xref: /openbmc/linux/fs/btrfs/ioctl.c (revision ee5db7e47faccd07a8a17f73afb30345f8331e61)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "ctree.h"
48 #include "disk-io.h"
49 #include "transaction.h"
50 #include "btrfs_inode.h"
51 #include "print-tree.h"
52 #include "volumes.h"
53 #include "locking.h"
54 #include "inode-map.h"
55 #include "backref.h"
56 #include "rcu-string.h"
57 #include "send.h"
58 #include "dev-replace.h"
59 #include "props.h"
60 #include "sysfs.h"
61 #include "qgroup.h"
62 
63 #ifdef CONFIG_64BIT
64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
65  * structures are incorrect, as the timespec structure from userspace
66  * is 4 bytes too small. We define these alternatives here to teach
67  * the kernel about the 32-bit struct packing.
68  */
69 struct btrfs_ioctl_timespec_32 {
70 	__u64 sec;
71 	__u32 nsec;
72 } __attribute__ ((__packed__));
73 
74 struct btrfs_ioctl_received_subvol_args_32 {
75 	char	uuid[BTRFS_UUID_SIZE];	/* in */
76 	__u64	stransid;		/* in */
77 	__u64	rtransid;		/* out */
78 	struct btrfs_ioctl_timespec_32 stime; /* in */
79 	struct btrfs_ioctl_timespec_32 rtime; /* out */
80 	__u64	flags;			/* in */
81 	__u64	reserved[16];		/* in */
82 } __attribute__ ((__packed__));
83 
84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
85 				struct btrfs_ioctl_received_subvol_args_32)
86 #endif
87 
88 
89 static int btrfs_clone(struct inode *src, struct inode *inode,
90 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
91 
92 /* Mask out flags that are inappropriate for the given type of inode. */
93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
94 {
95 	if (S_ISDIR(mode))
96 		return flags;
97 	else if (S_ISREG(mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
105  */
106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
126 		iflags |= FS_COMPR_FL;
127 	else if (flags & BTRFS_INODE_NOCOMPRESS)
128 		iflags |= FS_NOCOMP_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_update_iflags(struct inode *inode)
137 {
138 	struct btrfs_inode *ip = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (ip->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (ip->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (ip->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (ip->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Inherit flags from the parent inode.
159  *
160  * Currently only the compression flags and the cow flags are inherited.
161  */
162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
163 {
164 	unsigned int flags;
165 
166 	if (!dir)
167 		return;
168 
169 	flags = BTRFS_I(dir)->flags;
170 
171 	if (flags & BTRFS_INODE_NOCOMPRESS) {
172 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
173 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
174 	} else if (flags & BTRFS_INODE_COMPRESS) {
175 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
176 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
177 	}
178 
179 	if (flags & BTRFS_INODE_NODATACOW) {
180 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
181 		if (S_ISREG(inode->i_mode))
182 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
183 	}
184 
185 	btrfs_update_iflags(inode);
186 }
187 
188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
189 {
190 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
191 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
192 
193 	if (copy_to_user(arg, &flags, sizeof(flags)))
194 		return -EFAULT;
195 	return 0;
196 }
197 
198 static int check_flags(unsigned int flags)
199 {
200 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
201 		      FS_NOATIME_FL | FS_NODUMP_FL | \
202 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
203 		      FS_NOCOMP_FL | FS_COMPR_FL |
204 		      FS_NOCOW_FL))
205 		return -EOPNOTSUPP;
206 
207 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
208 		return -EINVAL;
209 
210 	return 0;
211 }
212 
213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
214 {
215 	struct inode *inode = file_inode(file);
216 	struct btrfs_inode *ip = BTRFS_I(inode);
217 	struct btrfs_root *root = ip->root;
218 	struct btrfs_trans_handle *trans;
219 	unsigned int flags, oldflags;
220 	int ret;
221 	u64 ip_oldflags;
222 	unsigned int i_oldflags;
223 	umode_t mode;
224 
225 	if (!inode_owner_or_capable(inode))
226 		return -EPERM;
227 
228 	if (btrfs_root_readonly(root))
229 		return -EROFS;
230 
231 	if (copy_from_user(&flags, arg, sizeof(flags)))
232 		return -EFAULT;
233 
234 	ret = check_flags(flags);
235 	if (ret)
236 		return ret;
237 
238 	ret = mnt_want_write_file(file);
239 	if (ret)
240 		return ret;
241 
242 	mutex_lock(&inode->i_mutex);
243 
244 	ip_oldflags = ip->flags;
245 	i_oldflags = inode->i_flags;
246 	mode = inode->i_mode;
247 
248 	flags = btrfs_mask_flags(inode->i_mode, flags);
249 	oldflags = btrfs_flags_to_ioctl(ip->flags);
250 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
251 		if (!capable(CAP_LINUX_IMMUTABLE)) {
252 			ret = -EPERM;
253 			goto out_unlock;
254 		}
255 	}
256 
257 	if (flags & FS_SYNC_FL)
258 		ip->flags |= BTRFS_INODE_SYNC;
259 	else
260 		ip->flags &= ~BTRFS_INODE_SYNC;
261 	if (flags & FS_IMMUTABLE_FL)
262 		ip->flags |= BTRFS_INODE_IMMUTABLE;
263 	else
264 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
265 	if (flags & FS_APPEND_FL)
266 		ip->flags |= BTRFS_INODE_APPEND;
267 	else
268 		ip->flags &= ~BTRFS_INODE_APPEND;
269 	if (flags & FS_NODUMP_FL)
270 		ip->flags |= BTRFS_INODE_NODUMP;
271 	else
272 		ip->flags &= ~BTRFS_INODE_NODUMP;
273 	if (flags & FS_NOATIME_FL)
274 		ip->flags |= BTRFS_INODE_NOATIME;
275 	else
276 		ip->flags &= ~BTRFS_INODE_NOATIME;
277 	if (flags & FS_DIRSYNC_FL)
278 		ip->flags |= BTRFS_INODE_DIRSYNC;
279 	else
280 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
281 	if (flags & FS_NOCOW_FL) {
282 		if (S_ISREG(mode)) {
283 			/*
284 			 * It's safe to turn csums off here, no extents exist.
285 			 * Otherwise we want the flag to reflect the real COW
286 			 * status of the file and will not set it.
287 			 */
288 			if (inode->i_size == 0)
289 				ip->flags |= BTRFS_INODE_NODATACOW
290 					   | BTRFS_INODE_NODATASUM;
291 		} else {
292 			ip->flags |= BTRFS_INODE_NODATACOW;
293 		}
294 	} else {
295 		/*
296 		 * Revert back under same assuptions as above
297 		 */
298 		if (S_ISREG(mode)) {
299 			if (inode->i_size == 0)
300 				ip->flags &= ~(BTRFS_INODE_NODATACOW
301 				             | BTRFS_INODE_NODATASUM);
302 		} else {
303 			ip->flags &= ~BTRFS_INODE_NODATACOW;
304 		}
305 	}
306 
307 	/*
308 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
309 	 * flag may be changed automatically if compression code won't make
310 	 * things smaller.
311 	 */
312 	if (flags & FS_NOCOMP_FL) {
313 		ip->flags &= ~BTRFS_INODE_COMPRESS;
314 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
315 
316 		ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0);
317 		if (ret && ret != -ENODATA)
318 			goto out_drop;
319 	} else if (flags & FS_COMPR_FL) {
320 		const char *comp;
321 
322 		ip->flags |= BTRFS_INODE_COMPRESS;
323 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
324 
325 		if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO)
326 			comp = "lzo";
327 		else
328 			comp = "zlib";
329 		ret = btrfs_set_prop(inode, "btrfs.compression",
330 				     comp, strlen(comp), 0);
331 		if (ret)
332 			goto out_drop;
333 
334 	} else {
335 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
336 	}
337 
338 	trans = btrfs_start_transaction(root, 1);
339 	if (IS_ERR(trans)) {
340 		ret = PTR_ERR(trans);
341 		goto out_drop;
342 	}
343 
344 	btrfs_update_iflags(inode);
345 	inode_inc_iversion(inode);
346 	inode->i_ctime = CURRENT_TIME;
347 	ret = btrfs_update_inode(trans, root, inode);
348 
349 	btrfs_end_transaction(trans, root);
350  out_drop:
351 	if (ret) {
352 		ip->flags = ip_oldflags;
353 		inode->i_flags = i_oldflags;
354 	}
355 
356  out_unlock:
357 	mutex_unlock(&inode->i_mutex);
358 	mnt_drop_write_file(file);
359 	return ret;
360 }
361 
362 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
363 {
364 	struct inode *inode = file_inode(file);
365 
366 	return put_user(inode->i_generation, arg);
367 }
368 
369 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
370 {
371 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
372 	struct btrfs_device *device;
373 	struct request_queue *q;
374 	struct fstrim_range range;
375 	u64 minlen = ULLONG_MAX;
376 	u64 num_devices = 0;
377 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
378 	int ret;
379 
380 	if (!capable(CAP_SYS_ADMIN))
381 		return -EPERM;
382 
383 	rcu_read_lock();
384 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
385 				dev_list) {
386 		if (!device->bdev)
387 			continue;
388 		q = bdev_get_queue(device->bdev);
389 		if (blk_queue_discard(q)) {
390 			num_devices++;
391 			minlen = min((u64)q->limits.discard_granularity,
392 				     minlen);
393 		}
394 	}
395 	rcu_read_unlock();
396 
397 	if (!num_devices)
398 		return -EOPNOTSUPP;
399 	if (copy_from_user(&range, arg, sizeof(range)))
400 		return -EFAULT;
401 	if (range.start > total_bytes ||
402 	    range.len < fs_info->sb->s_blocksize)
403 		return -EINVAL;
404 
405 	range.len = min(range.len, total_bytes - range.start);
406 	range.minlen = max(range.minlen, minlen);
407 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
408 	if (ret < 0)
409 		return ret;
410 
411 	if (copy_to_user(arg, &range, sizeof(range)))
412 		return -EFAULT;
413 
414 	return 0;
415 }
416 
417 int btrfs_is_empty_uuid(u8 *uuid)
418 {
419 	int i;
420 
421 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
422 		if (uuid[i])
423 			return 0;
424 	}
425 	return 1;
426 }
427 
428 static noinline int create_subvol(struct inode *dir,
429 				  struct dentry *dentry,
430 				  char *name, int namelen,
431 				  u64 *async_transid,
432 				  struct btrfs_qgroup_inherit *inherit)
433 {
434 	struct btrfs_trans_handle *trans;
435 	struct btrfs_key key;
436 	struct btrfs_root_item root_item;
437 	struct btrfs_inode_item *inode_item;
438 	struct extent_buffer *leaf;
439 	struct btrfs_root *root = BTRFS_I(dir)->root;
440 	struct btrfs_root *new_root;
441 	struct btrfs_block_rsv block_rsv;
442 	struct timespec cur_time = CURRENT_TIME;
443 	struct inode *inode;
444 	int ret;
445 	int err;
446 	u64 objectid;
447 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
448 	u64 index = 0;
449 	u64 qgroup_reserved;
450 	uuid_le new_uuid;
451 
452 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
453 	if (ret)
454 		return ret;
455 
456 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
457 	/*
458 	 * The same as the snapshot creation, please see the comment
459 	 * of create_snapshot().
460 	 */
461 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
462 					       8, &qgroup_reserved, false);
463 	if (ret)
464 		return ret;
465 
466 	trans = btrfs_start_transaction(root, 0);
467 	if (IS_ERR(trans)) {
468 		ret = PTR_ERR(trans);
469 		btrfs_subvolume_release_metadata(root, &block_rsv,
470 						 qgroup_reserved);
471 		return ret;
472 	}
473 	trans->block_rsv = &block_rsv;
474 	trans->bytes_reserved = block_rsv.size;
475 
476 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
477 	if (ret)
478 		goto fail;
479 
480 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
481 				      0, objectid, NULL, 0, 0, 0);
482 	if (IS_ERR(leaf)) {
483 		ret = PTR_ERR(leaf);
484 		goto fail;
485 	}
486 
487 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
488 	btrfs_set_header_bytenr(leaf, leaf->start);
489 	btrfs_set_header_generation(leaf, trans->transid);
490 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
491 	btrfs_set_header_owner(leaf, objectid);
492 
493 	write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(),
494 			    BTRFS_FSID_SIZE);
495 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
496 			    btrfs_header_chunk_tree_uuid(leaf),
497 			    BTRFS_UUID_SIZE);
498 	btrfs_mark_buffer_dirty(leaf);
499 
500 	memset(&root_item, 0, sizeof(root_item));
501 
502 	inode_item = &root_item.inode;
503 	btrfs_set_stack_inode_generation(inode_item, 1);
504 	btrfs_set_stack_inode_size(inode_item, 3);
505 	btrfs_set_stack_inode_nlink(inode_item, 1);
506 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
507 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
508 
509 	btrfs_set_root_flags(&root_item, 0);
510 	btrfs_set_root_limit(&root_item, 0);
511 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
512 
513 	btrfs_set_root_bytenr(&root_item, leaf->start);
514 	btrfs_set_root_generation(&root_item, trans->transid);
515 	btrfs_set_root_level(&root_item, 0);
516 	btrfs_set_root_refs(&root_item, 1);
517 	btrfs_set_root_used(&root_item, leaf->len);
518 	btrfs_set_root_last_snapshot(&root_item, 0);
519 
520 	btrfs_set_root_generation_v2(&root_item,
521 			btrfs_root_generation(&root_item));
522 	uuid_le_gen(&new_uuid);
523 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
524 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
525 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
526 	root_item.ctime = root_item.otime;
527 	btrfs_set_root_ctransid(&root_item, trans->transid);
528 	btrfs_set_root_otransid(&root_item, trans->transid);
529 
530 	btrfs_tree_unlock(leaf);
531 	free_extent_buffer(leaf);
532 	leaf = NULL;
533 
534 	btrfs_set_root_dirid(&root_item, new_dirid);
535 
536 	key.objectid = objectid;
537 	key.offset = 0;
538 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
539 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
540 				&root_item);
541 	if (ret)
542 		goto fail;
543 
544 	key.offset = (u64)-1;
545 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
546 	if (IS_ERR(new_root)) {
547 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
548 		ret = PTR_ERR(new_root);
549 		goto fail;
550 	}
551 
552 	btrfs_record_root_in_trans(trans, new_root);
553 
554 	ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid);
555 	if (ret) {
556 		/* We potentially lose an unused inode item here */
557 		btrfs_abort_transaction(trans, root, ret);
558 		goto fail;
559 	}
560 
561 	/*
562 	 * insert the directory item
563 	 */
564 	ret = btrfs_set_inode_index(dir, &index);
565 	if (ret) {
566 		btrfs_abort_transaction(trans, root, ret);
567 		goto fail;
568 	}
569 
570 	ret = btrfs_insert_dir_item(trans, root,
571 				    name, namelen, dir, &key,
572 				    BTRFS_FT_DIR, index);
573 	if (ret) {
574 		btrfs_abort_transaction(trans, root, ret);
575 		goto fail;
576 	}
577 
578 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
579 	ret = btrfs_update_inode(trans, root, dir);
580 	BUG_ON(ret);
581 
582 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
583 				 objectid, root->root_key.objectid,
584 				 btrfs_ino(dir), index, name, namelen);
585 	BUG_ON(ret);
586 
587 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
588 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
589 				  objectid);
590 	if (ret)
591 		btrfs_abort_transaction(trans, root, ret);
592 
593 fail:
594 	trans->block_rsv = NULL;
595 	trans->bytes_reserved = 0;
596 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
597 
598 	if (async_transid) {
599 		*async_transid = trans->transid;
600 		err = btrfs_commit_transaction_async(trans, root, 1);
601 		if (err)
602 			err = btrfs_commit_transaction(trans, root);
603 	} else {
604 		err = btrfs_commit_transaction(trans, root);
605 	}
606 	if (err && !ret)
607 		ret = err;
608 
609 	if (!ret) {
610 		inode = btrfs_lookup_dentry(dir, dentry);
611 		if (IS_ERR(inode))
612 			return PTR_ERR(inode);
613 		d_instantiate(dentry, inode);
614 	}
615 	return ret;
616 }
617 
618 static void btrfs_wait_nocow_write(struct btrfs_root *root)
619 {
620 	s64 writers;
621 	DEFINE_WAIT(wait);
622 
623 	do {
624 		prepare_to_wait(&root->subv_writers->wait, &wait,
625 				TASK_UNINTERRUPTIBLE);
626 
627 		writers = percpu_counter_sum(&root->subv_writers->counter);
628 		if (writers)
629 			schedule();
630 
631 		finish_wait(&root->subv_writers->wait, &wait);
632 	} while (writers);
633 }
634 
635 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
636 			   struct dentry *dentry, char *name, int namelen,
637 			   u64 *async_transid, bool readonly,
638 			   struct btrfs_qgroup_inherit *inherit)
639 {
640 	struct inode *inode;
641 	struct btrfs_pending_snapshot *pending_snapshot;
642 	struct btrfs_trans_handle *trans;
643 	int ret;
644 
645 	if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
646 		return -EINVAL;
647 
648 	atomic_inc(&root->will_be_snapshoted);
649 	smp_mb__after_atomic();
650 	btrfs_wait_nocow_write(root);
651 
652 	ret = btrfs_start_delalloc_inodes(root, 0);
653 	if (ret)
654 		goto out;
655 
656 	btrfs_wait_ordered_extents(root, -1);
657 
658 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
659 	if (!pending_snapshot) {
660 		ret = -ENOMEM;
661 		goto out;
662 	}
663 
664 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
665 			     BTRFS_BLOCK_RSV_TEMP);
666 	/*
667 	 * 1 - parent dir inode
668 	 * 2 - dir entries
669 	 * 1 - root item
670 	 * 2 - root ref/backref
671 	 * 1 - root of snapshot
672 	 * 1 - UUID item
673 	 */
674 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
675 					&pending_snapshot->block_rsv, 8,
676 					&pending_snapshot->qgroup_reserved,
677 					false);
678 	if (ret)
679 		goto free;
680 
681 	pending_snapshot->dentry = dentry;
682 	pending_snapshot->root = root;
683 	pending_snapshot->readonly = readonly;
684 	pending_snapshot->dir = dir;
685 	pending_snapshot->inherit = inherit;
686 
687 	trans = btrfs_start_transaction(root, 0);
688 	if (IS_ERR(trans)) {
689 		ret = PTR_ERR(trans);
690 		goto fail;
691 	}
692 
693 	spin_lock(&root->fs_info->trans_lock);
694 	list_add(&pending_snapshot->list,
695 		 &trans->transaction->pending_snapshots);
696 	spin_unlock(&root->fs_info->trans_lock);
697 	if (async_transid) {
698 		*async_transid = trans->transid;
699 		ret = btrfs_commit_transaction_async(trans,
700 				     root->fs_info->extent_root, 1);
701 		if (ret)
702 			ret = btrfs_commit_transaction(trans, root);
703 	} else {
704 		ret = btrfs_commit_transaction(trans,
705 					       root->fs_info->extent_root);
706 	}
707 	if (ret)
708 		goto fail;
709 
710 	ret = pending_snapshot->error;
711 	if (ret)
712 		goto fail;
713 
714 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
715 	if (IS_ERR(inode)) {
716 		ret = PTR_ERR(inode);
717 		goto fail;
718 	}
719 
720 	d_instantiate(dentry, inode);
721 	ret = 0;
722 fail:
723 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
724 					 &pending_snapshot->block_rsv,
725 					 pending_snapshot->qgroup_reserved);
726 free:
727 	kfree(pending_snapshot);
728 out:
729 	atomic_dec(&root->will_be_snapshoted);
730 	return ret;
731 }
732 
733 /*  copy of check_sticky in fs/namei.c()
734 * It's inline, so penalty for filesystems that don't use sticky bit is
735 * minimal.
736 */
737 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
738 {
739 	kuid_t fsuid = current_fsuid();
740 
741 	if (!(dir->i_mode & S_ISVTX))
742 		return 0;
743 	if (uid_eq(inode->i_uid, fsuid))
744 		return 0;
745 	if (uid_eq(dir->i_uid, fsuid))
746 		return 0;
747 	return !capable(CAP_FOWNER);
748 }
749 
750 /*  copy of may_delete in fs/namei.c()
751  *	Check whether we can remove a link victim from directory dir, check
752  *  whether the type of victim is right.
753  *  1. We can't do it if dir is read-only (done in permission())
754  *  2. We should have write and exec permissions on dir
755  *  3. We can't remove anything from append-only dir
756  *  4. We can't do anything with immutable dir (done in permission())
757  *  5. If the sticky bit on dir is set we should either
758  *	a. be owner of dir, or
759  *	b. be owner of victim, or
760  *	c. have CAP_FOWNER capability
761  *  6. If the victim is append-only or immutable we can't do antyhing with
762  *     links pointing to it.
