1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include "ctree.h" 30 #include "disk-io.h" 31 #include "export.h" 32 #include "transaction.h" 33 #include "btrfs_inode.h" 34 #include "print-tree.h" 35 #include "volumes.h" 36 #include "locking.h" 37 #include "backref.h" 38 #include "rcu-string.h" 39 #include "send.h" 40 #include "dev-replace.h" 41 #include "props.h" 42 #include "sysfs.h" 43 #include "qgroup.h" 44 #include "tree-log.h" 45 #include "compression.h" 46 #include "space-info.h" 47 #include "delalloc-space.h" 48 #include "block-group.h" 49 50 #ifdef CONFIG_64BIT 51 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 52 * structures are incorrect, as the timespec structure from userspace 53 * is 4 bytes too small. We define these alternatives here to teach 54 * the kernel about the 32-bit struct packing. 55 */ 56 struct btrfs_ioctl_timespec_32 { 57 __u64 sec; 58 __u32 nsec; 59 } __attribute__ ((__packed__)); 60 61 struct btrfs_ioctl_received_subvol_args_32 { 62 char uuid[BTRFS_UUID_SIZE]; /* in */ 63 __u64 stransid; /* in */ 64 __u64 rtransid; /* out */ 65 struct btrfs_ioctl_timespec_32 stime; /* in */ 66 struct btrfs_ioctl_timespec_32 rtime; /* out */ 67 __u64 flags; /* in */ 68 __u64 reserved[16]; /* in */ 69 } __attribute__ ((__packed__)); 70 71 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 72 struct btrfs_ioctl_received_subvol_args_32) 73 #endif 74 75 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 76 struct btrfs_ioctl_send_args_32 { 77 __s64 send_fd; /* in */ 78 __u64 clone_sources_count; /* in */ 79 compat_uptr_t clone_sources; /* in */ 80 __u64 parent_root; /* in */ 81 __u64 flags; /* in */ 82 __u64 reserved[4]; /* in */ 83 } __attribute__ ((__packed__)); 84 85 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 86 struct btrfs_ioctl_send_args_32) 87 #endif 88 89 /* Mask out flags that are inappropriate for the given type of inode. */ 90 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 91 unsigned int flags) 92 { 93 if (S_ISDIR(inode->i_mode)) 94 return flags; 95 else if (S_ISREG(inode->i_mode)) 96 return flags & ~FS_DIRSYNC_FL; 97 else 98 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 99 } 100 101 /* 102 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 103 * ioctl. 104 */ 105 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags) 106 { 107 unsigned int iflags = 0; 108 109 if (flags & BTRFS_INODE_SYNC) 110 iflags |= FS_SYNC_FL; 111 if (flags & BTRFS_INODE_IMMUTABLE) 112 iflags |= FS_IMMUTABLE_FL; 113 if (flags & BTRFS_INODE_APPEND) 114 iflags |= FS_APPEND_FL; 115 if (flags & BTRFS_INODE_NODUMP) 116 iflags |= FS_NODUMP_FL; 117 if (flags & BTRFS_INODE_NOATIME) 118 iflags |= FS_NOATIME_FL; 119 if (flags & BTRFS_INODE_DIRSYNC) 120 iflags |= FS_DIRSYNC_FL; 121 if (flags & BTRFS_INODE_NODATACOW) 122 iflags |= FS_NOCOW_FL; 123 124 if (flags & BTRFS_INODE_NOCOMPRESS) 125 iflags |= FS_NOCOMP_FL; 126 else if (flags & BTRFS_INODE_COMPRESS) 127 iflags |= FS_COMPR_FL; 128 129 return iflags; 130 } 131 132 /* 133 * Update inode->i_flags based on the btrfs internal flags. 134 */ 135 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 136 { 137 struct btrfs_inode *binode = BTRFS_I(inode); 138 unsigned int new_fl = 0; 139 140 if (binode->flags & BTRFS_INODE_SYNC) 141 new_fl |= S_SYNC; 142 if (binode->flags & BTRFS_INODE_IMMUTABLE) 143 new_fl |= S_IMMUTABLE; 144 if (binode->flags & BTRFS_INODE_APPEND) 145 new_fl |= S_APPEND; 146 if (binode->flags & BTRFS_INODE_NOATIME) 147 new_fl |= S_NOATIME; 148 if (binode->flags & BTRFS_INODE_DIRSYNC) 149 new_fl |= S_DIRSYNC; 150 151 set_mask_bits(&inode->i_flags, 152 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 153 new_fl); 154 } 155 156 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 157 { 158 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 159 unsigned int flags = btrfs_inode_flags_to_fsflags(binode->flags); 160 161 if (copy_to_user(arg, &flags, sizeof(flags))) 162 return -EFAULT; 163 return 0; 164 } 165 166 /* 167 * Check if @flags are a supported and valid set of FS_*_FL flags and that 168 * the old and new flags are not conflicting 169 */ 170 static int check_fsflags(unsigned int old_flags, unsigned int flags) 171 { 172 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 173 FS_NOATIME_FL | FS_NODUMP_FL | \ 174 FS_SYNC_FL | FS_DIRSYNC_FL | \ 175 FS_NOCOMP_FL | FS_COMPR_FL | 176 FS_NOCOW_FL)) 177 return -EOPNOTSUPP; 178 179 /* COMPR and NOCOMP on new/old are valid */ 180 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 181 return -EINVAL; 182 183 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 184 return -EINVAL; 185 186 /* NOCOW and compression options are mutually exclusive */ 187 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 190 return -EINVAL; 191 192 return 0; 193 } 194 195 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 196 unsigned int flags) 197 { 198 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 199 return -EPERM; 200 201 return 0; 202 } 203 204 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 205 { 206 struct inode *inode = file_inode(file); 207 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 208 struct btrfs_inode *binode = BTRFS_I(inode); 209 struct btrfs_root *root = binode->root; 210 struct btrfs_trans_handle *trans; 211 unsigned int fsflags, old_fsflags; 212 int ret; 213 const char *comp = NULL; 214 u32 binode_flags; 215 216 if (!inode_owner_or_capable(inode)) 217 return -EPERM; 218 219 if (btrfs_root_readonly(root)) 220 return -EROFS; 221 222 if (copy_from_user(&fsflags, arg, sizeof(fsflags))) 223 return -EFAULT; 224 225 ret = mnt_want_write_file(file); 226 if (ret) 227 return ret; 228 229 inode_lock(inode); 230 fsflags = btrfs_mask_fsflags_for_type(inode, fsflags); 231 old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags); 232 233 ret = vfs_ioc_setflags_prepare(inode, old_fsflags, fsflags); 234 if (ret) 235 goto out_unlock; 236 237 ret = check_fsflags(old_fsflags, fsflags); 238 if (ret) 239 goto out_unlock; 240 241 ret = check_fsflags_compatible(fs_info, fsflags); 242 if (ret) 243 goto out_unlock; 244 245 binode_flags = binode->flags; 246 if (fsflags & FS_SYNC_FL) 247 binode_flags |= BTRFS_INODE_SYNC; 248 else 249 binode_flags &= ~BTRFS_INODE_SYNC; 250 if (fsflags & FS_IMMUTABLE_FL) 251 binode_flags |= BTRFS_INODE_IMMUTABLE; 252 else 253 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 254 if (fsflags & FS_APPEND_FL) 255 binode_flags |= BTRFS_INODE_APPEND; 256 else 257 binode_flags &= ~BTRFS_INODE_APPEND; 258 if (fsflags & FS_NODUMP_FL) 259 binode_flags |= BTRFS_INODE_NODUMP; 260 else 261 binode_flags &= ~BTRFS_INODE_NODUMP; 262 if (fsflags & FS_NOATIME_FL) 263 binode_flags |= BTRFS_INODE_NOATIME; 264 else 265 binode_flags &= ~BTRFS_INODE_NOATIME; 266 if (fsflags & FS_DIRSYNC_FL) 267 binode_flags |= BTRFS_INODE_DIRSYNC; 268 else 269 binode_flags &= ~BTRFS_INODE_DIRSYNC; 270 if (fsflags & FS_NOCOW_FL) { 271 if (S_ISREG(inode->i_mode)) { 272 /* 273 * It's safe to turn csums off here, no extents exist. 274 * Otherwise we want the flag to reflect the real COW 275 * status of the file and will not set it. 276 */ 277 if (inode->i_size == 0) 278 binode_flags |= BTRFS_INODE_NODATACOW | 279 BTRFS_INODE_NODATASUM; 280 } else { 281 binode_flags |= BTRFS_INODE_NODATACOW; 282 } 283 } else { 284 /* 285 * Revert back under same assumptions as above 286 */ 287 if (S_ISREG(inode->i_mode)) { 288 if (inode->i_size == 0) 289 binode_flags &= ~(BTRFS_INODE_NODATACOW | 290 BTRFS_INODE_NODATASUM); 291 } else { 292 binode_flags &= ~BTRFS_INODE_NODATACOW; 293 } 294 } 295 296 /* 297 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 298 * flag may be changed automatically if compression code won't make 299 * things smaller. 300 */ 301 if (fsflags & FS_NOCOMP_FL) { 302 binode_flags &= ~BTRFS_INODE_COMPRESS; 303 binode_flags |= BTRFS_INODE_NOCOMPRESS; 304 } else if (fsflags & FS_COMPR_FL) { 305 306 if (IS_SWAPFILE(inode)) { 307 ret = -ETXTBSY; 308 goto out_unlock; 309 } 310 311 binode_flags |= BTRFS_INODE_COMPRESS; 312 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 313 314 comp = btrfs_compress_type2str(fs_info->compress_type); 315 if (!comp || comp[0] == 0) 316 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 317 } else { 318 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 319 } 320 321 /* 322 * 1 for inode item 323 * 2 for properties 324 */ 325 trans = btrfs_start_transaction(root, 3); 326 if (IS_ERR(trans)) { 327 ret = PTR_ERR(trans); 328 goto out_unlock; 329 } 330 331 if (comp) { 332 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 333 strlen(comp), 0); 334 if (ret) { 335 btrfs_abort_transaction(trans, ret); 336 goto out_end_trans; 337 } 338 } else { 339 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 340 0, 0); 341 if (ret && ret != -ENODATA) { 342 btrfs_abort_transaction(trans, ret); 343 goto out_end_trans; 344 } 345 } 346 347 binode->flags = binode_flags; 348 btrfs_sync_inode_flags_to_i_flags(inode); 349 inode_inc_iversion(inode); 350 inode->i_ctime = current_time(inode); 351 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 352 353 out_end_trans: 354 btrfs_end_transaction(trans); 355 out_unlock: 356 inode_unlock(inode); 357 mnt_drop_write_file(file); 358 return ret; 359 } 360 361 /* 362 * Translate btrfs internal inode flags to xflags as expected by the 363 * FS_IOC_FSGETXATT ioctl. Filter only the supported ones, unknown flags are 364 * silently dropped. 365 */ 366 static unsigned int btrfs_inode_flags_to_xflags(unsigned int flags) 367 { 368 unsigned int xflags = 0; 369 370 if (flags & BTRFS_INODE_APPEND) 371 xflags |= FS_XFLAG_APPEND; 372 if (flags & BTRFS_INODE_IMMUTABLE) 373 xflags |= FS_XFLAG_IMMUTABLE; 374 if (flags & BTRFS_INODE_NOATIME) 375 xflags |= FS_XFLAG_NOATIME; 376 if (flags & BTRFS_INODE_NODUMP) 377 xflags |= FS_XFLAG_NODUMP; 378 if (flags & BTRFS_INODE_SYNC) 379 xflags |= FS_XFLAG_SYNC; 380 381 return xflags; 382 } 383 384 /* Check if @flags are a supported and valid set of FS_XFLAGS_* flags */ 385 static int check_xflags(unsigned int flags) 386 { 387 if (flags & ~(FS_XFLAG_APPEND | FS_XFLAG_IMMUTABLE | FS_XFLAG_NOATIME | 388 FS_XFLAG_NODUMP | FS_XFLAG_SYNC)) 389 return -EOPNOTSUPP; 390 return 0; 391 } 392 393 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 394 enum btrfs_exclusive_operation type) 395 { 396 return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type); 397 } 398 399 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 400 { 401 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 402 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 403 } 404 405 /* 406 * Set the xflags from the internal inode flags. The remaining items of fsxattr 407 * are zeroed. 408 */ 409 static int btrfs_ioctl_fsgetxattr(struct file *file, void __user *arg) 410 { 411 struct btrfs_inode *binode = BTRFS_I(file_inode(file)); 412 struct fsxattr fa; 413 414 simple_fill_fsxattr(&fa, btrfs_inode_flags_to_xflags(binode->flags)); 415 if (copy_to_user(arg, &fa, sizeof(fa))) 416 return -EFAULT; 417 418 return 0; 419 } 420 421 static int btrfs_ioctl_fssetxattr(struct file *file, void __user *arg) 422 { 423 struct inode *inode = file_inode(file); 424 struct btrfs_inode *binode = BTRFS_I(inode); 425 struct btrfs_root *root = binode->root; 426 struct btrfs_trans_handle *trans; 427 struct fsxattr fa, old_fa; 428 unsigned old_flags; 429 unsigned old_i_flags; 430 int ret = 0; 431 432 if (!inode_owner_or_capable(inode)) 433 return -EPERM; 434 435 if (btrfs_root_readonly(root)) 436 return -EROFS; 437 438 if (copy_from_user(&fa, arg, sizeof(fa))) 439 return -EFAULT; 440 441 ret = check_xflags(fa.fsx_xflags); 442 if (ret) 443 return ret; 444 445 if (fa.fsx_extsize != 0 || fa.fsx_projid != 0 || fa.fsx_cowextsize != 0) 446 return -EOPNOTSUPP; 447 448 ret = mnt_want_write_file(file); 449 if (ret) 450 return ret; 451 452 inode_lock(inode); 453 454 old_flags = binode->flags; 455 old_i_flags = inode->i_flags; 456 457 simple_fill_fsxattr(&old_fa, 458 btrfs_inode_flags_to_xflags(binode->flags)); 459 ret = vfs_ioc_fssetxattr_check(inode, &old_fa, &fa); 460 if (ret) 461 goto out_unlock; 462 463 if (fa.fsx_xflags & FS_XFLAG_SYNC) 464 binode->flags |= BTRFS_INODE_SYNC; 465 else 466 binode->flags &= ~BTRFS_INODE_SYNC; 467 if (fa.fsx_xflags & FS_XFLAG_IMMUTABLE) 468 binode->flags |= BTRFS_INODE_IMMUTABLE; 469 else 470 binode->flags &= ~BTRFS_INODE_IMMUTABLE; 471 if (fa.fsx_xflags & FS_XFLAG_APPEND) 472 binode->flags |= BTRFS_INODE_APPEND; 473 else 474 binode->flags &= ~BTRFS_INODE_APPEND; 475 if (fa.fsx_xflags & FS_XFLAG_NODUMP) 476 binode->flags |= BTRFS_INODE_NODUMP; 477 else 478 binode->flags &= ~BTRFS_INODE_NODUMP; 479 if (fa.fsx_xflags & FS_XFLAG_NOATIME) 480 binode->flags |= BTRFS_INODE_NOATIME; 481 else 482 binode->flags &= ~BTRFS_INODE_NOATIME; 483 484 /* 1 item for the inode */ 485 trans = btrfs_start_transaction(root, 1); 486 if (IS_ERR(trans)) { 487 ret = PTR_ERR(trans); 488 goto out_unlock; 489 } 490 491 btrfs_sync_inode_flags_to_i_flags(inode); 492 inode_inc_iversion(inode); 493 inode->i_ctime = current_time(inode); 494 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 495 496 btrfs_end_transaction(trans); 497 498 out_unlock: 499 if (ret) { 500 binode->flags = old_flags; 501 inode->i_flags = old_i_flags; 502 } 503 504 inode_unlock(inode); 505 mnt_drop_write_file(file); 506 507 return ret; 508 } 509 510 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 511 { 512 struct inode *inode = file_inode(file); 513 514 return put_user(inode->i_generation, arg); 515 } 516 517 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 518 void __user *arg) 519 { 520 struct btrfs_device *device; 521 struct request_queue *q; 522 struct fstrim_range range; 523 u64 minlen = ULLONG_MAX; 524 u64 num_devices = 0; 525 int ret; 526 527 if (!capable(CAP_SYS_ADMIN)) 528 return -EPERM; 529 530 /* 531 * btrfs_trim_block_group() depends on space cache, which is not 532 * available in zoned filesystem. So, disallow fitrim on a zoned 533 * filesystem for now. 534 */ 535 if (btrfs_is_zoned(fs_info)) 536 return -EOPNOTSUPP; 537 538 /* 539 * If the fs is mounted with nologreplay, which requires it to be 540 * mounted in RO mode as well, we can not allow discard on free space 541 * inside block groups, because log trees refer to extents that are not 542 * pinned in a block group's free space cache (pinning the extents is 543 * precisely the first phase of replaying a log tree). 544 */ 545 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 546 return -EROFS; 547 548 rcu_read_lock(); 549 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 550 dev_list) { 551 if (!device->bdev) 552 continue; 553 q = bdev_get_queue(device->bdev); 554 if (blk_queue_discard(q)) { 555 num_devices++; 556 minlen = min_t(u64, q->limits.discard_granularity, 557 minlen); 558 } 559 } 560 rcu_read_unlock(); 561 562 if (!num_devices) 563 return -EOPNOTSUPP; 564 if (copy_from_user(&range, arg, sizeof(range))) 565 return -EFAULT; 566 567 /* 568 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 569 * block group is in the logical address space, which can be any 570 * sectorsize aligned bytenr in the range [0, U64_MAX]. 571 */ 572 if (range.len < fs_info->sb->s_blocksize) 573 return -EINVAL; 574 575 range.minlen = max(range.minlen, minlen); 576 ret = btrfs_trim_fs(fs_info, &range); 577 if (ret < 0) 578 return ret; 579 580 if (copy_to_user(arg, &range, sizeof(range))) 581 return -EFAULT; 582 583 return 0; 584 } 585 586 int __pure btrfs_is_empty_uuid(u8 *uuid) 587 { 588 int i; 589 590 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 591 if (uuid[i]) 592 return 0; 593 } 594 return 1; 595 } 596 597 static noinline int create_subvol(struct inode *dir, 598 struct dentry *dentry, 599 const char *name, int namelen, 600 struct btrfs_qgroup_inherit *inherit) 601 { 602 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 603 struct btrfs_trans_handle *trans; 604 struct btrfs_key key; 605 struct btrfs_root_item *root_item; 606 struct btrfs_inode_item *inode_item; 607 struct extent_buffer *leaf; 608 struct btrfs_root *root = BTRFS_I(dir)->root; 609 struct btrfs_root *new_root; 610 struct btrfs_block_rsv block_rsv; 611 struct timespec64 cur_time = current_time(dir); 612 struct inode *inode; 613 int ret; 614 int err; 615 dev_t anon_dev = 0; 616 u64 objectid; 617 u64 index = 0; 618 619 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 620 if (!root_item) 621 return -ENOMEM; 622 623 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 624 if (ret) 625 goto fail_free; 626 627 ret = get_anon_bdev(&anon_dev); 628 if (ret < 0) 629 goto fail_free; 630 631 /* 632 * Don't create subvolume whose level is not zero. Or qgroup will be 633 * screwed up since it assumes subvolume qgroup's level to be 0. 634 */ 635 if (btrfs_qgroup_level(objectid)) { 636 ret = -ENOSPC; 637 goto fail_free; 638 } 639 640 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 641 /* 642 * The same as the snapshot creation, please see the comment 643 * of create_snapshot(). 