xref: /openbmc/linux/fs/btrfs/ioctl.c (revision f248679e86fead40cc78e724c7181d6bec1a2046)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include "compat.h"
45 #include "ctree.h"
46 #include "disk-io.h"
47 #include "transaction.h"
48 #include "btrfs_inode.h"
49 #include "ioctl.h"
50 #include "print-tree.h"
51 #include "volumes.h"
52 #include "locking.h"
53 #include "inode-map.h"
54 #include "backref.h"
55 
56 /* Mask out flags that are inappropriate for the given type of inode. */
57 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
58 {
59 	if (S_ISDIR(mode))
60 		return flags;
61 	else if (S_ISREG(mode))
62 		return flags & ~FS_DIRSYNC_FL;
63 	else
64 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
65 }
66 
67 /*
68  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
69  */
70 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
71 {
72 	unsigned int iflags = 0;
73 
74 	if (flags & BTRFS_INODE_SYNC)
75 		iflags |= FS_SYNC_FL;
76 	if (flags & BTRFS_INODE_IMMUTABLE)
77 		iflags |= FS_IMMUTABLE_FL;
78 	if (flags & BTRFS_INODE_APPEND)
79 		iflags |= FS_APPEND_FL;
80 	if (flags & BTRFS_INODE_NODUMP)
81 		iflags |= FS_NODUMP_FL;
82 	if (flags & BTRFS_INODE_NOATIME)
83 		iflags |= FS_NOATIME_FL;
84 	if (flags & BTRFS_INODE_DIRSYNC)
85 		iflags |= FS_DIRSYNC_FL;
86 	if (flags & BTRFS_INODE_NODATACOW)
87 		iflags |= FS_NOCOW_FL;
88 
89 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
90 		iflags |= FS_COMPR_FL;
91 	else if (flags & BTRFS_INODE_NOCOMPRESS)
92 		iflags |= FS_NOCOMP_FL;
93 
94 	return iflags;
95 }
96 
97 /*
98  * Update inode->i_flags based on the btrfs internal flags.
99  */
100 void btrfs_update_iflags(struct inode *inode)
101 {
102 	struct btrfs_inode *ip = BTRFS_I(inode);
103 
104 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
105 
106 	if (ip->flags & BTRFS_INODE_SYNC)
107 		inode->i_flags |= S_SYNC;
108 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
109 		inode->i_flags |= S_IMMUTABLE;
110 	if (ip->flags & BTRFS_INODE_APPEND)
111 		inode->i_flags |= S_APPEND;
112 	if (ip->flags & BTRFS_INODE_NOATIME)
113 		inode->i_flags |= S_NOATIME;
114 	if (ip->flags & BTRFS_INODE_DIRSYNC)
115 		inode->i_flags |= S_DIRSYNC;
116 }
117 
118 /*
119  * Inherit flags from the parent inode.
120  *
121  * Currently only the compression flags and the cow flags are inherited.
122  */
123 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
124 {
125 	unsigned int flags;
126 
127 	if (!dir)
128 		return;
129 
130 	flags = BTRFS_I(dir)->flags;
131 
132 	if (flags & BTRFS_INODE_NOCOMPRESS) {
133 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
134 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
135 	} else if (flags & BTRFS_INODE_COMPRESS) {
136 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
137 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
138 	}
139 
140 	if (flags & BTRFS_INODE_NODATACOW)
141 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
142 
143 	btrfs_update_iflags(inode);
144 }
145 
146 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
147 {
148 	struct btrfs_inode *ip = BTRFS_I(file->f_path.dentry->d_inode);
149 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
150 
151 	if (copy_to_user(arg, &flags, sizeof(flags)))
152 		return -EFAULT;
153 	return 0;
154 }
155 
156 static int check_flags(unsigned int flags)
157 {
158 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
159 		      FS_NOATIME_FL | FS_NODUMP_FL | \
160 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
161 		      FS_NOCOMP_FL | FS_COMPR_FL |
162 		      FS_NOCOW_FL))
163 		return -EOPNOTSUPP;
164 
165 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
166 		return -EINVAL;
167 
168 	return 0;
169 }
170 
171 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
172 {
173 	struct inode *inode = file->f_path.dentry->d_inode;
174 	struct btrfs_inode *ip = BTRFS_I(inode);
175 	struct btrfs_root *root = ip->root;
176 	struct btrfs_trans_handle *trans;
177 	unsigned int flags, oldflags;
178 	int ret;
179 	u64 ip_oldflags;
180 	unsigned int i_oldflags;
181 
182 	if (btrfs_root_readonly(root))
183 		return -EROFS;
184 
185 	if (copy_from_user(&flags, arg, sizeof(flags)))
186 		return -EFAULT;
187 
188 	ret = check_flags(flags);
189 	if (ret)
190 		return ret;
191 
192 	if (!inode_owner_or_capable(inode))
193 		return -EACCES;
194 
195 	mutex_lock(&inode->i_mutex);
196 
197 	ip_oldflags = ip->flags;
198 	i_oldflags = inode->i_flags;
199 
200 	flags = btrfs_mask_flags(inode->i_mode, flags);
201 	oldflags = btrfs_flags_to_ioctl(ip->flags);
202 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
203 		if (!capable(CAP_LINUX_IMMUTABLE)) {
204 			ret = -EPERM;
205 			goto out_unlock;
206 		}
207 	}
208 
209 	ret = mnt_want_write(file->f_path.mnt);
210 	if (ret)
211 		goto out_unlock;
212 
213 	if (flags & FS_SYNC_FL)
214 		ip->flags |= BTRFS_INODE_SYNC;
215 	else
216 		ip->flags &= ~BTRFS_INODE_SYNC;
217 	if (flags & FS_IMMUTABLE_FL)
218 		ip->flags |= BTRFS_INODE_IMMUTABLE;
219 	else
220 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
221 	if (flags & FS_APPEND_FL)
222 		ip->flags |= BTRFS_INODE_APPEND;
223 	else
224 		ip->flags &= ~BTRFS_INODE_APPEND;
225 	if (flags & FS_NODUMP_FL)
226 		ip->flags |= BTRFS_INODE_NODUMP;
227 	else
228 		ip->flags &= ~BTRFS_INODE_NODUMP;
229 	if (flags & FS_NOATIME_FL)
230 		ip->flags |= BTRFS_INODE_NOATIME;
231 	else
232 		ip->flags &= ~BTRFS_INODE_NOATIME;
233 	if (flags & FS_DIRSYNC_FL)
234 		ip->flags |= BTRFS_INODE_DIRSYNC;
235 	else
236 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
237 	if (flags & FS_NOCOW_FL)
238 		ip->flags |= BTRFS_INODE_NODATACOW;
239 	else
240 		ip->flags &= ~BTRFS_INODE_NODATACOW;
241 
242 	/*
243 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
244 	 * flag may be changed automatically if compression code won't make
245 	 * things smaller.
246 	 */
247 	if (flags & FS_NOCOMP_FL) {
248 		ip->flags &= ~BTRFS_INODE_COMPRESS;
249 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
250 	} else if (flags & FS_COMPR_FL) {
251 		ip->flags |= BTRFS_INODE_COMPRESS;
252 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
253 	} else {
254 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
255 	}
256 
257 	trans = btrfs_start_transaction(root, 1);
258 	if (IS_ERR(trans)) {
259 		ret = PTR_ERR(trans);
260 		goto out_drop;
261 	}
262 
263 	btrfs_update_iflags(inode);
264 	inode->i_ctime = CURRENT_TIME;
265 	ret = btrfs_update_inode(trans, root, inode);
266 
267 	btrfs_end_transaction(trans, root);
268  out_drop:
269 	if (ret) {
270 		ip->flags = ip_oldflags;
271 		inode->i_flags = i_oldflags;
272 	}
273 
274 	mnt_drop_write(file->f_path.mnt);
275  out_unlock:
276 	mutex_unlock(&inode->i_mutex);
277 	return ret;
278 }
279 
280 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
281 {
282 	struct inode *inode = file->f_path.dentry->d_inode;
283 
284 	return put_user(inode->i_generation, arg);
285 }
286 
287 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
288 {
289 	struct btrfs_root *root = fdentry(file)->d_sb->s_fs_info;
290 	struct btrfs_fs_info *fs_info = root->fs_info;
291 	struct btrfs_device *device;
292 	struct request_queue *q;
293 	struct fstrim_range range;
294 	u64 minlen = ULLONG_MAX;
295 	u64 num_devices = 0;
296 	u64 total_bytes = btrfs_super_total_bytes(root->fs_info->super_copy);
297 	int ret;
298 
299 	if (!capable(CAP_SYS_ADMIN))
300 		return -EPERM;
301 
302 	rcu_read_lock();
303 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
304 				dev_list) {
305 		if (!device->bdev)
306 			continue;
307 		q = bdev_get_queue(device->bdev);
308 		if (blk_queue_discard(q)) {
309 			num_devices++;
310 			minlen = min((u64)q->limits.discard_granularity,
311 				     minlen);
312 		}
313 	}
314 	rcu_read_unlock();
315 
316 	if (!num_devices)
317 		return -EOPNOTSUPP;
318 	if (copy_from_user(&range, arg, sizeof(range)))
319 		return -EFAULT;
320 	if (range.start > total_bytes)
321 		return -EINVAL;
322 
323 	range.len = min(range.len, total_bytes - range.start);
324 	range.minlen = max(range.minlen, minlen);
325 	ret = btrfs_trim_fs(root, &range);
326 	if (ret < 0)
327 		return ret;
328 
329 	if (copy_to_user(arg, &range, sizeof(range)))
330 		return -EFAULT;
331 
332 	return 0;
333 }
334 
335 static noinline int create_subvol(struct btrfs_root *root,
336 				  struct dentry *dentry,
337 				  char *name, int namelen,
338 				  u64 *async_transid)
339 {
340 	struct btrfs_trans_handle *trans;
341 	struct btrfs_key key;
342 	struct btrfs_root_item root_item;
343 	struct btrfs_inode_item *inode_item;
344 	struct extent_buffer *leaf;
345 	struct btrfs_root *new_root;
346 	struct dentry *parent = dentry->d_parent;
347 	struct inode *dir;
348 	int ret;
349 	int err;
350 	u64 objectid;
351 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
352 	u64 index = 0;
353 
354 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
355 	if (ret)
356 		return ret;
357 
358 	dir = parent->d_inode;
359 
360 	/*
361 	 * 1 - inode item
362 	 * 2 - refs
363 	 * 1 - root item
364 	 * 2 - dir items
365 	 */
366 	trans = btrfs_start_transaction(root, 6);
367 	if (IS_ERR(trans))
368 		return PTR_ERR(trans);
369 
370 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
371 				      0, objectid, NULL, 0, 0, 0, 0);
372 	if (IS_ERR(leaf)) {
373 		ret = PTR_ERR(leaf);
374 		goto fail;
375 	}
376 
377 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
378 	btrfs_set_header_bytenr(leaf, leaf->start);
379 	btrfs_set_header_generation(leaf, trans->transid);
380 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
381 	btrfs_set_header_owner(leaf, objectid);
382 
383 	write_extent_buffer(leaf, root->fs_info->fsid,
384 			    (unsigned long)btrfs_header_fsid(leaf),
385 			    BTRFS_FSID_SIZE);
386 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
387 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
388 			    BTRFS_UUID_SIZE);
389 	btrfs_mark_buffer_dirty(leaf);
390 
391 	inode_item = &root_item.inode;
392 	memset(inode_item, 0, sizeof(*inode_item));
393 	inode_item->generation = cpu_to_le64(1);
394 	inode_item->size = cpu_to_le64(3);
395 	inode_item->nlink = cpu_to_le32(1);
396 	inode_item->nbytes = cpu_to_le64(root->leafsize);
397 	inode_item->mode = cpu_to_le32(S_IFDIR | 0755);
398 
399 	root_item.flags = 0;
400 	root_item.byte_limit = 0;
401 	inode_item->flags = cpu_to_le64(BTRFS_INODE_ROOT_ITEM_INIT);
402 
403 	btrfs_set_root_bytenr(&root_item, leaf->start);
404 	btrfs_set_root_generation(&root_item, trans->transid);
405 	btrfs_set_root_level(&root_item, 0);
406 	btrfs_set_root_refs(&root_item, 1);
407 	btrfs_set_root_used(&root_item, leaf->len);
408 	btrfs_set_root_last_snapshot(&root_item, 0);
409 
410 	memset(&root_item.drop_progress, 0, sizeof(root_item.drop_progress));
411 	root_item.drop_level = 0;
412 
413 	btrfs_tree_unlock(leaf);
414 	free_extent_buffer(leaf);
415 	leaf = NULL;
416 
417 	btrfs_set_root_dirid(&root_item, new_dirid);
418 
419 	key.objectid = objectid;
420 	key.offset = 0;
421 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
422 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
423 				&root_item);
424 	if (ret)
425 		goto fail;
426 
427 	key.offset = (u64)-1;
428 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
429 	BUG_ON(IS_ERR(new_root));
430 
431 	btrfs_record_root_in_trans(trans, new_root);
432 
433 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
434 	/*
435 	 * insert the directory item
436 	 */
437 	ret = btrfs_set_inode_index(dir, &index);
438 	BUG_ON(ret);
439 
440 	ret = btrfs_insert_dir_item(trans, root,
441 				    name, namelen, dir, &key,
442 				    BTRFS_FT_DIR, index);
443 	if (ret)
444 		goto fail;
445 
446 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
447 	ret = btrfs_update_inode(trans, root, dir);
448 	BUG_ON(ret);
449 
450 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
451 				 objectid, root->root_key.objectid,
452 				 btrfs_ino(dir), index, name, namelen);
453 
454 	BUG_ON(ret);
455 
456 	d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
457 fail:
458 	if (async_transid) {
459 		*async_transid = trans->transid;
460 		err = btrfs_commit_transaction_async(trans, root, 1);
461 	} else {
462 		err = btrfs_commit_transaction(trans, root);
463 	}
464 	if (err && !ret)
465 		ret = err;
466 	return ret;
467 }
468 
469 static int create_snapshot(struct btrfs_root *root, struct dentry *dentry,
470 			   char *name, int namelen, u64 *async_transid,
471 			   bool readonly)
472 {
473 	struct inode *inode;
474 	struct btrfs_pending_snapshot *pending_snapshot;
475 	struct btrfs_trans_handle *trans;
476 	int ret;
477 
478 	if (!root->ref_cows)
479 		return -EINVAL;
480 
481 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
482 	if (!pending_snapshot)
483 		return -ENOMEM;
484 
485 	btrfs_init_block_rsv(&pending_snapshot->block_rsv);
486 	pending_snapshot->dentry = dentry;
487 	pending_snapshot->root = root;
488 	pending_snapshot->readonly = readonly;
489 
490 	trans = btrfs_start_transaction(root->fs_info->extent_root, 5);
491 	if (IS_ERR(trans)) {
492 		ret = PTR_ERR(trans);
493 		goto fail;
494 	}
495 
496 	ret = btrfs_snap_reserve_metadata(trans, pending_snapshot);
497 	BUG_ON(ret);
498 
499 	spin_lock(&root->fs_info->trans_lock);
500 	list_add(&pending_snapshot->list,
501 		 &trans->transaction->pending_snapshots);
502 	spin_unlock(&root->fs_info->trans_lock);
503 	if (async_transid) {
504 		*async_transid = trans->transid;
505 		ret = btrfs_commit_transaction_async(trans,
506 				     root->fs_info->extent_root, 1);
507 	} else {
508 		ret = btrfs_commit_transaction(trans,
509 					       root->fs_info->extent_root);
510 	}
511 	BUG_ON(ret);
512 
513 	ret = pending_snapshot->error;
514 	if (ret)
515 		goto fail;
516 
517 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
518 	if (ret)
519 		goto fail;
520 
521 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
522 	if (IS_ERR(inode)) {
523 		ret = PTR_ERR(inode);
524 		goto fail;
525 	}
526 	BUG_ON(!inode);
527 	d_instantiate(dentry, inode);
528 	ret = 0;
529 fail:
530 	kfree(pending_snapshot);
531 	return ret;
532 }
533 
534 /*  copy of check_sticky in fs/namei.c()
535 * It's inline, so penalty for filesystems that don't use sticky bit is
536 * minimal.
