xref: /openbmc/linux/fs/btrfs/ioctl.c (revision bbb651e469d99f0088e286fdeb54acca7bb4ad4e)
1 /*
2  * Copyright (C) 2007 Oracle.  All rights reserved.
3  *
4  * This program is free software; you can redistribute it and/or
5  * modify it under the terms of the GNU General Public
6  * License v2 as published by the Free Software Foundation.
7  *
8  * This program is distributed in the hope that it will be useful,
9  * but WITHOUT ANY WARRANTY; without even the implied warranty of
10  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
11  * General Public License for more details.
12  *
13  * You should have received a copy of the GNU General Public
14  * License along with this program; if not, write to the
15  * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16  * Boston, MA 021110-1307, USA.
17  */
18 
19 #include <linux/kernel.h>
20 #include <linux/bio.h>
21 #include <linux/buffer_head.h>
22 #include <linux/file.h>
23 #include <linux/fs.h>
24 #include <linux/fsnotify.h>
25 #include <linux/pagemap.h>
26 #include <linux/highmem.h>
27 #include <linux/time.h>
28 #include <linux/init.h>
29 #include <linux/string.h>
30 #include <linux/backing-dev.h>
31 #include <linux/mount.h>
32 #include <linux/mpage.h>
33 #include <linux/namei.h>
34 #include <linux/swap.h>
35 #include <linux/writeback.h>
36 #include <linux/statfs.h>
37 #include <linux/compat.h>
38 #include <linux/bit_spinlock.h>
39 #include <linux/security.h>
40 #include <linux/xattr.h>
41 #include <linux/vmalloc.h>
42 #include <linux/slab.h>
43 #include <linux/blkdev.h>
44 #include <linux/uuid.h>
45 #include <linux/btrfs.h>
46 #include <linux/uaccess.h>
47 #include "compat.h"
48 #include "ctree.h"
49 #include "disk-io.h"
50 #include "transaction.h"
51 #include "btrfs_inode.h"
52 #include "print-tree.h"
53 #include "volumes.h"
54 #include "locking.h"
55 #include "inode-map.h"
56 #include "backref.h"
57 #include "rcu-string.h"
58 #include "send.h"
59 #include "dev-replace.h"
60 
61 static int btrfs_clone(struct inode *src, struct inode *inode,
62 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff);
63 
64 /* Mask out flags that are inappropriate for the given type of inode. */
65 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags)
66 {
67 	if (S_ISDIR(mode))
68 		return flags;
69 	else if (S_ISREG(mode))
70 		return flags & ~FS_DIRSYNC_FL;
71 	else
72 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
73 }
74 
75 /*
76  * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl.
77  */
78 static unsigned int btrfs_flags_to_ioctl(unsigned int flags)
79 {
80 	unsigned int iflags = 0;
81 
82 	if (flags & BTRFS_INODE_SYNC)
83 		iflags |= FS_SYNC_FL;
84 	if (flags & BTRFS_INODE_IMMUTABLE)
85 		iflags |= FS_IMMUTABLE_FL;
86 	if (flags & BTRFS_INODE_APPEND)
87 		iflags |= FS_APPEND_FL;
88 	if (flags & BTRFS_INODE_NODUMP)
89 		iflags |= FS_NODUMP_FL;
90 	if (flags & BTRFS_INODE_NOATIME)
91 		iflags |= FS_NOATIME_FL;
92 	if (flags & BTRFS_INODE_DIRSYNC)
93 		iflags |= FS_DIRSYNC_FL;
94 	if (flags & BTRFS_INODE_NODATACOW)
95 		iflags |= FS_NOCOW_FL;
96 
97 	if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS))
98 		iflags |= FS_COMPR_FL;
99 	else if (flags & BTRFS_INODE_NOCOMPRESS)
100 		iflags |= FS_NOCOMP_FL;
101 
102 	return iflags;
103 }
104 
105 /*
106  * Update inode->i_flags based on the btrfs internal flags.
107  */
108 void btrfs_update_iflags(struct inode *inode)
109 {
110 	struct btrfs_inode *ip = BTRFS_I(inode);
111 
112 	inode->i_flags &= ~(S_SYNC|S_APPEND|S_IMMUTABLE|S_NOATIME|S_DIRSYNC);
113 
114 	if (ip->flags & BTRFS_INODE_SYNC)
115 		inode->i_flags |= S_SYNC;
116 	if (ip->flags & BTRFS_INODE_IMMUTABLE)
117 		inode->i_flags |= S_IMMUTABLE;
118 	if (ip->flags & BTRFS_INODE_APPEND)
119 		inode->i_flags |= S_APPEND;
120 	if (ip->flags & BTRFS_INODE_NOATIME)
121 		inode->i_flags |= S_NOATIME;
122 	if (ip->flags & BTRFS_INODE_DIRSYNC)
123 		inode->i_flags |= S_DIRSYNC;
124 }
125 
126 /*
127  * Inherit flags from the parent inode.
128  *
129  * Currently only the compression flags and the cow flags are inherited.
130  */
131 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir)
132 {
133 	unsigned int flags;
134 
135 	if (!dir)
136 		return;
137 
138 	flags = BTRFS_I(dir)->flags;
139 
140 	if (flags & BTRFS_INODE_NOCOMPRESS) {
141 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS;
142 		BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS;
143 	} else if (flags & BTRFS_INODE_COMPRESS) {
144 		BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS;
145 		BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS;
146 	}
147 
148 	if (flags & BTRFS_INODE_NODATACOW) {
149 		BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW;
150 		if (S_ISREG(inode->i_mode))
151 			BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM;
152 	}
153 
154 	btrfs_update_iflags(inode);
155 }
156 
157 static int btrfs_ioctl_getflags(struct file *file, void __user *arg)
158 {
159 	struct btrfs_inode *ip = BTRFS_I(file_inode(file));
160 	unsigned int flags = btrfs_flags_to_ioctl(ip->flags);
161 
162 	if (copy_to_user(arg, &flags, sizeof(flags)))
163 		return -EFAULT;
164 	return 0;
165 }
166 
167 static int check_flags(unsigned int flags)
168 {
169 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
170 		      FS_NOATIME_FL | FS_NODUMP_FL | \
171 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
172 		      FS_NOCOMP_FL | FS_COMPR_FL |
173 		      FS_NOCOW_FL))
174 		return -EOPNOTSUPP;
175 
176 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
177 		return -EINVAL;
178 
179 	return 0;
180 }
181 
182 static int btrfs_ioctl_setflags(struct file *file, void __user *arg)
183 {
184 	struct inode *inode = file_inode(file);
185 	struct btrfs_inode *ip = BTRFS_I(inode);
186 	struct btrfs_root *root = ip->root;
187 	struct btrfs_trans_handle *trans;
188 	unsigned int flags, oldflags;
189 	int ret;
190 	u64 ip_oldflags;
191 	unsigned int i_oldflags;
192 	umode_t mode;
193 
194 	if (btrfs_root_readonly(root))
195 		return -EROFS;
196 
197 	if (copy_from_user(&flags, arg, sizeof(flags)))
198 		return -EFAULT;
199 
200 	ret = check_flags(flags);
201 	if (ret)
202 		return ret;
203 
204 	if (!inode_owner_or_capable(inode))
205 		return -EACCES;
206 
207 	ret = mnt_want_write_file(file);
208 	if (ret)
209 		return ret;
210 
211 	mutex_lock(&inode->i_mutex);
212 
213 	ip_oldflags = ip->flags;
214 	i_oldflags = inode->i_flags;
215 	mode = inode->i_mode;
216 
217 	flags = btrfs_mask_flags(inode->i_mode, flags);
218 	oldflags = btrfs_flags_to_ioctl(ip->flags);
219 	if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) {
220 		if (!capable(CAP_LINUX_IMMUTABLE)) {
221 			ret = -EPERM;
222 			goto out_unlock;
223 		}
224 	}
225 
226 	if (flags & FS_SYNC_FL)
227 		ip->flags |= BTRFS_INODE_SYNC;
228 	else
229 		ip->flags &= ~BTRFS_INODE_SYNC;
230 	if (flags & FS_IMMUTABLE_FL)
231 		ip->flags |= BTRFS_INODE_IMMUTABLE;
232 	else
233 		ip->flags &= ~BTRFS_INODE_IMMUTABLE;
234 	if (flags & FS_APPEND_FL)
235 		ip->flags |= BTRFS_INODE_APPEND;
236 	else
237 		ip->flags &= ~BTRFS_INODE_APPEND;
238 	if (flags & FS_NODUMP_FL)
239 		ip->flags |= BTRFS_INODE_NODUMP;
240 	else
241 		ip->flags &= ~BTRFS_INODE_NODUMP;
242 	if (flags & FS_NOATIME_FL)
243 		ip->flags |= BTRFS_INODE_NOATIME;
244 	else
245 		ip->flags &= ~BTRFS_INODE_NOATIME;
246 	if (flags & FS_DIRSYNC_FL)
247 		ip->flags |= BTRFS_INODE_DIRSYNC;
248 	else
249 		ip->flags &= ~BTRFS_INODE_DIRSYNC;
250 	if (flags & FS_NOCOW_FL) {
251 		if (S_ISREG(mode)) {
252 			/*
253 			 * It's safe to turn csums off here, no extents exist.
254 			 * Otherwise we want the flag to reflect the real COW
255 			 * status of the file and will not set it.
256 			 */
257 			if (inode->i_size == 0)
258 				ip->flags |= BTRFS_INODE_NODATACOW
259 					   | BTRFS_INODE_NODATASUM;
260 		} else {
261 			ip->flags |= BTRFS_INODE_NODATACOW;
262 		}
263 	} else {
264 		/*
265 		 * Revert back under same assuptions as above
266 		 */
267 		if (S_ISREG(mode)) {
268 			if (inode->i_size == 0)
269 				ip->flags &= ~(BTRFS_INODE_NODATACOW
270 				             | BTRFS_INODE_NODATASUM);
271 		} else {
272 			ip->flags &= ~BTRFS_INODE_NODATACOW;
273 		}
274 	}
275 
276 	/*
277 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
278 	 * flag may be changed automatically if compression code won't make
279 	 * things smaller.
280 	 */
281 	if (flags & FS_NOCOMP_FL) {
282 		ip->flags &= ~BTRFS_INODE_COMPRESS;
283 		ip->flags |= BTRFS_INODE_NOCOMPRESS;
284 	} else if (flags & FS_COMPR_FL) {
285 		ip->flags |= BTRFS_INODE_COMPRESS;
286 		ip->flags &= ~BTRFS_INODE_NOCOMPRESS;
287 	} else {
288 		ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
289 	}
290 
291 	trans = btrfs_start_transaction(root, 1);
292 	if (IS_ERR(trans)) {
293 		ret = PTR_ERR(trans);
294 		goto out_drop;
295 	}
296 
297 	btrfs_update_iflags(inode);
298 	inode_inc_iversion(inode);
299 	inode->i_ctime = CURRENT_TIME;
300 	ret = btrfs_update_inode(trans, root, inode);
301 
302 	btrfs_end_transaction(trans, root);
303  out_drop:
304 	if (ret) {
305 		ip->flags = ip_oldflags;
306 		inode->i_flags = i_oldflags;
307 	}
308 
309  out_unlock:
310 	mutex_unlock(&inode->i_mutex);
311 	mnt_drop_write_file(file);
312 	return ret;
313 }
314 
315 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
316 {
317 	struct inode *inode = file_inode(file);
318 
319 	return put_user(inode->i_generation, arg);
320 }
321 
322 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg)
323 {
324 	struct btrfs_fs_info *fs_info = btrfs_sb(fdentry(file)->d_sb);
325 	struct btrfs_device *device;
326 	struct request_queue *q;
327 	struct fstrim_range range;
328 	u64 minlen = ULLONG_MAX;
329 	u64 num_devices = 0;
330 	u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy);
331 	int ret;
332 
333 	if (!capable(CAP_SYS_ADMIN))
334 		return -EPERM;
335 
336 	rcu_read_lock();
337 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
338 				dev_list) {
339 		if (!device->bdev)
340 			continue;
341 		q = bdev_get_queue(device->bdev);
342 		if (blk_queue_discard(q)) {
343 			num_devices++;
344 			minlen = min((u64)q->limits.discard_granularity,
345 				     minlen);
346 		}
347 	}
348 	rcu_read_unlock();
349 
350 	if (!num_devices)
351 		return -EOPNOTSUPP;
352 	if (copy_from_user(&range, arg, sizeof(range)))
353 		return -EFAULT;
354 	if (range.start > total_bytes ||
355 	    range.len < fs_info->sb->s_blocksize)
356 		return -EINVAL;
357 
358 	range.len = min(range.len, total_bytes - range.start);
359 	range.minlen = max(range.minlen, minlen);
360 	ret = btrfs_trim_fs(fs_info->tree_root, &range);
361 	if (ret < 0)
362 		return ret;
363 
364 	if (copy_to_user(arg, &range, sizeof(range)))
365 		return -EFAULT;
366 
367 	return 0;
368 }
369 
370 int btrfs_is_empty_uuid(u8 *uuid)
371 {
372 	static char empty_uuid[BTRFS_UUID_SIZE] = {0};
373 
374 	return !memcmp(uuid, empty_uuid, BTRFS_UUID_SIZE);
375 }
376 
377 static noinline int create_subvol(struct inode *dir,
378 				  struct dentry *dentry,
379 				  char *name, int namelen,
380 				  u64 *async_transid,
381 				  struct btrfs_qgroup_inherit *inherit)
382 {
383 	struct btrfs_trans_handle *trans;
384 	struct btrfs_key key;
385 	struct btrfs_root_item root_item;
386 	struct btrfs_inode_item *inode_item;
387 	struct extent_buffer *leaf;
388 	struct btrfs_root *root = BTRFS_I(dir)->root;
389 	struct btrfs_root *new_root;
390 	struct btrfs_block_rsv block_rsv;
391 	struct timespec cur_time = CURRENT_TIME;
392 	int ret;
393 	int err;
394 	u64 objectid;
395 	u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID;
396 	u64 index = 0;
397 	u64 qgroup_reserved;
398 	uuid_le new_uuid;
399 
400 	ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid);
401 	if (ret)
402 		return ret;
403 
404 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
405 	/*
406 	 * The same as the snapshot creation, please see the comment
407 	 * of create_snapshot().
408 	 */
409 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv,
410 					       8, &qgroup_reserved, false);
411 	if (ret)
412 		return ret;
413 
414 	trans = btrfs_start_transaction(root, 0);
415 	if (IS_ERR(trans)) {
416 		ret = PTR_ERR(trans);
417 		goto out;
418 	}
419 	trans->block_rsv = &block_rsv;
420 	trans->bytes_reserved = block_rsv.size;
421 
422 	ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit);
423 	if (ret)
424 		goto fail;
425 
426 	leaf = btrfs_alloc_free_block(trans, root, root->leafsize,
427 				      0, objectid, NULL, 0, 0, 0);
428 	if (IS_ERR(leaf)) {
429 		ret = PTR_ERR(leaf);
430 		goto fail;
431 	}
432 
433 	memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header));
434 	btrfs_set_header_bytenr(leaf, leaf->start);
435 	btrfs_set_header_generation(leaf, trans->transid);
436 	btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV);
437 	btrfs_set_header_owner(leaf, objectid);
438 
439 	write_extent_buffer(leaf, root->fs_info->fsid,
440 			    (unsigned long)btrfs_header_fsid(leaf),
441 			    BTRFS_FSID_SIZE);
442 	write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid,
443 			    (unsigned long)btrfs_header_chunk_tree_uuid(leaf),
444 			    BTRFS_UUID_SIZE);
445 	btrfs_mark_buffer_dirty(leaf);
446 
447 	memset(&root_item, 0, sizeof(root_item));
448 
449 	inode_item = &root_item.inode;
450 	btrfs_set_stack_inode_generation(inode_item, 1);
451 	btrfs_set_stack_inode_size(inode_item, 3);
452 	btrfs_set_stack_inode_nlink(inode_item, 1);
453 	btrfs_set_stack_inode_nbytes(inode_item, root->leafsize);
454 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
455 
456 	btrfs_set_root_flags(&root_item, 0);
457 	btrfs_set_root_limit(&root_item, 0);
458 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
459 
460 	btrfs_set_root_bytenr(&root_item, leaf->start);
461 	btrfs_set_root_generation(&root_item, trans->transid);
462 	btrfs_set_root_level(&root_item, 0);
463 	btrfs_set_root_refs(&root_item, 1);
464 	btrfs_set_root_used(&root_item, leaf->len);
465 	btrfs_set_root_last_snapshot(&root_item, 0);
466 
467 	btrfs_set_root_generation_v2(&root_item,
468 			btrfs_root_generation(&root_item));
469 	uuid_le_gen(&new_uuid);
470 	memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE);
471 	btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec);
472 	btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec);
473 	root_item.ctime = root_item.otime;
474 	btrfs_set_root_ctransid(&root_item, trans->transid);
475 	btrfs_set_root_otransid(&root_item, trans->transid);
476 
477 	btrfs_tree_unlock(leaf);
478 	free_extent_buffer(leaf);
479 	leaf = NULL;
480 
481 	btrfs_set_root_dirid(&root_item, new_dirid);
482 
483 	key.objectid = objectid;
484 	key.offset = 0;
485 	btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY);
486 	ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key,
487 				&root_item);
488 	if (ret)
489 		goto fail;
490 
491 	key.offset = (u64)-1;
492 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &key);
493 	if (IS_ERR(new_root)) {
494 		btrfs_abort_transaction(trans, root, PTR_ERR(new_root));
495 		ret = PTR_ERR(new_root);
496 		goto fail;
497 	}
498 
499 	btrfs_record_root_in_trans(trans, new_root);
500 
501 	ret = btrfs_create_subvol_root(trans, new_root, new_dirid);
502 	if (ret) {
503 		/* We potentially lose an unused inode item here */
504 		btrfs_abort_transaction(trans, root, ret);
505 		goto fail;
506 	}
507 
508 	/*
509 	 * insert the directory item
510 	 */
511 	ret = btrfs_set_inode_index(dir, &index);
512 	if (ret) {
513 		btrfs_abort_transaction(trans, root, ret);
514 		goto fail;
515 	}
516 
517 	ret = btrfs_insert_dir_item(trans, root,
518 				    name, namelen, dir, &key,
519 				    BTRFS_FT_DIR, index);
520 	if (ret) {
521 		btrfs_abort_transaction(trans, root, ret);
522 		goto fail;
523 	}
524 
525 	btrfs_i_size_write(dir, dir->i_size + namelen * 2);
526 	ret = btrfs_update_inode(trans, root, dir);
527 	BUG_ON(ret);
528 
529 	ret = btrfs_add_root_ref(trans, root->fs_info->tree_root,
530 				 objectid, root->root_key.objectid,
531 				 btrfs_ino(dir), index, name, namelen);
532 	BUG_ON(ret);
533 
534 	ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
535 				  root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
536 				  objectid);
537 	if (ret)
538 		btrfs_abort_transaction(trans, root, ret);
539 
540 fail:
541 	trans->block_rsv = NULL;
542 	trans->bytes_reserved = 0;
543 	if (async_transid) {
544 		*async_transid = trans->transid;
545 		err = btrfs_commit_transaction_async(trans, root, 1);
546 		if (err)
547 			err = btrfs_commit_transaction(trans, root);
548 	} else {
549 		err = btrfs_commit_transaction(trans, root);
550 	}
551 	if (err && !ret)
552 		ret = err;
553 
554 	if (!ret)
555 		d_instantiate(dentry, btrfs_lookup_dentry(dir, dentry));
556 out:
557 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
558 	return ret;
559 }
560 
561 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
562 			   struct dentry *dentry, char *name, int namelen,
563 			   u64 *async_transid, bool readonly,
564 			   struct btrfs_qgroup_inherit *inherit)
565 {
566 	struct inode *inode;
567 	struct btrfs_pending_snapshot *pending_snapshot;
568 	struct btrfs_trans_handle *trans;
569 	int ret;
570 
571 	if (!root->ref_cows)
572 		return -EINVAL;
573 
574 	ret = btrfs_start_delalloc_inodes(root, 0);
575 	if (ret)
576 		return ret;
577 
578 	btrfs_wait_ordered_extents(root, 0);
579 
580 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS);
581 	if (!pending_snapshot)
582 		return -ENOMEM;
583 
584 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
585 			     BTRFS_BLOCK_RSV_TEMP);
586 	/*
587 	 * 1 - parent dir inode
588 	 * 2 - dir entries
589 	 * 1 - root item
590 	 * 2 - root ref/backref
591 	 * 1 - root of snapshot
592 	 * 1 - UUID item
593 	 */
594 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
595 					&pending_snapshot->block_rsv, 8,
596 					&pending_snapshot->qgroup_reserved,
597 					false);
598 	if (ret)
599 		goto out;
600 
601 	pending_snapshot->dentry = dentry;
602 	pending_snapshot->root = root;
603 	pending_snapshot->readonly = readonly;
604 	pending_snapshot->dir = dir;
605 	pending_snapshot->inherit = inherit;
606 
607 	trans = btrfs_start_transaction(root, 0);
608 	if (IS_ERR(trans)) {
609 		ret = PTR_ERR(trans);
610 		goto fail;
611 	}
612 
613 	spin_lock(&root->fs_info->trans_lock);
614 	list_add(&pending_snapshot->list,
615 		 &trans->transaction->pending_snapshots);
616 	spin_unlock(&root->fs_info->trans_lock);
617 	if (async_transid) {
618 		*async_transid = trans->transid;
619 		ret = btrfs_commit_transaction_async(trans,
620 				     root->fs_info->extent_root, 1);
621 		if (ret)
622 			ret = btrfs_commit_transaction(trans, root);
623 	} else {
624 		ret = btrfs_commit_transaction(trans,
625 					       root->fs_info->extent_root);
626 	}
627 	if (ret)
628 		goto fail;
629 
630 	ret = pending_snapshot->error;
631 	if (ret)
632 		goto fail;
633 
634 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
635 	if (ret)
636 		goto fail;
637 
638 	inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry);
639 	if (IS_ERR(inode)) {
640 		ret = PTR_ERR(inode);
641 		goto fail;
642 	}
643 	BUG_ON(!inode);
644 	d_instantiate(dentry, inode);
645 	ret = 0;
646 fail:
647 	btrfs_subvolume_release_metadata(BTRFS_I(dir)->root,
648 					 &pending_snapshot->block_rsv,
649 					 pending_snapshot->qgroup_reserved);
650 out:
651 	kfree(pending_snapshot);
652 	return ret;
653 }
654 
655 /*  copy of check_sticky in fs/namei.c()
656 * It's inline, so penalty for filesystems that don't use sticky bit is
657 * minimal.