644 */ 645 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 646 if (ret) 647 goto fail_free; 648 649 trans = btrfs_start_transaction(root, 0); 650 if (IS_ERR(trans)) { 651 ret = PTR_ERR(trans); 652 btrfs_subvolume_release_metadata(root, &block_rsv); 653 goto fail_free; 654 } 655 trans->block_rsv = &block_rsv; 656 trans->bytes_reserved = block_rsv.size; 657 658 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 659 if (ret) 660 goto fail; 661 662 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 663 BTRFS_NESTING_NORMAL); 664 if (IS_ERR(leaf)) { 665 ret = PTR_ERR(leaf); 666 goto fail; 667 } 668 669 btrfs_mark_buffer_dirty(leaf); 670 671 inode_item = &root_item->inode; 672 btrfs_set_stack_inode_generation(inode_item, 1); 673 btrfs_set_stack_inode_size(inode_item, 3); 674 btrfs_set_stack_inode_nlink(inode_item, 1); 675 btrfs_set_stack_inode_nbytes(inode_item, 676 fs_info->nodesize); 677 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 678 679 btrfs_set_root_flags(root_item, 0); 680 btrfs_set_root_limit(root_item, 0); 681 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 682 683 btrfs_set_root_bytenr(root_item, leaf->start); 684 btrfs_set_root_generation(root_item, trans->transid); 685 btrfs_set_root_level(root_item, 0); 686 btrfs_set_root_refs(root_item, 1); 687 btrfs_set_root_used(root_item, leaf->len); 688 btrfs_set_root_last_snapshot(root_item, 0); 689 690 btrfs_set_root_generation_v2(root_item, 691 btrfs_root_generation(root_item)); 692 generate_random_guid(root_item->uuid); 693 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 694 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 695 root_item->ctime = root_item->otime; 696 btrfs_set_root_ctransid(root_item, trans->transid); 697 btrfs_set_root_otransid(root_item, trans->transid); 698 699 btrfs_tree_unlock(leaf); 700 free_extent_buffer(leaf); 701 leaf = NULL; 702 703 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 704 705 key.objectid = objectid; 706 key.offset = 0; 707 key.type = BTRFS_ROOT_ITEM_KEY; 708 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 709 root_item); 710 if (ret) 711 goto fail; 712 713 key.offset = (u64)-1; 714 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 715 if (IS_ERR(new_root)) { 716 free_anon_bdev(anon_dev); 717 ret = PTR_ERR(new_root); 718 btrfs_abort_transaction(trans, ret); 719 goto fail; 720 } 721 /* Freeing will be done in btrfs_put_root() of new_root */ 722 anon_dev = 0; 723 724 btrfs_record_root_in_trans(trans, new_root); 725 726 ret = btrfs_create_subvol_root(trans, new_root, root); 727 btrfs_put_root(new_root); 728 if (ret) { 729 /* We potentially lose an unused inode item here */ 730 btrfs_abort_transaction(trans, ret); 731 goto fail; 732 } 733 734 /* 735 * insert the directory item 736 */ 737 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 738 if (ret) { 739 btrfs_abort_transaction(trans, ret); 740 goto fail; 741 } 742 743 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 744 BTRFS_FT_DIR, index); 745 if (ret) { 746 btrfs_abort_transaction(trans, ret); 747 goto fail; 748 } 749 750 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 751 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 752 if (ret) { 753 btrfs_abort_transaction(trans, ret); 754 goto fail; 755 } 756 757 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 758 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 759 if (ret) { 760 btrfs_abort_transaction(trans, ret); 761 goto fail; 762 } 763 764 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 765 BTRFS_UUID_KEY_SUBVOL, objectid); 766 if (ret) 767 btrfs_abort_transaction(trans, ret); 768 769 fail: 770 kfree(root_item); 771 trans->block_rsv = NULL; 772 trans->bytes_reserved = 0; 773 btrfs_subvolume_release_metadata(root, &block_rsv); 774 775 err = btrfs_commit_transaction(trans); 776 if (err && !ret) 777 ret = err; 778 779 if (!ret) { 780 inode = btrfs_lookup_dentry(dir, dentry); 781 if (IS_ERR(inode)) 782 return PTR_ERR(inode); 783 d_instantiate(dentry, inode); 784 } 785 return ret; 786 787 fail_free: 788 if (anon_dev) 789 free_anon_bdev(anon_dev); 790 kfree(root_item); 791 return ret; 792 } 793 794 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 795 struct dentry *dentry, bool readonly, 796 struct btrfs_qgroup_inherit *inherit) 797 { 798 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 799 struct inode *inode; 800 struct btrfs_pending_snapshot *pending_snapshot; 801 struct btrfs_trans_handle *trans; 802 int ret; 803 804 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 805 return -EINVAL; 806 807 if (atomic_read(&root->nr_swapfiles)) { 808 btrfs_warn(fs_info, 809 "cannot snapshot subvolume with active swapfile"); 810 return -ETXTBSY; 811 } 812 813 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 814 if (!pending_snapshot) 815 return -ENOMEM; 816 817 ret = get_anon_bdev(&pending_snapshot->anon_dev); 818 if (ret < 0) 819 goto free_pending; 820 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 821 GFP_KERNEL); 822 pending_snapshot->path = btrfs_alloc_path(); 823 if (!pending_snapshot->root_item || !pending_snapshot->path) { 824 ret = -ENOMEM; 825 goto free_pending; 826 } 827 828 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 829 BTRFS_BLOCK_RSV_TEMP); 830 /* 831 * 1 - parent dir inode 832 * 2 - dir entries 833 * 1 - root item 834 * 2 - root ref/backref 835 * 1 - root of snapshot 836 * 1 - UUID item 837 */ 838 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 839 &pending_snapshot->block_rsv, 8, 840 false); 841 if (ret) 842 goto free_pending; 843 844 pending_snapshot->dentry = dentry; 845 pending_snapshot->root = root; 846 pending_snapshot->readonly = readonly; 847 pending_snapshot->dir = dir; 848 pending_snapshot->inherit = inherit; 849 850 trans = btrfs_start_transaction(root, 0); 851 if (IS_ERR(trans)) { 852 ret = PTR_ERR(trans); 853 goto fail; 854 } 855 856 spin_lock(&fs_info->trans_lock); 857 list_add(&pending_snapshot->list, 858 &trans->transaction->pending_snapshots); 859 spin_unlock(&fs_info->trans_lock); 860 861 ret = btrfs_commit_transaction(trans); 862 if (ret) 863 goto fail; 864 865 ret = pending_snapshot->error; 866 if (ret) 867 goto fail; 868 869 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 870 if (ret) 871 goto fail; 872 873 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 874 if (IS_ERR(inode)) { 875 ret = PTR_ERR(inode); 876 goto fail; 877 } 878 879 d_instantiate(dentry, inode); 880 ret = 0; 881 pending_snapshot->anon_dev = 0; 882 fail: 883 /* Prevent double freeing of anon_dev */ 884 if (ret && pending_snapshot->snap) 885 pending_snapshot->snap->anon_dev = 0; 886 btrfs_put_root(pending_snapshot->snap); 887 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 888 free_pending: 889 if (pending_snapshot->anon_dev) 890 free_anon_bdev(pending_snapshot->anon_dev); 891 kfree(pending_snapshot->root_item); 892 btrfs_free_path(pending_snapshot->path); 893 kfree(pending_snapshot); 894 895 return ret; 896 } 897 898 /* copy of may_delete in fs/namei.c() 899 * Check whether we can remove a link victim from directory dir, check 900 * whether the type of victim is right. 901 * 1. We can't do it if dir is read-only (done in permission()) 902 * 2. We should have write and exec permissions on dir 903 * 3. We can't remove anything from append-only dir 904 * 4. We can't do anything with immutable dir (done in permission()) 905 * 5. If the sticky bit on dir is set we should either 906 * a. be owner of dir, or 907 * b. be owner of victim, or 908 * c. have CAP_FOWNER capability 909 * 6. If the victim is append-only or immutable we can't do anything with 910 * links pointing to it. 911 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 912 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 913 * 9. We can't remove a root or mountpoint. 914 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 915 * nfs_async_unlink(). 916 */ 917 918 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 919 { 920 int error; 921 922 if (d_really_is_negative(victim)) 923 return -ENOENT; 924 925 BUG_ON(d_inode(victim->d_parent) != dir); 926 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 927 928 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 929 if (error) 930 return error; 931 if (IS_APPEND(dir)) 932 return -EPERM; 933 if (check_sticky(dir, d_inode(victim)) || IS_APPEND(d_inode(victim)) || 934 IS_IMMUTABLE(d_inode(victim)) || IS_SWAPFILE(d_inode(victim))) 935 return -EPERM; 936 if (isdir) { 937 if (!d_is_dir(victim)) 938 return -ENOTDIR; 939 if (IS_ROOT(victim)) 940 return -EBUSY; 941 } else if (d_is_dir(victim)) 942 return -EISDIR; 943 if (IS_DEADDIR(dir)) 944 return -ENOENT; 945 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 946 return -EBUSY; 947 return 0; 948 } 949 950 /* copy of may_create in fs/namei.c() */ 951 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 952 { 953 if (d_really_is_positive(child)) 954 return -EEXIST; 955 if (IS_DEADDIR(dir)) 956 return -ENOENT; 957 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 958 } 959 960 /* 961 * Create a new subvolume below @parent. This is largely modeled after 962 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 963 * inside this filesystem so it's quite a bit simpler. 964 */ 965 static noinline int btrfs_mksubvol(const struct path *parent, 966 const char *name, int namelen, 967 struct btrfs_root *snap_src, 968 bool readonly, 969 struct btrfs_qgroup_inherit *inherit) 970 { 971 struct inode *dir = d_inode(parent->dentry); 972 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 973 struct dentry *dentry; 974 int error; 975 976 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 977 if (error == -EINTR) 978 return error; 979 980 dentry = lookup_one_len(name, parent->dentry, namelen); 981 error = PTR_ERR(dentry); 982 if (IS_ERR(dentry)) 983 goto out_unlock; 984 985 error = btrfs_may_create(dir, dentry); 986 if (error) 987 goto out_dput; 988 989 /* 990 * even if this name doesn't exist, we may get hash collisions. 991 * check for them now when we can safely fail 992 */ 993 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 994 dir->i_ino, name, 995 namelen); 996 if (error) 997 goto out_dput; 998 999 down_read(&fs_info->subvol_sem); 1000 1001 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 1002 goto out_up_read; 1003 1004 if (snap_src) 1005 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 1006 else 1007 error = create_subvol(dir, dentry, name, namelen, inherit); 1008 1009 if (!error) 1010 fsnotify_mkdir(dir, dentry); 1011 out_up_read: 1012 up_read(&fs_info->subvol_sem); 1013 out_dput: 1014 dput(dentry); 1015 out_unlock: 1016 inode_unlock(dir); 1017 return error; 1018 } 1019 1020 static noinline int btrfs_mksnapshot(const struct path *parent, 1021 const char *name, int namelen, 1022 struct btrfs_root *root, 1023 bool readonly, 1024 struct btrfs_qgroup_inherit *inherit) 1025 { 1026 int ret; 1027 bool snapshot_force_cow = false; 1028 1029 /* 1030 * Force new buffered writes to reserve space even when NOCOW is 1031 * possible. This is to avoid later writeback (running dealloc) to 1032 * fallback to COW mode and unexpectedly fail with ENOSPC. 1033 */ 1034 btrfs_drew_read_lock(&root->snapshot_lock); 1035 1036 ret = btrfs_start_delalloc_snapshot(root); 1037 if (ret) 1038 goto out; 1039 1040 /* 1041 * All previous writes have started writeback in NOCOW mode, so now 1042 * we force future writes to fallback to COW mode during snapshot 1043 * creation. 1044 */ 1045 atomic_inc(&root->snapshot_force_cow); 1046 snapshot_force_cow = true; 1047 1048 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1049 1050 ret = btrfs_mksubvol(parent, name, namelen, 1051 root, readonly, inherit); 1052 out: 1053 if (snapshot_force_cow) 1054 atomic_dec(&root->snapshot_force_cow); 1055 btrfs_drew_read_unlock(&root->snapshot_lock); 1056 return ret; 1057 } 1058 1059 /* 1060 * When we're defragging a range, we don't want to kick it off again 1061 * if it is really just waiting for delalloc to send it down. 1062 * If we find a nice big extent or delalloc range for the bytes in the 1063 * file you want to defrag, we return 0 to let you know to skip this 1064 * part of the file 1065 */ 1066 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 1067 { 1068 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1069 struct extent_map *em = NULL; 1070 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1071 u64 end; 1072 1073 read_lock(&em_tree->lock); 1074 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 1075 read_unlock(&em_tree->lock); 1076 1077 if (em) { 1078 end = extent_map_end(em); 1079 free_extent_map(em); 1080 if (end - offset > thresh) 1081 return 0; 1082 } 1083 /* if we already have a nice delalloc here, just stop */ 1084 thresh /= 2; 1085 end = count_range_bits(io_tree, &offset, offset + thresh, 1086 thresh, EXTENT_DELALLOC, 1); 1087 if (end >= thresh) 1088 return 0; 1089 return 1; 1090 } 1091 1092 /* 1093 * helper function to walk through a file and find extents 1094 * newer than a specific transid, and smaller than thresh. 1095 * 1096 * This is used by the defragging code to find new and small 1097 * extents 1098 */ 1099 static int find_new_extents(struct btrfs_root *root, 1100 struct inode *inode, u64 newer_than, 1101 u64 *off, u32 thresh) 1102 { 1103 struct btrfs_path *path; 1104 struct btrfs_key min_key; 1105 struct extent_buffer *leaf; 1106 struct btrfs_file_extent_item *extent; 1107 int type; 1108 int ret; 1109 u64 ino = btrfs_ino(BTRFS_I(inode)); 1110 1111 path = btrfs_alloc_path(); 1112 if (!path) 1113 return -ENOMEM; 1114 1115 min_key.objectid = ino; 1116 min_key.type = BTRFS_EXTENT_DATA_KEY; 1117 min_key.offset = *off; 1118 1119 while (1) { 1120 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1121 if (ret != 0) 1122 goto none; 1123 process_slot: 1124 if (min_key.objectid != ino) 1125 goto none; 1126 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1127 goto none; 1128 1129 leaf = path->nodes[0]; 1130 extent = btrfs_item_ptr(leaf, path->slots[0], 1131 struct btrfs_file_extent_item); 1132 1133 type = btrfs_file_extent_type(leaf, extent); 1134 if (type == BTRFS_FILE_EXTENT_REG && 1135 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1136 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1137 *off = min_key.offset; 1138 btrfs_free_path(path); 1139 return 0; 1140 } 1141 1142 path->slots[0]++; 1143 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1144 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1145 goto process_slot; 1146 } 1147 1148 if (min_key.offset == (u64)-1) 1149 goto none; 1150 1151 min_key.offset++; 1152 btrfs_release_path(path); 1153 } 1154 none: 1155 btrfs_free_path(path); 1156 return -ENOENT; 1157 } 1158 1159 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1160 { 1161 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1162 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1163 struct extent_map *em; 1164 u64 len = PAGE_SIZE; 1165 1166 /* 1167 * hopefully we have this extent in the tree already, try without 1168 * the full extent lock 1169 */ 1170 read_lock(&em_tree->lock); 1171 em = lookup_extent_mapping(em_tree, start, len); 1172 read_unlock(&em_tree->lock); 1173 1174 if (!em) { 1175 struct extent_state *cached = NULL; 1176 u64 end = start + len - 1; 1177 1178 /* get the big lock and read metadata off disk */ 1179 lock_extent_bits(io_tree, start, end, &cached); 1180 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1181 unlock_extent_cached(io_tree, start, end, &cached); 1182 1183 if (IS_ERR(em)) 1184 return NULL; 1185 } 1186 1187 return em; 1188 } 1189 1190 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1191 { 1192 struct extent_map *next; 1193 bool ret = true; 1194 1195 /* this is the last extent */ 1196 if (em->start + em->len >= i_size_read(inode)) 1197 return false; 1198 1199 next = defrag_lookup_extent(inode, em->start + em->len); 1200 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1201 ret = false; 1202 else if ((em->block_start + em->block_len == next->block_start) && 1203 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1204 ret = false; 1205 1206 free_extent_map(next); 1207 return ret; 1208 } 1209 1210 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1211 u64 *last_len, u64 *skip, u64 *defrag_end, 1212 int compress) 1213 { 1214 struct extent_map *em; 1215 int ret = 1; 1216 bool next_mergeable = true; 1217 bool prev_mergeable = true; 1218 1219 /* 1220 * make sure that once we start defragging an extent, we keep on 1221 * defragging it 1222 */ 1223 if (start < *defrag_end) 1224 return 1; 1225 1226 *skip = 0; 1227 1228 em = defrag_lookup_extent(inode, start); 1229 if (!em) 1230 return 0; 1231 1232 /* this will cover holes, and inline extents */ 1233 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1234 ret = 0; 1235 goto out; 1236 } 1237 1238 if (!*defrag_end) 1239 prev_mergeable = false; 1240 1241 next_mergeable = defrag_check_next_extent(inode, em); 1242 /* 1243 * we hit a real extent, if it is big or the next extent is not a 1244 * real extent, don't bother defragging it 1245 */ 1246 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1247 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1248 ret = 0; 1249 out: 1250 /* 1251 * last_len ends up being a counter of how many bytes we've defragged. 1252 * every time we choose not to defrag an extent, we reset *last_len 1253 * so that the next tiny extent will force a defrag. 