xref: /openbmc/linux/fs/btrfs/ordered-data.c (revision 6db4a7335dd701a0e20275440ee057d3db2a7ae3)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/slab.h>
20 #include <linux/blkdev.h>
21 #include <linux/writeback.h>
22 #include <linux/pagevec.h>
23 #include "ctree.h"
24 #include "transaction.h"
25 #include "btrfs_inode.h"
26 #include "extent_io.h"
27 #include "disk-io.h"
28 
29 static struct kmem_cache *btrfs_ordered_extent_cache;
30 
31 static u64 entry_end(struct btrfs_ordered_extent *entry)
32 {
33 	if (entry->file_offset + entry->len < entry->file_offset)
34 		return (u64)-1;
35 	return entry->file_offset + entry->len;
36 }
37 
38 /* returns NULL if the insertion worked, or it returns the node it did find
39  * in the tree
40  */
41 static struct rb_node *tree_insert(struct rb_root *root, u64 file_offset,
42 				   struct rb_node *node)
43 {
44 	struct rb_node **p = &root->rb_node;
45 	struct rb_node *parent = NULL;
46 	struct btrfs_ordered_extent *entry;
47 
48 	while (*p) {
49 		parent = *p;
50 		entry = rb_entry(parent, struct btrfs_ordered_extent, rb_node);
51 
52 		if (file_offset < entry->file_offset)
53 			p = &(*p)->rb_left;
54 		else if (file_offset >= entry_end(entry))
55 			p = &(*p)->rb_right;
56 		else
57 			return parent;
58 	}
59 
60 	rb_link_node(node, parent, p);
61 	rb_insert_color(node, root);
62 	return NULL;
63 }
64 
65 static void ordered_data_tree_panic(struct inode *inode, int errno,
66 					       u64 offset)
67 {
68 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
69 	btrfs_panic(fs_info, errno, "Inconsistency in ordered tree at offset "
70 		    "%llu", offset);
71 }
72 
73 /*
74  * look for a given offset in the tree, and if it can't be found return the
75  * first lesser offset
76  */
77 static struct rb_node *__tree_search(struct rb_root *root, u64 file_offset,
78 				     struct rb_node **prev_ret)
79 {
80 	struct rb_node *n = root->rb_node;
81 	struct rb_node *prev = NULL;
82 	struct rb_node *test;
83 	struct btrfs_ordered_extent *entry;
84 	struct btrfs_ordered_extent *prev_entry = NULL;
85 
86 	while (n) {
87 		entry = rb_entry(n, struct btrfs_ordered_extent, rb_node);
88 		prev = n;
89 		prev_entry = entry;
90 
91 		if (file_offset < entry->file_offset)
92 			n = n->rb_left;
93 		else if (file_offset >= entry_end(entry))
94 			n = n->rb_right;
95 		else
96 			return n;
97 	}
98 	if (!prev_ret)
99 		return NULL;
100 
101 	while (prev && file_offset >= entry_end(prev_entry)) {
102 		test = rb_next(prev);
103 		if (!test)
104 			break;
105 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
106 				      rb_node);
107 		if (file_offset < entry_end(prev_entry))
108 			break;
109 
110 		prev = test;
111 	}
112 	if (prev)
113 		prev_entry = rb_entry(prev, struct btrfs_ordered_extent,
114 				      rb_node);
115 	while (prev && file_offset < entry_end(prev_entry)) {
116 		test = rb_prev(prev);
117 		if (!test)
118 			break;
119 		prev_entry = rb_entry(test, struct btrfs_ordered_extent,
120 				      rb_node);
121 		prev = test;
122 	}
123 	*prev_ret = prev;
124 	return NULL;
125 }
126 
127 /*
128  * helper to check if a given offset is inside a given entry
129  */
130 static int offset_in_entry(struct btrfs_ordered_extent *entry, u64 file_offset)
131 {
132 	if (file_offset < entry->file_offset ||
133 	    entry->file_offset + entry->len <= file_offset)
134 		return 0;
135 	return 1;
136 }
137 
138 static int range_overlaps(struct btrfs_ordered_extent *entry, u64 file_offset,
139 			  u64 len)
140 {
141 	if (file_offset + len <= entry->file_offset ||
142 	    entry->file_offset + entry->len <= file_offset)
143 		return 0;
144 	return 1;
145 }
146 
147 /*
148  * look find the first ordered struct that has this offset, otherwise
149  * the first one less than this offset
150  */
151 static inline struct rb_node *tree_search(struct btrfs_ordered_inode_tree *tree,
152 					  u64 file_offset)
153 {
154 	struct rb_root *root = &tree->tree;
155 	struct rb_node *prev = NULL;
156 	struct rb_node *ret;
157 	struct btrfs_ordered_extent *entry;
158 
159 	if (tree->last) {
160 		entry = rb_entry(tree->last, struct btrfs_ordered_extent,
161 				 rb_node);
162 		if (offset_in_entry(entry, file_offset))
163 			return tree->last;
164 	}
165 	ret = __tree_search(root, file_offset, &prev);
166 	if (!ret)
167 		ret = prev;
168 	if (ret)
169 		tree->last = ret;
170 	return ret;
171 }
172 
173 /* allocate and add a new ordered_extent into the per-inode tree.