763  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
764  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
765  *  9. We can't remove a root or mountpoint.
766  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
767  *     nfs_async_unlink().
768  */
769 
770 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
771 {
772 	int error;
773 
774 	if (!victim->d_inode)
775 		return -ENOENT;
776 
777 	BUG_ON(victim->d_parent->d_inode != dir);
778 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
779 
780 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
781 	if (error)
782 		return error;
783 	if (IS_APPEND(dir))
784 		return -EPERM;
785 	if (btrfs_check_sticky(dir, victim->d_inode)||
786 		IS_APPEND(victim->d_inode)||
787 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
788 		return -EPERM;
789 	if (isdir) {
790 		if (!S_ISDIR(victim->d_inode->i_mode))
791 			return -ENOTDIR;
792 		if (IS_ROOT(victim))
793 			return -EBUSY;
794 	} else if (S_ISDIR(victim->d_inode->i_mode))
795 		return -EISDIR;
796 	if (IS_DEADDIR(dir))
797 		return -ENOENT;
798 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
799 		return -EBUSY;
800 	return 0;
801 }
802 
803 /* copy of may_create in fs/namei.c() */
804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
805 {
806 	if (child->d_inode)
807 		return -EEXIST;
808 	if (IS_DEADDIR(dir))
809 		return -ENOENT;
810 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
811 }
812 
813 /*
814  * Create a new subvolume below @parent.  This is largely modeled after
815  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
816  * inside this filesystem so it's quite a bit simpler.
817  */
818 static noinline int btrfs_mksubvol(struct path *parent,
819 				   char *name, int namelen,
820 				   struct btrfs_root *snap_src,
821 				   u64 *async_transid, bool readonly,
822 				   struct btrfs_qgroup_inherit *inherit)
823 {
824 	struct inode *dir  = parent->dentry->d_inode;
825 	struct dentry *dentry;
826 	int error;
827 
828 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
829 	if (error == -EINTR)
830 		return error;
831 
832 	dentry = lookup_one_len(name, parent->dentry, namelen);
833 	error = PTR_ERR(dentry);
834 	if (IS_ERR(dentry))
835 		goto out_unlock;
836 
837 	error = -EEXIST;
838 	if (dentry->d_inode)
839 		goto out_dput;
840 
841 	error = btrfs_may_create(dir, dentry);
842 	if (error)
843 		goto out_dput;
844 
845 	/*
846 	 * even if this name doesn't exist, we may get hash collisions.
847 	 * check for them now when we can safely fail
848 	 */
849 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
850 					       dir->i_ino, name,
851 					       namelen);
852 	if (error)
853 		goto out_dput;
854 
855 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
856 
857 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
858 		goto out_up_read;
859 
860 	if (snap_src) {
861 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
862 					async_transid, readonly, inherit);
863 	} else {
864 		error = create_subvol(dir, dentry, name, namelen,
865 				      async_transid, inherit);
866 	}
867 	if (!error)
868 		fsnotify_mkdir(dir, dentry);
869 out_up_read:
870 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
871 out_dput:
872 	dput(dentry);
873 out_unlock:
874 	mutex_unlock(&dir->i_mutex);
875 	return error;
876 }
877 
878 /*
879  * When we're defragging a range, we don't want to kick it off again
880  * if it is really just waiting for delalloc to send it down.
881  * If we find a nice big extent or delalloc range for the bytes in the
882  * file you want to defrag, we return 0 to let you know to skip this
883  * part of the file
884  */
885 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
886 {
887 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
888 	struct extent_map *em = NULL;
889 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
890 	u64 end;
891 
892 	read_lock(&em_tree->lock);
893 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
894 	read_unlock(&em_tree->lock);
895 
896 	if (em) {
897 		end = extent_map_end(em);
898 		free_extent_map(em);
899 		if (end - offset > thresh)
900 			return 0;
901 	}
902 	/* if we already have a nice delalloc here, just stop */
903 	thresh /= 2;
904 	end = count_range_bits(io_tree, &offset, offset + thresh,
905 			       thresh, EXTENT_DELALLOC, 1);
906 	if (end >= thresh)
907 		return 0;
908 	return 1;
909 }
910 
911 /*
912  * helper function to walk through a file and find extents
913  * newer than a specific transid, and smaller than thresh.
914  *
915  * This is used by the defragging code to find new and small
916  * extents
917  */
918 static int find_new_extents(struct btrfs_root *root,
919 			    struct inode *inode, u64 newer_than,
920 			    u64 *off, int thresh)
921 {
922 	struct btrfs_path *path;
923 	struct btrfs_key min_key;
924 	struct extent_buffer *leaf;
925 	struct btrfs_file_extent_item *extent;
926 	int type;
927 	int ret;
928 	u64 ino = btrfs_ino(inode);
929 
930 	path = btrfs_alloc_path();
931 	if (!path)
932 		return -ENOMEM;
933 
934 	min_key.objectid = ino;
935 	min_key.type = BTRFS_EXTENT_DATA_KEY;
936 	min_key.offset = *off;
937 
938 	while (1) {
939 		path->keep_locks = 1;
940 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
941 		if (ret != 0)
942 			goto none;
943 		path->keep_locks = 0;
944 		btrfs_unlock_up_safe(path, 1);
945 process_slot:
946 		if (min_key.objectid != ino)
947 			goto none;
948 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
949 			goto none;
950 
951 		leaf = path->nodes[0];
952 		extent = btrfs_item_ptr(leaf, path->slots[0],
953 					struct btrfs_file_extent_item);
954 
955 		type = btrfs_file_extent_type(leaf, extent);
956 		if (type == BTRFS_FILE_EXTENT_REG &&
957 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
958 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
959 			*off = min_key.offset;
960 			btrfs_free_path(path);
961 			return 0;
962 		}
963 
964 		path->slots[0]++;
965 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
966 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
967 			goto process_slot;
968 		}
969 
970 		if (min_key.offset == (u64)-1)
971 			goto none;
972 
973 		min_key.offset++;
974 		btrfs_release_path(path);
975 	}
976 none:
977 	btrfs_free_path(path);
978 	return -ENOENT;
979 }
980 
981 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
982 {
983 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
984 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
985 	struct extent_map *em;
986 	u64 len = PAGE_CACHE_SIZE;
987 
988 	/*
989 	 * hopefully we have this extent in the tree already, try without
990 	 * the full extent lock
991 	 */
992 	read_lock(&em_tree->lock);
993 	em = lookup_extent_mapping(em_tree, start, len);
994 	read_unlock(&em_tree->lock);
995 
996 	if (!em) {
997 		struct extent_state *cached = NULL;
998 		u64 end = start + len - 1;
999 
1000 		/* get the big lock and read metadata off disk */
1001 		lock_extent_bits(io_tree, start, end, 0, &cached);
1002 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
1003 		unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS);
1004 
1005 		if (IS_ERR(em))
1006 			return NULL;
1007 	}
1008 
1009 	return em;
1010 }
1011 
1012 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1013 {
1014 	struct extent_map *next;
1015 	bool ret = true;
1016 
1017 	/* this is the last extent */
1018 	if (em->start + em->len >= i_size_read(inode))
1019 		return false;
1020 
1021 	next = defrag_lookup_extent(inode, em->start + em->len);
1022 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE ||
1023 	    (em->block_start + em->block_len == next->block_start))
1024 		ret = false;
1025 
1026 	free_extent_map(next);
1027 	return ret;
1028 }
1029 
1030 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
1031 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1032 			       int compress)
1033 {
1034 	struct extent_map *em;
1035 	int ret = 1;
1036 	bool next_mergeable = true;
1037 
1038 	/*
1039 	 * make sure that once we start defragging an extent, we keep on
1040 	 * defragging it
1041 	 */
1042 	if (start < *defrag_end)
1043 		return 1;
1044 
1045 	*skip = 0;
1046 
1047 	em = defrag_lookup_extent(inode, start);
1048 	if (!em)
1049 		return 0;
1050 
1051 	/* this will cover holes, and inline extents */
1052 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1053 		ret = 0;
1054 		goto out;
1055 	}
1056 
1057 	next_mergeable = defrag_check_next_extent(inode, em);
1058 
1059 	/*
1060 	 * we hit a real extent, if it is big or the next extent is not a
1061 	 * real extent, don't bother defragging it
1062 	 */
1063 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1064 	    (em->len >= thresh || !next_mergeable))
1065 		ret = 0;
1066 out:
1067 	/*
1068 	 * last_len ends up being a counter of how many bytes we've defragged.
1069 	 * every time we choose not to defrag an extent, we reset *last_len
1070 	 * so that the next tiny extent will force a defrag.
1071 	 *
1072 	 * The end result of this is that tiny extents before a single big
1073 	 * extent will force at least part of that big extent to be defragged.
1074 	 */
1075 	if (ret) {
1076 		*defrag_end = extent_map_end(em);
1077 	} else {
1078 		*last_len = 0;
1079 		*skip = extent_map_end(em);
1080 		*defrag_end = 0;
1081 	}
1082 
1083 	free_extent_map(em);
1084 	return ret;
1085 }
1086 
1087 /*
1088  * it doesn't do much good to defrag one or two pages
1089  * at a time.  This pulls in a nice chunk of pages
1090  * to COW and defrag.
1091  *
1092  * It also makes sure the delalloc code has enough
1093  * dirty data to avoid making new small extents as part
1094  * of the defrag
1095  *
1096  * It's a good idea to start RA on this range
1097  * before calling this.
1098  */
1099 static int cluster_pages_for_defrag(struct inode *inode,
1100 				    struct page **pages,
1101 				    unsigned long start_index,
1102 				    unsigned long num_pages)
1103 {
1104 	unsigned long file_end;
1105 	u64 isize = i_size_read(inode);
1106 	u64 page_start;
1107 	u64 page_end;
1108 	u64 page_cnt;
1109 	int ret;
1110 	int i;
1111 	int i_done;
1112 	struct btrfs_ordered_extent *ordered;
1113 	struct extent_state *cached_state = NULL;
1114 	struct extent_io_tree *tree;
1115 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1116 
1117 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1118 	if (!isize || start_index > file_end)
1119 		return 0;
1120 
1121 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1122 
1123 	ret = btrfs_delalloc_reserve_space(inode,
1124 					   page_cnt << PAGE_CACHE_SHIFT);
1125 	if (ret)
1126 		return ret;
1127 	i_done = 0;
1128 	tree = &BTRFS_I(inode)->io_tree;
1129 
1130 	/* step one, lock all the pages */
1131 	for (i = 0; i < page_cnt; i++) {
1132 		struct page *page;
1133 again:
1134 		page = find_or_create_page(inode->i_mapping,
1135 					   start_index + i, mask);
1136 		if (!page)
1137 			break;
1138 
1139 		page_start = page_offset(page);
1140 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1141 		while (1) {
1142 			lock_extent_bits(tree, page_start, page_end,
1143 					 0, &cached_state);
1144 			ordered = btrfs_lookup_ordered_extent(inode,
1145 							      page_start);
1146 			unlock_extent_cached(tree, page_start, page_end,
1147 					     &cached_state, GFP_NOFS);
1148 			if (!ordered)
1149 				break;
1150 
1151 			unlock_page(page);
1152 			btrfs_start_ordered_extent(inode, ordered, 1);
1153 			btrfs_put_ordered_extent(ordered);
1154 			lock_page(page);
1155 			/*
1156 			 * we unlocked the page above, so we need check if
1157 			 * it was released or not.
1158 			 */
1159 			if (page->mapping != inode->i_mapping) {
1160 				unlock_page(page);
1161 				page_cache_release(page);
1162 				goto again;
1163 			}
1164 		}
1165 
1166 		if (!PageUptodate(page)) {
1167 			btrfs_readpage(NULL, page);
1168 			lock_page(page);
1169 			if (!PageUptodate(page)) {
1170 				unlock_page(page);
1171 				page_cache_release(page);
1172 				ret = -EIO;
1173 				break;
1174 			}
1175 		}
1176 
1177 		if (page->mapping != inode->i_mapping) {
1178 			unlock_page(page);
1179 			page_cache_release(page);
1180 			goto again;
1181 		}
1182 
1183 		pages[i] = page;
1184 		i_done++;
1185 	}
1186 	if (!i_done || ret)
1187 		goto out;
1188 
1189 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1190 		goto out;
1191 
1192 	/*
1193 	 * so now we have a nice long stream of locked
1194 	 * and up to date pages, lets wait on them
1195 	 */
1196 	for (i = 0; i < i_done; i++)
1197 		wait_on_page_writeback(pages[i]);
1198 
1199 	page_start = page_offset(pages[0]);
1200 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1201 
1202 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1203 			 page_start, page_end - 1, 0, &cached_state);
1204 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1205 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1206 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1207 			  &cached_state, GFP_NOFS);
1208 
1209 	if (i_done != page_cnt) {
1210 		spin_lock(&BTRFS_I(inode)->lock);
1211 		BTRFS_I(inode)->outstanding_extents++;
1212 		spin_unlock(&BTRFS_I(inode)->lock);
1213 		btrfs_delalloc_release_space(inode,
1214 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1215 	}
1216 
1217 
1218 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1219 			  &cached_state, GFP_NOFS);
1220 
1221 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1222 			     page_start, page_end - 1, &cached_state,
1223 			     GFP_NOFS);
1224 
1225 	for (i = 0; i < i_done; i++) {
1226 		clear_page_dirty_for_io(pages[i]);
1227 		ClearPageChecked(pages[i]);
1228 		set_page_extent_mapped(pages[i]);
1229 		set_page_dirty(pages[i]);
1230 		unlock_page(pages[i]);
1231 		page_cache_release(pages[i]);
1232 	}
1233 	return i_done;
1234 out:
1235 	for (i = 0; i < i_done; i++) {
1236 		unlock_page(pages[i]);
1237 		page_cache_release(pages[i]);
1238 	}
1239 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1240 	return ret;
1241 
1242 }
1243 
1244 int btrfs_defrag_file(struct inode *inode, struct file *file,
1245 		      struct btrfs_ioctl_defrag_range_args *range,
1246 		      u64 newer_than, unsigned long max_to_defrag)
1247 {
1248 	struct btrfs_root *root = BTRFS_I(inode)->root;
1249 	struct file_ra_state *ra = NULL;
1250 	unsigned long last_index;
1251 	u64 isize = i_size_read(inode);
1252 	u64 last_len = 0;
1253 	u64 skip = 0;
1254 	u64 defrag_end = 0;
1255 	u64 newer_off = range->start;
1256 	unsigned long i;
1257 	unsigned long ra_index = 0;
1258 	int ret;
1259 	int defrag_count = 0;
1260 	int compress_type = BTRFS_COMPRESS_ZLIB;
1261 	int extent_thresh = range->extent_thresh;
1262 	unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1263 	unsigned long cluster = max_cluster;
1264 	u64 new_align = ~((u64)128 * 1024 - 1);
1265 	struct page **pages = NULL;
1266 
1267 	if (isize == 0)
1268 		return 0;
1269 
1270 	if (range->start >= isize)
1271 		return -EINVAL;
1272 
1273 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1274 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1275 			return -EINVAL;
1276 		if (range->compress_type)
1277 			compress_type = range->compress_type;
1278 	}
1279 
1280 	if (extent_thresh == 0)
1281 		extent_thresh = 256 * 1024;
1282 
1283 	/*
1284 	 * if we were not given a file, allocate a readahead
1285 	 * context
1286 	 */
1287 	if (!file) {
1288 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1289 		if (!ra)
1290 			return -ENOMEM;
1291 		file_ra_state_init(ra, inode->i_mapping);
1292 	} else {
1293 		ra = &file->f_ra;
1294 	}
1295 
1296 	pages = kmalloc_array(max_cluster, sizeof(struct page *),
1297 			GFP_NOFS);
1298 	if (!pages) {
1299 		ret = -ENOMEM;
1300 		goto out_ra;
1301 	}
1302 
1303 	/* find the last page to defrag */
1304 	if (range->start + range->len > range->start) {
1305 		last_index = min_t(u64, isize - 1,
1306 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1307 	} else {
1308 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1309 	}
1310 
1311 	if (newer_than) {
1312 		ret = find_new_extents(root, inode, newer_than,
1313 				       &newer_off, 64 * 1024);
1314 		if (!ret) {
1315 			range->start = newer_off;
1316 			/*
1317 			 * we always align our defrag to help keep
1318 			 * the extents in the file evenly spaced
1319 			 */
1320 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1321 		} else
1322 			goto out_ra;
1323 	} else {
1324 		i = range->start >> PAGE_CACHE_SHIFT;
1325 	}
1326 	if (!max_to_defrag)
1327 		max_to_defrag = last_index + 1;
1328 
1329 	/*
1330 	 * make writeback starts from i, so the defrag range can be
1331 	 * written sequentially.