1254 * 1255 * The end result of this is that tiny extents before a single big 1256 * extent will force at least part of that big extent to be defragged. 1257 */ 1258 if (ret) { 1259 *defrag_end = extent_map_end(em); 1260 } else { 1261 *last_len = 0; 1262 *skip = extent_map_end(em); 1263 *defrag_end = 0; 1264 } 1265 1266 free_extent_map(em); 1267 return ret; 1268 } 1269 1270 /* 1271 * it doesn't do much good to defrag one or two pages 1272 * at a time. This pulls in a nice chunk of pages 1273 * to COW and defrag. 1274 * 1275 * It also makes sure the delalloc code has enough 1276 * dirty data to avoid making new small extents as part 1277 * of the defrag 1278 * 1279 * It's a good idea to start RA on this range 1280 * before calling this. 1281 */ 1282 static int cluster_pages_for_defrag(struct inode *inode, 1283 struct page **pages, 1284 unsigned long start_index, 1285 unsigned long num_pages) 1286 { 1287 unsigned long file_end; 1288 u64 isize = i_size_read(inode); 1289 u64 page_start; 1290 u64 page_end; 1291 u64 page_cnt; 1292 u64 start = (u64)start_index << PAGE_SHIFT; 1293 u64 search_start; 1294 int ret; 1295 int i; 1296 int i_done; 1297 struct btrfs_ordered_extent *ordered; 1298 struct extent_state *cached_state = NULL; 1299 struct extent_io_tree *tree; 1300 struct extent_changeset *data_reserved = NULL; 1301 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1302 1303 file_end = (isize - 1) >> PAGE_SHIFT; 1304 if (!isize || start_index > file_end) 1305 return 0; 1306 1307 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1308 1309 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1310 start, page_cnt << PAGE_SHIFT); 1311 if (ret) 1312 return ret; 1313 i_done = 0; 1314 tree = &BTRFS_I(inode)->io_tree; 1315 1316 /* step one, lock all the pages */ 1317 for (i = 0; i < page_cnt; i++) { 1318 struct page *page; 1319 again: 1320 page = find_or_create_page(inode->i_mapping, 1321 start_index + i, mask); 1322 if (!page) 1323 break; 1324 1325 ret = set_page_extent_mapped(page); 1326 if (ret < 0) { 1327 unlock_page(page); 1328 put_page(page); 1329 break; 1330 } 1331 1332 page_start = page_offset(page); 1333 page_end = page_start + PAGE_SIZE - 1; 1334 while (1) { 1335 lock_extent_bits(tree, page_start, page_end, 1336 &cached_state); 1337 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1338 page_start); 1339 unlock_extent_cached(tree, page_start, page_end, 1340 &cached_state); 1341 if (!ordered) 1342 break; 1343 1344 unlock_page(page); 1345 btrfs_start_ordered_extent(ordered, 1); 1346 btrfs_put_ordered_extent(ordered); 1347 lock_page(page); 1348 /* 1349 * we unlocked the page above, so we need check if 1350 * it was released or not. 1351 */ 1352 if (page->mapping != inode->i_mapping) { 1353 unlock_page(page); 1354 put_page(page); 1355 goto again; 1356 } 1357 } 1358 1359 if (!PageUptodate(page)) { 1360 btrfs_readpage(NULL, page); 1361 lock_page(page); 1362 if (!PageUptodate(page)) { 1363 unlock_page(page); 1364 put_page(page); 1365 ret = -EIO; 1366 break; 1367 } 1368 } 1369 1370 if (page->mapping != inode->i_mapping) { 1371 unlock_page(page); 1372 put_page(page); 1373 goto again; 1374 } 1375 1376 pages[i] = page; 1377 i_done++; 1378 } 1379 if (!i_done || ret) 1380 goto out; 1381 1382 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1383 goto out; 1384 1385 /* 1386 * so now we have a nice long stream of locked 1387 * and up to date pages, lets wait on them 1388 */ 1389 for (i = 0; i < i_done; i++) 1390 wait_on_page_writeback(pages[i]); 1391 1392 page_start = page_offset(pages[0]); 1393 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1394 1395 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1396 page_start, page_end - 1, &cached_state); 1397 1398 /* 1399 * When defragmenting we skip ranges that have holes or inline extents, 1400 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1401 * space. At btrfs_defrag_file(), we check if a range should be defragged 1402 * before locking the inode and then, if it should, we trigger a sync 1403 * page cache readahead - we lock the inode only after that to avoid 1404 * blocking for too long other tasks that possibly want to operate on 1405 * other file ranges. But before we were able to get the inode lock, 1406 * some other task may have punched a hole in the range, or we may have 1407 * now an inline extent, in which case we should not defrag. So check 1408 * for that here, where we have the inode and the range locked, and bail 1409 * out if that happened. 1410 */ 1411 search_start = page_start; 1412 while (search_start < page_end) { 1413 struct extent_map *em; 1414 1415 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1416 page_end - search_start); 1417 if (IS_ERR(em)) { 1418 ret = PTR_ERR(em); 1419 goto out_unlock_range; 1420 } 1421 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1422 free_extent_map(em); 1423 /* Ok, 0 means we did not defrag anything */ 1424 ret = 0; 1425 goto out_unlock_range; 1426 } 1427 search_start = extent_map_end(em); 1428 free_extent_map(em); 1429 } 1430 1431 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1432 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1433 EXTENT_DEFRAG, 0, 0, &cached_state); 1434 1435 if (i_done != page_cnt) { 1436 spin_lock(&BTRFS_I(inode)->lock); 1437 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1438 spin_unlock(&BTRFS_I(inode)->lock); 1439 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1440 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1441 } 1442 1443 1444 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1445 &cached_state); 1446 1447 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1448 page_start, page_end - 1, &cached_state); 1449 1450 for (i = 0; i < i_done; i++) { 1451 clear_page_dirty_for_io(pages[i]); 1452 ClearPageChecked(pages[i]); 1453 set_page_dirty(pages[i]); 1454 unlock_page(pages[i]); 1455 put_page(pages[i]); 1456 } 1457 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1458 extent_changeset_free(data_reserved); 1459 return i_done; 1460 1461 out_unlock_range: 1462 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1463 page_start, page_end - 1, &cached_state); 1464 out: 1465 for (i = 0; i < i_done; i++) { 1466 unlock_page(pages[i]); 1467 put_page(pages[i]); 1468 } 1469 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1470 start, page_cnt << PAGE_SHIFT, true); 1471 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1472 extent_changeset_free(data_reserved); 1473 return ret; 1474 1475 } 1476 1477 int btrfs_defrag_file(struct inode *inode, struct file *file, 1478 struct btrfs_ioctl_defrag_range_args *range, 1479 u64 newer_than, unsigned long max_to_defrag) 1480 { 1481 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1482 struct btrfs_root *root = BTRFS_I(inode)->root; 1483 struct file_ra_state *ra = NULL; 1484 unsigned long last_index; 1485 u64 isize = i_size_read(inode); 1486 u64 last_len = 0; 1487 u64 skip = 0; 1488 u64 defrag_end = 0; 1489 u64 newer_off = range->start; 1490 unsigned long i; 1491 unsigned long ra_index = 0; 1492 int ret; 1493 int defrag_count = 0; 1494 int compress_type = BTRFS_COMPRESS_ZLIB; 1495 u32 extent_thresh = range->extent_thresh; 1496 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1497 unsigned long cluster = max_cluster; 1498 u64 new_align = ~((u64)SZ_128K - 1); 1499 struct page **pages = NULL; 1500 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1501 1502 if (isize == 0) 1503 return 0; 1504 1505 if (range->start >= isize) 1506 return -EINVAL; 1507 1508 if (do_compress) { 1509 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1510 return -EINVAL; 1511 if (range->compress_type) 1512 compress_type = range->compress_type; 1513 } 1514 1515 if (extent_thresh == 0) 1516 extent_thresh = SZ_256K; 1517 1518 /* 1519 * If we were not given a file, allocate a readahead context. As 1520 * readahead is just an optimization, defrag will work without it so 1521 * we don't error out. 1522 */ 1523 if (!file) { 1524 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1525 if (ra) 1526 file_ra_state_init(ra, inode->i_mapping); 1527 } else { 1528 ra = &file->f_ra; 1529 } 1530 1531 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1532 if (!pages) { 1533 ret = -ENOMEM; 1534 goto out_ra; 1535 } 1536 1537 /* find the last page to defrag */ 1538 if (range->start + range->len > range->start) { 1539 last_index = min_t(u64, isize - 1, 1540 range->start + range->len - 1) >> PAGE_SHIFT; 1541 } else { 1542 last_index = (isize - 1) >> PAGE_SHIFT; 1543 } 1544 1545 if (newer_than) { 1546 ret = find_new_extents(root, inode, newer_than, 1547 &newer_off, SZ_64K); 1548 if (!ret) { 1549 range->start = newer_off; 1550 /* 1551 * we always align our defrag to help keep 1552 * the extents in the file evenly spaced 1553 */ 1554 i = (newer_off & new_align) >> PAGE_SHIFT; 1555 } else 1556 goto out_ra; 1557 } else { 1558 i = range->start >> PAGE_SHIFT; 1559 } 1560 if (!max_to_defrag) 1561 max_to_defrag = last_index - i + 1; 1562 1563 /* 1564 * make writeback starts from i, so the defrag range can be 1565 * written sequentially. 1566 */ 1567 if (i < inode->i_mapping->writeback_index) 1568 inode->i_mapping->writeback_index = i; 1569 1570 while (i <= last_index && defrag_count < max_to_defrag && 1571 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1572 /* 1573 * make sure we stop running if someone unmounts 1574 * the FS 1575 */ 1576 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1577 break; 1578 1579 if (btrfs_defrag_cancelled(fs_info)) { 1580 btrfs_debug(fs_info, "defrag_file cancelled"); 1581 ret = -EAGAIN; 1582 break; 1583 } 1584 1585 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1586 extent_thresh, &last_len, &skip, 1587 &defrag_end, do_compress)){ 1588 unsigned long next; 1589 /* 1590 * the should_defrag function tells us how much to skip 1591 * bump our counter by the suggested amount 1592 */ 1593 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1594 i = max(i + 1, next); 1595 continue; 1596 } 1597 1598 if (!newer_than) { 1599 cluster = (PAGE_ALIGN(defrag_end) >> 1600 PAGE_SHIFT) - i; 1601 cluster = min(cluster, max_cluster); 1602 } else { 1603 cluster = max_cluster; 1604 } 1605 1606 if (i + cluster > ra_index) { 1607 ra_index = max(i, ra_index); 1608 if (ra) 1609 page_cache_sync_readahead(inode->i_mapping, ra, 1610 file, ra_index, cluster); 1611 ra_index += cluster; 1612 } 1613 1614 inode_lock(inode); 1615 if (IS_SWAPFILE(inode)) { 1616 ret = -ETXTBSY; 1617 } else { 1618 if (do_compress) 1619 BTRFS_I(inode)->defrag_compress = compress_type; 1620 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1621 } 1622 if (ret < 0) { 1623 inode_unlock(inode); 1624 goto out_ra; 1625 } 1626 1627 defrag_count += ret; 1628 balance_dirty_pages_ratelimited(inode->i_mapping); 1629 inode_unlock(inode); 1630 1631 if (newer_than) { 1632 if (newer_off == (u64)-1) 1633 break; 1634 1635 if (ret > 0) 1636 i += ret; 1637 1638 newer_off = max(newer_off + 1, 1639 (u64)i << PAGE_SHIFT); 1640 1641 ret = find_new_extents(root, inode, newer_than, 1642 &newer_off, SZ_64K); 1643 if (!ret) { 1644 range->start = newer_off; 1645 i = (newer_off & new_align) >> PAGE_SHIFT; 1646 } else { 1647 break; 1648 } 1649 } else { 1650 if (ret > 0) { 1651 i += ret; 1652 last_len += ret << PAGE_SHIFT; 1653 } else { 1654 i++; 1655 last_len = 0; 1656 } 1657 } 1658 } 1659 1660 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1661 filemap_flush(inode->i_mapping); 1662 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1663 &BTRFS_I(inode)->runtime_flags)) 1664 filemap_flush(inode->i_mapping); 1665 } 1666 1667 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1668 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1669 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1670 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1671 } 1672 1673 ret = defrag_count; 1674 1675 out_ra: 1676 if (do_compress) { 1677 inode_lock(inode); 1678 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1679 inode_unlock(inode); 1680 } 1681 if (!file) 1682 kfree(ra); 1683 kfree(pages); 1684 return ret; 1685 } 1686 1687 static noinline int btrfs_ioctl_resize(struct file *file, 1688 void __user *arg) 1689 { 1690 struct inode *inode = file_inode(file); 1691 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1692 u64 new_size; 1693 u64 old_size; 1694 u64 devid = 1; 1695 struct btrfs_root *root = BTRFS_I(inode)->root; 1696 struct btrfs_ioctl_vol_args *vol_args; 1697 struct btrfs_trans_handle *trans; 1698 struct btrfs_device *device = NULL; 1699 char *sizestr; 1700 char *retptr; 1701 char *devstr = NULL; 1702 int ret = 0; 1703 int mod = 0; 1704 1705 if (!capable(CAP_SYS_ADMIN)) 1706 return -EPERM; 1707 1708 ret = mnt_want_write_file(file); 1709 if (ret) 1710 return ret; 1711 1712 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) { 1713 mnt_drop_write_file(file); 1714 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1715 } 1716 1717 vol_args = memdup_user(arg, sizeof(*vol_args)); 1718 if (IS_ERR(vol_args)) { 1719 ret = PTR_ERR(vol_args); 1720 goto out; 1721 } 1722 1723 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1724 1725 sizestr = vol_args->name; 1726 devstr = strchr(sizestr, ':'); 1727 if (devstr) { 1728 sizestr = devstr + 1; 1729 *devstr = '\0'; 1730 devstr = vol_args->name; 1731 ret = kstrtoull(devstr, 10, &devid); 1732 if (ret) 1733 goto out_free; 1734 if (!devid) { 1735 ret = -EINVAL; 1736 goto out_free; 1737 } 1738 btrfs_info(fs_info, "resizing devid %llu", devid); 1739 } 1740 1741 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1742 if (!device) { 1743 btrfs_info(fs_info, "resizer unable to find device %llu", 1744 devid); 1745 ret = -ENODEV; 1746 goto out_free; 1747 } 1748 1749 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1750 btrfs_info(fs_info, 1751 "resizer unable to apply on readonly device %llu", 1752 devid); 1753 ret = -EPERM; 1754 goto out_free; 1755 } 1756 1757 if (!strcmp(sizestr, "max")) 1758 new_size = device->bdev->bd_inode->i_size; 1759 else { 1760 if (sizestr[0] == '-') { 1761 mod = -1; 1762 sizestr++; 1763 } else if (sizestr[0] == '+') { 1764 mod = 1; 1765 sizestr++; 1766 } 1767 new_size = memparse(sizestr, &retptr); 1768 if (*retptr != '\0' || new_size == 0) { 1769 ret = -EINVAL; 1770 goto out_free; 1771 } 1772 } 1773 1774 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1775 ret = -EPERM; 1776 goto out_free; 1777 } 1778 1779 old_size = btrfs_device_get_total_bytes(device); 1780 1781 if (mod < 0) { 1782 if (new_size > old_size) { 1783 ret = -EINVAL; 1784 goto out_free; 1785 } 1786 new_size = old_size - new_size; 1787 } else if (mod > 0) { 1788 if (new_size > ULLONG_MAX - old_size) { 1789 ret = -ERANGE; 1790 goto out_free; 1791 } 1792 new_size = old_size + new_size; 1793 } 1794 1795 if (new_size < SZ_256M) { 1796 ret = -EINVAL; 1797 goto out_free; 1798 } 1799 if (new_size > device->bdev->bd_inode->i_size) { 1800 ret = -EFBIG; 1801 goto out_free; 1802 } 1803 1804 new_size = round_down(new_size, fs_info->sectorsize); 1805 1806 if (new_size > old_size) { 1807 trans = btrfs_start_transaction(root, 0); 1808 if (IS_ERR(trans)) { 1809 ret = PTR_ERR(trans); 1810 goto out_free; 1811 } 1812 ret = btrfs_grow_device(trans, device, new_size); 1813 btrfs_commit_transaction(trans); 1814 } else if (new_size < old_size) { 1815 ret = btrfs_shrink_device(device, new_size); 1816 } /* equal, nothing need to do */ 1817 1818 if (ret == 0 && new_size != old_size) 1819 btrfs_info_in_rcu(fs_info, 1820 "resize device %s (devid %llu) from %llu to %llu", 1821 rcu_str_deref(device->name), device->devid, 1822 old_size, new_size); 1823 out_free: 1824 kfree(vol_args); 1825 out: 1826 btrfs_exclop_finish(fs_info); 1827 mnt_drop_write_file(file); 1828 return ret; 1829 } 1830 1831 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1832 const char *name, unsigned long fd, int subvol, 1833 bool readonly, 1834 struct btrfs_qgroup_inherit *inherit) 1835 { 1836 int namelen; 1837 int ret = 0; 1838 1839 if (!S_ISDIR(file_inode(file)->i_mode)) 1840 return -ENOTDIR; 1841 1842 ret = mnt_want_write_file(file); 1843 if (ret) 1844 goto out; 1845 1846 namelen = strlen(name); 1847 if (strchr(name, '/')) { 1848 ret = -EINVAL; 1849 goto out_drop_write; 1850 } 1851 1852 if (name[0] == '.' && 1853 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1854 ret = -EEXIST; 1855 goto out_drop_write; 1856 } 1857 1858 if (subvol) { 1859 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1860 NULL, readonly, inherit); 1861 } else { 1862 struct fd src = fdget(fd); 1863 struct inode *src_inode; 1864 if (!src.file) { 1865 ret = -EINVAL; 1866 goto out_drop_write; 1867 } 1868 1869 src_inode = file_inode(src.file); 1870 if (src_inode->i_sb != file_inode(file)->i_sb) { 1871 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1872 "Snapshot src from another FS"); 1873 ret = -EXDEV; 1874 } else if (!inode_owner_or_capable(src_inode)) { 1875 /* 1876 * Subvolume creation is not restricted, but snapshots 1877 * are limited to own subvolumes only 1878 */ 1879 ret = -EPERM; 1880 } else { 1881 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1882 BTRFS_I(src_inode)->root, 