1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include <linux/sched/xacct.h> 32 #include "ctree.h" 33 #include "disk-io.h" 34 #include "export.h" 35 #include "transaction.h" 36 #include "btrfs_inode.h" 37 #include "print-tree.h" 38 #include "volumes.h" 39 #include "locking.h" 40 #include "backref.h" 41 #include "rcu-string.h" 42 #include "send.h" 43 #include "dev-replace.h" 44 #include "props.h" 45 #include "sysfs.h" 46 #include "qgroup.h" 47 #include "tree-log.h" 48 #include "compression.h" 49 #include "space-info.h" 50 #include "delalloc-space.h" 51 #include "block-group.h" 52 #include "subpage.h" 53 #include "fs.h" 54 #include "accessors.h" 55 #include "extent-tree.h" 56 #include "root-tree.h" 57 #include "defrag.h" 58 #include "dir-item.h" 59 #include "uuid-tree.h" 60 #include "ioctl.h" 61 #include "file.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 89 struct btrfs_ioctl_send_args_32 { 90 __s64 send_fd; /* in */ 91 __u64 clone_sources_count; /* in */ 92 compat_uptr_t clone_sources; /* in */ 93 __u64 parent_root; /* in */ 94 __u64 flags; /* in */ 95 __u32 version; /* in */ 96 __u8 reserved[28]; /* in */ 97 } __attribute__ ((__packed__)); 98 99 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 100 struct btrfs_ioctl_send_args_32) 101 102 struct btrfs_ioctl_encoded_io_args_32 { 103 compat_uptr_t iov; 104 compat_ulong_t iovcnt; 105 __s64 offset; 106 __u64 flags; 107 __u64 len; 108 __u64 unencoded_len; 109 __u64 unencoded_offset; 110 __u32 compression; 111 __u32 encryption; 112 __u8 reserved[64]; 113 }; 114 115 #define BTRFS_IOC_ENCODED_READ_32 _IOR(BTRFS_IOCTL_MAGIC, 64, \ 116 struct btrfs_ioctl_encoded_io_args_32) 117 #define BTRFS_IOC_ENCODED_WRITE_32 _IOW(BTRFS_IOCTL_MAGIC, 64, \ 118 struct btrfs_ioctl_encoded_io_args_32) 119 #endif 120 121 /* Mask out flags that are inappropriate for the given type of inode. */ 122 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 123 unsigned int flags) 124 { 125 if (S_ISDIR(inode->i_mode)) 126 return flags; 127 else if (S_ISREG(inode->i_mode)) 128 return flags & ~FS_DIRSYNC_FL; 129 else 130 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 131 } 132 133 /* 134 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 135 * ioctl. 136 */ 137 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 138 { 139 unsigned int iflags = 0; 140 u32 flags = binode->flags; 141 u32 ro_flags = binode->ro_flags; 142 143 if (flags & BTRFS_INODE_SYNC) 144 iflags |= FS_SYNC_FL; 145 if (flags & BTRFS_INODE_IMMUTABLE) 146 iflags |= FS_IMMUTABLE_FL; 147 if (flags & BTRFS_INODE_APPEND) 148 iflags |= FS_APPEND_FL; 149 if (flags & BTRFS_INODE_NODUMP) 150 iflags |= FS_NODUMP_FL; 151 if (flags & BTRFS_INODE_NOATIME) 152 iflags |= FS_NOATIME_FL; 153 if (flags & BTRFS_INODE_DIRSYNC) 154 iflags |= FS_DIRSYNC_FL; 155 if (flags & BTRFS_INODE_NODATACOW) 156 iflags |= FS_NOCOW_FL; 157 if (ro_flags & BTRFS_INODE_RO_VERITY) 158 iflags |= FS_VERITY_FL; 159 160 if (flags & BTRFS_INODE_NOCOMPRESS) 161 iflags |= FS_NOCOMP_FL; 162 else if (flags & BTRFS_INODE_COMPRESS) 163 iflags |= FS_COMPR_FL; 164 165 return iflags; 166 } 167 168 /* 169 * Update inode->i_flags based on the btrfs internal flags. 170 */ 171 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 172 { 173 struct btrfs_inode *binode = BTRFS_I(inode); 174 unsigned int new_fl = 0; 175 176 if (binode->flags & BTRFS_INODE_SYNC) 177 new_fl |= S_SYNC; 178 if (binode->flags & BTRFS_INODE_IMMUTABLE) 179 new_fl |= S_IMMUTABLE; 180 if (binode->flags & BTRFS_INODE_APPEND) 181 new_fl |= S_APPEND; 182 if (binode->flags & BTRFS_INODE_NOATIME) 183 new_fl |= S_NOATIME; 184 if (binode->flags & BTRFS_INODE_DIRSYNC) 185 new_fl |= S_DIRSYNC; 186 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 187 new_fl |= S_VERITY; 188 189 set_mask_bits(&inode->i_flags, 190 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 191 S_VERITY, new_fl); 192 } 193 194 /* 195 * Check if @flags are a supported and valid set of FS_*_FL flags and that 196 * the old and new flags are not conflicting 197 */ 198 static int check_fsflags(unsigned int old_flags, unsigned int flags) 199 { 200 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 201 FS_NOATIME_FL | FS_NODUMP_FL | \ 202 FS_SYNC_FL | FS_DIRSYNC_FL | \ 203 FS_NOCOMP_FL | FS_COMPR_FL | 204 FS_NOCOW_FL)) 205 return -EOPNOTSUPP; 206 207 /* COMPR and NOCOMP on new/old are valid */ 208 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 209 return -EINVAL; 210 211 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 212 return -EINVAL; 213 214 /* NOCOW and compression options are mutually exclusive */ 215 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 216 return -EINVAL; 217 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 218 return -EINVAL; 219 220 return 0; 221 } 222 223 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 224 unsigned int flags) 225 { 226 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 227 return -EPERM; 228 229 return 0; 230 } 231 232 /* 233 * Set flags/xflags from the internal inode flags. The remaining items of 234 * fsxattr are zeroed. 235 */ 236 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 237 { 238 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 239 240 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 241 return 0; 242 } 243 244 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 245 struct dentry *dentry, struct fileattr *fa) 246 { 247 struct inode *inode = d_inode(dentry); 248 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 249 struct btrfs_inode *binode = BTRFS_I(inode); 250 struct btrfs_root *root = binode->root; 251 struct btrfs_trans_handle *trans; 252 unsigned int fsflags, old_fsflags; 253 int ret; 254 const char *comp = NULL; 255 u32 binode_flags; 256 257 if (btrfs_root_readonly(root)) 258 return -EROFS; 259 260 if (fileattr_has_fsx(fa)) 261 return -EOPNOTSUPP; 262 263 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 264 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 265 ret = check_fsflags(old_fsflags, fsflags); 266 if (ret) 267 return ret; 268 269 ret = check_fsflags_compatible(fs_info, fsflags); 270 if (ret) 271 return ret; 272 273 binode_flags = binode->flags; 274 if (fsflags & FS_SYNC_FL) 275 binode_flags |= BTRFS_INODE_SYNC; 276 else 277 binode_flags &= ~BTRFS_INODE_SYNC; 278 if (fsflags & FS_IMMUTABLE_FL) 279 binode_flags |= BTRFS_INODE_IMMUTABLE; 280 else 281 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 282 if (fsflags & FS_APPEND_FL) 283 binode_flags |= BTRFS_INODE_APPEND; 284 else 285 binode_flags &= ~BTRFS_INODE_APPEND; 286 if (fsflags & FS_NODUMP_FL) 287 binode_flags |= BTRFS_INODE_NODUMP; 288 else 289 binode_flags &= ~BTRFS_INODE_NODUMP; 290 if (fsflags & FS_NOATIME_FL) 291 binode_flags |= BTRFS_INODE_NOATIME; 292 else 293 binode_flags &= ~BTRFS_INODE_NOATIME; 294 295 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 296 if (!fa->flags_valid) { 297 /* 1 item for the inode */ 298 trans = btrfs_start_transaction(root, 1); 299 if (IS_ERR(trans)) 300 return PTR_ERR(trans); 301 goto update_flags; 302 } 303 304 if (fsflags & FS_DIRSYNC_FL) 305 binode_flags |= BTRFS_INODE_DIRSYNC; 306 else 307 binode_flags &= ~BTRFS_INODE_DIRSYNC; 308 if (fsflags & FS_NOCOW_FL) { 309 if (S_ISREG(inode->i_mode)) { 310 /* 311 * It's safe to turn csums off here, no extents exist. 312 * Otherwise we want the flag to reflect the real COW 313 * status of the file and will not set it. 314 */ 315 if (inode->i_size == 0) 316 binode_flags |= BTRFS_INODE_NODATACOW | 317 BTRFS_INODE_NODATASUM; 318 } else { 319 binode_flags |= BTRFS_INODE_NODATACOW; 320 } 321 } else { 322 /* 323 * Revert back under same assumptions as above 324 */ 325 if (S_ISREG(inode->i_mode)) { 326 if (inode->i_size == 0) 327 binode_flags &= ~(BTRFS_INODE_NODATACOW | 328 BTRFS_INODE_NODATASUM); 329 } else { 330 binode_flags &= ~BTRFS_INODE_NODATACOW; 331 } 332 } 333 334 /* 335 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 336 * flag may be changed automatically if compression code won't make 337 * things smaller. 338 */ 339 if (fsflags & FS_NOCOMP_FL) { 340 binode_flags &= ~BTRFS_INODE_COMPRESS; 341 binode_flags |= BTRFS_INODE_NOCOMPRESS; 342 } else if (fsflags & FS_COMPR_FL) { 343 344 if (IS_SWAPFILE(inode)) 345 return -ETXTBSY; 346 347 binode_flags |= BTRFS_INODE_COMPRESS; 348 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 349 350 comp = btrfs_compress_type2str(fs_info->compress_type); 351 if (!comp || comp[0] == 0) 352 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 353 } else { 354 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 355 } 356 357 /* 358 * 1 for inode item 359 * 2 for properties 360 */ 361 trans = btrfs_start_transaction(root, 3); 362 if (IS_ERR(trans)) 363 return PTR_ERR(trans); 364 365 if (comp) { 366 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 367 strlen(comp), 0); 368 if (ret) { 369 btrfs_abort_transaction(trans, ret); 370 goto out_end_trans; 371 } 372 } else { 373 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 374 0, 0); 375 if (ret && ret != -ENODATA) { 376 btrfs_abort_transaction(trans, ret); 377 goto out_end_trans; 378 } 379 } 380 381 update_flags: 382 binode->flags = binode_flags; 383 btrfs_sync_inode_flags_to_i_flags(inode); 384 inode_inc_iversion(inode); 385 inode->i_ctime = current_time(inode); 386 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 387 388 out_end_trans: 389 btrfs_end_transaction(trans); 390 return ret; 391 } 392 393 /* 394 * Start exclusive operation @type, return true on success 395 */ 396 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 397 enum btrfs_exclusive_operation type) 398 { 399 bool ret = false; 400 401 spin_lock(&fs_info->super_lock); 402 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 403 fs_info->exclusive_operation = type; 404 ret = true; 405 } 406 spin_unlock(&fs_info->super_lock); 407 408 return ret; 409 } 410 411 /* 412 * Conditionally allow to enter the exclusive operation in case it's compatible 413 * with the running one. This must be paired with btrfs_exclop_start_unlock and 414 * btrfs_exclop_finish. 