174  * file_offset is the logical offset in the file
175  *
176  * start is the disk block number of an extent already reserved in the
177  * extent allocation tree
178  *
179  * len is the length of the extent
180  *
181  * The tree is given a single reference on the ordered extent that was
182  * inserted.
183  */
184 static int __btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
185 				      u64 start, u64 len, u64 disk_len,
186 				      int type, int dio, int compress_type)
187 {
188 	struct btrfs_root *root = BTRFS_I(inode)->root;
189 	struct btrfs_ordered_inode_tree *tree;
190 	struct rb_node *node;
191 	struct btrfs_ordered_extent *entry;
192 
193 	tree = &BTRFS_I(inode)->ordered_tree;
194 	entry = kmem_cache_zalloc(btrfs_ordered_extent_cache, GFP_NOFS);
195 	if (!entry)
196 		return -ENOMEM;
197 
198 	entry->file_offset = file_offset;
199 	entry->start = start;
200 	entry->len = len;
201 	entry->disk_len = disk_len;
202 	entry->bytes_left = len;
203 	entry->inode = igrab(inode);
204 	entry->compress_type = compress_type;
205 	entry->truncated_len = (u64)-1;
206 	if (type != BTRFS_ORDERED_IO_DONE && type != BTRFS_ORDERED_COMPLETE)
207 		set_bit(type, &entry->flags);
208 
209 	if (dio)
210 		set_bit(BTRFS_ORDERED_DIRECT, &entry->flags);
211 
212 	/* one ref for the tree */
213 	atomic_set(&entry->refs, 1);
214 	init_waitqueue_head(&entry->wait);
215 	INIT_LIST_HEAD(&entry->list);
216 	INIT_LIST_HEAD(&entry->root_extent_list);
217 	INIT_LIST_HEAD(&entry->work_list);
218 	init_completion(&entry->completion);
219 	INIT_LIST_HEAD(&entry->log_list);
220 	INIT_LIST_HEAD(&entry->trans_list);
221 
222 	trace_btrfs_ordered_extent_add(inode, entry);
223 
224 	spin_lock_irq(&tree->lock);
225 	node = tree_insert(&tree->tree, file_offset,
226 			   &entry->rb_node);
227 	if (node)
228 		ordered_data_tree_panic(inode, -EEXIST, file_offset);
229 	spin_unlock_irq(&tree->lock);
230 
231 	spin_lock(&root->ordered_extent_lock);
232 	list_add_tail(&entry->root_extent_list,
233 		      &root->ordered_extents);
234 	root->nr_ordered_extents++;
235 	if (root->nr_ordered_extents == 1) {
236 		spin_lock(&root->fs_info->ordered_root_lock);
237 		BUG_ON(!list_empty(&root->ordered_root));
238 		list_add_tail(&root->ordered_root,
239 			      &root->fs_info->ordered_roots);
240 		spin_unlock(&root->fs_info->ordered_root_lock);
241 	}
242 	spin_unlock(&root->ordered_extent_lock);
243 
244 	return 0;
245 }
246 
247 int btrfs_add_ordered_extent(struct inode *inode, u64 file_offset,
248 			     u64 start, u64 len, u64 disk_len, int type)
249 {
250 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
251 					  disk_len, type, 0,
252 					  BTRFS_COMPRESS_NONE);
253 }
254 
255 int btrfs_add_ordered_extent_dio(struct inode *inode, u64 file_offset,
256 				 u64 start, u64 len, u64 disk_len, int type)
257 {
258 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
259 					  disk_len, type, 1,
260 					  BTRFS_COMPRESS_NONE);
261 }
262 
263 int btrfs_add_ordered_extent_compress(struct inode *inode, u64 file_offset,
264 				      u64 start, u64 len, u64 disk_len,
265 				      int type, int compress_type)
266 {
267 	return __btrfs_add_ordered_extent(inode, file_offset, start, len,
268 					  disk_len, type, 0,
269 					  compress_type);
270 }
271 
272 /*
273  * Add a struct btrfs_ordered_sum into the list of checksums to be inserted
274  * when an ordered extent is finished.  If the list covers more than one
275  * ordered extent, it is split across multiples.
276  */
277 void btrfs_add_ordered_sum(struct inode *inode,
278 			   struct btrfs_ordered_extent *entry,
279 			   struct btrfs_ordered_sum *sum)
280 {
281 	struct btrfs_ordered_inode_tree *tree;
282 
283 	tree = &BTRFS_I(inode)->ordered_tree;
284 	spin_lock_irq(&tree->lock);
285 	list_add_tail(&sum->list, &entry->list);
286 	spin_unlock_irq(&tree->lock);
287 }
288 
289 /*
290  * this is used to account for finished IO across a given range
291  * of the file.  The IO may span ordered extents.  If
292  * a given ordered_extent is completely done, 1 is returned, otherwise
293  * 0.