1883 readonly, inherit); 1884 } 1885 fdput(src); 1886 } 1887 out_drop_write: 1888 mnt_drop_write_file(file); 1889 out: 1890 return ret; 1891 } 1892 1893 static noinline int btrfs_ioctl_snap_create(struct file *file, 1894 void __user *arg, int subvol) 1895 { 1896 struct btrfs_ioctl_vol_args *vol_args; 1897 int ret; 1898 1899 if (!S_ISDIR(file_inode(file)->i_mode)) 1900 return -ENOTDIR; 1901 1902 vol_args = memdup_user(arg, sizeof(*vol_args)); 1903 if (IS_ERR(vol_args)) 1904 return PTR_ERR(vol_args); 1905 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1906 1907 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1908 subvol, false, NULL); 1909 1910 kfree(vol_args); 1911 return ret; 1912 } 1913 1914 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1915 void __user *arg, int subvol) 1916 { 1917 struct btrfs_ioctl_vol_args_v2 *vol_args; 1918 int ret; 1919 bool readonly = false; 1920 struct btrfs_qgroup_inherit *inherit = NULL; 1921 1922 if (!S_ISDIR(file_inode(file)->i_mode)) 1923 return -ENOTDIR; 1924 1925 vol_args = memdup_user(arg, sizeof(*vol_args)); 1926 if (IS_ERR(vol_args)) 1927 return PTR_ERR(vol_args); 1928 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1929 1930 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1931 ret = -EOPNOTSUPP; 1932 goto free_args; 1933 } 1934 1935 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1936 readonly = true; 1937 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1938 if (vol_args->size > PAGE_SIZE) { 1939 ret = -EINVAL; 1940 goto free_args; 1941 } 1942 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1943 if (IS_ERR(inherit)) { 1944 ret = PTR_ERR(inherit); 1945 goto free_args; 1946 } 1947 } 1948 1949 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1950 subvol, readonly, inherit); 1951 if (ret) 1952 goto free_inherit; 1953 free_inherit: 1954 kfree(inherit); 1955 free_args: 1956 kfree(vol_args); 1957 return ret; 1958 } 1959 1960 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1961 void __user *arg) 1962 { 1963 struct inode *inode = file_inode(file); 1964 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1965 struct btrfs_root *root = BTRFS_I(inode)->root; 1966 int ret = 0; 1967 u64 flags = 0; 1968 1969 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1970 return -EINVAL; 1971 1972 down_read(&fs_info->subvol_sem); 1973 if (btrfs_root_readonly(root)) 1974 flags |= BTRFS_SUBVOL_RDONLY; 1975 up_read(&fs_info->subvol_sem); 1976 1977 if (copy_to_user(arg, &flags, sizeof(flags))) 1978 ret = -EFAULT; 1979 1980 return ret; 1981 } 1982 1983 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1984 void __user *arg) 1985 { 1986 struct inode *inode = file_inode(file); 1987 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1988 struct btrfs_root *root = BTRFS_I(inode)->root; 1989 struct btrfs_trans_handle *trans; 1990 u64 root_flags; 1991 u64 flags; 1992 int ret = 0; 1993 1994 if (!inode_owner_or_capable(inode)) 1995 return -EPERM; 1996 1997 ret = mnt_want_write_file(file); 1998 if (ret) 1999 goto out; 2000 2001 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2002 ret = -EINVAL; 2003 goto out_drop_write; 2004 } 2005 2006 if (copy_from_user(&flags, arg, sizeof(flags))) { 2007 ret = -EFAULT; 2008 goto out_drop_write; 2009 } 2010 2011 if (flags & ~BTRFS_SUBVOL_RDONLY) { 2012 ret = -EOPNOTSUPP; 2013 goto out_drop_write; 2014 } 2015 2016 down_write(&fs_info->subvol_sem); 2017 2018 /* nothing to do */ 2019 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2020 goto out_drop_sem; 2021 2022 root_flags = btrfs_root_flags(&root->root_item); 2023 if (flags & BTRFS_SUBVOL_RDONLY) { 2024 btrfs_set_root_flags(&root->root_item, 2025 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2026 } else { 2027 /* 2028 * Block RO -> RW transition if this subvolume is involved in 2029 * send 2030 */ 2031 spin_lock(&root->root_item_lock); 2032 if (root->send_in_progress == 0) { 2033 btrfs_set_root_flags(&root->root_item, 2034 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2035 spin_unlock(&root->root_item_lock); 2036 } else { 2037 spin_unlock(&root->root_item_lock); 2038 btrfs_warn(fs_info, 2039 "Attempt to set subvolume %llu read-write during send", 2040 root->root_key.objectid); 2041 ret = -EPERM; 2042 goto out_drop_sem; 2043 } 2044 } 2045 2046 trans = btrfs_start_transaction(root, 1); 2047 if (IS_ERR(trans)) { 2048 ret = PTR_ERR(trans); 2049 goto out_reset; 2050 } 2051 2052 ret = btrfs_update_root(trans, fs_info->tree_root, 2053 &root->root_key, &root->root_item); 2054 if (ret < 0) { 2055 btrfs_end_transaction(trans); 2056 goto out_reset; 2057 } 2058 2059 ret = btrfs_commit_transaction(trans); 2060 2061 out_reset: 2062 if (ret) 2063 btrfs_set_root_flags(&root->root_item, root_flags); 2064 out_drop_sem: 2065 up_write(&fs_info->subvol_sem); 2066 out_drop_write: 2067 mnt_drop_write_file(file); 2068 out: 2069 return ret; 2070 } 2071 2072 static noinline int key_in_sk(struct btrfs_key *key, 2073 struct btrfs_ioctl_search_key *sk) 2074 { 2075 struct btrfs_key test; 2076 int ret; 2077 2078 test.objectid = sk->min_objectid; 2079 test.type = sk->min_type; 2080 test.offset = sk->min_offset; 2081 2082 ret = btrfs_comp_cpu_keys(key, &test); 2083 if (ret < 0) 2084 return 0; 2085 2086 test.objectid = sk->max_objectid; 2087 test.type = sk->max_type; 2088 test.offset = sk->max_offset; 2089 2090 ret = btrfs_comp_cpu_keys(key, &test); 2091 if (ret > 0) 2092 return 0; 2093 return 1; 2094 } 2095 2096 static noinline int copy_to_sk(struct btrfs_path *path, 2097 struct btrfs_key *key, 2098 struct btrfs_ioctl_search_key *sk, 2099 size_t *buf_size, 2100 char __user *ubuf, 2101 unsigned long *sk_offset, 2102 int *num_found) 2103 { 2104 u64 found_transid; 2105 struct extent_buffer *leaf; 2106 struct btrfs_ioctl_search_header sh; 2107 struct btrfs_key test; 2108 unsigned long item_off; 2109 unsigned long item_len; 2110 int nritems; 2111 int i; 2112 int slot; 2113 int ret = 0; 2114 2115 leaf = path->nodes[0]; 2116 slot = path->slots[0]; 2117 nritems = btrfs_header_nritems(leaf); 2118 2119 if (btrfs_header_generation(leaf) > sk->max_transid) { 2120 i = nritems; 2121 goto advance_key; 2122 } 2123 found_transid = btrfs_header_generation(leaf); 2124 2125 for (i = slot; i < nritems; i++) { 2126 item_off = btrfs_item_ptr_offset(leaf, i); 2127 item_len = btrfs_item_size_nr(leaf, i); 2128 2129 btrfs_item_key_to_cpu(leaf, key, i); 2130 if (!key_in_sk(key, sk)) 2131 continue; 2132 2133 if (sizeof(sh) + item_len > *buf_size) { 2134 if (*num_found) { 2135 ret = 1; 2136 goto out; 2137 } 2138 2139 /* 2140 * return one empty item back for v1, which does not 2141 * handle -EOVERFLOW 2142 */ 2143 2144 *buf_size = sizeof(sh) + item_len; 2145 item_len = 0; 2146 ret = -EOVERFLOW; 2147 } 2148 2149 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2150 ret = 1; 2151 goto out; 2152 } 2153 2154 sh.objectid = key->objectid; 2155 sh.offset = key->offset; 2156 sh.type = key->type; 2157 sh.len = item_len; 2158 sh.transid = found_transid; 2159 2160 /* 2161 * Copy search result header. If we fault then loop again so we 2162 * can fault in the pages and -EFAULT there if there's a 2163 * problem. Otherwise we'll fault and then copy the buffer in 2164 * properly this next time through 2165 */ 2166 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2167 ret = 0; 2168 goto out; 2169 } 2170 2171 *sk_offset += sizeof(sh); 2172 2173 if (item_len) { 2174 char __user *up = ubuf + *sk_offset; 2175 /* 2176 * Copy the item, same behavior as above, but reset the 2177 * * sk_offset so we copy the full thing again. 2178 */ 2179 if (read_extent_buffer_to_user_nofault(leaf, up, 2180 item_off, item_len)) { 2181 ret = 0; 2182 *sk_offset -= sizeof(sh); 2183 goto out; 2184 } 2185 2186 *sk_offset += item_len; 2187 } 2188 (*num_found)++; 2189 2190 if (ret) /* -EOVERFLOW from above */ 2191 goto out; 2192 2193 if (*num_found >= sk->nr_items) { 2194 ret = 1; 2195 goto out; 2196 } 2197 } 2198 advance_key: 2199 ret = 0; 2200 test.objectid = sk->max_objectid; 2201 test.type = sk->max_type; 2202 test.offset = sk->max_offset; 2203 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2204 ret = 1; 2205 else if (key->offset < (u64)-1) 2206 key->offset++; 2207 else if (key->type < (u8)-1) { 2208 key->offset = 0; 2209 key->type++; 2210 } else if (key->objectid < (u64)-1) { 2211 key->offset = 0; 2212 key->type = 0; 2213 key->objectid++; 2214 } else 2215 ret = 1; 2216 out: 2217 /* 2218 * 0: all items from this leaf copied, continue with next 2219 * 1: * more items can be copied, but unused buffer is too small 2220 * * all items were found 2221 * Either way, it will stops the loop which iterates to the next 2222 * leaf 2223 * -EOVERFLOW: item was to large for buffer 2224 * -EFAULT: could not copy extent buffer back to userspace 2225 */ 2226 return ret; 2227 } 2228 2229 static noinline int search_ioctl(struct inode *inode, 2230 struct btrfs_ioctl_search_key *sk, 2231 size_t *buf_size, 2232 char __user *ubuf) 2233 { 2234 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2235 struct btrfs_root *root; 2236 struct btrfs_key key; 2237 struct btrfs_path *path; 2238 int ret; 2239 int num_found = 0; 2240 unsigned long sk_offset = 0; 2241 2242 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2243 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2244 return -EOVERFLOW; 2245 } 2246 2247 path = btrfs_alloc_path(); 2248 if (!path) 2249 return -ENOMEM; 2250 2251 if (sk->tree_id == 0) { 2252 /* search the root of the inode that was passed */ 2253 root = btrfs_grab_root(BTRFS_I(inode)->root); 2254 } else { 2255 root = btrfs_get_fs_root(info, sk->tree_id, true); 2256 if (IS_ERR(root)) { 2257 btrfs_free_path(path); 2258 return PTR_ERR(root); 2259 } 2260 } 2261 2262 key.objectid = sk->min_objectid; 2263 key.type = sk->min_type; 2264 key.offset = sk->min_offset; 2265 2266 while (1) { 2267 ret = fault_in_pages_writeable(ubuf + sk_offset, 2268 *buf_size - sk_offset); 2269 if (ret) 2270 break; 2271 2272 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2273 if (ret != 0) { 2274 if (ret > 0) 2275 ret = 0; 2276 goto err; 2277 } 2278 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2279 &sk_offset, &num_found); 2280 btrfs_release_path(path); 2281 if (ret) 2282 break; 2283 2284 } 2285 if (ret > 0) 2286 ret = 0; 2287 err: 2288 sk->nr_items = num_found; 2289 btrfs_put_root(root); 2290 btrfs_free_path(path); 2291 return ret; 2292 } 2293 2294 static noinline int btrfs_ioctl_tree_search(struct file *file, 2295 void __user *argp) 2296 { 2297 struct btrfs_ioctl_search_args __user *uargs; 2298 struct btrfs_ioctl_search_key sk; 2299 struct inode *inode; 2300 int ret; 2301 size_t buf_size; 2302 2303 if (!capable(CAP_SYS_ADMIN)) 2304 return -EPERM; 2305 2306 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2307 2308 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2309 return -EFAULT; 2310 2311 buf_size = sizeof(uargs->buf); 2312 2313 inode = file_inode(file); 2314 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2315 2316 /* 2317 * In the origin implementation an overflow is handled by returning a 2318 * search header with a len of zero, so reset ret. 2319 */ 2320 if (ret == -EOVERFLOW) 2321 ret = 0; 2322 2323 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2324 ret = -EFAULT; 2325 return ret; 2326 } 2327 2328 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2329 void __user *argp) 2330 { 2331 struct btrfs_ioctl_search_args_v2 __user *uarg; 2332 struct btrfs_ioctl_search_args_v2 args; 2333 struct inode *inode; 2334 int ret; 2335 size_t buf_size; 2336 const size_t buf_limit = SZ_16M; 2337 2338 if (!capable(CAP_SYS_ADMIN)) 2339 return -EPERM; 2340 2341 /* copy search header and buffer size */ 2342 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2343 if (copy_from_user(&args, uarg, sizeof(args))) 2344 return -EFAULT; 2345 2346 buf_size = args.buf_size; 2347 2348 /* limit result size to 16MB */ 2349 if (buf_size > buf_limit) 2350 buf_size = buf_limit; 2351 2352 inode = file_inode(file); 2353 ret = search_ioctl(inode, &args.key, &buf_size, 2354 (char __user *)(&uarg->buf[0])); 2355 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2356 ret = -EFAULT; 2357 else if (ret == -EOVERFLOW && 2358 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2359 ret = -EFAULT; 2360 2361 return ret; 2362 } 2363 2364 /* 2365 * Search INODE_REFs to identify path name of 'dirid' directory 2366 * in a 'tree_id' tree. and sets path name to 'name'. 2367 */ 2368 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2369 u64 tree_id, u64 dirid, char *name) 2370 { 2371 struct btrfs_root *root; 2372 struct btrfs_key key; 2373 char *ptr; 2374 int ret = -1; 2375 int slot; 2376 int len; 2377 int total_len = 0; 2378 struct btrfs_inode_ref *iref; 2379 struct extent_buffer *l; 2380 struct btrfs_path *path; 2381 2382 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2383 name[0]='\0'; 2384 return 0; 2385 } 2386 2387 path = btrfs_alloc_path(); 2388 if (!path) 2389 return -ENOMEM; 2390 2391 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2392 2393 root = btrfs_get_fs_root(info, tree_id, true); 2394 if (IS_ERR(root)) { 2395 ret = PTR_ERR(root); 2396 root = NULL; 2397 goto out; 2398 } 2399 2400 key.objectid = dirid; 2401 key.type = BTRFS_INODE_REF_KEY; 2402 key.offset = (u64)-1; 2403 2404 while (1) { 2405 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2406 if (ret < 0) 2407 goto out; 2408 else if (ret > 0) { 2409 ret = btrfs_previous_item(root, path, dirid, 2410 BTRFS_INODE_REF_KEY); 2411 if (ret < 0) 2412 goto out; 2413 else if (ret > 0) { 2414 ret = -ENOENT; 2415 goto out; 2416 } 2417 } 2418 2419 l = path->nodes[0]; 2420 slot = path->slots[0]; 2421 btrfs_item_key_to_cpu(l, &key, slot); 2422 2423 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2424 len = btrfs_inode_ref_name_len(l, iref); 2425 ptr -= len + 1; 2426 total_len += len + 1; 2427 if (ptr < name) { 2428 ret = -ENAMETOOLONG; 2429 goto out; 2430 } 2431 2432 *(ptr + len) = '/'; 2433 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2434 2435 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2436 break; 2437 2438 btrfs_release_path(path); 2439 key.objectid = key.offset; 2440 key.offset = (u64)-1; 2441 dirid = key.objectid; 2442 } 2443 memmove(name, ptr, total_len); 2444 name[total_len] = '\0'; 2445 ret = 0; 2446 out: 2447 btrfs_put_root(root); 2448 btrfs_free_path(path); 2449 return ret; 2450 } 2451 2452 static int btrfs_search_path_in_tree_user(struct inode *inode, 2453 struct btrfs_ioctl_ino_lookup_user_args *args) 2454 { 2455 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2456 struct super_block *sb = inode->i_sb; 2457 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2458 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2459 u64 dirid = args->dirid; 2460 unsigned long item_off; 2461 unsigned long item_len; 2462 struct btrfs_inode_ref *iref; 2463 struct btrfs_root_ref *rref; 2464 struct btrfs_root *root = NULL; 2465 struct btrfs_path *path; 2466 struct btrfs_key key, key2; 2467 struct extent_buffer *leaf; 2468 struct inode *temp_inode; 2469 char *ptr; 2470 int slot; 2471 int len; 2472 int total_len = 0; 2473 int ret; 2474 2475 path = btrfs_alloc_path(); 2476 if (!path) 2477 return -ENOMEM; 2478 2479 /* 2480 * If the bottom subvolume does not exist directly under upper_limit, 2481 * construct the path in from the bottom up. 2482 */ 2483 if (dirid != upper_limit.objectid) { 2484 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2485 2486 root = btrfs_get_fs_root(fs_info, treeid, true); 2487 if (IS_ERR(root)) { 2488 ret = PTR_ERR(root); 2489 goto out; 2490 } 2491 2492 key.objectid = dirid; 2493 key.type = BTRFS_INODE_REF_KEY; 2494 key.offset = (u64)-1; 2495 while (1) { 2496 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2497 if (ret < 0) { 2498 goto out_put; 2499 } else if (ret > 0) { 2500 ret = btrfs_previous_item(root, path, dirid, 2501 BTRFS_INODE_REF_KEY); 2502 if (ret < 0) { 2503 goto out_put; 2504 } else if (ret > 0) { 2505 ret = -ENOENT; 2506 goto out_put; 2507 } 2508 } 2509 2510 leaf = path->nodes[0]; 2511 slot = path->slots[0]; 2512 btrfs_item_key_to_cpu(leaf, &key, slot); 2513 2514 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2515 len = btrfs_inode_ref_name_len(leaf, iref); 2516 ptr -= len + 1; 2517 total_len += len + 1; 2518 if (ptr < args->path) { 2519 ret = -ENAMETOOLONG; 2520 goto out_put; 2521 } 2522 2523 *(ptr + len) = '/'; 2524 read_extent_buffer(leaf, ptr, 2525 (unsigned long)(iref + 1), len); 2526 2527 /* Check the read+exec permission of this directory */ 2528 ret = btrfs_previous_item(root, path, dirid, 2529 BTRFS_INODE_ITEM_KEY); 2530 if (ret < 0) { 2531 goto out_put; 2532 } else if (ret > 0) { 2533 ret = -ENOENT; 2534 goto out_put; 2535 } 2536 2537 leaf = path->nodes[0]; 2538 slot = path->slots[0]; 2539 btrfs_item_key_to_cpu(leaf, &key2, slot); 2540 if (key2.objectid != dirid) { 2541 ret = -ENOENT; 2542 goto out_put; 2543 } 2544 2545 temp_inode = btrfs_iget(sb, key2.objectid, root); 2546 if (IS_ERR(temp_inode)) { 2547 ret = PTR_ERR(temp_inode); 2548 goto out_put; 2549 } 2550 ret = inode_permission(temp_inode, MAY_READ | MAY_EXEC); 2551 iput(temp_inode); 2552 if (ret) { 