1332 	 */
1333 	if (i < inode->i_mapping->writeback_index)
1334 		inode->i_mapping->writeback_index = i;
1335 
1336 	while (i <= last_index && defrag_count < max_to_defrag &&
1337 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1338 		PAGE_CACHE_SHIFT)) {
1339 		/*
1340 		 * make sure we stop running if someone unmounts
1341 		 * the FS
1342 		 */
1343 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1344 			break;
1345 
1346 		if (btrfs_defrag_cancelled(root->fs_info)) {
1347 			printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n");
1348 			ret = -EAGAIN;
1349 			break;
1350 		}
1351 
1352 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1353 					 extent_thresh, &last_len, &skip,
1354 					 &defrag_end, range->flags &
1355 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1356 			unsigned long next;
1357 			/*
1358 			 * the should_defrag function tells us how much to skip
1359 			 * bump our counter by the suggested amount
1360 			 */
1361 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1362 			i = max(i + 1, next);
1363 			continue;
1364 		}
1365 
1366 		if (!newer_than) {
1367 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1368 				   PAGE_CACHE_SHIFT) - i;
1369 			cluster = min(cluster, max_cluster);
1370 		} else {
1371 			cluster = max_cluster;
1372 		}
1373 
1374 		if (i + cluster > ra_index) {
1375 			ra_index = max(i, ra_index);
1376 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1377 				       cluster);
1378 			ra_index += max_cluster;
1379 		}
1380 
1381 		mutex_lock(&inode->i_mutex);
1382 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1383 			BTRFS_I(inode)->force_compress = compress_type;
1384 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1385 		if (ret < 0) {
1386 			mutex_unlock(&inode->i_mutex);
1387 			goto out_ra;
1388 		}
1389 
1390 		defrag_count += ret;
1391 		balance_dirty_pages_ratelimited(inode->i_mapping);
1392 		mutex_unlock(&inode->i_mutex);
1393 
1394 		if (newer_than) {
1395 			if (newer_off == (u64)-1)
1396 				break;
1397 
1398 			if (ret > 0)
1399 				i += ret;
1400 
1401 			newer_off = max(newer_off + 1,
1402 					(u64)i << PAGE_CACHE_SHIFT);
1403 
1404 			ret = find_new_extents(root, inode,
1405 					       newer_than, &newer_off,
1406 					       64 * 1024);
1407 			if (!ret) {
1408 				range->start = newer_off;
1409 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1410 			} else {
1411 				break;
1412 			}
1413 		} else {
1414 			if (ret > 0) {
1415 				i += ret;
1416 				last_len += ret << PAGE_CACHE_SHIFT;
1417 			} else {
1418 				i++;
1419 				last_len = 0;
1420 			}
1421 		}
1422 	}
1423 
1424 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1425 		filemap_flush(inode->i_mapping);
1426 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1427 			     &BTRFS_I(inode)->runtime_flags))
1428 			filemap_flush(inode->i_mapping);
1429 	}
1430 
1431 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1432 		/* the filemap_flush will queue IO into the worker threads, but
1433 		 * we have to make sure the IO is actually started and that
1434 		 * ordered extents get created before we return
1435 		 */
1436 		atomic_inc(&root->fs_info->async_submit_draining);
1437 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1438 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1439 			wait_event(root->fs_info->async_submit_wait,
1440 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1441 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1442 		}
1443 		atomic_dec(&root->fs_info->async_submit_draining);
1444 	}
1445 
1446 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1447 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1448 	}
1449 
1450 	ret = defrag_count;
1451 
1452 out_ra:
1453 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1454 		mutex_lock(&inode->i_mutex);
1455 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1456 		mutex_unlock(&inode->i_mutex);
1457 	}
1458 	if (!file)
1459 		kfree(ra);
1460 	kfree(pages);
1461 	return ret;
1462 }
1463 
1464 static noinline int btrfs_ioctl_resize(struct file *file,
1465 					void __user *arg)
1466 {
1467 	u64 new_size;
1468 	u64 old_size;
1469 	u64 devid = 1;
1470 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1471 	struct btrfs_ioctl_vol_args *vol_args;
1472 	struct btrfs_trans_handle *trans;
1473 	struct btrfs_device *device = NULL;
1474 	char *sizestr;
1475 	char *retptr;
1476 	char *devstr = NULL;
1477 	int ret = 0;
1478 	int mod = 0;
1479 
1480 	if (!capable(CAP_SYS_ADMIN))
1481 		return -EPERM;
1482 
1483 	ret = mnt_want_write_file(file);
1484 	if (ret)
1485 		return ret;
1486 
1487 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1488 			1)) {
1489 		mnt_drop_write_file(file);
1490 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1491 	}
1492 
1493 	mutex_lock(&root->fs_info->volume_mutex);
1494 	vol_args = memdup_user(arg, sizeof(*vol_args));
1495 	if (IS_ERR(vol_args)) {
1496 		ret = PTR_ERR(vol_args);
1497 		goto out;
1498 	}
1499 
1500 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1501 
1502 	sizestr = vol_args->name;
1503 	devstr = strchr(sizestr, ':');
1504 	if (devstr) {
1505 		sizestr = devstr + 1;
1506 		*devstr = '\0';
1507 		devstr = vol_args->name;
1508 		ret = kstrtoull(devstr, 10, &devid);
1509 		if (ret)
1510 			goto out_free;
1511 		if (!devid) {
1512 			ret = -EINVAL;
1513 			goto out_free;
1514 		}
1515 		btrfs_info(root->fs_info, "resizing devid %llu", devid);
1516 	}
1517 
1518 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1519 	if (!device) {
1520 		btrfs_info(root->fs_info, "resizer unable to find device %llu",
1521 		       devid);
1522 		ret = -ENODEV;
1523 		goto out_free;
1524 	}
1525 
1526 	if (!device->writeable) {
1527 		btrfs_info(root->fs_info,
1528 			   "resizer unable to apply on readonly device %llu",
1529 		       devid);
1530 		ret = -EPERM;
1531 		goto out_free;
1532 	}
1533 
1534 	if (!strcmp(sizestr, "max"))
1535 		new_size = device->bdev->bd_inode->i_size;
1536 	else {
1537 		if (sizestr[0] == '-') {
1538 			mod = -1;
1539 			sizestr++;
1540 		} else if (sizestr[0] == '+') {
1541 			mod = 1;
1542 			sizestr++;
1543 		}
1544 		new_size = memparse(sizestr, &retptr);
1545 		if (*retptr != '\0' || new_size == 0) {
1546 			ret = -EINVAL;
1547 			goto out_free;
1548 		}
1549 	}
1550 
1551 	if (device->is_tgtdev_for_dev_replace) {
1552 		ret = -EPERM;
1553 		goto out_free;
1554 	}
1555 
1556 	old_size = device->total_bytes;
1557 
1558 	if (mod < 0) {
1559 		if (new_size > old_size) {
1560 			ret = -EINVAL;
1561 			goto out_free;
1562 		}
1563 		new_size = old_size - new_size;
1564 	} else if (mod > 0) {
1565 		if (new_size > ULLONG_MAX - old_size) {
1566 			ret = -ERANGE;
1567 			goto out_free;
1568 		}
1569 		new_size = old_size + new_size;
1570 	}
1571 
1572 	if (new_size < 256 * 1024 * 1024) {
1573 		ret = -EINVAL;
1574 		goto out_free;
1575 	}
1576 	if (new_size > device->bdev->bd_inode->i_size) {
1577 		ret = -EFBIG;
1578 		goto out_free;
1579 	}
1580 
1581 	do_div(new_size, root->sectorsize);
1582 	new_size *= root->sectorsize;
1583 
1584 	printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n",
1585 		      rcu_str_deref(device->name), new_size);
1586 
1587 	if (new_size > old_size) {
1588 		trans = btrfs_start_transaction(root, 0);
1589 		if (IS_ERR(trans)) {
1590 			ret = PTR_ERR(trans);
1591 			goto out_free;
1592 		}
1593 		ret = btrfs_grow_device(trans, device, new_size);
1594 		btrfs_commit_transaction(trans, root);
1595 	} else if (new_size < old_size) {
1596 		ret = btrfs_shrink_device(device, new_size);
1597 	} /* equal, nothing need to do */
1598 
1599 out_free:
1600 	kfree(vol_args);
1601 out:
1602 	mutex_unlock(&root->fs_info->volume_mutex);
1603 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1604 	mnt_drop_write_file(file);
1605 	return ret;
1606 }
1607 
1608 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1609 				char *name, unsigned long fd, int subvol,
1610 				u64 *transid, bool readonly,
1611 				struct btrfs_qgroup_inherit *inherit)
1612 {
1613 	int namelen;
1614 	int ret = 0;
1615 
1616 	ret = mnt_want_write_file(file);
1617 	if (ret)
1618 		goto out;
1619 
1620 	namelen = strlen(name);
1621 	if (strchr(name, '/')) {
1622 		ret = -EINVAL;
1623 		goto out_drop_write;
1624 	}
1625 
1626 	if (name[0] == '.' &&
1627 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1628 		ret = -EEXIST;
1629 		goto out_drop_write;
1630 	}
1631 
1632 	if (subvol) {
1633 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1634 				     NULL, transid, readonly, inherit);
1635 	} else {
1636 		struct fd src = fdget(fd);
1637 		struct inode *src_inode;
1638 		if (!src.file) {
1639 			ret = -EINVAL;
1640 			goto out_drop_write;
1641 		}
1642 
1643 		src_inode = file_inode(src.file);
1644 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1645 			btrfs_info(BTRFS_I(src_inode)->root->fs_info,
1646 				   "Snapshot src from another FS");
1647 			ret = -EXDEV;
1648 		} else if (!inode_owner_or_capable(src_inode)) {
1649 			/*
1650 			 * Subvolume creation is not restricted, but snapshots
1651 			 * are limited to own subvolumes only
1652 			 */
1653 			ret = -EPERM;
1654 		} else {
1655 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1656 					     BTRFS_I(src_inode)->root,
1657 					     transid, readonly, inherit);
1658 		}
1659 		fdput(src);
1660 	}
1661 out_drop_write:
1662 	mnt_drop_write_file(file);
1663 out:
1664 	return ret;
1665 }
1666 
1667 static noinline int btrfs_ioctl_snap_create(struct file *file,
1668 					    void __user *arg, int subvol)
1669 {
1670 	struct btrfs_ioctl_vol_args *vol_args;
1671 	int ret;
1672 
1673 	vol_args = memdup_user(arg, sizeof(*vol_args));
1674 	if (IS_ERR(vol_args))
1675 		return PTR_ERR(vol_args);
1676 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1677 
1678 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1679 					      vol_args->fd, subvol,
1680 					      NULL, false, NULL);
1681 
1682 	kfree(vol_args);
1683 	return ret;
1684 }
1685 
1686 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1687 					       void __user *arg, int subvol)
1688 {
1689 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1690 	int ret;
1691 	u64 transid = 0;
1692 	u64 *ptr = NULL;
1693 	bool readonly = false;
1694 	struct btrfs_qgroup_inherit *inherit = NULL;
1695 
1696 	vol_args = memdup_user(arg, sizeof(*vol_args));
1697 	if (IS_ERR(vol_args))
1698 		return PTR_ERR(vol_args);
1699 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1700 
1701 	if (vol_args->flags &
1702 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1703 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1704 		ret = -EOPNOTSUPP;
1705 		goto out;
1706 	}
1707 
1708 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1709 		ptr = &transid;
1710 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1711 		readonly = true;
1712 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1713 		if (vol_args->size > PAGE_CACHE_SIZE) {
1714 			ret = -EINVAL;
1715 			goto out;
1716 		}
1717 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1718 		if (IS_ERR(inherit)) {
1719 			ret = PTR_ERR(inherit);
1720 			goto out;
1721 		}
1722 	}
1723 
1724 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1725 					      vol_args->fd, subvol, ptr,
1726 					      readonly, inherit);
1727 
1728 	if (ret == 0 && ptr &&
1729 	    copy_to_user(arg +
1730 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1731 				  transid), ptr, sizeof(*ptr)))
1732 		ret = -EFAULT;
1733 out:
1734 	kfree(vol_args);
1735 	kfree(inherit);
1736 	return ret;
1737 }
1738 
1739 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1740 						void __user *arg)
1741 {
1742 	struct inode *inode = file_inode(file);
1743 	struct btrfs_root *root = BTRFS_I(inode)->root;
1744 	int ret = 0;
1745 	u64 flags = 0;
1746 
1747 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1748 		return -EINVAL;
1749 
1750 	down_read(&root->fs_info->subvol_sem);
1751 	if (btrfs_root_readonly(root))
1752 		flags |= BTRFS_SUBVOL_RDONLY;
1753 	up_read(&root->fs_info->subvol_sem);
1754 
1755 	if (copy_to_user(arg, &flags, sizeof(flags)))
1756 		ret = -EFAULT;
1757 
1758 	return ret;
1759 }
1760 
1761 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1762 					      void __user *arg)
1763 {
1764 	struct inode *inode = file_inode(file);
1765 	struct btrfs_root *root = BTRFS_I(inode)->root;
1766 	struct btrfs_trans_handle *trans;
1767 	u64 root_flags;
1768 	u64 flags;
1769 	int ret = 0;
1770 
1771 	if (!inode_owner_or_capable(inode))
1772 		return -EPERM;
1773 
1774 	ret = mnt_want_write_file(file);
1775 	if (ret)
1776 		goto out;
1777 
1778 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1779 		ret = -EINVAL;
1780 		goto out_drop_write;
1781 	}
1782 
1783 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1784 		ret = -EFAULT;
1785 		goto out_drop_write;
1786 	}
1787 
1788 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1789 		ret = -EINVAL;
1790 		goto out_drop_write;
1791 	}
1792 
1793 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1794 		ret = -EOPNOTSUPP;
1795 		goto out_drop_write;
1796 	}
1797 
1798 	down_write(&root->fs_info->subvol_sem);
1799 
1800 	/* nothing to do */
1801 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1802 		goto out_drop_sem;
1803 
1804 	root_flags = btrfs_root_flags(&root->root_item);
1805 	if (flags & BTRFS_SUBVOL_RDONLY) {
1806 		btrfs_set_root_flags(&root->root_item,
1807 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1808 	} else {
1809 		/*
1810 		 * Block RO -> RW transition if this subvolume is involved in
1811 		 * send
1812 		 */
1813 		spin_lock(&root->root_item_lock);
1814 		if (root->send_in_progress == 0) {
1815 			btrfs_set_root_flags(&root->root_item,
1816 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1817 			spin_unlock(&root->root_item_lock);
1818 		} else {
1819 			spin_unlock(&root->root_item_lock);
1820 			btrfs_warn(root->fs_info,
1821 			"Attempt to set subvolume %llu read-write during send",
1822 					root->root_key.objectid);
1823 			ret = -EPERM;
1824 			goto out_drop_sem;
1825 		}
1826 	}
1827 
1828 	trans = btrfs_start_transaction(root, 1);
1829 	if (IS_ERR(trans)) {
1830 		ret = PTR_ERR(trans);
1831 		goto out_reset;
1832 	}
1833 
1834 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1835 				&root->root_key, &root->root_item);
1836 
1837 	btrfs_commit_transaction(trans, root);
1838 out_reset:
1839 	if (ret)
1840 		btrfs_set_root_flags(&root->root_item, root_flags);
1841 out_drop_sem:
1842 	up_write(&root->fs_info->subvol_sem);
1843 out_drop_write:
1844 	mnt_drop_write_file(file);
1845 out:
1846 	return ret;
1847 }
1848 
1849 /*
1850  * helper to check if the subvolume references other subvolumes
1851  */
1852 static noinline int may_destroy_subvol(struct btrfs_root *root)
1853 {
1854 	struct btrfs_path *path;
1855 	struct btrfs_dir_item *di;
1856 	struct btrfs_key key;
1857 	u64 dir_id;
1858 	int ret;
1859 
1860 	path = btrfs_alloc_path();
1861 	if (!path)
1862 		return -ENOMEM;
1863 
1864 	/* Make sure this root isn't set as the default subvol */
1865 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1866 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1867 				   dir_id, "default", 7, 0);
1868 	if (di && !IS_ERR(di)) {
1869 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1870 		if (key.objectid == root->root_key.objectid) {
1871 			ret = -EPERM;
1872 			btrfs_err(root->fs_info, "deleting default subvolume "
1873 				  "%llu is not allowed", key.objectid);
1874 			goto out;
1875 		}
1876 		btrfs_release_path(path);
1877 	}
1878 
1879 	key.objectid = root->root_key.objectid;
1880 	key.type = BTRFS_ROOT_REF_KEY;
1881 	key.offset = (u64)-1;
1882 
1883 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1884 				&key, path, 0, 0);
1885 	if (ret < 0)
1886 		goto out;
1887 	BUG_ON(ret == 0);
1888 
1889 	ret = 0;
1890 	if (path->slots[0] > 0) {
1891 		path->slots[0]--;
1892 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1893 		if (key.objectid == root->root_key.objectid &&
1894 		    key.type == BTRFS_ROOT_REF_KEY)
1895 			ret = -ENOTEMPTY;
1896 	}
1897 out:
1898 	btrfs_free_path(path);
1899 	return ret;
1900 }
1901 
1902 static noinline int key_in_sk(struct btrfs_key *key,
1903 			      struct btrfs_ioctl_search_key *sk)
1904 {
1905 	struct btrfs_key test;
1906 	int ret;
1907 
1908 	test.objectid = sk->min_objectid;
1909 	test.type = sk->min_type;
1910 	test.offset = sk->min_offset;
1911 
1912 	ret = btrfs_comp_cpu_keys(key, &test);
1913 	if (ret < 0)
1914 		return 0;
1915 
1916 	test.objectid = sk->max_objectid;
1917 	test.type = sk->max_type;
1918 	test.offset = sk->max_offset;
1919 
1920 	ret = btrfs_comp_cpu_keys(key, &test);
1921 	if (ret > 0)
1922 		return 0;
1923 	return 1;
1924 }
1925 
1926 static noinline int copy_to_sk(struct btrfs_root *root,
1927 			       struct btrfs_path *path,
1928 			       struct btrfs_key *key,
1929 			       struct btrfs_ioctl_search_key *sk,
1930 			       size_t *buf_size,
1931 			       char __user *ubuf,
1932 			       unsigned long *sk_offset,
1933 			       int *num_found)
1934 {
1935 	u64 found_transid;
1936 	struct extent_buffer *leaf;
1937 	struct btrfs_ioctl_search_header sh;
1938 	unsigned long item_off;
1939 	unsigned long item_len;
1940 	int nritems;
1941 	int i;
1942 	int slot;
1943 	int ret = 0;
1944 
1945 	leaf = path->nodes[0];
1946 	slot = path->slots[0];
1947 	nritems = btrfs_header_nritems(leaf);
1948 
1949 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1950 		i = nritems;
1951 		goto advance_key;
1952 	}
1953 	found_transid = btrfs_header_generation(leaf);
1954 
1955 	for (i = slot; i < nritems; i++) {
1956 		item_off = btrfs_item_ptr_offset(leaf, i);
1957 		item_len = btrfs_item_size_nr(leaf, i);
1958 
1959 		btrfs_item_key_to_cpu(leaf, key, i);
1960 		if (!key_in_sk(key, sk))
1961 			continue;
1962 
1963 		if (sizeof(sh) + item_len > *buf_size) {
1964 			if (*num_found) {
1965 				ret = 1;
1966 				goto out;
1967 			}
1968 
1969 			/*
1970 			 * return one empty item back for v1, which does not
1971 			 * handle -EOVERFLOW
1972 			 */
1973 
1974 			*buf_size = sizeof(sh) + item_len;
1975 			item_len = 0;
1976 			ret = -EOVERFLOW;
1977 		}
1978 
1979 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
1980 			ret = 1;
1981 			goto out;
1982 		}
1983 
1984 		sh.objectid = key->objectid;
1985 		sh.offset = key->offset;
1986 		sh.type = key->type;
1987 		sh.len = item_len;
1988 		sh.transid = found_transid;
1989 
1990 		/* copy search result header */
1991 		if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) {
1992 			ret = -EFAULT;
1993 			goto out;
1994 		}
1995 
1996 		*sk_offset += sizeof(sh);
1997 
1998 		if (item_len) {
1999 			char __user *up = ubuf + *sk_offset;
2000 			/* copy the item */
2001 			if (read_extent_buffer_to_user(leaf, up,
2002 						       item_off, item_len)) {
2003 				ret = -EFAULT;
2004 				goto out;
2005 			}
2006 
2007 			*sk_offset += item_len;
2008 		}
2009 		(*num_found)++;
2010 
2011 		if (ret) /* -EOVERFLOW from above */
2012 			goto out;
2013 
2014 		if (*num_found >= sk->nr_items) {
2015 			ret = 1;
2016 			goto out;
2017 		}
2018 	}
2019 advance_key:
2020 	ret = 0;
2021 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
2022 		key->offset++;
2023 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
2024 		key->offset = 0;
2025 		key->type++;
2026 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
2027 		key->offset = 0;
2028 		key->type = 0;
2029 		key->objectid++;
2030 	} else
2031 		ret = 1;
2032 out:
2033 	/*
2034 	 *  0: all items from this leaf copied, continue with next
2035 	 *  1: * more items can be copied, but unused buffer is too small
2036 	 *     * all items were found
2037 	 *     Either way, it will stops the loop which iterates to the next
2038 	 *     leaf
2039 	 *  -EOVERFLOW: item was to large for buffer
2040 	 *  -EFAULT: could not copy extent buffer back to userspace
2041 	 */
2042 	return ret;
2043 }
2044 
2045 static noinline int search_ioctl(struct inode *inode,
2046 				 struct btrfs_ioctl_search_key *sk,
2047 				 size_t *buf_size,
2048 				 char __user *ubuf)
2049 {
2050 	struct btrfs_root *root;
2051 	struct btrfs_key key;
2052 	struct btrfs_path *path;
2053 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
2054 	int ret;
2055 	int num_found = 0;
2056 	unsigned long sk_offset = 0;
2057 
2058 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2059 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2060 		return -EOVERFLOW;
2061 	}
2062 
2063 	path = btrfs_alloc_path();
2064 	if (!path)
2065 		return -ENOMEM;
2066 
2067 	if (sk->tree_id == 0) {
2068 		/* search the root of the inode that was passed */
2069 		root = BTRFS_I(inode)->root;
2070 	} else {
2071 		key.objectid = sk->tree_id;
2072 		key.type = BTRFS_ROOT_ITEM_KEY;
2073 		key.offset = (u64)-1;
2074 		root = btrfs_read_fs_root_no_name(info, &key);
2075 		if (IS_ERR(root)) {
2076 			printk(KERN_ERR "BTRFS: could not find root %llu\n",
2077 			       sk->tree_id);
2078 			btrfs_free_path(path);
2079 			return -ENOENT;
2080 		}
2081 	}
2082 
2083 	key.objectid = sk->min_objectid;
2084 	key.type = sk->min_type;
2085 	key.offset = sk->min_offset;
2086 
2087 	path->keep_locks = 1;
2088 
2089 	while (1) {
2090 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2091 		if (ret != 0) {
2092 			if (ret > 0)
2093 				ret = 0;
2094 			goto err;
2095 		}
2096 		ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf,
2097 				 &sk_offset, &num_found);
2098 		btrfs_release_path(path);
2099 		if (ret)
2100 			break;
2101 
2102 	}
2103 	if (ret > 0)
2104 		ret = 0;
2105 err:
2106 	sk->nr_items = num_found;
2107 	btrfs_free_path(path);
2108 	return ret;
2109 }
2110 
2111 static noinline int btrfs_ioctl_tree_search(struct file *file,
2112 					   void __user *argp)
2113 {
2114 	struct btrfs_ioctl_search_args __user *uargs;
2115 	struct btrfs_ioctl_search_key sk;
2116 	struct inode *inode;
2117 	int ret;
2118 	size_t buf_size;
2119 
2120 	if (!capable(CAP_SYS_ADMIN))
2121 		return -EPERM;
2122 
2123 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2124 
2125 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2126 		return -EFAULT;
2127 
2128 	buf_size = sizeof(uargs->buf);
2129 
2130 	inode = file_inode(file);
2131 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2132 
2133 	/*
2134 	 * In the origin implementation an overflow is handled by returning a
2135 	 * search header with a len of zero, so reset ret.