294  *
295  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
296  * to make sure this function only returns 1 once for a given ordered extent.
297  *
298  * file_offset is updated to one byte past the range that is recorded as
299  * complete.  This allows you to walk forward in the file.
300  */
301 int btrfs_dec_test_first_ordered_pending(struct inode *inode,
302 				   struct btrfs_ordered_extent **cached,
303 				   u64 *file_offset, u64 io_size, int uptodate)
304 {
305 	struct btrfs_ordered_inode_tree *tree;
306 	struct rb_node *node;
307 	struct btrfs_ordered_extent *entry = NULL;
308 	int ret;
309 	unsigned long flags;
310 	u64 dec_end;
311 	u64 dec_start;
312 	u64 to_dec;
313 
314 	tree = &BTRFS_I(inode)->ordered_tree;
315 	spin_lock_irqsave(&tree->lock, flags);
316 	node = tree_search(tree, *file_offset);
317 	if (!node) {
318 		ret = 1;
319 		goto out;
320 	}
321 
322 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
323 	if (!offset_in_entry(entry, *file_offset)) {
324 		ret = 1;
325 		goto out;
326 	}
327 
328 	dec_start = max(*file_offset, entry->file_offset);
329 	dec_end = min(*file_offset + io_size, entry->file_offset +
330 		      entry->len);
331 	*file_offset = dec_end;
332 	if (dec_start > dec_end) {
333 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
334 			"bad ordering dec_start %llu end %llu", dec_start, dec_end);
335 	}
336 	to_dec = dec_end - dec_start;
337 	if (to_dec > entry->bytes_left) {
338 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
339 			"bad ordered accounting left %llu size %llu",
340 			entry->bytes_left, to_dec);
341 	}
342 	entry->bytes_left -= to_dec;
343 	if (!uptodate)
344 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
345 
346 	if (entry->bytes_left == 0) {
347 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
348 		/*
349 		 * Implicit memory barrier after test_and_set_bit
350 		 */
351 		if (waitqueue_active(&entry->wait))
352 			wake_up(&entry->wait);
353 	} else {
354 		ret = 1;
355 	}
356 out:
357 	if (!ret && cached && entry) {
358 		*cached = entry;
359 		atomic_inc(&entry->refs);
360 	}
361 	spin_unlock_irqrestore(&tree->lock, flags);
362 	return ret == 0;
363 }
364 
365 /*
366  * this is used to account for finished IO across a given range
367  * of the file.  The IO should not span ordered extents.  If
368  * a given ordered_extent is completely done, 1 is returned, otherwise
369  * 0.
370  *
371  * test_and_set_bit on a flag in the struct btrfs_ordered_extent is used
372  * to make sure this function only returns 1 once for a given ordered extent.
373  */
374 int btrfs_dec_test_ordered_pending(struct inode *inode,
375 				   struct btrfs_ordered_extent **cached,
376 				   u64 file_offset, u64 io_size, int uptodate)
377 {
378 	struct btrfs_ordered_inode_tree *tree;
379 	struct rb_node *node;
380 	struct btrfs_ordered_extent *entry = NULL;
381 	unsigned long flags;
382 	int ret;
383 
384 	tree = &BTRFS_I(inode)->ordered_tree;
385 	spin_lock_irqsave(&tree->lock, flags);
386 	if (cached && *cached) {
387 		entry = *cached;
388 		goto have_entry;
389 	}
390 
391 	node = tree_search(tree, file_offset);
392 	if (!node) {
393 		ret = 1;
394 		goto out;
395 	}
396 
397 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
398 have_entry:
399 	if (!offset_in_entry(entry, file_offset)) {
400 		ret = 1;
401 		goto out;
402 	}
403 
404 	if (io_size > entry->bytes_left) {
405 		btrfs_crit(BTRFS_I(inode)->root->fs_info,
406 			   "bad ordered accounting left %llu size %llu",
407 		       entry->bytes_left, io_size);
408 	}
409 	entry->bytes_left -= io_size;
410 	if (!uptodate)
411 		set_bit(BTRFS_ORDERED_IOERR, &entry->flags);
412 
413 	if (entry->bytes_left == 0) {
414 		ret = test_and_set_bit(BTRFS_ORDERED_IO_DONE, &entry->flags);
415 		/*
416 		 * Implicit memory barrier after test_and_set_bit
417 		 */
418 		if (waitqueue_active(&entry->wait))
419 			wake_up(&entry->wait);
420 	} else {
421 		ret = 1;
422 	}
423 out:
424 	if (!ret && cached && entry) {
425 		*cached = entry;
426 		atomic_inc(&entry->refs);
427 	}
428 	spin_unlock_irqrestore(&tree->lock, flags);
429 	return ret == 0;
430 }
431 
432 /* Needs to either be called under a log transaction or the log_mutex */
433 void btrfs_get_logged_extents(struct inode *inode,
434 			      struct list_head *logged_list,
435 			      const loff_t start,
436 			      const loff_t end)
437 {
438 	struct btrfs_ordered_inode_tree *tree;
439 	struct btrfs_ordered_extent *ordered;
440 	struct rb_node *n;
441 	struct rb_node *prev;
442 
443 	tree = &BTRFS_I(inode)->ordered_tree;
444 	spin_lock_irq(&tree->lock);
445 	n = __tree_search(&tree->tree, end, &prev);