2553 ret = -EACCES; 2554 goto out_put; 2555 } 2556 2557 if (key.offset == upper_limit.objectid) 2558 break; 2559 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2560 ret = -EACCES; 2561 goto out_put; 2562 } 2563 2564 btrfs_release_path(path); 2565 key.objectid = key.offset; 2566 key.offset = (u64)-1; 2567 dirid = key.objectid; 2568 } 2569 2570 memmove(args->path, ptr, total_len); 2571 args->path[total_len] = '\0'; 2572 btrfs_put_root(root); 2573 root = NULL; 2574 btrfs_release_path(path); 2575 } 2576 2577 /* Get the bottom subvolume's name from ROOT_REF */ 2578 key.objectid = treeid; 2579 key.type = BTRFS_ROOT_REF_KEY; 2580 key.offset = args->treeid; 2581 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2582 if (ret < 0) { 2583 goto out; 2584 } else if (ret > 0) { 2585 ret = -ENOENT; 2586 goto out; 2587 } 2588 2589 leaf = path->nodes[0]; 2590 slot = path->slots[0]; 2591 btrfs_item_key_to_cpu(leaf, &key, slot); 2592 2593 item_off = btrfs_item_ptr_offset(leaf, slot); 2594 item_len = btrfs_item_size_nr(leaf, slot); 2595 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2596 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2597 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2598 ret = -EINVAL; 2599 goto out; 2600 } 2601 2602 /* Copy subvolume's name */ 2603 item_off += sizeof(struct btrfs_root_ref); 2604 item_len -= sizeof(struct btrfs_root_ref); 2605 read_extent_buffer(leaf, args->name, item_off, item_len); 2606 args->name[item_len] = 0; 2607 2608 out_put: 2609 btrfs_put_root(root); 2610 out: 2611 btrfs_free_path(path); 2612 return ret; 2613 } 2614 2615 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2616 void __user *argp) 2617 { 2618 struct btrfs_ioctl_ino_lookup_args *args; 2619 struct inode *inode; 2620 int ret = 0; 2621 2622 args = memdup_user(argp, sizeof(*args)); 2623 if (IS_ERR(args)) 2624 return PTR_ERR(args); 2625 2626 inode = file_inode(file); 2627 2628 /* 2629 * Unprivileged query to obtain the containing subvolume root id. The 2630 * path is reset so it's consistent with btrfs_search_path_in_tree. 2631 */ 2632 if (args->treeid == 0) 2633 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2634 2635 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2636 args->name[0] = 0; 2637 goto out; 2638 } 2639 2640 if (!capable(CAP_SYS_ADMIN)) { 2641 ret = -EPERM; 2642 goto out; 2643 } 2644 2645 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2646 args->treeid, args->objectid, 2647 args->name); 2648 2649 out: 2650 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2651 ret = -EFAULT; 2652 2653 kfree(args); 2654 return ret; 2655 } 2656 2657 /* 2658 * Version of ino_lookup ioctl (unprivileged) 2659 * 2660 * The main differences from ino_lookup ioctl are: 2661 * 2662 * 1. Read + Exec permission will be checked using inode_permission() during 2663 * path construction. -EACCES will be returned in case of failure. 2664 * 2. Path construction will be stopped at the inode number which corresponds 2665 * to the fd with which this ioctl is called. If constructed path does not 2666 * exist under fd's inode, -EACCES will be returned. 2667 * 3. The name of bottom subvolume is also searched and filled. 2668 */ 2669 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2670 { 2671 struct btrfs_ioctl_ino_lookup_user_args *args; 2672 struct inode *inode; 2673 int ret; 2674 2675 args = memdup_user(argp, sizeof(*args)); 2676 if (IS_ERR(args)) 2677 return PTR_ERR(args); 2678 2679 inode = file_inode(file); 2680 2681 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2682 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2683 /* 2684 * The subvolume does not exist under fd with which this is 2685 * called 2686 */ 2687 kfree(args); 2688 return -EACCES; 2689 } 2690 2691 ret = btrfs_search_path_in_tree_user(inode, args); 2692 2693 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2694 ret = -EFAULT; 2695 2696 kfree(args); 2697 return ret; 2698 } 2699 2700 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2701 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2702 { 2703 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2704 struct btrfs_fs_info *fs_info; 2705 struct btrfs_root *root; 2706 struct btrfs_path *path; 2707 struct btrfs_key key; 2708 struct btrfs_root_item *root_item; 2709 struct btrfs_root_ref *rref; 2710 struct extent_buffer *leaf; 2711 unsigned long item_off; 2712 unsigned long item_len; 2713 struct inode *inode; 2714 int slot; 2715 int ret = 0; 2716 2717 path = btrfs_alloc_path(); 2718 if (!path) 2719 return -ENOMEM; 2720 2721 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2722 if (!subvol_info) { 2723 btrfs_free_path(path); 2724 return -ENOMEM; 2725 } 2726 2727 inode = file_inode(file); 2728 fs_info = BTRFS_I(inode)->root->fs_info; 2729 2730 /* Get root_item of inode's subvolume */ 2731 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2732 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2733 if (IS_ERR(root)) { 2734 ret = PTR_ERR(root); 2735 goto out_free; 2736 } 2737 root_item = &root->root_item; 2738 2739 subvol_info->treeid = key.objectid; 2740 2741 subvol_info->generation = btrfs_root_generation(root_item); 2742 subvol_info->flags = btrfs_root_flags(root_item); 2743 2744 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2745 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2746 BTRFS_UUID_SIZE); 2747 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2748 BTRFS_UUID_SIZE); 2749 2750 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2751 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2752 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2753 2754 subvol_info->otransid = btrfs_root_otransid(root_item); 2755 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2756 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2757 2758 subvol_info->stransid = btrfs_root_stransid(root_item); 2759 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2760 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2761 2762 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2763 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2764 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2765 2766 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2767 /* Search root tree for ROOT_BACKREF of this subvolume */ 2768 key.type = BTRFS_ROOT_BACKREF_KEY; 2769 key.offset = 0; 2770 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2771 if (ret < 0) { 2772 goto out; 2773 } else if (path->slots[0] >= 2774 btrfs_header_nritems(path->nodes[0])) { 2775 ret = btrfs_next_leaf(fs_info->tree_root, path); 2776 if (ret < 0) { 2777 goto out; 2778 } else if (ret > 0) { 2779 ret = -EUCLEAN; 2780 goto out; 2781 } 2782 } 2783 2784 leaf = path->nodes[0]; 2785 slot = path->slots[0]; 2786 btrfs_item_key_to_cpu(leaf, &key, slot); 2787 if (key.objectid == subvol_info->treeid && 2788 key.type == BTRFS_ROOT_BACKREF_KEY) { 2789 subvol_info->parent_id = key.offset; 2790 2791 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2792 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2793 2794 item_off = btrfs_item_ptr_offset(leaf, slot) 2795 + sizeof(struct btrfs_root_ref); 2796 item_len = btrfs_item_size_nr(leaf, slot) 2797 - sizeof(struct btrfs_root_ref); 2798 read_extent_buffer(leaf, subvol_info->name, 2799 item_off, item_len); 2800 } else { 2801 ret = -ENOENT; 2802 goto out; 2803 } 2804 } 2805 2806 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2807 ret = -EFAULT; 2808 2809 out: 2810 btrfs_put_root(root); 2811 out_free: 2812 btrfs_free_path(path); 2813 kfree(subvol_info); 2814 return ret; 2815 } 2816 2817 /* 2818 * Return ROOT_REF information of the subvolume containing this inode 2819 * except the subvolume name. 2820 */ 2821 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2822 { 2823 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2824 struct btrfs_root_ref *rref; 2825 struct btrfs_root *root; 2826 struct btrfs_path *path; 2827 struct btrfs_key key; 2828 struct extent_buffer *leaf; 2829 struct inode *inode; 2830 u64 objectid; 2831 int slot; 2832 int ret; 2833 u8 found; 2834 2835 path = btrfs_alloc_path(); 2836 if (!path) 2837 return -ENOMEM; 2838 2839 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2840 if (IS_ERR(rootrefs)) { 2841 btrfs_free_path(path); 2842 return PTR_ERR(rootrefs); 2843 } 2844 2845 inode = file_inode(file); 2846 root = BTRFS_I(inode)->root->fs_info->tree_root; 2847 objectid = BTRFS_I(inode)->root->root_key.objectid; 2848 2849 key.objectid = objectid; 2850 key.type = BTRFS_ROOT_REF_KEY; 2851 key.offset = rootrefs->min_treeid; 2852 found = 0; 2853 2854 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2855 if (ret < 0) { 2856 goto out; 2857 } else if (path->slots[0] >= 2858 btrfs_header_nritems(path->nodes[0])) { 2859 ret = btrfs_next_leaf(root, path); 2860 if (ret < 0) { 2861 goto out; 2862 } else if (ret > 0) { 2863 ret = -EUCLEAN; 2864 goto out; 2865 } 2866 } 2867 while (1) { 2868 leaf = path->nodes[0]; 2869 slot = path->slots[0]; 2870 2871 btrfs_item_key_to_cpu(leaf, &key, slot); 2872 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2873 ret = 0; 2874 goto out; 2875 } 2876 2877 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2878 ret = -EOVERFLOW; 2879 goto out; 2880 } 2881 2882 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2883 rootrefs->rootref[found].treeid = key.offset; 2884 rootrefs->rootref[found].dirid = 2885 btrfs_root_ref_dirid(leaf, rref); 2886 found++; 2887 2888 ret = btrfs_next_item(root, path); 2889 if (ret < 0) { 2890 goto out; 2891 } else if (ret > 0) { 2892 ret = -EUCLEAN; 2893 goto out; 2894 } 2895 } 2896 2897 out: 2898 if (!ret || ret == -EOVERFLOW) { 2899 rootrefs->num_items = found; 2900 /* update min_treeid for next search */ 2901 if (found) 2902 rootrefs->min_treeid = 2903 rootrefs->rootref[found - 1].treeid + 1; 2904 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2905 ret = -EFAULT; 2906 } 2907 2908 kfree(rootrefs); 2909 btrfs_free_path(path); 2910 2911 return ret; 2912 } 2913 2914 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2915 void __user *arg, 2916 bool destroy_v2) 2917 { 2918 struct dentry *parent = file->f_path.dentry; 2919 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2920 struct dentry *dentry; 2921 struct inode *dir = d_inode(parent); 2922 struct inode *inode; 2923 struct btrfs_root *root = BTRFS_I(dir)->root; 2924 struct btrfs_root *dest = NULL; 2925 struct btrfs_ioctl_vol_args *vol_args = NULL; 2926 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2927 char *subvol_name, *subvol_name_ptr = NULL; 2928 int subvol_namelen; 2929 int err = 0; 2930 bool destroy_parent = false; 2931 2932 if (destroy_v2) { 2933 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2934 if (IS_ERR(vol_args2)) 2935 return PTR_ERR(vol_args2); 2936 2937 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2938 err = -EOPNOTSUPP; 2939 goto out; 2940 } 2941 2942 /* 2943 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2944 * name, same as v1 currently does. 2945 */ 2946 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2947 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2948 subvol_name = vol_args2->name; 2949 2950 err = mnt_want_write_file(file); 2951 if (err) 2952 goto out; 2953 } else { 2954 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2955 err = -EINVAL; 2956 goto out; 2957 } 2958 2959 err = mnt_want_write_file(file); 2960 if (err) 2961 goto out; 2962 2963 dentry = btrfs_get_dentry(fs_info->sb, 2964 BTRFS_FIRST_FREE_OBJECTID, 2965 vol_args2->subvolid, 0, 0); 2966 if (IS_ERR(dentry)) { 2967 err = PTR_ERR(dentry); 2968 goto out_drop_write; 2969 } 2970 2971 /* 2972 * Change the default parent since the subvolume being 2973 * deleted can be outside of the current mount point. 2974 */ 2975 parent = btrfs_get_parent(dentry); 2976 2977 /* 2978 * At this point dentry->d_name can point to '/' if the 2979 * subvolume we want to destroy is outsite of the 2980 * current mount point, so we need to release the 2981 * current dentry and execute the lookup to return a new 2982 * one with ->d_name pointing to the 2983 * <mount point>/subvol_name. 2984 */ 2985 dput(dentry); 2986 if (IS_ERR(parent)) { 2987 err = PTR_ERR(parent); 2988 goto out_drop_write; 2989 } 2990 dir = d_inode(parent); 2991 2992 /* 2993 * If v2 was used with SPEC_BY_ID, a new parent was 2994 * allocated since the subvolume can be outside of the 2995 * current mount point. Later on we need to release this 2996 * new parent dentry. 2997 */ 2998 destroy_parent = true; 2999 3000 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 3001 fs_info, vol_args2->subvolid); 3002 if (IS_ERR(subvol_name_ptr)) { 3003 err = PTR_ERR(subvol_name_ptr); 3004 goto free_parent; 3005 } 3006 /* subvol_name_ptr is already NULL termined */ 3007 subvol_name = (char *)kbasename(subvol_name_ptr); 3008 } 3009 } else { 3010 vol_args = memdup_user(arg, sizeof(*vol_args)); 3011 if (IS_ERR(vol_args)) 3012 return PTR_ERR(vol_args); 3013 3014 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3015 subvol_name = vol_args->name; 3016 3017 err = mnt_want_write_file(file); 3018 if (err) 3019 goto out; 3020 } 3021 3022 subvol_namelen = strlen(subvol_name); 3023 3024 if (strchr(subvol_name, '/') || 3025 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3026 err = -EINVAL; 3027 goto free_subvol_name; 3028 } 3029 3030 if (!S_ISDIR(dir->i_mode)) { 3031 err = -ENOTDIR; 3032 goto free_subvol_name; 3033 } 3034 3035 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3036 if (err == -EINTR) 3037 goto free_subvol_name; 3038 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3039 if (IS_ERR(dentry)) { 3040 err = PTR_ERR(dentry); 3041 goto out_unlock_dir; 3042 } 3043 3044 if (d_really_is_negative(dentry)) { 3045 err = -ENOENT; 3046 goto out_dput; 3047 } 3048 3049 inode = d_inode(dentry); 3050 dest = BTRFS_I(inode)->root; 3051 if (!capable(CAP_SYS_ADMIN)) { 3052 /* 3053 * Regular user. Only allow this with a special mount 3054 * option, when the user has write+exec access to the 3055 * subvol root, and when rmdir(2) would have been 3056 * allowed. 3057 * 3058 * Note that this is _not_ check that the subvol is 3059 * empty or doesn't contain data that we wouldn't 3060 * otherwise be able to delete. 3061 * 3062 * Users who want to delete empty subvols should try 3063 * rmdir(2). 3064 */ 3065 err = -EPERM; 3066 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3067 goto out_dput; 3068 3069 /* 3070 * Do not allow deletion if the parent dir is the same 3071 * as the dir to be deleted. That means the ioctl 3072 * must be called on the dentry referencing the root 3073 * of the subvol, not a random directory contained 3074 * within it. 3075 */ 3076 err = -EINVAL; 3077 if (root == dest) 3078 goto out_dput; 3079 3080 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 3081 if (err) 3082 goto out_dput; 3083 } 3084 3085 /* check if subvolume may be deleted by a user */ 3086 err = btrfs_may_delete(dir, dentry, 1); 3087 if (err) 3088 goto out_dput; 3089 3090 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3091 err = -EINVAL; 3092 goto out_dput; 3093 } 3094 3095 inode_lock(inode); 3096 err = btrfs_delete_subvolume(dir, dentry); 3097 inode_unlock(inode); 3098 if (!err) { 3099 fsnotify_rmdir(dir, dentry); 3100 d_delete(dentry); 3101 } 3102 3103 out_dput: 3104 dput(dentry); 3105 out_unlock_dir: 3106 inode_unlock(dir); 3107 free_subvol_name: 3108 kfree(subvol_name_ptr); 3109 free_parent: 3110 if (destroy_parent) 3111 dput(parent); 3112 out_drop_write: 3113 mnt_drop_write_file(file); 3114 out: 3115 kfree(vol_args2); 3116 kfree(vol_args); 3117 return err; 3118 } 3119 3120 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3121 { 3122 struct inode *inode = file_inode(file); 3123 struct btrfs_root *root = BTRFS_I(inode)->root; 3124 struct btrfs_ioctl_defrag_range_args *range; 3125 int ret; 3126 3127 ret = mnt_want_write_file(file); 3128 if (ret) 3129 return ret; 3130 3131 if (btrfs_root_readonly(root)) { 3132 ret = -EROFS; 3133 goto out; 3134 } 3135 3136 switch (inode->i_mode & S_IFMT) { 3137 case S_IFDIR: 3138 if (!capable(CAP_SYS_ADMIN)) { 3139 ret = -EPERM; 3140 goto out; 3141 } 3142 ret = btrfs_defrag_root(root); 3143 break; 3144 case S_IFREG: 3145 /* 3146 * Note that this does not check the file descriptor for write 3147 * access. This prevents defragmenting executables that are 3148 * running and allows defrag on files open in read-only mode. 3149 */ 3150 if (!capable(CAP_SYS_ADMIN) && 3151 inode_permission(inode, MAY_WRITE)) { 3152 ret = -EPERM; 3153 goto out; 3154 } 3155 3156 range = kzalloc(sizeof(*range), GFP_KERNEL); 3157 if (!range) { 3158 ret = -ENOMEM; 3159 goto out; 3160 } 3161 3162 if (argp) { 3163 if (copy_from_user(range, argp, 3164 sizeof(*range))) { 3165 ret = -EFAULT; 3166 kfree(range); 3167 goto out; 3168 } 3169 /* compression requires us to start the IO */ 3170 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3171 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3172 range->extent_thresh = (u32)-1; 3173 } 3174 } else { 3175 /* the rest are all set to zero by kzalloc */ 3176 range->len = (u64)-1; 3177 } 3178 ret = btrfs_defrag_file(file_inode(file), file, 3179 