658 */
659 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode)
660 {
661 	kuid_t fsuid = current_fsuid();
662 
663 	if (!(dir->i_mode & S_ISVTX))
664 		return 0;
665 	if (uid_eq(inode->i_uid, fsuid))
666 		return 0;
667 	if (uid_eq(dir->i_uid, fsuid))
668 		return 0;
669 	return !capable(CAP_FOWNER);
670 }
671 
672 /*  copy of may_delete in fs/namei.c()
673  *	Check whether we can remove a link victim from directory dir, check
674  *  whether the type of victim is right.
675  *  1. We can't do it if dir is read-only (done in permission())
676  *  2. We should have write and exec permissions on dir
677  *  3. We can't remove anything from append-only dir
678  *  4. We can't do anything with immutable dir (done in permission())
679  *  5. If the sticky bit on dir is set we should either
680  *	a. be owner of dir, or
681  *	b. be owner of victim, or
682  *	c. have CAP_FOWNER capability
683  *  6. If the victim is append-only or immutable we can't do antyhing with
684  *     links pointing to it.
685  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
686  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
687  *  9. We can't remove a root or mountpoint.
688  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
689  *     nfs_async_unlink().
690  */
691 
692 static int btrfs_may_delete(struct inode *dir,struct dentry *victim,int isdir)
693 {
694 	int error;
695 
696 	if (!victim->d_inode)
697 		return -ENOENT;
698 
699 	BUG_ON(victim->d_parent->d_inode != dir);
700 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
701 
702 	error = inode_permission(dir, MAY_WRITE | MAY_EXEC);
703 	if (error)
704 		return error;
705 	if (IS_APPEND(dir))
706 		return -EPERM;
707 	if (btrfs_check_sticky(dir, victim->d_inode)||
708 		IS_APPEND(victim->d_inode)||
709 	    IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode))
710 		return -EPERM;
711 	if (isdir) {
712 		if (!S_ISDIR(victim->d_inode->i_mode))
713 			return -ENOTDIR;
714 		if (IS_ROOT(victim))
715 			return -EBUSY;
716 	} else if (S_ISDIR(victim->d_inode->i_mode))
717 		return -EISDIR;
718 	if (IS_DEADDIR(dir))
719 		return -ENOENT;
720 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
721 		return -EBUSY;
722 	return 0;
723 }
724 
725 /* copy of may_create in fs/namei.c() */
726 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
727 {
728 	if (child->d_inode)
729 		return -EEXIST;
730 	if (IS_DEADDIR(dir))
731 		return -ENOENT;
732 	return inode_permission(dir, MAY_WRITE | MAY_EXEC);
733 }
734 
735 /*
736  * Create a new subvolume below @parent.  This is largely modeled after
737  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
738  * inside this filesystem so it's quite a bit simpler.
739  */
740 static noinline int btrfs_mksubvol(struct path *parent,
741 				   char *name, int namelen,
742 				   struct btrfs_root *snap_src,
743 				   u64 *async_transid, bool readonly,
744 				   struct btrfs_qgroup_inherit *inherit)
745 {
746 	struct inode *dir  = parent->dentry->d_inode;
747 	struct dentry *dentry;
748 	int error;
749 
750 	error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
751 	if (error == -EINTR)
752 		return error;
753 
754 	dentry = lookup_one_len(name, parent->dentry, namelen);
755 	error = PTR_ERR(dentry);
756 	if (IS_ERR(dentry))
757 		goto out_unlock;
758 
759 	error = -EEXIST;
760 	if (dentry->d_inode)
761 		goto out_dput;
762 
763 	error = btrfs_may_create(dir, dentry);
764 	if (error)
765 		goto out_dput;
766 
767 	/*
768 	 * even if this name doesn't exist, we may get hash collisions.
769 	 * check for them now when we can safely fail
770 	 */
771 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
772 					       dir->i_ino, name,
773 					       namelen);
774 	if (error)
775 		goto out_dput;
776 
777 	down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
778 
779 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
780 		goto out_up_read;
781 
782 	if (snap_src) {
783 		error = create_snapshot(snap_src, dir, dentry, name, namelen,
784 					async_transid, readonly, inherit);
785 	} else {
786 		error = create_subvol(dir, dentry, name, namelen,
787 				      async_transid, inherit);
788 	}
789 	if (!error)
790 		fsnotify_mkdir(dir, dentry);
791 out_up_read:
792 	up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem);
793 out_dput:
794 	dput(dentry);
795 out_unlock:
796 	mutex_unlock(&dir->i_mutex);
797 	return error;
798 }
799 
800 /*
801  * When we're defragging a range, we don't want to kick it off again
802  * if it is really just waiting for delalloc to send it down.
803  * If we find a nice big extent or delalloc range for the bytes in the
804  * file you want to defrag, we return 0 to let you know to skip this
805  * part of the file
806  */
807 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh)
808 {
809 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
810 	struct extent_map *em = NULL;
811 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
812 	u64 end;
813 
814 	read_lock(&em_tree->lock);
815 	em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE);
816 	read_unlock(&em_tree->lock);
817 
818 	if (em) {
819 		end = extent_map_end(em);
820 		free_extent_map(em);
821 		if (end - offset > thresh)
822 			return 0;
823 	}
824 	/* if we already have a nice delalloc here, just stop */
825 	thresh /= 2;
826 	end = count_range_bits(io_tree, &offset, offset + thresh,
827 			       thresh, EXTENT_DELALLOC, 1);
828 	if (end >= thresh)
829 		return 0;
830 	return 1;
831 }
832 
833 /*
834  * helper function to walk through a file and find extents
835  * newer than a specific transid, and smaller than thresh.
836  *
837  * This is used by the defragging code to find new and small
838  * extents
839  */
840 static int find_new_extents(struct btrfs_root *root,
841 			    struct inode *inode, u64 newer_than,
842 			    u64 *off, int thresh)
843 {
844 	struct btrfs_path *path;
845 	struct btrfs_key min_key;
846 	struct btrfs_key max_key;
847 	struct extent_buffer *leaf;
848 	struct btrfs_file_extent_item *extent;
849 	int type;
850 	int ret;
851 	u64 ino = btrfs_ino(inode);
852 
853 	path = btrfs_alloc_path();
854 	if (!path)
855 		return -ENOMEM;
856 
857 	min_key.objectid = ino;
858 	min_key.type = BTRFS_EXTENT_DATA_KEY;
859 	min_key.offset = *off;
860 
861 	max_key.objectid = ino;
862 	max_key.type = (u8)-1;
863 	max_key.offset = (u64)-1;
864 
865 	path->keep_locks = 1;
866 
867 	while(1) {
868 		ret = btrfs_search_forward(root, &min_key, &max_key,
869 					   path, newer_than);
870 		if (ret != 0)
871 			goto none;
872 		if (min_key.objectid != ino)
873 			goto none;
874 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
875 			goto none;
876 
877 		leaf = path->nodes[0];
878 		extent = btrfs_item_ptr(leaf, path->slots[0],
879 					struct btrfs_file_extent_item);
880 
881 		type = btrfs_file_extent_type(leaf, extent);
882 		if (type == BTRFS_FILE_EXTENT_REG &&
883 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
884 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
885 			*off = min_key.offset;
886 			btrfs_free_path(path);
887 			return 0;
888 		}
889 
890 		if (min_key.offset == (u64)-1)
891 			goto none;
892 
893 		min_key.offset++;
894 		btrfs_release_path(path);
895 	}
896 none:
897 	btrfs_free_path(path);
898 	return -ENOENT;
899 }
900 
901 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
902 {
903 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
904 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
905 	struct extent_map *em;
906 	u64 len = PAGE_CACHE_SIZE;
907 
908 	/*
909 	 * hopefully we have this extent in the tree already, try without
910 	 * the full extent lock
911 	 */
912 	read_lock(&em_tree->lock);
913 	em = lookup_extent_mapping(em_tree, start, len);
914 	read_unlock(&em_tree->lock);
915 
916 	if (!em) {
917 		/* get the big lock and read metadata off disk */
918 		lock_extent(io_tree, start, start + len - 1);
919 		em = btrfs_get_extent(inode, NULL, 0, start, len, 0);
920 		unlock_extent(io_tree, start, start + len - 1);
921 
922 		if (IS_ERR(em))
923 			return NULL;
924 	}
925 
926 	return em;
927 }
928 
929 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
930 {
931 	struct extent_map *next;
932 	bool ret = true;
933 
934 	/* this is the last extent */
935 	if (em->start + em->len >= i_size_read(inode))
936 		return false;
937 
938 	next = defrag_lookup_extent(inode, em->start + em->len);
939 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
940 		ret = false;
941 
942 	free_extent_map(next);
943 	return ret;
944 }
945 
946 static int should_defrag_range(struct inode *inode, u64 start, int thresh,
947 			       u64 *last_len, u64 *skip, u64 *defrag_end,
948 			       int compress)
949 {
950 	struct extent_map *em;
951 	int ret = 1;
952 	bool next_mergeable = true;
953 
954 	/*
955 	 * make sure that once we start defragging an extent, we keep on
956 	 * defragging it
957 	 */
958 	if (start < *defrag_end)
959 		return 1;
960 
961 	*skip = 0;
962 
963 	em = defrag_lookup_extent(inode, start);
964 	if (!em)
965 		return 0;
966 
967 	/* this will cover holes, and inline extents */
968 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
969 		ret = 0;
970 		goto out;
971 	}
972 
973 	next_mergeable = defrag_check_next_extent(inode, em);
974 
975 	/*
976 	 * we hit a real extent, if it is big or the next extent is not a
977 	 * real extent, don't bother defragging it
978 	 */
979 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
980 	    (em->len >= thresh || !next_mergeable))
981 		ret = 0;
982 out:
983 	/*
984 	 * last_len ends up being a counter of how many bytes we've defragged.
985 	 * every time we choose not to defrag an extent, we reset *last_len
986 	 * so that the next tiny extent will force a defrag.
987 	 *
988 	 * The end result of this is that tiny extents before a single big
989 	 * extent will force at least part of that big extent to be defragged.
990 	 */
991 	if (ret) {
992 		*defrag_end = extent_map_end(em);
993 	} else {
994 		*last_len = 0;
995 		*skip = extent_map_end(em);
996 		*defrag_end = 0;
997 	}
998 
999 	free_extent_map(em);
1000 	return ret;
1001 }
1002 
1003 /*
1004  * it doesn't do much good to defrag one or two pages
1005  * at a time.  This pulls in a nice chunk of pages
1006  * to COW and defrag.
1007  *
1008  * It also makes sure the delalloc code has enough
1009  * dirty data to avoid making new small extents as part
1010  * of the defrag
1011  *
1012  * It's a good idea to start RA on this range
1013  * before calling this.
1014  */
1015 static int cluster_pages_for_defrag(struct inode *inode,
1016 				    struct page **pages,
1017 				    unsigned long start_index,
1018 				    int num_pages)
1019 {
1020 	unsigned long file_end;
1021 	u64 isize = i_size_read(inode);
1022 	u64 page_start;
1023 	u64 page_end;
1024 	u64 page_cnt;
1025 	int ret;
1026 	int i;
1027 	int i_done;
1028 	struct btrfs_ordered_extent *ordered;
1029 	struct extent_state *cached_state = NULL;
1030 	struct extent_io_tree *tree;
1031 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1032 
1033 	file_end = (isize - 1) >> PAGE_CACHE_SHIFT;
1034 	if (!isize || start_index > file_end)
1035 		return 0;
1036 
1037 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1038 
1039 	ret = btrfs_delalloc_reserve_space(inode,
1040 					   page_cnt << PAGE_CACHE_SHIFT);
1041 	if (ret)
1042 		return ret;
1043 	i_done = 0;
1044 	tree = &BTRFS_I(inode)->io_tree;
1045 
1046 	/* step one, lock all the pages */
1047 	for (i = 0; i < page_cnt; i++) {
1048 		struct page *page;
1049 again:
1050 		page = find_or_create_page(inode->i_mapping,
1051 					   start_index + i, mask);
1052 		if (!page)
1053 			break;
1054 
1055 		page_start = page_offset(page);
1056 		page_end = page_start + PAGE_CACHE_SIZE - 1;
1057 		while (1) {
1058 			lock_extent(tree, page_start, page_end);
1059 			ordered = btrfs_lookup_ordered_extent(inode,
1060 							      page_start);
1061 			unlock_extent(tree, page_start, page_end);
1062 			if (!ordered)
1063 				break;
1064 
1065 			unlock_page(page);
1066 			btrfs_start_ordered_extent(inode, ordered, 1);
1067 			btrfs_put_ordered_extent(ordered);
1068 			lock_page(page);
1069 			/*
1070 			 * we unlocked the page above, so we need check if
1071 			 * it was released or not.