2136 	 */
2137 	if (ret == -EOVERFLOW)
2138 		ret = 0;
2139 
2140 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2141 		ret = -EFAULT;
2142 	return ret;
2143 }
2144 
2145 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2146 					       void __user *argp)
2147 {
2148 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2149 	struct btrfs_ioctl_search_args_v2 args;
2150 	struct inode *inode;
2151 	int ret;
2152 	size_t buf_size;
2153 	const size_t buf_limit = 16 * 1024 * 1024;
2154 
2155 	if (!capable(CAP_SYS_ADMIN))
2156 		return -EPERM;
2157 
2158 	/* copy search header and buffer size */
2159 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2160 	if (copy_from_user(&args, uarg, sizeof(args)))
2161 		return -EFAULT;
2162 
2163 	buf_size = args.buf_size;
2164 
2165 	if (buf_size < sizeof(struct btrfs_ioctl_search_header))
2166 		return -EOVERFLOW;
2167 
2168 	/* limit result size to 16MB */
2169 	if (buf_size > buf_limit)
2170 		buf_size = buf_limit;
2171 
2172 	inode = file_inode(file);
2173 	ret = search_ioctl(inode, &args.key, &buf_size,
2174 			   (char *)(&uarg->buf[0]));
2175 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2176 		ret = -EFAULT;
2177 	else if (ret == -EOVERFLOW &&
2178 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2179 		ret = -EFAULT;
2180 
2181 	return ret;
2182 }
2183 
2184 /*
2185  * Search INODE_REFs to identify path name of 'dirid' directory
2186  * in a 'tree_id' tree. and sets path name to 'name'.
2187  */
2188 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2189 				u64 tree_id, u64 dirid, char *name)
2190 {
2191 	struct btrfs_root *root;
2192 	struct btrfs_key key;
2193 	char *ptr;
2194 	int ret = -1;
2195 	int slot;
2196 	int len;
2197 	int total_len = 0;
2198 	struct btrfs_inode_ref *iref;
2199 	struct extent_buffer *l;
2200 	struct btrfs_path *path;
2201 
2202 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2203 		name[0]='\0';
2204 		return 0;
2205 	}
2206 
2207 	path = btrfs_alloc_path();
2208 	if (!path)
2209 		return -ENOMEM;
2210 
2211 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2212 
2213 	key.objectid = tree_id;
2214 	key.type = BTRFS_ROOT_ITEM_KEY;
2215 	key.offset = (u64)-1;
2216 	root = btrfs_read_fs_root_no_name(info, &key);
2217 	if (IS_ERR(root)) {
2218 		printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id);
2219 		ret = -ENOENT;
2220 		goto out;
2221 	}
2222 
2223 	key.objectid = dirid;
2224 	key.type = BTRFS_INODE_REF_KEY;
2225 	key.offset = (u64)-1;
2226 
2227 	while (1) {
2228 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2229 		if (ret < 0)
2230 			goto out;
2231 		else if (ret > 0) {
2232 			ret = btrfs_previous_item(root, path, dirid,
2233 						  BTRFS_INODE_REF_KEY);
2234 			if (ret < 0)
2235 				goto out;
2236 			else if (ret > 0) {
2237 				ret = -ENOENT;
2238 				goto out;
2239 			}
2240 		}
2241 
2242 		l = path->nodes[0];
2243 		slot = path->slots[0];
2244 		btrfs_item_key_to_cpu(l, &key, slot);
2245 
2246 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2247 		len = btrfs_inode_ref_name_len(l, iref);
2248 		ptr -= len + 1;
2249 		total_len += len + 1;
2250 		if (ptr < name) {
2251 			ret = -ENAMETOOLONG;
2252 			goto out;
2253 		}
2254 
2255 		*(ptr + len) = '/';
2256 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2257 
2258 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2259 			break;
2260 
2261 		btrfs_release_path(path);
2262 		key.objectid = key.offset;
2263 		key.offset = (u64)-1;
2264 		dirid = key.objectid;
2265 	}
2266 	memmove(name, ptr, total_len);
2267 	name[total_len] = '\0';
2268 	ret = 0;
2269 out:
2270 	btrfs_free_path(path);
2271 	return ret;
2272 }
2273 
2274 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2275 					   void __user *argp)
2276 {
2277 	 struct btrfs_ioctl_ino_lookup_args *args;
2278 	 struct inode *inode;
2279 	 int ret;
2280 
2281 	if (!capable(CAP_SYS_ADMIN))
2282 		return -EPERM;
2283 
2284 	args = memdup_user(argp, sizeof(*args));
2285 	if (IS_ERR(args))
2286 		return PTR_ERR(args);
2287 
2288 	inode = file_inode(file);
2289 
2290 	if (args->treeid == 0)
2291 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2292 
2293 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2294 					args->treeid, args->objectid,
2295 					args->name);
2296 
2297 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2298 		ret = -EFAULT;
2299 
2300 	kfree(args);
2301 	return ret;
2302 }
2303 
2304 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2305 					     void __user *arg)
2306 {
2307 	struct dentry *parent = file->f_path.dentry;
2308 	struct dentry *dentry;
2309 	struct inode *dir = parent->d_inode;
2310 	struct inode *inode;
2311 	struct btrfs_root *root = BTRFS_I(dir)->root;
2312 	struct btrfs_root *dest = NULL;
2313 	struct btrfs_ioctl_vol_args *vol_args;
2314 	struct btrfs_trans_handle *trans;
2315 	struct btrfs_block_rsv block_rsv;
2316 	u64 root_flags;
2317 	u64 qgroup_reserved;
2318 	int namelen;
2319 	int ret;
2320 	int err = 0;
2321 
2322 	vol_args = memdup_user(arg, sizeof(*vol_args));
2323 	if (IS_ERR(vol_args))
2324 		return PTR_ERR(vol_args);
2325 
2326 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2327 	namelen = strlen(vol_args->name);
2328 	if (strchr(vol_args->name, '/') ||
2329 	    strncmp(vol_args->name, "..", namelen) == 0) {
2330 		err = -EINVAL;
2331 		goto out;
2332 	}
2333 
2334 	err = mnt_want_write_file(file);
2335 	if (err)
2336 		goto out;
2337 
2338 
2339 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2340 	if (err == -EINTR)
2341 		goto out_drop_write;
2342 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2343 	if (IS_ERR(dentry)) {
2344 		err = PTR_ERR(dentry);
2345 		goto out_unlock_dir;
2346 	}
2347 
2348 	if (!dentry->d_inode) {
2349 		err = -ENOENT;
2350 		goto out_dput;
2351 	}
2352 
2353 	inode = dentry->d_inode;
2354 	dest = BTRFS_I(inode)->root;
2355 	if (!capable(CAP_SYS_ADMIN)) {
2356 		/*
2357 		 * Regular user.  Only allow this with a special mount
2358 		 * option, when the user has write+exec access to the
2359 		 * subvol root, and when rmdir(2) would have been
2360 		 * allowed.
2361 		 *
2362 		 * Note that this is _not_ check that the subvol is
2363 		 * empty or doesn't contain data that we wouldn't
2364 		 * otherwise be able to delete.
2365 		 *
2366 		 * Users who want to delete empty subvols should try
2367 		 * rmdir(2).
2368 		 */
2369 		err = -EPERM;
2370 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2371 			goto out_dput;
2372 
2373 		/*
2374 		 * Do not allow deletion if the parent dir is the same
2375 		 * as the dir to be deleted.  That means the ioctl
2376 		 * must be called on the dentry referencing the root
2377 		 * of the subvol, not a random directory contained
2378 		 * within it.
2379 		 */
2380 		err = -EINVAL;
2381 		if (root == dest)
2382 			goto out_dput;
2383 
2384 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2385 		if (err)
2386 			goto out_dput;
2387 	}
2388 
2389 	/* check if subvolume may be deleted by a user */
2390 	err = btrfs_may_delete(dir, dentry, 1);
2391 	if (err)
2392 		goto out_dput;
2393 
2394 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2395 		err = -EINVAL;
2396 		goto out_dput;
2397 	}
2398 
2399 	mutex_lock(&inode->i_mutex);
2400 
2401 	/*
2402 	 * Don't allow to delete a subvolume with send in progress. This is
2403 	 * inside the i_mutex so the error handling that has to drop the bit
2404 	 * again is not run concurrently.
2405 	 */
2406 	spin_lock(&dest->root_item_lock);
2407 	root_flags = btrfs_root_flags(&dest->root_item);
2408 	if (dest->send_in_progress == 0) {
2409 		btrfs_set_root_flags(&dest->root_item,
2410 				root_flags | BTRFS_ROOT_SUBVOL_DEAD);
2411 		spin_unlock(&dest->root_item_lock);
2412 	} else {
2413 		spin_unlock(&dest->root_item_lock);
2414 		btrfs_warn(root->fs_info,
2415 			"Attempt to delete subvolume %llu during send",
2416 			dest->root_key.objectid);
2417 		err = -EPERM;
2418 		goto out_dput;
2419 	}
2420 
2421 	err = d_invalidate(dentry);
2422 	if (err)
2423 		goto out_unlock;
2424 
2425 	down_write(&root->fs_info->subvol_sem);
2426 
2427 	err = may_destroy_subvol(dest);
2428 	if (err)
2429 		goto out_up_write;
2430 
2431 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2432 	/*
2433 	 * One for dir inode, two for dir entries, two for root
2434 	 * ref/backref.
2435 	 */
2436 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2437 					       5, &qgroup_reserved, true);
2438 	if (err)
2439 		goto out_up_write;
2440 
2441 	trans = btrfs_start_transaction(root, 0);
2442 	if (IS_ERR(trans)) {
2443 		err = PTR_ERR(trans);
2444 		goto out_release;
2445 	}
2446 	trans->block_rsv = &block_rsv;
2447 	trans->bytes_reserved = block_rsv.size;
2448 
2449 	ret = btrfs_unlink_subvol(trans, root, dir,
2450 				dest->root_key.objectid,
2451 				dentry->d_name.name,
2452 				dentry->d_name.len);
2453 	if (ret) {
2454 		err = ret;
2455 		btrfs_abort_transaction(trans, root, ret);
2456 		goto out_end_trans;
2457 	}
2458 
2459 	btrfs_record_root_in_trans(trans, dest);
2460 
2461 	memset(&dest->root_item.drop_progress, 0,
2462 		sizeof(dest->root_item.drop_progress));
2463 	dest->root_item.drop_level = 0;
2464 	btrfs_set_root_refs(&dest->root_item, 0);
2465 
2466 	if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) {
2467 		ret = btrfs_insert_orphan_item(trans,
2468 					root->fs_info->tree_root,
2469 					dest->root_key.objectid);
2470 		if (ret) {
2471 			btrfs_abort_transaction(trans, root, ret);
2472 			err = ret;
2473 			goto out_end_trans;
2474 		}
2475 	}
2476 
2477 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2478 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2479 				  dest->root_key.objectid);
2480 	if (ret && ret != -ENOENT) {
2481 		btrfs_abort_transaction(trans, root, ret);
2482 		err = ret;
2483 		goto out_end_trans;
2484 	}
2485 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2486 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2487 					  dest->root_item.received_uuid,
2488 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2489 					  dest->root_key.objectid);
2490 		if (ret && ret != -ENOENT) {
2491 			btrfs_abort_transaction(trans, root, ret);
2492 			err = ret;
2493 			goto out_end_trans;
2494 		}
2495 	}
2496 
2497 out_end_trans:
2498 	trans->block_rsv = NULL;
2499 	trans->bytes_reserved = 0;
2500 	ret = btrfs_end_transaction(trans, root);
2501 	if (ret && !err)
2502 		err = ret;
2503 	inode->i_flags |= S_DEAD;
2504 out_release:
2505 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2506 out_up_write:
2507 	up_write(&root->fs_info->subvol_sem);
2508 out_unlock:
2509 	if (err) {
2510 		spin_lock(&dest->root_item_lock);
2511 		root_flags = btrfs_root_flags(&dest->root_item);
2512 		btrfs_set_root_flags(&dest->root_item,
2513 				root_flags & ~BTRFS_ROOT_SUBVOL_DEAD);
2514 		spin_unlock(&dest->root_item_lock);
2515 	}
2516 	mutex_unlock(&inode->i_mutex);
2517 	if (!err) {
2518 		shrink_dcache_sb(root->fs_info->sb);
2519 		btrfs_invalidate_inodes(dest);
2520 		d_delete(dentry);
2521 		ASSERT(dest->send_in_progress == 0);
2522 
2523 		/* the last ref */
2524 		if (dest->cache_inode) {
2525 			iput(dest->cache_inode);
2526 			dest->cache_inode = NULL;
2527 		}
2528 	}
2529 out_dput:
2530 	dput(dentry);
2531 out_unlock_dir:
2532 	mutex_unlock(&dir->i_mutex);
2533 out_drop_write:
2534 	mnt_drop_write_file(file);
2535 out:
2536 	kfree(vol_args);
2537 	return err;
2538 }
2539 
2540 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2541 {
2542 	struct inode *inode = file_inode(file);
2543 	struct btrfs_root *root = BTRFS_I(inode)->root;
2544 	struct btrfs_ioctl_defrag_range_args *range;
2545 	int ret;
2546 
2547 	ret = mnt_want_write_file(file);
2548 	if (ret)
2549 		return ret;
2550 
2551 	if (btrfs_root_readonly(root)) {
2552 		ret = -EROFS;
2553 		goto out;
2554 	}
2555 
2556 	switch (inode->i_mode & S_IFMT) {
2557 	case S_IFDIR:
2558 		if (!capable(CAP_SYS_ADMIN)) {
2559 			ret = -EPERM;
2560 			goto out;
2561 		}
2562 		ret = btrfs_defrag_root(root);
2563 		if (ret)
2564 			goto out;
2565 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2566 		break;
2567 	case S_IFREG:
2568 		if (!(file->f_mode & FMODE_WRITE)) {
2569 			ret = -EINVAL;
2570 			goto out;
2571 		}
2572 
2573 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2574 		if (!range) {
2575 			ret = -ENOMEM;
2576 			goto out;
2577 		}
2578 
2579 		if (argp) {
2580 			if (copy_from_user(range, argp,
2581 					   sizeof(*range))) {
2582 				ret = -EFAULT;
2583 				kfree(range);
2584 				goto out;
2585 			}
2586 			/* compression requires us to start the IO */
2587 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2588 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2589 				range->extent_thresh = (u32)-1;
2590 			}
2591 		} else {
2592 			/* the rest are all set to zero by kzalloc */
2593 			range->len = (u64)-1;
2594 		}
2595 		ret = btrfs_defrag_file(file_inode(file), file,
2596 					range, 0, 0);
2597 		if (ret > 0)
2598 			ret = 0;
2599 		kfree(range);
2600 		break;
2601 	default:
2602 		ret = -EINVAL;
2603 	}
2604 out:
2605 	mnt_drop_write_file(file);
2606 	return ret;
2607 }
2608 
2609 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2610 {
2611 	struct btrfs_ioctl_vol_args *vol_args;
2612 	int ret;
2613 
2614 	if (!capable(CAP_SYS_ADMIN))
2615 		return -EPERM;
2616 
2617 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2618 			1)) {
2619 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2620 	}
2621 
2622 	mutex_lock(&root->fs_info->volume_mutex);
2623 	vol_args = memdup_user(arg, sizeof(*vol_args));
2624 	if (IS_ERR(vol_args)) {
2625 		ret = PTR_ERR(vol_args);
2626 		goto out;
2627 	}
2628 
2629 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2630 	ret = btrfs_init_new_device(root, vol_args->name);
2631 
2632 	kfree(vol_args);
2633 out:
2634 	mutex_unlock(&root->fs_info->volume_mutex);
2635 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2636 	return ret;
2637 }
2638 
2639 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2640 {
2641 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2642 	struct btrfs_ioctl_vol_args *vol_args;
2643 	int ret;
2644 
2645 	if (!capable(CAP_SYS_ADMIN))
2646 		return -EPERM;
2647 
2648 	ret = mnt_want_write_file(file);
2649 	if (ret)
2650 		return ret;
2651 
2652 	vol_args = memdup_user(arg, sizeof(*vol_args));
2653 	if (IS_ERR(vol_args)) {
2654 		ret = PTR_ERR(vol_args);
2655 		goto out;
2656 	}
2657 
2658 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2659 
2660 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2661 			1)) {
2662 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2663 		goto out;
2664 	}
2665 
2666 	mutex_lock(&root->fs_info->volume_mutex);
2667 	ret = btrfs_rm_device(root, vol_args->name);
2668 	mutex_unlock(&root->fs_info->volume_mutex);
2669 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2670 
2671 out:
2672 	kfree(vol_args);
2673 	mnt_drop_write_file(file);
2674 	return ret;
2675 }
2676 
2677 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2678 {
2679 	struct btrfs_ioctl_fs_info_args *fi_args;
2680 	struct btrfs_device *device;
2681 	struct btrfs_device *next;
2682 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2683 	int ret = 0;
2684 
2685 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2686 	if (!fi_args)
2687 		return -ENOMEM;
2688 
2689 	mutex_lock(&fs_devices->device_list_mutex);
2690 	fi_args->num_devices = fs_devices->num_devices;
2691 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2692 
2693 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2694 		if (device->devid > fi_args->max_id)
2695 			fi_args->max_id = device->devid;
2696 	}
2697 	mutex_unlock(&fs_devices->device_list_mutex);
2698 
2699 	fi_args->nodesize = root->fs_info->super_copy->nodesize;
2700 	fi_args->sectorsize = root->fs_info->super_copy->sectorsize;
2701 	fi_args->clone_alignment = root->fs_info->super_copy->sectorsize;
2702 
2703 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2704 		ret = -EFAULT;
2705 
2706 	kfree(fi_args);
2707 	return ret;
2708 }
2709 
2710 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2711 {
2712 	struct btrfs_ioctl_dev_info_args *di_args;
2713 	struct btrfs_device *dev;
2714 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2715 	int ret = 0;
2716 	char *s_uuid = NULL;
2717 
2718 	di_args = memdup_user(arg, sizeof(*di_args));
2719 	if (IS_ERR(di_args))
2720 		return PTR_ERR(di_args);
2721 
2722 	if (!btrfs_is_empty_uuid(di_args->uuid))
2723 		s_uuid = di_args->uuid;
2724 
2725 	mutex_lock(&fs_devices->device_list_mutex);
2726 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2727 
2728 	if (!dev) {
2729 		ret = -ENODEV;
2730 		goto out;
2731 	}
2732 
2733 	di_args->devid = dev->devid;
2734 	di_args->bytes_used = dev->bytes_used;
2735 	di_args->total_bytes = dev->total_bytes;
2736 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2737 	if (dev->name) {
2738 		struct rcu_string *name;
2739 
2740 		rcu_read_lock();
2741 		name = rcu_dereference(dev->name);
2742 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2743 		rcu_read_unlock();
2744 		di_args->path[sizeof(di_args->path) - 1] = 0;
2745 	} else {
2746 		di_args->path[0] = '\0';
2747 	}
2748 
2749 out:
2750 	mutex_unlock(&fs_devices->device_list_mutex);
2751 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2752 		ret = -EFAULT;
2753 
2754 	kfree(di_args);
2755 	return ret;
2756 }
2757 
2758 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2759 {
2760 	struct page *page;
2761 	pgoff_t index;
2762 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2763 
2764 	index = off >> PAGE_CACHE_SHIFT;
2765 
2766 	page = grab_cache_page(inode->i_mapping, index);
2767 	if (!page)
2768 		return NULL;
2769 
2770 	if (!PageUptodate(page)) {
2771 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2772 						 0))
2773 			return NULL;
2774 		lock_page(page);
2775 		if (!PageUptodate(page)) {
2776 			unlock_page(page);
2777 			page_cache_release(page);
2778 			return NULL;
2779 		}
2780 	}
2781 	unlock_page(page);
2782 
2783 	return page;
2784 }
2785 
2786 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2787 {
2788 	/* do any pending delalloc/csum calc on src, one way or
2789 	   another, and lock file content */
2790 	while (1) {
2791 		struct btrfs_ordered_extent *ordered;
2792 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2793 		ordered = btrfs_lookup_first_ordered_extent(inode,
2794 							    off + len - 1);
2795 		if ((!ordered ||
2796 		     ordered->file_offset + ordered->len <= off ||
2797 		     ordered->file_offset >= off + len) &&
2798 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2799 				    off + len - 1, EXTENT_DELALLOC, 0, NULL)) {
2800 			if (ordered)
2801 				btrfs_put_ordered_extent(ordered);
2802 			break;
2803 		}
2804 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2805 		if (ordered)
2806 			btrfs_put_ordered_extent(ordered);
2807 		btrfs_wait_ordered_range(inode, off, len);
2808 	}
2809 }
2810 
2811 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2812 				struct inode *inode2, u64 loff2, u64 len)
2813 {
2814 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2815 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2816 
2817 	mutex_unlock(&inode1->i_mutex);
2818 	mutex_unlock(&inode2->i_mutex);
2819 }
2820 
2821 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2822 			      struct inode *inode2, u64 loff2, u64 len)
2823 {
2824 	if (inode1 < inode2) {
2825 		swap(inode1, inode2);
2826 		swap(loff1, loff2);
2827 	}
2828 
2829 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2830 	lock_extent_range(inode1, loff1, len);
2831 	if (inode1 != inode2) {
2832 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2833 		lock_extent_range(inode2, loff2, len);
2834 	}
2835 }
2836 
2837 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2838 			  u64 dst_loff, u64 len)
2839 {
2840 	int ret = 0;
2841 	struct page *src_page, *dst_page;
2842 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2843 	void *addr, *dst_addr;
2844 
2845 	while (len) {
2846 		if (len < PAGE_CACHE_SIZE)
2847 			cmp_len = len;
2848 
2849 		src_page = extent_same_get_page(src, loff);
2850 		if (!src_page)
2851 			return -EINVAL;
2852 		dst_page = extent_same_get_page(dst, dst_loff);
2853 		if (!dst_page) {
2854 			page_cache_release(src_page);
2855 			return -EINVAL;
2856 		}
2857 		addr = kmap_atomic(src_page);
2858 		dst_addr = kmap_atomic(dst_page);
2859 
2860 		flush_dcache_page(src_page);
2861 		flush_dcache_page(dst_page);
2862 
2863 		if (memcmp(addr, dst_addr, cmp_len))
2864 			ret = BTRFS_SAME_DATA_DIFFERS;
2865 
2866 		kunmap_atomic(addr);
2867 		kunmap_atomic(dst_addr);
2868 		page_cache_release(src_page);
2869 		page_cache_release(dst_page);
2870 
2871 		if (ret)
2872 			break;
2873 
2874 		loff += cmp_len;
2875 		dst_loff += cmp_len;
2876 		len -= cmp_len;
2877 	}
2878 
2879 	return ret;
2880 }
2881 
2882 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2883 {
2884 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2885 
2886 	if (off + len > inode->i_size || off + len < off)
2887 		return -EINVAL;
2888 	/* Check that we are block aligned - btrfs_clone() requires this */
2889 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2890 		return -EINVAL;
2891 
2892 	return 0;
2893 }
2894 
2895 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2896 			     struct inode *dst, u64 dst_loff)
2897 {
2898 	int ret;
2899 
2900 	/*
2901 	 * btrfs_clone() can't handle extents in the same file
2902 	 * yet. Once that works, we can drop this check and replace it
2903 	 * with a check for the same inode, but overlapping extents.