range, BTRFS_OLDEST_GENERATION, 0); 3180 if (ret > 0) 3181 ret = 0; 3182 kfree(range); 3183 break; 3184 default: 3185 ret = -EINVAL; 3186 } 3187 out: 3188 mnt_drop_write_file(file); 3189 return ret; 3190 } 3191 3192 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3193 { 3194 struct btrfs_ioctl_vol_args *vol_args; 3195 int ret; 3196 3197 if (!capable(CAP_SYS_ADMIN)) 3198 return -EPERM; 3199 3200 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3201 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3202 3203 vol_args = memdup_user(arg, sizeof(*vol_args)); 3204 if (IS_ERR(vol_args)) { 3205 ret = PTR_ERR(vol_args); 3206 goto out; 3207 } 3208 3209 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3210 ret = btrfs_init_new_device(fs_info, vol_args->name); 3211 3212 if (!ret) 3213 btrfs_info(fs_info, "disk added %s", vol_args->name); 3214 3215 kfree(vol_args); 3216 out: 3217 btrfs_exclop_finish(fs_info); 3218 return ret; 3219 } 3220 3221 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3222 { 3223 struct inode *inode = file_inode(file); 3224 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3225 struct btrfs_ioctl_vol_args_v2 *vol_args; 3226 int ret; 3227 3228 if (!capable(CAP_SYS_ADMIN)) 3229 return -EPERM; 3230 3231 ret = mnt_want_write_file(file); 3232 if (ret) 3233 return ret; 3234 3235 vol_args = memdup_user(arg, sizeof(*vol_args)); 3236 if (IS_ERR(vol_args)) { 3237 ret = PTR_ERR(vol_args); 3238 goto err_drop; 3239 } 3240 3241 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3242 ret = -EOPNOTSUPP; 3243 goto out; 3244 } 3245 3246 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3247 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3248 goto out; 3249 } 3250 3251 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 3252 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3253 } else { 3254 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3255 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3256 } 3257 btrfs_exclop_finish(fs_info); 3258 3259 if (!ret) { 3260 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3261 btrfs_info(fs_info, "device deleted: id %llu", 3262 vol_args->devid); 3263 else 3264 btrfs_info(fs_info, "device deleted: %s", 3265 vol_args->name); 3266 } 3267 out: 3268 kfree(vol_args); 3269 err_drop: 3270 mnt_drop_write_file(file); 3271 return ret; 3272 } 3273 3274 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3275 { 3276 struct inode *inode = file_inode(file); 3277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3278 struct btrfs_ioctl_vol_args *vol_args; 3279 int ret; 3280 3281 if (!capable(CAP_SYS_ADMIN)) 3282 return -EPERM; 3283 3284 ret = mnt_want_write_file(file); 3285 if (ret) 3286 return ret; 3287 3288 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) { 3289 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3290 goto out_drop_write; 3291 } 3292 3293 vol_args = memdup_user(arg, sizeof(*vol_args)); 3294 if (IS_ERR(vol_args)) { 3295 ret = PTR_ERR(vol_args); 3296 goto out; 3297 } 3298 3299 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3300 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3301 3302 if (!ret) 3303 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3304 kfree(vol_args); 3305 out: 3306 btrfs_exclop_finish(fs_info); 3307 out_drop_write: 3308 mnt_drop_write_file(file); 3309 3310 return ret; 3311 } 3312 3313 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3314 void __user *arg) 3315 { 3316 struct btrfs_ioctl_fs_info_args *fi_args; 3317 struct btrfs_device *device; 3318 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3319 u64 flags_in; 3320 int ret = 0; 3321 3322 fi_args = memdup_user(arg, sizeof(*fi_args)); 3323 if (IS_ERR(fi_args)) 3324 return PTR_ERR(fi_args); 3325 3326 flags_in = fi_args->flags; 3327 memset(fi_args, 0, sizeof(*fi_args)); 3328 3329 rcu_read_lock(); 3330 fi_args->num_devices = fs_devices->num_devices; 3331 3332 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3333 if (device->devid > fi_args->max_id) 3334 fi_args->max_id = device->devid; 3335 } 3336 rcu_read_unlock(); 3337 3338 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3339 fi_args->nodesize = fs_info->nodesize; 3340 fi_args->sectorsize = fs_info->sectorsize; 3341 fi_args->clone_alignment = fs_info->sectorsize; 3342 3343 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3344 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3345 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3346 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3347 } 3348 3349 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3350 fi_args->generation = fs_info->generation; 3351 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3352 } 3353 3354 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3355 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3356 sizeof(fi_args->metadata_uuid)); 3357 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3358 } 3359 3360 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3361 ret = -EFAULT; 3362 3363 kfree(fi_args); 3364 return ret; 3365 } 3366 3367 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3368 void __user *arg) 3369 { 3370 struct btrfs_ioctl_dev_info_args *di_args; 3371 struct btrfs_device *dev; 3372 int ret = 0; 3373 char *s_uuid = NULL; 3374 3375 di_args = memdup_user(arg, sizeof(*di_args)); 3376 if (IS_ERR(di_args)) 3377 return PTR_ERR(di_args); 3378 3379 if (!btrfs_is_empty_uuid(di_args->uuid)) 3380 s_uuid = di_args->uuid; 3381 3382 rcu_read_lock(); 3383 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3384 NULL); 3385 3386 if (!dev) { 3387 ret = -ENODEV; 3388 goto out; 3389 } 3390 3391 di_args->devid = dev->devid; 3392 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3393 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3394 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3395 if (dev->name) { 3396 strncpy(di_args->path, rcu_str_deref(dev->name), 3397 sizeof(di_args->path) - 1); 3398 di_args->path[sizeof(di_args->path) - 1] = 0; 3399 } else { 3400 di_args->path[0] = '\0'; 3401 } 3402 3403 out: 3404 rcu_read_unlock(); 3405 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3406 ret = -EFAULT; 3407 3408 kfree(di_args); 3409 return ret; 3410 } 3411 3412 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3413 { 3414 struct inode *inode = file_inode(file); 3415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3416 struct btrfs_root *root = BTRFS_I(inode)->root; 3417 struct btrfs_root *new_root; 3418 struct btrfs_dir_item *di; 3419 struct btrfs_trans_handle *trans; 3420 struct btrfs_path *path = NULL; 3421 struct btrfs_disk_key disk_key; 3422 u64 objectid = 0; 3423 u64 dir_id; 3424 int ret; 3425 3426 if (!capable(CAP_SYS_ADMIN)) 3427 return -EPERM; 3428 3429 ret = mnt_want_write_file(file); 3430 if (ret) 3431 return ret; 3432 3433 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3434 ret = -EFAULT; 3435 goto out; 3436 } 3437 3438 if (!objectid) 3439 objectid = BTRFS_FS_TREE_OBJECTID; 3440 3441 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3442 if (IS_ERR(new_root)) { 3443 ret = PTR_ERR(new_root); 3444 goto out; 3445 } 3446 if (!is_fstree(new_root->root_key.objectid)) { 3447 ret = -ENOENT; 3448 goto out_free; 3449 } 3450 3451 path = btrfs_alloc_path(); 3452 if (!path) { 3453 ret = -ENOMEM; 3454 goto out_free; 3455 } 3456 3457 trans = btrfs_start_transaction(root, 1); 3458 if (IS_ERR(trans)) { 3459 ret = PTR_ERR(trans); 3460 goto out_free; 3461 } 3462 3463 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3464 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3465 dir_id, "default", 7, 1); 3466 if (IS_ERR_OR_NULL(di)) { 3467 btrfs_release_path(path); 3468 btrfs_end_transaction(trans); 3469 btrfs_err(fs_info, 3470 "Umm, you don't have the default diritem, this isn't going to work"); 3471 ret = -ENOENT; 3472 goto out_free; 3473 } 3474 3475 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3476 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3477 btrfs_mark_buffer_dirty(path->nodes[0]); 3478 btrfs_release_path(path); 3479 3480 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3481 btrfs_end_transaction(trans); 3482 out_free: 3483 btrfs_put_root(new_root); 3484 btrfs_free_path(path); 3485 out: 3486 mnt_drop_write_file(file); 3487 return ret; 3488 } 3489 3490 static void get_block_group_info(struct list_head *groups_list, 3491 struct btrfs_ioctl_space_info *space) 3492 { 3493 struct btrfs_block_group *block_group; 3494 3495 space->total_bytes = 0; 3496 space->used_bytes = 0; 3497 space->flags = 0; 3498 list_for_each_entry(block_group, groups_list, list) { 3499 space->flags = block_group->flags; 3500 space->total_bytes += block_group->length; 3501 space->used_bytes += block_group->used; 3502 } 3503 } 3504 3505 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3506 void __user *arg) 3507 { 3508 struct btrfs_ioctl_space_args space_args; 3509 struct btrfs_ioctl_space_info space; 3510 struct btrfs_ioctl_space_info *dest; 3511 struct btrfs_ioctl_space_info *dest_orig; 3512 struct btrfs_ioctl_space_info __user *user_dest; 3513 struct btrfs_space_info *info; 3514 static const u64 types[] = { 3515 BTRFS_BLOCK_GROUP_DATA, 3516 BTRFS_BLOCK_GROUP_SYSTEM, 3517 BTRFS_BLOCK_GROUP_METADATA, 3518 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3519 }; 3520 int num_types = 4; 3521 int alloc_size; 3522 int ret = 0; 3523 u64 slot_count = 0; 3524 int i, c; 3525 3526 if (copy_from_user(&space_args, 3527 (struct btrfs_ioctl_space_args __user *)arg, 3528 sizeof(space_args))) 3529 return -EFAULT; 3530 3531 for (i = 0; i < num_types; i++) { 3532 struct btrfs_space_info *tmp; 3533 3534 info = NULL; 3535 list_for_each_entry(tmp, &fs_info->space_info, list) { 3536 if (tmp->flags == types[i]) { 3537 info = tmp; 3538 break; 3539 } 3540 } 3541 3542 if (!info) 3543 continue; 3544 3545 down_read(&info->groups_sem); 3546 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3547 if (!list_empty(&info->block_groups[c])) 3548 slot_count++; 3549 } 3550 up_read(&info->groups_sem); 3551 } 3552 3553 /* 3554 * Global block reserve, exported as a space_info 3555 */ 3556 slot_count++; 3557 3558 /* space_slots == 0 means they are asking for a count */ 3559 if (space_args.space_slots == 0) { 3560 space_args.total_spaces = slot_count; 3561 goto out; 3562 } 3563 3564 slot_count = min_t(u64, space_args.space_slots, slot_count); 3565 3566 alloc_size = sizeof(*dest) * slot_count; 3567 3568 /* we generally have at most 6 or so space infos, one for each raid 3569 * level. So, a whole page should be more than enough for everyone 3570 */ 3571 if (alloc_size > PAGE_SIZE) 3572 return -ENOMEM; 3573 3574 space_args.total_spaces = 0; 3575 dest = kmalloc(alloc_size, GFP_KERNEL); 3576 if (!dest) 3577 return -ENOMEM; 3578 dest_orig = dest; 3579 3580 /* now we have a buffer to copy into */ 3581 for (i = 0; i < num_types; i++) { 3582 struct btrfs_space_info *tmp; 3583 3584 if (!slot_count) 3585 break; 3586 3587 info = NULL; 3588 list_for_each_entry(tmp, &fs_info->space_info, list) { 3589 if (tmp->flags == types[i]) { 3590 info = tmp; 3591 break; 3592 } 3593 } 3594 3595 if (!info) 3596 continue; 3597 down_read(&info->groups_sem); 3598 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3599 if (!list_empty(&info->block_groups[c])) { 3600 get_block_group_info(&info->block_groups[c], 3601 &space); 3602 memcpy(dest, &space, sizeof(space)); 3603 dest++; 3604 space_args.total_spaces++; 3605 slot_count--; 3606 } 3607 if (!slot_count) 3608 break; 3609 } 3610 up_read(&info->groups_sem); 3611 } 3612 3613 /* 3614 * Add global block reserve 3615 */ 3616 if (slot_count) { 3617 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3618 3619 spin_lock(&block_rsv->lock); 3620 space.total_bytes = block_rsv->size; 3621 space.used_bytes = block_rsv->size - block_rsv->reserved; 3622 spin_unlock(&block_rsv->lock); 3623 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3624 memcpy(dest, &space, sizeof(space)); 3625 space_args.total_spaces++; 3626 } 3627 3628 user_dest = (struct btrfs_ioctl_space_info __user *) 3629 (arg + sizeof(struct btrfs_ioctl_space_args)); 3630 3631 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3632 ret = -EFAULT; 3633 3634 kfree(dest_orig); 3635 out: 3636 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3637 ret = -EFAULT; 3638 3639 return ret; 3640 } 3641 3642 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3643 void __user *argp) 3644 { 3645 struct btrfs_trans_handle *trans; 3646 u64 transid; 3647 int ret; 3648 3649 trans = btrfs_attach_transaction_barrier(root); 3650 if (IS_ERR(trans)) { 3651 if (PTR_ERR(trans) != -ENOENT) 3652 return PTR_ERR(trans); 3653 3654 /* No running transaction, don't bother */ 3655 transid = root->fs_info->last_trans_committed; 3656 goto out; 3657 } 3658 transid = trans->transid; 3659 ret = btrfs_commit_transaction_async(trans, 0); 3660 if (ret) { 3661 btrfs_end_transaction(trans); 3662 return ret; 3663 } 3664 out: 3665 if (argp) 3666 if (copy_to_user(argp, &transid, sizeof(transid))) 3667 return -EFAULT; 3668 return 0; 3669 } 3670 3671 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3672 void __user *argp) 3673 { 3674 u64 transid; 3675 3676 if (argp) { 3677 if (copy_from_user(&transid, argp, sizeof(transid))) 3678 return -EFAULT; 3679 } else { 3680 transid = 0; /* current trans */ 3681 } 3682 return btrfs_wait_for_commit(fs_info, transid); 3683 } 3684 3685 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3686 { 3687 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3688 struct btrfs_ioctl_scrub_args *sa; 3689 int ret; 3690 3691 if (!capable(CAP_SYS_ADMIN)) 3692 return -EPERM; 3693 3694 sa = memdup_user(arg, sizeof(*sa)); 3695 if (IS_ERR(sa)) 3696 return PTR_ERR(sa); 3697 3698 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3699 ret = mnt_want_write_file(file); 3700 if (ret) 3701 goto out; 3702 } 3703 3704 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3705 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3706 0); 3707 3708 /* 3709 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3710 * error. This is important as it allows user space to know how much 3711 * progress scrub has done. For example, if scrub is canceled we get 3712 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3713 * space. Later user space can inspect the progress from the structure 3714 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3715 * previously (btrfs-progs does this). 3716 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3717 * then return -EFAULT to signal the structure was not copied or it may 3718 * be corrupt and unreliable due to a partial copy. 3719 */ 3720 if (copy_to_user(arg, sa, sizeof(*sa))) 3721 ret = -EFAULT; 3722 3723 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3724 mnt_drop_write_file(file); 3725 out: 3726 kfree(sa); 3727 return ret; 3728 } 3729 3730 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3731 { 3732 if (!capable(CAP_SYS_ADMIN)) 3733 return -EPERM; 3734 3735 return btrfs_scrub_cancel(fs_info); 3736 } 3737 3738 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3739 void __user *arg) 3740 { 3741 struct btrfs_ioctl_scrub_args *sa; 3742 int ret; 3743 3744 if (!capable(CAP_SYS_ADMIN)) 3745 return -EPERM; 3746 3747 sa = memdup_user(arg, sizeof(*sa)); 3748 if (IS_ERR(sa)) 3749 return PTR_ERR(sa); 3750 3751 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3752 3753 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3754 ret = -EFAULT; 3755 3756 kfree(sa); 3757 return ret; 3758 } 3759 3760 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3761 void __user *arg) 3762 { 3763 struct btrfs_ioctl_get_dev_stats *sa; 3764 int ret; 3765 3766 sa = memdup_user(arg, sizeof(*sa)); 3767 if (IS_ERR(sa)) 3768 return PTR_ERR(sa); 3769 3770 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3771 kfree(sa); 3772 return -EPERM; 3773 } 3774 3775 ret = btrfs_get_dev_stats(fs_info, sa); 3776 3777 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3778 ret = -EFAULT; 3779 3780 kfree(sa); 3781 return ret; 3782 } 3783 3784 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3785 void __user *arg) 3786 { 3787 struct btrfs_ioctl_dev_replace_args *p; 3788 int ret; 3789 3790 if (!capable(CAP_SYS_ADMIN)) 3791 return -EPERM; 3792 3793 p = memdup_user(arg, sizeof(*p)); 3794 if (IS_ERR(p)) 3795 return PTR_ERR(p); 3796 3797 switch (p->cmd) { 3798 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3799 if (sb_rdonly(fs_info->sb)) { 3800 ret = -EROFS; 3801 goto out; 3802 } 3803 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3804 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3805 } else { 3806 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3807 btrfs_exclop_finish(fs_info); 3808 } 3809 break; 3810 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3811 btrfs_dev_replace_status(fs_info, p); 3812 ret = 0; 3813 break; 3814 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3815 p->result = btrfs_dev_replace_cancel(fs_info); 3816 ret = 0; 3817 break; 3818 default: 3819 ret = -EINVAL; 3820 break; 3821 } 3822 3823 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3824 ret = -EFAULT; 3825 out: 3826 kfree(p); 3827 return ret; 3828 } 3829 