446 	if (!n)
447 		n = prev;
448 	for (; n; n = rb_prev(n)) {
449 		ordered = rb_entry(n, struct btrfs_ordered_extent, rb_node);
450 		if (ordered->file_offset > end)
451 			continue;
452 		if (entry_end(ordered) <= start)
453 			break;
454 		if (test_and_set_bit(BTRFS_ORDERED_LOGGED, &ordered->flags))
455 			continue;
456 		list_add(&ordered->log_list, logged_list);
457 		atomic_inc(&ordered->refs);
458 	}
459 	spin_unlock_irq(&tree->lock);
460 }
461 
462 void btrfs_put_logged_extents(struct list_head *logged_list)
463 {
464 	struct btrfs_ordered_extent *ordered;
465 
466 	while (!list_empty(logged_list)) {
467 		ordered = list_first_entry(logged_list,
468 					   struct btrfs_ordered_extent,
469 					   log_list);
470 		list_del_init(&ordered->log_list);
471 		btrfs_put_ordered_extent(ordered);
472 	}
473 }
474 
475 void btrfs_submit_logged_extents(struct list_head *logged_list,
476 				 struct btrfs_root *log)
477 {
478 	int index = log->log_transid % 2;
479 
480 	spin_lock_irq(&log->log_extents_lock[index]);
481 	list_splice_tail(logged_list, &log->logged_list[index]);
482 	spin_unlock_irq(&log->log_extents_lock[index]);
483 }
484 
485 void btrfs_wait_logged_extents(struct btrfs_trans_handle *trans,
486 			       struct btrfs_root *log, u64 transid)
487 {
488 	struct btrfs_ordered_extent *ordered;
489 	int index = transid % 2;
490 
491 	spin_lock_irq(&log->log_extents_lock[index]);
492 	while (!list_empty(&log->logged_list[index])) {
493 		ordered = list_first_entry(&log->logged_list[index],
494 					   struct btrfs_ordered_extent,
495 					   log_list);
496 		list_del_init(&ordered->log_list);
497 		spin_unlock_irq(&log->log_extents_lock[index]);
498 
499 		if (!test_bit(BTRFS_ORDERED_IO_DONE, &ordered->flags) &&
500 		    !test_bit(BTRFS_ORDERED_DIRECT, &ordered->flags)) {
501 			struct inode *inode = ordered->inode;
502 			u64 start = ordered->file_offset;
503 			u64 end = ordered->file_offset + ordered->len - 1;
504 
505 			WARN_ON(!inode);
506 			filemap_fdatawrite_range(inode->i_mapping, start, end);
507 		}
508 		wait_event(ordered->wait, test_bit(BTRFS_ORDERED_IO_DONE,
509 						   &ordered->flags));
510 
511 		/*
512 		 * If our ordered extent completed it means it updated the
513 		 * fs/subvol and csum trees already, so no need to make the
514 		 * current transaction's commit wait for it, as we end up
515 		 * holding memory unnecessarily and delaying the inode's iput
516 		 * until the transaction commit (we schedule an iput for the
517 		 * inode when the ordered extent's refcount drops to 0), which
518 		 * prevents it from being evictable until the transaction
519 		 * commits.
520 		 */
521 		if (test_bit(BTRFS_ORDERED_COMPLETE, &ordered->flags))
522 			btrfs_put_ordered_extent(ordered);
523 		else
524 			list_add_tail(&ordered->trans_list, &trans->ordered);
525 
526 		spin_lock_irq(&log->log_extents_lock[index]);
527 	}
528 	spin_unlock_irq(&log->log_extents_lock[index]);
529 }
530 
531 void btrfs_free_logged_extents(struct btrfs_root *log, u64 transid)
532 {
533 	struct btrfs_ordered_extent *ordered;
534 	int index = transid % 2;
535 
536 	spin_lock_irq(&log->log_extents_lock[index]);
537 	while (!list_empty(&log->logged_list[index])) {
538 		ordered = list_first_entry(&log->logged_list[index],
539 					   struct btrfs_ordered_extent,
540 					   log_list);
541 		list_del_init(&ordered->log_list);
542 		spin_unlock_irq(&log->log_extents_lock[index]);
543 		btrfs_put_ordered_extent(ordered);
544 		spin_lock_irq(&log->log_extents_lock[index]);
545 	}
546 	spin_unlock_irq(&log->log_extents_lock[index]);
547 }
548 
549 /*
550  * used to drop a reference on an ordered extent.  This will free
551  * the extent if the last reference is dropped
552  */
553 void btrfs_put_ordered_extent(struct btrfs_ordered_extent *entry)
554 {
555 	struct list_head *cur;
556 	struct btrfs_ordered_sum *sum;
557 
558 	trace_btrfs_ordered_extent_put(entry->inode, entry);
559 
560 	if (atomic_dec_and_test(&entry->refs)) {
561 		ASSERT(list_empty(&entry->log_list));
562 		ASSERT(list_empty(&entry->trans_list));
563 		ASSERT(list_empty(&entry->root_extent_list));
564 		ASSERT(RB_EMPTY_NODE(&entry->rb_node));
565 		if (entry->inode)
566 			btrfs_add_delayed_iput(entry->inode);
567 		while (!list_empty(&entry->list)) {
568 			cur = entry->list.next;
569 			sum = list_entry(cur, struct btrfs_ordered_sum, list);
570 			list_del(&sum->list);
571 			kfree(sum);
572 		}
573 		kmem_cache_free(btrfs_ordered_extent_cache, entry);
574 	}
575 }
576 
577 /*
578  * remove an ordered extent from the tree.  No references are dropped
579  * and waiters are woken up.