415 * 416 * Compatibility: 417 * - the same type is already running 418 * - when trying to add a device and balance has been paused 419 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 420 * must check the condition first that would allow none -> @type 421 */ 422 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 423 enum btrfs_exclusive_operation type) 424 { 425 spin_lock(&fs_info->super_lock); 426 if (fs_info->exclusive_operation == type || 427 (fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED && 428 type == BTRFS_EXCLOP_DEV_ADD)) 429 return true; 430 431 spin_unlock(&fs_info->super_lock); 432 return false; 433 } 434 435 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 436 { 437 spin_unlock(&fs_info->super_lock); 438 } 439 440 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 441 { 442 spin_lock(&fs_info->super_lock); 443 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 444 spin_unlock(&fs_info->super_lock); 445 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 446 } 447 448 void btrfs_exclop_balance(struct btrfs_fs_info *fs_info, 449 enum btrfs_exclusive_operation op) 450 { 451 switch (op) { 452 case BTRFS_EXCLOP_BALANCE_PAUSED: 453 spin_lock(&fs_info->super_lock); 454 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE || 455 fs_info->exclusive_operation == BTRFS_EXCLOP_DEV_ADD); 456 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE_PAUSED; 457 spin_unlock(&fs_info->super_lock); 458 break; 459 case BTRFS_EXCLOP_BALANCE: 460 spin_lock(&fs_info->super_lock); 461 ASSERT(fs_info->exclusive_operation == BTRFS_EXCLOP_BALANCE_PAUSED); 462 fs_info->exclusive_operation = BTRFS_EXCLOP_BALANCE; 463 spin_unlock(&fs_info->super_lock); 464 break; 465 default: 466 btrfs_warn(fs_info, 467 "invalid exclop balance operation %d requested", op); 468 } 469 } 470 471 static int btrfs_ioctl_getversion(struct inode *inode, int __user *arg) 472 { 473 return put_user(inode->i_generation, arg); 474 } 475 476 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 477 void __user *arg) 478 { 479 struct btrfs_device *device; 480 struct fstrim_range range; 481 u64 minlen = ULLONG_MAX; 482 u64 num_devices = 0; 483 int ret; 484 485 if (!capable(CAP_SYS_ADMIN)) 486 return -EPERM; 487 488 /* 489 * btrfs_trim_block_group() depends on space cache, which is not 490 * available in zoned filesystem. So, disallow fitrim on a zoned 491 * filesystem for now. 492 */ 493 if (btrfs_is_zoned(fs_info)) 494 return -EOPNOTSUPP; 495 496 /* 497 * If the fs is mounted with nologreplay, which requires it to be 498 * mounted in RO mode as well, we can not allow discard on free space 499 * inside block groups, because log trees refer to extents that are not 500 * pinned in a block group's free space cache (pinning the extents is 501 * precisely the first phase of replaying a log tree). 502 */ 503 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 504 return -EROFS; 505 506 rcu_read_lock(); 507 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 508 dev_list) { 509 if (!device->bdev || !bdev_max_discard_sectors(device->bdev)) 510 continue; 511 num_devices++; 512 minlen = min_t(u64, bdev_discard_granularity(device->bdev), 513 minlen); 514 } 515 rcu_read_unlock(); 516 517 if (!num_devices) 518 return -EOPNOTSUPP; 519 if (copy_from_user(&range, arg, sizeof(range))) 520 return -EFAULT; 521 522 /* 523 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 524 * block group is in the logical address space, which can be any 525 * sectorsize aligned bytenr in the range [0, U64_MAX]. 526 */ 527 if (range.len < fs_info->sb->s_blocksize) 528 return -EINVAL; 529 530 range.minlen = max(range.minlen, minlen); 531 ret = btrfs_trim_fs(fs_info, &range); 532 if (ret < 0) 533 return ret; 534 535 if (copy_to_user(arg, &range, sizeof(range))) 536 return -EFAULT; 537 538 return 0; 539 } 540 541 int __pure btrfs_is_empty_uuid(u8 *uuid) 542 { 543 int i; 544 545 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 546 if (uuid[i]) 547 return 0; 548 } 549 return 1; 550 } 551 552 /* 553 * Calculate the number of transaction items to reserve for creating a subvolume 554 * or snapshot, not including the inode, directory entries, or parent directory. 555 */ 556 static unsigned int create_subvol_num_items(struct btrfs_qgroup_inherit *inherit) 557 { 558 /* 559 * 1 to add root block 560 * 1 to add root item 561 * 1 to add root ref 562 * 1 to add root backref 563 * 1 to add UUID item 564 * 1 to add qgroup info 565 * 1 to add qgroup limit 566 * 567 * Ideally the last two would only be accounted if qgroups are enabled, 568 * but that can change between now and the time we would insert them. 569 */ 570 unsigned int num_items = 7; 571 572 if (inherit) { 573 /* 2 to add qgroup relations for each inherited qgroup */ 574 num_items += 2 * inherit->num_qgroups; 575 } 576 return num_items; 577 } 578 579 static noinline int create_subvol(struct user_namespace *mnt_userns, 580 struct inode *dir, struct dentry *dentry, 581 struct btrfs_qgroup_inherit *inherit) 582 { 583 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 584 struct btrfs_trans_handle *trans; 585 struct btrfs_key key; 586 struct btrfs_root_item *root_item; 587 struct btrfs_inode_item *inode_item; 588 struct extent_buffer *leaf; 589 struct btrfs_root *root = BTRFS_I(dir)->root; 590 struct btrfs_root *new_root; 591 struct btrfs_block_rsv block_rsv; 592 struct timespec64 cur_time = current_time(dir); 593 struct btrfs_new_inode_args new_inode_args = { 594 .dir = dir, 595 .dentry = dentry, 596 .subvol = true, 597 }; 598 unsigned int trans_num_items; 599 int ret; 600 dev_t anon_dev; 601 u64 objectid; 602 603 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 604 if (!root_item) 605 return -ENOMEM; 606 607 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 608 if (ret) 609 goto out_root_item; 610 611 /* 612 * Don't create subvolume whose level is not zero. Or qgroup will be 613 * screwed up since it assumes subvolume qgroup's level to be 0. 614 */ 615 if (btrfs_qgroup_level(objectid)) { 616 ret = -ENOSPC; 617 goto out_root_item; 618 } 619 620 ret = get_anon_bdev(&anon_dev); 621 if (ret < 0) 622 goto out_root_item; 623 624 new_inode_args.inode = btrfs_new_subvol_inode(mnt_userns, dir); 625 if (!new_inode_args.inode) { 626 ret = -ENOMEM; 627 goto out_anon_dev; 628 } 629 ret = btrfs_new_inode_prepare(&new_inode_args, &trans_num_items); 630 if (ret) 631 goto out_inode; 632 trans_num_items += create_subvol_num_items(inherit); 633 634 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 635 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 636 trans_num_items, false); 637 if (ret) 638 goto out_new_inode_args; 639 640 trans = btrfs_start_transaction(root, 0); 641 if (IS_ERR(trans)) { 642 ret = PTR_ERR(trans); 643 btrfs_subvolume_release_metadata(root, &block_rsv); 644 goto out_new_inode_args; 645 } 646 trans->block_rsv = &block_rsv; 647 trans->bytes_reserved = block_rsv.size; 648 649 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 650 if (ret) 651 goto out; 652 653 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 654 BTRFS_NESTING_NORMAL); 655 if (IS_ERR(leaf)) { 656 ret = PTR_ERR(leaf); 657 goto out; 658 } 659 660 btrfs_mark_buffer_dirty(leaf); 661 662 inode_item = &root_item->inode; 663 btrfs_set_stack_inode_generation(inode_item, 1); 664 btrfs_set_stack_inode_size(inode_item, 3); 665 btrfs_set_stack_inode_nlink(inode_item, 1); 666 btrfs_set_stack_inode_nbytes(inode_item, 667 fs_info->nodesize); 668 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 669 670 btrfs_set_root_flags(root_item, 0); 671 btrfs_set_root_limit(root_item, 0); 672 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 673 674 btrfs_set_root_bytenr(root_item, leaf->start); 675 btrfs_set_root_generation(root_item, trans->transid); 676 btrfs_set_root_level(root_item, 0); 677 btrfs_set_root_refs(root_item, 1); 678 btrfs_set_root_used(root_item, leaf->len); 679 btrfs_set_root_last_snapshot(root_item, 0); 680 681 btrfs_set_root_generation_v2(root_item, 682 btrfs_root_generation(root_item)); 683 generate_random_guid(root_item->uuid); 684 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 685 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 686 root_item->ctime = root_item->otime; 687 btrfs_set_root_ctransid(root_item, trans->transid); 688 btrfs_set_root_otransid(root_item, trans->transid); 689 690 btrfs_tree_unlock(leaf); 691 692 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 693 694 key.objectid = objectid; 695 key.offset = 0; 696 key.type = BTRFS_ROOT_ITEM_KEY; 697 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 698 root_item); 699 if (ret) { 700 /* 701 * Since we don't abort the transaction in this case, free the 702 * tree block so that we don't leak space and leave the 703 * filesystem in an inconsistent state (an extent item in the 704 * extent tree with a backreference for a root that does not 705 * exists). 