1072 			 */
1073 			if (page->mapping != inode->i_mapping) {
1074 				unlock_page(page);
1075 				page_cache_release(page);
1076 				goto again;
1077 			}
1078 		}
1079 
1080 		if (!PageUptodate(page)) {
1081 			btrfs_readpage(NULL, page);
1082 			lock_page(page);
1083 			if (!PageUptodate(page)) {
1084 				unlock_page(page);
1085 				page_cache_release(page);
1086 				ret = -EIO;
1087 				break;
1088 			}
1089 		}
1090 
1091 		if (page->mapping != inode->i_mapping) {
1092 			unlock_page(page);
1093 			page_cache_release(page);
1094 			goto again;
1095 		}
1096 
1097 		pages[i] = page;
1098 		i_done++;
1099 	}
1100 	if (!i_done || ret)
1101 		goto out;
1102 
1103 	if (!(inode->i_sb->s_flags & MS_ACTIVE))
1104 		goto out;
1105 
1106 	/*
1107 	 * so now we have a nice long stream of locked
1108 	 * and up to date pages, lets wait on them
1109 	 */
1110 	for (i = 0; i < i_done; i++)
1111 		wait_on_page_writeback(pages[i]);
1112 
1113 	page_start = page_offset(pages[0]);
1114 	page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE;
1115 
1116 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1117 			 page_start, page_end - 1, 0, &cached_state);
1118 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1119 			  page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC |
1120 			  EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0,
1121 			  &cached_state, GFP_NOFS);
1122 
1123 	if (i_done != page_cnt) {
1124 		spin_lock(&BTRFS_I(inode)->lock);
1125 		BTRFS_I(inode)->outstanding_extents++;
1126 		spin_unlock(&BTRFS_I(inode)->lock);
1127 		btrfs_delalloc_release_space(inode,
1128 				     (page_cnt - i_done) << PAGE_CACHE_SHIFT);
1129 	}
1130 
1131 
1132 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1133 			  &cached_state, GFP_NOFS);
1134 
1135 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1136 			     page_start, page_end - 1, &cached_state,
1137 			     GFP_NOFS);
1138 
1139 	for (i = 0; i < i_done; i++) {
1140 		clear_page_dirty_for_io(pages[i]);
1141 		ClearPageChecked(pages[i]);
1142 		set_page_extent_mapped(pages[i]);
1143 		set_page_dirty(pages[i]);
1144 		unlock_page(pages[i]);
1145 		page_cache_release(pages[i]);
1146 	}
1147 	return i_done;
1148 out:
1149 	for (i = 0; i < i_done; i++) {
1150 		unlock_page(pages[i]);
1151 		page_cache_release(pages[i]);
1152 	}
1153 	btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT);
1154 	return ret;
1155 
1156 }
1157 
1158 int btrfs_defrag_file(struct inode *inode, struct file *file,
1159 		      struct btrfs_ioctl_defrag_range_args *range,
1160 		      u64 newer_than, unsigned long max_to_defrag)
1161 {
1162 	struct btrfs_root *root = BTRFS_I(inode)->root;
1163 	struct file_ra_state *ra = NULL;
1164 	unsigned long last_index;
1165 	u64 isize = i_size_read(inode);
1166 	u64 last_len = 0;
1167 	u64 skip = 0;
1168 	u64 defrag_end = 0;
1169 	u64 newer_off = range->start;
1170 	unsigned long i;
1171 	unsigned long ra_index = 0;
1172 	int ret;
1173 	int defrag_count = 0;
1174 	int compress_type = BTRFS_COMPRESS_ZLIB;
1175 	int extent_thresh = range->extent_thresh;
1176 	int max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT;
1177 	int cluster = max_cluster;
1178 	u64 new_align = ~((u64)128 * 1024 - 1);
1179 	struct page **pages = NULL;
1180 
1181 	if (isize == 0)
1182 		return 0;
1183 
1184 	if (range->start >= isize)
1185 		return -EINVAL;
1186 
1187 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1188 		if (range->compress_type > BTRFS_COMPRESS_TYPES)
1189 			return -EINVAL;
1190 		if (range->compress_type)
1191 			compress_type = range->compress_type;
1192 	}
1193 
1194 	if (extent_thresh == 0)
1195 		extent_thresh = 256 * 1024;
1196 
1197 	/*
1198 	 * if we were not given a file, allocate a readahead
1199 	 * context
1200 	 */
1201 	if (!file) {
1202 		ra = kzalloc(sizeof(*ra), GFP_NOFS);
1203 		if (!ra)
1204 			return -ENOMEM;
1205 		file_ra_state_init(ra, inode->i_mapping);
1206 	} else {
1207 		ra = &file->f_ra;
1208 	}
1209 
1210 	pages = kmalloc(sizeof(struct page *) * max_cluster,
1211 			GFP_NOFS);
1212 	if (!pages) {
1213 		ret = -ENOMEM;
1214 		goto out_ra;
1215 	}
1216 
1217 	/* find the last page to defrag */
1218 	if (range->start + range->len > range->start) {
1219 		last_index = min_t(u64, isize - 1,
1220 			 range->start + range->len - 1) >> PAGE_CACHE_SHIFT;
1221 	} else {
1222 		last_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1223 	}
1224 
1225 	if (newer_than) {
1226 		ret = find_new_extents(root, inode, newer_than,
1227 				       &newer_off, 64 * 1024);
1228 		if (!ret) {
1229 			range->start = newer_off;
1230 			/*
1231 			 * we always align our defrag to help keep
1232 			 * the extents in the file evenly spaced
1233 			 */
1234 			i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1235 		} else
1236 			goto out_ra;
1237 	} else {
1238 		i = range->start >> PAGE_CACHE_SHIFT;
1239 	}
1240 	if (!max_to_defrag)
1241 		max_to_defrag = last_index + 1;
1242 
1243 	/*
1244 	 * make writeback starts from i, so the defrag range can be
1245 	 * written sequentially.
1246 	 */
1247 	if (i < inode->i_mapping->writeback_index)
1248 		inode->i_mapping->writeback_index = i;
1249 
1250 	while (i <= last_index && defrag_count < max_to_defrag &&
1251 	       (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >>
1252 		PAGE_CACHE_SHIFT)) {
1253 		/*
1254 		 * make sure we stop running if someone unmounts
1255 		 * the FS
1256 		 */
1257 		if (!(inode->i_sb->s_flags & MS_ACTIVE))
1258 			break;
1259 
1260 		if (btrfs_defrag_cancelled(root->fs_info)) {
1261 			printk(KERN_DEBUG "btrfs: defrag_file cancelled\n");
1262 			ret = -EAGAIN;
1263 			break;
1264 		}
1265 
1266 		if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT,
1267 					 extent_thresh, &last_len, &skip,
1268 					 &defrag_end, range->flags &
1269 					 BTRFS_DEFRAG_RANGE_COMPRESS)) {
1270 			unsigned long next;
1271 			/*
1272 			 * the should_defrag function tells us how much to skip
1273 			 * bump our counter by the suggested amount
1274 			 */
1275 			next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1276 			i = max(i + 1, next);
1277 			continue;
1278 		}
1279 
1280 		if (!newer_than) {
1281 			cluster = (PAGE_CACHE_ALIGN(defrag_end) >>
1282 				   PAGE_CACHE_SHIFT) - i;
1283 			cluster = min(cluster, max_cluster);
1284 		} else {
1285 			cluster = max_cluster;
1286 		}
1287 
1288 		if (i + cluster > ra_index) {
1289 			ra_index = max(i, ra_index);
1290 			btrfs_force_ra(inode->i_mapping, ra, file, ra_index,
1291 				       cluster);
1292 			ra_index += max_cluster;
1293 		}
1294 
1295 		mutex_lock(&inode->i_mutex);
1296 		if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)
1297 			BTRFS_I(inode)->force_compress = compress_type;
1298 		ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1299 		if (ret < 0) {
1300 			mutex_unlock(&inode->i_mutex);
1301 			goto out_ra;
1302 		}
1303 
1304 		defrag_count += ret;
1305 		balance_dirty_pages_ratelimited(inode->i_mapping);
1306 		mutex_unlock(&inode->i_mutex);
1307 
1308 		if (newer_than) {
1309 			if (newer_off == (u64)-1)
1310 				break;
1311 
1312 			if (ret > 0)
1313 				i += ret;
1314 
1315 			newer_off = max(newer_off + 1,
1316 					(u64)i << PAGE_CACHE_SHIFT);
1317 
1318 			ret = find_new_extents(root, inode,
1319 					       newer_than, &newer_off,
1320 					       64 * 1024);
1321 			if (!ret) {
1322 				range->start = newer_off;
1323 				i = (newer_off & new_align) >> PAGE_CACHE_SHIFT;
1324 			} else {
1325 				break;
1326 			}
1327 		} else {
1328 			if (ret > 0) {
1329 				i += ret;
1330 				last_len += ret << PAGE_CACHE_SHIFT;
1331 			} else {
1332 				i++;
1333 				last_len = 0;
1334 			}
1335 		}
1336 	}
1337 
1338 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO))
1339 		filemap_flush(inode->i_mapping);
1340 
1341 	if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
1342 		/* the filemap_flush will queue IO into the worker threads, but
1343 		 * we have to make sure the IO is actually started and that
1344 		 * ordered extents get created before we return
1345 		 */
1346 		atomic_inc(&root->fs_info->async_submit_draining);
1347 		while (atomic_read(&root->fs_info->nr_async_submits) ||
1348 		      atomic_read(&root->fs_info->async_delalloc_pages)) {
1349 			wait_event(root->fs_info->async_submit_wait,
1350 			   (atomic_read(&root->fs_info->nr_async_submits) == 0 &&
1351 			    atomic_read(&root->fs_info->async_delalloc_pages) == 0));
1352 		}
1353 		atomic_dec(&root->fs_info->async_submit_draining);
1354 	}
1355 
1356 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1357 		btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO);
1358 	}
1359 
1360 	ret = defrag_count;
1361 
1362 out_ra:
1363 	if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) {
1364 		mutex_lock(&inode->i_mutex);
1365 		BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE;
1366 		mutex_unlock(&inode->i_mutex);
1367 	}
1368 	if (!file)
1369 		kfree(ra);
1370 	kfree(pages);
1371 	return ret;
1372 }
1373 
1374 static noinline int btrfs_ioctl_resize(struct file *file,
1375 					void __user *arg)
1376 {
1377 	u64 new_size;
1378 	u64 old_size;
1379 	u64 devid = 1;
1380 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
1381 	struct btrfs_ioctl_vol_args *vol_args;
1382 	struct btrfs_trans_handle *trans;
1383 	struct btrfs_device *device = NULL;
1384 	char *sizestr;
1385 	char *devstr = NULL;
1386 	int ret = 0;
1387 	int mod = 0;
1388 
1389 	if (!capable(CAP_SYS_ADMIN))
1390 		return -EPERM;
1391 
1392 	ret = mnt_want_write_file(file);
1393 	if (ret)
1394 		return ret;
1395 
1396 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
1397 			1)) {
1398 		pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
1399 		mnt_drop_write_file(file);
1400 		return -EINVAL;
1401 	}
1402 
1403 	mutex_lock(&root->fs_info->volume_mutex);
1404 	vol_args = memdup_user(arg, sizeof(*vol_args));
1405 	if (IS_ERR(vol_args)) {
1406 		ret = PTR_ERR(vol_args);
1407 		goto out;
1408 	}
1409 
1410 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1411 
1412 	sizestr = vol_args->name;
1413 	devstr = strchr(sizestr, ':');
1414 	if (devstr) {
1415 		char *end;
1416 		sizestr = devstr + 1;
1417 		*devstr = '\0';
1418 		devstr = vol_args->name;
1419 		devid = simple_strtoull(devstr, &end, 10);
1420 		if (!devid) {
1421 			ret = -EINVAL;
1422 			goto out_free;
1423 		}
1424 		printk(KERN_INFO "btrfs: resizing devid %llu\n",
1425 		       (unsigned long long)devid);
1426 	}
1427 
1428 	device = btrfs_find_device(root->fs_info, devid, NULL, NULL);
1429 	if (!device) {
1430 		printk(KERN_INFO "btrfs: resizer unable to find device %llu\n",
1431 		       (unsigned long long)devid);
1432 		ret = -ENODEV;
1433 		goto out_free;
1434 	}
1435 
1436 	if (!device->writeable) {
1437 		printk(KERN_INFO "btrfs: resizer unable to apply on "
1438 		       "readonly device %llu\n",
1439 		       (unsigned long long)devid);
1440 		ret = -EPERM;
1441 		goto out_free;
1442 	}
1443 
1444 	if (!strcmp(sizestr, "max"))
1445 		new_size = device->bdev->bd_inode->i_size;
1446 	else {
1447 		if (sizestr[0] == '-') {
1448 			mod = -1;
1449 			sizestr++;
1450 		} else if (sizestr[0] == '+') {
1451 			mod = 1;
1452 			sizestr++;
1453 		}
1454 		new_size = memparse(sizestr, NULL);
1455 		if (new_size == 0) {
1456 			ret = -EINVAL;
1457 			goto out_free;
1458 		}
1459 	}
1460 
1461 	if (device->is_tgtdev_for_dev_replace) {
1462 		ret = -EPERM;
1463 		goto out_free;
1464 	}
1465 
1466 	old_size = device->total_bytes;
1467 
1468 	if (mod < 0) {
1469 		if (new_size > old_size) {
1470 			ret = -EINVAL;
1471 			goto out_free;
1472 		}
1473 		new_size = old_size - new_size;
1474 	} else if (mod > 0) {
1475 		new_size = old_size + new_size;
1476 	}
1477 
1478 	if (new_size < 256 * 1024 * 1024) {
1479 		ret = -EINVAL;
1480 		goto out_free;
1481 	}
1482 	if (new_size > device->bdev->bd_inode->i_size) {
1483 		ret = -EFBIG;
1484 		goto out_free;
1485 	}
1486 
1487 	do_div(new_size, root->sectorsize);
1488 	new_size *= root->sectorsize;
1489 
1490 	printk_in_rcu(KERN_INFO "btrfs: new size for %s is %llu\n",
1491 		      rcu_str_deref(device->name),
1492 		      (unsigned long long)new_size);
1493 
1494 	if (new_size > old_size) {
1495 		trans = btrfs_start_transaction(root, 0);
1496 		if (IS_ERR(trans)) {
1497 			ret = PTR_ERR(trans);
1498 			goto out_free;
1499 		}
1500 		ret = btrfs_grow_device(trans, device, new_size);
1501 		btrfs_commit_transaction(trans, root);
1502 	} else if (new_size < old_size) {
1503 		ret = btrfs_shrink_device(device, new_size);
1504 	} /* equal, nothing need to do */
1505 
1506 out_free:
1507 	kfree(vol_args);
1508 out:
1509 	mutex_unlock(&root->fs_info->volume_mutex);
1510 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
1511 	mnt_drop_write_file(file);
1512 	return ret;
1513 }
1514 
1515 static noinline int btrfs_ioctl_snap_create_transid(struct file *file,
1516 				char *name, unsigned long fd, int subvol,
1517 				u64 *transid, bool readonly,
1518 				struct btrfs_qgroup_inherit *inherit)
1519 {
1520 	int namelen;
1521 	int ret = 0;
1522 
1523 	ret = mnt_want_write_file(file);
1524 	if (ret)
1525 		goto out;
1526 
1527 	namelen = strlen(name);
1528 	if (strchr(name, '/')) {
1529 		ret = -EINVAL;
1530 		goto out_drop_write;
1531 	}
1532 
1533 	if (name[0] == '.' &&
1534 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1535 		ret = -EEXIST;
1536 		goto out_drop_write;
1537 	}
1538 
1539 	if (subvol) {
1540 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1541 				     NULL, transid, readonly, inherit);
1542 	} else {
1543 		struct fd src = fdget(fd);
1544 		struct inode *src_inode;
1545 		if (!src.file) {
1546 			ret = -EINVAL;
1547 			goto out_drop_write;
1548 		}
1549 
1550 		src_inode = file_inode(src.file);
1551 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1552 			printk(KERN_INFO "btrfs: Snapshot src from "
1553 			       "another FS\n");
1554 			ret = -EINVAL;
1555 		} else {
1556 			ret = btrfs_mksubvol(&file->f_path, name, namelen,
1557 					     BTRFS_I(src_inode)->root,
1558 					     transid, readonly, inherit);
1559 		}
1560 		fdput(src);
1561 	}
1562 out_drop_write:
1563 	mnt_drop_write_file(file);
1564 out:
1565 	return ret;
1566 }
1567 
1568 static noinline int btrfs_ioctl_snap_create(struct file *file,
1569 					    void __user *arg, int subvol)
1570 {
1571 	struct btrfs_ioctl_vol_args *vol_args;
1572 	int ret;
1573 
1574 	vol_args = memdup_user(arg, sizeof(*vol_args));
1575 	if (IS_ERR(vol_args))
1576 		return PTR_ERR(vol_args);
1577 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1578 
1579 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1580 					      vol_args->fd, subvol,
1581 					      NULL, false, NULL);
1582 
1583 	kfree(vol_args);
1584 	return ret;
1585 }
1586 
1587 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1588 					       void __user *arg, int subvol)
1589 {
1590 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1591 	int ret;
1592 	u64 transid = 0;
1593 	u64 *ptr = NULL;
1594 	bool readonly = false;
1595 	struct btrfs_qgroup_inherit *inherit = NULL;
1596 
1597 	vol_args = memdup_user(arg, sizeof(*vol_args));
1598 	if (IS_ERR(vol_args))
1599 		return PTR_ERR(vol_args);
1600 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1601 
1602 	if (vol_args->flags &
1603 	    ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY |
1604 	      BTRFS_SUBVOL_QGROUP_INHERIT)) {
1605 		ret = -EOPNOTSUPP;
1606 		goto out;
1607 	}
1608 
1609 	if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC)
1610 		ptr = &transid;
1611 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1612 		readonly = true;
1613 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1614 		if (vol_args->size > PAGE_CACHE_SIZE) {
1615 			ret = -EINVAL;
1616 			goto out;
1617 		}
1618 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1619 		if (IS_ERR(inherit)) {
1620 			ret = PTR_ERR(inherit);
1621 			goto out;
1622 		}
1623 	}
1624 