537 */
538 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
539 {
540 	uid_t fsuid = current_fsuid();
541 
542 	if (!(dir->i_mode & S_ISVTX))
543 		return 0;
544 	if (inode->i_uid == fsuid)
545 		return 0;
546 	if (dir->i_uid == fsuid)
547 		return 0;
548 	return !capable(CAP_FOWNER);
549 }
550 
551 /*  copy of may_delete in fs/namei.c()
552  *	Check whether we can remove a link victim from directory dir, check
553  *  whether the type of victim is right.
554  *  1. We can't do it if dir is read-only (done in permission())
555  *  2. We should have write and exec permissions on dir
556  *  3. We can't remove anything from append-only dir
557  *  4. We can't do anything with immutable dir (done in permission())
558  *  5. If the sticky bit on dir is set we should either
559  *	a. be owner of dir, or
560  *	b. be owner of victim, or
561  *	c. have CAP_FOWNER capability
562  *  6. If the victim is append-only or immutable we can't do antyhing with
563  *     links pointing to it.
564  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
565  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
566  *  9. We can't remove a root or mountpoint.
567  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
568  *     nfs_async_unlink().
569  */
570 
571 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
572 {
573 	int error;
574 
575 	if (!victim->d_inode)
576 		return -ENOENT;
577 
578 	BUG_ON(victim->d_parent->d_inode != dir);
579 	audit_inode_child(victim, dir);
580 
581 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
582 	if (error)
583 		return error;
584 	if (IS_APPEND(dir))
585 		return -EPERM;
586 	if (btrfs_check_sticky(dir, victim->d_inode)||
587 		IS_APPEND(victim->d_inode)||
588 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
589 		return -EPERM;
590 	if (isdir) {
591 		if (!S_ISDIR(victim->d_inode->i_mode))
592 			return -ENOTDIR;
593 		if (IS_ROOT(victim))
594 			return -EBUSY;
595 	} else if (S_ISDIR(victim->d_inode->i_mode))
596 		return -EISDIR;
597 	if (IS_DEADDIR(dir))
598 		return -ENOENT;
599 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
600 		return -EBUSY;
601 	return 0;
602 }
603 
604 /* copy of may_create in fs/namei.c() */
605 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
606 {
607 	if (child->d_inode)
608 		return -EEXIST;
609 	if (IS_DEADDIR(dir))
610 		return -ENOENT;
611 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
612 }
613 
614 /*
615  * Create a new subvolume below @parent.  This is largely modeled after
616  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
617  * inside this filesystem so it's quite a bit simpler.
618  */
619 static noinline int btrfs_mksubvol(struct path *parent,
620 				   char *name, int namelen,
621 				   struct btrfs_root *snap_src,
622 				   u64 *async_transid, bool readonly)
623 {
624 	struct inode *dir  = parent->dentry->d_inode;
625 	struct dentry *dentry;
626 	int error;
627 
628 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
629 
630 	dentry = lookup_one_len(name, parent->dentry, namelen);
631 	error = PTR_ERR(dentry);
632 	if (IS_ERR(dentry))
633 		goto out_unlock;
634 
635 	error = -EEXIST;
636 	if (dentry->d_inode)
637 		goto out_dput;
638 
639 	error = mnt_want_write(parent->mnt);
640 	if (error)
641 		goto out_dput;
642 
643 	error = btrfs_may_create(dir, dentry);
644 	if (error)
645 		goto out_drop_write;
646 
647 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
648 
649 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
650 		goto out_up_read;
651 
652 	if (snap_src) {
653 		error = create_snapshot(snap_src, dentry,
654 					name, namelen, async_transid, readonly);
655 	} else {
656 		error = create_subvol(BTRFS_I(dir)->root, dentry,
657 				      name, namelen, async_transid);
658 	}
659 	if (!error)
660 		fsnotify_mkdir(dir, dentry);
661 out_up_read:
662 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
663 out_drop_write:
664 	mnt_drop_write(parent->mnt);
665 out_dput:
666 	dput(dentry);
667 out_unlock:
668 	mutex_unlock(&dir->i_mutex);
669 	return error;
670 }
671 
672 /*
673  * When we're defragging a range, we don't want to kick it off again
674  * if it is really just waiting for delalloc to send it down.
675  * If we find a nice big extent or delalloc range for the bytes in the
676  * file you want to defrag, we return 0 to let you know to skip this
677  * part of the file
678  */
679 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
680 {
681 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
682 	struct extent_map *em = NULL;
683 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
684 	u64 end;
685 
686 	read_lock(&em_tree->lock);
687 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
688 	read_unlock(&em_tree->lock);
689 
690 	if (em) {
691 		end = extent_map_end(em);
692 		free_extent_map(em);
693 		if (end - offset > thresh)
694 			return 0;
695 	}
696 	/* if we already have a nice delalloc here, just stop */
697 	thresh /= 2;
698 	end = count_range_bits(io_tree, &offset, offset + thresh,
699 			       thresh, EXTENT_DELALLOC, 1);
700 	if (end >= thresh)
701 		return 0;
702 	return 1;
703 }
704 
705 /*
706  * helper function to walk through a file and find extents
707  * newer than a specific transid, and smaller than thresh.
708  *
709  * This is used by the defragging code to find new and small
710  * extents
711  */
712 static int find_new_extents(struct btrfs_root *root,
713 			    struct inode *inode, u64 newer_than,
714 			    u64 *off, int thresh)
715 {
716 	struct btrfs_path *path;
717 	struct btrfs_key min_key;
718 	struct btrfs_key max_key;
719 	struct extent_buffer *leaf;
720 	struct btrfs_file_extent_item *extent;
721 	int type;
722 	int ret;
723 	u64 ino = btrfs_ino(inode);
724 
725 	path = btrfs_alloc_path();
726 	if (!path)
727 		return -ENOMEM;
728 
729 	min_key.objectid = ino;
730 	min_key.type = BTRFS_EXTENT_DATA_KEY;
731 	min_key.offset = *off;
732 
733 	max_key.objectid = ino;
734 	max_key.type = (u8)-1;
735 	max_key.offset = (u64)-1;
736 
737 	path->keep_locks = 1;
738 
739 	while(1) {
740 		ret = btrfs_search_forward(root, &min_key, &max_key,
741 					   path, 0, newer_than);
742 		if (ret != 0)
743 			goto none;
744 		if (min_key.objectid != ino)
745 			goto none;
746 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
747 			goto none;
748 
749 		leaf = path->nodes[0];
750 		extent = btrfs_item_ptr(leaf, path->slots[0],
751 					struct btrfs_file_extent_item);
752 
753 		type = btrfs_file_extent_type(leaf, extent);
754 		if (type == BTRFS_FILE_EXTENT_REG &&
755 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
756 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
757 			*off = min_key.offset;
758 			btrfs_free_path(path);
759 			return 0;
760 		}
761 
762 		if (min_key.offset == (u64)-1)
763 			goto none;
764 
765 		min_key.offset++;
766 		btrfs_release_path(path);
767 	}
768 none:
769 	btrfs_free_path(path);
770 	return -ENOENT;
771 }
772 
773 static int should_defrag_range(struct inode *inode, u64 start, u64 len,
774 			       int thresh, u64 *last_len, u64 *skip,
775 			       u64 *defrag_end)
776 {
777 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
778 	struct extent_map *em = NULL;
779 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
780 	int ret = 1;
781 
782 	/*
783 	 * make sure that once we start defragging an extent, we keep on
784 	 * defragging it
785 	 */
786 	if (start < *defrag_end)
787 		return 1;
788 
789 	*skip = 0;
790 
791 	/*
792 	 * hopefully we have this extent in the tree already, try without
793 	 * the full extent lock
794 	 */
795 	read_lock(&em_tree->lock);
796 	em = lookup_extent_mapping(em_tree, start, len);
797 	read_unlock(&em_tree->lock);
798 
799 	if (!em) {
800 		/* get the big lock and read metadata off disk */
801 		lock_extent(io_tree, start, start + len - 1, GFP_NOFS);
802 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
803 		unlock_extent(io_tree, start, start + len - 1, GFP_NOFS);
804 
805 		if (IS_ERR(em))
806 			return 0;
807 	}
808 
809 	/* this will cover holes, and inline extents */
810 	if (em->block_start >= EXTENT_MAP_LAST_BYTE)
811 		ret = 0;
812 
813 	/*
814 	 * we hit a real extent, if it is big don't bother defragging it again
815 	 */
816 	if ((*last_len == 0 || *last_len >= thresh) && em->len >= thresh)
817 		ret = 0;
818 
819 	/*
820 	 * last_len ends up being a counter of how many bytes we've defragged.
821 	 * every time we choose not to defrag an extent, we reset *last_len
822 	 * so that the next tiny extent will force a defrag.
823 	 *
824 	 * The end result of this is that tiny extents before a single big
825 	 * extent will force at least part of that big extent to be defragged.
826 	 */
827 	if (ret) {
828 		*defrag_end = extent_map_end(em);
829 	} else {
830 		*last_len = 0;
831 		*skip = extent_map_end(em);
832 		*defrag_end = 0;
833 	}
834 
835 	free_extent_map(em);
836 	return ret;
837 }
838 
839 /*
840  * it doesn't do much good to defrag one or two pages
841  * at a time.  This pulls in a nice chunk of pages
842  * to COW and defrag.
843  *
844  * It also makes sure the delalloc code has enough
845  * dirty data to avoid making new small extents as part
846  * of the defrag
847  *
848  * It's a good idea to start RA on this range
849  * before calling this.