580  */
581 void btrfs_remove_ordered_extent(struct inode *inode,
582 				 struct btrfs_ordered_extent *entry)
583 {
584 	struct btrfs_ordered_inode_tree *tree;
585 	struct btrfs_root *root = BTRFS_I(inode)->root;
586 	struct rb_node *node;
587 
588 	tree = &BTRFS_I(inode)->ordered_tree;
589 	spin_lock_irq(&tree->lock);
590 	node = &entry->rb_node;
591 	rb_erase(node, &tree->tree);
592 	RB_CLEAR_NODE(node);
593 	if (tree->last == node)
594 		tree->last = NULL;
595 	set_bit(BTRFS_ORDERED_COMPLETE, &entry->flags);
596 	spin_unlock_irq(&tree->lock);
597 
598 	spin_lock(&root->ordered_extent_lock);
599 	list_del_init(&entry->root_extent_list);
600 	root->nr_ordered_extents--;
601 
602 	trace_btrfs_ordered_extent_remove(inode, entry);
603 
604 	if (!root->nr_ordered_extents) {
605 		spin_lock(&root->fs_info->ordered_root_lock);
606 		BUG_ON(list_empty(&root->ordered_root));
607 		list_del_init(&root->ordered_root);
608 		spin_unlock(&root->fs_info->ordered_root_lock);
609 	}
610 	spin_unlock(&root->ordered_extent_lock);
611 	wake_up(&entry->wait);
612 }
613 
614 static void btrfs_run_ordered_extent_work(struct btrfs_work *work)
615 {
616 	struct btrfs_ordered_extent *ordered;
617 
618 	ordered = container_of(work, struct btrfs_ordered_extent, flush_work);
619 	btrfs_start_ordered_extent(ordered->inode, ordered, 1);
620 	complete(&ordered->completion);
621 }
622 
623 /*
624  * wait for all the ordered extents in a root.  This is done when balancing
625  * space between drives.
626  */
627 int btrfs_wait_ordered_extents(struct btrfs_root *root, int nr)
628 {
629 	struct list_head splice, works;
630 	struct btrfs_ordered_extent *ordered, *next;
631 	int count = 0;
632 
633 	INIT_LIST_HEAD(&splice);
634 	INIT_LIST_HEAD(&works);
635 
636 	mutex_lock(&root->ordered_extent_mutex);
637 	spin_lock(&root->ordered_extent_lock);
638 	list_splice_init(&root->ordered_extents, &splice);
639 	while (!list_empty(&splice) && nr) {
640 		ordered = list_first_entry(&splice, struct btrfs_ordered_extent,
641 					   root_extent_list);
642 		list_move_tail(&ordered->root_extent_list,
643 			       &root->ordered_extents);
644 		atomic_inc(&ordered->refs);
645 		spin_unlock(&root->ordered_extent_lock);
646 
647 		btrfs_init_work(&ordered->flush_work,
648 				btrfs_flush_delalloc_helper,
649 				btrfs_run_ordered_extent_work, NULL, NULL);
650 		list_add_tail(&ordered->work_list, &works);
651 		btrfs_queue_work(root->fs_info->flush_workers,
652 				 &ordered->flush_work);
653 
654 		cond_resched();
655 		spin_lock(&root->ordered_extent_lock);
656 		if (nr != -1)
657 			nr--;
658 		count++;
659 	}
660 	list_splice_tail(&splice, &root->ordered_extents);
661 	spin_unlock(&root->ordered_extent_lock);
662 
663 	list_for_each_entry_safe(ordered, next, &works, work_list) {
664 		list_del_init(&ordered->work_list);
665 		wait_for_completion(&ordered->completion);
666 		btrfs_put_ordered_extent(ordered);
667 		cond_resched();
668 	}
669 	mutex_unlock(&root->ordered_extent_mutex);
670 
671 	return count;
672 }
673 
674 void btrfs_wait_ordered_roots(struct btrfs_fs_info *fs_info, int nr)
675 {
676 	struct btrfs_root *root;
677 	struct list_head splice;
678 	int done;
679 
680 	INIT_LIST_HEAD(&splice);
681 
682 	mutex_lock(&fs_info->ordered_operations_mutex);
683 	spin_lock(&fs_info->ordered_root_lock);
684 	list_splice_init(&fs_info->ordered_roots, &splice);
685 	while (!list_empty(&splice) && nr) {
686 		root = list_first_entry(&splice, struct btrfs_root,
687 					ordered_root);
688 		root = btrfs_grab_fs_root(root);
689 		BUG_ON(!root);
690 		list_move_tail(&root->ordered_root,
691 			       &fs_info->ordered_roots);
692 		spin_unlock(&fs_info->ordered_root_lock);
693 
694 		done = btrfs_wait_ordered_extents(root, nr);
695 		btrfs_put_fs_root(root);
696 
697 		spin_lock(&fs_info->ordered_root_lock);
698 		if (nr != -1) {
699 			nr -= done;
700 			WARN_ON(nr < 0);
701 		}
702 	}
703 	list_splice_tail(&splice, &fs_info->ordered_roots);
704 	spin_unlock(&fs_info->ordered_root_lock);
705 	mutex_unlock(&fs_info->ordered_operations_mutex);
706 }
707 
708 /*
709  * Used to start IO or wait for a given ordered extent to finish.