1625 	ret = btrfs_ioctl_snap_create_transid(file, vol_args->name,
1626 					      vol_args->fd, subvol, ptr,
1627 					      readonly, inherit);
1628 
1629 	if (ret == 0 && ptr &&
1630 	    copy_to_user(arg +
1631 			 offsetof(struct btrfs_ioctl_vol_args_v2,
1632 				  transid), ptr, sizeof(*ptr)))
1633 		ret = -EFAULT;
1634 out:
1635 	kfree(vol_args);
1636 	kfree(inherit);
1637 	return ret;
1638 }
1639 
1640 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1641 						void __user *arg)
1642 {
1643 	struct inode *inode = file_inode(file);
1644 	struct btrfs_root *root = BTRFS_I(inode)->root;
1645 	int ret = 0;
1646 	u64 flags = 0;
1647 
1648 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID)
1649 		return -EINVAL;
1650 
1651 	down_read(&root->fs_info->subvol_sem);
1652 	if (btrfs_root_readonly(root))
1653 		flags |= BTRFS_SUBVOL_RDONLY;
1654 	up_read(&root->fs_info->subvol_sem);
1655 
1656 	if (copy_to_user(arg, &flags, sizeof(flags)))
1657 		ret = -EFAULT;
1658 
1659 	return ret;
1660 }
1661 
1662 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1663 					      void __user *arg)
1664 {
1665 	struct inode *inode = file_inode(file);
1666 	struct btrfs_root *root = BTRFS_I(inode)->root;
1667 	struct btrfs_trans_handle *trans;
1668 	u64 root_flags;
1669 	u64 flags;
1670 	int ret = 0;
1671 
1672 	ret = mnt_want_write_file(file);
1673 	if (ret)
1674 		goto out;
1675 
1676 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
1677 		ret = -EINVAL;
1678 		goto out_drop_write;
1679 	}
1680 
1681 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1682 		ret = -EFAULT;
1683 		goto out_drop_write;
1684 	}
1685 
1686 	if (flags & BTRFS_SUBVOL_CREATE_ASYNC) {
1687 		ret = -EINVAL;
1688 		goto out_drop_write;
1689 	}
1690 
1691 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1692 		ret = -EOPNOTSUPP;
1693 		goto out_drop_write;
1694 	}
1695 
1696 	if (!inode_owner_or_capable(inode)) {
1697 		ret = -EACCES;
1698 		goto out_drop_write;
1699 	}
1700 
1701 	down_write(&root->fs_info->subvol_sem);
1702 
1703 	/* nothing to do */
1704 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1705 		goto out_drop_sem;
1706 
1707 	root_flags = btrfs_root_flags(&root->root_item);
1708 	if (flags & BTRFS_SUBVOL_RDONLY)
1709 		btrfs_set_root_flags(&root->root_item,
1710 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1711 	else
1712 		btrfs_set_root_flags(&root->root_item,
1713 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1714 
1715 	trans = btrfs_start_transaction(root, 1);
1716 	if (IS_ERR(trans)) {
1717 		ret = PTR_ERR(trans);
1718 		goto out_reset;
1719 	}
1720 
1721 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
1722 				&root->root_key, &root->root_item);
1723 
1724 	btrfs_commit_transaction(trans, root);
1725 out_reset:
1726 	if (ret)
1727 		btrfs_set_root_flags(&root->root_item, root_flags);
1728 out_drop_sem:
1729 	up_write(&root->fs_info->subvol_sem);
1730 out_drop_write:
1731 	mnt_drop_write_file(file);
1732 out:
1733 	return ret;
1734 }
1735 
1736 /*
1737  * helper to check if the subvolume references other subvolumes
1738  */
1739 static noinline int may_destroy_subvol(struct btrfs_root *root)
1740 {
1741 	struct btrfs_path *path;
1742 	struct btrfs_dir_item *di;
1743 	struct btrfs_key key;
1744 	u64 dir_id;
1745 	int ret;
1746 
1747 	path = btrfs_alloc_path();
1748 	if (!path)
1749 		return -ENOMEM;
1750 
1751 	/* Make sure this root isn't set as the default subvol */
1752 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
1753 	di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path,
1754 				   dir_id, "default", 7, 0);
1755 	if (di && !IS_ERR(di)) {
1756 		btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key);
1757 		if (key.objectid == root->root_key.objectid) {
1758 			ret = -ENOTEMPTY;
1759 			goto out;
1760 		}
1761 		btrfs_release_path(path);
1762 	}
1763 
1764 	key.objectid = root->root_key.objectid;
1765 	key.type = BTRFS_ROOT_REF_KEY;
1766 	key.offset = (u64)-1;
1767 
1768 	ret = btrfs_search_slot(NULL, root->fs_info->tree_root,
1769 				&key, path, 0, 0);
1770 	if (ret < 0)
1771 		goto out;
1772 	BUG_ON(ret == 0);
1773 
1774 	ret = 0;
1775 	if (path->slots[0] > 0) {
1776 		path->slots[0]--;
1777 		btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]);
1778 		if (key.objectid == root->root_key.objectid &&
1779 		    key.type == BTRFS_ROOT_REF_KEY)
1780 			ret = -ENOTEMPTY;
1781 	}
1782 out:
1783 	btrfs_free_path(path);
1784 	return ret;
1785 }
1786 
1787 static noinline int key_in_sk(struct btrfs_key *key,
1788 			      struct btrfs_ioctl_search_key *sk)
1789 {
1790 	struct btrfs_key test;
1791 	int ret;
1792 
1793 	test.objectid = sk->min_objectid;
1794 	test.type = sk->min_type;
1795 	test.offset = sk->min_offset;
1796 
1797 	ret = btrfs_comp_cpu_keys(key, &test);
1798 	if (ret < 0)
1799 		return 0;
1800 
1801 	test.objectid = sk->max_objectid;
1802 	test.type = sk->max_type;
1803 	test.offset = sk->max_offset;
1804 
1805 	ret = btrfs_comp_cpu_keys(key, &test);
1806 	if (ret > 0)
1807 		return 0;
1808 	return 1;
1809 }
1810 
1811 static noinline int copy_to_sk(struct btrfs_root *root,
1812 			       struct btrfs_path *path,
1813 			       struct btrfs_key *key,
1814 			       struct btrfs_ioctl_search_key *sk,
1815 			       char *buf,
1816 			       unsigned long *sk_offset,
1817 			       int *num_found)
1818 {
1819 	u64 found_transid;
1820 	struct extent_buffer *leaf;
1821 	struct btrfs_ioctl_search_header sh;
1822 	unsigned long item_off;
1823 	unsigned long item_len;
1824 	int nritems;
1825 	int i;
1826 	int slot;
1827 	int ret = 0;
1828 
1829 	leaf = path->nodes[0];
1830 	slot = path->slots[0];
1831 	nritems = btrfs_header_nritems(leaf);
1832 
1833 	if (btrfs_header_generation(leaf) > sk->max_transid) {
1834 		i = nritems;
1835 		goto advance_key;
1836 	}
1837 	found_transid = btrfs_header_generation(leaf);
1838 
1839 	for (i = slot; i < nritems; i++) {
1840 		item_off = btrfs_item_ptr_offset(leaf, i);
1841 		item_len = btrfs_item_size_nr(leaf, i);
1842 
1843 		btrfs_item_key_to_cpu(leaf, key, i);
1844 		if (!key_in_sk(key, sk))
1845 			continue;
1846 
1847 		if (sizeof(sh) + item_len > BTRFS_SEARCH_ARGS_BUFSIZE)
1848 			item_len = 0;
1849 
1850 		if (sizeof(sh) + item_len + *sk_offset >
1851 		    BTRFS_SEARCH_ARGS_BUFSIZE) {
1852 			ret = 1;
1853 			goto overflow;
1854 		}
1855 
1856 		sh.objectid = key->objectid;
1857 		sh.offset = key->offset;
1858 		sh.type = key->type;
1859 		sh.len = item_len;
1860 		sh.transid = found_transid;
1861 
1862 		/* copy search result header */
1863 		memcpy(buf + *sk_offset, &sh, sizeof(sh));
1864 		*sk_offset += sizeof(sh);
1865 
1866 		if (item_len) {
1867 			char *p = buf + *sk_offset;
1868 			/* copy the item */
1869 			read_extent_buffer(leaf, p,
1870 					   item_off, item_len);
1871 			*sk_offset += item_len;
1872 		}
1873 		(*num_found)++;
1874 
1875 		if (*num_found >= sk->nr_items)
1876 			break;
1877 	}
1878 advance_key:
1879 	ret = 0;
1880 	if (key->offset < (u64)-1 && key->offset < sk->max_offset)
1881 		key->offset++;
1882 	else if (key->type < (u8)-1 && key->type < sk->max_type) {
1883 		key->offset = 0;
1884 		key->type++;
1885 	} else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) {
1886 		key->offset = 0;
1887 		key->type = 0;
1888 		key->objectid++;
1889 	} else
1890 		ret = 1;
1891 overflow:
1892 	return ret;
1893 }
1894 
1895 static noinline int search_ioctl(struct inode *inode,
1896 				 struct btrfs_ioctl_search_args *args)
1897 {
1898 	struct btrfs_root *root;
1899 	struct btrfs_key key;
1900 	struct btrfs_key max_key;
1901 	struct btrfs_path *path;
1902 	struct btrfs_ioctl_search_key *sk = &args->key;
1903 	struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info;
1904 	int ret;
1905 	int num_found = 0;
1906 	unsigned long sk_offset = 0;
1907 
1908 	path = btrfs_alloc_path();
1909 	if (!path)
1910 		return -ENOMEM;
1911 
1912 	if (sk->tree_id == 0) {
1913 		/* search the root of the inode that was passed */
1914 		root = BTRFS_I(inode)->root;
1915 	} else {
1916 		key.objectid = sk->tree_id;
1917 		key.type = BTRFS_ROOT_ITEM_KEY;
1918 		key.offset = (u64)-1;
1919 		root = btrfs_read_fs_root_no_name(info, &key);
1920 		if (IS_ERR(root)) {
1921 			printk(KERN_ERR "could not find root %llu\n",
1922 			       sk->tree_id);
1923 			btrfs_free_path(path);
1924 			return -ENOENT;
1925 		}
1926 	}
1927 
1928 	key.objectid = sk->min_objectid;
1929 	key.type = sk->min_type;
1930 	key.offset = sk->min_offset;
1931 
1932 	max_key.objectid = sk->max_objectid;
1933 	max_key.type = sk->max_type;
1934 	max_key.offset = sk->max_offset;
1935 
1936 	path->keep_locks = 1;
1937 
1938 	while(1) {
1939 		ret = btrfs_search_forward(root, &key, &max_key, path,
1940 					   sk->min_transid);
1941 		if (ret != 0) {
1942 			if (ret > 0)
1943 				ret = 0;
1944 			goto err;
1945 		}
1946 		ret = copy_to_sk(root, path, &key, sk, args->buf,
1947 				 &sk_offset, &num_found);
1948 		btrfs_release_path(path);
1949 		if (ret || num_found >= sk->nr_items)
1950 			break;
1951 
1952 	}
1953 	ret = 0;
1954 err:
1955 	sk->nr_items = num_found;
1956 	btrfs_free_path(path);
1957 	return ret;
1958 }
1959 
1960 static noinline int btrfs_ioctl_tree_search(struct file *file,
1961 					   void __user *argp)
1962 {
1963 	 struct btrfs_ioctl_search_args *args;
1964 	 struct inode *inode;
1965 	 int ret;
1966 
1967 	if (!capable(CAP_SYS_ADMIN))
1968 		return -EPERM;
1969 
1970 	args = memdup_user(argp, sizeof(*args));
1971 	if (IS_ERR(args))
1972 		return PTR_ERR(args);
1973 
1974 	inode = file_inode(file);
1975 	ret = search_ioctl(inode, args);
1976 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
1977 		ret = -EFAULT;
1978 	kfree(args);
1979 	return ret;
1980 }
1981 
1982 /*
1983  * Search INODE_REFs to identify path name of 'dirid' directory
1984  * in a 'tree_id' tree. and sets path name to 'name'.
1985  */
1986 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
1987 				u64 tree_id, u64 dirid, char *name)
1988 {
1989 	struct btrfs_root *root;
1990 	struct btrfs_key key;
1991 	char *ptr;
1992 	int ret = -1;
1993 	int slot;
1994 	int len;
1995 	int total_len = 0;
1996 	struct btrfs_inode_ref *iref;
1997 	struct extent_buffer *l;
1998 	struct btrfs_path *path;
1999 
2000 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2001 		name[0]='\0';
2002 		return 0;
2003 	}
2004 
2005 	path = btrfs_alloc_path();
2006 	if (!path)
2007 		return -ENOMEM;
2008 
2009 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX];
2010 
2011 	key.objectid = tree_id;
2012 	key.type = BTRFS_ROOT_ITEM_KEY;
2013 	key.offset = (u64)-1;
2014 	root = btrfs_read_fs_root_no_name(info, &key);
2015 	if (IS_ERR(root)) {
2016 		printk(KERN_ERR "could not find root %llu\n", tree_id);
2017 		ret = -ENOENT;
2018 		goto out;
2019 	}
2020 
2021 	key.objectid = dirid;
2022 	key.type = BTRFS_INODE_REF_KEY;
2023 	key.offset = (u64)-1;
2024 
2025 	while(1) {
2026 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2027 		if (ret < 0)
2028 			goto out;
2029 		else if (ret > 0) {
2030 			ret = btrfs_previous_item(root, path, dirid,
2031 						  BTRFS_INODE_REF_KEY);
2032 			if (ret < 0)
2033 				goto out;
2034 			else if (ret > 0) {
2035 				ret = -ENOENT;
2036 				goto out;
2037 			}
2038 		}
2039 
2040 		l = path->nodes[0];
2041 		slot = path->slots[0];
2042 		btrfs_item_key_to_cpu(l, &key, slot);
2043 
2044 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2045 		len = btrfs_inode_ref_name_len(l, iref);
2046 		ptr -= len + 1;
2047 		total_len += len + 1;
2048 		if (ptr < name) {
2049 			ret = -ENAMETOOLONG;
2050 			goto out;
2051 		}
2052 
2053 		*(ptr + len) = '/';
2054 		read_extent_buffer(l, ptr,(unsigned long)(iref + 1), len);
2055 
2056 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2057 			break;
2058 
2059 		btrfs_release_path(path);
2060 		key.objectid = key.offset;
2061 		key.offset = (u64)-1;
2062 		dirid = key.objectid;
2063 	}
2064 	memmove(name, ptr, total_len);
2065 	name[total_len]='\0';
2066 	ret = 0;
2067 out:
2068 	btrfs_free_path(path);
2069 	return ret;
2070 }
2071 
2072 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2073 					   void __user *argp)
2074 {
2075 	 struct btrfs_ioctl_ino_lookup_args *args;
2076 	 struct inode *inode;
2077 	 int ret;
2078 
2079 	if (!capable(CAP_SYS_ADMIN))
2080 		return -EPERM;
2081 
2082 	args = memdup_user(argp, sizeof(*args));
2083 	if (IS_ERR(args))
2084 		return PTR_ERR(args);
2085 
2086 	inode = file_inode(file);
2087 
2088 	if (args->treeid == 0)
2089 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2090 
2091 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2092 					args->treeid, args->objectid,
2093 					args->name);
2094 
2095 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2096 		ret = -EFAULT;
2097 
2098 	kfree(args);
2099 	return ret;
2100 }
2101 
2102 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2103 					     void __user *arg)
2104 {
2105 	struct dentry *parent = fdentry(file);
2106 	struct dentry *dentry;
2107 	struct inode *dir = parent->d_inode;
2108 	struct inode *inode;
2109 	struct btrfs_root *root = BTRFS_I(dir)->root;
2110 	struct btrfs_root *dest = NULL;
2111 	struct btrfs_ioctl_vol_args *vol_args;
2112 	struct btrfs_trans_handle *trans;
2113 	struct btrfs_block_rsv block_rsv;
2114 	u64 qgroup_reserved;
2115 	int namelen;
2116 	int ret;
2117 	int err = 0;
2118 
2119 	vol_args = memdup_user(arg, sizeof(*vol_args));
2120 	if (IS_ERR(vol_args))
2121 		return PTR_ERR(vol_args);
2122 
2123 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2124 	namelen = strlen(vol_args->name);
2125 	if (strchr(vol_args->name, '/') ||
2126 	    strncmp(vol_args->name, "..", namelen) == 0) {
2127 		err = -EINVAL;
2128 		goto out;
2129 	}
2130 
2131 	err = mnt_want_write_file(file);
2132 	if (err)
2133 		goto out;
2134 
2135 	err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT);
2136 	if (err == -EINTR)
2137 		goto out;
2138 	dentry = lookup_one_len(vol_args->name, parent, namelen);
2139 	if (IS_ERR(dentry)) {
2140 		err = PTR_ERR(dentry);
2141 		goto out_unlock_dir;
2142 	}
2143 
2144 	if (!dentry->d_inode) {
2145 		err = -ENOENT;
2146 		goto out_dput;
2147 	}
2148 
2149 	inode = dentry->d_inode;
2150 	dest = BTRFS_I(inode)->root;
2151 	if (!capable(CAP_SYS_ADMIN)){
2152 		/*
2153 		 * Regular user.  Only allow this with a special mount
2154 		 * option, when the user has write+exec access to the
2155 		 * subvol root, and when rmdir(2) would have been
2156 		 * allowed.
2157 		 *
2158 		 * Note that this is _not_ check that the subvol is
2159 		 * empty or doesn't contain data that we wouldn't
2160 		 * otherwise be able to delete.
2161 		 *
2162 		 * Users who want to delete empty subvols should try
2163 		 * rmdir(2).
2164 		 */
2165 		err = -EPERM;
2166 		if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED))
2167 			goto out_dput;
2168 
2169 		/*
2170 		 * Do not allow deletion if the parent dir is the same
2171 		 * as the dir to be deleted.  That means the ioctl
2172 		 * must be called on the dentry referencing the root
2173 		 * of the subvol, not a random directory contained
2174 		 * within it.
2175 		 */
2176 		err = -EINVAL;
2177 		if (root == dest)
2178 			goto out_dput;
2179 
2180 		err = inode_permission(inode, MAY_WRITE | MAY_EXEC);
2181 		if (err)
2182 			goto out_dput;
2183 	}
2184 
2185 	/* check if subvolume may be deleted by a user */
2186 	err = btrfs_may_delete(dir, dentry, 1);
2187 	if (err)
2188 		goto out_dput;
2189 
2190 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
2191 		err = -EINVAL;
2192 		goto out_dput;
2193 	}
2194 
2195 	mutex_lock(&inode->i_mutex);
2196 	err = d_invalidate(dentry);
2197 	if (err)
2198 		goto out_unlock;
2199 
2200 	down_write(&root->fs_info->subvol_sem);
2201 
2202 	err = may_destroy_subvol(dest);
2203 	if (err)
2204 		goto out_up_write;
2205 
2206 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
2207 	/*
2208 	 * One for dir inode, two for dir entries, two for root
2209 	 * ref/backref.