706 */ 707 btrfs_tree_lock(leaf); 708 btrfs_clean_tree_block(leaf); 709 btrfs_tree_unlock(leaf); 710 btrfs_free_tree_block(trans, objectid, leaf, 0, 1); 711 free_extent_buffer(leaf); 712 goto out; 713 } 714 715 free_extent_buffer(leaf); 716 leaf = NULL; 717 718 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 719 if (IS_ERR(new_root)) { 720 ret = PTR_ERR(new_root); 721 btrfs_abort_transaction(trans, ret); 722 goto out; 723 } 724 /* anon_dev is owned by new_root now. */ 725 anon_dev = 0; 726 BTRFS_I(new_inode_args.inode)->root = new_root; 727 /* ... and new_root is owned by new_inode_args.inode now. */ 728 729 ret = btrfs_record_root_in_trans(trans, new_root); 730 if (ret) { 731 btrfs_abort_transaction(trans, ret); 732 goto out; 733 } 734 735 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 736 BTRFS_UUID_KEY_SUBVOL, objectid); 737 if (ret) { 738 btrfs_abort_transaction(trans, ret); 739 goto out; 740 } 741 742 ret = btrfs_create_new_inode(trans, &new_inode_args); 743 if (ret) { 744 btrfs_abort_transaction(trans, ret); 745 goto out; 746 } 747 748 d_instantiate_new(dentry, new_inode_args.inode); 749 new_inode_args.inode = NULL; 750 751 out: 752 trans->block_rsv = NULL; 753 trans->bytes_reserved = 0; 754 btrfs_subvolume_release_metadata(root, &block_rsv); 755 756 if (ret) 757 btrfs_end_transaction(trans); 758 else 759 ret = btrfs_commit_transaction(trans); 760 out_new_inode_args: 761 btrfs_new_inode_args_destroy(&new_inode_args); 762 out_inode: 763 iput(new_inode_args.inode); 764 out_anon_dev: 765 if (anon_dev) 766 free_anon_bdev(anon_dev); 767 out_root_item: 768 kfree(root_item); 769 return ret; 770 } 771 772 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 773 struct dentry *dentry, bool readonly, 774 struct btrfs_qgroup_inherit *inherit) 775 { 776 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 777 struct inode *inode; 778 struct btrfs_pending_snapshot *pending_snapshot; 779 unsigned int trans_num_items; 780 struct btrfs_trans_handle *trans; 781 int ret; 782 783 /* We do not support snapshotting right now. */ 784 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 785 btrfs_warn(fs_info, 786 "extent tree v2 doesn't support snapshotting yet"); 787 return -EOPNOTSUPP; 788 } 789 790 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 791 return -EINVAL; 792 793 if (atomic_read(&root->nr_swapfiles)) { 794 btrfs_warn(fs_info, 795 "cannot snapshot subvolume with active swapfile"); 796 return -ETXTBSY; 797 } 798 799 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 800 if (!pending_snapshot) 801 return -ENOMEM; 802 803 ret = get_anon_bdev(&pending_snapshot->anon_dev); 804 if (ret < 0) 805 goto free_pending; 806 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 807 GFP_KERNEL); 808 pending_snapshot->path = btrfs_alloc_path(); 809 if (!pending_snapshot->root_item || !pending_snapshot->path) { 810 ret = -ENOMEM; 811 goto free_pending; 812 } 813 814 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 815 BTRFS_BLOCK_RSV_TEMP); 816 /* 817 * 1 to add dir item 818 * 1 to add dir index 819 * 1 to update parent inode item 820 */ 821 trans_num_items = create_subvol_num_items(inherit) + 3; 822 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 823 &pending_snapshot->block_rsv, 824 trans_num_items, false); 825 if (ret) 826 goto free_pending; 827 828 pending_snapshot->dentry = dentry; 829 pending_snapshot->root = root; 830 pending_snapshot->readonly = readonly; 831 pending_snapshot->dir = dir; 832 pending_snapshot->inherit = inherit; 833 834 trans = btrfs_start_transaction(root, 0); 835 if (IS_ERR(trans)) { 836 ret = PTR_ERR(trans); 837 goto fail; 838 } 839 840 trans->pending_snapshot = pending_snapshot; 841 842 ret = btrfs_commit_transaction(trans); 843 if (ret) 844 goto fail; 845 846 ret = pending_snapshot->error; 847 if (ret) 848 goto fail; 849 850 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 851 if (ret) 852 goto fail; 853 854 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 855 if (IS_ERR(inode)) { 856 ret = PTR_ERR(inode); 857 goto fail; 858 } 859 860 d_instantiate(dentry, inode); 861 ret = 0; 862 pending_snapshot->anon_dev = 0; 863 fail: 864 /* Prevent double freeing of anon_dev */ 865 if (ret && pending_snapshot->snap) 866 pending_snapshot->snap->anon_dev = 0; 867 btrfs_put_root(pending_snapshot->snap); 868 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 869 free_pending: 870 if (pending_snapshot->anon_dev) 871 free_anon_bdev(pending_snapshot->anon_dev); 872 kfree(pending_snapshot->root_item); 873 btrfs_free_path(pending_snapshot->path); 874 kfree(pending_snapshot); 875 876 return ret; 877 } 878 879 /* copy of may_delete in fs/namei.c() 880 * Check whether we can remove a link victim from directory dir, check 881 * whether the type of victim is right. 882 * 1. We can't do it if dir is read-only (done in permission()) 883 * 2. We should have write and exec permissions on dir 884 * 3. We can't remove anything from append-only dir 885 * 4. We can't do anything with immutable dir (done in permission()) 886 * 5. If the sticky bit on dir is set we should either 887 * a. be owner of dir, or 888 * b. be owner of victim, or 889 * c. have CAP_FOWNER capability 890 * 6. If the victim is append-only or immutable we can't do anything with 891 * links pointing to it. 892 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 893 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 894 * 9. We can't remove a root or mountpoint. 895 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 896 * nfs_async_unlink(). 897 */ 898 899 static int btrfs_may_delete(struct user_namespace *mnt_userns, 900 struct inode *dir, struct dentry *victim, int isdir) 901 { 902 int error; 903 904 if (d_really_is_negative(victim)) 905 return -ENOENT; 906 907 BUG_ON(d_inode(victim->d_parent) != dir); 908 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 909 910 error = inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 911 if (error) 912 return error; 913 if (IS_APPEND(dir)) 914 return -EPERM; 915 if (check_sticky(mnt_userns, dir, d_inode(victim)) || 916 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 917 IS_SWAPFILE(d_inode(victim))) 918 return -EPERM; 919 if (isdir) { 920 if (!d_is_dir(victim)) 921 return -ENOTDIR; 922 if (IS_ROOT(victim)) 923 return -EBUSY; 924 } else if (d_is_dir(victim)) 925 return -EISDIR; 926 if (IS_DEADDIR(dir)) 927 return -ENOENT; 928 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 929 return -EBUSY; 930 return 0; 931 } 932 933 /* copy of may_create in fs/namei.c() */ 934 static inline int btrfs_may_create(struct user_namespace *mnt_userns, 935 struct inode *dir, struct dentry *child) 936 { 937 if (d_really_is_positive(child)) 938 return -EEXIST; 939 if (IS_DEADDIR(dir)) 940 return -ENOENT; 941 if (!fsuidgid_has_mapping(dir->i_sb, mnt_userns)) 942 return -EOVERFLOW; 943 return inode_permission(mnt_userns, dir, MAY_WRITE | MAY_EXEC); 944 } 945 946 /* 947 * Create a new subvolume below @parent. This is largely modeled after 948 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 949 * inside this filesystem so it's quite a bit simpler. 950 */ 951 static noinline int btrfs_mksubvol(const struct path *parent, 952 struct user_namespace *mnt_userns, 953 const char *name, int namelen, 954 struct btrfs_root *snap_src, 955 bool readonly, 956 struct btrfs_qgroup_inherit *inherit) 957 { 958 struct inode *dir = d_inode(parent->dentry); 959 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 960 struct dentry *dentry; 961 struct fscrypt_str name_str = FSTR_INIT((char *)name, namelen); 962 int error; 963 964 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 965 if (error == -EINTR) 966 return error; 967 968 dentry = lookup_one(mnt_userns, name, parent->dentry, namelen); 969 error = PTR_ERR(dentry); 970 if (IS_ERR(dentry)) 971 goto out_unlock; 972 973 error = btrfs_may_create(mnt_userns, dir, dentry); 974 if (error) 975 goto out_dput; 976 977 /* 978 * even if this name doesn't exist, we may get hash collisions. 979 * check for them now when we can safely fail 980 */ 981 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 982 dir->i_ino, &name_str); 983 if (error) 984 goto out_dput; 985 986 down_read(&fs_info->subvol_sem); 987 988 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 989 goto out_up_read; 990 991 if (snap_src) 992 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 993 else 994 error = create_subvol(mnt_userns, dir, dentry, inherit); 995 996 if (!error) 997 fsnotify_mkdir(dir, dentry); 998 out_up_read: 999 up_read(&fs_info->subvol_sem); 1000 out_dput: 1001 dput(dentry); 1002 out_unlock: 1003 btrfs_inode_unlock(dir, 0); 1004 return error; 1005 } 1006 1007 static noinline int btrfs_mksnapshot(const struct path *parent, 1008 struct user_namespace *mnt_userns, 1009 const char *name, int namelen, 1010 struct btrfs_root *root, 1011 bool readonly, 1012 struct btrfs_qgroup_inherit *inherit) 1013 { 1014 int ret; 1015 bool snapshot_force_cow = false; 1016 1017 /* 1018 * Force new buffered writes to reserve space even when NOCOW is 1019 * possible. This is to avoid later writeback (running dealloc) to 1020 * fallback to COW mode and unexpectedly fail with ENOSPC. 1021 */ 1022 btrfs_drew_read_lock(&root->snapshot_lock); 1023 1024 ret = btrfs_start_delalloc_snapshot(root, false); 1025 if (ret) 1026 goto out; 1027 1028 /* 1029 * All previous writes have started writeback in NOCOW mode, so now 1030 * we force future writes to fallback to COW mode during snapshot 1031 * creation. 1032 */ 1033 atomic_inc(&root->snapshot_force_cow); 1034 snapshot_force_cow = true; 1035 1036 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 1037 1038 ret = btrfs_mksubvol(parent, mnt_userns, name, namelen, 1039 root, readonly, inherit); 1040 out: 1041 if (snapshot_force_cow) 1042 atomic_dec(&root->snapshot_force_cow); 1043 btrfs_drew_read_unlock(&root->snapshot_lock); 1044 return ret; 1045 } 1046 1047 /* 1048 * Try to start exclusive operation @type or cancel it if it's running. 1049 * 1050 * Return: 1051 * 0 - normal mode, newly claimed op started 1052 * >0 - normal mode, something else is running, 1053 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1054 * ECANCELED - cancel mode, successful cancel 1055 * ENOTCONN - cancel mode, operation not running anymore 1056 */ 1057 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1058 enum btrfs_exclusive_operation type, bool cancel) 1059 { 1060 if (!cancel) { 1061 /* Start normal op */ 1062 if (!btrfs_exclop_start(fs_info, type)) 1063 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1064 /* Exclusive operation is now claimed */ 1065 return 0; 1066 } 1067 1068 /* Cancel running op */ 1069 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1070 /* 1071 * This blocks any exclop finish from setting it to NONE, so we 1072 * request cancellation. Either it runs and we will wait for it, 1073 * or it has finished and no waiting will happen. 