850  */
851 static int cluster_pages_for_defrag(struct inode *inode,
852 				    struct page **pages,
853 				    unsigned long start_index,
854 				    int num_pages)
855 {
856 	unsigned long file_end;
857 	u64 isize = i_size_read(inode);
858 	u64 page_start;
859 	u64 page_end;
860 	int ret;
861 	int i;
862 	int i_done;
863 	struct btrfs_ordered_extent *ordered;
864 	struct extent_state *cached_state = NULL;
865 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
866 
867 	if (isize == 0)
868 		return 0;
869 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
870 
871 	ret = btrfs_delalloc_reserve_space(inode,
872 					   num_pages << PAGE_CACHE_SHIFT);
873 	if (ret)
874 		return ret;
875 again:
876 	ret = 0;
877 	i_done = 0;
878 
879 	/* step one, lock all the pages */
880 	for (i = 0; i < num_pages; i++) {
881 		struct page *page;
882 		page = find_or_create_page(inode->i_mapping,
883 					    start_index + i, mask);
884 		if (!page)
885 			break;
886 
887 		if (!PageUptodate(page)) {
888 			btrfs_readpage(NULL, page);
889 			lock_page(page);
890 			if (!PageUptodate(page)) {
891 				unlock_page(page);
892 				page_cache_release(page);
893 				ret = -EIO;
894 				break;
895 			}
896 		}
897 		isize = i_size_read(inode);
898 		file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
899 		if (!isize || page->index > file_end ||
900 		    page->mapping != inode->i_mapping) {
901 			/* whoops, we blew past eof, skip this page */
902 			unlock_page(page);
903 			page_cache_release(page);
904 			break;
905 		}
906 		pages[i] = page;
907 		i_done++;
908 	}
909 	if (!i_done || ret)
910 		goto out;
911 
912 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
913 		goto out;
914 
915 	/*
916 	 * so now we have a nice long stream of locked
917 	 * and up to date pages, lets wait on them
918 	 */
919 	for (i = 0; i < i_done; i++)
920 		wait_on_page_writeback(pages[i]);
921 
922 	page_start = page_offset(pages[0]);
923 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
924 
925 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
926 			 page_start, page_end - 1, 0, &cached_state,
927 			 GFP_NOFS);
928 	ordered = btrfs_lookup_first_ordered_extent(inode, page_end - 1);
929 	if (ordered &&
930 	    ordered->file_offset + ordered->len > page_start &&
931 	    ordered->file_offset < page_end) {
932 		btrfs_put_ordered_extent(ordered);
933 		unlock_extent_cached(&BTRFS_I(inode)->io_tree,
934 				     page_start, page_end - 1,
935 				     &cached_state, GFP_NOFS);
936 		for (i = 0; i < i_done; i++) {
937 			unlock_page(pages[i]);
938 			page_cache_release(pages[i]);
939 		}
940 		btrfs_wait_ordered_range(inode, page_start,
941 					 page_end - page_start);
942 		goto again;
943 	}
944 	if (ordered)
945 		btrfs_put_ordered_extent(ordered);
946 
947 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
948 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
949 			  EXTENT_DO_ACCOUNTING, 0, 0, &cached_state,
950 			  GFP_NOFS);
951 
952 	if (i_done != num_pages) {
953 		spin_lock(&BTRFS_I(inode)->lock);
954 		BTRFS_I(inode)->outstanding_extents++;
955 		spin_unlock(&BTRFS_I(inode)->lock);
956 		btrfs_delalloc_release_space(inode,
957 				     (num_pages - i_done) << PAGE_CACHE_SHIFT);
958 	}
959 
960 
961 	btrfs_set_extent_delalloc(inode, page_start, page_end - 1,
962 				  &cached_state);
963 
964 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
965 			     page_start, page_end - 1, &cached_state,
966 			     GFP_NOFS);
967 
968 	for (i = 0; i < i_done; i++) {
969 		clear_page_dirty_for_io(pages[i]);
970 		ClearPageChecked(pages[i]);
971 		set_page_extent_mapped(pages[i]);
972 		set_page_dirty(pages[i]);
973 		unlock_page(pages[i]);
974 		page_cache_release(pages[i]);
975 	}
976 	return i_done;
977 out:
978 	for (i = 0; i < i_done; i++) {
979 		unlock_page(pages[i]);
980 		page_cache_release(pages[i]);
981 	}
982 	btrfs_delalloc_release_space(inode, num_pages << PAGE_CACHE_SHIFT);
983 	return ret;
984 
985 }
986 
987 int btrfs_defrag_file(struct inode *inode, struct file *file,
988 		      struct btrfs_ioctl_defrag_range_args *range,
989 		      u64 newer_than, unsigned long max_to_defrag)
990 {
991 	struct btrfs_root *root = BTRFS_I(inode)->root;
992 	struct btrfs_super_block *disk_super;
993 	struct file_ra_state *ra = NULL;
994 	unsigned long last_index;
995 	u64 isize = i_size_read(inode);
996 	u64 features;
997 	u64 last_len = 0;
998 	u64 skip = 0;
999 	u64 defrag_end = 0;
1000 	u64 newer_off = range->start;
1001 	unsigned long i;
1002 	unsigned long ra_index = 0;
1003 	int ret;
1004 	int defrag_count = 0;
1005 	int compress_type = BTRFS_COMPRESS_ZLIB;
1006 	int extent_thresh = range->extent_thresh;
1007 	int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1008 	int cluster = max_cluster;
1009 	u64 new_align = ~((u64)128 * 1024 - 1);
1010 	struct page **pages = NULL;
1011 
1012 	if (extent_thresh == 0)
1013 		extent_thresh = 256 * 1024;
1014 
1015 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1016 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1017 			return -EINVAL;
1018 		if (range->compress_type)
1019 			compress_type = range->compress_type;
1020 	}
1021 
1022 	if (isize == 0)
1023 		return 0;
1024 
1025 	/*
1026 	 * if we were not given a file, allocate a readahead
1027 	 * context
1028 	 */
1029 	if (!file) {
1030 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1031 		if (!ra)
1032 			return -ENOMEM;
1033 		file_ra_state_init(ra, inode->i_mapping);
1034 	} else {
1035 		ra = &file->f_ra;
1036 	}
1037 
1038 	pages = kmalloc(sizeof(struct page *) * max_cluster,
1039 			GFP_NOFS);
1040 	if (!pages) {
1041 		ret = -ENOMEM;
1042 		goto out_ra;
1043 	}
1044 
1045 	/* find the last page to defrag */
1046 	if (range->start + range->len > range->start) {
1047 		last_index = min_t(u64, isize - 1,
1048 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1049 	} else {
1050 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1051 	}
1052 
1053 	if (newer_than) {
1054 		ret = find_new_extents(root, inode, newer_than,
1055 				       &newer_off, 64 * 1024);
1056 		if (!ret) {
1057 			range->start = newer_off;
1058 			/*
1059 			 * we always align our defrag to help keep
1060 			 * the extents in the file evenly spaced
1061 			 */
1062 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1063 		} else
1064 			goto out_ra;
1065 	} else {
1066 		i = range->start >> PAGE_CACHE_SHIFT;
1067 	}
1068 	if (!max_to_defrag)
1069 		max_to_defrag = last_index;
1070 
1071 	/*
1072 	 * make writeback starts from i, so the defrag range can be
1073 	 * written sequentially.
1074 	 */
1075 	if (i < inode->i_mapping->writeback_index)
1076 		inode->i_mapping->writeback_index = i;
1077 
1078 	while (i <= last_index && defrag_count < max_to_defrag &&
1079 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1080 		PAGE_CACHE_SHIFT)) {
1081 		/*
1082 		 * make sure we stop running if someone unmounts
1083 		 * the FS
1084 		 */
1085 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1086 			break;
1087 
1088 		if (!newer_than &&
1089 		    !should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1090 					PAGE_CACHE_SIZE,
1091 					extent_thresh,
1092 					&last_len, &skip,
1093 					&defrag_end)) {
1094 			unsigned long next;
1095 			/*
1096 			 * the should_defrag function tells us how much to skip
1097 			 * bump our counter by the suggested amount
1098 			 */
1099 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1100 			i = max(i + 1, next);
1101 			continue;
1102 		}
1103 
1104 		if (!newer_than) {
1105 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1106 				   PAGE_CACHE_SHIFT) - i;
1107 			cluster = min(cluster, max_cluster);
1108 		} else {
1109 			cluster = max_cluster;
1110 		}
1111 
1112 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1113 			BTRFS_I(inode)->force_compress = compress_type;
1114 
1115 		if (i + cluster > ra_index) {
1116 			ra_index = max(i, ra_index);
1117 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1118 				       cluster);
1119 			ra_index += max_cluster;
1120 		}
1121 
1122 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1123 		if (ret < 0)
1124 			goto out_ra;
1125 
1126 		defrag_count += ret;
1127 		balance_dirty_pages_ratelimited_nr(inode->i_mapping, ret);
1128 
1129 		if (newer_than) {
1130 			if (newer_off == (u64)-1)
1131 				break;
1132 
1133 			newer_off = max(newer_off + 1,
1134 					(u64)i << PAGE_CACHE_SHIFT);
1135 
1136 			ret = find_new_extents(root, inode,
1137 					       newer_than, &newer_off,
1138 					       64 * 1024);
1139 			if (!ret) {
1140 				range->start = newer_off;
1141 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1142 			} else {
1143 				break;
1144 			}
1145 		} else {
1146 			if (ret > 0) {
1147 				i += ret;
1148 				last_len += ret << PAGE_CACHE_SHIFT;
1149 			} else {
1150 				i++;
1151 				last_len = 0;
1152 			}
1153 		}
1154 	}
1155 
1156 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1157 		filemap_flush(inode->i_mapping);
1158 
1159 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1160 		/* the filemap_flush will queue IO into the worker threads, but
1161 		 * we have to make sure the IO is actually started and that
1162 		 * ordered extents get created before we return
1163 		 */
1164 		atomic_inc(&root->fs_info->async_submit_draining);
1165 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1166 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1167 			wait_event(root->fs_info->async_submit_wait,
1168 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1169 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1170 		}
1171 		atomic_dec(&root->fs_info->async_submit_draining);
1172 
1173 		mutex_lock(&inode->i_mutex);
1174 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1175 		mutex_unlock(&inode->i_mutex);
1176 	}
1177 
1178 	disk_super = root->fs_info->super_copy;
1179 	features = btrfs_super_incompat_flags(disk_super);
1180 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1181 		features |= BTRFS_FEATURE_INCOMPAT_COMPRESS_LZO;
1182 		btrfs_set_super_incompat_flags(disk_super, features);
1183 	}
1184 
1185 	ret = defrag_count;
1186 
1187 out_ra:
1188 	if (!file)
1189 		kfree(ra);
1190 	kfree(pages);
1191 	return ret;
1192 }
1193 
1194 static noinline int btrfs_ioctl_resize(struct btrfs_root *root,
1195 					void __user *arg)
1196 {
1197 	u64 new_size;
1198 	u64 old_size;
1199 	u64 devid = 1;
1200 	struct btrfs_ioctl_vol_args *vol_args;
1201 	struct btrfs_trans_handle *trans;
1202 	struct btrfs_device *device = NULL;
1203 	char *sizestr;
1204 	char *devstr = NULL;
1205 	int ret = 0;
1206 	int mod = 0;
1207 
1208 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1209 		return -EROFS;
1210 
1211 	if (!capable(CAP_SYS_ADMIN))
1212 		return -EPERM;
1213 
1214 	mutex_lock(&root->fs_info->volume_mutex);
1215 	if (root->fs_info->balance_ctl) {
1216 		printk(KERN_INFO "btrfs: balance in progress\n");
1217 		ret = -EINVAL;
1218 		goto out;
1219 	}
1220 
1221 	vol_args = memdup_user(arg, sizeof(*vol_args));
1222 	if (IS_ERR(vol_args)) {
1223 		ret = PTR_ERR(vol_args);
1224 		goto out;
1225 	}
1226 
1227 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1228 
1229 	sizestr = vol_args->name;
1230 	devstr = strchr(sizestr, ':');
1231 	if (devstr) {
1232 		char *end;
1233 		sizestr = devstr + 1;
1234 		*devstr = '\0';
1235 		devstr = vol_args->name;
1236 		devid = simple_strtoull(devstr, &end, 10);
1237 		printk(KERN_INFO "btrfs: resizing devid %llu\n",
1238 		       (unsigned long long)devid);
1239 	}
1240 	device = btrfs_find_device(root, devid, NULL, NULL);
1241 	if (!device) {
1242 		printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1243 		       (unsigned long long)devid);
1244 		ret = -EINVAL;
1245 		goto out_free;
1246 	}
1247 	if (!strcmp(sizestr, "max"))
1248 		new_size = device->bdev->bd_inode->i_size;
1249 	else {
1250 		if (sizestr[0] == '-') {
1251 			mod = -1;
1252 			sizestr++;
1253 		} else if (sizestr[0] == '+') {
1254 			mod = 1;
1255 			sizestr++;
1256 		}
1257 		new_size = memparse(sizestr, NULL);
1258 		if (new_size == 0) {
1259 			ret = -EINVAL;
1260 			goto out_free;
1261 		}
1262 	}
1263 
1264 	old_size = device->total_bytes;
1265 
1266 	if (mod < 0) {
1267 		if (new_size > old_size) {
1268 			ret = -EINVAL;
1269 			goto out_free;
1270 		}
1271 		new_size = old_size - new_size;
1272 	} else if (mod > 0) {
1273 		new_size = old_size + new_size;
1274 	}
1275 
1276 	if (new_size < 256 * 1024 * 1024) {
1277 		ret = -EINVAL;