2904 	 */
2905 	if (src == dst)
2906 		return -EINVAL;
2907 
2908 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2909 
2910 	ret = extent_same_check_offsets(src, loff, len);
2911 	if (ret)
2912 		goto out_unlock;
2913 
2914 	ret = extent_same_check_offsets(dst, dst_loff, len);
2915 	if (ret)
2916 		goto out_unlock;
2917 
2918 	/* don't make the dst file partly checksummed */
2919 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2920 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2921 		ret = -EINVAL;
2922 		goto out_unlock;
2923 	}
2924 
2925 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2926 	if (ret == 0)
2927 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2928 
2929 out_unlock:
2930 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2931 
2932 	return ret;
2933 }
2934 
2935 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2936 
2937 static long btrfs_ioctl_file_extent_same(struct file *file,
2938 			struct btrfs_ioctl_same_args __user *argp)
2939 {
2940 	struct btrfs_ioctl_same_args *same;
2941 	struct btrfs_ioctl_same_extent_info *info;
2942 	struct inode *src = file_inode(file);
2943 	u64 off;
2944 	u64 len;
2945 	int i;
2946 	int ret;
2947 	unsigned long size;
2948 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2949 	bool is_admin = capable(CAP_SYS_ADMIN);
2950 	u16 count;
2951 
2952 	if (!(file->f_mode & FMODE_READ))
2953 		return -EINVAL;
2954 
2955 	ret = mnt_want_write_file(file);
2956 	if (ret)
2957 		return ret;
2958 
2959 	if (get_user(count, &argp->dest_count)) {
2960 		ret = -EFAULT;
2961 		goto out;
2962 	}
2963 
2964 	size = offsetof(struct btrfs_ioctl_same_args __user, info[count]);
2965 
2966 	same = memdup_user(argp, size);
2967 
2968 	if (IS_ERR(same)) {
2969 		ret = PTR_ERR(same);
2970 		goto out;
2971 	}
2972 
2973 	off = same->logical_offset;
2974 	len = same->length;
2975 
2976 	/*
2977 	 * Limit the total length we will dedupe for each operation.
2978 	 * This is intended to bound the total time spent in this
2979 	 * ioctl to something sane.
2980 	 */
2981 	if (len > BTRFS_MAX_DEDUPE_LEN)
2982 		len = BTRFS_MAX_DEDUPE_LEN;
2983 
2984 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2985 		/*
2986 		 * Btrfs does not support blocksize < page_size. As a
2987 		 * result, btrfs_cmp_data() won't correctly handle
2988 		 * this situation without an update.
2989 		 */
2990 		ret = -EINVAL;
2991 		goto out;
2992 	}
2993 
2994 	ret = -EISDIR;
2995 	if (S_ISDIR(src->i_mode))
2996 		goto out;
2997 
2998 	ret = -EACCES;
2999 	if (!S_ISREG(src->i_mode))
3000 		goto out;
3001 
3002 	/* pre-format output fields to sane values */
3003 	for (i = 0; i < count; i++) {
3004 		same->info[i].bytes_deduped = 0ULL;
3005 		same->info[i].status = 0;
3006 	}
3007 
3008 	for (i = 0, info = same->info; i < count; i++, info++) {
3009 		struct inode *dst;
3010 		struct fd dst_file = fdget(info->fd);
3011 		if (!dst_file.file) {
3012 			info->status = -EBADF;
3013 			continue;
3014 		}
3015 		dst = file_inode(dst_file.file);
3016 
3017 		if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) {
3018 			info->status = -EINVAL;
3019 		} else if (file->f_path.mnt != dst_file.file->f_path.mnt) {
3020 			info->status = -EXDEV;
3021 		} else if (S_ISDIR(dst->i_mode)) {
3022 			info->status = -EISDIR;
3023 		} else if (!S_ISREG(dst->i_mode)) {
3024 			info->status = -EACCES;
3025 		} else {
3026 			info->status = btrfs_extent_same(src, off, len, dst,
3027 							info->logical_offset);
3028 			if (info->status == 0)
3029 				info->bytes_deduped += len;
3030 		}
3031 		fdput(dst_file);
3032 	}
3033 
3034 	ret = copy_to_user(argp, same, size);
3035 	if (ret)
3036 		ret = -EFAULT;
3037 
3038 out:
3039 	mnt_drop_write_file(file);
3040 	return ret;
3041 }
3042 
3043 /* Helper to check and see if this root currently has a ref on the given disk
3044  * bytenr.  If it does then we need to update the quota for this root.  This
3045  * doesn't do anything if quotas aren't enabled.
3046  */
3047 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
3048 		     u64 disko)
3049 {
3050 	struct seq_list tree_mod_seq_elem = {};
3051 	struct ulist *roots;
3052 	struct ulist_iterator uiter;
3053 	struct ulist_node *root_node = NULL;
3054 	int ret;
3055 
3056 	if (!root->fs_info->quota_enabled)
3057 		return 1;
3058 
3059 	btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3060 	ret = btrfs_find_all_roots(trans, root->fs_info, disko,
3061 				   tree_mod_seq_elem.seq, &roots);
3062 	if (ret < 0)
3063 		goto out;
3064 	ret = 0;
3065 	ULIST_ITER_INIT(&uiter);
3066 	while ((root_node = ulist_next(roots, &uiter))) {
3067 		if (root_node->val == root->objectid) {
3068 			ret = 1;
3069 			break;
3070 		}
3071 	}
3072 	ulist_free(roots);
3073 out:
3074 	btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem);
3075 	return ret;
3076 }
3077 
3078 static int clone_finish_inode_update(struct btrfs_trans_handle *trans,
3079 				     struct inode *inode,
3080 				     u64 endoff,
3081 				     const u64 destoff,
3082 				     const u64 olen)
3083 {
3084 	struct btrfs_root *root = BTRFS_I(inode)->root;
3085 	int ret;
3086 
3087 	inode_inc_iversion(inode);
3088 	inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3089 	/*
3090 	 * We round up to the block size at eof when determining which
3091 	 * extents to clone above, but shouldn't round up the file size.
3092 	 */
3093 	if (endoff > destoff + olen)
3094 		endoff = destoff + olen;
3095 	if (endoff > inode->i_size)
3096 		btrfs_i_size_write(inode, endoff);
3097 
3098 	ret = btrfs_update_inode(trans, root, inode);
3099 	if (ret) {
3100 		btrfs_abort_transaction(trans, root, ret);
3101 		btrfs_end_transaction(trans, root);
3102 		goto out;
3103 	}
3104 	ret = btrfs_end_transaction(trans, root);
3105 out:
3106 	return ret;
3107 }
3108 
3109 static void clone_update_extent_map(struct inode *inode,
3110 				    const struct btrfs_trans_handle *trans,
3111 				    const struct btrfs_path *path,
3112 				    const u64 hole_offset,
3113 				    const u64 hole_len)
3114 {
3115 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
3116 	struct extent_map *em;
3117 	int ret;
3118 
3119 	em = alloc_extent_map();
3120 	if (!em) {
3121 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3122 			&BTRFS_I(inode)->runtime_flags);
3123 		return;
3124 	}
3125 
3126 	if (path) {
3127 		struct btrfs_file_extent_item *fi;
3128 
3129 		fi = btrfs_item_ptr(path->nodes[0], path->slots[0],
3130 				    struct btrfs_file_extent_item);
3131 		btrfs_extent_item_to_extent_map(inode, path, fi, false, em);
3132 		em->generation = -1;
3133 		if (btrfs_file_extent_type(path->nodes[0], fi) ==
3134 		    BTRFS_FILE_EXTENT_INLINE)
3135 			set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3136 				&BTRFS_I(inode)->runtime_flags);
3137 	} else {
3138 		em->start = hole_offset;
3139 		em->len = hole_len;
3140 		em->ram_bytes = em->len;
3141 		em->orig_start = hole_offset;
3142 		em->block_start = EXTENT_MAP_HOLE;
3143 		em->block_len = 0;
3144 		em->orig_block_len = 0;
3145 		em->compress_type = BTRFS_COMPRESS_NONE;
3146 		em->generation = trans->transid;
3147 	}
3148 
3149 	while (1) {
3150 		write_lock(&em_tree->lock);
3151 		ret = add_extent_mapping(em_tree, em, 1);
3152 		write_unlock(&em_tree->lock);
3153 		if (ret != -EEXIST) {
3154 			free_extent_map(em);
3155 			break;
3156 		}
3157 		btrfs_drop_extent_cache(inode, em->start,
3158 					em->start + em->len - 1, 0);
3159 	}
3160 
3161 	if (unlikely(ret))
3162 		set_bit(BTRFS_INODE_NEEDS_FULL_SYNC,
3163 			&BTRFS_I(inode)->runtime_flags);
3164 }
3165 
3166 /**
3167  * btrfs_clone() - clone a range from inode file to another
3168  *
3169  * @src: Inode to clone from
3170  * @inode: Inode to clone to
3171  * @off: Offset within source to start clone from
3172  * @olen: Original length, passed by user, of range to clone
3173  * @olen_aligned: Block-aligned value of olen, extent_same uses
3174  *               identical values here
3175  * @destoff: Offset within @inode to start clone
3176  */
3177 static int btrfs_clone(struct inode *src, struct inode *inode,
3178 		       const u64 off, const u64 olen, const u64 olen_aligned,
3179 		       const u64 destoff)
3180 {
3181 	struct btrfs_root *root = BTRFS_I(inode)->root;
3182 	struct btrfs_path *path = NULL;
3183 	struct extent_buffer *leaf;
3184 	struct btrfs_trans_handle *trans;
3185 	char *buf = NULL;
3186 	struct btrfs_key key;
3187 	u32 nritems;
3188 	int slot;
3189 	int ret;
3190 	int no_quota;
3191 	const u64 len = olen_aligned;
3192 	u64 last_disko = 0;
3193 	u64 last_dest_end = destoff;
3194 
3195 	ret = -ENOMEM;
3196 	buf = vmalloc(btrfs_level_size(root, 0));
3197 	if (!buf)
3198 		return ret;
3199 
3200 	path = btrfs_alloc_path();
3201 	if (!path) {
3202 		vfree(buf);
3203 		return ret;
3204 	}
3205 
3206 	path->reada = 2;
3207 	/* clone data */
3208 	key.objectid = btrfs_ino(src);
3209 	key.type = BTRFS_EXTENT_DATA_KEY;
3210 	key.offset = off;
3211 
3212 	while (1) {
3213 		/*
3214 		 * note the key will change type as we walk through the
3215 		 * tree.
3216 		 */
3217 		path->leave_spinning = 1;
3218 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
3219 				0, 0);
3220 		if (ret < 0)
3221 			goto out;
3222 		/*
3223 		 * First search, if no extent item that starts at offset off was
3224 		 * found but the previous item is an extent item, it's possible
3225 		 * it might overlap our target range, therefore process it.
3226 		 */
3227 		if (key.offset == off && ret > 0 && path->slots[0] > 0) {
3228 			btrfs_item_key_to_cpu(path->nodes[0], &key,
3229 					      path->slots[0] - 1);
3230 			if (key.type == BTRFS_EXTENT_DATA_KEY)
3231 				path->slots[0]--;
3232 		}
3233 
3234 		nritems = btrfs_header_nritems(path->nodes[0]);
3235 process_slot:
3236 		no_quota = 1;
3237 		if (path->slots[0] >= nritems) {
3238 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
3239 			if (ret < 0)
3240 				goto out;
3241 			if (ret > 0)
3242 				break;
3243 			nritems = btrfs_header_nritems(path->nodes[0]);
3244 		}
3245 		leaf = path->nodes[0];
3246 		slot = path->slots[0];
3247 
3248 		btrfs_item_key_to_cpu(leaf, &key, slot);
3249 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
3250 		    key.objectid != btrfs_ino(src))
3251 			break;
3252 
3253 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
3254 			struct btrfs_file_extent_item *extent;
3255 			int type;
3256 			u32 size;
3257 			struct btrfs_key new_key;
3258 			u64 disko = 0, diskl = 0;
3259 			u64 datao = 0, datal = 0;
3260 			u8 comp;
3261 			u64 drop_start;
3262 
3263 			extent = btrfs_item_ptr(leaf, slot,
3264 						struct btrfs_file_extent_item);
3265 			comp = btrfs_file_extent_compression(leaf, extent);
3266 			type = btrfs_file_extent_type(leaf, extent);
3267 			if (type == BTRFS_FILE_EXTENT_REG ||
3268 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3269 				disko = btrfs_file_extent_disk_bytenr(leaf,
3270 								      extent);
3271 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
3272 								 extent);
3273 				datao = btrfs_file_extent_offset(leaf, extent);
3274 				datal = btrfs_file_extent_num_bytes(leaf,
3275 								    extent);
3276 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3277 				/* take upper bound, may be compressed */
3278 				datal = btrfs_file_extent_ram_bytes(leaf,
3279 								    extent);
3280 			}
3281 
3282 			/*
3283 			 * The first search might have left us at an extent
3284 			 * item that ends before our target range's start, can
3285 			 * happen if we have holes and NO_HOLES feature enabled.
3286 			 */
3287 			if (key.offset + datal <= off) {
3288 				path->slots[0]++;
3289 				goto process_slot;
3290 			} else if (key.offset >= off + len) {
3291 				break;
3292 			}
3293 
3294 			size = btrfs_item_size_nr(leaf, slot);
3295 			read_extent_buffer(leaf, buf,
3296 					   btrfs_item_ptr_offset(leaf, slot),
3297 					   size);
3298 
3299 			btrfs_release_path(path);
3300 			path->leave_spinning = 0;
3301 
3302 			memcpy(&new_key, &key, sizeof(new_key));
3303 			new_key.objectid = btrfs_ino(inode);
3304 			if (off <= key.offset)
3305 				new_key.offset = key.offset + destoff - off;
3306 			else
3307 				new_key.offset = destoff;
3308 
3309 			/*
3310 			 * Deal with a hole that doesn't have an extent item
3311 			 * that represents it (NO_HOLES feature enabled).
3312 			 * This hole is either in the middle of the cloning
3313 			 * range or at the beginning (fully overlaps it or
3314 			 * partially overlaps it).
3315 			 */
3316 			if (new_key.offset != last_dest_end)
3317 				drop_start = last_dest_end;
3318 			else
3319 				drop_start = new_key.offset;
3320 
3321 			/*
3322 			 * 1 - adjusting old extent (we may have to split it)
3323 			 * 1 - add new extent
3324 			 * 1 - inode update
3325 			 */
3326 			trans = btrfs_start_transaction(root, 3);
3327 			if (IS_ERR(trans)) {
3328 				ret = PTR_ERR(trans);
3329 				goto out;
3330 			}
3331 
3332 			if (type == BTRFS_FILE_EXTENT_REG ||
3333 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
3334 				/*
3335 				 *    a  | --- range to clone ---|  b
3336 				 * | ------------- extent ------------- |
3337 				 */
3338 
3339 				/* subtract range b */
3340 				if (key.offset + datal > off + len)
3341 					datal = off + len - key.offset;
3342 
3343 				/* subtract range a */
3344 				if (off > key.offset) {
3345 					datao += off - key.offset;
3346 					datal -= off - key.offset;
3347 				}
3348 
3349 				ret = btrfs_drop_extents(trans, root, inode,
3350 							 drop_start,
3351 							 new_key.offset + datal,
3352 							 1);
3353 				if (ret) {
3354 					if (ret != -EOPNOTSUPP)
3355 						btrfs_abort_transaction(trans,
3356 								root, ret);
3357 					btrfs_end_transaction(trans, root);
3358 					goto out;
3359 				}
3360 
3361 				ret = btrfs_insert_empty_item(trans, root, path,
3362 							      &new_key, size);
3363 				if (ret) {
3364 					btrfs_abort_transaction(trans, root,
3365 								ret);
3366 					btrfs_end_transaction(trans, root);
3367 					goto out;
3368 				}
3369 
3370 				leaf = path->nodes[0];
3371 				slot = path->slots[0];
3372 				write_extent_buffer(leaf, buf,
3373 					    btrfs_item_ptr_offset(leaf, slot),
3374 					    size);
3375 
3376 				extent = btrfs_item_ptr(leaf, slot,
3377 						struct btrfs_file_extent_item);
3378 
3379 				/* disko == 0 means it's a hole */
3380 				if (!disko)
3381 					datao = 0;
3382 
3383 				btrfs_set_file_extent_offset(leaf, extent,
3384 							     datao);
3385 				btrfs_set_file_extent_num_bytes(leaf, extent,
3386 								datal);
3387 
3388 				/*
3389 				 * We need to look up the roots that point at
3390 				 * this bytenr and see if the new root does.  If
3391 				 * it does not we need to make sure we update
3392 				 * quotas appropriately.