1074 */ 1075 atomic_inc(&fs_info->reloc_cancel_req); 1076 btrfs_exclop_start_unlock(fs_info); 1077 1078 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1079 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1080 TASK_INTERRUPTIBLE); 1081 1082 return -ECANCELED; 1083 } 1084 1085 /* Something else is running or none */ 1086 return -ENOTCONN; 1087 } 1088 1089 static noinline int btrfs_ioctl_resize(struct file *file, 1090 void __user *arg) 1091 { 1092 BTRFS_DEV_LOOKUP_ARGS(args); 1093 struct inode *inode = file_inode(file); 1094 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1095 u64 new_size; 1096 u64 old_size; 1097 u64 devid = 1; 1098 struct btrfs_root *root = BTRFS_I(inode)->root; 1099 struct btrfs_ioctl_vol_args *vol_args; 1100 struct btrfs_trans_handle *trans; 1101 struct btrfs_device *device = NULL; 1102 char *sizestr; 1103 char *retptr; 1104 char *devstr = NULL; 1105 int ret = 0; 1106 int mod = 0; 1107 bool cancel; 1108 1109 if (!capable(CAP_SYS_ADMIN)) 1110 return -EPERM; 1111 1112 ret = mnt_want_write_file(file); 1113 if (ret) 1114 return ret; 1115 1116 /* 1117 * Read the arguments before checking exclusivity to be able to 1118 * distinguish regular resize and cancel 1119 */ 1120 vol_args = memdup_user(arg, sizeof(*vol_args)); 1121 if (IS_ERR(vol_args)) { 1122 ret = PTR_ERR(vol_args); 1123 goto out_drop; 1124 } 1125 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1126 sizestr = vol_args->name; 1127 cancel = (strcmp("cancel", sizestr) == 0); 1128 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1129 if (ret) 1130 goto out_free; 1131 /* Exclusive operation is now claimed */ 1132 1133 devstr = strchr(sizestr, ':'); 1134 if (devstr) { 1135 sizestr = devstr + 1; 1136 *devstr = '\0'; 1137 devstr = vol_args->name; 1138 ret = kstrtoull(devstr, 10, &devid); 1139 if (ret) 1140 goto out_finish; 1141 if (!devid) { 1142 ret = -EINVAL; 1143 goto out_finish; 1144 } 1145 btrfs_info(fs_info, "resizing devid %llu", devid); 1146 } 1147 1148 args.devid = devid; 1149 device = btrfs_find_device(fs_info->fs_devices, &args); 1150 if (!device) { 1151 btrfs_info(fs_info, "resizer unable to find device %llu", 1152 devid); 1153 ret = -ENODEV; 1154 goto out_finish; 1155 } 1156 1157 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1158 btrfs_info(fs_info, 1159 "resizer unable to apply on readonly device %llu", 1160 devid); 1161 ret = -EPERM; 1162 goto out_finish; 1163 } 1164 1165 if (!strcmp(sizestr, "max")) 1166 new_size = bdev_nr_bytes(device->bdev); 1167 else { 1168 if (sizestr[0] == '-') { 1169 mod = -1; 1170 sizestr++; 1171 } else if (sizestr[0] == '+') { 1172 mod = 1; 1173 sizestr++; 1174 } 1175 new_size = memparse(sizestr, &retptr); 1176 if (*retptr != '\0' || new_size == 0) { 1177 ret = -EINVAL; 1178 goto out_finish; 1179 } 1180 } 1181 1182 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1183 ret = -EPERM; 1184 goto out_finish; 1185 } 1186 1187 old_size = btrfs_device_get_total_bytes(device); 1188 1189 if (mod < 0) { 1190 if (new_size > old_size) { 1191 ret = -EINVAL; 1192 goto out_finish; 1193 } 1194 new_size = old_size - new_size; 1195 } else if (mod > 0) { 1196 if (new_size > ULLONG_MAX - old_size) { 1197 ret = -ERANGE; 1198 goto out_finish; 1199 } 1200 new_size = old_size + new_size; 1201 } 1202 1203 if (new_size < SZ_256M) { 1204 ret = -EINVAL; 1205 goto out_finish; 1206 } 1207 if (new_size > bdev_nr_bytes(device->bdev)) { 1208 ret = -EFBIG; 1209 goto out_finish; 1210 } 1211 1212 new_size = round_down(new_size, fs_info->sectorsize); 1213 1214 if (new_size > old_size) { 1215 trans = btrfs_start_transaction(root, 0); 1216 if (IS_ERR(trans)) { 1217 ret = PTR_ERR(trans); 1218 goto out_finish; 1219 } 1220 ret = btrfs_grow_device(trans, device, new_size); 1221 btrfs_commit_transaction(trans); 1222 } else if (new_size < old_size) { 1223 ret = btrfs_shrink_device(device, new_size); 1224 } /* equal, nothing need to do */ 1225 1226 if (ret == 0 && new_size != old_size) 1227 btrfs_info_in_rcu(fs_info, 1228 "resize device %s (devid %llu) from %llu to %llu", 1229 rcu_str_deref(device->name), device->devid, 1230 old_size, new_size); 1231 out_finish: 1232 btrfs_exclop_finish(fs_info); 1233 out_free: 1234 kfree(vol_args); 1235 out_drop: 1236 mnt_drop_write_file(file); 1237 return ret; 1238 } 1239 1240 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1241 struct user_namespace *mnt_userns, 1242 const char *name, unsigned long fd, int subvol, 1243 bool readonly, 1244 struct btrfs_qgroup_inherit *inherit) 1245 { 1246 int namelen; 1247 int ret = 0; 1248 1249 if (!S_ISDIR(file_inode(file)->i_mode)) 1250 return -ENOTDIR; 1251 1252 ret = mnt_want_write_file(file); 1253 if (ret) 1254 goto out; 1255 1256 namelen = strlen(name); 1257 if (strchr(name, '/')) { 1258 ret = -EINVAL; 1259 goto out_drop_write; 1260 } 1261 1262 if (name[0] == '.' && 1263 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1264 ret = -EEXIST; 1265 goto out_drop_write; 1266 } 1267 1268 if (subvol) { 1269 ret = btrfs_mksubvol(&file->f_path, mnt_userns, name, 1270 namelen, NULL, readonly, inherit); 1271 } else { 1272 struct fd src = fdget(fd); 1273 struct inode *src_inode; 1274 if (!src.file) { 1275 ret = -EINVAL; 1276 goto out_drop_write; 1277 } 1278 1279 src_inode = file_inode(src.file); 1280 if (src_inode->i_sb != file_inode(file)->i_sb) { 1281 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1282 "Snapshot src from another FS"); 1283 ret = -EXDEV; 1284 } else if (!inode_owner_or_capable(mnt_userns, src_inode)) { 1285 /* 1286 * Subvolume creation is not restricted, but snapshots 1287 * are limited to own subvolumes only 1288 */ 1289 ret = -EPERM; 1290 } else { 1291 ret = btrfs_mksnapshot(&file->f_path, mnt_userns, 1292 name, namelen, 1293 BTRFS_I(src_inode)->root, 1294 readonly, inherit); 1295 } 1296 fdput(src); 1297 } 1298 out_drop_write: 1299 mnt_drop_write_file(file); 1300 out: 1301 return ret; 1302 } 1303 1304 static noinline int btrfs_ioctl_snap_create(struct file *file, 1305 void __user *arg, int subvol) 1306 { 1307 struct btrfs_ioctl_vol_args *vol_args; 1308 int ret; 1309 1310 if (!S_ISDIR(file_inode(file)->i_mode)) 1311 return -ENOTDIR; 1312 1313 vol_args = memdup_user(arg, sizeof(*vol_args)); 1314 if (IS_ERR(vol_args)) 1315 return PTR_ERR(vol_args); 1316 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1317 1318 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1319 vol_args->name, vol_args->fd, subvol, 1320 false, NULL); 1321 1322 kfree(vol_args); 1323 return ret; 1324 } 1325 1326 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1327 void __user *arg, int subvol) 1328 { 1329 struct btrfs_ioctl_vol_args_v2 *vol_args; 1330 int ret; 1331 bool readonly = false; 1332 struct btrfs_qgroup_inherit *inherit = NULL; 1333 1334 if (!S_ISDIR(file_inode(file)->i_mode)) 1335 return -ENOTDIR; 1336 1337 vol_args = memdup_user(arg, sizeof(*vol_args)); 1338 if (IS_ERR(vol_args)) 1339 return PTR_ERR(vol_args); 1340 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1341 1342 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1343 ret = -EOPNOTSUPP; 1344 goto free_args; 1345 } 1346 1347 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1348 readonly = true; 1349 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1350 u64 nums; 1351 1352 if (vol_args->size < sizeof(*inherit) || 1353 vol_args->size > PAGE_SIZE) { 1354 ret = -EINVAL; 1355 goto free_args; 1356 } 1357 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1358 if (IS_ERR(inherit)) { 1359 ret = PTR_ERR(inherit); 1360 goto free_args; 1361 } 1362 1363 if (inherit->num_qgroups > PAGE_SIZE || 1364 inherit->num_ref_copies > PAGE_SIZE || 1365 inherit->num_excl_copies > PAGE_SIZE) { 1366 ret = -EINVAL; 1367 goto free_inherit; 1368 } 1369 1370 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1371 2 * inherit->num_excl_copies; 1372 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1373 ret = -EINVAL; 1374 goto free_inherit; 1375 } 1376 } 1377 1378 ret = __btrfs_ioctl_snap_create(file, file_mnt_user_ns(file), 1379 vol_args->name, vol_args->fd, subvol, 1380 readonly, inherit); 1381 if (ret) 1382 goto free_inherit; 1383 free_inherit: 1384 kfree(inherit); 1385 free_args: 1386 kfree(vol_args); 1387 return ret; 1388 } 1389 1390 static noinline int btrfs_ioctl_subvol_getflags(struct inode *inode, 1391 void __user *arg) 1392 { 1393 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1394 struct btrfs_root *root = BTRFS_I(inode)->root; 1395 int ret = 0; 1396 u64 flags = 0; 1397 1398 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1399 return -EINVAL; 1400 1401 down_read(&fs_info->subvol_sem); 1402 if (btrfs_root_readonly(root)) 1403 flags |= BTRFS_SUBVOL_RDONLY; 1404 up_read(&fs_info->subvol_sem); 1405 1406 if (copy_to_user(arg, &flags, sizeof(flags))) 1407 ret = -EFAULT; 1408 1409 return ret; 1410 } 1411 1412 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1413 void __user *arg) 1414 { 1415 struct inode *inode = file_inode(file); 1416 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1417 struct btrfs_root *root = BTRFS_I(inode)->root; 1418 struct btrfs_trans_handle *trans; 1419 u64 root_flags; 1420 u64 flags; 1421 int ret = 0; 1422 1423 if (!inode_owner_or_capable(file_mnt_user_ns(file), inode)) 1424 return -EPERM; 1425 1426 ret = mnt_want_write_file(file); 1427 if (ret) 1428 goto out; 1429 1430 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1431 ret = -EINVAL; 1432 goto out_drop_write; 1433 } 1434 1435 if (copy_from_user(&flags, arg, sizeof(flags))) { 1436 ret = -EFAULT; 1437 goto out_drop_write; 1438 } 1439 1440 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1441 ret = -EOPNOTSUPP; 1442 goto out_drop_write; 1443 } 1444 1445 down_write(&fs_info->subvol_sem); 1446 1447 /* nothing to do */ 1448 