 * of the file. The IO should not span ordered extents. If 368 * a given ordered_extent is completely done, 1 is returned, otherwise 369 * 0. 370 * 371 * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used 372 * to make sure this function only returns 1 once for a given ordered extent. 373 */ 374 int btrfs_dec_test_ordered_pending(struct inode *inode, 375 struct btrfs_ordered_extent **cached, 376 u64 file_offset, u64 io_size, int uptodate) 377 { 378 struct btrfs_ordered_inode_tree *tree; 379 struct rb_node *node; 380 struct btrfs_ordered_extent *entry = NULL; 381 unsigned long flags; 382 int ret; 383 384 tree = &BTRFS_I(inode)->ordered_tree; 385 spin_lock_irqsave(&tree->lock, flags); 386 if (cached && *cached) { 387 entry = *cached; 388 goto have_entry; 389 } 390 391 node = tree_search(tree, file_offset); 392 if (!node) { 393 ret = 1; 394 goto out; 395 } 396 397 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 398 have_entry: 399 if (!offset_in_entry(entry, file_offset)) { 400 ret = 1; 401 goto out; 402 } 403 404 if (io_size > entry->bytes_left) { 405 btrfs_crit(BTRFS_I(inode)->root->fs_info, 406 "bad ordered accounting left %llu size %llu", 407 entry->bytes_left, io_size); 408 } 409 entry->bytes_left -= io_size; 410 if (!uptodate) 411 set_bit(BTRFS_ORDERED_IOERR, &entry->flags); 412 413 if (entry->bytes_left == 0) { 414 ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags); 415 /* 416 * Implicit memory barrier after test_and_set_bit 417 */ 418 if (waitqueue_active(&entry->wait)) 419 wake_up(&entry->wait); 420 } else { 421 ret = 1; 422 } 423 out: 424 if (!ret && cached && entry) { 425 *cached = entry; 426 atomic_inc(&entry->refs); 427 } 428 spin_unlock_irqrestore(&tree->lock, flags); 429 return ret == 0; 430 } 431 432 /* Needs to either be called under a log transaction or the log_mutex */ 433 void btrfs_get_logged_extents(struct inode *inode, 434 struct list_head *logged_list, 435 const loff_t start, 436 const loff_t end) 437 { 438 struct btrfs_ordered_inode_tree *tree; 439 struct btrfs_ordered_extent *ordered; 440 struct rb_node *n; 441 struct rb_node *prev; 442 443 tree = &BTRFS_I(inode)->ordered_tree; 444 spin_lock_irq(&tree->lock); 445 n = __tree_search(&tree->tree, end, &prev); 446 if (!n) 447 n = prev; 448 for (; n; n = rb_prev(n)) { 449 ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node); 450 if (ordered->file_offset > end) 451 continue; 452 if (entry_end(ordered) <= start) 453 break; 454 if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags)) 455 continue; 456 list_add(&ordered->log_list, logged_list); 457 atomic_inc(&ordered->refs); 458 } 459 spin_unlock_irq(&tree->lock); 460 } 461 462 void btrfs_put_logged_extents(struct list_head *logged_list) 463 { 464 struct btrfs_ordered_extent *ordered; 465 466 while (!list_empty(logged_list)) { 467 ordered = list_first_entry(logged_list, 468 struct btrfs_ordered_extent, 469 log_list); 470 list_del_init(&ordered->log_list); 471 btrfs_put_ordered_extent(ordered); 472 } 473 } 474 475 void btrfs_submit_logged_extents(struct list_head *logged_list, 476 struct btrfs_root *log) 477 { 478 int index = log->log_transid % 2; 479 480 spin_lock_irq(&log->log_extents_lock[index]); 481 list_splice_tail(logged_list, &log->logged_list[index]); 482 spin_unlock_irq(&log->log_extents_lock[index]); 483 } 484 485 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans, 486 struct btrfs_root *log, u64 transid) 487 { 488 struct btrfs_ordered_extent *ordered; 489 int index = transid % 2; 490 491 spin_lock_irq(&log->log_extents_lock[index]); 492 while (!list_empty(&log->logged_list[index])) { 493 ordered = list_first_entry(&log->logged_list[index], 494 struct btrfs_ordered_extent, 495 log_list); 496 list_del_init(&ordered->log_list); 497 spin_unlock_irq(&log->log_extents_lock[index]); 498 499 if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) && 500 !