1278 		goto out_free;
1279 	}
1280 	if (new_size > device->bdev->bd_inode->i_size) {
1281 		ret = -EFBIG;
1282 		goto out_free;
1283 	}
1284 
1285 	do_div(new_size, root->sectorsize);
1286 	new_size *= root->sectorsize;
1287 
1288 	printk(KERN_INFO "btrfs: new size for %s is %llu\n",
1289 		device->name, (unsigned long long)new_size);
1290 
1291 	if (new_size > old_size) {
1292 		trans = btrfs_start_transaction(root, 0);
1293 		if (IS_ERR(trans)) {
1294 			ret = PTR_ERR(trans);
1295 			goto out_free;
1296 		}
1297 		ret = btrfs_grow_device(trans, device, new_size);
1298 		btrfs_commit_transaction(trans, root);
1299 	} else if (new_size < old_size) {
1300 		ret = btrfs_shrink_device(device, new_size);
1301 	}
1302 
1303 out_free:
1304 	kfree(vol_args);
1305 out:
1306 	mutex_unlock(&root->fs_info->volume_mutex);
1307 	return ret;
1308 }
1309 
1310 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1311 						    char *name,
1312 						    unsigned long fd,
1313 						    int subvol,
1314 						    u64 *transid,
1315 						    bool readonly)
1316 {
1317 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
1318 	struct file *src_file;
1319 	int namelen;
1320 	int ret = 0;
1321 
1322 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1323 		return -EROFS;
1324 
1325 	namelen = strlen(name);
1326 	if (strchr(name, '/')) {
1327 		ret = -EINVAL;
1328 		goto out;
1329 	}
1330 
1331 	if (subvol) {
1332 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1333 				     NULL, transid, readonly);
1334 	} else {
1335 		struct inode *src_inode;
1336 		src_file = fget(fd);
1337 		if (!src_file) {
1338 			ret = -EINVAL;
1339 			goto out;
1340 		}
1341 
1342 		src_inode = src_file->f_path.dentry->d_inode;
1343 		if (src_inode->i_sb != file->f_path.dentry->d_inode->i_sb) {
1344 			printk(KERN_INFO "btrfs: Snapshot src from "
1345 			       "another FS\n");
1346 			ret = -EINVAL;
1347 			fput(src_file);
1348 			goto out;
1349 		}
1350 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1351 				     BTRFS_I(src_inode)->root,
1352 				     transid, readonly);
1353 		fput(src_file);
1354 	}
1355 out:
1356 	return ret;
1357 }
1358 
1359 static noinline int btrfs_ioctl_snap_create(struct file *file,
1360 					    void __user *arg, int subvol)
1361 {
1362 	struct btrfs_ioctl_vol_args *vol_args;
1363 	int ret;
1364 
1365 	vol_args = memdup_user(arg, sizeof(*vol_args));
1366 	if (IS_ERR(vol_args))
1367 		return PTR_ERR(vol_args);
1368 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1369 
1370 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1371 					      vol_args->fd, subvol,
1372 					      NULL, false);
1373 
1374 	kfree(vol_args);
1375 	return ret;
1376 }
1377 
1378 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1379 					       void __user *arg, int subvol)
1380 {
1381 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1382 	int ret;
1383 	u64 transid = 0;
1384 	u64 *ptr = NULL;
1385 	bool readonly = false;
1386 
1387 	vol_args = memdup_user(arg, sizeof(*vol_args));
1388 	if (IS_ERR(vol_args))
1389 		return PTR_ERR(vol_args);
1390 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1391 
1392 	if (vol_args->flags &
1393 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY)) {
1394 		ret = -EOPNOTSUPP;
1395 		goto out;
1396 	}
1397 
1398 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1399 		ptr = &transid;
1400 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1401 		readonly = true;
1402 
1403 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1404 					      vol_args->fd, subvol,
1405 					      ptr, readonly);
1406 
1407 	if (ret == 0 && ptr &&
1408 	    copy_to_user(arg +
1409 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1410 				  transid), ptr, sizeof(*ptr)))
1411 		ret = -EFAULT;
1412 out:
1413 	kfree(vol_args);
1414 	return ret;
1415 }
1416 
1417 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1418 						void __user *arg)
1419 {
1420 	struct inode *inode = fdentry(file)->d_inode;
1421 	struct btrfs_root *root = BTRFS_I(inode)->root;
1422 	int ret = 0;
1423 	u64 flags = 0;
1424 
1425 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1426 		return -EINVAL;
1427 
1428 	down_read(&root->fs_info->subvol_sem);
1429 	if (btrfs_root_readonly(root))
1430 		flags |= BTRFS_SUBVOL_RDONLY;
1431 	up_read(&root->fs_info->subvol_sem);
1432 
1433 	if (copy_to_user(arg, &flags, sizeof(flags)))
1434 		ret = -EFAULT;
1435 
1436 	return ret;
1437 }
1438 
1439 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1440 					      void __user *arg)
1441 {
1442 	struct inode *inode = fdentry(file)->d_inode;
1443 	struct btrfs_root *root = BTRFS_I(inode)->root;
1444 	struct btrfs_trans_handle *trans;
1445 	u64 root_flags;
1446 	u64 flags;
1447 	int ret = 0;
1448 
1449 	if (root->fs_info->sb->s_flags & MS_RDONLY)
1450 		return -EROFS;
1451 
1452 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1453 		return -EINVAL;
1454 
1455 	if (copy_from_user(&flags, arg, sizeof(flags)))
1456 		return -EFAULT;
1457 
1458 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC)
1459 		return -EINVAL;
1460 
1461 	if (flags & ~BTRFS_SUBVOL_RDONLY)
1462 		return -EOPNOTSUPP;
1463 
1464 	if (!inode_owner_or_capable(inode))
1465 		return -EACCES;
1466 
1467 	down_write(&root->fs_info->subvol_sem);
1468 
1469 	/* nothing to do */
1470 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1471 		goto out;
1472 
1473 	root_flags = btrfs_root_flags(&root->root_item);
1474 	if (flags & BTRFS_SUBVOL_RDONLY)
1475 		btrfs_set_root_flags(&root->root_item,
1476 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1477 	else
1478 		btrfs_set_root_flags(&root->root_item,
1479 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1480 
1481 	trans = btrfs_start_transaction(root, 1);
1482 	if (IS_ERR(trans)) {
1483 		ret = PTR_ERR(trans);
1484 		goto out_reset;
1485 	}
1486 
1487 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1488 				&root->root_key, &root->root_item);
1489 
1490 	btrfs_commit_transaction(trans, root);
1491 out_reset:
1492 	if (ret)
1493 		btrfs_set_root_flags(&root->root_item, root_flags);
1494 out:
1495 	up_write(&root->fs_info->subvol_sem);
1496 	return ret;
1497 }
1498 
1499 /*
1500  * helper to check if the subvolume references other subvolumes
1501  */
1502 static noinline int may_destroy_subvol(struct btrfs_root *root)
1503 {
1504 	struct btrfs_path *path;
1505 	struct btrfs_key key;
1506 	int ret;
1507 
1508 	path = btrfs_alloc_path();
1509 	if (!path)
1510 		return -ENOMEM;
1511 
1512 	key.objectid = root->root_key.objectid;
1513 	key.type = BTRFS_ROOT_REF_KEY;
1514 	key.offset = (u64)-1;
1515 
1516 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1517 				&key, path, 0, 0);
1518 	if (ret < 0)
1519 		goto out;
1520 	BUG_ON(ret == 0);
1521 
1522 	ret = 0;
1523 	if (path->slots[0] > 0) {
1524 		path->slots[0]--;
1525 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1526 		if (key.objectid == root->root_key.objectid &&
1527 		    key.type == BTRFS_ROOT_REF_KEY)
1528 			ret = -ENOTEMPTY;
1529 	}
1530 out:
1531 	btrfs_free_path(path);
1532 	return ret;
1533 }
1534 
1535 static noinline int key_in_sk(struct btrfs_key *key,
1536 			      struct btrfs_ioctl_search_key *sk)
1537 {
1538 	struct btrfs_key test;
1539 	int ret;
1540 
1541 	test.objectid = sk->min_objectid;
1542 	test.type = sk->min_type;
1543 	test.offset = sk->min_offset;
1544 
1545 	ret = btrfs_comp_cpu_keys(key, &test);
1546 	if (ret < 0)
1547 		return 0;
1548 
1549 	test.objectid = sk->max_objectid;
1550 	test.type = sk->max_type;
1551 	test.offset = sk->max_offset;
1552 
1553 	ret = btrfs_comp_cpu_keys(key, &test);
1554 	if (ret > 0)
1555 		return 0;
1556 	return 1;
1557 }
1558 
1559 static noinline int copy_to_sk(struct btrfs_root *root,
1560 			       struct btrfs_path *path,
1561 			       struct btrfs_key *key,
1562 			       struct btrfs_ioctl_search_key *sk,
1563 			       char *buf,
1564 			       unsigned long *sk_offset,
1565 			       int *num_found)
1566 {
1567 	u64 found_transid;
1568 	struct extent_buffer *leaf;
1569 	struct btrfs_ioctl_search_header sh;
1570 	unsigned long item_off;
1571 	unsigned long item_len;
1572 	int nritems;
1573 	int i;
1574 	int slot;
1575 	int ret = 0;
1576 
1577 	leaf = path->nodes[0];
1578 	slot = path->slots[0];
1579 	nritems = btrfs_header_nritems(leaf);
1580 
1581 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1582 		i = nritems;
1583 		goto advance_key;
1584 	}
1585 	found_transid = btrfs_header_generation(leaf);
1586 
1587 	for (i = slot; i < nritems; i++) {
1588 		item_off = btrfs_item_ptr_offset(leaf, i);
1589 		item_len = btrfs_item_size_nr(leaf, i);
1590 
1591 		if (item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1592 			item_len = 0;
1593 
1594 		if (sizeof(sh) + item_len + *sk_offset >
1595 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1596 			ret = 1;
1597 			goto overflow;
1598 		}
1599 
1600 		btrfs_item_key_to_cpu(leaf, key, i);
1601 		if (!key_in_sk(key, sk))
1602 			continue;
1603 
1604 		sh.objectid = key->objectid;
1605 		sh.offset = key->offset;
1606 		sh.type = key->type;
1607 		sh.len = item_len;
1608 		sh.transid = found_transid;
1609 
1610 		/* copy search result header */
1611 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1612 		*sk_offset += sizeof(sh);
1613 
1614 		if (item_len) {
1615 			char *p = buf + *sk_offset;
1616 			/* copy the item */
1617 			read_extent_buffer(leaf, p,
1618 					   item_off, item_len);
1619 			*sk_offset += item_len;
1620 		}
1621 		(*num_found)++;
1622 
1623 		if (*num_found >= sk->nr_items)
1624 			break;
1625 	}
1626 advance_key:
1627 	ret = 0;
1628 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1629 		key->offset++;
1630 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1631 		key->offset = 0;
1632 		key->type++;
1633 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1634 		key->offset = 0;
1635 		key->type = 0;
1636 		key->objectid++;
1637 	} else
1638 		ret = 1;
1639 overflow:
1640 	return ret;
1641 }
1642 
1643 static noinline int search_ioctl(struct inode *inode,
1644 				 struct btrfs_ioctl_search_args *args)
1645 {
1646 	struct btrfs_root *root;
1647 	struct btrfs_key key;
1648 	struct btrfs_key max_key;
1649 	struct btrfs_path *path;
1650 	struct btrfs_ioctl_search_key *sk = &args->key;
1651 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1652 	int ret;
1653 	int num_found = 0;
1654 	unsigned long sk_offset = 0;
1655 
1656 	path = btrfs_alloc_path();
1657 	if (!path)
1658 		return -ENOMEM;
1659 
1660 	if (sk->tree_id == 0) {
1661 		/* search the root of the inode that was passed */
1662 		root = BTRFS_I(inode)->root;
1663 	} else {
1664 		key.objectid = sk->tree_id;
1665 		key.type = BTRFS_ROOT_ITEM_KEY;
1666 		key.offset = (u64)-1;
1667 		root = btrfs_read_fs_root_no_name(info, &key);
1668 		if (IS_ERR(root)) {
1669 			printk(KERN_ERR "could not find root %llu\n",
1670 			       sk->tree_id);
1671 			btrfs_free_path(path);
1672 			return -ENOENT;
1673 		}
1674 	}
1675 
1676 	key.objectid = sk->min_objectid;
1677 	key.type = sk->min_type;
1678 	key.offset = sk->min_offset;
1679 
1680 	max_key.objectid = sk->max_objectid;
1681 	max_key.type = sk->max_type;
1682 	max_key.offset = sk->max_offset;
1683 
1684 	path->keep_locks = 1;
1685 
1686 	while(1) {
1687 		ret = btrfs_search_forward(root, &key, &max_key, path, 0,
1688 					   sk->min_transid);
1689 		if (ret != 0) {
1690 			if (ret > 0)
1691 				ret = 0;
1692 			goto err;
1693 		}
1694 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1695 				 &sk_offset, &num_found);
1696 		btrfs_release_path(path);
1697 		if (ret || num_found >= sk->nr_items)
1698 			break;
1699 
1700 	}
1701 	ret = 0;
1702 err:
1703 	sk->nr_items = num_found;
1704 	btrfs_free_path(path);
1705 	return ret;
1706 }
1707 
1708 static noinline int btrfs_ioctl_tree_search(struct file *file,
1709 					   void __user *argp)
1710 {
1711 	 struct btrfs_ioctl_search_args *args;
1712 	 struct inode *inode;
1713 	 int ret;
1714 
1715 	if (!capable(CAP_SYS_ADMIN))
1716 		return -EPERM;
1717 
1718 	args = memdup_user(argp, sizeof(*args));
1719 	if (IS_ERR(args))
1720 		return PTR_ERR(args);
1721 
1722 	inode = fdentry(file)->d_inode;
1723 	ret = search_ioctl(inode, args);
1724 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1725 		ret = -EFAULT;
1726 	kfree(args);
1727 	return ret;
1728 }
1729 
1730 /*
1731  * Search INODE_REFs to identify path name of 'dirid' directory
1732  * in a 'tree_id' tree. and sets path name to 'name'.