2210 	 */
2211 	err = btrfs_subvolume_reserve_metadata(root, &block_rsv,
2212 					       5, &qgroup_reserved, true);
2213 	if (err)
2214 		goto out_up_write;
2215 
2216 	trans = btrfs_start_transaction(root, 0);
2217 	if (IS_ERR(trans)) {
2218 		err = PTR_ERR(trans);
2219 		goto out_release;
2220 	}
2221 	trans->block_rsv = &block_rsv;
2222 	trans->bytes_reserved = block_rsv.size;
2223 
2224 	ret = btrfs_unlink_subvol(trans, root, dir,
2225 				dest->root_key.objectid,
2226 				dentry->d_name.name,
2227 				dentry->d_name.len);
2228 	if (ret) {
2229 		err = ret;
2230 		btrfs_abort_transaction(trans, root, ret);
2231 		goto out_end_trans;
2232 	}
2233 
2234 	btrfs_record_root_in_trans(trans, dest);
2235 
2236 	memset(&dest->root_item.drop_progress, 0,
2237 		sizeof(dest->root_item.drop_progress));
2238 	dest->root_item.drop_level = 0;
2239 	btrfs_set_root_refs(&dest->root_item, 0);
2240 
2241 	if (!xchg(&dest->orphan_item_inserted, 1)) {
2242 		ret = btrfs_insert_orphan_item(trans,
2243 					root->fs_info->tree_root,
2244 					dest->root_key.objectid);
2245 		if (ret) {
2246 			btrfs_abort_transaction(trans, root, ret);
2247 			err = ret;
2248 			goto out_end_trans;
2249 		}
2250 	}
2251 
2252 	ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2253 				  dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL,
2254 				  dest->root_key.objectid);
2255 	if (ret && ret != -ENOENT) {
2256 		btrfs_abort_transaction(trans, root, ret);
2257 		err = ret;
2258 		goto out_end_trans;
2259 	}
2260 	if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) {
2261 		ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
2262 					  dest->root_item.received_uuid,
2263 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
2264 					  dest->root_key.objectid);
2265 		if (ret && ret != -ENOENT) {
2266 			btrfs_abort_transaction(trans, root, ret);
2267 			err = ret;
2268 			goto out_end_trans;
2269 		}
2270 	}
2271 
2272 out_end_trans:
2273 	trans->block_rsv = NULL;
2274 	trans->bytes_reserved = 0;
2275 	ret = btrfs_end_transaction(trans, root);
2276 	if (ret && !err)
2277 		err = ret;
2278 	inode->i_flags |= S_DEAD;
2279 out_release:
2280 	btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved);
2281 out_up_write:
2282 	up_write(&root->fs_info->subvol_sem);
2283 out_unlock:
2284 	mutex_unlock(&inode->i_mutex);
2285 	if (!err) {
2286 		shrink_dcache_sb(root->fs_info->sb);
2287 		btrfs_invalidate_inodes(dest);
2288 		d_delete(dentry);
2289 
2290 		/* the last ref */
2291 		if (dest->cache_inode) {
2292 			iput(dest->cache_inode);
2293 			dest->cache_inode = NULL;
2294 		}
2295 	}
2296 out_dput:
2297 	dput(dentry);
2298 out_unlock_dir:
2299 	mutex_unlock(&dir->i_mutex);
2300 	mnt_drop_write_file(file);
2301 out:
2302 	kfree(vol_args);
2303 	return err;
2304 }
2305 
2306 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
2307 {
2308 	struct inode *inode = file_inode(file);
2309 	struct btrfs_root *root = BTRFS_I(inode)->root;
2310 	struct btrfs_ioctl_defrag_range_args *range;
2311 	int ret;
2312 
2313 	ret = mnt_want_write_file(file);
2314 	if (ret)
2315 		return ret;
2316 
2317 	if (btrfs_root_readonly(root)) {
2318 		ret = -EROFS;
2319 		goto out;
2320 	}
2321 
2322 	switch (inode->i_mode & S_IFMT) {
2323 	case S_IFDIR:
2324 		if (!capable(CAP_SYS_ADMIN)) {
2325 			ret = -EPERM;
2326 			goto out;
2327 		}
2328 		ret = btrfs_defrag_root(root);
2329 		if (ret)
2330 			goto out;
2331 		ret = btrfs_defrag_root(root->fs_info->extent_root);
2332 		break;
2333 	case S_IFREG:
2334 		if (!(file->f_mode & FMODE_WRITE)) {
2335 			ret = -EINVAL;
2336 			goto out;
2337 		}
2338 
2339 		range = kzalloc(sizeof(*range), GFP_KERNEL);
2340 		if (!range) {
2341 			ret = -ENOMEM;
2342 			goto out;
2343 		}
2344 
2345 		if (argp) {
2346 			if (copy_from_user(range, argp,
2347 					   sizeof(*range))) {
2348 				ret = -EFAULT;
2349 				kfree(range);
2350 				goto out;
2351 			}
2352 			/* compression requires us to start the IO */
2353 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
2354 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
2355 				range->extent_thresh = (u32)-1;
2356 			}
2357 		} else {
2358 			/* the rest are all set to zero by kzalloc */
2359 			range->len = (u64)-1;
2360 		}
2361 		ret = btrfs_defrag_file(file_inode(file), file,
2362 					range, 0, 0);
2363 		if (ret > 0)
2364 			ret = 0;
2365 		kfree(range);
2366 		break;
2367 	default:
2368 		ret = -EINVAL;
2369 	}
2370 out:
2371 	mnt_drop_write_file(file);
2372 	return ret;
2373 }
2374 
2375 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg)
2376 {
2377 	struct btrfs_ioctl_vol_args *vol_args;
2378 	int ret;
2379 
2380 	if (!capable(CAP_SYS_ADMIN))
2381 		return -EPERM;
2382 
2383 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2384 			1)) {
2385 		pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
2386 		return -EINVAL;
2387 	}
2388 
2389 	mutex_lock(&root->fs_info->volume_mutex);
2390 	vol_args = memdup_user(arg, sizeof(*vol_args));
2391 	if (IS_ERR(vol_args)) {
2392 		ret = PTR_ERR(vol_args);
2393 		goto out;
2394 	}
2395 
2396 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2397 	ret = btrfs_init_new_device(root, vol_args->name);
2398 
2399 	kfree(vol_args);
2400 out:
2401 	mutex_unlock(&root->fs_info->volume_mutex);
2402 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2403 	return ret;
2404 }
2405 
2406 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
2407 {
2408 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
2409 	struct btrfs_ioctl_vol_args *vol_args;
2410 	int ret;
2411 
2412 	if (!capable(CAP_SYS_ADMIN))
2413 		return -EPERM;
2414 
2415 	ret = mnt_want_write_file(file);
2416 	if (ret)
2417 		return ret;
2418 
2419 	vol_args = memdup_user(arg, sizeof(*vol_args));
2420 	if (IS_ERR(vol_args)) {
2421 		ret = PTR_ERR(vol_args);
2422 		goto out;
2423 	}
2424 
2425 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
2426 
2427 	if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running,
2428 			1)) {
2429 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
2430 		goto out;
2431 	}
2432 
2433 	mutex_lock(&root->fs_info->volume_mutex);
2434 	ret = btrfs_rm_device(root, vol_args->name);
2435 	mutex_unlock(&root->fs_info->volume_mutex);
2436 	atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0);
2437 
2438 out:
2439 	kfree(vol_args);
2440 	mnt_drop_write_file(file);
2441 	return ret;
2442 }
2443 
2444 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg)
2445 {
2446 	struct btrfs_ioctl_fs_info_args *fi_args;
2447 	struct btrfs_device *device;
2448 	struct btrfs_device *next;
2449 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2450 	int ret = 0;
2451 
2452 	if (!capable(CAP_SYS_ADMIN))
2453 		return -EPERM;
2454 
2455 	fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL);
2456 	if (!fi_args)
2457 		return -ENOMEM;
2458 
2459 	fi_args->num_devices = fs_devices->num_devices;
2460 	memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid));
2461 
2462 	mutex_lock(&fs_devices->device_list_mutex);
2463 	list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) {
2464 		if (device->devid > fi_args->max_id)
2465 			fi_args->max_id = device->devid;
2466 	}
2467 	mutex_unlock(&fs_devices->device_list_mutex);
2468 
2469 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
2470 		ret = -EFAULT;
2471 
2472 	kfree(fi_args);
2473 	return ret;
2474 }
2475 
2476 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg)
2477 {
2478 	struct btrfs_ioctl_dev_info_args *di_args;
2479 	struct btrfs_device *dev;
2480 	struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
2481 	int ret = 0;
2482 	char *s_uuid = NULL;
2483 
2484 	if (!capable(CAP_SYS_ADMIN))
2485 		return -EPERM;
2486 
2487 	di_args = memdup_user(arg, sizeof(*di_args));
2488 	if (IS_ERR(di_args))
2489 		return PTR_ERR(di_args);
2490 
2491 	if (!btrfs_is_empty_uuid(di_args->uuid))
2492 		s_uuid = di_args->uuid;
2493 
2494 	mutex_lock(&fs_devices->device_list_mutex);
2495 	dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL);
2496 
2497 	if (!dev) {
2498 		ret = -ENODEV;
2499 		goto out;
2500 	}
2501 
2502 	di_args->devid = dev->devid;
2503 	di_args->bytes_used = dev->bytes_used;
2504 	di_args->total_bytes = dev->total_bytes;
2505 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
2506 	if (dev->name) {
2507 		struct rcu_string *name;
2508 
2509 		rcu_read_lock();
2510 		name = rcu_dereference(dev->name);
2511 		strncpy(di_args->path, name->str, sizeof(di_args->path));
2512 		rcu_read_unlock();
2513 		di_args->path[sizeof(di_args->path) - 1] = 0;
2514 	} else {
2515 		di_args->path[0] = '\0';
2516 	}
2517 
2518 out:
2519 	mutex_unlock(&fs_devices->device_list_mutex);
2520 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
2521 		ret = -EFAULT;
2522 
2523 	kfree(di_args);
2524 	return ret;
2525 }
2526 
2527 static struct page *extent_same_get_page(struct inode *inode, u64 off)
2528 {
2529 	struct page *page;
2530 	pgoff_t index;
2531 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2532 
2533 	index = off >> PAGE_CACHE_SHIFT;
2534 
2535 	page = grab_cache_page(inode->i_mapping, index);
2536 	if (!page)
2537 		return NULL;
2538 
2539 	if (!PageUptodate(page)) {
2540 		if (extent_read_full_page_nolock(tree, page, btrfs_get_extent,
2541 						 0))
2542 			return NULL;
2543 		lock_page(page);
2544 		if (!PageUptodate(page)) {
2545 			unlock_page(page);
2546 			page_cache_release(page);
2547 			return NULL;
2548 		}
2549 	}
2550 	unlock_page(page);
2551 
2552 	return page;
2553 }
2554 
2555 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len)
2556 {
2557 	/* do any pending delalloc/csum calc on src, one way or
2558 	   another, and lock file content */
2559 	while (1) {
2560 		struct btrfs_ordered_extent *ordered;
2561 		lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2562 		ordered = btrfs_lookup_first_ordered_extent(inode,
2563 							    off + len - 1);
2564 		if (!ordered &&
2565 		    !test_range_bit(&BTRFS_I(inode)->io_tree, off,
2566 				    off + len - 1, EXTENT_DELALLOC, 0, NULL))
2567 			break;
2568 		unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1);
2569 		if (ordered)
2570 			btrfs_put_ordered_extent(ordered);
2571 		btrfs_wait_ordered_range(inode, off, len);
2572 	}
2573 }
2574 
2575 static void btrfs_double_unlock(struct inode *inode1, u64 loff1,
2576 				struct inode *inode2, u64 loff2, u64 len)
2577 {
2578 	unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1);
2579 	unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1);
2580 
2581 	mutex_unlock(&inode1->i_mutex);
2582 	mutex_unlock(&inode2->i_mutex);
2583 }
2584 
2585 static void btrfs_double_lock(struct inode *inode1, u64 loff1,
2586 			      struct inode *inode2, u64 loff2, u64 len)
2587 {
2588 	if (inode1 < inode2) {
2589 		swap(inode1, inode2);
2590 		swap(loff1, loff2);
2591 	}
2592 
2593 	mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT);
2594 	lock_extent_range(inode1, loff1, len);
2595 	if (inode1 != inode2) {
2596 		mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD);
2597 		lock_extent_range(inode2, loff2, len);
2598 	}
2599 }
2600 
2601 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst,
2602 			  u64 dst_loff, u64 len)
2603 {
2604 	int ret = 0;
2605 	struct page *src_page, *dst_page;
2606 	unsigned int cmp_len = PAGE_CACHE_SIZE;
2607 	void *addr, *dst_addr;
2608 
2609 	while (len) {
2610 		if (len < PAGE_CACHE_SIZE)
2611 			cmp_len = len;
2612 
2613 		src_page = extent_same_get_page(src, loff);
2614 		if (!src_page)
2615 			return -EINVAL;
2616 		dst_page = extent_same_get_page(dst, dst_loff);
2617 		if (!dst_page) {
2618 			page_cache_release(src_page);
2619 			return -EINVAL;
2620 		}
2621 		addr = kmap_atomic(src_page);
2622 		dst_addr = kmap_atomic(dst_page);
2623 
2624 		flush_dcache_page(src_page);
2625 		flush_dcache_page(dst_page);
2626 
2627 		if (memcmp(addr, dst_addr, cmp_len))
2628 			ret = BTRFS_SAME_DATA_DIFFERS;
2629 
2630 		kunmap_atomic(addr);
2631 		kunmap_atomic(dst_addr);
2632 		page_cache_release(src_page);
2633 		page_cache_release(dst_page);
2634 
2635 		if (ret)
2636 			break;
2637 
2638 		loff += cmp_len;
2639 		dst_loff += cmp_len;
2640 		len -= cmp_len;
2641 	}
2642 
2643 	return ret;
2644 }
2645 
2646 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len)
2647 {
2648 	u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize;
2649 
2650 	if (off + len > inode->i_size || off + len < off)
2651 		return -EINVAL;
2652 	/* Check that we are block aligned - btrfs_clone() requires this */
2653 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs))
2654 		return -EINVAL;
2655 
2656 	return 0;
2657 }
2658 
2659 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len,
2660 			     struct inode *dst, u64 dst_loff)
2661 {
2662 	int ret;
2663 
2664 	/*
2665 	 * btrfs_clone() can't handle extents in the same file
2666 	 * yet. Once that works, we can drop this check and replace it
2667 	 * with a check for the same inode, but overlapping extents.
2668 	 */
2669 	if (src == dst)
2670 		return -EINVAL;
2671 
2672 	btrfs_double_lock(src, loff, dst, dst_loff, len);
2673 
2674 	ret = extent_same_check_offsets(src, loff, len);
2675 	if (ret)
2676 		goto out_unlock;
2677 
2678 	ret = extent_same_check_offsets(dst, dst_loff, len);
2679 	if (ret)
2680 		goto out_unlock;
2681 
2682 	/* don't make the dst file partly checksummed */
2683 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
2684 	    (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) {
2685 		ret = -EINVAL;
2686 		goto out_unlock;
2687 	}
2688 
2689 	ret = btrfs_cmp_data(src, loff, dst, dst_loff, len);
2690 	if (ret == 0)
2691 		ret = btrfs_clone(src, dst, loff, len, len, dst_loff);
2692 
2693 out_unlock:
2694 	btrfs_double_unlock(src, loff, dst, dst_loff, len);
2695 
2696 	return ret;
2697 }
2698 
2699 #define BTRFS_MAX_DEDUPE_LEN	(16 * 1024 * 1024)
2700 
2701 static long btrfs_ioctl_file_extent_same(struct file *file,
2702 					 void __user *argp)
2703 {
2704 	struct btrfs_ioctl_same_args *args = argp;
2705 	struct btrfs_ioctl_same_args same;
2706 	struct btrfs_ioctl_same_extent_info info;
2707 	struct inode *src = file->f_dentry->d_inode;
2708 	struct file *dst_file = NULL;
2709 	struct inode *dst;
2710 	u64 off;
2711 	u64 len;
2712 	int i;
2713 	int ret;
2714 	u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize;
2715 	bool is_admin = capable(CAP_SYS_ADMIN);
2716 
2717 	if (!(file->f_mode & FMODE_READ))
2718 		return -EINVAL;
2719 
2720 	ret = mnt_want_write_file(file);
2721 	if (ret)
2722 		return ret;
2723 
2724 	if (copy_from_user(&same,
2725 			   (struct btrfs_ioctl_same_args __user *)argp,
2726 			   sizeof(same))) {
2727 		ret = -EFAULT;
2728 		goto out;
2729 	}
2730 
2731 	off = same.logical_offset;
2732 	len = same.length;
2733 
2734 	/*
2735 	 * Limit the total length we will dedupe for each operation.
2736 	 * This is intended to bound the total time spent in this
2737 	 * ioctl to something sane.
2738 	 */
2739 	if (len > BTRFS_MAX_DEDUPE_LEN)
2740 		len = BTRFS_MAX_DEDUPE_LEN;
2741 
2742 	if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) {
2743 		/*
2744 		 * Btrfs does not support blocksize < page_size. As a
2745 		 * result, btrfs_cmp_data() won't correctly handle
2746 		 * this situation without an update.
2747 		 */
2748 		ret = -EINVAL;
2749 		goto out;
2750 	}
2751 
2752 	ret = -EISDIR;
2753 	if (S_ISDIR(src->i_mode))
2754 		goto out;
2755 
2756 	ret = -EACCES;
2757 	if (!S_ISREG(src->i_mode))
2758 		goto out;
2759 
2760 	ret = 0;
2761 	for (i = 0; i < same.dest_count; i++) {
2762 		if (copy_from_user(&info, &args->info[i], sizeof(info))) {
2763 			ret = -EFAULT;
2764 			goto out;
2765 		}
2766 
2767 		info.bytes_deduped = 0;
2768 
2769 		dst_file = fget(info.fd);
2770 		if (!dst_file) {
2771 			info.status = -EBADF;
2772 			goto next;
2773 		}
2774 
2775 		if (!(is_admin || (dst_file->f_mode & FMODE_WRITE))) {
2776 			info.status = -EINVAL;
2777 			goto next;
2778 		}
2779 
2780 		info.status = -EXDEV;
2781 		if (file->f_path.mnt != dst_file->f_path.mnt)
2782 			goto next;
2783 
2784 		dst = dst_file->f_dentry->d_inode;
2785 		if (src->i_sb != dst->i_sb)
2786 			goto next;
2787 
2788 		if (S_ISDIR(dst->i_mode)) {
2789 			info.status = -EISDIR;
2790 			goto next;
2791 		}
2792 
2793 		if (!S_ISREG(dst->i_mode)) {
2794 			info.status = -EACCES;
2795 			goto next;
2796 		}
2797 
2798 		info.status = btrfs_extent_same(src, off, len, dst,
2799 						info.logical_offset);
2800 		if (info.status == 0)
2801 			info.bytes_deduped += len;
2802 
2803 next:
2804 		if (dst_file)
2805 			fput(dst_file);
2806 
2807 		if (__put_user_unaligned(info.status, &args->info[i].status) ||
2808 		    __put_user_unaligned(info.bytes_deduped,
2809 					 &args->info[i].bytes_deduped)) {
2810 			ret = -EFAULT;
2811 			goto out;
2812 		}
2813 	}
2814 
2815 out:
2816 	mnt_drop_write_file(file);
2817 	return ret;
2818 }
2819 
2820 /**
2821  * btrfs_clone() - clone a range from inode file to another
2822  *
2823  * @src: Inode to clone from
2824  * @inode: Inode to clone to
2825  * @off: Offset within source to start clone from
2826  * @olen: Original length, passed by user, of range to clone
2827  * @olen_aligned: Block-aligned value of olen, extent_same uses
2828  *               identical values here
2829  * @destoff: Offset within @inode to start clone
2830  */
2831 static int btrfs_clone(struct inode *src, struct inode *inode,
2832 		       u64 off, u64 olen, u64 olen_aligned, u64 destoff)
2833 {
2834 	struct btrfs_root *root = BTRFS_I(inode)->root;
2835 	struct btrfs_path *path = NULL;
2836 	struct extent_buffer *leaf;
2837 	struct btrfs_trans_handle *trans;
2838 	char *buf = NULL;
2839 	struct btrfs_key key;
2840 	u32 nritems;
2841 	int slot;
2842 	int ret;
2843 	u64 len = olen_aligned;
2844 
2845 	ret = -ENOMEM;
2846 	buf = vmalloc(btrfs_level_size(root, 0));
2847 	if (!buf)
2848 		return ret;
2849 
2850 	path = btrfs_alloc_path();
2851 	if (!path) {
2852 		vfree(buf);
2853 		return ret;
2854 	}
2855 
2856 	path->reada = 2;
2857 	/* clone data */
2858 	key.objectid = btrfs_ino(src);
2859 	key.type = BTRFS_EXTENT_DATA_KEY;
2860 	key.offset = 0;
2861 
2862 	while (1) {
2863 		/*
2864 		 * note the key will change type as we walk through the
2865 		 * tree.