3393 				 */
3394 				if (disko && root != BTRFS_I(src)->root &&
3395 				    disko != last_disko) {
3396 					no_quota = check_ref(trans, root,
3397 							     disko);
3398 					if (no_quota < 0) {
3399 						btrfs_abort_transaction(trans,
3400 									root,
3401 									ret);
3402 						btrfs_end_transaction(trans,
3403 								      root);
3404 						ret = no_quota;
3405 						goto out;
3406 					}
3407 				}
3408 
3409 				if (disko) {
3410 					inode_add_bytes(inode, datal);
3411 					ret = btrfs_inc_extent_ref(trans, root,
3412 							disko, diskl, 0,
3413 							root->root_key.objectid,
3414 							btrfs_ino(inode),
3415 							new_key.offset - datao,
3416 							no_quota);
3417 					if (ret) {
3418 						btrfs_abort_transaction(trans,
3419 									root,
3420 									ret);
3421 						btrfs_end_transaction(trans,
3422 								      root);
3423 						goto out;
3424 
3425 					}
3426 				}
3427 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3428 				u64 skip = 0;
3429 				u64 trim = 0;
3430 				u64 aligned_end = 0;
3431 
3432 				if (off > key.offset) {
3433 					skip = off - key.offset;
3434 					new_key.offset += skip;
3435 				}
3436 
3437 				if (key.offset + datal > off + len)
3438 					trim = key.offset + datal - (off + len);
3439 
3440 				if (comp && (skip || trim)) {
3441 					ret = -EINVAL;
3442 					btrfs_end_transaction(trans, root);
3443 					goto out;
3444 				}
3445 				size -= skip + trim;
3446 				datal -= skip + trim;
3447 
3448 				aligned_end = ALIGN(new_key.offset + datal,
3449 						    root->sectorsize);
3450 				ret = btrfs_drop_extents(trans, root, inode,
3451 							 drop_start,
3452 							 aligned_end,
3453 							 1);
3454 				if (ret) {
3455 					if (ret != -EOPNOTSUPP)
3456 						btrfs_abort_transaction(trans,
3457 							root, ret);
3458 					btrfs_end_transaction(trans, root);
3459 					goto out;
3460 				}
3461 
3462 				ret = btrfs_insert_empty_item(trans, root, path,
3463 							      &new_key, size);
3464 				if (ret) {
3465 					btrfs_abort_transaction(trans, root,
3466 								ret);
3467 					btrfs_end_transaction(trans, root);
3468 					goto out;
3469 				}
3470 
3471 				if (skip) {
3472 					u32 start =
3473 					  btrfs_file_extent_calc_inline_size(0);
3474 					memmove(buf+start, buf+start+skip,
3475 						datal);
3476 				}
3477 
3478 				leaf = path->nodes[0];
3479 				slot = path->slots[0];
3480 				write_extent_buffer(leaf, buf,
3481 					    btrfs_item_ptr_offset(leaf, slot),
3482 					    size);
3483 				inode_add_bytes(inode, datal);
3484 			}
3485 
3486 			/* If we have an implicit hole (NO_HOLES feature). */
3487 			if (drop_start < new_key.offset)
3488 				clone_update_extent_map(inode, trans,
3489 						NULL, drop_start,
3490 						new_key.offset - drop_start);
3491 
3492 			clone_update_extent_map(inode, trans, path, 0, 0);
3493 
3494 			btrfs_mark_buffer_dirty(leaf);
3495 			btrfs_release_path(path);
3496 
3497 			last_dest_end = ALIGN(new_key.offset + datal,
3498 					      root->sectorsize);
3499 			ret = clone_finish_inode_update(trans, inode,
3500 							last_dest_end,
3501 							destoff, olen);
3502 			if (ret)
3503 				goto out;
3504 			if (new_key.offset + datal >= destoff + len)
3505 				break;
3506 		}
3507 		btrfs_release_path(path);
3508 		key.offset++;
3509 	}
3510 	ret = 0;
3511 
3512 	if (last_dest_end < destoff + len) {
3513 		/*
3514 		 * We have an implicit hole (NO_HOLES feature is enabled) that
3515 		 * fully or partially overlaps our cloning range at its end.
3516 		 */
3517 		btrfs_release_path(path);
3518 
3519 		/*
3520 		 * 1 - remove extent(s)
3521 		 * 1 - inode update
3522 		 */
3523 		trans = btrfs_start_transaction(root, 2);
3524 		if (IS_ERR(trans)) {
3525 			ret = PTR_ERR(trans);
3526 			goto out;
3527 		}
3528 		ret = btrfs_drop_extents(trans, root, inode,
3529 					 last_dest_end, destoff + len, 1);
3530 		if (ret) {
3531 			if (ret != -EOPNOTSUPP)
3532 				btrfs_abort_transaction(trans, root, ret);
3533 			btrfs_end_transaction(trans, root);
3534 			goto out;
3535 		}
3536 		clone_update_extent_map(inode, trans, NULL, last_dest_end,
3537 					destoff + len - last_dest_end);
3538 		ret = clone_finish_inode_update(trans, inode, destoff + len,
3539 						destoff, olen);
3540 	}
3541 
3542 out:
3543 	btrfs_free_path(path);
3544 	vfree(buf);
3545 	return ret;
3546 }
3547 
3548 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3549 				       u64 off, u64 olen, u64 destoff)
3550 {
3551 	struct inode *inode = file_inode(file);
3552 	struct btrfs_root *root = BTRFS_I(inode)->root;
3553 	struct fd src_file;
3554 	struct inode *src;
3555 	int ret;
3556 	u64 len = olen;
3557 	u64 bs = root->fs_info->sb->s_blocksize;
3558 	int same_inode = 0;
3559 
3560 	/*
3561 	 * TODO:
3562 	 * - split compressed inline extents.  annoying: we need to
3563 	 *   decompress into destination's address_space (the file offset
3564 	 *   may change, so source mapping won't do), then recompress (or
3565 	 *   otherwise reinsert) a subrange.
3566 	 *
3567 	 * - split destination inode's inline extents.  The inline extents can
3568 	 *   be either compressed or non-compressed.
3569 	 */
3570 
3571 	/* the destination must be opened for writing */
3572 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3573 		return -EINVAL;
3574 
3575 	if (btrfs_root_readonly(root))
3576 		return -EROFS;
3577 
3578 	ret = mnt_want_write_file(file);
3579 	if (ret)
3580 		return ret;
3581 
3582 	src_file = fdget(srcfd);
3583 	if (!src_file.file) {
3584 		ret = -EBADF;
3585 		goto out_drop_write;
3586 	}
3587 
3588 	ret = -EXDEV;
3589 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3590 		goto out_fput;
3591 
3592 	src = file_inode(src_file.file);
3593 
3594 	ret = -EINVAL;
3595 	if (src == inode)
3596 		same_inode = 1;
3597 
3598 	/* the src must be open for reading */
3599 	if (!(src_file.file->f_mode & FMODE_READ))
3600 		goto out_fput;
3601 
3602 	/* don't make the dst file partly checksummed */
3603 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3604 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3605 		goto out_fput;
3606 
3607 	ret = -EISDIR;
3608 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3609 		goto out_fput;
3610 
3611 	ret = -EXDEV;
3612 	if (src->i_sb != inode->i_sb)
3613 		goto out_fput;
3614 
3615 	if (!same_inode) {
3616 		if (inode < src) {
3617 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3618 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3619 		} else {
3620 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3621 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3622 		}
3623 	} else {
3624 		mutex_lock(&src->i_mutex);
3625 	}
3626 
3627 	/* determine range to clone */
3628 	ret = -EINVAL;
3629 	if (off + len > src->i_size || off + len < off)
3630 		goto out_unlock;
3631 	if (len == 0)
3632 		olen = len = src->i_size - off;
3633 	/* if we extend to eof, continue to block boundary */
3634 	if (off + len == src->i_size)
3635 		len = ALIGN(src->i_size, bs) - off;
3636 
3637 	/* verify the end result is block aligned */
3638 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3639 	    !IS_ALIGNED(destoff, bs))
3640 		goto out_unlock;
3641 
3642 	/* verify if ranges are overlapped within the same file */
3643 	if (same_inode) {
3644 		if (destoff + len > off && destoff < off + len)
3645 			goto out_unlock;
3646 	}
3647 
3648 	if (destoff > inode->i_size) {
3649 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3650 		if (ret)
3651 			goto out_unlock;
3652 	}
3653 
3654 	/*
3655 	 * Lock the target range too. Right after we replace the file extent
3656 	 * items in the fs tree (which now point to the cloned data), we might
3657 	 * have a worker replace them with extent items relative to a write
3658 	 * operation that was issued before this clone operation (i.e. confront
3659 	 * with inode.c:btrfs_finish_ordered_io).
3660 	 */
3661 	if (same_inode) {
3662 		u64 lock_start = min_t(u64, off, destoff);
3663 		u64 lock_len = max_t(u64, off, destoff) + len - lock_start;
3664 
3665 		lock_extent_range(src, lock_start, lock_len);
3666 	} else {
3667 		lock_extent_range(src, off, len);
3668 		lock_extent_range(inode, destoff, len);
3669 	}
3670 
3671 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3672 
3673 	if (same_inode) {
3674 		u64 lock_start = min_t(u64, off, destoff);
3675 		u64 lock_end = max_t(u64, off, destoff) + len - 1;
3676 
3677 		unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end);
3678 	} else {
3679 		unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3680 		unlock_extent(&BTRFS_I(inode)->io_tree, destoff,
3681 			      destoff + len - 1);
3682 	}
3683 	/*
3684 	 * Truncate page cache pages so that future reads will see the cloned
3685 	 * data immediately and not the previous data.
3686 	 */
3687 	truncate_inode_pages_range(&inode->i_data, destoff,
3688 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3689 out_unlock:
3690 	if (!same_inode) {
3691 		if (inode < src) {
3692 			mutex_unlock(&src->i_mutex);
3693 			mutex_unlock(&inode->i_mutex);
3694 		} else {
3695 			mutex_unlock(&inode->i_mutex);
3696 			mutex_unlock(&src->i_mutex);
3697 		}
3698 	} else {
3699 		mutex_unlock(&src->i_mutex);
3700 	}
3701 out_fput:
3702 	fdput(src_file);
3703 out_drop_write:
3704 	mnt_drop_write_file(file);
3705 	return ret;
3706 }
3707 
3708 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3709 {
3710 	struct btrfs_ioctl_clone_range_args args;
3711 
3712 	if (copy_from_user(&args, argp, sizeof(args)))
3713 		return -EFAULT;
3714 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3715 				 args.src_length, args.dest_offset);
3716 }
3717 
3718 /*
3719  * there are many ways the trans_start and trans_end ioctls can lead
3720  * to deadlocks.  They should only be used by applications that
3721  * basically own the machine, and have a very in depth understanding
3722  * of all the possible deadlocks and enospc problems.
3723  */
3724 static long btrfs_ioctl_trans_start(struct file *file)
3725 {
3726 	struct inode *inode = file_inode(file);
3727 	struct btrfs_root *root = BTRFS_I(inode)->root;
3728 	struct btrfs_trans_handle *trans;
3729 	int ret;
3730 
3731 	ret = -EPERM;
3732 	if (!capable(CAP_SYS_ADMIN))
3733 		goto out;
3734 
3735 	ret = -EINPROGRESS;
3736 	if (file->private_data)
3737 		goto out;
3738 
3739 	ret = -EROFS;
3740 	if (btrfs_root_readonly(root))
3741 		goto out;
3742 
3743 	ret = mnt_want_write_file(file);
3744 	if (ret)
3745 		goto out;
3746 
3747 	atomic_inc(&root->fs_info->open_ioctl_trans);
3748 
3749 	ret = -ENOMEM;
3750 	trans = btrfs_start_ioctl_transaction(root);
3751 	if (IS_ERR(trans))
3752 		goto out_drop;
3753 
3754 	file->private_data = trans;
3755 	return 0;
3756 
3757 out_drop:
3758 	atomic_dec(&root->fs_info->open_ioctl_trans);
3759 	mnt_drop_write_file(file);
3760 out:
3761 	return ret;
3762 }
3763 
3764 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3765 {
3766 	struct inode *inode = file_inode(file);
3767 	struct btrfs_root *root = BTRFS_I(inode)->root;
3768 	struct btrfs_root *new_root;
3769 	struct btrfs_dir_item *di;
3770 	struct btrfs_trans_handle *trans;
3771 	struct btrfs_path *path;
3772 	struct btrfs_key location;
3773 	struct btrfs_disk_key disk_key;
3774 	u64 objectid = 0;
3775 	u64 dir_id;
3776 	int ret;
3777 
3778 	if (!capable(CAP_SYS_ADMIN))
3779 		return -EPERM;
3780 
3781 	ret = mnt_want_write_file(file);
3782 	if (ret)
3783 		return ret;
3784 
3785 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3786 		ret = -EFAULT;
3787 		goto out;
3788 	}
3789 
3790 	if (!objectid)
3791 		objectid = BTRFS_FS_TREE_OBJECTID;
3792 
3793 	location.objectid = objectid;
3794 	location.type = BTRFS_ROOT_ITEM_KEY;
3795 	location.offset = (u64)-1;
3796 
3797 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3798 	if (IS_ERR(new_root)) {
3799 		ret = PTR_ERR(new_root);
3800 		goto out;
3801 	}
3802 
3803 	path = btrfs_alloc_path();
3804 	if (!path) {
3805 		ret = -ENOMEM;
3806 		goto out;
3807 	}
3808 	path->leave_spinning = 1;
3809 
3810 	trans = btrfs_start_transaction(root, 1);
3811 	if (IS_ERR(trans)) {
3812 		btrfs_free_path(path);
3813 		ret = PTR_ERR(trans);
3814 		goto out;
3815 	}
3816 
3817 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3818 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3819 				   dir_id, "default", 7, 1);
3820 	if (IS_ERR_OR_NULL(di)) {
3821 		btrfs_free_path(path);
3822 		btrfs_end_transaction(trans, root);
3823 		btrfs_err(new_root->fs_info, "Umm, you don't have the default dir"
3824 			   "item, this isn't going to work");
3825 		ret = -ENOENT;
3826 		goto out;
3827 	}
3828 
3829 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3830 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3831 	btrfs_mark_buffer_dirty(path->nodes[0]);
3832 	btrfs_free_path(path);
3833 
3834 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3835 	btrfs_end_transaction(trans, root);
3836 out:
3837 	mnt_drop_write_file(file);
3838 	return ret;
3839 }
3840 
3841 void btrfs_get_block_group_info(struct list_head *groups_list,
3842 				struct btrfs_ioctl_space_info *space)
3843 {
3844 	struct btrfs_block_group_cache *block_group;
3845 
3846 	space->total_bytes = 0;
3847 	space->used_bytes = 0;
3848 	space->flags = 0;
3849 	list_for_each_entry(block_group, groups_list, list) {
3850 		space->flags = block_group->flags;
3851 		space->total_bytes += block_group->key.offset;
3852 		space->used_bytes +=
3853 			btrfs_block_group_used(&block_group->item);
3854 	}
3855 }
3856 
3857 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3858 {
3859 	struct btrfs_ioctl_space_args space_args;
3860 	struct btrfs_ioctl_space_info space;
3861 	struct btrfs_ioctl_space_info *dest;
3862 	struct btrfs_ioctl_space_info *dest_orig;
3863 	struct btrfs_ioctl_space_info __user *user_dest;
3864 	struct btrfs_space_info *info;
3865 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3866 		       BTRFS_BLOCK_GROUP_SYSTEM,
3867 		       BTRFS_BLOCK_GROUP_METADATA,
3868 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3869 	int num_types = 4;
3870 	int alloc_size;
3871 	int ret = 0;
3872 	u64 slot_count = 0;
3873 	int i, c;
3874 
3875 	if (copy_from_user(&space_args,
3876 			   (struct btrfs_ioctl_space_args __user *)arg,
3877 			   sizeof(space_args)))
3878 		return -EFAULT;
3879 
3880 	for (i = 0; i < num_types; i++) {
3881 		struct btrfs_space_info *tmp;
3882 
3883 		info = NULL;
3884 		rcu_read_lock();
3885 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3886 					list) {
3887 			if (tmp->flags == types[i]) {
3888 				info = tmp;
3889 				break;
3890 			}
3891 		}
3892 		rcu_read_unlock();
3893 
3894 		if (!info)
3895 			continue;
3896 
3897 		down_read(&info->groups_sem);
3898 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3899 			if (!list_empty(&info->block_groups[c]))
3900 				slot_count++;
3901 		}
3902 		up_read(&info->groups_sem);
3903 	}
3904 
3905 	/*
3906 	 * Global block reserve, exported as a space_info
3907 	 */
3908 	slot_count++;
3909 
3910 	/* space_slots == 0 means they are asking for a count */
3911 	if (space_args.space_slots == 0) {
3912 		space_args.total_spaces = slot_count;
3913 		goto out;
3914 	}
3915 
3916 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3917 
3918 	alloc_size = sizeof(*dest) * slot_count;
3919 
3920 	/* we generally have at most 6 or so space infos, one for each raid
3921 	 * level.  So, a whole page should be more than enough for everyone
3922 	 */
3923 	if (alloc_size > PAGE_CACHE_SIZE)
3924 		return -ENOMEM;
3925 
3926 	space_args.total_spaces = 0;
3927 	dest = kmalloc(alloc_size, GFP_NOFS);
3928 	if (!dest)
3929 		return -ENOMEM;
3930 	dest_orig = dest;
3931 
3932 	/* now we have a buffer to copy into */
3933 	for (i = 0; i < num_types; i++) {
3934 		struct btrfs_space_info *tmp;
3935 
3936 		if (!slot_count)
3937 			break;
3938 
3939 		info = NULL;
3940 		rcu_read_lock();
3941 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3942 					list) {
3943 			if (tmp->flags == types[i]) {
3944 				info = tmp;
3945 				break;
3946 			}
3947 		}
3948 		rcu_read_unlock();
3949 
3950 		if (!info)
3951 			continue;
3952 		down_read(&info->groups_sem);
3953 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3954 			if (!list_empty(&info->block_groups[c])) {
3955 				btrfs_get_block_group_info(
3956 					&info->block_groups[c], &space);
3957 				memcpy(dest, &space, sizeof(space));
3958 				dest++;
3959 				space_args.total_spaces++;
3960 				slot_count--;
3961 			}
3962 			if (!slot_count)
3963 				break;
3964 		}
3965 		up_read(&info->groups_sem);
3966 	}
3967 
3968 	/*
3969 	 * Add global block reserve
3970 	 */
3971 	if (slot_count) {
3972 		struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv;
3973 
3974 		spin_lock(&block_rsv->lock);
3975 		space.total_bytes = block_rsv->size;
3976 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3977 		spin_unlock(&block_rsv->lock);
3978 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3979 		memcpy(dest, &space, sizeof(space));
3980 		space_args.total_spaces++;
3981 	}
3982 
3983 	user_dest = (struct btrfs_ioctl_space_info __user *)
3984 		(arg + sizeof(struct btrfs_ioctl_space_args));
3985 
3986 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3987 		ret = -EFAULT;
3988 
3989 	kfree(dest_orig);
3990 out:
3991 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3992 		ret = -EFAULT;
3993 
3994 	return ret;
3995 }
3996 
3997 /*
3998  * there are many ways the trans_start and trans_end ioctls can lead
3999  * to deadlocks.  They should only be used by applications that
4000  * basically own the machine, and have a very in depth understanding
4001  * of all the possible deadlocks and enospc problems.