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) { 501 struct inode *inode = ordered->inode; 502 u64 start = ordered->file_offset; 503 u64 end = ordered->file_offset + ordered->len - 1; 504 505 WARN_ON(!inode); 506 filemap_fdatawrite_range(inode->i_mapping, start, end); 507 } 508 wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE, 509 &ordered->flags)); 510 511 /* 512 * If our ordered extent completed it means it updated the 513 * fs/subvol and csum trees already, so no need to make the 514 * current transaction's commit wait for it, as we end up 515 * holding memory unnecessarily and delaying the inode's iput 516 * until the transaction commit (we schedule an iput for the 517 * inode when the ordered extent's refcount drops to 0), which 518 * prevents it from being evictable until the transaction 519 * commits. 520 */ 521 if (test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags)) 522 btrfs_put_ordered_extent(ordered); 523 else 524 list_add_tail(&ordered->trans_list, &trans->ordered); 525 526 spin_lock_irq(&log->log_extents_lock[index]); 527 } 528 spin_unlock_irq(&log->log_extents_lock[index]); 529 } 530 531 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid) 532 { 533 struct btrfs_ordered_extent *ordered; 534 int index = transid % 2; 535 536 spin_lock_irq(&log->log_extents_lock[index]); 537 while (!list_empty(&log->logged_list[index])) { 538 ordered = list_first_entry(&log->logged_list[index], 539 struct btrfs_ordered_extent, 540 log_list); 541 list_del_init(&ordered->log_list); 542 spin_unlock_irq(&log->log_extents_lock[index]); 543 btrfs_put_ordered_extent(ordered); 544 spin_lock_irq(&log->log_extents_lock[index]); 545 } 546 spin_unlock_irq(&log->log_extents_lock[index]); 547 } 548 549 /* 550 * used to drop a reference on an ordered extent. This will free 551 * the extent if the last reference is dropped 552 */ 553 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry) 554 { 555 struct list_head *cur; 556 struct btrfs_ordered_sum *sum; 557 558 trace_btrfs_ordered_extent_put(entry->inode, entry); 559 560 if (atomic_dec_and_test(&entry->refs)) { 561 ASSERT(list_empty(&entry->log_list)); 562 ASSERT(list_empty(&entry->trans_list)); 563 ASSERT(list_empty(&entry->root_extent_list)); 564 ASSERT(RB_EMPTY_NODE(&entry->rb_node)); 565 if (entry->inode) 566 btrfs_add_delayed_iput(entry->inode); 567 while (!list_empty(&entry->list)) { 568 cur = entry->list.next; 569 sum = list_entry(cur, struct btrfs_ordered_sum, list); 570 list_del(&sum->list); 571 kfree(sum); 572 } 573 kmem_cache_free(btrfs_ordered_extent_cache, entry); 574 } 575 } 576 577 /* 578 * remove an ordered extent from the tree. No references are dropped 579 * and waiters are woken up. 580 */ 581 void btrfs_remove_ordered_extent(struct inode *inode, 582 struct btrfs_ordered_extent *entry) 583 { 584 struct btrfs_ordered_inode_tree *tree; 585 struct btrfs_root *root = BTRFS_I(inode)->root; 586 struct rb_node *node; 587 588 tree = &BTRFS_I(inode)->ordered_tree; 589 spin_lock_irq(&tree->lock); 590 node = &entry->rb_node; 591 rb_erase(node, &tree->tree); 592 RB_CLEAR_NODE(node); 593 if (tree->last == node) 594 tree->last = NULL; 595 set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags); 596 spin_unlock_irq(&tree->lock); 597 598 spin_lock(&root->ordered_extent_lock); 