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1449 goto out_drop_sem; 1450 1451 root_flags = btrfs_root_flags(&root->root_item); 1452 if (flags & BTRFS_SUBVOL_RDONLY) { 1453 btrfs_set_root_flags(&root->root_item, 1454 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1455 } else { 1456 /* 1457 * Block RO -> RW transition if this subvolume is involved in 1458 * send 1459 */ 1460 spin_lock(&root->root_item_lock); 1461 if (root->send_in_progress == 0) { 1462 btrfs_set_root_flags(&root->root_item, 1463 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1464 spin_unlock(&root->root_item_lock); 1465 } else { 1466 spin_unlock(&root->root_item_lock); 1467 btrfs_warn(fs_info, 1468 "Attempt to set subvolume %llu read-write during send", 1469 root->root_key.objectid); 1470 ret = -EPERM; 1471 goto out_drop_sem; 1472 } 1473 } 1474 1475 trans = btrfs_start_transaction(root, 1); 1476 if (IS_ERR(trans)) { 1477 ret = PTR_ERR(trans); 1478 goto out_reset; 1479 } 1480 1481 ret = btrfs_update_root(trans, fs_info->tree_root, 1482 &root->root_key, &root->root_item); 1483 if (ret < 0) { 1484 btrfs_end_transaction(trans); 1485 goto out_reset; 1486 } 1487 1488 ret = btrfs_commit_transaction(trans); 1489 1490 out_reset: 1491 if (ret) 1492 btrfs_set_root_flags(&root->root_item, root_flags); 1493 out_drop_sem: 1494 up_write(&fs_info->subvol_sem); 1495 out_drop_write: 1496 mnt_drop_write_file(file); 1497 out: 1498 return ret; 1499 } 1500 1501 static noinline int key_in_sk(struct btrfs_key *key, 1502 struct btrfs_ioctl_search_key *sk) 1503 { 1504 struct btrfs_key test; 1505 int ret; 1506 1507 test.objectid = sk->min_objectid; 1508 test.type = sk->min_type; 1509 test.offset = sk->min_offset; 1510 1511 ret = btrfs_comp_cpu_keys(key, &test); 1512 if (ret < 0) 1513 return 0; 1514 1515 test.objectid = sk->max_objectid; 1516 test.type = sk->max_type; 1517 test.offset = sk->max_offset; 1518 1519 ret = btrfs_comp_cpu_keys(key, &test); 1520 if (ret > 0) 1521 return 0; 1522 return 1; 1523 } 1524 1525 static noinline int copy_to_sk(struct btrfs_path *path, 1526 struct btrfs_key *key, 1527 struct btrfs_ioctl_search_key *sk, 1528 size_t *buf_size, 1529 char __user *ubuf, 1530 unsigned long *sk_offset, 1531 int *num_found) 1532 { 1533 u64 found_transid; 1534 struct extent_buffer *leaf; 1535 struct btrfs_ioctl_search_header sh; 1536 struct btrfs_key test; 1537 unsigned long item_off; 1538 unsigned long item_len; 1539 int nritems; 1540 int i; 1541 int slot; 1542 int ret = 0; 1543 1544 leaf = path->nodes[0]; 1545 slot = path->slots[0]; 1546 nritems = btrfs_header_nritems(leaf); 1547 1548 if (btrfs_header_generation(leaf) > sk->max_transid) { 1549 i = nritems; 1550 goto advance_key; 1551 } 1552 found_transid = btrfs_header_generation(leaf); 1553 1554 for (i = slot; i < nritems; i++) { 1555 item_off = btrfs_item_ptr_offset(leaf, i); 1556 item_len = btrfs_item_size(leaf, i); 1557 1558 btrfs_item_key_to_cpu(leaf, key, i); 1559 if (!key_in_sk(key, sk)) 1560 continue; 1561 1562 if (sizeof(sh) + item_len > *buf_size) { 1563 if (*num_found) { 1564 ret = 1; 1565 goto out; 1566 } 1567 1568 /* 1569 * return one empty item back for v1, which does not 1570 * handle -EOVERFLOW 1571 */ 1572 1573 *buf_size = sizeof(sh) + item_len; 1574 item_len = 0; 1575 ret = -EOVERFLOW; 1576 } 1577 1578 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1579 ret = 1; 1580 goto out; 1581 } 1582 1583 sh.objectid = key->objectid; 1584 sh.offset = key->offset; 1585 sh.type = key->type; 1586 sh.len = item_len; 1587 sh.transid = found_transid; 1588 1589 /* 1590 * Copy search result header. If we fault then loop again so we 1591 * can fault in the pages and -EFAULT there if there's a 1592 * problem. Otherwise we'll fault and then copy the buffer in 1593 * properly this next time through 1594 */ 1595 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 1596 ret = 0; 1597 goto out; 1598 } 1599 1600 *sk_offset += sizeof(sh); 1601 1602 if (item_len) { 1603 char __user *up = ubuf + *sk_offset; 1604 /* 1605 * Copy the item, same behavior as above, but reset the 1606 * * sk_offset so we copy the full thing again. 1607 */ 1608 if (read_extent_buffer_to_user_nofault(leaf, up, 1609 item_off, item_len)) { 1610 ret = 0; 1611 *sk_offset -= sizeof(sh); 1612 goto out; 1613 } 1614 1615 *sk_offset += item_len; 1616 } 1617 (*num_found)++; 1618 1619 if (ret) /* -EOVERFLOW from above */ 1620 goto out; 1621 1622 if (*num_found >= sk->nr_items) { 1623 ret = 1; 1624 goto out; 1625 } 1626 } 1627 advance_key: 1628 ret = 0; 1629 test.objectid = sk->max_objectid; 1630 test.type = sk->max_type; 1631 test.offset = sk->max_offset; 1632 if (btrfs_comp_cpu_keys(key, &test) >= 0) 1633 ret = 1; 1634 else if (key->offset < (u64)-1) 1635 key->offset++; 1636 else if (key->type < (u8)-1) { 1637 key->offset = 0; 1638 key->type++; 1639 } else if (key->objectid < (u64)-1) { 1640 key->offset = 0; 1641 key->type = 0; 1642 key->objectid++; 1643 } else 1644 ret = 1; 1645 out: 1646 /* 1647 * 0: all items from this leaf copied, continue with next 1648 * 1: * more items can be copied, but unused buffer is too small 1649 * * all items were found 1650 * Either way, it will stops the loop which iterates to the next 1651 * leaf 1652 * -EOVERFLOW: item was to large for buffer 1653 * -EFAULT: could not copy extent buffer back to userspace 1654 */ 1655 return ret; 1656 } 1657 1658 static noinline int search_ioctl(struct inode *inode, 1659 struct btrfs_ioctl_search_key *sk, 1660 size_t *buf_size, 1661 char __user *ubuf) 1662 { 1663 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 1664 struct btrfs_root *root; 1665 struct btrfs_key key; 1666 struct btrfs_path *path; 1667 int ret; 1668 int num_found = 0; 1669 unsigned long sk_offset = 0; 1670 1671 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 1672 *buf_size = sizeof(struct btrfs_ioctl_search_header); 1673 return -EOVERFLOW; 1674 } 1675 1676 path = btrfs_alloc_path(); 1677 if (!path) 1678 return -ENOMEM; 1679 1680 if (sk->tree_id == 0) { 1681 /* search the root of the inode that was passed */ 1682 root = btrfs_grab_root(BTRFS_I(inode)->root); 1683 } else { 1684 root = btrfs_get_fs_root(info, sk->tree_id, true); 1685 if (IS_ERR(root)) { 1686 btrfs_free_path(path); 1687 return PTR_ERR(root); 1688 } 1689 } 1690 1691 key.objectid = sk->min_objectid; 1692 key.type = sk->min_type; 1693 key.offset = sk->min_offset; 1694 1695 while (1) { 1696 ret = -EFAULT; 1697 /* 1698 * Ensure that the whole user buffer is faulted in at sub-page 1699 * granularity, otherwise the loop may live-lock. 1700 */ 1701 if (fault_in_subpage_writeable(ubuf + sk_offset, 1702 *buf_size - sk_offset)) 1703 break; 1704 1705 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 1706 if (ret != 0) { 1707 if (ret > 0) 1708 ret = 0; 1709 goto err; 1710 } 1711 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 1712 &sk_offset, &num_found); 1713 btrfs_release_path(path); 1714 if (ret) 1715 break; 1716 1717 } 1718 if (ret > 0) 1719 ret = 0; 1720 err: 1721 sk->nr_items = num_found; 1722 btrfs_put_root(root); 1723 btrfs_free_path(path); 1724 return ret; 1725 } 1726 1727 static noinline int btrfs_ioctl_tree_search(struct inode *inode, 1728 void __user *argp) 1729 { 1730 struct btrfs_ioctl_search_args __user *uargs = argp; 1731 struct btrfs_ioctl_search_key sk; 1732 int ret; 1733 size_t buf_size; 1734 1735 if (!capable(CAP_SYS_ADMIN)) 1736 return -EPERM; 1737 1738 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 1739 return -EFAULT; 1740 1741 buf_size = sizeof(uargs->buf); 1742 1743 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 1744 1745 /* 1746 * In the origin implementation an overflow is handled by returning a 1747 * search header with a len of zero, so reset ret. 1748 */ 1749 if (ret == -EOVERFLOW) 1750 ret = 0; 1751 1752 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 1753 ret = -EFAULT; 1754 return ret; 1755 } 1756 1757 static noinline int btrfs_ioctl_tree_search_v2(struct inode *inode, 1758 void __user *argp) 1759 { 1760 struct btrfs_ioctl_search_args_v2 __user *uarg = argp; 1761 struct btrfs_ioctl_search_args_v2 args; 1762 int ret; 1763 size_t buf_size; 1764 const size_t buf_limit = SZ_16M; 1765 1766 if (!capable(CAP_SYS_ADMIN)) 1767 return -EPERM; 1768 1769 /* copy search header and buffer size */ 1770 if (copy_from_user(&args, uarg, sizeof(args))) 1771 return -EFAULT; 1772 1773 buf_size = args.buf_size; 1774 1775 /* limit result size to 16MB */ 1776 if (buf_size > buf_limit) 1777 buf_size = buf_limit; 1778 1779 ret = search_ioctl(inode, &args.key, &buf_size, 1780 (char __user *)(&uarg->buf[0])); 1781 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 1782 ret = -EFAULT; 1783 else if (ret == -EOVERFLOW && 1784 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 1785 ret = -EFAULT; 1786 1787 return ret; 1788 } 1789 1790 /* 1791 * Search INODE_REFs to identify path name of 'dirid' directory 1792 * in a 'tree_id' tree. and sets path name to 'name'. 