4002  */
4003 long btrfs_ioctl_trans_end(struct file *file)
4004 {
4005 	struct inode *inode = file_inode(file);
4006 	struct btrfs_root *root = BTRFS_I(inode)->root;
4007 	struct btrfs_trans_handle *trans;
4008 
4009 	trans = file->private_data;
4010 	if (!trans)
4011 		return -EINVAL;
4012 	file->private_data = NULL;
4013 
4014 	btrfs_end_transaction(trans, root);
4015 
4016 	atomic_dec(&root->fs_info->open_ioctl_trans);
4017 
4018 	mnt_drop_write_file(file);
4019 	return 0;
4020 }
4021 
4022 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
4023 					    void __user *argp)
4024 {
4025 	struct btrfs_trans_handle *trans;
4026 	u64 transid;
4027 	int ret;
4028 
4029 	trans = btrfs_attach_transaction_barrier(root);
4030 	if (IS_ERR(trans)) {
4031 		if (PTR_ERR(trans) != -ENOENT)
4032 			return PTR_ERR(trans);
4033 
4034 		/* No running transaction, don't bother */
4035 		transid = root->fs_info->last_trans_committed;
4036 		goto out;
4037 	}
4038 	transid = trans->transid;
4039 	ret = btrfs_commit_transaction_async(trans, root, 0);
4040 	if (ret) {
4041 		btrfs_end_transaction(trans, root);
4042 		return ret;
4043 	}
4044 out:
4045 	if (argp)
4046 		if (copy_to_user(argp, &transid, sizeof(transid)))
4047 			return -EFAULT;
4048 	return 0;
4049 }
4050 
4051 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
4052 					   void __user *argp)
4053 {
4054 	u64 transid;
4055 
4056 	if (argp) {
4057 		if (copy_from_user(&transid, argp, sizeof(transid)))
4058 			return -EFAULT;
4059 	} else {
4060 		transid = 0;  /* current trans */
4061 	}
4062 	return btrfs_wait_for_commit(root, transid);
4063 }
4064 
4065 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
4066 {
4067 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4068 	struct btrfs_ioctl_scrub_args *sa;
4069 	int ret;
4070 
4071 	if (!capable(CAP_SYS_ADMIN))
4072 		return -EPERM;
4073 
4074 	sa = memdup_user(arg, sizeof(*sa));
4075 	if (IS_ERR(sa))
4076 		return PTR_ERR(sa);
4077 
4078 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
4079 		ret = mnt_want_write_file(file);
4080 		if (ret)
4081 			goto out;
4082 	}
4083 
4084 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
4085 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
4086 			      0);
4087 
4088 	if (copy_to_user(arg, sa, sizeof(*sa)))
4089 		ret = -EFAULT;
4090 
4091 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
4092 		mnt_drop_write_file(file);
4093 out:
4094 	kfree(sa);
4095 	return ret;
4096 }
4097 
4098 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
4099 {
4100 	if (!capable(CAP_SYS_ADMIN))
4101 		return -EPERM;
4102 
4103 	return btrfs_scrub_cancel(root->fs_info);
4104 }
4105 
4106 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
4107 				       void __user *arg)
4108 {
4109 	struct btrfs_ioctl_scrub_args *sa;
4110 	int ret;
4111 
4112 	if (!capable(CAP_SYS_ADMIN))
4113 		return -EPERM;
4114 
4115 	sa = memdup_user(arg, sizeof(*sa));
4116 	if (IS_ERR(sa))
4117 		return PTR_ERR(sa);
4118 
4119 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
4120 
4121 	if (copy_to_user(arg, sa, sizeof(*sa)))
4122 		ret = -EFAULT;
4123 
4124 	kfree(sa);
4125 	return ret;
4126 }
4127 
4128 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
4129 				      void __user *arg)
4130 {
4131 	struct btrfs_ioctl_get_dev_stats *sa;
4132 	int ret;
4133 
4134 	sa = memdup_user(arg, sizeof(*sa));
4135 	if (IS_ERR(sa))
4136 		return PTR_ERR(sa);
4137 
4138 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
4139 		kfree(sa);
4140 		return -EPERM;
4141 	}
4142 
4143 	ret = btrfs_get_dev_stats(root, sa);
4144 
4145 	if (copy_to_user(arg, sa, sizeof(*sa)))
4146 		ret = -EFAULT;
4147 
4148 	kfree(sa);
4149 	return ret;
4150 }
4151 
4152 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
4153 {
4154 	struct btrfs_ioctl_dev_replace_args *p;
4155 	int ret;
4156 
4157 	if (!capable(CAP_SYS_ADMIN))
4158 		return -EPERM;
4159 
4160 	p = memdup_user(arg, sizeof(*p));
4161 	if (IS_ERR(p))
4162 		return PTR_ERR(p);
4163 
4164 	switch (p->cmd) {
4165 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
4166 		if (root->fs_info->sb->s_flags & MS_RDONLY) {
4167 			ret = -EROFS;
4168 			goto out;
4169 		}
4170 		if (atomic_xchg(
4171 			&root->fs_info->mutually_exclusive_operation_running,
4172 			1)) {
4173 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4174 		} else {
4175 			ret = btrfs_dev_replace_start(root, p);
4176 			atomic_set(
4177 			 &root->fs_info->mutually_exclusive_operation_running,
4178 			 0);
4179 		}
4180 		break;
4181 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
4182 		btrfs_dev_replace_status(root->fs_info, p);
4183 		ret = 0;
4184 		break;
4185 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
4186 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
4187 		break;
4188 	default:
4189 		ret = -EINVAL;
4190 		break;
4191 	}
4192 
4193 	if (copy_to_user(arg, p, sizeof(*p)))
4194 		ret = -EFAULT;
4195 out:
4196 	kfree(p);
4197 	return ret;
4198 }
4199 
4200 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
4201 {
4202 	int ret = 0;
4203 	int i;
4204 	u64 rel_ptr;
4205 	int size;
4206 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
4207 	struct inode_fs_paths *ipath = NULL;
4208 	struct btrfs_path *path;
4209 
4210 	if (!capable(CAP_DAC_READ_SEARCH))
4211 		return -EPERM;
4212 
4213 	path = btrfs_alloc_path();
4214 	if (!path) {
4215 		ret = -ENOMEM;
4216 		goto out;
4217 	}
4218 
4219 	ipa = memdup_user(arg, sizeof(*ipa));
4220 	if (IS_ERR(ipa)) {
4221 		ret = PTR_ERR(ipa);
4222 		ipa = NULL;
4223 		goto out;
4224 	}
4225 
4226 	size = min_t(u32, ipa->size, 4096);
4227 	ipath = init_ipath(size, root, path);
4228 	if (IS_ERR(ipath)) {
4229 		ret = PTR_ERR(ipath);
4230 		ipath = NULL;
4231 		goto out;
4232 	}
4233 
4234 	ret = paths_from_inode(ipa->inum, ipath);
4235 	if (ret < 0)
4236 		goto out;
4237 
4238 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
4239 		rel_ptr = ipath->fspath->val[i] -
4240 			  (u64)(unsigned long)ipath->fspath->val;
4241 		ipath->fspath->val[i] = rel_ptr;
4242 	}
4243 
4244 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
4245 			   (void *)(unsigned long)ipath->fspath, size);
4246 	if (ret) {
4247 		ret = -EFAULT;
4248 		goto out;
4249 	}
4250 
4251 out:
4252 	btrfs_free_path(path);
4253 	free_ipath(ipath);
4254 	kfree(ipa);
4255 
4256 	return ret;
4257 }
4258 
4259 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
4260 {
4261 	struct btrfs_data_container *inodes = ctx;
4262 	const size_t c = 3 * sizeof(u64);
4263 
4264 	if (inodes->bytes_left >= c) {
4265 		inodes->bytes_left -= c;
4266 		inodes->val[inodes->elem_cnt] = inum;
4267 		inodes->val[inodes->elem_cnt + 1] = offset;
4268 		inodes->val[inodes->elem_cnt + 2] = root;
4269 		inodes->elem_cnt += 3;
4270 	} else {
4271 		inodes->bytes_missing += c - inodes->bytes_left;
4272 		inodes->bytes_left = 0;
4273 		inodes->elem_missed += 3;
4274 	}
4275 
4276 	return 0;
4277 }
4278 
4279 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
4280 					void __user *arg)
4281 {
4282 	int ret = 0;
4283 	int size;
4284 	struct btrfs_ioctl_logical_ino_args *loi;
4285 	struct btrfs_data_container *inodes = NULL;
4286 	struct btrfs_path *path = NULL;
4287 
4288 	if (!capable(CAP_SYS_ADMIN))
4289 		return -EPERM;
4290 
4291 	loi = memdup_user(arg, sizeof(*loi));
4292 	if (IS_ERR(loi)) {
4293 		ret = PTR_ERR(loi);
4294 		loi = NULL;
4295 		goto out;
4296 	}
4297 
4298 	path = btrfs_alloc_path();
4299 	if (!path) {
4300 		ret = -ENOMEM;
4301 		goto out;
4302 	}
4303 
4304 	size = min_t(u32, loi->size, 64 * 1024);
4305 	inodes = init_data_container(size);
4306 	if (IS_ERR(inodes)) {
4307 		ret = PTR_ERR(inodes);
4308 		inodes = NULL;
4309 		goto out;
4310 	}
4311 
4312 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
4313 					  build_ino_list, inodes);
4314 	if (ret == -EINVAL)
4315 		ret = -ENOENT;
4316 	if (ret < 0)
4317 		goto out;
4318 
4319 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
4320 			   (void *)(unsigned long)inodes, size);
4321 	if (ret)
4322 		ret = -EFAULT;
4323 
4324 out:
4325 	btrfs_free_path(path);
4326 	vfree(inodes);
4327 	kfree(loi);
4328 
4329 	return ret;
4330 }
4331 
4332 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
4333 			       struct btrfs_ioctl_balance_args *bargs)
4334 {
4335 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
4336 
4337 	bargs->flags = bctl->flags;
4338 
4339 	if (atomic_read(&fs_info->balance_running))
4340 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
4341 	if (atomic_read(&fs_info->balance_pause_req))
4342 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
4343 	if (atomic_read(&fs_info->balance_cancel_req))
4344 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
4345 
4346 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
4347 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
4348 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
4349 
4350 	if (lock) {
4351 		spin_lock(&fs_info->balance_lock);
4352 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4353 		spin_unlock(&fs_info->balance_lock);
4354 	} else {
4355 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
4356 	}
4357 }
4358 
4359 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
4360 {
4361 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4362 	struct btrfs_fs_info *fs_info = root->fs_info;
4363 	struct btrfs_ioctl_balance_args *bargs;
4364 	struct btrfs_balance_control *bctl;
4365 	bool need_unlock; /* for mut. excl. ops lock */
4366 	int ret;
4367 
4368 	if (!capable(CAP_SYS_ADMIN))
4369 		return -EPERM;
4370 
4371 	ret = mnt_want_write_file(file);
4372 	if (ret)
4373 		return ret;
4374 
4375 again:
4376 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
4377 		mutex_lock(&fs_info->volume_mutex);
4378 		mutex_lock(&fs_info->balance_mutex);
4379 		need_unlock = true;
4380 		goto locked;
4381 	}
4382 
4383 	/*
4384 	 * mut. excl. ops lock is locked.  Three possibilites:
4385 	 *   (1) some other op is running
4386 	 *   (2) balance is running
4387 	 *   (3) balance is paused -- special case (think resume)
4388 	 */
4389 	mutex_lock(&fs_info->balance_mutex);
4390 	if (fs_info->balance_ctl) {
4391 		/* this is either (2) or (3) */
4392 		if (!atomic_read(&fs_info->balance_running)) {
4393 			mutex_unlock(&fs_info->balance_mutex);
4394 			if (!mutex_trylock(&fs_info->volume_mutex))
4395 				goto again;
4396 			mutex_lock(&fs_info->balance_mutex);
4397 
4398 			if (fs_info->balance_ctl &&
4399 			    !atomic_read(&fs_info->balance_running)) {
4400 				/* this is (3) */
4401 				need_unlock = false;
4402 				goto locked;
4403 			}
4404 
4405 			mutex_unlock(&fs_info->balance_mutex);
4406 			mutex_unlock(&fs_info->volume_mutex);
4407 			goto again;
4408 		} else {
4409 			/* this is (2) */
4410 			mutex_unlock(&fs_info->balance_mutex);
4411 			ret = -EINPROGRESS;
4412 			goto out;
4413 		}
4414 	} else {
4415 		/* this is (1) */
4416 		mutex_unlock(&fs_info->balance_mutex);
4417 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4418 		goto out;
4419 	}
4420 
4421 locked:
4422 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
4423 
4424 	if (arg) {
4425 		bargs = memdup_user(arg, sizeof(*bargs));
4426 		if (IS_ERR(bargs)) {
4427 			ret = PTR_ERR(bargs);
4428 			goto out_unlock;
4429 		}
4430 
4431 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4432 			if (!fs_info->balance_ctl) {
4433 				ret = -ENOTCONN;
4434 				goto out_bargs;
4435 			}
4436 
4437 			bctl = fs_info->balance_ctl;
4438 			spin_lock(&fs_info->balance_lock);
4439 			bctl->flags |= BTRFS_BALANCE_RESUME;
4440 			spin_unlock(&fs_info->balance_lock);
4441 
4442 			goto do_balance;
4443 		}
4444 	} else {
4445 		bargs = NULL;
4446 	}
4447 
4448 	if (fs_info->balance_ctl) {
4449 		ret = -EINPROGRESS;
4450 		goto out_bargs;
4451 	}
4452 
4453 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
4454 	if (!bctl) {
4455 		ret = -ENOMEM;
4456 		goto out_bargs;
4457 	}
4458 
4459 	bctl->fs_info = fs_info;
4460 	if (arg) {
4461 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4462 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4463 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4464 
4465 		bctl->flags = bargs->flags;
4466 	} else {
4467 		/* balance everything - no filters */
4468 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4469 	}
4470 
4471 do_balance:
4472 	/*
4473 	 * Ownership of bctl and mutually_exclusive_operation_running
4474 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
4475 	 * or, if restriper was paused all the way until unmount, in
4476 	 * free_fs_info.  mutually_exclusive_operation_running is
4477 	 * cleared in __cancel_balance.
4478 	 */
4479 	need_unlock = false;
4480 
4481 	ret = btrfs_balance(bctl, bargs);
4482 
4483 	if (arg) {
4484 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4485 			ret = -EFAULT;
4486 	}
4487 
4488 out_bargs:
4489 	kfree(bargs);
4490 out_unlock:
4491 	mutex_unlock(&fs_info->balance_mutex);
4492 	mutex_unlock(&fs_info->volume_mutex);
4493 	if (need_unlock)
4494 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4495 out:
4496 	mnt_drop_write_file(file);
4497 	return ret;
4498 }
4499 
4500 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4501 {
4502 	if (!capable(CAP_SYS_ADMIN))
4503 		return -EPERM;
4504 
4505 	switch (cmd) {
4506 	case BTRFS_BALANCE_CTL_PAUSE:
4507 		return btrfs_pause_balance(root->fs_info);
4508 	case BTRFS_BALANCE_CTL_CANCEL:
4509 		return btrfs_cancel_balance(root->fs_info);
4510 	}
4511 
4512 	return -EINVAL;
4513 }
4514 
4515 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4516 					 void __user *arg)
4517 {
4518 	struct btrfs_fs_info *fs_info = root->fs_info;
4519 	struct btrfs_ioctl_balance_args *bargs;
4520 	int ret = 0;
4521 
4522 	if (!capable(CAP_SYS_ADMIN))
4523 		return -EPERM;
4524 
4525 	mutex_lock(&fs_info->balance_mutex);
4526 	if (!fs_info->balance_ctl) {
4527 		ret = -ENOTCONN;
4528 		goto out;
4529 	}
4530 
4531 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4532 	if (!bargs) {
4533 		ret = -ENOMEM;
4534 		goto out;
4535 	}
4536 
4537 	update_ioctl_balance_args(fs_info, 1, bargs);
4538 
4539 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4540 		ret = -EFAULT;
4541 
4542 	kfree(bargs);
4543 out:
4544 	mutex_unlock(&fs_info->balance_mutex);
4545 	return ret;
4546 }
4547 
4548 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4549 {
4550 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4551 	struct btrfs_ioctl_quota_ctl_args *sa;
4552 	struct btrfs_trans_handle *trans = NULL;
4553 	int ret;
4554 	int err;
4555 
4556 	if (!capable(CAP_SYS_ADMIN))
4557 		return -EPERM;
4558 
4559 	ret = mnt_want_write_file(file);
4560 	if (ret)
4561 		return ret;
4562 
4563 	sa = memdup_user(arg, sizeof(*sa));
4564 	if (IS_ERR(sa)) {
4565 		ret = PTR_ERR(sa);
4566 		goto drop_write;
4567 	}
4568 
4569 	down_write(&root->fs_info->subvol_sem);
4570 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4571 	if (IS_ERR(trans)) {
4572 		ret = PTR_ERR(trans);
4573 		goto out;
4574 	}
4575 
4576 	switch (sa->cmd) {
4577 	case BTRFS_QUOTA_CTL_ENABLE:
4578 		ret = btrfs_quota_enable(trans, root->fs_info);
4579 		break;
4580 	case BTRFS_QUOTA_CTL_DISABLE:
4581 		ret = btrfs_quota_disable(trans, root->fs_info);
4582 		break;
4583 	default:
4584 		ret = -EINVAL;
4585 		break;
4586 	}
4587 
4588 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4589 	if (err && !ret)
4590 		ret = err;
4591 out:
4592 	kfree(sa);
4593 	up_write(&root->fs_info->subvol_sem);
4594 drop_write:
4595 	mnt_drop_write_file(file);
4596 	return ret;
4597 }
4598 
4599 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4600 {
4601 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4602 	struct btrfs_ioctl_qgroup_assign_args *sa;
4603 	struct btrfs_trans_handle *trans;
4604 	int ret;
4605 	int err;
4606 
4607 	if (!capable(CAP_SYS_ADMIN))
4608 		return -EPERM;
4609 
4610 	ret = mnt_want_write_file(file);
4611 	if (ret)
4612 		return ret;
4613 
4614 	sa = memdup_user(arg, sizeof(*sa));
4615 	if (IS_ERR(sa)) {
4616 		ret = PTR_ERR(sa);
4617 		goto drop_write;
4618 	}
4619 
4620 	trans = btrfs_join_transaction(root);
4621 	if (IS_ERR(trans)) {
4622 		ret = PTR_ERR(trans);
4623 		goto out;
4624 	}
4625 
4626 	/* FIXME: check if the IDs really exist */
4627 	if (sa->assign) {
4628 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4629 						sa->src, sa->dst);
4630 	} else {
4631 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4632 						sa->src, sa->dst);
4633 	}
4634 
4635 	err = btrfs_end_transaction(trans, root);
4636 	if (err && !ret)
4637 		ret = err;
4638 
4639 out:
4640 	kfree(sa);
4641 drop_write:
4642 	mnt_drop_write_file(file);
4643 	return ret;
4644 }
4645 
4646 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4647 {
4648 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4649 	struct btrfs_ioctl_qgroup_create_args *sa;
4650 	struct btrfs_trans_handle *trans;
4651 	int ret;
4652 	int err;
4653 
4654 	if (!capable(CAP_SYS_ADMIN))
4655 		return -EPERM;
4656 
4657 	ret = mnt_want_write_file(file);
4658 	if (ret)
4659 		return ret;
4660 
4661 	sa = memdup_user(arg, sizeof(*sa));
4662 	if (IS_ERR(sa)) {
4663 		ret = PTR_ERR(sa);
4664 		goto drop_write;
4665 	}
4666 
4667 	if (!sa->qgroupid) {
4668 		ret = -EINVAL;
4669 		goto out;
4670 	}
4671 
4672 	trans = btrfs_join_transaction(root);
4673 	if (IS_ERR(trans)) {
4674 		ret = PTR_ERR(trans);
4675 		goto out;
4676 	}
4677 
4678 	/* FIXME: check if the IDs really exist */
4679 	if (sa->create) {
4680 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4681 					  NULL);
4682 	} else {
4683 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4684 	}
4685 
4686 	err = btrfs_end_transaction(trans, root);
4687 	if (err && !ret)
4688 		ret = err;
4689 
4690 out:
4691 	kfree(sa);
4692 drop_write:
4693 	mnt_drop_write_file(file);
4694 	return ret;
4695 }
4696 
4697 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4698 {
4699 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4700 	struct btrfs_ioctl_qgroup_limit_args *sa;
4701 	struct btrfs_trans_handle *trans;
4702 	int ret;
4703 	int err;
4704 	u64 qgroupid;
4705 
4706 	if (!capable(CAP_SYS_ADMIN))
4707 		return -EPERM;
4708 
4709 	ret = mnt_want_write_file(file);
4710 	if (ret)
4711 		return ret;
4712 
4713 	sa = memdup_user(arg, sizeof(*sa));
4714 	if (IS_ERR(sa)) {
4715 		ret = PTR_ERR(sa);
4716 		goto drop_write;
4717 	}
4718 
4719 	trans = btrfs_join_transaction(root);
4720 	if (IS_ERR(trans)) {
4721 		ret = PTR_ERR(trans);
4722 		goto out;
4723 	}
4724 
4725 	qgroupid = sa->qgroupid;
4726 	if (!qgroupid) {
4727 		/* take the current subvol as qgroup */
4728 		qgroupid = root->root_key.objectid;
4729 	}
4730 
4731 	/* FIXME: check if the IDs really exist */
4732 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4733 
4734 	err = btrfs_end_transaction(trans, root);
4735 	if (err && !ret)
4736 		ret = err;
4737 
4738 out:
4739 	kfree(sa);
4740 drop_write:
4741 	mnt_drop_write_file(file);
4742 	return ret;
4743 }
4744 
4745 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4746 {