710  *
711  * If wait is one, this effectively waits on page writeback for all the pages
712  * in the extent, and it waits on the io completion code to insert
713  * metadata into the btree corresponding to the extent
714  */
715 void btrfs_start_ordered_extent(struct inode *inode,
716 				       struct btrfs_ordered_extent *entry,
717 				       int wait)
718 {
719 	u64 start = entry->file_offset;
720 	u64 end = start + entry->len - 1;
721 
722 	trace_btrfs_ordered_extent_start(inode, entry);
723 
724 	/*
725 	 * pages in the range can be dirty, clean or writeback.  We
726 	 * start IO on any dirty ones so the wait doesn't stall waiting
727 	 * for the flusher thread to find them
728 	 */
729 	if (!test_bit(BTRFS_ORDERED_DIRECT, &entry->flags))
730 		filemap_fdatawrite_range(inode->i_mapping, start, end);
731 	if (wait) {
732 		wait_event(entry->wait, test_bit(BTRFS_ORDERED_COMPLETE,
733 						 &entry->flags));
734 	}
735 }
736 
737 /*
738  * Used to wait on ordered extents across a large range of bytes.
739  */
740 int btrfs_wait_ordered_range(struct inode *inode, u64 start, u64 len)
741 {
742 	int ret = 0;
743 	int ret_wb = 0;
744 	u64 end;
745 	u64 orig_end;
746 	struct btrfs_ordered_extent *ordered;
747 
748 	if (start + len < start) {
749 		orig_end = INT_LIMIT(loff_t);
750 	} else {
751 		orig_end = start + len - 1;
752 		if (orig_end > INT_LIMIT(loff_t))
753 			orig_end = INT_LIMIT(loff_t);
754 	}
755 
756 	/* start IO across the range first to instantiate any delalloc
757 	 * extents
758 	 */
759 	ret = btrfs_fdatawrite_range(inode, start, orig_end);
760 	if (ret)
761 		return ret;
762 
763 	/*
764 	 * If we have a writeback error don't return immediately. Wait first
765 	 * for any ordered extents that haven't completed yet. This is to make
766 	 * sure no one can dirty the same page ranges and call writepages()
767 	 * before the ordered extents complete - to avoid failures (-EEXIST)
768 	 * when adding the new ordered extents to the ordered tree.
769 	 */
770 	ret_wb = filemap_fdatawait_range(inode->i_mapping, start, orig_end);
771 
772 	end = orig_end;
773 	while (1) {
774 		ordered = btrfs_lookup_first_ordered_extent(inode, end);
775 		if (!ordered)
776 			break;
777 		if (ordered->file_offset > orig_end) {
778 			btrfs_put_ordered_extent(ordered);
779 			break;
780 		}
781 		if (ordered->file_offset + ordered->len <= start) {
782 			btrfs_put_ordered_extent(ordered);
783 			break;
784 		}
785 		btrfs_start_ordered_extent(inode, ordered, 1);
786 		end = ordered->file_offset;
787 		if (test_bit(BTRFS_ORDERED_IOERR, &ordered->flags))
788 			ret = -EIO;
789 		btrfs_put_ordered_extent(ordered);
790 		if (ret || end == 0 || end == start)
791 			break;
792 		end--;
793 	}
794 	return ret_wb ? ret_wb : ret;
795 }
796 
797 /*
798  * find an ordered extent corresponding to file_offset.  return NULL if
799  * nothing is found, otherwise take a reference on the extent and return it
800  */
801 struct btrfs_ordered_extent *btrfs_lookup_ordered_extent(struct inode *inode,
802 							 u64 file_offset)
803 {
804 	struct btrfs_ordered_inode_tree *tree;
805 	struct rb_node *node;
806 	struct btrfs_ordered_extent *entry = NULL;
807 
808 	tree = &BTRFS_I(inode)->ordered_tree;
809 	spin_lock_irq(&tree->lock);
810 	node = tree_search(tree, file_offset);
811 	if (!node)
812 		goto out;
813 
814 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
815 	if (!offset_in_entry(entry, file_offset))
816 		entry = NULL;
817 	if (entry)
818 		atomic_inc(&entry->refs);
819 out:
820 	spin_unlock_irq(&tree->lock);
821 	return entry;
822 }
823 
824 /* Since the DIO code tries to lock a wide area we need to look for any ordered
825  * extents that exist in the range, rather than just the start of the range.