1733  */
1734 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1735 				u64 tree_id, u64 dirid, char *name)
1736 {
1737 	struct btrfs_root *root;
1738 	struct btrfs_key key;
1739 	char *ptr;
1740 	int ret = -1;
1741 	int slot;
1742 	int len;
1743 	int total_len = 0;
1744 	struct btrfs_inode_ref *iref;
1745 	struct extent_buffer *l;
1746 	struct btrfs_path *path;
1747 
1748 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
1749 		name[0]='\0';
1750 		return 0;
1751 	}
1752 
1753 	path = btrfs_alloc_path();
1754 	if (!path)
1755 		return -ENOMEM;
1756 
1757 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
1758 
1759 	key.objectid = tree_id;
1760 	key.type = BTRFS_ROOT_ITEM_KEY;
1761 	key.offset = (u64)-1;
1762 	root = btrfs_read_fs_root_no_name(info, &key);
1763 	if (IS_ERR(root)) {
1764 		printk(KERN_ERR "could not find root %llu\n", tree_id);
1765 		ret = -ENOENT;
1766 		goto out;
1767 	}
1768 
1769 	key.objectid = dirid;
1770 	key.type = BTRFS_INODE_REF_KEY;
1771 	key.offset = (u64)-1;
1772 
1773 	while(1) {
1774 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
1775 		if (ret < 0)
1776 			goto out;
1777 
1778 		l = path->nodes[0];
1779 		slot = path->slots[0];
1780 		if (ret > 0 && slot > 0)
1781 			slot--;
1782 		btrfs_item_key_to_cpu(l, &key, slot);
1783 
1784 		if (ret > 0 && (key.objectid != dirid ||
1785 				key.type != BTRFS_INODE_REF_KEY)) {
1786 			ret = -ENOENT;
1787 			goto out;
1788 		}
1789 
1790 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
1791 		len = btrfs_inode_ref_name_len(l, iref);
1792 		ptr -= len + 1;
1793 		total_len += len + 1;
1794 		if (ptr < name)
1795 			goto out;
1796 
1797 		*(ptr + len) = '/';
1798 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
1799 
1800 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
1801 			break;
1802 
1803 		btrfs_release_path(path);
1804 		key.objectid = key.offset;
1805 		key.offset = (u64)-1;
1806 		dirid = key.objectid;
1807 	}
1808 	if (ptr < name)
1809 		goto out;
1810 	memmove(name, ptr, total_len);
1811 	name[total_len]='\0';
1812 	ret = 0;
1813 out:
1814 	btrfs_free_path(path);
1815 	return ret;
1816 }
1817 
1818 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
1819 					   void __user *argp)
1820 {
1821 	 struct btrfs_ioctl_ino_lookup_args *args;
1822 	 struct inode *inode;
1823 	 int ret;
1824 
1825 	if (!capable(CAP_SYS_ADMIN))
1826 		return -EPERM;
1827 
1828 	args = memdup_user(argp, sizeof(*args));
1829 	if (IS_ERR(args))
1830 		return PTR_ERR(args);
1831 
1832 	inode = fdentry(file)->d_inode;
1833 
1834 	if (args->treeid == 0)
1835 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
1836 
1837 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
1838 					args->treeid, args->objectid,
1839 					args->name);
1840 
1841 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1842 		ret = -EFAULT;
1843 
1844 	kfree(args);
1845 	return ret;
1846 }
1847 
1848 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
1849 					     void __user *arg)
1850 {
1851 	struct dentry *parent = fdentry(file);
1852 	struct dentry *dentry;
1853 	struct inode *dir = parent->d_inode;
1854 	struct inode *inode;
1855 	struct btrfs_root *root = BTRFS_I(dir)->root;
1856 	struct btrfs_root *dest = NULL;
1857 	struct btrfs_ioctl_vol_args *vol_args;
1858 	struct btrfs_trans_handle *trans;
1859 	int namelen;
1860 	int ret;
1861 	int err = 0;
1862 
1863 	vol_args = memdup_user(arg, sizeof(*vol_args));
1864 	if (IS_ERR(vol_args))
1865 		return PTR_ERR(vol_args);
1866 
1867 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1868 	namelen = strlen(vol_args->name);
1869 	if (strchr(vol_args->name, '/') ||
1870 	    strncmp(vol_args->name, "..", namelen) == 0) {
1871 		err = -EINVAL;
1872 		goto out;
1873 	}
1874 
1875 	err = mnt_want_write(file->f_path.mnt);
1876 	if (err)
1877 		goto out;
1878 
1879 	mutex_lock_nested(&dir->i_mutex, I_MUTEX_PARENT);
1880 	dentry = lookup_one_len(vol_args->name, parent, namelen);
1881 	if (IS_ERR(dentry)) {
1882 		err = PTR_ERR(dentry);
1883 		goto out_unlock_dir;
1884 	}
1885 
1886 	if (!dentry->d_inode) {
1887 		err = -ENOENT;
1888 		goto out_dput;
1889 	}
1890 
1891 	inode = dentry->d_inode;
1892 	dest = BTRFS_I(inode)->root;
1893 	if (!capable(CAP_SYS_ADMIN)){
1894 		/*
1895 		 * Regular user.  Only allow this with a special mount
1896 		 * option, when the user has write+exec access to the
1897 		 * subvol root, and when rmdir(2) would have been
1898 		 * allowed.
1899 		 *
1900 		 * Note that this is _not_ check that the subvol is
1901 		 * empty or doesn't contain data that we wouldn't
1902 		 * otherwise be able to delete.
1903 		 *
1904 		 * Users who want to delete empty subvols should try
1905 		 * rmdir(2).
1906 		 */
1907 		err = -EPERM;
1908 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
1909 			goto out_dput;
1910 
1911 		/*
1912 		 * Do not allow deletion if the parent dir is the same
1913 		 * as the dir to be deleted.  That means the ioctl
1914 		 * must be called on the dentry referencing the root
1915 		 * of the subvol, not a random directory contained
1916 		 * within it.
1917 		 */
1918 		err = -EINVAL;
1919 		if (root == dest)
1920 			goto out_dput;
1921 
1922 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
1923 		if (err)
1924 			goto out_dput;
1925 
1926 		/* check if subvolume may be deleted by a non-root user */
1927 		err = btrfs_may_delete(dir, dentry, 1);
1928 		if (err)
1929 			goto out_dput;
1930 	}
1931 
1932 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1933 		err = -EINVAL;
1934 		goto out_dput;
1935 	}
1936 
1937 	mutex_lock(&inode->i_mutex);
1938 	err = d_invalidate(dentry);
1939 	if (err)
1940 		goto out_unlock;
1941 
1942 	down_write(&root->fs_info->subvol_sem);
1943 
1944 	err = may_destroy_subvol(dest);
1945 	if (err)
1946 		goto out_up_write;
1947 
1948 	trans = btrfs_start_transaction(root, 0);
1949 	if (IS_ERR(trans)) {
1950 		err = PTR_ERR(trans);
1951 		goto out_up_write;
1952 	}
1953 	trans->block_rsv = &root->fs_info->global_block_rsv;
1954 
1955 	ret = btrfs_unlink_subvol(trans, root, dir,
1956 				dest->root_key.objectid,
1957 				dentry->d_name.name,
1958 				dentry->d_name.len);
1959 	BUG_ON(ret);
1960 
1961 	btrfs_record_root_in_trans(trans, dest);
1962 
1963 	memset(&dest->root_item.drop_progress, 0,
1964 		sizeof(dest->root_item.drop_progress));
1965 	dest->root_item.drop_level = 0;
1966 	btrfs_set_root_refs(&dest->root_item, 0);
1967 
1968 	if (!xchg(&dest->orphan_item_inserted, 1)) {
1969 		ret = btrfs_insert_orphan_item(trans,
1970 					root->fs_info->tree_root,
1971 					dest->root_key.objectid);
1972 		BUG_ON(ret);
1973 	}
1974 
1975 	ret = btrfs_end_transaction(trans, root);
1976 	BUG_ON(ret);
1977 	inode->i_flags |= S_DEAD;
1978 out_up_write:
1979 	up_write(&root->fs_info->subvol_sem);
1980 out_unlock:
1981 	mutex_unlock(&inode->i_mutex);
1982 	if (!err) {
1983 		shrink_dcache_sb(root->fs_info->sb);
1984 		btrfs_invalidate_inodes(dest);
1985 		d_delete(dentry);
1986 	}
1987 out_dput:
1988 	dput(dentry);
1989 out_unlock_dir:
1990 	mutex_unlock(&dir->i_mutex);
1991 	mnt_drop_write(file->f_path.mnt);
1992 out:
1993 	kfree(vol_args);
1994 	return err;
1995 }
1996 
1997 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
1998 {
1999 	struct inode *inode = fdentry(file)->d_inode;
2000 	struct btrfs_root *root = BTRFS_I(inode)->root;
2001 	struct btrfs_ioctl_defrag_range_args *range;
2002 	int ret;
2003 
2004 	if (btrfs_root_readonly(root))
2005 		return -EROFS;
2006 
2007 	ret = mnt_want_write(file->f_path.mnt);
2008 	if (ret)
2009 		return ret;
2010 
2011 	switch (inode->i_mode & S_IFMT) {
2012 	case S_IFDIR:
2013 		if (!capable(CAP_SYS_ADMIN)) {
2014 			ret = -EPERM;
2015 			goto out;
2016 		}
2017 		ret = btrfs_defrag_root(root, 0);
2018 		if (ret)
2019 			goto out;
2020 		ret = btrfs_defrag_root(root->fs_info->extent_root, 0);
2021 		break;
2022 	case S_IFREG:
2023 		if (!(file->f_mode & FMODE_WRITE)) {
2024 			ret = -EINVAL;
2025 			goto out;
2026 		}
2027 
2028 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2029 		if (!range) {
2030 			ret = -ENOMEM;
2031 			goto out;
2032 		}
2033 
2034 		if (argp) {
2035 			if (copy_from_user(range, argp,
2036 					   sizeof(*range))) {
2037 				ret = -EFAULT;
2038 				kfree(range);
2039 				goto out;
2040 			}
2041 			/* compression requires us to start the IO */
2042 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2043 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2044 				range->extent_thresh = (u32)-1;
2045 			}
2046 		} else {
2047 			/* the rest are all set to zero by kzalloc */
2048 			range->len = (u64)-1;
2049 		}
2050 		ret = btrfs_defrag_file(fdentry(file)->d_inode, file,
2051 					range, 0, 0);
2052 		if (ret > 0)
2053 			ret = 0;
2054 		kfree(range);
2055 		break;
2056 	default:
2057 		ret = -EINVAL;
2058 	}
2059 out:
2060 	mnt_drop_write(file->f_path.mnt);
2061 	return ret;
2062 }
2063 
2064 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2065 {
2066 	struct btrfs_ioctl_vol_args *vol_args;
2067 	int ret;
2068 
2069 	if (!capable(CAP_SYS_ADMIN))
2070 		return -EPERM;
2071 
2072 	mutex_lock(&root->fs_info->volume_mutex);
2073 	if (root->fs_info->balance_ctl) {
2074 		printk(KERN_INFO "btrfs: balance in progress\n");
2075 		ret = -EINVAL;
2076 		goto out;
2077 	}
2078 
2079 	vol_args = memdup_user(arg, sizeof(*vol_args));
2080 	if (IS_ERR(vol_args)) {
2081 		ret = PTR_ERR(vol_args);
2082 		goto out;
2083 	}
2084 
2085 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2086 	ret = btrfs_init_new_device(root, vol_args->name);
2087 
2088 	kfree(vol_args);
2089 out:
2090 	mutex_unlock(&root->fs_info->volume_mutex);
2091 	return ret;
2092 }
2093 
2094 static long btrfs_ioctl_rm_dev(struct btrfs_root *root, void __user *arg)
2095 {
2096 	struct btrfs_ioctl_vol_args *vol_args;
2097 	int ret;
2098 
2099 	if (!capable(CAP_SYS_ADMIN))
2100 		return -EPERM;
2101 
2102 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2103 		return -EROFS;
2104 
2105 	mutex_lock(&root->fs_info->volume_mutex);
2106 	if (root->fs_info->balance_ctl) {
2107 		printk(KERN_INFO "btrfs: balance in progress\n");
2108 		ret = -EINVAL;
2109 		goto out;
2110 	}
2111 
2112 	vol_args = memdup_user(arg, sizeof(*vol_args));
2113 	if (IS_ERR(vol_args)) {
2114 		ret = PTR_ERR(vol_args);
2115 		goto out;
2116 	}
2117 
2118 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2119 	ret = btrfs_rm_device(root, vol_args->name);
2120 
2121 	kfree(vol_args);
2122 out:
2123 	mutex_unlock(&root->fs_info->volume_mutex);
2124 	return ret;
2125 }
2126 
2127 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2128 {
2129 	struct btrfs_ioctl_fs_info_args *fi_args;
2130 	struct btrfs_device *device;
2131 	struct btrfs_device *next;
2132 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2133 	int ret = 0;
2134 
2135 	if (!capable(CAP_SYS_ADMIN))
2136 		return -EPERM;
2137 
2138 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2139 	if (!fi_args)
2140 		return -ENOMEM;
2141 
2142 	fi_args->num_devices = fs_devices->num_devices;
2143 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2144 
2145 	mutex_lock(&fs_devices->device_list_mutex);
2146 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2147 		if (device->devid > fi_args->max_id)
2148 			fi_args->max_id = device->devid;
2149 	}
2150 	mutex_unlock(&fs_devices->device_list_mutex);
2151 
2152 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2153 		ret = -EFAULT;
2154 
2155 	kfree(fi_args);
2156 	return ret;
2157 }
2158 
2159 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2160 {
2161 	struct btrfs_ioctl_dev_info_args *di_args;
2162 	struct btrfs_device *dev;
2163 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2164 	int ret = 0;
2165 	char *s_uuid = NULL;
2166 	char empty_uuid[BTRFS_UUID_SIZE] = {0};
2167 
2168 	if (!capable(CAP_SYS_ADMIN))
2169 		return -EPERM;
2170 
2171 	di_args = memdup_user(arg, sizeof(*di_args));
2172 	if (IS_ERR(di_args))
2173 		return PTR_ERR(di_args);
2174 
2175 	if (memcmp(empty_uuid, di_args->uuid, BTRFS_UUID_SIZE) != 0)
2176 		s_uuid = di_args->uuid;
2177 
2178 	mutex_lock(&fs_devices->device_list_mutex);
2179 	dev = btrfs_find_device(root, di_args->devid, s_uuid, NULL);
2180 	mutex_unlock(&fs_devices->device_list_mutex);
2181 
2182 	if (!dev) {
2183 		ret = -ENODEV;
2184 		goto out;
2185 	}
2186 
2187 	di_args->devid = dev->devid;
2188 	di_args->bytes_used = dev->bytes_used;
2189 	di_args->total_bytes = dev->total_bytes;
2190 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2191 	strncpy(di_args->path, dev->name, sizeof(di_args->path));
2192 
2193 out:
2194 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2195 		ret = -EFAULT;
2196 
2197 	kfree(di_args);
2198 	return ret;
2199 }
2200 
2201 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
2202 				       u64 off, u64 olen, u64 destoff)
2203 {
2204 	struct inode *inode = fdentry(file)->d_inode;
2205 	struct btrfs_root *root = BTRFS_I(inode)->root;
2206 	struct file *src_file;
2207 	struct inode *src;
2208 	struct btrfs_trans_handle *trans;
2209 	struct btrfs_path *path;
2210 	struct extent_buffer *leaf;
2211 	char *buf;
2212 	struct btrfs_key key;
2213 	u32 nritems;
2214 	int slot;
2215 	int ret;
2216 	u64 len = olen;
2217 	u64 bs = root->fs_info->sb->s_blocksize;
2218 	u64 hint_byte;
2219 
2220 	/*
2221 	 * TODO:
2222 	 * - split compressed inline extents.  annoying: we need to
2223 	 *   decompress into destination's address_space (the file offset
2224 	 *   may change, so source mapping won't do), then recompress (or
2225 	 *   otherwise reinsert) a subrange.