599 list_del_init(&entry->root_extent_list); 600 root->nr_ordered_extents--; 601 602 trace_btrfs_ordered_extent_remove(inode, entry); 603 604 if (!root->nr_ordered_extents) { 605 spin_lock(&root->fs_info->ordered_root_lock); 606 BUG_ON(list_empty(&root->ordered_root)); 607 list_del_init(&root->ordered_root); 608 spin_unlock(&root->fs_info->ordered_root_lock); 609 } 610 spin_unlock(&root->ordered_extent_lock); 611 wake_up(&entry->wait); 612 } 613 614 static void btrfs_run_ordered_extent_work(struct btrfs_work *work) 615 { 616 struct btrfs_ordered_extent *ordered; 617 618 ordered = container_of(work, struct btrfs_ordered_extent, flush_work); 619 btrfs_start_ordered_extent(ordered->inode, ordered, 1); 620 complete(&ordered->completion); 621 } 622 623 /* 624 * wait for all the ordered extents in a root. This is done when balancing 625 * space between drives. 626 */ 627 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr) 628 { 629 struct list_head splice, works; 630 struct btrfs_ordered_extent *ordered, *next; 631 int count = 0; 632 633 INIT_LIST_HEAD(&splice); 634 INIT_LIST_HEAD(&works); 635 636 mutex_lock(&root->ordered_extent_mutex); 637 spin_lock(&root->ordered_extent_lock); 638 list_splice_init(&root->ordered_extents, &splice); 639 while (!list_empty(&splice) && nr) { 640 ordered = list_first_entry(&splice, struct btrfs_ordered_extent, 641 root_extent_list); 642 list_move_tail(&ordered->root_extent_list, 643 &root->ordered_extents); 644 atomic_inc(&ordered->refs); 645 spin_unlock(&root->ordered_extent_lock); 646 647 btrfs_init_work(&ordered->flush_work, 648 btrfs_flush_delalloc_helper, 649 btrfs_run_ordered_extent_work, NULL, NULL); 650 list_add_tail(&ordered->work_list, &works); 651 btrfs_queue_work(root->fs_info->flush_workers, 652 &ordered->flush_work); 653 654 cond_resched(); 655 spin_lock(&root->ordered_extent_lock); 656 if (nr != -1) 657 nr--; 658 count++; 659 } 660 list_splice_tail(&splice, &root->ordered_extents); 661 spin_unlock(&root->ordered_extent_lock); 662 663 list_for_each_entry_safe(ordered, next, &works, work_list) { 664 list_del_init(&ordered->work_list); 665 wait_for_completion(&ordered->completion); 666 btrfs_put_ordered_extent(ordered); 667 cond_resched(); 668 } 669 mutex_unlock(&root->ordered_extent_mutex); 670 671 return count; 672 } 673 674 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr) 675 { 676 struct btrfs_root *root; 677 struct list_head splice; 678 int done; 679 680 INIT_LIST_HEAD(&splice); 681 682 mutex_lock(&fs_info->ordered_operations_mutex); 683 spin_lock(&fs_info->ordered_root_lock); 684 list_splice_init(&fs_info->ordered_roots, &splice); 685 while (!list_empty(&splice) && nr) { 686 root = list_first_entry(&splice, struct btrfs_root, 687 ordered_root); 688 root = btrfs_grab_fs_root(root); 689 BUG_ON(!root); 690 list_move_tail(&root->ordered_root, 691 &fs_info->ordered_roots); 692 spin_unlock(&fs_info->ordered_root_lock); 693 694 done = btrfs_wait_ordered_extents(root, nr); 695 btrfs_put_fs_root(root); 696 697 spin_lock(&fs_info->ordered_root_lock); 698 if (nr != -1) { 699 nr -= done; 700 WARN_ON(nr < 0); 701 } 702 } 703 list_splice_tail(&splice, &fs_info->ordered_roots); 704 spin_unlock(&fs_info->ordered_root_lock); 705 mutex_unlock(&fs_info->ordered_operations_mutex); 706 } 707 708 /* 709 * Used to start IO or wait for a given ordered extent to finish. 