4747 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4748 	struct btrfs_ioctl_quota_rescan_args *qsa;
4749 	int ret;
4750 
4751 	if (!capable(CAP_SYS_ADMIN))
4752 		return -EPERM;
4753 
4754 	ret = mnt_want_write_file(file);
4755 	if (ret)
4756 		return ret;
4757 
4758 	qsa = memdup_user(arg, sizeof(*qsa));
4759 	if (IS_ERR(qsa)) {
4760 		ret = PTR_ERR(qsa);
4761 		goto drop_write;
4762 	}
4763 
4764 	if (qsa->flags) {
4765 		ret = -EINVAL;
4766 		goto out;
4767 	}
4768 
4769 	ret = btrfs_qgroup_rescan(root->fs_info);
4770 
4771 out:
4772 	kfree(qsa);
4773 drop_write:
4774 	mnt_drop_write_file(file);
4775 	return ret;
4776 }
4777 
4778 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4779 {
4780 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4781 	struct btrfs_ioctl_quota_rescan_args *qsa;
4782 	int ret = 0;
4783 
4784 	if (!capable(CAP_SYS_ADMIN))
4785 		return -EPERM;
4786 
4787 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4788 	if (!qsa)
4789 		return -ENOMEM;
4790 
4791 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4792 		qsa->flags = 1;
4793 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4794 	}
4795 
4796 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4797 		ret = -EFAULT;
4798 
4799 	kfree(qsa);
4800 	return ret;
4801 }
4802 
4803 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4804 {
4805 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4806 
4807 	if (!capable(CAP_SYS_ADMIN))
4808 		return -EPERM;
4809 
4810 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4811 }
4812 
4813 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4814 					    struct btrfs_ioctl_received_subvol_args *sa)
4815 {
4816 	struct inode *inode = file_inode(file);
4817 	struct btrfs_root *root = BTRFS_I(inode)->root;
4818 	struct btrfs_root_item *root_item = &root->root_item;
4819 	struct btrfs_trans_handle *trans;
4820 	struct timespec ct = CURRENT_TIME;
4821 	int ret = 0;
4822 	int received_uuid_changed;
4823 
4824 	if (!inode_owner_or_capable(inode))
4825 		return -EPERM;
4826 
4827 	ret = mnt_want_write_file(file);
4828 	if (ret < 0)
4829 		return ret;
4830 
4831 	down_write(&root->fs_info->subvol_sem);
4832 
4833 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4834 		ret = -EINVAL;
4835 		goto out;
4836 	}
4837 
4838 	if (btrfs_root_readonly(root)) {
4839 		ret = -EROFS;
4840 		goto out;
4841 	}
4842 
4843 	/*
4844 	 * 1 - root item
4845 	 * 2 - uuid items (received uuid + subvol uuid)
4846 	 */
4847 	trans = btrfs_start_transaction(root, 3);
4848 	if (IS_ERR(trans)) {
4849 		ret = PTR_ERR(trans);
4850 		trans = NULL;
4851 		goto out;
4852 	}
4853 
4854 	sa->rtransid = trans->transid;
4855 	sa->rtime.sec = ct.tv_sec;
4856 	sa->rtime.nsec = ct.tv_nsec;
4857 
4858 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4859 				       BTRFS_UUID_SIZE);
4860 	if (received_uuid_changed &&
4861 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4862 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4863 				    root_item->received_uuid,
4864 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4865 				    root->root_key.objectid);
4866 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4867 	btrfs_set_root_stransid(root_item, sa->stransid);
4868 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4869 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4870 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4871 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4872 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4873 
4874 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4875 				&root->root_key, &root->root_item);
4876 	if (ret < 0) {
4877 		btrfs_end_transaction(trans, root);
4878 		goto out;
4879 	}
4880 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4881 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4882 					  sa->uuid,
4883 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4884 					  root->root_key.objectid);
4885 		if (ret < 0 && ret != -EEXIST) {
4886 			btrfs_abort_transaction(trans, root, ret);
4887 			goto out;
4888 		}
4889 	}
4890 	ret = btrfs_commit_transaction(trans, root);
4891 	if (ret < 0) {
4892 		btrfs_abort_transaction(trans, root, ret);
4893 		goto out;
4894 	}
4895 
4896 out:
4897 	up_write(&root->fs_info->subvol_sem);
4898 	mnt_drop_write_file(file);
4899 	return ret;
4900 }
4901 
4902 #ifdef CONFIG_64BIT
4903 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4904 						void __user *arg)
4905 {
4906 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4907 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4908 	int ret = 0;
4909 
4910 	args32 = memdup_user(arg, sizeof(*args32));
4911 	if (IS_ERR(args32)) {
4912 		ret = PTR_ERR(args32);
4913 		args32 = NULL;
4914 		goto out;
4915 	}
4916 
4917 	args64 = kmalloc(sizeof(*args64), GFP_NOFS);
4918 	if (!args64) {
4919 		ret = -ENOMEM;
4920 		goto out;
4921 	}
4922 
4923 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4924 	args64->stransid = args32->stransid;
4925 	args64->rtransid = args32->rtransid;
4926 	args64->stime.sec = args32->stime.sec;
4927 	args64->stime.nsec = args32->stime.nsec;
4928 	args64->rtime.sec = args32->rtime.sec;
4929 	args64->rtime.nsec = args32->rtime.nsec;
4930 	args64->flags = args32->flags;
4931 
4932 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4933 	if (ret)
4934 		goto out;
4935 
4936 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4937 	args32->stransid = args64->stransid;
4938 	args32->rtransid = args64->rtransid;
4939 	args32->stime.sec = args64->stime.sec;
4940 	args32->stime.nsec = args64->stime.nsec;
4941 	args32->rtime.sec = args64->rtime.sec;
4942 	args32->rtime.nsec = args64->rtime.nsec;
4943 	args32->flags = args64->flags;
4944 
4945 	ret = copy_to_user(arg, args32, sizeof(*args32));
4946 	if (ret)
4947 		ret = -EFAULT;
4948 
4949 out:
4950 	kfree(args32);
4951 	kfree(args64);
4952 	return ret;
4953 }
4954 #endif
4955 
4956 static long btrfs_ioctl_set_received_subvol(struct file *file,
4957 					    void __user *arg)
4958 {
4959 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4960 	int ret = 0;
4961 
4962 	sa = memdup_user(arg, sizeof(*sa));
4963 	if (IS_ERR(sa)) {
4964 		ret = PTR_ERR(sa);
4965 		sa = NULL;
4966 		goto out;
4967 	}
4968 
4969 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4970 
4971 	if (ret)
4972 		goto out;
4973 
4974 	ret = copy_to_user(arg, sa, sizeof(*sa));
4975 	if (ret)
4976 		ret = -EFAULT;
4977 
4978 out:
4979 	kfree(sa);
4980 	return ret;
4981 }
4982 
4983 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4984 {
4985 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4986 	size_t len;
4987 	int ret;
4988 	char label[BTRFS_LABEL_SIZE];
4989 
4990 	spin_lock(&root->fs_info->super_lock);
4991 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4992 	spin_unlock(&root->fs_info->super_lock);
4993 
4994 	len = strnlen(label, BTRFS_LABEL_SIZE);
4995 
4996 	if (len == BTRFS_LABEL_SIZE) {
4997 		btrfs_warn(root->fs_info,
4998 			"label is too long, return the first %zu bytes", --len);
4999 	}
5000 
5001 	ret = copy_to_user(arg, label, len);
5002 
5003 	return ret ? -EFAULT : 0;
5004 }
5005 
5006 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
5007 {
5008 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5009 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5010 	struct btrfs_trans_handle *trans;
5011 	char label[BTRFS_LABEL_SIZE];
5012 	int ret;
5013 
5014 	if (!capable(CAP_SYS_ADMIN))
5015 		return -EPERM;
5016 
5017 	if (copy_from_user(label, arg, sizeof(label)))
5018 		return -EFAULT;
5019 
5020 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
5021 		btrfs_err(root->fs_info, "unable to set label with more than %d bytes",
5022 		       BTRFS_LABEL_SIZE - 1);
5023 		return -EINVAL;
5024 	}
5025 
5026 	ret = mnt_want_write_file(file);
5027 	if (ret)
5028 		return ret;
5029 
5030 	trans = btrfs_start_transaction(root, 0);
5031 	if (IS_ERR(trans)) {
5032 		ret = PTR_ERR(trans);
5033 		goto out_unlock;
5034 	}
5035 
5036 	spin_lock(&root->fs_info->super_lock);
5037 	strcpy(super_block->label, label);
5038 	spin_unlock(&root->fs_info->super_lock);
5039 	ret = btrfs_commit_transaction(trans, root);
5040 
5041 out_unlock:
5042 	mnt_drop_write_file(file);
5043 	return ret;
5044 }
5045 
5046 #define INIT_FEATURE_FLAGS(suffix) \
5047 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
5048 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
5049 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
5050 
5051 static int btrfs_ioctl_get_supported_features(struct file *file,
5052 					      void __user *arg)
5053 {
5054 	static struct btrfs_ioctl_feature_flags features[3] = {
5055 		INIT_FEATURE_FLAGS(SUPP),
5056 		INIT_FEATURE_FLAGS(SAFE_SET),
5057 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
5058 	};
5059 
5060 	if (copy_to_user(arg, &features, sizeof(features)))
5061 		return -EFAULT;
5062 
5063 	return 0;
5064 }
5065 
5066 static int btrfs_ioctl_get_features(struct file *file, void __user *arg)
5067 {
5068 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5069 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5070 	struct btrfs_ioctl_feature_flags features;
5071 
5072 	features.compat_flags = btrfs_super_compat_flags(super_block);
5073 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
5074 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
5075 
5076 	if (copy_to_user(arg, &features, sizeof(features)))
5077 		return -EFAULT;
5078 
5079 	return 0;
5080 }
5081 
5082 static int check_feature_bits(struct btrfs_root *root,
5083 			      enum btrfs_feature_set set,
5084 			      u64 change_mask, u64 flags, u64 supported_flags,
5085 			      u64 safe_set, u64 safe_clear)
5086 {
5087 	const char *type = btrfs_feature_set_names[set];
5088 	char *names;
5089 	u64 disallowed, unsupported;
5090 	u64 set_mask = flags & change_mask;
5091 	u64 clear_mask = ~flags & change_mask;
5092 
5093 	unsupported = set_mask & ~supported_flags;
5094 	if (unsupported) {
5095 		names = btrfs_printable_features(set, unsupported);
5096 		if (names) {
5097 			btrfs_warn(root->fs_info,
5098 			   "this kernel does not support the %s feature bit%s",
5099 			   names, strchr(names, ',') ? "s" : "");
5100 			kfree(names);
5101 		} else
5102 			btrfs_warn(root->fs_info,
5103 			   "this kernel does not support %s bits 0x%llx",
5104 			   type, unsupported);
5105 		return -EOPNOTSUPP;
5106 	}
5107 
5108 	disallowed = set_mask & ~safe_set;
5109 	if (disallowed) {
5110 		names = btrfs_printable_features(set, disallowed);
5111 		if (names) {
5112 			btrfs_warn(root->fs_info,
5113 			   "can't set the %s feature bit%s while mounted",
5114 			   names, strchr(names, ',') ? "s" : "");
5115 			kfree(names);
5116 		} else
5117 			btrfs_warn(root->fs_info,
5118 			   "can't set %s bits 0x%llx while mounted",
5119 			   type, disallowed);
5120 		return -EPERM;
5121 	}
5122 
5123 	disallowed = clear_mask & ~safe_clear;
5124 	if (disallowed) {
5125 		names = btrfs_printable_features(set, disallowed);
5126 		if (names) {
5127 			btrfs_warn(root->fs_info,
5128 			   "can't clear the %s feature bit%s while mounted",
5129 			   names, strchr(names, ',') ? "s" : "");
5130 			kfree(names);
5131 		} else
5132 			btrfs_warn(root->fs_info,
5133 			   "can't clear %s bits 0x%llx while mounted",
5134 			   type, disallowed);
5135 		return -EPERM;
5136 	}
5137 
5138 	return 0;
5139 }
5140 
5141 #define check_feature(root, change_mask, flags, mask_base)	\
5142 check_feature_bits(root, FEAT_##mask_base, change_mask, flags,	\
5143 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
5144 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
5145 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
5146 
5147 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
5148 {
5149 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5150 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
5151 	struct btrfs_ioctl_feature_flags flags[2];
5152 	struct btrfs_trans_handle *trans;
5153 	u64 newflags;
5154 	int ret;
5155 
5156 	if (!capable(CAP_SYS_ADMIN))
5157 		return -EPERM;
5158 
5159 	if (copy_from_user(flags, arg, sizeof(flags)))
5160 		return -EFAULT;
5161 
5162 	/* Nothing to do */
5163 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
5164 	    !flags[0].incompat_flags)
5165 		return 0;
5166 
5167 	ret = check_feature(root, flags[0].compat_flags,
5168 			    flags[1].compat_flags, COMPAT);
5169 	if (ret)
5170 		return ret;
5171 
5172 	ret = check_feature(root, flags[0].compat_ro_flags,
5173 			    flags[1].compat_ro_flags, COMPAT_RO);
5174 	if (ret)
5175 		return ret;
5176 
5177 	ret = check_feature(root, flags[0].incompat_flags,
5178 			    flags[1].incompat_flags, INCOMPAT);
5179 	if (ret)
5180 		return ret;
5181 
5182 	trans = btrfs_start_transaction(root, 0);
5183 	if (IS_ERR(trans))
5184 		return PTR_ERR(trans);
5185 
5186 	spin_lock(&root->fs_info->super_lock);
5187 	newflags = btrfs_super_compat_flags(super_block);
5188 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
5189 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
5190 	btrfs_set_super_compat_flags(super_block, newflags);
5191 
5192 	newflags = btrfs_super_compat_ro_flags(super_block);
5193 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
5194 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
5195 	btrfs_set_super_compat_ro_flags(super_block, newflags);
5196 
5197 	newflags = btrfs_super_incompat_flags(super_block);
5198 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
5199 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
5200 	btrfs_set_super_incompat_flags(super_block, newflags);
5201 	spin_unlock(&root->fs_info->super_lock);
5202 
5203 	return btrfs_commit_transaction(trans, root);
5204 }
5205 
5206 long btrfs_ioctl(struct file *file, unsigned int
5207 		cmd, unsigned long arg)
5208 {
5209 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
5210 	void __user *argp = (void __user *)arg;
5211 
5212 	switch (cmd) {
5213 	case FS_IOC_GETFLAGS:
5214 		return btrfs_ioctl_getflags(file, argp);
5215 	case FS_IOC_SETFLAGS:
5216 		return btrfs_ioctl_setflags(file, argp);
5217 	case FS_IOC_GETVERSION:
5218 		return btrfs_ioctl_getversion(file, argp);
5219 	case FITRIM:
5220 		return btrfs_ioctl_fitrim(file, argp);
5221 	case BTRFS_IOC_SNAP_CREATE:
5222 		return btrfs_ioctl_snap_create(file, argp, 0);
5223 	case BTRFS_IOC_SNAP_CREATE_V2:
5224 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
5225 	case BTRFS_IOC_SUBVOL_CREATE:
5226 		return btrfs_ioctl_snap_create(file, argp, 1);
5227 	case BTRFS_IOC_SUBVOL_CREATE_V2:
5228 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
5229 	case BTRFS_IOC_SNAP_DESTROY:
5230 		return btrfs_ioctl_snap_destroy(file, argp);
5231 	case BTRFS_IOC_SUBVOL_GETFLAGS:
5232 		return btrfs_ioctl_subvol_getflags(file, argp);
5233 	case BTRFS_IOC_SUBVOL_SETFLAGS:
5234 		return btrfs_ioctl_subvol_setflags(file, argp);
5235 	case BTRFS_IOC_DEFAULT_SUBVOL:
5236 		return btrfs_ioctl_default_subvol(file, argp);
5237 	case BTRFS_IOC_DEFRAG:
5238 		return btrfs_ioctl_defrag(file, NULL);
5239 	case BTRFS_IOC_DEFRAG_RANGE:
5240 		return btrfs_ioctl_defrag(file, argp);
5241 	case BTRFS_IOC_RESIZE:
5242 		return btrfs_ioctl_resize(file, argp);
5243 	case BTRFS_IOC_ADD_DEV:
5244 		return btrfs_ioctl_add_dev(root, argp);
5245 	case BTRFS_IOC_RM_DEV:
5246 		return btrfs_ioctl_rm_dev(file, argp);
5247 	case BTRFS_IOC_FS_INFO:
5248 		return btrfs_ioctl_fs_info(root, argp);
5249 	case BTRFS_IOC_DEV_INFO:
5250 		return btrfs_ioctl_dev_info(root, argp);
5251 	case BTRFS_IOC_BALANCE:
5252 		return btrfs_ioctl_balance(file, NULL);
5253 	case BTRFS_IOC_CLONE:
5254 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
5255 	case BTRFS_IOC_CLONE_RANGE:
5256 		return btrfs_ioctl_clone_range(file, argp);
5257 	case BTRFS_IOC_TRANS_START:
5258 		return btrfs_ioctl_trans_start(file);
5259 	case BTRFS_IOC_TRANS_END:
5260 		return btrfs_ioctl_trans_end(file);
5261 	case BTRFS_IOC_TREE_SEARCH:
5262 		return btrfs_ioctl_tree_search(file, argp);
5263 	case BTRFS_IOC_TREE_SEARCH_V2:
5264 		return btrfs_ioctl_tree_search_v2(file, argp);
5265 	case BTRFS_IOC_INO_LOOKUP:
5266 		return btrfs_ioctl_ino_lookup(file, argp);
5267 	case BTRFS_IOC_INO_PATHS:
5268 		return btrfs_ioctl_ino_to_path(root, argp);
5269 	case BTRFS_IOC_LOGICAL_INO:
5270 		return btrfs_ioctl_logical_to_ino(root, argp);
5271 	case BTRFS_IOC_SPACE_INFO:
5272 		return btrfs_ioctl_space_info(root, argp);
5273 	case BTRFS_IOC_SYNC: {
5274 		int ret;
5275 
5276 		ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1);
5277 		if (ret)
5278 			return ret;
5279 		ret = btrfs_sync_fs(file->f_dentry->d_sb, 1);
5280 		return ret;
5281 	}
5282 	case BTRFS_IOC_START_SYNC:
5283 		return btrfs_ioctl_start_sync(root, argp);
5284 	case BTRFS_IOC_WAIT_SYNC:
5285 		return btrfs_ioctl_wait_sync(root, argp);
5286 	case BTRFS_IOC_SCRUB:
5287 		return btrfs_ioctl_scrub(file, argp);
5288 	case BTRFS_IOC_SCRUB_CANCEL:
5289 		return btrfs_ioctl_scrub_cancel(root, argp);
5290 	case BTRFS_IOC_SCRUB_PROGRESS:
5291 		return btrfs_ioctl_scrub_progress(root, argp);
5292 	case BTRFS_IOC_BALANCE_V2:
5293 		return btrfs_ioctl_balance(file, argp);
5294 	case BTRFS_IOC_BALANCE_CTL:
5295 		return btrfs_ioctl_balance_ctl(root, arg);
5296 	case BTRFS_IOC_BALANCE_PROGRESS:
5297 		return btrfs_ioctl_balance_progress(root, argp);
5298 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
5299 		return btrfs_ioctl_set_received_subvol(file, argp);
5300 #ifdef CONFIG_64BIT
5301 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
5302 		return btrfs_ioctl_set_received_subvol_32(file, argp);
5303 #endif
5304 	case BTRFS_IOC_SEND:
5305 		return btrfs_ioctl_send(file, argp);
5306 	case BTRFS_IOC_GET_DEV_STATS:
5307 		return btrfs_ioctl_get_dev_stats(root, argp);
5308 	case BTRFS_IOC_QUOTA_CTL:
5309 		return btrfs_ioctl_quota_ctl(file, argp);
5310 	case BTRFS_IOC_QGROUP_ASSIGN:
5311 		return btrfs_ioctl_qgroup_assign(file, argp);
5312 	case BTRFS_IOC_QGROUP_CREATE:
5313 		return btrfs_ioctl_qgroup_create(file, argp);
5314 	case BTRFS_IOC_QGROUP_LIMIT:
5315 		return btrfs_ioctl_qgroup_limit(file, argp);
5316 	case BTRFS_IOC_QUOTA_RESCAN:
5317 		return btrfs_ioctl_quota_rescan(file, argp);
5318 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
5319 		return btrfs_ioctl_quota_rescan_status(file, argp);
5320 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5321 		return btrfs_ioctl_quota_rescan_wait(file, argp);
5322 	case BTRFS_IOC_DEV_REPLACE:
5323 		return btrfs_ioctl_dev_replace(root, argp);
5324 	case BTRFS_IOC_GET_FSLABEL:
5325 		return btrfs_ioctl_get_fslabel(file, argp);
5326 	case BTRFS_IOC_SET_FSLABEL:
5327 		return btrfs_ioctl_set_fslabel(file, argp);
5328 	case BTRFS_IOC_FILE_EXTENT_SAME:
5329 		return btrfs_ioctl_file_extent_same(file, argp);
5330 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5331 		return btrfs_ioctl_get_supported_features(file, argp);
5332 	case BTRFS_IOC_GET_FEATURES:
5333 		return btrfs_ioctl_get_features(file, argp);
5334 	case BTRFS_IOC_SET_FEATURES:
5335 		return btrfs_ioctl_set_features(file, argp);
5336 	}
5337 
5338 	return -ENOTTY;
5339 }
5340