2226 	 * - allow ranges within the same file to be cloned (provided
2227 	 *   they don't overlap)?
2228 	 */
2229 
2230 	/* the destination must be opened for writing */
2231 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
2232 		return -EINVAL;
2233 
2234 	if (btrfs_root_readonly(root))
2235 		return -EROFS;
2236 
2237 	ret = mnt_want_write(file->f_path.mnt);
2238 	if (ret)
2239 		return ret;
2240 
2241 	src_file = fget(srcfd);
2242 	if (!src_file) {
2243 		ret = -EBADF;
2244 		goto out_drop_write;
2245 	}
2246 
2247 	src = src_file->f_dentry->d_inode;
2248 
2249 	ret = -EINVAL;
2250 	if (src == inode)
2251 		goto out_fput;
2252 
2253 	/* the src must be open for reading */
2254 	if (!(src_file->f_mode & FMODE_READ))
2255 		goto out_fput;
2256 
2257 	/* don't make the dst file partly checksummed */
2258 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2259 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
2260 		goto out_fput;
2261 
2262 	ret = -EISDIR;
2263 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
2264 		goto out_fput;
2265 
2266 	ret = -EXDEV;
2267 	if (src->i_sb != inode->i_sb || BTRFS_I(src)->root != root)
2268 		goto out_fput;
2269 
2270 	ret = -ENOMEM;
2271 	buf = vmalloc(btrfs_level_size(root, 0));
2272 	if (!buf)
2273 		goto out_fput;
2274 
2275 	path = btrfs_alloc_path();
2276 	if (!path) {
2277 		vfree(buf);
2278 		goto out_fput;
2279 	}
2280 	path->reada = 2;
2281 
2282 	if (inode < src) {
2283 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
2284 		mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
2285 	} else {
2286 		mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
2287 		mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
2288 	}
2289 
2290 	/* determine range to clone */
2291 	ret = -EINVAL;
2292 	if (off + len > src->i_size || off + len < off)
2293 		goto out_unlock;
2294 	if (len == 0)
2295 		olen = len = src->i_size - off;
2296 	/* if we extend to eof, continue to block boundary */
2297 	if (off + len == src->i_size)
2298 		len = ALIGN(src->i_size, bs) - off;
2299 
2300 	/* verify the end result is block aligned */
2301 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
2302 	    !IS_ALIGNED(destoff, bs))
2303 		goto out_unlock;
2304 
2305 	if (destoff > inode->i_size) {
2306 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
2307 		if (ret)
2308 			goto out_unlock;
2309 	}
2310 
2311 	/* truncate page cache pages from target inode range */
2312 	truncate_inode_pages_range(&inode->i_data, destoff,
2313 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
2314 
2315 	/* do any pending delalloc/csum calc on src, one way or
2316 	   another, and lock file content */
2317 	while (1) {
2318 		struct btrfs_ordered_extent *ordered;
2319 		lock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2320 		ordered = btrfs_lookup_first_ordered_extent(src, off+len);
2321 		if (!ordered &&
2322 		    !test_range_bit(&BTRFS_I(src)->io_tree, off, off+len,
2323 				   EXTENT_DELALLOC, 0, NULL))
2324 			break;
2325 		unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2326 		if (ordered)
2327 			btrfs_put_ordered_extent(ordered);
2328 		btrfs_wait_ordered_range(src, off, len);
2329 	}
2330 
2331 	/* clone data */
2332 	key.objectid = btrfs_ino(src);
2333 	key.type = BTRFS_EXTENT_DATA_KEY;
2334 	key.offset = 0;
2335 
2336 	while (1) {
2337 		/*
2338 		 * note the key will change type as we walk through the
2339 		 * tree.
2340 		 */
2341 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2342 		if (ret < 0)
2343 			goto out;
2344 
2345 		nritems = btrfs_header_nritems(path->nodes[0]);
2346 		if (path->slots[0] >= nritems) {
2347 			ret = btrfs_next_leaf(root, path);
2348 			if (ret < 0)
2349 				goto out;
2350 			if (ret > 0)
2351 				break;
2352 			nritems = btrfs_header_nritems(path->nodes[0]);
2353 		}
2354 		leaf = path->nodes[0];
2355 		slot = path->slots[0];
2356 
2357 		btrfs_item_key_to_cpu(leaf, &key, slot);
2358 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2359 		    key.objectid != btrfs_ino(src))
2360 			break;
2361 
2362 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2363 			struct btrfs_file_extent_item *extent;
2364 			int type;
2365 			u32 size;
2366 			struct btrfs_key new_key;
2367 			u64 disko = 0, diskl = 0;
2368 			u64 datao = 0, datal = 0;
2369 			u8 comp;
2370 			u64 endoff;
2371 
2372 			size = btrfs_item_size_nr(leaf, slot);
2373 			read_extent_buffer(leaf, buf,
2374 					   btrfs_item_ptr_offset(leaf, slot),
2375 					   size);
2376 
2377 			extent = btrfs_item_ptr(leaf, slot,
2378 						struct btrfs_file_extent_item);
2379 			comp = btrfs_file_extent_compression(leaf, extent);
2380 			type = btrfs_file_extent_type(leaf, extent);
2381 			if (type == BTRFS_FILE_EXTENT_REG ||
2382 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2383 				disko = btrfs_file_extent_disk_bytenr(leaf,
2384 								      extent);
2385 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2386 								 extent);
2387 				datao = btrfs_file_extent_offset(leaf, extent);
2388 				datal = btrfs_file_extent_num_bytes(leaf,
2389 								    extent);
2390 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2391 				/* take upper bound, may be compressed */
2392 				datal = btrfs_file_extent_ram_bytes(leaf,
2393 								    extent);
2394 			}
2395 			btrfs_release_path(path);
2396 
2397 			if (key.offset + datal <= off ||
2398 			    key.offset >= off+len)
2399 				goto next;
2400 
2401 			memcpy(&new_key, &key, sizeof(new_key));
2402 			new_key.objectid = btrfs_ino(inode);
2403 			if (off <= key.offset)
2404 				new_key.offset = key.offset + destoff - off;
2405 			else
2406 				new_key.offset = destoff;
2407 
2408 			/*
2409 			 * 1 - adjusting old extent (we may have to split it)
2410 			 * 1 - add new extent
2411 			 * 1 - inode update
2412 			 */
2413 			trans = btrfs_start_transaction(root, 3);
2414 			if (IS_ERR(trans)) {
2415 				ret = PTR_ERR(trans);
2416 				goto out;
2417 			}
2418 
2419 			if (type == BTRFS_FILE_EXTENT_REG ||
2420 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2421 				/*
2422 				 *    a  | --- range to clone ---|  b
2423 				 * | ------------- extent ------------- |
2424 				 */
2425 
2426 				/* substract range b */
2427 				if (key.offset + datal > off + len)
2428 					datal = off + len - key.offset;
2429 
2430 				/* substract range a */
2431 				if (off > key.offset) {
2432 					datao += off - key.offset;
2433 					datal -= off - key.offset;
2434 				}
2435 
2436 				ret = btrfs_drop_extents(trans, inode,
2437 							 new_key.offset,
2438 							 new_key.offset + datal,
2439 							 &hint_byte, 1);
2440 				BUG_ON(ret);
2441 
2442 				ret = btrfs_insert_empty_item(trans, root, path,
2443 							      &new_key, size);
2444 				BUG_ON(ret);
2445 
2446 				leaf = path->nodes[0];
2447 				slot = path->slots[0];
2448 				write_extent_buffer(leaf, buf,
2449 					    btrfs_item_ptr_offset(leaf, slot),
2450 					    size);
2451 
2452 				extent = btrfs_item_ptr(leaf, slot,
2453 						struct btrfs_file_extent_item);
2454 
2455 				/* disko == 0 means it's a hole */
2456 				if (!disko)
2457 					datao = 0;
2458 
2459 				btrfs_set_file_extent_offset(leaf, extent,
2460 							     datao);
2461 				btrfs_set_file_extent_num_bytes(leaf, extent,
2462 								datal);
2463 				if (disko) {
2464 					inode_add_bytes(inode, datal);
2465 					ret = btrfs_inc_extent_ref(trans, root,
2466 							disko, diskl, 0,
2467 							root->root_key.objectid,
2468 							btrfs_ino(inode),
2469 							new_key.offset - datao,
2470 							0);
2471 					BUG_ON(ret);
2472 				}
2473 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2474 				u64 skip = 0;
2475 				u64 trim = 0;
2476 				if (off > key.offset) {
2477 					skip = off - key.offset;
2478 					new_key.offset += skip;
2479 				}
2480 
2481 				if (key.offset + datal > off+len)
2482 					trim = key.offset + datal - (off+len);
2483 
2484 				if (comp && (skip || trim)) {
2485 					ret = -EINVAL;
2486 					btrfs_end_transaction(trans, root);
2487 					goto out;
2488 				}
2489 				size -= skip + trim;
2490 				datal -= skip + trim;
2491 
2492 				ret = btrfs_drop_extents(trans, inode,
2493 							 new_key.offset,
2494 							 new_key.offset + datal,
2495 							 &hint_byte, 1);
2496 				BUG_ON(ret);
2497 
2498 				ret = btrfs_insert_empty_item(trans, root, path,
2499 							      &new_key, size);
2500 				BUG_ON(ret);
2501 
2502 				if (skip) {
2503 					u32 start =
2504 					  btrfs_file_extent_calc_inline_size(0);
2505 					memmove(buf+start, buf+start+skip,
2506 						datal);
2507 				}
2508 
2509 				leaf = path->nodes[0];
2510 				slot = path->slots[0];
2511 				write_extent_buffer(leaf, buf,
2512 					    btrfs_item_ptr_offset(leaf, slot),
2513 					    size);
2514 				inode_add_bytes(inode, datal);
2515 			}
2516 
2517 			btrfs_mark_buffer_dirty(leaf);
2518 			btrfs_release_path(path);
2519 
2520 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
2521 
2522 			/*
2523 			 * we round up to the block size at eof when
2524 			 * determining which extents to clone above,
2525 			 * but shouldn't round up the file size
2526 			 */
2527 			endoff = new_key.offset + datal;
2528 			if (endoff > destoff+olen)
2529 				endoff = destoff+olen;
2530 			if (endoff > inode->i_size)
2531 				btrfs_i_size_write(inode, endoff);
2532 
2533 			ret = btrfs_update_inode(trans, root, inode);
2534 			BUG_ON(ret);
2535 			btrfs_end_transaction(trans, root);
2536 		}
2537 next:
2538 		btrfs_release_path(path);
2539 		key.offset++;
2540 	}
2541 	ret = 0;
2542 out:
2543 	btrfs_release_path(path);
2544 	unlock_extent(&BTRFS_I(src)->io_tree, off, off+len, GFP_NOFS);
2545 out_unlock:
2546 	mutex_unlock(&src->i_mutex);
2547 	mutex_unlock(&inode->i_mutex);
2548 	vfree(buf);
2549 	btrfs_free_path(path);
2550 out_fput:
2551 	fput(src_file);
2552 out_drop_write:
2553 	mnt_drop_write(file->f_path.mnt);
2554 	return ret;
2555 }
2556 
2557 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
2558 {
2559 	struct btrfs_ioctl_clone_range_args args;
2560 
2561 	if (copy_from_user(&args, argp, sizeof(args)))
2562 		return -EFAULT;
2563 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
2564 				 args.src_length, args.dest_offset);
2565 }
2566 
2567 /*
2568  * there are many ways the trans_start and trans_end ioctls can lead
2569  * to deadlocks.  They should only be used by applications that
2570  * basically own the machine, and have a very in depth understanding
2571  * of all the possible deadlocks and enospc problems.