826  */
827 struct btrfs_ordered_extent *btrfs_lookup_ordered_range(struct inode *inode,
828 							u64 file_offset,
829 							u64 len)
830 {
831 	struct btrfs_ordered_inode_tree *tree;
832 	struct rb_node *node;
833 	struct btrfs_ordered_extent *entry = NULL;
834 
835 	tree = &BTRFS_I(inode)->ordered_tree;
836 	spin_lock_irq(&tree->lock);
837 	node = tree_search(tree, file_offset);
838 	if (!node) {
839 		node = tree_search(tree, file_offset + len);
840 		if (!node)
841 			goto out;
842 	}
843 
844 	while (1) {
845 		entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
846 		if (range_overlaps(entry, file_offset, len))
847 			break;
848 
849 		if (entry->file_offset >= file_offset + len) {
850 			entry = NULL;
851 			break;
852 		}
853 		entry = NULL;
854 		node = rb_next(node);
855 		if (!node)
856 			break;
857 	}
858 out:
859 	if (entry)
860 		atomic_inc(&entry->refs);
861 	spin_unlock_irq(&tree->lock);
862 	return entry;
863 }
864 
865 bool btrfs_have_ordered_extents_in_range(struct inode *inode,
866 					 u64 file_offset,
867 					 u64 len)
868 {
869 	struct btrfs_ordered_extent *oe;
870 
871 	oe = btrfs_lookup_ordered_range(inode, file_offset, len);
872 	if (oe) {
873 		btrfs_put_ordered_extent(oe);
874 		return true;
875 	}
876 	return false;
877 }
878 
879 /*
880  * lookup and return any extent before 'file_offset'.  NULL is returned
881  * if none is found
882  */
883 struct btrfs_ordered_extent *
884 btrfs_lookup_first_ordered_extent(struct inode *inode, u64 file_offset)
885 {
886 	struct btrfs_ordered_inode_tree *tree;
887 	struct rb_node *node;
888 	struct btrfs_ordered_extent *entry = NULL;
889 
890 	tree = &BTRFS_I(inode)->ordered_tree;
891 	spin_lock_irq(&tree->lock);
892 	node = tree_search(tree, file_offset);
893 	if (!node)
894 		goto out;
895 
896 	entry = rb_entry(node, struct btrfs_ordered_extent, rb_node);
897 	atomic_inc(&entry->refs);
898 out:
899 	spin_unlock_irq(&tree->lock);
900 	return entry;
901 }
902 
903 /*
904  * After an extent is done, call this to conditionally update the on disk
905  * i_size.  i_size is updated to cover any fully written part of the file.
906  */
907 int btrfs_ordered_update_i_size(struct inode *inode, u64 offset,
908 				struct btrfs_ordered_extent *ordered)
909 {
910 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
911 	u64 disk_i_size;
912 	u64 new_i_size;
913 	u64 i_size = i_size_read(inode);
914 	struct rb_node *node;
915 	struct rb_node *prev = NULL;
916 	struct btrfs_ordered_extent *test;
917 	int ret = 1;
918 
919 	spin_lock_irq(&tree->lock);
920 	if (ordered) {
921 		offset = entry_end(ordered);
922 		if (test_bit(BTRFS_ORDERED_TRUNCATED, &ordered->flags))
923 			offset = min(offset,
924 				     ordered->file_offset +
925 				     ordered->truncated_len);
926 	} else {
927 		offset = ALIGN(offset, BTRFS_I(inode)->root->sectorsize);
928 	}
929 	disk_i_size = BTRFS_I(inode)->disk_i_size;
930 
931 	/* truncate file */
932 	if (disk_i_size > i_size) {
933 		BTRFS_I(inode)->disk_i_size = i_size;
934 		ret = 0;
935 		goto out;
936 	}
937 
938 	/*
939 	 * if the disk i_size is already at the inode->i_size, or
940 	 * this ordered extent is inside the disk i_size, we're done
941 	 */
942 	if (disk_i_size == i_size)
943 		goto out;
944 
945 	/*
946 	 * We still need to update disk_i_size if outstanding_isize is greater
947 	 * than disk_i_size.
948 	 */
949 	if (offset <= disk_i_size &&
950 	    (!ordered || ordered->outstanding_isize <= disk_i_size))
951 		goto out;
952 
953 	/*
954 	 * walk backward from this ordered extent to disk_i_size.