1793 */ 1794 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 1795 u64 tree_id, u64 dirid, char *name) 1796 { 1797 struct btrfs_root *root; 1798 struct btrfs_key key; 1799 char *ptr; 1800 int ret = -1; 1801 int slot; 1802 int len; 1803 int total_len = 0; 1804 struct btrfs_inode_ref *iref; 1805 struct extent_buffer *l; 1806 struct btrfs_path *path; 1807 1808 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 1809 name[0]='\0'; 1810 return 0; 1811 } 1812 1813 path = btrfs_alloc_path(); 1814 if (!path) 1815 return -ENOMEM; 1816 1817 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 1818 1819 root = btrfs_get_fs_root(info, tree_id, true); 1820 if (IS_ERR(root)) { 1821 ret = PTR_ERR(root); 1822 root = NULL; 1823 goto out; 1824 } 1825 1826 key.objectid = dirid; 1827 key.type = BTRFS_INODE_REF_KEY; 1828 key.offset = (u64)-1; 1829 1830 while (1) { 1831 ret = btrfs_search_backwards(root, &key, path); 1832 if (ret < 0) 1833 goto out; 1834 else if (ret > 0) { 1835 ret = -ENOENT; 1836 goto out; 1837 } 1838 1839 l = path->nodes[0]; 1840 slot = path->slots[0]; 1841 1842 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 1843 len = btrfs_inode_ref_name_len(l, iref); 1844 ptr -= len + 1; 1845 total_len += len + 1; 1846 if (ptr < name) { 1847 ret = -ENAMETOOLONG; 1848 goto out; 1849 } 1850 1851 *(ptr + len) = '/'; 1852 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 1853 1854 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 1855 break; 1856 1857 btrfs_release_path(path); 1858 key.objectid = key.offset; 1859 key.offset = (u64)-1; 1860 dirid = key.objectid; 1861 } 1862 memmove(name, ptr, total_len); 1863 name[total_len] = '\0'; 1864 ret = 0; 1865 out: 1866 btrfs_put_root(root); 1867 btrfs_free_path(path); 1868 return ret; 1869 } 1870 1871 static int btrfs_search_path_in_tree_user(struct user_namespace *mnt_userns, 1872 struct inode *inode, 1873 struct btrfs_ioctl_ino_lookup_user_args *args) 1874 { 1875 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 1876 struct super_block *sb = inode->i_sb; 1877 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 1878 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 1879 u64 dirid = args->dirid; 1880 unsigned long item_off; 1881 unsigned long item_len; 1882 struct btrfs_inode_ref *iref; 1883 struct btrfs_root_ref *rref; 1884 struct btrfs_root *root = NULL; 1885 struct btrfs_path *path; 1886 struct btrfs_key key, key2; 1887 struct extent_buffer *leaf; 1888 struct inode *temp_inode; 1889 char *ptr; 1890 int slot; 1891 int len; 1892 int total_len = 0; 1893 int ret; 1894 1895 path = btrfs_alloc_path(); 1896 if (!path) 1897 return -ENOMEM; 1898 1899 /* 1900 * If the bottom subvolume does not exist directly under upper_limit, 1901 * construct the path in from the bottom up. 1902 */ 1903 if (dirid != upper_limit.objectid) { 1904 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 1905 1906 root = btrfs_get_fs_root(fs_info, treeid, true); 1907 if (IS_ERR(root)) { 1908 ret = PTR_ERR(root); 1909 goto out; 1910 } 1911 1912 key.objectid = dirid; 1913 key.type = BTRFS_INODE_REF_KEY; 1914 key.offset = (u64)-1; 1915 while (1) { 1916 ret = btrfs_search_backwards(root, &key, path); 1917 if (ret < 0) 1918 goto out_put; 1919 else if (ret > 0) { 1920 ret = -ENOENT; 1921 goto out_put; 1922 } 1923 1924 leaf = path->nodes[0]; 1925 slot = path->slots[0]; 1926 1927 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 1928 len = btrfs_inode_ref_name_len(leaf, iref); 1929 ptr -= len + 1; 1930 total_len += len + 1; 1931 if (ptr < args->path) { 1932 ret = -ENAMETOOLONG; 1933 goto out_put; 1934 } 1935 1936 *(ptr + len) = '/'; 1937 read_extent_buffer(leaf, ptr, 1938 (unsigned long)(iref + 1), len); 1939 1940 /* Check the read+exec permission of this directory */ 1941 ret = btrfs_previous_item(root, path, dirid, 1942 BTRFS_INODE_ITEM_KEY); 1943 if (ret < 0) { 1944 goto out_put; 1945 } else if (ret > 0) { 1946 ret = -ENOENT; 1947 goto out_put; 1948 } 1949 1950 leaf = path->nodes[0]; 1951 slot = path->slots[0]; 1952 btrfs_item_key_to_cpu(leaf, &key2, slot); 1953 if (key2.objectid != dirid) { 1954 ret = -ENOENT; 1955 goto out_put; 1956 } 1957 1958 temp_inode = btrfs_iget(sb, key2.objectid, root); 1959 if (IS_ERR(temp_inode)) { 1960 ret = PTR_ERR(temp_inode); 1961 goto out_put; 1962 } 1963 ret = inode_permission(mnt_userns, temp_inode, 1964 MAY_READ | MAY_EXEC); 1965 iput(temp_inode); 1966 if (ret) { 1967 ret = -EACCES; 1968 goto out_put; 1969 } 1970 1971 if (key.offset == upper_limit.objectid) 1972 break; 1973 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 1974 ret = -EACCES; 1975 goto out_put; 1976 } 1977 1978 btrfs_release_path(path); 1979 key.objectid = key.offset; 1980 key.offset = (u64)-1; 1981 dirid = key.objectid; 1982 } 1983 1984 memmove(args->path, ptr, total_len); 1985 args->path[total_len] = '\0'; 1986 btrfs_put_root(root); 1987 root = NULL; 1988 btrfs_release_path(path); 1989 } 1990 1991 /* Get the bottom subvolume's name from ROOT_REF */ 1992 key.objectid = treeid; 1993 key.type = BTRFS_ROOT_REF_KEY; 1994 key.offset = args->treeid; 1995 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 1996 if (ret < 0) { 1997 goto out; 1998 } else if (ret > 0) { 1999 ret = -ENOENT; 2000 goto out; 2001 } 2002 2003 leaf = path->nodes[0]; 2004 slot = path->slots[0]; 2005 btrfs_item_key_to_cpu(leaf, &key, slot); 2006 2007 item_off = btrfs_item_ptr_offset(leaf, slot); 2008 item_len = btrfs_item_size(leaf, slot); 2009 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2010 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2011 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2012 ret = -EINVAL; 2013 goto out; 2014 } 2015 2016 /* Copy subvolume's name */ 2017 item_off += sizeof(struct btrfs_root_ref); 2018 item_len -= sizeof(struct btrfs_root_ref); 2019 read_extent_buffer(leaf, args->name, item_off, item_len); 2020 args->name[item_len] = 0; 2021 2022 out_put: 2023 btrfs_put_root(root); 2024 out: 2025 btrfs_free_path(path); 2026 return ret; 2027 } 2028 2029 static noinline int btrfs_ioctl_ino_lookup(struct btrfs_root *root, 2030 void __user *argp) 2031 { 2032 struct btrfs_ioctl_ino_lookup_args *args; 2033 int ret = 0; 2034 2035 args = memdup_user(argp, sizeof(*args)); 2036 if (IS_ERR(args)) 2037 return PTR_ERR(args); 2038 2039 /* 2040 * Unprivileged query to obtain the containing subvolume root id. The 2041 * path is reset so it's consistent with btrfs_search_path_in_tree. 2042 */ 2043 if (args->treeid == 0) 2044 args->treeid = root->root_key.objectid; 2045 2046 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2047 args->name[0] = 0; 2048 goto out; 2049 } 2050 2051 if (!capable(CAP_SYS_ADMIN)) { 2052 ret = -EPERM; 2053 goto out; 2054 } 2055 2056 ret = btrfs_search_path_in_tree(root->fs_info, 2057 args->treeid, args->objectid, 2058 args->name); 2059 2060 out: 2061 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2062 ret = -EFAULT; 2063 2064 kfree(args); 2065 return ret; 2066 } 2067 2068 /* 2069 * Version of ino_lookup ioctl (unprivileged) 2070 * 2071 * The main differences from ino_lookup ioctl are: 2072 * 2073 * 1. Read + Exec permission will be checked using inode_permission() during 2074 * path construction. -EACCES will be returned in case of failure. 2075 * 2. Path construction will be stopped at the inode number which corresponds 2076 * to the fd with which this ioctl is called. If constructed path does not 2077 * exist under fd's inode, -EACCES will be returned. 2078 * 3. The name of bottom subvolume is also searched and filled. 2079 */ 2080 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2081 { 2082 struct btrfs_ioctl_ino_lookup_user_args *args; 2083 struct inode *inode; 2084 int ret; 2085 2086 args = memdup_user(argp, sizeof(*args)); 2087 if (IS_ERR(args)) 2088 return PTR_ERR(args); 2089 2090 inode = file_inode(file); 2091 2092 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2093 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2094 /* 2095 * The subvolume does not exist under fd with which this is 2096 * called 2097 */ 2098 kfree(args); 2099 return -EACCES; 2100 } 2101 2102 ret = btrfs_search_path_in_tree_user(file_mnt_user_ns(file), inode, args); 2103 2104 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2105 ret = -EFAULT; 2106 2107 kfree(args); 2108 return ret; 2109 } 2110 2111 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2112 static int btrfs_ioctl_get_subvol_info(struct inode *inode, void __user *argp) 2113 { 2114 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2115 struct btrfs_fs_info *fs_info; 2116 struct btrfs_root *root; 2117 struct btrfs_path *path; 2118 struct btrfs_key key; 2119 struct btrfs_root_item *root_item; 2120 struct btrfs_root_ref *rref; 2121 struct extent_buffer *leaf; 2122 unsigned long item_off; 2123 unsigned long item_len; 2124 int slot; 2125 int ret = 0; 2126 2127 path = btrfs_alloc_path(); 2128 if (!path) 2129 return -ENOMEM; 2130 2131 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2132 if (!subvol_info) { 2133 btrfs_free_path(path); 2134 return -ENOMEM; 2135 } 2136 2137 fs_info = BTRFS_I(inode)->root->fs_info; 2138 2139 /* Get root_item of inode's subvolume */ 2140 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2141 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2142 if (IS_ERR(root)) { 2143 ret = PTR_ERR(root); 2144 goto out_free; 2145 } 2146 root_item = &root->root_item; 2147 2148 subvol_info->treeid = key.objectid; 2149 2150 subvol_info->generation = btrfs_root_generation(root_item); 2151 subvol_info->flags = btrfs_root_flags(root_item); 2152 2153 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2154 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2155 BTRFS_UUID_SIZE); 2156 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2157 BTRFS_UUID_SIZE); 2158 2159 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2160 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2161 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2162 2163 subvol_info->otransid = btrfs_root_otransid(root_item); 2164 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2165 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2166 2167 subvol_info->stransid = btrfs_root_stransid(root_item); 2168 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2169 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2170 2171 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2172 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2173 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2174 2175 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2176 /* Search root tree for ROOT_BACKREF of this subvolume */ 2177 key.type = BTRFS_ROOT_BACKREF_KEY; 2178 key.offset = 0; 2179 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2180 if (ret < 0) { 2181 goto out; 2182 } else if (path->slots[0] >= 2183 btrfs_header_nritems(path->nodes[0])) { 2184 ret = btrfs_next_leaf(fs_info->tree_root, path); 