2572  */
2573 static long btrfs_ioctl_trans_start(struct file *file)
2574 {
2575 	struct inode *inode = fdentry(file)->d_inode;
2576 	struct btrfs_root *root = BTRFS_I(inode)->root;
2577 	struct btrfs_trans_handle *trans;
2578 	int ret;
2579 
2580 	ret = -EPERM;
2581 	if (!capable(CAP_SYS_ADMIN))
2582 		goto out;
2583 
2584 	ret = -EINPROGRESS;
2585 	if (file->private_data)
2586 		goto out;
2587 
2588 	ret = -EROFS;
2589 	if (btrfs_root_readonly(root))
2590 		goto out;
2591 
2592 	ret = mnt_want_write(file->f_path.mnt);
2593 	if (ret)
2594 		goto out;
2595 
2596 	atomic_inc(&root->fs_info->open_ioctl_trans);
2597 
2598 	ret = -ENOMEM;
2599 	trans = btrfs_start_ioctl_transaction(root);
2600 	if (IS_ERR(trans))
2601 		goto out_drop;
2602 
2603 	file->private_data = trans;
2604 	return 0;
2605 
2606 out_drop:
2607 	atomic_dec(&root->fs_info->open_ioctl_trans);
2608 	mnt_drop_write(file->f_path.mnt);
2609 out:
2610 	return ret;
2611 }
2612 
2613 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
2614 {
2615 	struct inode *inode = fdentry(file)->d_inode;
2616 	struct btrfs_root *root = BTRFS_I(inode)->root;
2617 	struct btrfs_root *new_root;
2618 	struct btrfs_dir_item *di;
2619 	struct btrfs_trans_handle *trans;
2620 	struct btrfs_path *path;
2621 	struct btrfs_key location;
2622 	struct btrfs_disk_key disk_key;
2623 	struct btrfs_super_block *disk_super;
2624 	u64 features;
2625 	u64 objectid = 0;
2626 	u64 dir_id;
2627 
2628 	if (!capable(CAP_SYS_ADMIN))
2629 		return -EPERM;
2630 
2631 	if (copy_from_user(&objectid, argp, sizeof(objectid)))
2632 		return -EFAULT;
2633 
2634 	if (!objectid)
2635 		objectid = root->root_key.objectid;
2636 
2637 	location.objectid = objectid;
2638 	location.type = BTRFS_ROOT_ITEM_KEY;
2639 	location.offset = (u64)-1;
2640 
2641 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
2642 	if (IS_ERR(new_root))
2643 		return PTR_ERR(new_root);
2644 
2645 	if (btrfs_root_refs(&new_root->root_item) == 0)
2646 		return -ENOENT;
2647 
2648 	path = btrfs_alloc_path();
2649 	if (!path)
2650 		return -ENOMEM;
2651 	path->leave_spinning = 1;
2652 
2653 	trans = btrfs_start_transaction(root, 1);
2654 	if (IS_ERR(trans)) {
2655 		btrfs_free_path(path);
2656 		return PTR_ERR(trans);
2657 	}
2658 
2659 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
2660 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
2661 				   dir_id, "default", 7, 1);
2662 	if (IS_ERR_OR_NULL(di)) {
2663 		btrfs_free_path(path);
2664 		btrfs_end_transaction(trans, root);
2665 		printk(KERN_ERR "Umm, you don't have the default dir item, "
2666 		       "this isn't going to work\n");
2667 		return -ENOENT;
2668 	}
2669 
2670 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
2671 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
2672 	btrfs_mark_buffer_dirty(path->nodes[0]);
2673 	btrfs_free_path(path);
2674 
2675 	disk_super = root->fs_info->super_copy;
2676 	features = btrfs_super_incompat_flags(disk_super);
2677 	if (!(features & BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL)) {
2678 		features |= BTRFS_FEATURE_INCOMPAT_DEFAULT_SUBVOL;
2679 		btrfs_set_super_incompat_flags(disk_super, features);
2680 	}
2681 	btrfs_end_transaction(trans, root);
2682 
2683 	return 0;
2684 }
2685 
2686 static void get_block_group_info(struct list_head *groups_list,
2687 				 struct btrfs_ioctl_space_info *space)
2688 {
2689 	struct btrfs_block_group_cache *block_group;
2690 
2691 	space->total_bytes = 0;
2692 	space->used_bytes = 0;
2693 	space->flags = 0;
2694 	list_for_each_entry(block_group, groups_list, list) {
2695 		space->flags = block_group->flags;
2696 		space->total_bytes += block_group->key.offset;
2697 		space->used_bytes +=
2698 			btrfs_block_group_used(&block_group->item);
2699 	}
2700 }
2701 
2702 long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
2703 {
2704 	struct btrfs_ioctl_space_args space_args;
2705 	struct btrfs_ioctl_space_info space;
2706 	struct btrfs_ioctl_space_info *dest;
2707 	struct btrfs_ioctl_space_info *dest_orig;
2708 	struct btrfs_ioctl_space_info __user *user_dest;
2709 	struct btrfs_space_info *info;
2710 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
2711 		       BTRFS_BLOCK_GROUP_SYSTEM,
2712 		       BTRFS_BLOCK_GROUP_METADATA,
2713 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
2714 	int num_types = 4;
2715 	int alloc_size;
2716 	int ret = 0;
2717 	u64 slot_count = 0;
2718 	int i, c;
2719 
2720 	if (copy_from_user(&space_args,
2721 			   (struct btrfs_ioctl_space_args __user *)arg,
2722 			   sizeof(space_args)))
2723 		return -EFAULT;
2724 
2725 	for (i = 0; i < num_types; i++) {
2726 		struct btrfs_space_info *tmp;
2727 
2728 		info = NULL;
2729 		rcu_read_lock();
2730 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2731 					list) {
2732 			if (tmp->flags == types[i]) {
2733 				info = tmp;
2734 				break;
2735 			}
2736 		}
2737 		rcu_read_unlock();
2738 
2739 		if (!info)
2740 			continue;
2741 
2742 		down_read(&info->groups_sem);
2743 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2744 			if (!list_empty(&info->block_groups[c]))
2745 				slot_count++;
2746 		}
2747 		up_read(&info->groups_sem);
2748 	}
2749 
2750 	/* space_slots == 0 means they are asking for a count */
2751 	if (space_args.space_slots == 0) {
2752 		space_args.total_spaces = slot_count;
2753 		goto out;
2754 	}
2755 
2756 	slot_count = min_t(u64, space_args.space_slots, slot_count);
2757 
2758 	alloc_size = sizeof(*dest) * slot_count;
2759 
2760 	/* we generally have at most 6 or so space infos, one for each raid
2761 	 * level.  So, a whole page should be more than enough for everyone
2762 	 */
2763 	if (alloc_size > PAGE_CACHE_SIZE)
2764 		return -ENOMEM;
2765 
2766 	space_args.total_spaces = 0;
2767 	dest = kmalloc(alloc_size, GFP_NOFS);
2768 	if (!dest)
2769 		return -ENOMEM;
2770 	dest_orig = dest;
2771 
2772 	/* now we have a buffer to copy into */
2773 	for (i = 0; i < num_types; i++) {
2774 		struct btrfs_space_info *tmp;
2775 
2776 		if (!slot_count)
2777 			break;
2778 
2779 		info = NULL;
2780 		rcu_read_lock();
2781 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
2782 					list) {
2783 			if (tmp->flags == types[i]) {
2784 				info = tmp;
2785 				break;
2786 			}
2787 		}
2788 		rcu_read_unlock();
2789 
2790 		if (!info)
2791 			continue;
2792 		down_read(&info->groups_sem);
2793 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
2794 			if (!list_empty(&info->block_groups[c])) {
2795 				get_block_group_info(&info->block_groups[c],
2796 						     &space);
2797 				memcpy(dest, &space, sizeof(space));
2798 				dest++;
2799 				space_args.total_spaces++;
2800 				slot_count--;
2801 			}
2802 			if (!slot_count)
2803 				break;
2804 		}
2805 		up_read(&info->groups_sem);
2806 	}
2807 
2808 	user_dest = (struct btrfs_ioctl_space_info *)
2809 		(arg + sizeof(struct btrfs_ioctl_space_args));
2810 
2811 	if (copy_to_user(user_dest, dest_orig, alloc_size))
2812 		ret = -EFAULT;
2813 
2814 	kfree(dest_orig);
2815 out:
2816 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
2817 		ret = -EFAULT;
2818 
2819 	return ret;
2820 }
2821 
2822 /*
2823  * there are many ways the trans_start and trans_end ioctls can lead
2824  * to deadlocks.  They should only be used by applications that
2825  * basically own the machine, and have a very in depth understanding
2826  * of all the possible deadlocks and enospc problems.
2827  */
2828 long btrfs_ioctl_trans_end(struct file *file)
2829 {
2830 	struct inode *inode = fdentry(file)->d_inode;
2831 	struct btrfs_root *root = BTRFS_I(inode)->root;
2832 	struct btrfs_trans_handle *trans;
2833 
2834 	trans = file->private_data;
2835 	if (!trans)
2836 		return -EINVAL;
2837 	file->private_data = NULL;
2838 
2839 	btrfs_end_transaction(trans, root);
2840 
2841 	atomic_dec(&root->fs_info->open_ioctl_trans);
2842 
2843 	mnt_drop_write(file->f_path.mnt);
2844 	return 0;
2845 }
2846 
2847 static noinline long btrfs_ioctl_start_sync(struct file *file, void __user *argp)
2848 {
2849 	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2850 	struct btrfs_trans_handle *trans;
2851 	u64 transid;
2852 	int ret;
2853 
2854 	trans = btrfs_start_transaction(root, 0);
2855 	if (IS_ERR(trans))
2856 		return PTR_ERR(trans);
2857 	transid = trans->transid;
2858 	ret = btrfs_commit_transaction_async(trans, root, 0);
2859 	if (ret) {
2860 		btrfs_end_transaction(trans, root);
2861 		return ret;
2862 	}
2863 
2864 	if (argp)
2865 		if (copy_to_user(argp, &transid, sizeof(transid)))
2866 			return -EFAULT;
2867 	return 0;
2868 }
2869 
2870 static noinline long btrfs_ioctl_wait_sync(struct file *file, void __user *argp)
2871 {
2872 	struct btrfs_root *root = BTRFS_I(file->f_dentry->d_inode)->root;
2873 	u64 transid;
2874 
2875 	if (argp) {
2876 		if (copy_from_user(&transid, argp, sizeof(transid)))
2877 			return -EFAULT;
2878 	} else {
2879 		transid = 0;  /* current trans */
2880 	}
2881 	return btrfs_wait_for_commit(root, transid);
2882 }
2883 
2884 static long btrfs_ioctl_scrub(struct btrfs_root *root, void __user *arg)
2885 {
2886 	int ret;
2887 	struct btrfs_ioctl_scrub_args *sa;
2888 
2889 	if (!capable(CAP_SYS_ADMIN))
2890 		return -EPERM;
2891 
2892 	sa = memdup_user(arg, sizeof(*sa));
2893 	if (IS_ERR(sa))
2894 		return PTR_ERR(sa);
2895 
2896 	ret = btrfs_scrub_dev(root, sa->devid, sa->start, sa->end,
2897 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY);
2898 
2899 	if (copy_to_user(arg, sa, sizeof(*sa)))
2900 		ret = -EFAULT;
2901 
2902 	kfree(sa);
2903 	return ret;
2904 }
2905 
2906 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
2907 {
2908 	if (!capable(CAP_SYS_ADMIN))
2909 		return -EPERM;
2910 
2911 	return btrfs_scrub_cancel(root);
2912 }
2913 
2914 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
2915 				       void __user *arg)
2916 {
2917 	struct btrfs_ioctl_scrub_args *sa;
2918 	int ret;
2919 
2920 	if (!capable(CAP_SYS_ADMIN))
2921 		return -EPERM;
2922 
2923 	sa = memdup_user(arg, sizeof(*sa));
2924 	if (IS_ERR(sa))
2925 		return PTR_ERR(sa);
2926 
2927 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
2928 
2929 	if (copy_to_user(arg, sa, sizeof(*sa)))
2930 		ret = -EFAULT;
2931 
2932 	kfree(sa);
2933 	return ret;
2934 }
2935 
2936 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
2937 {
2938 	int ret = 0;
2939 	int i;
2940 	u64 rel_ptr;
2941 	int size;
2942 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
2943 	struct inode_fs_paths *ipath = NULL;
2944 	struct btrfs_path *path;
2945 
2946 	if (!capable(CAP_SYS_ADMIN))
2947 		return -EPERM;
2948 
2949 	path = btrfs_alloc_path();
2950 	if (!path) {
2951 		ret = -ENOMEM;
2952 		goto out;
2953 	}
2954 
2955 	ipa = memdup_user(arg, sizeof(*ipa));