955 	 * if we find an ordered extent then we can't update disk i_size
956 	 * yet
957 	 */
958 	if (ordered) {
959 		node = rb_prev(&ordered->rb_node);
960 	} else {
961 		prev = tree_search(tree, offset);
962 		/*
963 		 * we insert file extents without involving ordered struct,
964 		 * so there should be no ordered struct cover this offset
965 		 */
966 		if (prev) {
967 			test = rb_entry(prev, struct btrfs_ordered_extent,
968 					rb_node);
969 			BUG_ON(offset_in_entry(test, offset));
970 		}
971 		node = prev;
972 	}
973 	for (; node; node = rb_prev(node)) {
974 		test = rb_entry(node, struct btrfs_ordered_extent, rb_node);
975 
976 		/* We treat this entry as if it doesnt exist */
977 		if (test_bit(BTRFS_ORDERED_UPDATED_ISIZE, &test->flags))
978 			continue;
979 		if (test->file_offset + test->len <= disk_i_size)
980 			break;
981 		if (test->file_offset >= i_size)
982 			break;
983 		if (entry_end(test) > disk_i_size) {
984 			/*
985 			 * we don't update disk_i_size now, so record this
986 			 * undealt i_size. Or we will not know the real
987 			 * i_size.
988 			 */
989 			if (test->outstanding_isize < offset)
990 				test->outstanding_isize = offset;
991 			if (ordered &&
992 			    ordered->outstanding_isize >
993 			    test->outstanding_isize)
994 				test->outstanding_isize =
995 						ordered->outstanding_isize;
996 			goto out;
997 		}
998 	}
999 	new_i_size = min_t(u64, offset, i_size);
1000 
1001 	/*
1002 	 * Some ordered extents may completed before the current one, and
1003 	 * we hold the real i_size in ->outstanding_isize.
1004 	 */
1005 	if (ordered && ordered->outstanding_isize > new_i_size)
1006 		new_i_size = min_t(u64, ordered->outstanding_isize, i_size);
1007 	BTRFS_I(inode)->disk_i_size = new_i_size;
1008 	ret = 0;
1009 out:
1010 	/*
1011 	 * We need to do this because we can't remove ordered extents until
1012 	 * after the i_disk_size has been updated and then the inode has been
1013 	 * updated to reflect the change, so we need to tell anybody who finds
1014 	 * this ordered extent that we've already done all the real work, we
1015 	 * just haven't completed all the other work.
1016 	 */
1017 	if (ordered)
1018 		set_bit(BTRFS_ORDERED_UPDATED_ISIZE, &ordered->flags);
1019 	spin_unlock_irq(&tree->lock);
1020 	return ret;
1021 }
1022 
1023 /*
1024  * search the ordered extents for one corresponding to 'offset' and
1025  * try to find a checksum.  This is used because we allow pages to
1026  * be reclaimed before their checksum is actually put into the btree
1027  */
1028 int btrfs_find_ordered_sum(struct inode *inode, u64 offset, u64 disk_bytenr,
1029 			   u32 *sum, int len)
1030 {
1031 	struct btrfs_ordered_sum *ordered_sum;
1032 	struct btrfs_ordered_extent *ordered;
1033 	struct btrfs_ordered_inode_tree *tree = &BTRFS_I(inode)->ordered_tree;
1034 	unsigned long num_sectors;
1035 	unsigned long i;
1036 	u32 sectorsize = BTRFS_I(inode)->root->sectorsize;
1037 	int index = 0;
1038 
1039 	ordered = btrfs_lookup_ordered_extent(inode, offset);
1040 	if (!ordered)
1041 		return 0;
1042 
1043 	spin_lock_irq(&tree->lock);
1044 	list_for_each_entry_reverse(ordered_sum, &ordered->list, list) {
1045 		if (disk_bytenr >= ordered_sum->bytenr &&
1046 		    disk_bytenr < ordered_sum->bytenr + ordered_sum->len) {
1047 			i = (disk_bytenr - ordered_sum->bytenr) >>
1048 			    inode->i_sb->s_blocksize_bits;
1049 			num_sectors = ordered_sum->len >>
1050 				      inode->i_sb->s_blocksize_bits;
1051 			num_sectors = min_t(int, len - index, num_sectors - i);
1052 			memcpy(sum + index, ordered_sum->sums + i,
1053 			       num_sectors);
1054 
1055 			index += (int)num_sectors;
1056 			if (index == len)
1057 				goto out;
1058 			disk_bytenr += num_sectors * sectorsize;
1059 		}
1060 	}
1061 out:
1062 	spin_unlock_irq(&tree->lock);
1063 	btrfs_put_ordered_extent(ordered);
1064 	return index;
1065 }
1066 
1067 int __init ordered_data_init(void)
1068 {
1069 	btrfs_ordered_extent_cache = kmem_cache_create("btrfs_ordered_extent",
1070 				     sizeof(struct btrfs_ordered_extent), 0,
1071 				     SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD,
1072 				     NULL);
1073 	if (!btrfs_ordered_extent_cache)
1074 		return -ENOMEM;
1075 
1076 	return 0;
1077 }
1078 
1079 void ordered_data_exit(void)
1080 {
1081 	if (btrfs_ordered_extent_cache)
1082 		kmem_cache_destroy(btrfs_ordered_extent_cache);
1083 }
1084