2185 if (ret < 0) { 2186 goto out; 2187 } else if (ret > 0) { 2188 ret = -EUCLEAN; 2189 goto out; 2190 } 2191 } 2192 2193 leaf = path->nodes[0]; 2194 slot = path->slots[0]; 2195 btrfs_item_key_to_cpu(leaf, &key, slot); 2196 if (key.objectid == subvol_info->treeid && 2197 key.type == BTRFS_ROOT_BACKREF_KEY) { 2198 subvol_info->parent_id = key.offset; 2199 2200 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2201 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2202 2203 item_off = btrfs_item_ptr_offset(leaf, slot) 2204 + sizeof(struct btrfs_root_ref); 2205 item_len = btrfs_item_size(leaf, slot) 2206 - sizeof(struct btrfs_root_ref); 2207 read_extent_buffer(leaf, subvol_info->name, 2208 item_off, item_len); 2209 } else { 2210 ret = -ENOENT; 2211 goto out; 2212 } 2213 } 2214 2215 btrfs_free_path(path); 2216 path = NULL; 2217 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2218 ret = -EFAULT; 2219 2220 out: 2221 btrfs_put_root(root); 2222 out_free: 2223 btrfs_free_path(path); 2224 kfree(subvol_info); 2225 return ret; 2226 } 2227 2228 /* 2229 * Return ROOT_REF information of the subvolume containing this inode 2230 * except the subvolume name. 2231 */ 2232 static int btrfs_ioctl_get_subvol_rootref(struct btrfs_root *root, 2233 void __user *argp) 2234 { 2235 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2236 struct btrfs_root_ref *rref; 2237 struct btrfs_path *path; 2238 struct btrfs_key key; 2239 struct extent_buffer *leaf; 2240 u64 objectid; 2241 int slot; 2242 int ret; 2243 u8 found; 2244 2245 path = btrfs_alloc_path(); 2246 if (!path) 2247 return -ENOMEM; 2248 2249 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2250 if (IS_ERR(rootrefs)) { 2251 btrfs_free_path(path); 2252 return PTR_ERR(rootrefs); 2253 } 2254 2255 objectid = root->root_key.objectid; 2256 key.objectid = objectid; 2257 key.type = BTRFS_ROOT_REF_KEY; 2258 key.offset = rootrefs->min_treeid; 2259 found = 0; 2260 2261 root = root->fs_info->tree_root; 2262 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2263 if (ret < 0) { 2264 goto out; 2265 } else if (path->slots[0] >= 2266 btrfs_header_nritems(path->nodes[0])) { 2267 ret = btrfs_next_leaf(root, path); 2268 if (ret < 0) { 2269 goto out; 2270 } else if (ret > 0) { 2271 ret = -EUCLEAN; 2272 goto out; 2273 } 2274 } 2275 while (1) { 2276 leaf = path->nodes[0]; 2277 slot = path->slots[0]; 2278 2279 btrfs_item_key_to_cpu(leaf, &key, slot); 2280 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2281 ret = 0; 2282 goto out; 2283 } 2284 2285 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2286 ret = -EOVERFLOW; 2287 goto out; 2288 } 2289 2290 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2291 rootrefs->rootref[found].treeid = key.offset; 2292 rootrefs->rootref[found].dirid = 2293 btrfs_root_ref_dirid(leaf, rref); 2294 found++; 2295 2296 ret = btrfs_next_item(root, path); 2297 if (ret < 0) { 2298 goto out; 2299 } else if (ret > 0) { 2300 ret = -EUCLEAN; 2301 goto out; 2302 } 2303 } 2304 2305 out: 2306 btrfs_free_path(path); 2307 2308 if (!ret || ret == -EOVERFLOW) { 2309 rootrefs->num_items = found; 2310 /* update min_treeid for next search */ 2311 if (found) 2312 rootrefs->min_treeid = 2313 rootrefs->rootref[found - 1].treeid + 1; 2314 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2315 ret = -EFAULT; 2316 } 2317 2318 kfree(rootrefs); 2319 2320 return ret; 2321 } 2322 2323 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2324 void __user *arg, 2325 bool destroy_v2) 2326 { 2327 struct dentry *parent = file->f_path.dentry; 2328 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2329 struct dentry *dentry; 2330 struct inode *dir = d_inode(parent); 2331 struct inode *inode; 2332 struct btrfs_root *root = BTRFS_I(dir)->root; 2333 struct btrfs_root *dest = NULL; 2334 struct btrfs_ioctl_vol_args *vol_args = NULL; 2335 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2336 struct user_namespace *mnt_userns = file_mnt_user_ns(file); 2337 char *subvol_name, *subvol_name_ptr = NULL; 2338 int subvol_namelen; 2339 int err = 0; 2340 bool destroy_parent = false; 2341 2342 /* We don't support snapshots with extent tree v2 yet. */ 2343 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2344 btrfs_err(fs_info, 2345 "extent tree v2 doesn't support snapshot deletion yet"); 2346 return -EOPNOTSUPP; 2347 } 2348 2349 if (destroy_v2) { 2350 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2351 if (IS_ERR(vol_args2)) 2352 return PTR_ERR(vol_args2); 2353 2354 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2355 err = -EOPNOTSUPP; 2356 goto out; 2357 } 2358 2359 /* 2360 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2361 * name, same as v1 currently does. 2362 */ 2363 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2364 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2365 subvol_name = vol_args2->name; 2366 2367 err = mnt_want_write_file(file); 2368 if (err) 2369 goto out; 2370 } else { 2371 struct inode *old_dir; 2372 2373 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2374 err = -EINVAL; 2375 goto out; 2376 } 2377 2378 err = mnt_want_write_file(file); 2379 if (err) 2380 goto out; 2381 2382 dentry = btrfs_get_dentry(fs_info->sb, 2383 BTRFS_FIRST_FREE_OBJECTID, 2384 vol_args2->subvolid, 0); 2385 if (IS_ERR(dentry)) { 2386 err = PTR_ERR(dentry); 2387 goto out_drop_write; 2388 } 2389 2390 /* 2391 * Change the default parent since the subvolume being 2392 * deleted can be outside of the current mount point. 2393 */ 2394 parent = btrfs_get_parent(dentry); 2395 2396 /* 2397 * At this point dentry->d_name can point to '/' if the 2398 * subvolume we want to destroy is outsite of the 2399 * current mount point, so we need to release the 2400 * current dentry and execute the lookup to return a new 2401 * one with ->d_name pointing to the 2402 * <mount point>/subvol_name. 2403 */ 2404 dput(dentry); 2405 if (IS_ERR(parent)) { 2406 err = PTR_ERR(parent); 2407 goto out_drop_write; 2408 } 2409 old_dir = dir; 2410 dir = d_inode(parent); 2411 2412 /* 2413 * If v2 was used with SPEC_BY_ID, a new parent was 2414 * allocated since the subvolume can be outside of the 2415 * current mount point. Later on we need to release this 2416 * new parent dentry. 2417 */ 2418 destroy_parent = true; 2419 2420 /* 2421 * On idmapped mounts, deletion via subvolid is 2422 * restricted to subvolumes that are immediate 2423 * ancestors of the inode referenced by the file 2424 * descriptor in the ioctl. Otherwise the idmapping 2425 * could potentially be abused to delete subvolumes 2426 * anywhere in the filesystem the user wouldn't be able 2427 * to delete without an idmapped mount. 2428 */ 2429 if (old_dir != dir && mnt_userns != &init_user_ns) { 2430 err = -EOPNOTSUPP; 2431 goto free_parent; 2432 } 2433 2434 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2435 fs_info, vol_args2->subvolid); 2436 if (IS_ERR(subvol_name_ptr)) { 2437 err = PTR_ERR(subvol_name_ptr); 2438 goto free_parent; 2439 } 2440 /* subvol_name_ptr is already nul terminated */ 2441 subvol_name = (char *)kbasename(subvol_name_ptr); 2442 } 2443 } else { 2444 vol_args = memdup_user(arg, sizeof(*vol_args)); 2445 if (IS_ERR(vol_args)) 2446 return PTR_ERR(vol_args); 2447 2448 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2449 subvol_name = vol_args->name; 2450 2451 err = mnt_want_write_file(file); 2452 if (err) 2453 goto out; 2454 } 2455 2456 subvol_namelen = strlen(subvol_name); 2457 2458 if (strchr(subvol_name, '/') || 2459 strncmp(subvol_name, "..", subvol_namelen) == 0) { 2460 err = -EINVAL; 2461 goto free_subvol_name; 2462 } 2463 2464 if (!S_ISDIR(dir->i_mode)) { 2465 err = -ENOTDIR; 2466 goto free_subvol_name; 2467 } 2468 2469 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 2470 if (err == -EINTR) 2471 goto free_subvol_name; 2472 dentry = lookup_one(mnt_userns, subvol_name, parent, subvol_namelen); 2473 if (IS_ERR(dentry)) { 2474 err = PTR_ERR(dentry); 2475 goto out_unlock_dir; 2476 } 2477 2478 if (d_really_is_negative(dentry)) { 2479 err = -ENOENT; 2480 goto out_dput; 2481 } 2482 2483 inode = d_inode(dentry); 2484 dest = BTRFS_I(inode)->root; 2485 if (!capable(CAP_SYS_ADMIN)) { 2486 /* 2487 * Regular user. Only allow this with a special mount 2488 * option, when the user has write+exec access to the 2489 * subvol root, and when rmdir(2) would have been 2490 * allowed. 2491 * 2492 * Note that this is _not_ check that the subvol is 2493 * empty or doesn't contain data that we wouldn't 2494 * otherwise be able to delete. 2495 * 2496 * Users who want to delete empty subvols should try 2497 * rmdir(2). 