3830 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3831 { 3832 int ret = 0; 3833 int i; 3834 u64 rel_ptr; 3835 int size; 3836 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3837 struct inode_fs_paths *ipath = NULL; 3838 struct btrfs_path *path; 3839 3840 if (!capable(CAP_DAC_READ_SEARCH)) 3841 return -EPERM; 3842 3843 path = btrfs_alloc_path(); 3844 if (!path) { 3845 ret = -ENOMEM; 3846 goto out; 3847 } 3848 3849 ipa = memdup_user(arg, sizeof(*ipa)); 3850 if (IS_ERR(ipa)) { 3851 ret = PTR_ERR(ipa); 3852 ipa = NULL; 3853 goto out; 3854 } 3855 3856 size = min_t(u32, ipa->size, 4096); 3857 ipath = init_ipath(size, root, path); 3858 if (IS_ERR(ipath)) { 3859 ret = PTR_ERR(ipath); 3860 ipath = NULL; 3861 goto out; 3862 } 3863 3864 ret = paths_from_inode(ipa->inum, ipath); 3865 if (ret < 0) 3866 goto out; 3867 3868 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3869 rel_ptr = ipath->fspath->val[i] - 3870 (u64)(unsigned long)ipath->fspath->val; 3871 ipath->fspath->val[i] = rel_ptr; 3872 } 3873 3874 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3875 ipath->fspath, size); 3876 if (ret) { 3877 ret = -EFAULT; 3878 goto out; 3879 } 3880 3881 out: 3882 btrfs_free_path(path); 3883 free_ipath(ipath); 3884 kfree(ipa); 3885 3886 return ret; 3887 } 3888 3889 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3890 { 3891 struct btrfs_data_container *inodes = ctx; 3892 const size_t c = 3 * sizeof(u64); 3893 3894 if (inodes->bytes_left >= c) { 3895 inodes->bytes_left -= c; 3896 inodes->val[inodes->elem_cnt] = inum; 3897 inodes->val[inodes->elem_cnt + 1] = offset; 3898 inodes->val[inodes->elem_cnt + 2] = root; 3899 inodes->elem_cnt += 3; 3900 } else { 3901 inodes->bytes_missing += c - inodes->bytes_left; 3902 inodes->bytes_left = 0; 3903 inodes->elem_missed += 3; 3904 } 3905 3906 return 0; 3907 } 3908 3909 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3910 void __user *arg, int version) 3911 { 3912 int ret = 0; 3913 int size; 3914 struct btrfs_ioctl_logical_ino_args *loi; 3915 struct btrfs_data_container *inodes = NULL; 3916 struct btrfs_path *path = NULL; 3917 bool ignore_offset; 3918 3919 if (!capable(CAP_SYS_ADMIN)) 3920 return -EPERM; 3921 3922 loi = memdup_user(arg, sizeof(*loi)); 3923 if (IS_ERR(loi)) 3924 return PTR_ERR(loi); 3925 3926 if (version == 1) { 3927 ignore_offset = false; 3928 size = min_t(u32, loi->size, SZ_64K); 3929 } else { 3930 /* All reserved bits must be 0 for now */ 3931 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3932 ret = -EINVAL; 3933 goto out_loi; 3934 } 3935 /* Only accept flags we have defined so far */ 3936 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3937 ret = -EINVAL; 3938 goto out_loi; 3939 } 3940 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3941 size = min_t(u32, loi->size, SZ_16M); 3942 } 3943 3944 path = btrfs_alloc_path(); 3945 if (!path) { 3946 ret = -ENOMEM; 3947 goto out; 3948 } 3949 3950 inodes = init_data_container(size); 3951 if (IS_ERR(inodes)) { 3952 ret = PTR_ERR(inodes); 3953 inodes = NULL; 3954 goto out; 3955 } 3956 3957 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3958 build_ino_list, inodes, ignore_offset); 3959 if (ret == -EINVAL) 3960 ret = -ENOENT; 3961 if (ret < 0) 3962 goto out; 3963 3964 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3965 size); 3966 if (ret) 3967 ret = -EFAULT; 3968 3969 out: 3970 btrfs_free_path(path); 3971 kvfree(inodes); 3972 out_loi: 3973 kfree(loi); 3974 3975 return ret; 3976 } 3977 3978 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3979 struct btrfs_ioctl_balance_args *bargs) 3980 { 3981 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3982 3983 bargs->flags = bctl->flags; 3984 3985 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3986 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3987 if (atomic_read(&fs_info->balance_pause_req)) 3988 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3989 if (atomic_read(&fs_info->balance_cancel_req)) 3990 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3991 3992 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3993 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3994 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3995 3996 spin_lock(&fs_info->balance_lock); 3997 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3998 spin_unlock(&fs_info->balance_lock); 3999 } 4000 4001 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4002 { 4003 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4004 struct btrfs_fs_info *fs_info = root->fs_info; 4005 struct btrfs_ioctl_balance_args *bargs; 4006 struct btrfs_balance_control *bctl; 4007 bool need_unlock; /* for mut. excl. ops lock */ 4008 int ret; 4009 4010 if (!capable(CAP_SYS_ADMIN)) 4011 return -EPERM; 4012 4013 ret = mnt_want_write_file(file); 4014 if (ret) 4015 return ret; 4016 4017 again: 4018 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4019 mutex_lock(&fs_info->balance_mutex); 4020 need_unlock = true; 4021 goto locked; 4022 } 4023 4024 /* 4025 * mut. excl. ops lock is locked. Three possibilities: 4026 * (1) some other op is running 4027 * (2) balance is running 4028 * (3) balance is paused -- special case (think resume) 4029 */ 4030 mutex_lock(&fs_info->balance_mutex); 4031 if (fs_info->balance_ctl) { 4032 /* this is either (2) or (3) */ 4033 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4034 mutex_unlock(&fs_info->balance_mutex); 4035 /* 4036 * Lock released to allow other waiters to continue, 4037 * we'll reexamine the status again. 4038 */ 4039 mutex_lock(&fs_info->balance_mutex); 4040 4041 if (fs_info->balance_ctl && 4042 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4043 /* this is (3) */ 4044 need_unlock = false; 4045 goto locked; 4046 } 4047 4048 mutex_unlock(&fs_info->balance_mutex); 4049 goto again; 4050 } else { 4051 /* this is (2) */ 4052 mutex_unlock(&fs_info->balance_mutex); 4053 ret = -EINPROGRESS; 4054 goto out; 4055 } 4056 } else { 4057 /* this is (1) */ 4058 mutex_unlock(&fs_info->balance_mutex); 4059 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4060 goto out; 4061 } 4062 4063 locked: 4064 4065 if (arg) { 4066 bargs = memdup_user(arg, sizeof(*bargs)); 4067 if (IS_ERR(bargs)) { 4068 ret = PTR_ERR(bargs); 4069 goto out_unlock; 4070 } 4071 4072 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4073 if (!fs_info->balance_ctl) { 4074 ret = -ENOTCONN; 4075 goto out_bargs; 4076 } 4077 4078 bctl = fs_info->balance_ctl; 4079 spin_lock(&fs_info->balance_lock); 4080 bctl->flags |= BTRFS_BALANCE_RESUME; 4081 spin_unlock(&fs_info->balance_lock); 4082 4083 goto do_balance; 4084 } 4085 } else { 4086 bargs = NULL; 4087 } 4088 4089 if (fs_info->balance_ctl) { 4090 ret = -EINPROGRESS; 4091 goto out_bargs; 4092 } 4093 4094 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4095 if (!bctl) { 4096 ret = -ENOMEM; 4097 goto out_bargs; 4098 } 4099 4100 if (arg) { 4101 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4102 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4103 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4104 4105 bctl->flags = bargs->flags; 4106 } else { 4107 /* balance everything - no filters */ 4108 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4109 } 4110 4111 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4112 ret = -EINVAL; 4113 goto out_bctl; 4114 } 4115 4116 do_balance: 4117 /* 4118 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4119 * bctl is freed in reset_balance_state, or, if restriper was paused 4120 * all the way until unmount, in free_fs_info. The flag should be 4121 * cleared after reset_balance_state. 4122 */ 4123 need_unlock = false; 4124 4125 ret = btrfs_balance(fs_info, bctl, bargs); 4126 bctl = NULL; 4127 4128 if ((ret == 0 || ret == -ECANCELED) && arg) { 4129 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4130 ret = -EFAULT; 4131 } 4132 4133 out_bctl: 4134 kfree(bctl); 4135 out_bargs: 4136 kfree(bargs); 4137 out_unlock: 4138 mutex_unlock(&fs_info->balance_mutex); 4139 if (need_unlock) 4140 btrfs_exclop_finish(fs_info); 4141 out: 4142 mnt_drop_write_file(file); 4143 return ret; 4144 } 4145 4146 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4147 { 4148 if (!capable(CAP_SYS_ADMIN)) 4149 return -EPERM; 4150 4151 switch (cmd) { 4152 case BTRFS_BALANCE_CTL_PAUSE: 4153 return btrfs_pause_balance(fs_info); 4154 case BTRFS_BALANCE_CTL_CANCEL: 4155 return btrfs_cancel_balance(fs_info); 4156 } 4157 4158 return -EINVAL; 4159 } 4160 4161 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4162 void __user *arg) 4163 { 4164 struct btrfs_ioctl_balance_args *bargs; 4165 int ret = 0; 4166 4167 if (!capable(CAP_SYS_ADMIN)) 4168 return -EPERM; 4169 4170 mutex_lock(&fs_info->balance_mutex); 4171 if (!fs_info->balance_ctl) { 4172 ret = -ENOTCONN; 4173 goto out; 4174 } 4175 4176 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4177 if (!bargs) { 4178 ret = -ENOMEM; 4179 goto out; 4180 } 4181 4182 btrfs_update_ioctl_balance_args(fs_info, bargs); 4183 4184 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4185 ret = -EFAULT; 4186 4187 kfree(bargs); 4188 out: 4189 mutex_unlock(&fs_info->balance_mutex); 4190 return ret; 4191 } 4192 4193 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4194 { 4195 struct inode *inode = file_inode(file); 4196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4197 struct btrfs_ioctl_quota_ctl_args *sa; 4198 int ret; 4199 4200 if (!capable(CAP_SYS_ADMIN)) 4201 return -EPERM; 4202 4203 ret = mnt_want_write_file(file); 4204 if (ret) 4205 return ret; 4206 4207 sa = memdup_user(arg, sizeof(*sa)); 4208 if (IS_ERR(sa)) { 4209 ret = PTR_ERR(sa); 4210 goto drop_write; 4211 } 4212 4213 down_write(&fs_info->subvol_sem); 4214 4215 switch (sa->cmd) { 4216 case BTRFS_QUOTA_CTL_ENABLE: 4217 ret = btrfs_quota_enable(fs_info); 4218 break; 4219 case BTRFS_QUOTA_CTL_DISABLE: 4220 ret = btrfs_quota_disable(fs_info); 4221 break; 4222 default: 4223 ret = -EINVAL; 4224 break; 4225 } 4226 4227 kfree(sa); 4228 up_write(&fs_info->subvol_sem); 4229 drop_write: 4230 mnt_drop_write_file(file); 4231 return ret; 4232 } 4233 4234 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4235 { 4236 struct inode *inode = file_inode(file); 4237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4238 struct btrfs_root *root = BTRFS_I(inode)->root; 4239 struct btrfs_ioctl_qgroup_assign_args *sa; 4240 struct btrfs_trans_handle *trans; 4241 int ret; 4242 int err; 4243 4244 if (!capable(CAP_SYS_ADMIN)) 4245 return -EPERM; 4246 4247 ret = mnt_want_write_file(file); 4248 if (ret) 4249 return ret; 4250 4251 sa = memdup_user(arg, sizeof(*sa)); 4252 if (IS_ERR(sa)) { 4253 ret = PTR_ERR(sa); 4254 goto drop_write; 4255 } 4256 4257 trans = btrfs_join_transaction(root); 4258 if (IS_ERR(trans)) { 4259 ret = PTR_ERR(trans); 4260 goto out; 4261 } 4262 4263 if (sa->assign) { 4264 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4265 } else { 4266 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4267 } 4268 4269 /* update qgroup status and info */ 4270 err = btrfs_run_qgroups(trans); 4271 if (err < 0) 4272 btrfs_handle_fs_error(fs_info, err, 4273 "failed to update qgroup status and info"); 4274 err = btrfs_end_transaction(trans); 4275 if (err && !ret) 4276 ret = err; 4277 4278 out: 4279 kfree(sa); 4280 drop_write: 4281 mnt_drop_write_file(file); 4282 return ret; 4283 } 4284 4285 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4286 { 4287 struct inode *inode = file_inode(file); 4288 struct btrfs_root *root = BTRFS_I(inode)->root; 4289 struct btrfs_ioctl_qgroup_create_args *sa; 4290 struct btrfs_trans_handle *trans; 4291 int ret; 4292 int err; 4293 4294 if (!capable(CAP_SYS_ADMIN)) 4295 return -EPERM; 4296 4297 ret = mnt_want_write_file(file); 4298 if (ret) 4299 return ret; 4300 4301 sa = memdup_user(arg, sizeof(*sa)); 4302 if (IS_ERR(sa)) { 4303 ret = PTR_ERR(sa); 4304 goto drop_write; 4305 } 4306 4307 if (!sa->qgroupid) { 4308 ret = -EINVAL; 4309 goto out; 4310 } 4311 4312 trans = btrfs_join_transaction(root); 4313 if (IS_ERR(trans)) { 4314 ret = PTR_ERR(trans); 4315 goto out; 4316 } 4317 4318 if (sa->create) { 4319 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4320 } else { 4321 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4322 } 4323 4324 err = btrfs_end_transaction(trans); 4325 if (err && !ret) 4326 ret = err; 4327 4328 out: 4329 kfree(sa); 4330 drop_write: 4331 mnt_drop_write_file(file); 4332 return ret; 4333 } 4334 4335 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4336 { 4337 struct inode *inode = file_inode(file); 4338 struct btrfs_root *root = BTRFS_I(inode)->root; 4339 struct btrfs_ioctl_qgroup_limit_args *sa; 4340 struct btrfs_trans_handle *trans; 4341 int ret; 4342 int err; 4343 u64 qgroupid; 4344 4345 if (!capable(CAP_SYS_ADMIN)) 4346 return -EPERM; 4347 4348 ret = mnt_want_write_file(file); 4349 if (ret) 4350 return ret; 4351 4352 sa = memdup_user(arg, sizeof(*sa)); 4353 if (IS_ERR(sa)) { 4354 ret = PTR_ERR(sa); 4355 goto drop_write; 4356 } 4357 4358 trans = btrfs_join_transaction(root); 4359 if (IS_ERR(trans)) { 4360 ret = PTR_ERR(trans); 4361 goto out; 4362 } 4363 4364 qgroupid = sa->qgroupid; 4365 if (!qgroupid) { 4366 /* take the current subvol as qgroup */ 4367 qgroupid = root->root_key.objectid; 4368 } 4369 4370 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4371 4372 err = btrfs_end_transaction(trans); 4373 if (err && !ret) 4374 ret = err; 4375 4376 out: 4377 kfree(sa); 4378 drop_write: 4379 mnt_drop_write_file(file); 4380 return ret; 4381 } 4382 4383 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4384 { 4385 struct inode *inode = file_inode(file); 4386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4387 struct btrfs_ioctl_quota_rescan_args *qsa; 4388 int ret; 4389 4390 if (!capable(CAP_SYS_ADMIN)) 4391 return -EPERM; 4392 4393 ret = mnt_want_write_file(file); 4394 if (ret) 4395 return ret; 4396 4397 qsa = memdup_user(arg, sizeof(*qsa)); 4398 if (IS_ERR(qsa)) { 4399 ret = PTR_ERR(qsa); 4400 goto drop_write; 4401 } 4402 4403 if (qsa->flags) { 4404 ret = -EINVAL; 4405 goto out; 4406 } 4407 4408 ret = btrfs_qgroup_rescan(fs_info); 4409 4410 out: 4411 kfree(qsa); 4412 drop_write: 4413 mnt_drop_write_file(file); 4414 return ret; 4415 } 4416 4417 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4418 void __user *arg) 4419 { 4420 struct btrfs_ioctl_quota_rescan_args *qsa; 4421 int ret = 0; 4422 4423 if (!capable(CAP_SYS_ADMIN)) 4424 return -EPERM; 4425 4426 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4427 if (!qsa) 4428 return -ENOMEM; 4429 4430 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4431 qsa->flags = 1; 4432 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4433 } 4434 4435 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4436 ret = -EFAULT; 4437 4438 kfree(qsa); 4439 return ret; 4440 } 4441 4442 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4443 void __user *arg) 4444 { 4445 if (!capable(CAP_SYS_ADMIN)) 4446 return -EPERM; 4447 4448 return btrfs_qgroup_wait_for_completion(fs_info, true); 4449 } 4450 4451 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4452 struct btrfs_ioctl_received_subvol_args *sa) 4453 { 4454 struct inode *inode = file_inode(file); 4455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4456 struct btrfs_root *root = BTRFS_I(inode)->root; 4457 struct btrfs_root_item *root_item = &root->root_item; 4458 struct btrfs_trans_handle *trans; 4459 struct timespec64 ct = current_time(inode); 4460 int ret = 0; 4461 int received_uuid_changed; 4462 4463 if (!inode_owner_or_capable(inode)) 4464 return -EPERM; 4465 4466 ret = mnt_want_write_file(file); 4467 if (ret < 0) 4468 return ret; 4469 4470 down_write(&fs_info->subvol_sem); 4471 4472 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4473 ret = -EINVAL; 4474 goto out; 4475 } 4476 4477 if (btrfs_root_readonly(root)) { 4478 ret = -EROFS; 4479 goto out; 4480 } 4481 4482 /* 4483 * 1 - root item 4484 * 2 - uuid items (received uuid + subvol uuid) 4485 */ 4486 trans = btrfs_start_transaction(root, 3); 4487 if (IS_ERR(trans)) { 4488 ret = PTR_ERR(trans); 4489 trans = NULL; 4490 goto out; 4491 } 4492 4493 sa->rtransid = trans->transid; 4494 sa->rtime.sec = ct.tv_sec; 4495 sa->rtime.nsec = ct.tv_nsec; 4496 4497 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4498 BTRFS_UUID_SIZE); 4499 if (received_uuid_changed && 4500 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4501 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4502 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4503 root->root_key.objectid); 4504 if (ret && ret != -ENOENT) { 4505 btrfs_abort_transaction(trans, ret); 4506 btrfs_end_transaction(trans); 4507 goto out; 4508 } 4509 } 4510 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4511 btrfs_set_root_stransid(root_item, sa->stransid); 4512 btrfs_set_root_rtransid(root_item, sa->rtransid); 4513 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4514 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4515 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4516 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4517 4518 ret = btrfs_update_root(trans, fs_info->tree_root, 4519 &root->root_key, &root->root_item); 