2956 	if (IS_ERR(ipa)) {
2957 		ret = PTR_ERR(ipa);
2958 		ipa = NULL;
2959 		goto out;
2960 	}
2961 
2962 	size = min_t(u32, ipa->size, 4096);
2963 	ipath = init_ipath(size, root, path);
2964 	if (IS_ERR(ipath)) {
2965 		ret = PTR_ERR(ipath);
2966 		ipath = NULL;
2967 		goto out;
2968 	}
2969 
2970 	ret = paths_from_inode(ipa->inum, ipath);
2971 	if (ret < 0)
2972 		goto out;
2973 
2974 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
2975 		rel_ptr = ipath->fspath->val[i] -
2976 			  (u64)(unsigned long)ipath->fspath->val;
2977 		ipath->fspath->val[i] = rel_ptr;
2978 	}
2979 
2980 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
2981 			   (void *)(unsigned long)ipath->fspath, size);
2982 	if (ret) {
2983 		ret = -EFAULT;
2984 		goto out;
2985 	}
2986 
2987 out:
2988 	btrfs_free_path(path);
2989 	free_ipath(ipath);
2990 	kfree(ipa);
2991 
2992 	return ret;
2993 }
2994 
2995 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
2996 {
2997 	struct btrfs_data_container *inodes = ctx;
2998 	const size_t c = 3 * sizeof(u64);
2999 
3000 	if (inodes->bytes_left >= c) {
3001 		inodes->bytes_left -= c;
3002 		inodes->val[inodes->elem_cnt] = inum;
3003 		inodes->val[inodes->elem_cnt + 1] = offset;
3004 		inodes->val[inodes->elem_cnt + 2] = root;
3005 		inodes->elem_cnt += 3;
3006 	} else {
3007 		inodes->bytes_missing += c - inodes->bytes_left;
3008 		inodes->bytes_left = 0;
3009 		inodes->elem_missed += 3;
3010 	}
3011 
3012 	return 0;
3013 }
3014 
3015 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3016 					void __user *arg)
3017 {
3018 	int ret = 0;
3019 	int size;
3020 	u64 extent_item_pos;
3021 	struct btrfs_ioctl_logical_ino_args *loi;
3022 	struct btrfs_data_container *inodes = NULL;
3023 	struct btrfs_path *path = NULL;
3024 	struct btrfs_key key;
3025 
3026 	if (!capable(CAP_SYS_ADMIN))
3027 		return -EPERM;
3028 
3029 	loi = memdup_user(arg, sizeof(*loi));
3030 	if (IS_ERR(loi)) {
3031 		ret = PTR_ERR(loi);
3032 		loi = NULL;
3033 		goto out;
3034 	}
3035 
3036 	path = btrfs_alloc_path();
3037 	if (!path) {
3038 		ret = -ENOMEM;
3039 		goto out;
3040 	}
3041 
3042 	size = min_t(u32, loi->size, 4096);
3043 	inodes = init_data_container(size);
3044 	if (IS_ERR(inodes)) {
3045 		ret = PTR_ERR(inodes);
3046 		inodes = NULL;
3047 		goto out;
3048 	}
3049 
3050 	ret = extent_from_logical(root->fs_info, loi->logical, path, &key);
3051 	btrfs_release_path(path);
3052 
3053 	if (ret & BTRFS_EXTENT_FLAG_TREE_BLOCK)
3054 		ret = -ENOENT;
3055 	if (ret < 0)
3056 		goto out;
3057 
3058 	extent_item_pos = loi->logical - key.objectid;
3059 	ret = iterate_extent_inodes(root->fs_info, path, key.objectid,
3060 					extent_item_pos, build_ino_list,
3061 					inodes);
3062 
3063 	if (ret < 0)
3064 		goto out;
3065 
3066 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3067 			   (void *)(unsigned long)inodes, size);
3068 	if (ret)
3069 		ret = -EFAULT;
3070 
3071 out:
3072 	btrfs_free_path(path);
3073 	kfree(inodes);
3074 	kfree(loi);
3075 
3076 	return ret;
3077 }
3078 
3079 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3080 			       struct btrfs_ioctl_balance_args *bargs)
3081 {
3082 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3083 
3084 	bargs->flags = bctl->flags;
3085 
3086 	if (atomic_read(&fs_info->balance_running))
3087 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3088 	if (atomic_read(&fs_info->balance_pause_req))
3089 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3090 	if (atomic_read(&fs_info->balance_cancel_req))
3091 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3092 
3093 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3094 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3095 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3096 
3097 	if (lock) {
3098 		spin_lock(&fs_info->balance_lock);
3099 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3100 		spin_unlock(&fs_info->balance_lock);
3101 	} else {
3102 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3103 	}
3104 }
3105 
3106 static long btrfs_ioctl_balance(struct btrfs_root *root, void __user *arg)
3107 {
3108 	struct btrfs_fs_info *fs_info = root->fs_info;
3109 	struct btrfs_ioctl_balance_args *bargs;
3110 	struct btrfs_balance_control *bctl;
3111 	int ret;
3112 
3113 	if (!capable(CAP_SYS_ADMIN))
3114 		return -EPERM;
3115 
3116 	if (fs_info->sb->s_flags & MS_RDONLY)
3117 		return -EROFS;
3118 
3119 	mutex_lock(&fs_info->volume_mutex);
3120 	mutex_lock(&fs_info->balance_mutex);
3121 
3122 	if (arg) {
3123 		bargs = memdup_user(arg, sizeof(*bargs));
3124 		if (IS_ERR(bargs)) {
3125 			ret = PTR_ERR(bargs);
3126 			goto out;
3127 		}
3128 
3129 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3130 			if (!fs_info->balance_ctl) {
3131 				ret = -ENOTCONN;
3132 				goto out_bargs;
3133 			}
3134 
3135 			bctl = fs_info->balance_ctl;
3136 			spin_lock(&fs_info->balance_lock);
3137 			bctl->flags |= BTRFS_BALANCE_RESUME;
3138 			spin_unlock(&fs_info->balance_lock);
3139 
3140 			goto do_balance;
3141 		}
3142 	} else {
3143 		bargs = NULL;
3144 	}
3145 
3146 	if (fs_info->balance_ctl) {
3147 		ret = -EINPROGRESS;
3148 		goto out_bargs;
3149 	}
3150 
3151 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3152 	if (!bctl) {
3153 		ret = -ENOMEM;
3154 		goto out_bargs;
3155 	}
3156 
3157 	bctl->fs_info = fs_info;
3158 	if (arg) {
3159 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3160 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3161 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3162 
3163 		bctl->flags = bargs->flags;
3164 	} else {
3165 		/* balance everything - no filters */
3166 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3167 	}
3168 
3169 do_balance:
3170 	ret = btrfs_balance(bctl, bargs);
3171 	/*
3172 	 * bctl is freed in __cancel_balance or in free_fs_info if
3173 	 * restriper was paused all the way until unmount
3174 	 */
3175 	if (arg) {
3176 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3177 			ret = -EFAULT;
3178 	}
3179 
3180 out_bargs:
3181 	kfree(bargs);
3182 out:
3183 	mutex_unlock(&fs_info->balance_mutex);
3184 	mutex_unlock(&fs_info->volume_mutex);
3185 	return ret;
3186 }
3187 
3188 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
3189 {
3190 	if (!capable(CAP_SYS_ADMIN))
3191 		return -EPERM;
3192 
3193 	switch (cmd) {
3194 	case BTRFS_BALANCE_CTL_PAUSE:
3195 		return btrfs_pause_balance(root->fs_info);
3196 	case BTRFS_BALANCE_CTL_CANCEL:
3197 		return btrfs_cancel_balance(root->fs_info);
3198 	}
3199 
3200 	return -EINVAL;
3201 }
3202 
3203 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
3204 					 void __user *arg)
3205 {
3206 	struct btrfs_fs_info *fs_info = root->fs_info;
3207 	struct btrfs_ioctl_balance_args *bargs;
3208 	int ret = 0;
3209 
3210 	if (!capable(CAP_SYS_ADMIN))
3211 		return -EPERM;
3212 
3213 	mutex_lock(&fs_info->balance_mutex);
3214 	if (!fs_info->balance_ctl) {
3215 		ret = -ENOTCONN;
3216 		goto out;
3217 	}
3218 
3219 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
3220 	if (!bargs) {
3221 		ret = -ENOMEM;
3222 		goto out;
3223 	}
3224 
3225 	update_ioctl_balance_args(fs_info, 1, bargs);
3226 
3227 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
3228 		ret = -EFAULT;
3229 
3230 	kfree(bargs);
3231 out:
3232 	mutex_unlock(&fs_info->balance_mutex);
3233 	return ret;
3234 }
3235 
3236 long btrfs_ioctl(struct file *file, unsigned int
3237 		cmd, unsigned long arg)
3238 {
3239 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
3240 	void __user *argp = (void __user *)arg;
3241 
3242 	switch (cmd) {
3243 	case FS_IOC_GETFLAGS:
3244 		return btrfs_ioctl_getflags(file, argp);
3245 	case FS_IOC_SETFLAGS:
3246 		return btrfs_ioctl_setflags(file, argp);
3247 	case FS_IOC_GETVERSION:
3248 		return btrfs_ioctl_getversion(file, argp);
3249 	case FITRIM:
3250 		return btrfs_ioctl_fitrim(file, argp);
3251 	case BTRFS_IOC_SNAP_CREATE:
3252 		return btrfs_ioctl_snap_create(file, argp, 0);
3253 	case BTRFS_IOC_SNAP_CREATE_V2:
3254 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
3255 	case BTRFS_IOC_SUBVOL_CREATE:
3256 		return btrfs_ioctl_snap_create(file, argp, 1);
3257 	case BTRFS_IOC_SNAP_DESTROY:
3258 		return btrfs_ioctl_snap_destroy(file, argp);
3259 	case BTRFS_IOC_SUBVOL_GETFLAGS:
3260 		return btrfs_ioctl_subvol_getflags(file, argp);
3261 	case BTRFS_IOC_SUBVOL_SETFLAGS:
3262 		return btrfs_ioctl_subvol_setflags(file, argp);
3263 	case BTRFS_IOC_DEFAULT_SUBVOL:
3264 		return btrfs_ioctl_default_subvol(file, argp);
3265 	case BTRFS_IOC_DEFRAG:
3266 		return btrfs_ioctl_defrag(file, NULL);
3267 	case BTRFS_IOC_DEFRAG_RANGE:
3268 		return btrfs_ioctl_defrag(file, argp);
3269 	case BTRFS_IOC_RESIZE:
3270 		return btrfs_ioctl_resize(root, argp);
3271 	case BTRFS_IOC_ADD_DEV:
3272 		return btrfs_ioctl_add_dev(root, argp);
3273 	case BTRFS_IOC_RM_DEV:
3274 		return btrfs_ioctl_rm_dev(root, argp);
3275 	case BTRFS_IOC_FS_INFO:
3276 		return btrfs_ioctl_fs_info(root, argp);
3277 	case BTRFS_IOC_DEV_INFO:
3278 		return btrfs_ioctl_dev_info(root, argp);
3279 	case BTRFS_IOC_BALANCE:
3280 		return btrfs_ioctl_balance(root, NULL);
3281 	case BTRFS_IOC_CLONE:
3282 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
3283 	case BTRFS_IOC_CLONE_RANGE:
3284 		return btrfs_ioctl_clone_range(file, argp);
3285 	case BTRFS_IOC_TRANS_START:
3286 		return btrfs_ioctl_trans_start(file);
3287 	case BTRFS_IOC_TRANS_END:
3288 		return btrfs_ioctl_trans_end(file);
3289 	case BTRFS_IOC_TREE_SEARCH:
3290 		return btrfs_ioctl_tree_search(file, argp);
3291 	case BTRFS_IOC_INO_LOOKUP:
3292 		return btrfs_ioctl_ino_lookup(file, argp);
3293 	case BTRFS_IOC_INO_PATHS:
3294 		return btrfs_ioctl_ino_to_path(root, argp);
3295 	case BTRFS_IOC_LOGICAL_INO:
3296 		return btrfs_ioctl_logical_to_ino(root, argp);
3297 	case BTRFS_IOC_SPACE_INFO:
3298 		return btrfs_ioctl_space_info(root, argp);
3299 	case BTRFS_IOC_SYNC:
3300 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
3301 		return 0;
3302 	case BTRFS_IOC_START_SYNC:
3303 		return btrfs_ioctl_start_sync(file, argp);
3304 	case BTRFS_IOC_WAIT_SYNC:
3305 		return btrfs_ioctl_wait_sync(file, argp);
3306 	case BTRFS_IOC_SCRUB:
3307 		return btrfs_ioctl_scrub(root, argp);
3308 	case BTRFS_IOC_SCRUB_CANCEL:
3309 		return btrfs_ioctl_scrub_cancel(root, argp);
3310 	case BTRFS_IOC_SCRUB_PROGRESS:
3311 		return btrfs_ioctl_scrub_progress(root, argp);
3312 	case BTRFS_IOC_BALANCE_V2:
3313 		return btrfs_ioctl_balance(root, argp);
3314 	case BTRFS_IOC_BALANCE_CTL:
3315 		return btrfs_ioctl_balance_ctl(root, arg);
3316 	case BTRFS_IOC_BALANCE_PROGRESS:
3317 		return btrfs_ioctl_balance_progress(root, argp);
3318 	}
3319 
3320 	return -ENOTTY;
3321 }
3322