710 * 711 * If wait is one, this effectively waits on page writeback for all the pages 712 * in the extent, and it waits on the io completion code to insert 713 * metadata into the btree corresponding to the extent 714 */ 715 void btrfs_start_ordered_extent(struct inode *inode, 716 struct btrfs_ordered_extent *entry, 717 int wait) 718 { 719 u64 start = entry->file_offset; 720 u64 end = start + entry->len - 1; 721 722 trace_btrfs_ordered_extent_start(inode, entry); 723 724 /* 725 * pages in the range can be dirty, clean or writeback. We 726 * start IO on any dirty ones so the wait doesn't stall waiting 727 * for the flusher thread to find them 728 */ 729 if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags)) 730 filemap_fdatawrite_range(inode->i_mapping, start, end); 731 if (wait) { 732 wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE, 733 &entry->flags)); 734 } 735 } 736 737 /* 738 * Used to wait on ordered extents across a large range of bytes. 739 */ 740 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len) 741 { 742 int ret = 0; 743 int ret_wb = 0; 744 u64 end; 745 u64 orig_end; 746 struct btrfs_ordered_extent *ordered; 747 748 if (start + len < start) { 749 orig_end = INT_LIMIT(loff_t); 750 } else { 751 orig_end = start + len - 1; 752 if (orig_end > INT_LIMIT(loff_t)) 753 orig_end = INT_LIMIT(loff_t); 754 } 755 756 /* start IO across the range first to instantiate any delalloc 757 * extents 758 */ 759 ret = btrfs_fdatawrite_range(inode, start, orig_end); 760 if (ret) 761 return ret; 762 763 /* 764 * If we have a writeback error don't return immediately. Wait first 765 * for any ordered extents that haven't completed yet. This is to make 766 * sure no one can dirty the same page ranges and call writepages() 767 * before the ordered extents complete - to avoid failures (-EEXIST) 768 * when adding the new ordered extents to the ordered tree. 769 */ 770 ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end); 771 772 end = orig_end; 773 while (1) { 774 ordered = btrfs_lookup_first_ordered_extent(inode, end); 775 if (!ordered) 776 break; 777 if (ordered->file_offset > orig_end) { 778 btrfs_put_ordered_extent(ordered); 779 break; 780 } 781 if (ordered->file_offset + ordered->len <= start) { 782 btrfs_put_ordered_extent(ordered); 783 break; 784 } 785 btrfs_start_ordered_extent(inode, ordered, 1); 786 end = ordered->file_offset; 787 if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags)) 788 ret = -EIO; 789 btrfs_put_ordered_extent(ordered); 790 if (ret || end == 0 || end == start) 791 break; 792 end--; 793 } 794 return ret_wb ? ret_wb : ret; 795 } 796 797 /* 798 * find an ordered extent corresponding to file_offset. return NULL if 799 * nothing is found, otherwise take a reference on the extent and return it 800 */ 801 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode, 802 u64 file_offset) 803 { 804 struct btrfs_ordered_inode_tree *tree; 805 struct rb_node *node; 806 struct btrfs_ordered_extent *entry = NULL; 807 808 tree = &BTRFS_I(inode)->ordered_tree; 809 spin_lock_irq(&tree->lock); 810 node = tree_search(tree, file_offset); 811 if (!node) 812 goto out; 813 814 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 815 if (!offset_in_entry(entry, file_offset)) 816 entry = NULL; 817 if (entry) 818 atomic_inc(&entry->refs); 819 out: 820 spin_unlock_irq(&tree->lock); 821 return entry; 822 } 823 824 /* Since the DIO code tries to lock a wide area we need to look for any ordered 825 * extents that exist in the range, rather than just the start of the range. 