2866 		 */
2867 		ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path,
2868 				0, 0);
2869 		if (ret < 0)
2870 			goto out;
2871 
2872 		nritems = btrfs_header_nritems(path->nodes[0]);
2873 		if (path->slots[0] >= nritems) {
2874 			ret = btrfs_next_leaf(BTRFS_I(src)->root, path);
2875 			if (ret < 0)
2876 				goto out;
2877 			if (ret > 0)
2878 				break;
2879 			nritems = btrfs_header_nritems(path->nodes[0]);
2880 		}
2881 		leaf = path->nodes[0];
2882 		slot = path->slots[0];
2883 
2884 		btrfs_item_key_to_cpu(leaf, &key, slot);
2885 		if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY ||
2886 		    key.objectid != btrfs_ino(src))
2887 			break;
2888 
2889 		if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) {
2890 			struct btrfs_file_extent_item *extent;
2891 			int type;
2892 			u32 size;
2893 			struct btrfs_key new_key;
2894 			u64 disko = 0, diskl = 0;
2895 			u64 datao = 0, datal = 0;
2896 			u8 comp;
2897 			u64 endoff;
2898 
2899 			size = btrfs_item_size_nr(leaf, slot);
2900 			read_extent_buffer(leaf, buf,
2901 					   btrfs_item_ptr_offset(leaf, slot),
2902 					   size);
2903 
2904 			extent = btrfs_item_ptr(leaf, slot,
2905 						struct btrfs_file_extent_item);
2906 			comp = btrfs_file_extent_compression(leaf, extent);
2907 			type = btrfs_file_extent_type(leaf, extent);
2908 			if (type == BTRFS_FILE_EXTENT_REG ||
2909 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2910 				disko = btrfs_file_extent_disk_bytenr(leaf,
2911 								      extent);
2912 				diskl = btrfs_file_extent_disk_num_bytes(leaf,
2913 								 extent);
2914 				datao = btrfs_file_extent_offset(leaf, extent);
2915 				datal = btrfs_file_extent_num_bytes(leaf,
2916 								    extent);
2917 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
2918 				/* take upper bound, may be compressed */
2919 				datal = btrfs_file_extent_ram_bytes(leaf,
2920 								    extent);
2921 			}
2922 			btrfs_release_path(path);
2923 
2924 			if (key.offset + datal <= off ||
2925 			    key.offset >= off + len - 1)
2926 				goto next;
2927 
2928 			memcpy(&new_key, &key, sizeof(new_key));
2929 			new_key.objectid = btrfs_ino(inode);
2930 			if (off <= key.offset)
2931 				new_key.offset = key.offset + destoff - off;
2932 			else
2933 				new_key.offset = destoff;
2934 
2935 			/*
2936 			 * 1 - adjusting old extent (we may have to split it)
2937 			 * 1 - add new extent
2938 			 * 1 - inode update
2939 			 */
2940 			trans = btrfs_start_transaction(root, 3);
2941 			if (IS_ERR(trans)) {
2942 				ret = PTR_ERR(trans);
2943 				goto out;
2944 			}
2945 
2946 			if (type == BTRFS_FILE_EXTENT_REG ||
2947 			    type == BTRFS_FILE_EXTENT_PREALLOC) {
2948 				/*
2949 				 *    a  | --- range to clone ---|  b
2950 				 * | ------------- extent ------------- |
2951 				 */
2952 
2953 				/* substract range b */
2954 				if (key.offset + datal > off + len)
2955 					datal = off + len - key.offset;
2956 
2957 				/* substract range a */
2958 				if (off > key.offset) {
2959 					datao += off - key.offset;
2960 					datal -= off - key.offset;
2961 				}
2962 
2963 				ret = btrfs_drop_extents(trans, root, inode,
2964 							 new_key.offset,
2965 							 new_key.offset + datal,
2966 							 1);
2967 				if (ret) {
2968 					btrfs_abort_transaction(trans, root,
2969 								ret);
2970 					btrfs_end_transaction(trans, root);
2971 					goto out;
2972 				}
2973 
2974 				ret = btrfs_insert_empty_item(trans, root, path,
2975 							      &new_key, size);
2976 				if (ret) {
2977 					btrfs_abort_transaction(trans, root,
2978 								ret);
2979 					btrfs_end_transaction(trans, root);
2980 					goto out;
2981 				}
2982 
2983 				leaf = path->nodes[0];
2984 				slot = path->slots[0];
2985 				write_extent_buffer(leaf, buf,
2986 					    btrfs_item_ptr_offset(leaf, slot),
2987 					    size);
2988 
2989 				extent = btrfs_item_ptr(leaf, slot,
2990 						struct btrfs_file_extent_item);
2991 
2992 				/* disko == 0 means it's a hole */
2993 				if (!disko)
2994 					datao = 0;
2995 
2996 				btrfs_set_file_extent_offset(leaf, extent,
2997 							     datao);
2998 				btrfs_set_file_extent_num_bytes(leaf, extent,
2999 								datal);
3000 				if (disko) {
3001 					inode_add_bytes(inode, datal);
3002 					ret = btrfs_inc_extent_ref(trans, root,
3003 							disko, diskl, 0,
3004 							root->root_key.objectid,
3005 							btrfs_ino(inode),
3006 							new_key.offset - datao,
3007 							0);
3008 					if (ret) {
3009 						btrfs_abort_transaction(trans,
3010 									root,
3011 									ret);
3012 						btrfs_end_transaction(trans,
3013 								      root);
3014 						goto out;
3015 
3016 					}
3017 				}
3018 			} else if (type == BTRFS_FILE_EXTENT_INLINE) {
3019 				u64 skip = 0;
3020 				u64 trim = 0;
3021 				if (off > key.offset) {
3022 					skip = off - key.offset;
3023 					new_key.offset += skip;
3024 				}
3025 
3026 				if (key.offset + datal > off + len)
3027 					trim = key.offset + datal - (off + len);
3028 
3029 				if (comp && (skip || trim)) {
3030 					ret = -EINVAL;
3031 					btrfs_end_transaction(trans, root);
3032 					goto out;
3033 				}
3034 				size -= skip + trim;
3035 				datal -= skip + trim;
3036 
3037 				ret = btrfs_drop_extents(trans, root, inode,
3038 							 new_key.offset,
3039 							 new_key.offset + datal,
3040 							 1);
3041 				if (ret) {
3042 					btrfs_abort_transaction(trans, root,
3043 								ret);
3044 					btrfs_end_transaction(trans, root);
3045 					goto out;
3046 				}
3047 
3048 				ret = btrfs_insert_empty_item(trans, root, path,
3049 							      &new_key, size);
3050 				if (ret) {
3051 					btrfs_abort_transaction(trans, root,
3052 								ret);
3053 					btrfs_end_transaction(trans, root);
3054 					goto out;
3055 				}
3056 
3057 				if (skip) {
3058 					u32 start =
3059 					  btrfs_file_extent_calc_inline_size(0);
3060 					memmove(buf+start, buf+start+skip,
3061 						datal);
3062 				}
3063 
3064 				leaf = path->nodes[0];
3065 				slot = path->slots[0];
3066 				write_extent_buffer(leaf, buf,
3067 					    btrfs_item_ptr_offset(leaf, slot),
3068 					    size);
3069 				inode_add_bytes(inode, datal);
3070 			}
3071 
3072 			btrfs_mark_buffer_dirty(leaf);
3073 			btrfs_release_path(path);
3074 
3075 			inode_inc_iversion(inode);
3076 			inode->i_mtime = inode->i_ctime = CURRENT_TIME;
3077 
3078 			/*
3079 			 * we round up to the block size at eof when
3080 			 * determining which extents to clone above,
3081 			 * but shouldn't round up the file size
3082 			 */
3083 			endoff = new_key.offset + datal;
3084 			if (endoff > destoff+olen)
3085 				endoff = destoff+olen;
3086 			if (endoff > inode->i_size)
3087 				btrfs_i_size_write(inode, endoff);
3088 
3089 			ret = btrfs_update_inode(trans, root, inode);
3090 			if (ret) {
3091 				btrfs_abort_transaction(trans, root, ret);
3092 				btrfs_end_transaction(trans, root);
3093 				goto out;
3094 			}
3095 			ret = btrfs_end_transaction(trans, root);
3096 		}
3097 next:
3098 		btrfs_release_path(path);
3099 		key.offset++;
3100 	}
3101 	ret = 0;
3102 
3103 out:
3104 	btrfs_release_path(path);
3105 	btrfs_free_path(path);
3106 	vfree(buf);
3107 	return ret;
3108 }
3109 
3110 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd,
3111 				       u64 off, u64 olen, u64 destoff)
3112 {
3113 	struct inode *inode = fdentry(file)->d_inode;
3114 	struct btrfs_root *root = BTRFS_I(inode)->root;
3115 	struct fd src_file;
3116 	struct inode *src;
3117 	int ret;
3118 	u64 len = olen;
3119 	u64 bs = root->fs_info->sb->s_blocksize;
3120 	int same_inode = 0;
3121 
3122 	/*
3123 	 * TODO:
3124 	 * - split compressed inline extents.  annoying: we need to
3125 	 *   decompress into destination's address_space (the file offset
3126 	 *   may change, so source mapping won't do), then recompress (or
3127 	 *   otherwise reinsert) a subrange.
3128 	 * - allow ranges within the same file to be cloned (provided
3129 	 *   they don't overlap)?
3130 	 */
3131 
3132 	/* the destination must be opened for writing */
3133 	if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND))
3134 		return -EINVAL;
3135 
3136 	if (btrfs_root_readonly(root))
3137 		return -EROFS;
3138 
3139 	ret = mnt_want_write_file(file);
3140 	if (ret)
3141 		return ret;
3142 
3143 	src_file = fdget(srcfd);
3144 	if (!src_file.file) {
3145 		ret = -EBADF;
3146 		goto out_drop_write;
3147 	}
3148 
3149 	ret = -EXDEV;
3150 	if (src_file.file->f_path.mnt != file->f_path.mnt)
3151 		goto out_fput;
3152 
3153 	src = file_inode(src_file.file);
3154 
3155 	ret = -EINVAL;
3156 	if (src == inode)
3157 		same_inode = 1;
3158 
3159 	/* the src must be open for reading */
3160 	if (!(src_file.file->f_mode & FMODE_READ))
3161 		goto out_fput;
3162 
3163 	/* don't make the dst file partly checksummed */
3164 	if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) !=
3165 	    (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM))
3166 		goto out_fput;
3167 
3168 	ret = -EISDIR;
3169 	if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode))
3170 		goto out_fput;
3171 
3172 	ret = -EXDEV;
3173 	if (src->i_sb != inode->i_sb)
3174 		goto out_fput;
3175 
3176 	if (!same_inode) {
3177 		if (inode < src) {
3178 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT);
3179 			mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD);
3180 		} else {
3181 			mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT);
3182 			mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD);
3183 		}
3184 	} else {
3185 		mutex_lock(&src->i_mutex);
3186 	}
3187 
3188 	/* determine range to clone */
3189 	ret = -EINVAL;
3190 	if (off + len > src->i_size || off + len < off)
3191 		goto out_unlock;
3192 	if (len == 0)
3193 		olen = len = src->i_size - off;
3194 	/* if we extend to eof, continue to block boundary */
3195 	if (off + len == src->i_size)
3196 		len = ALIGN(src->i_size, bs) - off;
3197 
3198 	/* verify the end result is block aligned */
3199 	if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) ||
3200 	    !IS_ALIGNED(destoff, bs))
3201 		goto out_unlock;
3202 
3203 	/* verify if ranges are overlapped within the same file */
3204 	if (same_inode) {
3205 		if (destoff + len > off && destoff < off + len)
3206 			goto out_unlock;
3207 	}
3208 
3209 	if (destoff > inode->i_size) {
3210 		ret = btrfs_cont_expand(inode, inode->i_size, destoff);
3211 		if (ret)
3212 			goto out_unlock;
3213 	}
3214 
3215 	/* truncate page cache pages from target inode range */
3216 	truncate_inode_pages_range(&inode->i_data, destoff,
3217 				   PAGE_CACHE_ALIGN(destoff + len) - 1);
3218 
3219 	lock_extent_range(src, off, len);
3220 
3221 	ret = btrfs_clone(src, inode, off, olen, len, destoff);
3222 
3223 	unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1);
3224 out_unlock:
3225 	mutex_unlock(&src->i_mutex);
3226 	if (!same_inode)
3227 		mutex_unlock(&inode->i_mutex);
3228 out_fput:
3229 	fdput(src_file);
3230 out_drop_write:
3231 	mnt_drop_write_file(file);
3232 	return ret;
3233 }
3234 
3235 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp)
3236 {
3237 	struct btrfs_ioctl_clone_range_args args;
3238 
3239 	if (copy_from_user(&args, argp, sizeof(args)))
3240 		return -EFAULT;
3241 	return btrfs_ioctl_clone(file, args.src_fd, args.src_offset,
3242 				 args.src_length, args.dest_offset);
3243 }
3244 
3245 /*
3246  * there are many ways the trans_start and trans_end ioctls can lead
3247  * to deadlocks.  They should only be used by applications that
3248  * basically own the machine, and have a very in depth understanding
3249  * of all the possible deadlocks and enospc problems.
3250  */
3251 static long btrfs_ioctl_trans_start(struct file *file)
3252 {
3253 	struct inode *inode = file_inode(file);
3254 	struct btrfs_root *root = BTRFS_I(inode)->root;
3255 	struct btrfs_trans_handle *trans;
3256 	int ret;
3257 
3258 	ret = -EPERM;
3259 	if (!capable(CAP_SYS_ADMIN))
3260 		goto out;
3261 
3262 	ret = -EINPROGRESS;
3263 	if (file->private_data)
3264 		goto out;
3265 
3266 	ret = -EROFS;
3267 	if (btrfs_root_readonly(root))
3268 		goto out;
3269 
3270 	ret = mnt_want_write_file(file);
3271 	if (ret)
3272 		goto out;
3273 
3274 	atomic_inc(&root->fs_info->open_ioctl_trans);
3275 
3276 	ret = -ENOMEM;
3277 	trans = btrfs_start_ioctl_transaction(root);
3278 	if (IS_ERR(trans))
3279 		goto out_drop;
3280 
3281 	file->private_data = trans;
3282 	return 0;
3283 
3284 out_drop:
3285 	atomic_dec(&root->fs_info->open_ioctl_trans);
3286 	mnt_drop_write_file(file);
3287 out:
3288 	return ret;
3289 }
3290 
3291 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3292 {
3293 	struct inode *inode = file_inode(file);
3294 	struct btrfs_root *root = BTRFS_I(inode)->root;
3295 	struct btrfs_root *new_root;
3296 	struct btrfs_dir_item *di;
3297 	struct btrfs_trans_handle *trans;
3298 	struct btrfs_path *path;
3299 	struct btrfs_key location;
3300 	struct btrfs_disk_key disk_key;
3301 	u64 objectid = 0;
3302 	u64 dir_id;
3303 	int ret;
3304 
3305 	if (!capable(CAP_SYS_ADMIN))
3306 		return -EPERM;
3307 
3308 	ret = mnt_want_write_file(file);
3309 	if (ret)
3310 		return ret;
3311 
3312 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3313 		ret = -EFAULT;
3314 		goto out;
3315 	}
3316 
3317 	if (!objectid)
3318 		objectid = root->root_key.objectid;
3319 
3320 	location.objectid = objectid;
3321 	location.type = BTRFS_ROOT_ITEM_KEY;
3322 	location.offset = (u64)-1;
3323 
3324 	new_root = btrfs_read_fs_root_no_name(root->fs_info, &location);
3325 	if (IS_ERR(new_root)) {
3326 		ret = PTR_ERR(new_root);
3327 		goto out;
3328 	}
3329 
3330 	path = btrfs_alloc_path();
3331 	if (!path) {
3332 		ret = -ENOMEM;
3333 		goto out;
3334 	}
3335 	path->leave_spinning = 1;
3336 
3337 	trans = btrfs_start_transaction(root, 1);
3338 	if (IS_ERR(trans)) {
3339 		btrfs_free_path(path);
3340 		ret = PTR_ERR(trans);
3341 		goto out;
3342 	}
3343 
3344 	dir_id = btrfs_super_root_dir(root->fs_info->super_copy);
3345 	di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path,
3346 				   dir_id, "default", 7, 1);
3347 	if (IS_ERR_OR_NULL(di)) {
3348 		btrfs_free_path(path);
3349 		btrfs_end_transaction(trans, root);
3350 		printk(KERN_ERR "Umm, you don't have the default dir item, "
3351 		       "this isn't going to work\n");
3352 		ret = -ENOENT;
3353 		goto out;
3354 	}
3355 
3356 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3357 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3358 	btrfs_mark_buffer_dirty(path->nodes[0]);
3359 	btrfs_free_path(path);
3360 
3361 	btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL);
3362 	btrfs_end_transaction(trans, root);
3363 out:
3364 	mnt_drop_write_file(file);
3365 	return ret;
3366 }
3367 
3368 void btrfs_get_block_group_info(struct list_head *groups_list,
3369 				struct btrfs_ioctl_space_info *space)
3370 {
3371 	struct btrfs_block_group_cache *block_group;
3372 
3373 	space->total_bytes = 0;
3374 	space->used_bytes = 0;
3375 	space->flags = 0;
3376 	list_for_each_entry(block_group, groups_list, list) {
3377 		space->flags = block_group->flags;
3378 		space->total_bytes += block_group->key.offset;
3379 		space->used_bytes +=
3380 			btrfs_block_group_used(&block_group->item);
3381 	}
3382 }
3383 
3384 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg)
3385 {
3386 	struct btrfs_ioctl_space_args space_args;
3387 	struct btrfs_ioctl_space_info space;
3388 	struct btrfs_ioctl_space_info *dest;
3389 	struct btrfs_ioctl_space_info *dest_orig;
3390 	struct btrfs_ioctl_space_info __user *user_dest;
3391 	struct btrfs_space_info *info;
3392 	u64 types[] = {BTRFS_BLOCK_GROUP_DATA,
3393 		       BTRFS_BLOCK_GROUP_SYSTEM,
3394 		       BTRFS_BLOCK_GROUP_METADATA,
3395 		       BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA};
3396 	int num_types = 4;
3397 	int alloc_size;
3398 	int ret = 0;
3399 	u64 slot_count = 0;
3400 	int i, c;
3401 
3402 	if (copy_from_user(&space_args,
3403 			   (struct btrfs_ioctl_space_args __user *)arg,
3404 			   sizeof(space_args)))
3405 		return -EFAULT;
3406 
3407 	for (i = 0; i < num_types; i++) {
3408 		struct btrfs_space_info *tmp;
3409 
3410 		info = NULL;
3411 		rcu_read_lock();
3412 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3413 					list) {
3414 			if (tmp->flags == types[i]) {
3415 				info = tmp;
3416 				break;
3417 			}
3418 		}
3419 		rcu_read_unlock();
3420 
3421 		if (!info)
3422 			continue;
3423 
3424 		down_read(&info->groups_sem);
3425 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3426 			if (!list_empty(&info->block_groups[c]))
3427 				slot_count++;
3428 		}
3429 		up_read(&info->groups_sem);
3430 	}
3431 
3432 	/* space_slots == 0 means they are asking for a count */
3433 	if (space_args.space_slots == 0) {
3434 		space_args.total_spaces = slot_count;
3435 		goto out;
3436 	}
3437 
3438 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3439 
3440 	alloc_size = sizeof(*dest) * slot_count;
3441 
3442 	/* we generally have at most 6 or so space infos, one for each raid
3443 	 * level.  So, a whole page should be more than enough for everyone
3444 	 */
3445 	if (alloc_size > PAGE_CACHE_SIZE)
3446 		return -ENOMEM;
3447 
3448 	space_args.total_spaces = 0;
3449 	dest = kmalloc(alloc_size, GFP_NOFS);
3450 	if (!dest)
3451 		return -ENOMEM;
3452 	dest_orig = dest;
3453 
3454 	/* now we have a buffer to copy into */
3455 	for (i = 0; i < num_types; i++) {
3456 		struct btrfs_space_info *tmp;
3457 
3458 		if (!slot_count)
3459 			break;
3460 
3461 		info = NULL;
3462 		rcu_read_lock();
3463 		list_for_each_entry_rcu(tmp, &root->fs_info->space_info,
3464 					list) {
3465 			if (tmp->flags == types[i]) {
3466 				info = tmp;
3467 				break;
3468 			}
3469 		}
3470 		rcu_read_unlock();
3471 
3472 		if (!info)
3473 			continue;
3474 		down_read(&info->groups_sem);
3475 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3476 			if (!list_empty(&info->block_groups[c])) {
3477 				btrfs_get_block_group_info(
3478 					&info->block_groups[c], &space);
3479 				memcpy(dest, &space, sizeof(space));
3480 				dest++;
3481 				space_args.total_spaces++;
3482 				slot_count--;
3483 			}
3484 			if (!slot_count)
3485 				break;
3486 		}
3487 		up_read(&info->groups_sem);
3488 	}
3489 
3490 	user_dest = (struct btrfs_ioctl_space_info __user *)
3491 		(arg + sizeof(struct btrfs_ioctl_space_args));
3492 
3493 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3494 		ret = -EFAULT;
3495 
3496 	kfree(dest_orig);
3497 out:
3498 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3499 		ret = -EFAULT;
3500 
3501 	return ret;
3502 }
3503 
3504 /*
3505  * there are many ways the trans_start and trans_end ioctls can lead
3506  * to deadlocks.  They should only be used by applications that
3507  * basically own the machine, and have a very in depth understanding
3508  * of all the possible deadlocks and enospc problems.