4520 if (ret < 0) { 4521 btrfs_end_transaction(trans); 4522 goto out; 4523 } 4524 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4525 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4526 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4527 root->root_key.objectid); 4528 if (ret < 0 && ret != -EEXIST) { 4529 btrfs_abort_transaction(trans, ret); 4530 btrfs_end_transaction(trans); 4531 goto out; 4532 } 4533 } 4534 ret = btrfs_commit_transaction(trans); 4535 out: 4536 up_write(&fs_info->subvol_sem); 4537 mnt_drop_write_file(file); 4538 return ret; 4539 } 4540 4541 #ifdef CONFIG_64BIT 4542 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4543 void __user *arg) 4544 { 4545 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4546 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4547 int ret = 0; 4548 4549 args32 = memdup_user(arg, sizeof(*args32)); 4550 if (IS_ERR(args32)) 4551 return PTR_ERR(args32); 4552 4553 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4554 if (!args64) { 4555 ret = -ENOMEM; 4556 goto out; 4557 } 4558 4559 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4560 args64->stransid = args32->stransid; 4561 args64->rtransid = args32->rtransid; 4562 args64->stime.sec = args32->stime.sec; 4563 args64->stime.nsec = args32->stime.nsec; 4564 args64->rtime.sec = args32->rtime.sec; 4565 args64->rtime.nsec = args32->rtime.nsec; 4566 args64->flags = args32->flags; 4567 4568 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4569 if (ret) 4570 goto out; 4571 4572 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4573 args32->stransid = args64->stransid; 4574 args32->rtransid = args64->rtransid; 4575 args32->stime.sec = args64->stime.sec; 4576 args32->stime.nsec = args64->stime.nsec; 4577 args32->rtime.sec = args64->rtime.sec; 4578 args32->rtime.nsec = args64->rtime.nsec; 4579 args32->flags = args64->flags; 4580 4581 ret = copy_to_user(arg, args32, sizeof(*args32)); 4582 if (ret) 4583 ret = -EFAULT; 4584 4585 out: 4586 kfree(args32); 4587 kfree(args64); 4588 return ret; 4589 } 4590 #endif 4591 4592 static long btrfs_ioctl_set_received_subvol(struct file *file, 4593 void __user *arg) 4594 { 4595 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4596 int ret = 0; 4597 4598 sa = memdup_user(arg, sizeof(*sa)); 4599 if (IS_ERR(sa)) 4600 return PTR_ERR(sa); 4601 4602 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4603 4604 if (ret) 4605 goto out; 4606 4607 ret = copy_to_user(arg, sa, sizeof(*sa)); 4608 if (ret) 4609 ret = -EFAULT; 4610 4611 out: 4612 kfree(sa); 4613 return ret; 4614 } 4615 4616 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4617 void __user *arg) 4618 { 4619 size_t len; 4620 int ret; 4621 char label[BTRFS_LABEL_SIZE]; 4622 4623 spin_lock(&fs_info->super_lock); 4624 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4625 spin_unlock(&fs_info->super_lock); 4626 4627 len = strnlen(label, BTRFS_LABEL_SIZE); 4628 4629 if (len == BTRFS_LABEL_SIZE) { 4630 btrfs_warn(fs_info, 4631 "label is too long, return the first %zu bytes", 4632 --len); 4633 } 4634 4635 ret = copy_to_user(arg, label, len); 4636 4637 return ret ? -EFAULT : 0; 4638 } 4639 4640 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4641 { 4642 struct inode *inode = file_inode(file); 4643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4644 struct btrfs_root *root = BTRFS_I(inode)->root; 4645 struct btrfs_super_block *super_block = fs_info->super_copy; 4646 struct btrfs_trans_handle *trans; 4647 char label[BTRFS_LABEL_SIZE]; 4648 int ret; 4649 4650 if (!capable(CAP_SYS_ADMIN)) 4651 return -EPERM; 4652 4653 if (copy_from_user(label, arg, sizeof(label))) 4654 return -EFAULT; 4655 4656 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4657 btrfs_err(fs_info, 4658 "unable to set label with more than %d bytes", 4659 BTRFS_LABEL_SIZE - 1); 4660 return -EINVAL; 4661 } 4662 4663 ret = mnt_want_write_file(file); 4664 if (ret) 4665 return ret; 4666 4667 trans = btrfs_start_transaction(root, 0); 4668 if (IS_ERR(trans)) { 4669 ret = PTR_ERR(trans); 4670 goto out_unlock; 4671 } 4672 4673 spin_lock(&fs_info->super_lock); 4674 strcpy(super_block->label, label); 4675 spin_unlock(&fs_info->super_lock); 4676 ret = btrfs_commit_transaction(trans); 4677 4678 out_unlock: 4679 mnt_drop_write_file(file); 4680 return ret; 4681 } 4682 4683 #define INIT_FEATURE_FLAGS(suffix) \ 4684 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4685 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4686 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4687 4688 int btrfs_ioctl_get_supported_features(void __user *arg) 4689 { 4690 static const struct btrfs_ioctl_feature_flags features[3] = { 4691 INIT_FEATURE_FLAGS(SUPP), 4692 INIT_FEATURE_FLAGS(SAFE_SET), 4693 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4694 }; 4695 4696 if (copy_to_user(arg, &features, sizeof(features))) 4697 return -EFAULT; 4698 4699 return 0; 4700 } 4701 4702 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4703 void __user *arg) 4704 { 4705 struct btrfs_super_block *super_block = fs_info->super_copy; 4706 struct btrfs_ioctl_feature_flags features; 4707 4708 features.compat_flags = btrfs_super_compat_flags(super_block); 4709 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4710 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4711 4712 if (copy_to_user(arg, &features, sizeof(features))) 4713 return -EFAULT; 4714 4715 return 0; 4716 } 4717 4718 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4719 enum btrfs_feature_set set, 4720 u64 change_mask, u64 flags, u64 supported_flags, 4721 u64 safe_set, u64 safe_clear) 4722 { 4723 const char *type = btrfs_feature_set_name(set); 4724 char *names; 4725 u64 disallowed, unsupported; 4726 u64 set_mask = flags & change_mask; 4727 u64 clear_mask = ~flags & change_mask; 4728 4729 unsupported = set_mask & ~supported_flags; 4730 if (unsupported) { 4731 names = btrfs_printable_features(set, unsupported); 4732 if (names) { 4733 btrfs_warn(fs_info, 4734 "this kernel does not support the %s feature bit%s", 4735 names, strchr(names, ',') ? "s" : ""); 4736 kfree(names); 4737 } else 4738 btrfs_warn(fs_info, 4739 "this kernel does not support %s bits 0x%llx", 4740 type, unsupported); 4741 return -EOPNOTSUPP; 4742 } 4743 4744 disallowed = set_mask & ~safe_set; 4745 if (disallowed) { 4746 names = btrfs_printable_features(set, disallowed); 4747 if (names) { 4748 btrfs_warn(fs_info, 4749 "can't set the %s feature bit%s while mounted", 4750 names, strchr(names, ',') ? "s" : ""); 4751 kfree(names); 4752 } else 4753 btrfs_warn(fs_info, 4754 "can't set %s bits 0x%llx while mounted", 4755 type, disallowed); 4756 return -EPERM; 4757 } 4758 4759 disallowed = clear_mask & ~safe_clear; 4760 if (disallowed) { 4761 names = btrfs_printable_features(set, disallowed); 4762 if (names) { 4763 btrfs_warn(fs_info, 4764 "can't clear the %s feature bit%s while mounted", 4765 names, strchr(names, ',') ? "s" : ""); 4766 kfree(names); 4767 } else 4768 btrfs_warn(fs_info, 4769 "can't clear %s bits 0x%llx while mounted", 4770 type, disallowed); 4771 return -EPERM; 4772 } 4773 4774 return 0; 4775 } 4776 4777 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4778 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4779 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4780 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4781 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4782 4783 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4784 { 4785 struct inode *inode = file_inode(file); 4786 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4787 struct btrfs_root *root = BTRFS_I(inode)->root; 4788 struct btrfs_super_block *super_block = fs_info->super_copy; 4789 struct btrfs_ioctl_feature_flags flags[2]; 4790 struct btrfs_trans_handle *trans; 4791 u64 newflags; 4792 int ret; 4793 4794 if (!capable(CAP_SYS_ADMIN)) 4795 return -EPERM; 4796 4797 if (copy_from_user(flags, arg, sizeof(flags))) 4798 return -EFAULT; 4799 4800 /* Nothing to do */ 4801 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4802 !flags[0].incompat_flags) 4803 return 0; 4804 4805 ret = check_feature(fs_info, flags[0].compat_flags, 4806 flags[1].compat_flags, COMPAT); 4807 if (ret) 4808 return ret; 4809 4810 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4811 flags[1].compat_ro_flags, COMPAT_RO); 4812 if (ret) 4813 return ret; 4814 4815 ret = check_feature(fs_info, flags[0].incompat_flags, 4816 flags[1].incompat_flags, INCOMPAT); 4817 if (ret) 4818 return ret; 4819 4820 ret = mnt_want_write_file(file); 4821 if (ret) 4822 return ret; 4823 4824 trans = btrfs_start_transaction(root, 0); 4825 if (IS_ERR(trans)) { 4826 ret = PTR_ERR(trans); 4827 goto out_drop_write; 4828 } 4829 4830 spin_lock(&fs_info->super_lock); 4831 newflags = btrfs_super_compat_flags(super_block); 4832 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4833 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4834 btrfs_set_super_compat_flags(super_block, newflags); 4835 4836 newflags = btrfs_super_compat_ro_flags(super_block); 4837 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4838 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4839 btrfs_set_super_compat_ro_flags(super_block, newflags); 4840 4841 newflags = btrfs_super_incompat_flags(super_block); 4842 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4843 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4844 btrfs_set_super_incompat_flags(super_block, newflags); 4845 spin_unlock(&fs_info->super_lock); 4846 4847 ret = btrfs_commit_transaction(trans); 4848 out_drop_write: 4849 mnt_drop_write_file(file); 4850 4851 return ret; 4852 } 4853 4854 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4855 { 4856 struct btrfs_ioctl_send_args *arg; 4857 int ret; 4858 4859 if (compat) { 4860 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4861 struct btrfs_ioctl_send_args_32 args32; 4862 4863 ret = copy_from_user(&args32, argp, sizeof(args32)); 4864 if (ret) 4865 return -EFAULT; 4866 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4867 if (!arg) 4868 return -ENOMEM; 4869 arg->send_fd = args32.send_fd; 4870 arg->clone_sources_count = args32.clone_sources_count; 4871 arg->clone_sources = compat_ptr(args32.clone_sources); 4872 arg->parent_root = args32.parent_root; 4873 arg->flags = args32.flags; 4874 memcpy(arg->reserved, args32.reserved, 4875 sizeof(args32.reserved)); 4876 #else 4877 return -ENOTTY; 4878 #endif 4879 } else { 4880 arg = memdup_user(argp, sizeof(*arg)); 4881 if (IS_ERR(arg)) 4882 return PTR_ERR(arg); 4883 } 4884 ret = btrfs_ioctl_send(file, arg); 4885 kfree(arg); 4886 return ret; 4887 } 4888 4889 long btrfs_ioctl(struct file *file, unsigned int 4890 cmd, unsigned long arg) 4891 { 4892 struct inode *inode = file_inode(file); 4893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4894 struct btrfs_root *root = BTRFS_I(inode)->root; 4895 void __user *argp = (void __user *)arg; 4896 4897 switch (cmd) { 4898 case FS_IOC_GETFLAGS: 4899 return btrfs_ioctl_getflags(file, argp); 4900 case FS_IOC_SETFLAGS: 4901 return btrfs_ioctl_setflags(file, argp); 4902 case FS_IOC_GETVERSION: 4903 return btrfs_ioctl_getversion(file, argp); 4904 case FS_IOC_GETFSLABEL: 4905 return btrfs_ioctl_get_fslabel(fs_info, argp); 4906 case FS_IOC_SETFSLABEL: 4907 return btrfs_ioctl_set_fslabel(file, argp); 4908 case FITRIM: 4909 return btrfs_ioctl_fitrim(fs_info, argp); 4910 case BTRFS_IOC_SNAP_CREATE: 4911 return btrfs_ioctl_snap_create(file, argp, 0); 4912 case BTRFS_IOC_SNAP_CREATE_V2: 4913 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4914 case BTRFS_IOC_SUBVOL_CREATE: 4915 return btrfs_ioctl_snap_create(file, argp, 1); 4916 case BTRFS_IOC_SUBVOL_CREATE_V2: 4917 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4918 case BTRFS_IOC_SNAP_DESTROY: 4919 return btrfs_ioctl_snap_destroy(file, argp, false); 4920 case BTRFS_IOC_SNAP_DESTROY_V2: 4921 return btrfs_ioctl_snap_destroy(file, argp, true); 4922 case BTRFS_IOC_SUBVOL_GETFLAGS: 4923 return btrfs_ioctl_subvol_getflags(file, argp); 4924 case BTRFS_IOC_SUBVOL_SETFLAGS: 4925 return btrfs_ioctl_subvol_setflags(file, argp); 4926 case BTRFS_IOC_DEFAULT_SUBVOL: 4927 return btrfs_ioctl_default_subvol(file, argp); 4928 case BTRFS_IOC_DEFRAG: 4929 return btrfs_ioctl_defrag(file, NULL); 4930 case BTRFS_IOC_DEFRAG_RANGE: 4931 return btrfs_ioctl_defrag(file, argp); 4932 case BTRFS_IOC_RESIZE: 4933 return btrfs_ioctl_resize(file, argp); 4934 case BTRFS_IOC_ADD_DEV: 4935 return btrfs_ioctl_add_dev(fs_info, argp); 4936 case BTRFS_IOC_RM_DEV: 4937 return btrfs_ioctl_rm_dev(file, argp); 4938 case BTRFS_IOC_RM_DEV_V2: 4939 return btrfs_ioctl_rm_dev_v2(file, argp); 4940 case BTRFS_IOC_FS_INFO: 4941 return btrfs_ioctl_fs_info(fs_info, argp); 4942 case BTRFS_IOC_DEV_INFO: 4943 return btrfs_ioctl_dev_info(fs_info, argp); 4944 case BTRFS_IOC_BALANCE: 4945 return btrfs_ioctl_balance(file, NULL); 4946 case BTRFS_IOC_TREE_SEARCH: 4947 return btrfs_ioctl_tree_search(file, argp); 4948 case BTRFS_IOC_TREE_SEARCH_V2: 4949 return btrfs_ioctl_tree_search_v2(file, argp); 4950 case BTRFS_IOC_INO_LOOKUP: 4951 return btrfs_ioctl_ino_lookup(file, argp); 4952 case BTRFS_IOC_INO_PATHS: 4953 return btrfs_ioctl_ino_to_path(root, argp); 4954 case BTRFS_IOC_LOGICAL_INO: 4955 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4956 case BTRFS_IOC_LOGICAL_INO_V2: 4957 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4958 case BTRFS_IOC_SPACE_INFO: 4959 return btrfs_ioctl_space_info(fs_info, argp); 4960 case BTRFS_IOC_SYNC: { 4961 int ret; 4962 4963 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4964 if (ret) 4965 return ret; 4966 ret = btrfs_sync_fs(inode->i_sb, 1); 4967 /* 4968 * The transaction thread may want to do more work, 4969 * namely it pokes the cleaner kthread that will start 4970 * processing uncleaned subvols. 4971 */ 4972 wake_up_process(fs_info->transaction_kthread); 4973 return ret; 4974 } 4975 case BTRFS_IOC_START_SYNC: 4976 return btrfs_ioctl_start_sync(root, argp); 4977 case BTRFS_IOC_WAIT_SYNC: 4978 return btrfs_ioctl_wait_sync(fs_info, argp); 4979 case BTRFS_IOC_SCRUB: 4980 return btrfs_ioctl_scrub(file, argp); 4981 case BTRFS_IOC_SCRUB_CANCEL: 4982 return btrfs_ioctl_scrub_cancel(fs_info); 4983 case BTRFS_IOC_SCRUB_PROGRESS: 4984 return btrfs_ioctl_scrub_progress(fs_info, argp); 4985 case BTRFS_IOC_BALANCE_V2: 4986 return btrfs_ioctl_balance(file, argp); 4987 case BTRFS_IOC_BALANCE_CTL: 4988 return btrfs_ioctl_balance_ctl(fs_info, arg); 4989 case BTRFS_IOC_BALANCE_PROGRESS: 4990 return btrfs_ioctl_balance_progress(fs_info, argp); 4991 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4992 return btrfs_ioctl_set_received_subvol(file, argp); 4993 #ifdef CONFIG_64BIT 4994 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4995 return btrfs_ioctl_set_received_subvol_32(file, argp); 4996 #endif 4997 case BTRFS_IOC_SEND: 4998 return _btrfs_ioctl_send(file, argp, false); 4999 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 5000 case BTRFS_IOC_SEND_32: 5001 return _btrfs_ioctl_send(file, argp, true); 5002 #endif 5003 case BTRFS_IOC_GET_DEV_STATS: 5004 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5005 case BTRFS_IOC_QUOTA_CTL: 5006 return btrfs_ioctl_quota_ctl(file, argp); 5007 case BTRFS_IOC_QGROUP_ASSIGN: 5008 return btrfs_ioctl_qgroup_assign(file, argp); 5009 case BTRFS_IOC_QGROUP_CREATE: 5010 return btrfs_ioctl_qgroup_create(file, argp); 5011 case BTRFS_IOC_QGROUP_LIMIT: 5012 return btrfs_ioctl_qgroup_limit(file, argp); 5013 case BTRFS_IOC_QUOTA_RESCAN: 5014 return btrfs_ioctl_quota_rescan(file, argp); 5015 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5016 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5017 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5018 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5019 case BTRFS_IOC_DEV_REPLACE: 5020 return btrfs_ioctl_dev_replace(fs_info, argp); 5021 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5022 return btrfs_ioctl_get_supported_features(argp); 5023 case BTRFS_IOC_GET_FEATURES: 5024 return btrfs_ioctl_get_features(fs_info, argp); 5025 case BTRFS_IOC_SET_FEATURES: 5026 return btrfs_ioctl_set_features(file, argp); 5027 case FS_IOC_FSGETXATTR: 5028 return btrfs_ioctl_fsgetxattr(file, argp); 5029 case FS_IOC_FSSETXATTR: 5030 return btrfs_ioctl_fssetxattr(file, argp); 5031 case BTRFS_IOC_GET_SUBVOL_INFO: 5032 return btrfs_ioctl_get_subvol_info(file, argp); 5033 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5034 return btrfs_ioctl_get_subvol_rootref(file, argp); 5035 case BTRFS_IOC_INO_LOOKUP_USER: 5036 return btrfs_ioctl_ino_lookup_user(file, argp); 5037 } 5038 5039 return -ENOTTY; 5040 } 5041 5042 #ifdef CONFIG_COMPAT 5043 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5044 { 5045 /* 5046 * These all access 32-bit values anyway so no further 5047 * handling is necessary. 5048 */ 5049 switch (cmd) { 5050 case FS_IOC32_GETFLAGS: 5051 cmd = FS_IOC_GETFLAGS; 5052 break; 5053 case FS_IOC32_SETFLAGS: 5054 cmd = FS_IOC_SETFLAGS; 5055 break; 5056 case FS_IOC32_GETVERSION: 5057 cmd = FS_IOC_GETVERSION; 5058 break; 5059 } 5060 5061 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5062 } 5063 #endif 5064