826 */ 827 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode, 828 u64 file_offset, 829 u64 len) 830 { 831 struct btrfs_ordered_inode_tree *tree; 832 struct rb_node *node; 833 struct btrfs_ordered_extent *entry = NULL; 834 835 tree = &BTRFS_I(inode)->ordered_tree; 836 spin_lock_irq(&tree->lock); 837 node = tree_search(tree, file_offset); 838 if (!node) { 839 node = tree_search(tree, file_offset + len); 840 if (!node) 841 goto out; 842 } 843 844 while (1) { 845 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 846 if (range_overlaps(entry, file_offset, len)) 847 break; 848 849 if (entry->file_offset >= file_offset + len) { 850 entry = NULL; 851 break; 852 } 853 entry = NULL; 854 node = rb_next(node); 855 if (!node) 856 break; 857 } 858 out: 859 if (entry) 860 atomic_inc(&entry->refs); 861 spin_unlock_irq(&tree->lock); 862 return entry; 863 } 864 865 bool btrfs_have_ordered_extents_in_range(struct inode *inode, 866 u64 file_offset, 867 u64 len) 868 { 869 struct btrfs_ordered_extent *oe; 870 871 oe = btrfs_lookup_ordered_range(inode, file_offset, len); 872 if (oe) { 873 btrfs_put_ordered_extent(oe); 874 return true; 875 } 876 return false; 877 } 878 879 /* 880 * lookup and return any extent before 'file_offset'. NULL is returned 881 * if none is found 882 */ 883 struct btrfs_ordered_extent * 884 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset) 885 { 886 struct btrfs_ordered_inode_tree *tree; 887 struct rb_node *node; 888 struct btrfs_ordered_extent *entry = NULL; 889 890 tree = &BTRFS_I(inode)->ordered_tree; 891 spin_lock_irq(&tree->lock); 892 node = tree_search(tree, file_offset); 893 if (!node) 894 goto out; 895 896 entry = rb_entry(node, struct btrfs_ordered_extent, rb_node); 897 atomic_inc(&entry->refs); 898 out: 899 spin_unlock_irq(&tree->lock); 900 return entry; 901 } 902 903 /* 904 * After an extent is done, call this to conditionally update the on disk 905 * i_size. i_size is updated to cover any fully written part of the file. 906 */ 907 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset, 908 struct btrfs_ordered_extent *ordered) 909 { 910 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 911 u64 disk_i_size; 912 u64 new_i_size; 913 u64 i_size = i_size_read(inode); 914 struct rb_node *node; 915 struct rb_node *prev = NULL; 916 struct btrfs_ordered_extent *test; 917 int ret = 1; 918 919 spin_lock_irq(&tree->lock); 920 if (ordered) { 921 offset = entry_end(ordered); 922 if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags)) 923 offset = min(offset, 924 ordered->file_offset + 925 ordered->truncated_len); 926 } else { 927 offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize); 928 } 929 disk_i_size = BTRFS_I(inode)->disk_i_size; 930 931 /* truncate file */ 932 if (disk_i_size > i_size) { 933 BTRFS_I(inode)->disk_i_size = i_size; 934 ret = 0; 935 goto out; 936 } 937 938 /* 939 * if the disk i_size is already at the inode->i_size, or 940 * this ordered extent is inside the disk i_size, we're done 941 */ 942 if (disk_i_size == i_size) 943 goto out; 944 945 /* 946 * We still need to update disk_i_size if outstanding_isize is greater 947 * than disk_i_size. 948 */ 949 if (offset <= disk_i_size && 950 (!ordered || ordered->outstanding_isize <= disk_i_size)) 951 goto out; 952 953 /* 954 * walk backward from this ordered extent to disk_i_size. 955 * if we find an ordered extent then we can't update disk i_size 956 * yet 957 */ 958 if (ordered) { 959 node = rb_prev(&ordered->rb_node); 960 } else { 961 prev = tree_search(tree, offset); 962 /* 963 * we insert file extents without involving ordered struct, 964 * so there should be no ordered struct cover this offset 965 */ 966 if (prev) { 967 test = rb_entry(prev, struct btrfs_ordered_extent, 968 rb_node); 969 BUG_ON(offset_in_entry(test, offset)); 970 } 971 node = prev; 972 } 973 for (; node; node = rb_prev(node)) { 974 test = rb_entry(node, struct btrfs_ordered_extent, rb_node); 975 976 /* We treat this entry as if it doesnt exist */ 977 if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags)) 978 continue; 979 if (test->file_offset + test->len <= disk_i_size) 980 break; 981 if (test->file_offset >= i_size) 982 break; 983 if (entry_end(test) > disk_i_size) { 984 /* 985 * we don't update disk_i_size now, so record this 986 * undealt i_size. Or we will not know the real 987 * i_size. 988 */ 989 if (test->outstanding_isize < offset) 990 test->outstanding_isize = offset; 991 if (ordered && 992 ordered->outstanding_isize > 993 test->outstanding_isize) 994 test->outstanding_isize = 995 ordered->outstanding_isize; 996 goto out; 997 } 998 } 999 new_i_size = min_t(u64, offset, i_size); 1000 1001 /* 1002 * Some ordered extents may completed before the current one, and 1003 * we hold the real i_size in ->outstanding_isize. 1004 */ 1005 if (ordered && ordered->outstanding_isize > new_i_size) 1006 new_i_size = min_t(u64, ordered->outstanding_isize, i_size); 1007 BTRFS_I(inode)->disk_i_size = new_i_size; 1008 ret = 0; 1009 out: 1010 /* 1011 * We need to do this because we can't remove ordered extents until 1012 * after the i_disk_size has been updated and then the inode has been 1013 * updated to reflect the change, so we need to tell anybody who finds 1014 * this ordered extent that we've already done all the real work, we 1015 * just haven't completed all the other work. 1016 */ 1017 if (ordered) 1018 set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags); 1019 spin_unlock_irq(&tree->lock); 1020 return ret; 1021 } 1022 1023 /* 1024 * search the ordered extents for one corresponding to 'offset' and 1025 * try to find a checksum. This is used because we allow pages to 1026 * be reclaimed before their checksum is actually put into the btree 1027 */ 1028 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr, 1029 u32 *sum, int len) 1030 { 1031 struct btrfs_ordered_sum *ordered_sum; 1032 struct btrfs_ordered_extent *ordered; 1033 struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree; 1034 unsigned long num_sectors; 1035 unsigned long i; 1036 u32 sectorsize = BTRFS_I(inode)->root->sectorsize; 1037 int index = 0; 1038 1039 ordered = btrfs_lookup_ordered_extent(inode, offset); 1040 if (!ordered) 1041 return 0; 1042 1043 spin_lock_irq(&tree->lock); 1044 list_for_each_entry_reverse(ordered_sum, &ordered->list, list) { 1045 if (disk_bytenr >= ordered_sum->bytenr && 1046 disk_bytenr < ordered_sum->bytenr + ordered_sum->len) { 1047 i = (disk_bytenr - ordered_sum->bytenr) >> 1048 inode->i_sb->s_blocksize_bits; 1049 num_sectors = ordered_sum->len >> 1050 inode->i_sb->s_blocksize_bits; 1051 num_sectors = min_t(int, len - index, num_sectors - i); 1052 memcpy(sum + index, ordered_sum->sums + i, 1053 num_sectors); 1054 1055 index += (int)num_sectors; 1056 if (index == len) 1057 goto out; 1058 disk_bytenr += num_sectors * sectorsize; 1059 } 1060 } 1061 out: 1062 spin_unlock_irq(&tree->lock); 1063 btrfs_put_ordered_extent(ordered); 1064 return index; 1065 } 1066 1067 int __init ordered_data_init(void) 1068 { 1069 btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent", 1070 sizeof(struct btrfs_ordered_extent), 0, 1071 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, 1072 NULL); 1073 if (!btrfs_ordered_extent_cache) 1074 return -ENOMEM; 1075 1076 return 0; 1077 } 1078 1079 void ordered_data_exit(void) 1080 { 1081 if (btrfs_ordered_extent_cache) 1082 kmem_cache_destroy(btrfs_ordered_extent_cache); 1083 } 1084