3509  */
3510 long btrfs_ioctl_trans_end(struct file *file)
3511 {
3512 	struct inode *inode = file_inode(file);
3513 	struct btrfs_root *root = BTRFS_I(inode)->root;
3514 	struct btrfs_trans_handle *trans;
3515 
3516 	trans = file->private_data;
3517 	if (!trans)
3518 		return -EINVAL;
3519 	file->private_data = NULL;
3520 
3521 	btrfs_end_transaction(trans, root);
3522 
3523 	atomic_dec(&root->fs_info->open_ioctl_trans);
3524 
3525 	mnt_drop_write_file(file);
3526 	return 0;
3527 }
3528 
3529 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3530 					    void __user *argp)
3531 {
3532 	struct btrfs_trans_handle *trans;
3533 	u64 transid;
3534 	int ret;
3535 
3536 	trans = btrfs_attach_transaction_barrier(root);
3537 	if (IS_ERR(trans)) {
3538 		if (PTR_ERR(trans) != -ENOENT)
3539 			return PTR_ERR(trans);
3540 
3541 		/* No running transaction, don't bother */
3542 		transid = root->fs_info->last_trans_committed;
3543 		goto out;
3544 	}
3545 	transid = trans->transid;
3546 	ret = btrfs_commit_transaction_async(trans, root, 0);
3547 	if (ret) {
3548 		btrfs_end_transaction(trans, root);
3549 		return ret;
3550 	}
3551 out:
3552 	if (argp)
3553 		if (copy_to_user(argp, &transid, sizeof(transid)))
3554 			return -EFAULT;
3555 	return 0;
3556 }
3557 
3558 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root,
3559 					   void __user *argp)
3560 {
3561 	u64 transid;
3562 
3563 	if (argp) {
3564 		if (copy_from_user(&transid, argp, sizeof(transid)))
3565 			return -EFAULT;
3566 	} else {
3567 		transid = 0;  /* current trans */
3568 	}
3569 	return btrfs_wait_for_commit(root, transid);
3570 }
3571 
3572 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3573 {
3574 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3575 	struct btrfs_ioctl_scrub_args *sa;
3576 	int ret;
3577 
3578 	if (!capable(CAP_SYS_ADMIN))
3579 		return -EPERM;
3580 
3581 	sa = memdup_user(arg, sizeof(*sa));
3582 	if (IS_ERR(sa))
3583 		return PTR_ERR(sa);
3584 
3585 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3586 		ret = mnt_want_write_file(file);
3587 		if (ret)
3588 			goto out;
3589 	}
3590 
3591 	ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end,
3592 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3593 			      0);
3594 
3595 	if (copy_to_user(arg, sa, sizeof(*sa)))
3596 		ret = -EFAULT;
3597 
3598 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3599 		mnt_drop_write_file(file);
3600 out:
3601 	kfree(sa);
3602 	return ret;
3603 }
3604 
3605 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg)
3606 {
3607 	if (!capable(CAP_SYS_ADMIN))
3608 		return -EPERM;
3609 
3610 	return btrfs_scrub_cancel(root->fs_info);
3611 }
3612 
3613 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root,
3614 				       void __user *arg)
3615 {
3616 	struct btrfs_ioctl_scrub_args *sa;
3617 	int ret;
3618 
3619 	if (!capable(CAP_SYS_ADMIN))
3620 		return -EPERM;
3621 
3622 	sa = memdup_user(arg, sizeof(*sa));
3623 	if (IS_ERR(sa))
3624 		return PTR_ERR(sa);
3625 
3626 	ret = btrfs_scrub_progress(root, sa->devid, &sa->progress);
3627 
3628 	if (copy_to_user(arg, sa, sizeof(*sa)))
3629 		ret = -EFAULT;
3630 
3631 	kfree(sa);
3632 	return ret;
3633 }
3634 
3635 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root,
3636 				      void __user *arg)
3637 {
3638 	struct btrfs_ioctl_get_dev_stats *sa;
3639 	int ret;
3640 
3641 	sa = memdup_user(arg, sizeof(*sa));
3642 	if (IS_ERR(sa))
3643 		return PTR_ERR(sa);
3644 
3645 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3646 		kfree(sa);
3647 		return -EPERM;
3648 	}
3649 
3650 	ret = btrfs_get_dev_stats(root, sa);
3651 
3652 	if (copy_to_user(arg, sa, sizeof(*sa)))
3653 		ret = -EFAULT;
3654 
3655 	kfree(sa);
3656 	return ret;
3657 }
3658 
3659 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg)
3660 {
3661 	struct btrfs_ioctl_dev_replace_args *p;
3662 	int ret;
3663 
3664 	if (!capable(CAP_SYS_ADMIN))
3665 		return -EPERM;
3666 
3667 	p = memdup_user(arg, sizeof(*p));
3668 	if (IS_ERR(p))
3669 		return PTR_ERR(p);
3670 
3671 	switch (p->cmd) {
3672 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3673 		if (root->fs_info->sb->s_flags & MS_RDONLY)
3674 			return -EROFS;
3675 
3676 		if (atomic_xchg(
3677 			&root->fs_info->mutually_exclusive_operation_running,
3678 			1)) {
3679 			pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3680 			ret = -EINPROGRESS;
3681 		} else {
3682 			ret = btrfs_dev_replace_start(root, p);
3683 			atomic_set(
3684 			 &root->fs_info->mutually_exclusive_operation_running,
3685 			 0);
3686 		}
3687 		break;
3688 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3689 		btrfs_dev_replace_status(root->fs_info, p);
3690 		ret = 0;
3691 		break;
3692 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3693 		ret = btrfs_dev_replace_cancel(root->fs_info, p);
3694 		break;
3695 	default:
3696 		ret = -EINVAL;
3697 		break;
3698 	}
3699 
3700 	if (copy_to_user(arg, p, sizeof(*p)))
3701 		ret = -EFAULT;
3702 
3703 	kfree(p);
3704 	return ret;
3705 }
3706 
3707 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3708 {
3709 	int ret = 0;
3710 	int i;
3711 	u64 rel_ptr;
3712 	int size;
3713 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3714 	struct inode_fs_paths *ipath = NULL;
3715 	struct btrfs_path *path;
3716 
3717 	if (!capable(CAP_DAC_READ_SEARCH))
3718 		return -EPERM;
3719 
3720 	path = btrfs_alloc_path();
3721 	if (!path) {
3722 		ret = -ENOMEM;
3723 		goto out;
3724 	}
3725 
3726 	ipa = memdup_user(arg, sizeof(*ipa));
3727 	if (IS_ERR(ipa)) {
3728 		ret = PTR_ERR(ipa);
3729 		ipa = NULL;
3730 		goto out;
3731 	}
3732 
3733 	size = min_t(u32, ipa->size, 4096);
3734 	ipath = init_ipath(size, root, path);
3735 	if (IS_ERR(ipath)) {
3736 		ret = PTR_ERR(ipath);
3737 		ipath = NULL;
3738 		goto out;
3739 	}
3740 
3741 	ret = paths_from_inode(ipa->inum, ipath);
3742 	if (ret < 0)
3743 		goto out;
3744 
3745 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3746 		rel_ptr = ipath->fspath->val[i] -
3747 			  (u64)(unsigned long)ipath->fspath->val;
3748 		ipath->fspath->val[i] = rel_ptr;
3749 	}
3750 
3751 	ret = copy_to_user((void *)(unsigned long)ipa->fspath,
3752 			   (void *)(unsigned long)ipath->fspath, size);
3753 	if (ret) {
3754 		ret = -EFAULT;
3755 		goto out;
3756 	}
3757 
3758 out:
3759 	btrfs_free_path(path);
3760 	free_ipath(ipath);
3761 	kfree(ipa);
3762 
3763 	return ret;
3764 }
3765 
3766 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3767 {
3768 	struct btrfs_data_container *inodes = ctx;
3769 	const size_t c = 3 * sizeof(u64);
3770 
3771 	if (inodes->bytes_left >= c) {
3772 		inodes->bytes_left -= c;
3773 		inodes->val[inodes->elem_cnt] = inum;
3774 		inodes->val[inodes->elem_cnt + 1] = offset;
3775 		inodes->val[inodes->elem_cnt + 2] = root;
3776 		inodes->elem_cnt += 3;
3777 	} else {
3778 		inodes->bytes_missing += c - inodes->bytes_left;
3779 		inodes->bytes_left = 0;
3780 		inodes->elem_missed += 3;
3781 	}
3782 
3783 	return 0;
3784 }
3785 
3786 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root,
3787 					void __user *arg)
3788 {
3789 	int ret = 0;
3790 	int size;
3791 	struct btrfs_ioctl_logical_ino_args *loi;
3792 	struct btrfs_data_container *inodes = NULL;
3793 	struct btrfs_path *path = NULL;
3794 
3795 	if (!capable(CAP_SYS_ADMIN))
3796 		return -EPERM;
3797 
3798 	loi = memdup_user(arg, sizeof(*loi));
3799 	if (IS_ERR(loi)) {
3800 		ret = PTR_ERR(loi);
3801 		loi = NULL;
3802 		goto out;
3803 	}
3804 
3805 	path = btrfs_alloc_path();
3806 	if (!path) {
3807 		ret = -ENOMEM;
3808 		goto out;
3809 	}
3810 
3811 	size = min_t(u32, loi->size, 64 * 1024);
3812 	inodes = init_data_container(size);
3813 	if (IS_ERR(inodes)) {
3814 		ret = PTR_ERR(inodes);
3815 		inodes = NULL;
3816 		goto out;
3817 	}
3818 
3819 	ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path,
3820 					  build_ino_list, inodes);
3821 	if (ret == -EINVAL)
3822 		ret = -ENOENT;
3823 	if (ret < 0)
3824 		goto out;
3825 
3826 	ret = copy_to_user((void *)(unsigned long)loi->inodes,
3827 			   (void *)(unsigned long)inodes, size);
3828 	if (ret)
3829 		ret = -EFAULT;
3830 
3831 out:
3832 	btrfs_free_path(path);
3833 	vfree(inodes);
3834 	kfree(loi);
3835 
3836 	return ret;
3837 }
3838 
3839 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock,
3840 			       struct btrfs_ioctl_balance_args *bargs)
3841 {
3842 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3843 
3844 	bargs->flags = bctl->flags;
3845 
3846 	if (atomic_read(&fs_info->balance_running))
3847 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3848 	if (atomic_read(&fs_info->balance_pause_req))
3849 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3850 	if (atomic_read(&fs_info->balance_cancel_req))
3851 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3852 
3853 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3854 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3855 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3856 
3857 	if (lock) {
3858 		spin_lock(&fs_info->balance_lock);
3859 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3860 		spin_unlock(&fs_info->balance_lock);
3861 	} else {
3862 		memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3863 	}
3864 }
3865 
3866 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3867 {
3868 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3869 	struct btrfs_fs_info *fs_info = root->fs_info;
3870 	struct btrfs_ioctl_balance_args *bargs;
3871 	struct btrfs_balance_control *bctl;
3872 	bool need_unlock; /* for mut. excl. ops lock */
3873 	int ret;
3874 
3875 	if (!capable(CAP_SYS_ADMIN))
3876 		return -EPERM;
3877 
3878 	ret = mnt_want_write_file(file);
3879 	if (ret)
3880 		return ret;
3881 
3882 again:
3883 	if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) {
3884 		mutex_lock(&fs_info->volume_mutex);
3885 		mutex_lock(&fs_info->balance_mutex);
3886 		need_unlock = true;
3887 		goto locked;
3888 	}
3889 
3890 	/*
3891 	 * mut. excl. ops lock is locked.  Three possibilites:
3892 	 *   (1) some other op is running
3893 	 *   (2) balance is running
3894 	 *   (3) balance is paused -- special case (think resume)
3895 	 */
3896 	mutex_lock(&fs_info->balance_mutex);
3897 	if (fs_info->balance_ctl) {
3898 		/* this is either (2) or (3) */
3899 		if (!atomic_read(&fs_info->balance_running)) {
3900 			mutex_unlock(&fs_info->balance_mutex);
3901 			if (!mutex_trylock(&fs_info->volume_mutex))
3902 				goto again;
3903 			mutex_lock(&fs_info->balance_mutex);
3904 
3905 			if (fs_info->balance_ctl &&
3906 			    !atomic_read(&fs_info->balance_running)) {
3907 				/* this is (3) */
3908 				need_unlock = false;
3909 				goto locked;
3910 			}
3911 
3912 			mutex_unlock(&fs_info->balance_mutex);
3913 			mutex_unlock(&fs_info->volume_mutex);
3914 			goto again;
3915 		} else {
3916 			/* this is (2) */
3917 			mutex_unlock(&fs_info->balance_mutex);
3918 			ret = -EINPROGRESS;
3919 			goto out;
3920 		}
3921 	} else {
3922 		/* this is (1) */
3923 		mutex_unlock(&fs_info->balance_mutex);
3924 		pr_info("btrfs: dev add/delete/balance/replace/resize operation in progress\n");
3925 		ret = -EINVAL;
3926 		goto out;
3927 	}
3928 
3929 locked:
3930 	BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running));
3931 
3932 	if (arg) {
3933 		bargs = memdup_user(arg, sizeof(*bargs));
3934 		if (IS_ERR(bargs)) {
3935 			ret = PTR_ERR(bargs);
3936 			goto out_unlock;
3937 		}
3938 
3939 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3940 			if (!fs_info->balance_ctl) {
3941 				ret = -ENOTCONN;
3942 				goto out_bargs;
3943 			}
3944 
3945 			bctl = fs_info->balance_ctl;
3946 			spin_lock(&fs_info->balance_lock);
3947 			bctl->flags |= BTRFS_BALANCE_RESUME;
3948 			spin_unlock(&fs_info->balance_lock);
3949 
3950 			goto do_balance;
3951 		}
3952 	} else {
3953 		bargs = NULL;
3954 	}
3955 
3956 	if (fs_info->balance_ctl) {
3957 		ret = -EINPROGRESS;
3958 		goto out_bargs;
3959 	}
3960 
3961 	bctl = kzalloc(sizeof(*bctl), GFP_NOFS);
3962 	if (!bctl) {
3963 		ret = -ENOMEM;
3964 		goto out_bargs;
3965 	}
3966 
3967 	bctl->fs_info = fs_info;
3968 	if (arg) {
3969 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3970 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3971 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3972 
3973 		bctl->flags = bargs->flags;
3974 	} else {
3975 		/* balance everything - no filters */
3976 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
3977 	}
3978 
3979 do_balance:
3980 	/*
3981 	 * Ownership of bctl and mutually_exclusive_operation_running
3982 	 * goes to to btrfs_balance.  bctl is freed in __cancel_balance,
3983 	 * or, if restriper was paused all the way until unmount, in
3984 	 * free_fs_info.  mutually_exclusive_operation_running is
3985 	 * cleared in __cancel_balance.
3986 	 */
3987 	need_unlock = false;
3988 
3989 	ret = btrfs_balance(bctl, bargs);
3990 
3991 	if (arg) {
3992 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
3993 			ret = -EFAULT;
3994 	}
3995 
3996 out_bargs:
3997 	kfree(bargs);
3998 out_unlock:
3999 	mutex_unlock(&fs_info->balance_mutex);
4000 	mutex_unlock(&fs_info->volume_mutex);
4001 	if (need_unlock)
4002 		atomic_set(&fs_info->mutually_exclusive_operation_running, 0);
4003 out:
4004 	mnt_drop_write_file(file);
4005 	return ret;
4006 }
4007 
4008 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd)
4009 {
4010 	if (!capable(CAP_SYS_ADMIN))
4011 		return -EPERM;
4012 
4013 	switch (cmd) {
4014 	case BTRFS_BALANCE_CTL_PAUSE:
4015 		return btrfs_pause_balance(root->fs_info);
4016 	case BTRFS_BALANCE_CTL_CANCEL:
4017 		return btrfs_cancel_balance(root->fs_info);
4018 	}
4019 
4020 	return -EINVAL;
4021 }
4022 
4023 static long btrfs_ioctl_balance_progress(struct btrfs_root *root,
4024 					 void __user *arg)
4025 {
4026 	struct btrfs_fs_info *fs_info = root->fs_info;
4027 	struct btrfs_ioctl_balance_args *bargs;
4028 	int ret = 0;
4029 
4030 	if (!capable(CAP_SYS_ADMIN))
4031 		return -EPERM;
4032 
4033 	mutex_lock(&fs_info->balance_mutex);
4034 	if (!fs_info->balance_ctl) {
4035 		ret = -ENOTCONN;
4036 		goto out;
4037 	}
4038 
4039 	bargs = kzalloc(sizeof(*bargs), GFP_NOFS);
4040 	if (!bargs) {
4041 		ret = -ENOMEM;
4042 		goto out;
4043 	}
4044 
4045 	update_ioctl_balance_args(fs_info, 1, bargs);
4046 
4047 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4048 		ret = -EFAULT;
4049 
4050 	kfree(bargs);
4051 out:
4052 	mutex_unlock(&fs_info->balance_mutex);
4053 	return ret;
4054 }
4055 
4056 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4057 {
4058 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4059 	struct btrfs_ioctl_quota_ctl_args *sa;
4060 	struct btrfs_trans_handle *trans = NULL;
4061 	int ret;
4062 	int err;
4063 
4064 	if (!capable(CAP_SYS_ADMIN))
4065 		return -EPERM;
4066 
4067 	ret = mnt_want_write_file(file);
4068 	if (ret)
4069 		return ret;
4070 
4071 	sa = memdup_user(arg, sizeof(*sa));
4072 	if (IS_ERR(sa)) {
4073 		ret = PTR_ERR(sa);
4074 		goto drop_write;
4075 	}
4076 
4077 	down_write(&root->fs_info->subvol_sem);
4078 	trans = btrfs_start_transaction(root->fs_info->tree_root, 2);
4079 	if (IS_ERR(trans)) {
4080 		ret = PTR_ERR(trans);
4081 		goto out;
4082 	}
4083 
4084 	switch (sa->cmd) {
4085 	case BTRFS_QUOTA_CTL_ENABLE:
4086 		ret = btrfs_quota_enable(trans, root->fs_info);
4087 		break;
4088 	case BTRFS_QUOTA_CTL_DISABLE:
4089 		ret = btrfs_quota_disable(trans, root->fs_info);
4090 		break;
4091 	default:
4092 		ret = -EINVAL;
4093 		break;
4094 	}
4095 
4096 	err = btrfs_commit_transaction(trans, root->fs_info->tree_root);
4097 	if (err && !ret)
4098 		ret = err;
4099 out:
4100 	kfree(sa);
4101 	up_write(&root->fs_info->subvol_sem);
4102 drop_write:
4103 	mnt_drop_write_file(file);
4104 	return ret;
4105 }
4106 
4107 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4108 {
4109 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4110 	struct btrfs_ioctl_qgroup_assign_args *sa;
4111 	struct btrfs_trans_handle *trans;
4112 	int ret;
4113 	int err;
4114 
4115 	if (!capable(CAP_SYS_ADMIN))
4116 		return -EPERM;
4117 
4118 	ret = mnt_want_write_file(file);
4119 	if (ret)
4120 		return ret;
4121 
4122 	sa = memdup_user(arg, sizeof(*sa));
4123 	if (IS_ERR(sa)) {
4124 		ret = PTR_ERR(sa);
4125 		goto drop_write;
4126 	}
4127 
4128 	trans = btrfs_join_transaction(root);
4129 	if (IS_ERR(trans)) {
4130 		ret = PTR_ERR(trans);
4131 		goto out;
4132 	}
4133 
4134 	/* FIXME: check if the IDs really exist */
4135 	if (sa->assign) {
4136 		ret = btrfs_add_qgroup_relation(trans, root->fs_info,
4137 						sa->src, sa->dst);
4138 	} else {
4139 		ret = btrfs_del_qgroup_relation(trans, root->fs_info,
4140 						sa->src, sa->dst);
4141 	}
4142 
4143 	err = btrfs_end_transaction(trans, root);
4144 	if (err && !ret)
4145 		ret = err;
4146 
4147 out:
4148 	kfree(sa);
4149 drop_write:
4150 	mnt_drop_write_file(file);
4151 	return ret;
4152 }
4153 
4154 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4155 {
4156 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4157 	struct btrfs_ioctl_qgroup_create_args *sa;
4158 	struct btrfs_trans_handle *trans;
4159 	int ret;
4160 	int err;
4161 
4162 	if (!capable(CAP_SYS_ADMIN))
4163 		return -EPERM;
4164 
4165 	ret = mnt_want_write_file(file);
4166 	if (ret)
4167 		return ret;
4168 
4169 	sa = memdup_user(arg, sizeof(*sa));
4170 	if (IS_ERR(sa)) {
4171 		ret = PTR_ERR(sa);
4172 		goto drop_write;
4173 	}
4174 
4175 	if (!sa->qgroupid) {
4176 		ret = -EINVAL;
4177 		goto out;
4178 	}
4179 
4180 	trans = btrfs_join_transaction(root);
4181 	if (IS_ERR(trans)) {
4182 		ret = PTR_ERR(trans);
4183 		goto out;
4184 	}
4185 
4186 	/* FIXME: check if the IDs really exist */
4187 	if (sa->create) {
4188 		ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid,
4189 					  NULL);
4190 	} else {
4191 		ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid);
4192 	}
4193 
4194 	err = btrfs_end_transaction(trans, root);
4195 	if (err && !ret)
4196 		ret = err;
4197 
4198 out:
4199 	kfree(sa);
4200 drop_write:
4201 	mnt_drop_write_file(file);
4202 	return ret;
4203 }
4204 
4205 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4206 {
4207 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4208 	struct btrfs_ioctl_qgroup_limit_args *sa;
4209 	struct btrfs_trans_handle *trans;
4210 	int ret;
4211 	int err;
4212 	u64 qgroupid;
4213 
4214 	if (!capable(CAP_SYS_ADMIN))
4215 		return -EPERM;
4216 
4217 	ret = mnt_want_write_file(file);
4218 	if (ret)
4219 		return ret;
4220 
4221 	sa = memdup_user(arg, sizeof(*sa));
4222 	if (IS_ERR(sa)) {
4223 		ret = PTR_ERR(sa);
4224 		goto drop_write;
4225 	}
4226 
4227 	trans = btrfs_join_transaction(root);
4228 	if (IS_ERR(trans)) {
4229 		ret = PTR_ERR(trans);
4230 		goto out;
4231 	}
4232 
4233 	qgroupid = sa->qgroupid;
4234 	if (!qgroupid) {
4235 		/* take the current subvol as qgroup */
4236 		qgroupid = root->root_key.objectid;
4237 	}
4238 
4239 	/* FIXME: check if the IDs really exist */
4240 	ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim);
4241 
4242 	err = btrfs_end_transaction(trans, root);
4243 	if (err && !ret)
4244 		ret = err;
4245 
4246 out:
4247 	kfree(sa);
4248 drop_write:
4249 	mnt_drop_write_file(file);
4250 	return ret;
4251 }
4252 
4253 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4254 {
4255 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4256 	struct btrfs_ioctl_quota_rescan_args *qsa;
4257 	int ret;
4258 
4259 	if (!capable(CAP_SYS_ADMIN))
4260 		return -EPERM;
4261 
4262 	ret = mnt_want_write_file(file);
4263 	if (ret)
4264 		return ret;
4265 
4266 	qsa = memdup_user(arg, sizeof(*qsa));
4267 	if (IS_ERR(qsa)) {
4268 		ret = PTR_ERR(qsa);
4269 		goto drop_write;
4270 	}
4271 
4272 	if (qsa->flags) {
4273 		ret = -EINVAL;
4274 		goto out;
4275 	}
4276 
4277 	ret = btrfs_qgroup_rescan(root->fs_info);
4278 
4279 out:
4280 	kfree(qsa);
4281 drop_write:
4282 	mnt_drop_write_file(file);
4283 	return ret;
4284 }
4285 
4286 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg)
4287 {
4288 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4289 	struct btrfs_ioctl_quota_rescan_args *qsa;
4290 	int ret = 0;
4291 
4292 	if (!capable(CAP_SYS_ADMIN))
4293 		return -EPERM;
4294 
4295 	qsa = kzalloc(sizeof(*qsa), GFP_NOFS);
4296 	if (!qsa)
4297 		return -ENOMEM;
4298 
4299 	if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4300 		qsa->flags = 1;
4301 		qsa->progress = root->fs_info->qgroup_rescan_progress.objectid;
4302 	}
4303 
4304 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4305 		ret = -EFAULT;
4306 
4307 	kfree(qsa);
4308 	return ret;
4309 }
4310 
4311 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg)
4312 {
4313 	struct btrfs_root *root = BTRFS_I(fdentry(file)->d_inode)->root;
4314 
4315 	if (!capable(CAP_SYS_ADMIN))
4316 		return -EPERM;
4317 
4318 	return btrfs_qgroup_wait_for_completion(root->fs_info);
4319 }
4320 
4321 static long btrfs_ioctl_set_received_subvol(struct file *file,
4322 					    void __user *arg)
4323 {
4324 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4325 	struct inode *inode = file_inode(file);
4326 	struct btrfs_root *root = BTRFS_I(inode)->root;
4327 	struct btrfs_root_item *root_item = &root->root_item;
4328 	struct btrfs_trans_handle *trans;
4329 	struct timespec ct = CURRENT_TIME;
4330 	int ret = 0;
4331 	int received_uuid_changed;
4332 
4333 	ret = mnt_want_write_file(file);
4334 	if (ret < 0)
4335 		return ret;
4336 
4337 	down_write(&root->fs_info->subvol_sem);
4338 
4339 	if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) {
4340 		ret = -EINVAL;
4341 		goto out;
4342 	}
4343 
4344 	if (btrfs_root_readonly(root)) {
4345 		ret = -EROFS;
4346 		goto out;
4347 	}
4348 
4349 	if (!inode_owner_or_capable(inode)) {
4350 		ret = -EACCES;
4351 		goto out;
4352 	}
4353 
4354 	sa = memdup_user(arg, sizeof(*sa));
4355 	if (IS_ERR(sa)) {
4356 		ret = PTR_ERR(sa);
4357 		sa = NULL;
4358 		goto out;
4359 	}
4360 
4361 	/*
4362 	 * 1 - root item
4363 	 * 2 - uuid items (received uuid + subvol uuid)
4364 	 */
4365 	trans = btrfs_start_transaction(root, 3);
4366 	if (IS_ERR(trans)) {
4367 		ret = PTR_ERR(trans);
4368 		trans = NULL;
4369 		goto out;
4370 	}
4371 
4372 	sa->rtransid = trans->transid;
4373 	sa->rtime.sec = ct.tv_sec;
4374 	sa->rtime.nsec = ct.tv_nsec;
4375 
4376 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4377 				       BTRFS_UUID_SIZE);
4378 	if (received_uuid_changed &&
4379 	    !btrfs_is_empty_uuid(root_item->received_uuid))
4380 		btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root,
4381 				    root_item->received_uuid,
4382 				    BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4383 				    root->root_key.objectid);
4384 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4385 	btrfs_set_root_stransid(root_item, sa->stransid);
4386 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4387 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4388 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4389 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4390 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4391 
4392 	ret = btrfs_update_root(trans, root->fs_info->tree_root,
4393 				&root->root_key, &root->root_item);
4394 	if (ret < 0) {
4395 		btrfs_end_transaction(trans, root);
4396 		goto out;
4397 	}
4398 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4399 		ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root,
4400 					  sa->uuid,
4401 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4402 					  root->root_key.objectid);
4403 		if (ret < 0 && ret != -EEXIST) {
4404 			btrfs_abort_transaction(trans, root, ret);
4405 			goto out;
4406 		}
4407 	}
4408 	ret = btrfs_commit_transaction(trans, root);
4409 	if (ret < 0) {
4410 		btrfs_abort_transaction(trans, root, ret);
4411 		goto out;
4412 	}
4413 
4414 	ret = copy_to_user(arg, sa, sizeof(*sa));
4415 	if (ret)
4416 		ret = -EFAULT;
4417 
4418 out:
4419 	kfree(sa);
4420 	up_write(&root->fs_info->subvol_sem);
4421 	mnt_drop_write_file(file);
4422 	return ret;
4423 }
4424 
4425 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg)
4426 {
4427 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4428 	size_t len;
4429 	int ret;
4430 	char label[BTRFS_LABEL_SIZE];
4431 
4432 	spin_lock(&root->fs_info->super_lock);
4433 	memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4434 	spin_unlock(&root->fs_info->super_lock);
4435 
4436 	len = strnlen(label, BTRFS_LABEL_SIZE);
4437 
4438 	if (len == BTRFS_LABEL_SIZE) {
4439 		pr_warn("btrfs: label is too long, return the first %zu bytes\n",
4440 			--len);
4441 	}
4442 
4443 	ret = copy_to_user(arg, label, len);
4444 
4445 	return ret ? -EFAULT : 0;
4446 }
4447 
4448 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4449 {
4450 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4451 	struct btrfs_super_block *super_block = root->fs_info->super_copy;
4452 	struct btrfs_trans_handle *trans;
4453 	char label[BTRFS_LABEL_SIZE];
4454 	int ret;
4455 
4456 	if (!capable(CAP_SYS_ADMIN))
4457 		return -EPERM;
4458 
4459 	if (copy_from_user(label, arg, sizeof(label)))
4460 		return -EFAULT;
4461 
4462 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4463 		pr_err("btrfs: unable to set label with more than %d bytes\n",
4464 		       BTRFS_LABEL_SIZE - 1);
4465 		return -EINVAL;
4466 	}
4467 
4468 	ret = mnt_want_write_file(file);
4469 	if (ret)
4470 		return ret;
4471 
4472 	trans = btrfs_start_transaction(root, 0);
4473 	if (IS_ERR(trans)) {
4474 		ret = PTR_ERR(trans);
4475 		goto out_unlock;
4476 	}
4477 
4478 	spin_lock(&root->fs_info->super_lock);
4479 	strcpy(super_block->label, label);
4480 	spin_unlock(&root->fs_info->super_lock);
4481 	ret = btrfs_end_transaction(trans, root);
4482 
4483 out_unlock:
4484 	mnt_drop_write_file(file);
4485 	return ret;
4486 }
4487 
4488 long btrfs_ioctl(struct file *file, unsigned int
4489 		cmd, unsigned long arg)
4490 {
4491 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
4492 	void __user *argp = (void __user *)arg;
4493 
4494 	switch (cmd) {
4495 	case FS_IOC_GETFLAGS:
4496 		return btrfs_ioctl_getflags(file, argp);
4497 	case FS_IOC_SETFLAGS:
4498 		return btrfs_ioctl_setflags(file, argp);
4499 	case FS_IOC_GETVERSION:
4500 		return btrfs_ioctl_getversion(file, argp);
4501 	case FITRIM:
4502 		return btrfs_ioctl_fitrim(file, argp);
4503 	case BTRFS_IOC_SNAP_CREATE:
4504 		return btrfs_ioctl_snap_create(file, argp, 0);
4505 	case BTRFS_IOC_SNAP_CREATE_V2:
4506 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4507 	case BTRFS_IOC_SUBVOL_CREATE:
4508 		return btrfs_ioctl_snap_create(file, argp, 1);
4509 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4510 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4511 	case BTRFS_IOC_SNAP_DESTROY:
4512 		return btrfs_ioctl_snap_destroy(file, argp);
4513 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4514 		return btrfs_ioctl_subvol_getflags(file, argp);
4515 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4516 		return btrfs_ioctl_subvol_setflags(file, argp);
4517 	case BTRFS_IOC_DEFAULT_SUBVOL:
4518 		return btrfs_ioctl_default_subvol(file, argp);
4519 	case BTRFS_IOC_DEFRAG:
4520 		return btrfs_ioctl_defrag(file, NULL);
4521 	case BTRFS_IOC_DEFRAG_RANGE:
4522 		return btrfs_ioctl_defrag(file, argp);
4523 	case BTRFS_IOC_RESIZE:
4524 		return btrfs_ioctl_resize(file, argp);
4525 	case BTRFS_IOC_ADD_DEV:
4526 		return btrfs_ioctl_add_dev(root, argp);
4527 	case BTRFS_IOC_RM_DEV:
4528 		return btrfs_ioctl_rm_dev(file, argp);
4529 	case BTRFS_IOC_FS_INFO:
4530 		return btrfs_ioctl_fs_info(root, argp);
4531 	case BTRFS_IOC_DEV_INFO:
4532 		return btrfs_ioctl_dev_info(root, argp);
4533 	case BTRFS_IOC_BALANCE:
4534 		return btrfs_ioctl_balance(file, NULL);
4535 	case BTRFS_IOC_CLONE:
4536 		return btrfs_ioctl_clone(file, arg, 0, 0, 0);
4537 	case BTRFS_IOC_CLONE_RANGE:
4538 		return btrfs_ioctl_clone_range(file, argp);
4539 	case BTRFS_IOC_TRANS_START:
4540 		return btrfs_ioctl_trans_start(file);
4541 	case BTRFS_IOC_TRANS_END:
4542 		return btrfs_ioctl_trans_end(file);
4543 	case BTRFS_IOC_TREE_SEARCH:
4544 		return btrfs_ioctl_tree_search(file, argp);
4545 	case BTRFS_IOC_INO_LOOKUP:
4546 		return btrfs_ioctl_ino_lookup(file, argp);
4547 	case BTRFS_IOC_INO_PATHS:
4548 		return btrfs_ioctl_ino_to_path(root, argp);
4549 	case BTRFS_IOC_LOGICAL_INO:
4550 		return btrfs_ioctl_logical_to_ino(root, argp);
4551 	case BTRFS_IOC_SPACE_INFO:
4552 		return btrfs_ioctl_space_info(root, argp);
4553 	case BTRFS_IOC_SYNC:
4554 		btrfs_sync_fs(file->f_dentry->d_sb, 1);
4555 		return 0;
4556 	case BTRFS_IOC_START_SYNC:
4557 		return btrfs_ioctl_start_sync(root, argp);
4558 	case BTRFS_IOC_WAIT_SYNC:
4559 		return btrfs_ioctl_wait_sync(root, argp);
4560 	case BTRFS_IOC_SCRUB:
4561 		return btrfs_ioctl_scrub(file, argp);
4562 	case BTRFS_IOC_SCRUB_CANCEL:
4563 		return btrfs_ioctl_scrub_cancel(root, argp);
4564 	case BTRFS_IOC_SCRUB_PROGRESS:
4565 		return btrfs_ioctl_scrub_progress(root, argp);
4566 	case BTRFS_IOC_BALANCE_V2:
4567 		return btrfs_ioctl_balance(file, argp);
4568 	case BTRFS_IOC_BALANCE_CTL:
4569 		return btrfs_ioctl_balance_ctl(root, arg);
4570 	case BTRFS_IOC_BALANCE_PROGRESS:
4571 		return btrfs_ioctl_balance_progress(root, argp);
4572 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4573 		return btrfs_ioctl_set_received_subvol(file, argp);
4574 	case BTRFS_IOC_SEND:
4575 		return btrfs_ioctl_send(file, argp);
4576 	case BTRFS_IOC_GET_DEV_STATS:
4577 		return btrfs_ioctl_get_dev_stats(root, argp);
4578 	case BTRFS_IOC_QUOTA_CTL:
4579 		return btrfs_ioctl_quota_ctl(file, argp);
4580 	case BTRFS_IOC_QGROUP_ASSIGN:
4581 		return btrfs_ioctl_qgroup_assign(file, argp);
4582 	case BTRFS_IOC_QGROUP_CREATE:
4583 		return btrfs_ioctl_qgroup_create(file, argp);
4584 	case BTRFS_IOC_QGROUP_LIMIT:
4585 		return btrfs_ioctl_qgroup_limit(file, argp);
4586 	case BTRFS_IOC_QUOTA_RESCAN:
4587 		return btrfs_ioctl_quota_rescan(file, argp);
4588 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4589 		return btrfs_ioctl_quota_rescan_status(file, argp);
4590 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4591 		return btrfs_ioctl_quota_rescan_wait(file, argp);
4592 	case BTRFS_IOC_DEV_REPLACE:
4593 		return btrfs_ioctl_dev_replace(root, argp);
4594 	case BTRFS_IOC_GET_FSLABEL:
4595 		return btrfs_ioctl_get_fslabel(file, argp);
4596 	case BTRFS_IOC_SET_FSLABEL:
4597 		return btrfs_ioctl_set_fslabel(file, argp);
4598 	case BTRFS_IOC_FILE_EXTENT_SAME:
4599 		return btrfs_ioctl_file_extent_same(file, argp);
4600 	}
4601 
4602 	return -ENOTTY;
4603 }
4604