2498 */ 2499 err = -EPERM; 2500 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 2501 goto out_dput; 2502 2503 /* 2504 * Do not allow deletion if the parent dir is the same 2505 * as the dir to be deleted. That means the ioctl 2506 * must be called on the dentry referencing the root 2507 * of the subvol, not a random directory contained 2508 * within it. 2509 */ 2510 err = -EINVAL; 2511 if (root == dest) 2512 goto out_dput; 2513 2514 err = inode_permission(mnt_userns, inode, MAY_WRITE | MAY_EXEC); 2515 if (err) 2516 goto out_dput; 2517 } 2518 2519 /* check if subvolume may be deleted by a user */ 2520 err = btrfs_may_delete(mnt_userns, dir, dentry, 1); 2521 if (err) 2522 goto out_dput; 2523 2524 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 2525 err = -EINVAL; 2526 goto out_dput; 2527 } 2528 2529 btrfs_inode_lock(inode, 0); 2530 err = btrfs_delete_subvolume(dir, dentry); 2531 btrfs_inode_unlock(inode, 0); 2532 if (!err) 2533 d_delete_notify(dir, dentry); 2534 2535 out_dput: 2536 dput(dentry); 2537 out_unlock_dir: 2538 btrfs_inode_unlock(dir, 0); 2539 free_subvol_name: 2540 kfree(subvol_name_ptr); 2541 free_parent: 2542 if (destroy_parent) 2543 dput(parent); 2544 out_drop_write: 2545 mnt_drop_write_file(file); 2546 out: 2547 kfree(vol_args2); 2548 kfree(vol_args); 2549 return err; 2550 } 2551 2552 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2553 { 2554 struct inode *inode = file_inode(file); 2555 struct btrfs_root *root = BTRFS_I(inode)->root; 2556 struct btrfs_ioctl_defrag_range_args range = {0}; 2557 int ret; 2558 2559 ret = mnt_want_write_file(file); 2560 if (ret) 2561 return ret; 2562 2563 if (btrfs_root_readonly(root)) { 2564 ret = -EROFS; 2565 goto out; 2566 } 2567 2568 switch (inode->i_mode & S_IFMT) { 2569 case S_IFDIR: 2570 if (!capable(CAP_SYS_ADMIN)) { 2571 ret = -EPERM; 2572 goto out; 2573 } 2574 ret = btrfs_defrag_root(root); 2575 break; 2576 case S_IFREG: 2577 /* 2578 * Note that this does not check the file descriptor for write 2579 * access. This prevents defragmenting executables that are 2580 * running and allows defrag on files open in read-only mode. 2581 */ 2582 if (!capable(CAP_SYS_ADMIN) && 2583 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 2584 ret = -EPERM; 2585 goto out; 2586 } 2587 2588 if (argp) { 2589 if (copy_from_user(&range, argp, sizeof(range))) { 2590 ret = -EFAULT; 2591 goto out; 2592 } 2593 /* compression requires us to start the IO */ 2594 if ((range.flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2595 range.flags |= BTRFS_DEFRAG_RANGE_START_IO; 2596 range.extent_thresh = (u32)-1; 2597 } 2598 } else { 2599 /* the rest are all set to zero by kzalloc */ 2600 range.len = (u64)-1; 2601 } 2602 ret = btrfs_defrag_file(file_inode(file), &file->f_ra, 2603 &range, BTRFS_OLDEST_GENERATION, 0); 2604 if (ret > 0) 2605 ret = 0; 2606 break; 2607 default: 2608 ret = -EINVAL; 2609 } 2610 out: 2611 mnt_drop_write_file(file); 2612 return ret; 2613 } 2614 2615 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 2616 { 2617 struct btrfs_ioctl_vol_args *vol_args; 2618 bool restore_op = false; 2619 int ret; 2620 2621 if (!capable(CAP_SYS_ADMIN)) 2622 return -EPERM; 2623 2624 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 2625 btrfs_err(fs_info, "device add not supported on extent tree v2 yet"); 2626 return -EINVAL; 2627 } 2628 2629 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) { 2630 if (!btrfs_exclop_start_try_lock(fs_info, BTRFS_EXCLOP_DEV_ADD)) 2631 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2632 2633 /* 2634 * We can do the device add because we have a paused balanced, 2635 * change the exclusive op type and remember we should bring 2636 * back the paused balance 2637 */ 2638 fs_info->exclusive_operation = BTRFS_EXCLOP_DEV_ADD; 2639 btrfs_exclop_start_unlock(fs_info); 2640 restore_op = true; 2641 } 2642 2643 vol_args = memdup_user(arg, sizeof(*vol_args)); 2644 if (IS_ERR(vol_args)) { 2645 ret = PTR_ERR(vol_args); 2646 goto out; 2647 } 2648 2649 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2650 ret = btrfs_init_new_device(fs_info, vol_args->name); 2651 2652 if (!ret) 2653 btrfs_info(fs_info, "disk added %s", vol_args->name); 2654 2655 kfree(vol_args); 2656 out: 2657 if (restore_op) 2658 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE_PAUSED); 2659 else 2660 btrfs_exclop_finish(fs_info); 2661 return ret; 2662 } 2663 2664 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 2665 { 2666 BTRFS_DEV_LOOKUP_ARGS(args); 2667 struct inode *inode = file_inode(file); 2668 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2669 struct btrfs_ioctl_vol_args_v2 *vol_args; 2670 struct block_device *bdev = NULL; 2671 fmode_t mode; 2672 int ret; 2673 bool cancel = false; 2674 2675 if (!capable(CAP_SYS_ADMIN)) 2676 return -EPERM; 2677 2678 vol_args = memdup_user(arg, sizeof(*vol_args)); 2679 if (IS_ERR(vol_args)) 2680 return PTR_ERR(vol_args); 2681 2682 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 2683 ret = -EOPNOTSUPP; 2684 goto out; 2685 } 2686 2687 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 2688 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) { 2689 args.devid = vol_args->devid; 2690 } else if (!strcmp("cancel", vol_args->name)) { 2691 cancel = true; 2692 } else { 2693 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2694 if (ret) 2695 goto out; 2696 } 2697 2698 ret = mnt_want_write_file(file); 2699 if (ret) 2700 goto out; 2701 2702 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2703 cancel); 2704 if (ret) 2705 goto err_drop; 2706 2707 /* Exclusive operation is now claimed */ 2708 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 2709 2710 btrfs_exclop_finish(fs_info); 2711 2712 if (!ret) { 2713 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 2714 btrfs_info(fs_info, "device deleted: id %llu", 2715 vol_args->devid); 2716 else 2717 btrfs_info(fs_info, "device deleted: %s", 2718 vol_args->name); 2719 } 2720 err_drop: 2721 mnt_drop_write_file(file); 2722 if (bdev) 2723 blkdev_put(bdev, mode); 2724 out: 2725 btrfs_put_dev_args_from_path(&args); 2726 kfree(vol_args); 2727 return ret; 2728 } 2729 2730 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2731 { 2732 BTRFS_DEV_LOOKUP_ARGS(args); 2733 struct inode *inode = file_inode(file); 2734 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2735 struct btrfs_ioctl_vol_args *vol_args; 2736 struct block_device *bdev = NULL; 2737 fmode_t mode; 2738 int ret; 2739 bool cancel = false; 2740 2741 if (!capable(CAP_SYS_ADMIN)) 2742 return -EPERM; 2743 2744 vol_args = memdup_user(arg, sizeof(*vol_args)); 2745 if (IS_ERR(vol_args)) 2746 return PTR_ERR(vol_args); 2747 2748 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2749 if (!strcmp("cancel", vol_args->name)) { 2750 cancel = true; 2751 } else { 2752 ret = btrfs_get_dev_args_from_path(fs_info, &args, vol_args->name); 2753 if (ret) 2754 goto out; 2755 } 2756 2757 ret = mnt_want_write_file(file); 2758 if (ret) 2759 goto out; 2760 2761 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 2762 cancel); 2763 if (ret == 0) { 2764 ret = btrfs_rm_device(fs_info, &args, &bdev, &mode); 2765 if (!ret) 2766 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 2767 btrfs_exclop_finish(fs_info); 2768 } 2769 2770 mnt_drop_write_file(file); 2771 if (bdev) 2772 blkdev_put(bdev, mode); 2773 out: 2774 btrfs_put_dev_args_from_path(&args); 2775 kfree(vol_args); 2776 return ret; 2777 } 2778 2779 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 2780 void __user *arg) 2781 { 2782 struct btrfs_ioctl_fs_info_args *fi_args; 2783 struct btrfs_device *device; 2784 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 2785 u64 flags_in; 2786 int ret = 0; 2787 2788 fi_args = memdup_user(arg, sizeof(*fi_args)); 2789 if (IS_ERR(fi_args)) 2790 return PTR_ERR(fi_args); 2791 2792 flags_in = fi_args->flags; 2793 memset(fi_args, 0, sizeof(*fi_args)); 2794 2795 rcu_read_lock(); 2796 fi_args->num_devices = fs_devices->num_devices; 2797 2798 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 2799 if (device->devid > fi_args->max_id) 2800 fi_args->max_id = device->devid; 2801 } 2802 rcu_read_unlock(); 2803 2804 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 2805 fi_args->nodesize = fs_info->nodesize; 2806 fi_args->sectorsize = fs_info->sectorsize; 2807 fi_args->clone_alignment = fs_info->sectorsize; 2808 2809 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 2810 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 2811 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 2812 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 2813 } 2814 2815 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 2816 fi_args->generation = fs_info->generation; 2817 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 2818 } 2819 2820 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 2821 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 2822 sizeof(fi_args->metadata_uuid)); 2823 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 2824 } 2825 2826 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2827 ret = -EFAULT; 2828 2829 kfree(fi_args); 2830 return ret; 2831 } 2832 2833 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 2834 void __user *arg) 2835 { 2836 BTRFS_DEV_LOOKUP_ARGS(args); 2837 struct btrfs_ioctl_dev_info_args *di_args; 2838 struct btrfs_device *dev; 2839 int ret = 0; 2840 2841 di_args = memdup_user(arg, sizeof(*di_args)); 2842 if (IS_ERR(di_args)) 2843 return PTR_ERR(di_args); 2844 2845 args.devid = di_args->devid; 2846 if (!btrfs_is_empty_uuid(di_args->uuid)) 2847 args.uuid = di_args->uuid; 2848 2849 rcu_read_lock(); 2850 dev = btrfs_find_device(fs_info->fs_devices, &args); 2851 if (!dev) { 2852 ret = -ENODEV; 2853 goto out; 2854 } 2855 2856 di_args->devid = dev->devid; 2857 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 2858 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 2859 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2860 if (dev->name) { 2861 strncpy(di_args->path, rcu_str_deref(dev->name), 2862 sizeof(di_args->path) - 1); 2863 di_args->path[sizeof(di_args->path) - 1] = 0; 2864 } else { 2865 di_args->path[0] = '\0'; 2866 } 2867 2868 out: 2869 rcu_read_unlock(); 2870 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2871 ret = -EFAULT; 2872 2873 kfree(di_args); 2874 return ret; 2875 } 2876 2877 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 2878 { 2879 struct inode *inode = file_inode(file); 2880 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 2881 struct btrfs_root *root = BTRFS_I(inode)->root; 2882 struct btrfs_root *new_root; 2883 struct btrfs_dir_item *di; 2884 struct btrfs_trans_handle *trans; 2885 struct btrfs_path *path = NULL; 2886 struct btrfs_disk_key disk_key; 2887 struct fscrypt_str name = FSTR_INIT("default", 7); 2888 u64 objectid = 0; 2889 u64 dir_id; 2890 int ret; 2891 2892 if (!capable(CAP_SYS_ADMIN)) 2893 return -EPERM; 2894 2895 ret = mnt_want_write_file(file); 2896 if (ret) 2897 return ret; 2898 2899 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 2900 ret = -EFAULT; 2901 goto out; 2902 } 2903 2904 if (!objectid) 2905 objectid = BTRFS_FS_TREE_OBJECTID; 2906 2907 new_root = btrfs_get_fs_root(fs_info, objectid, true); 2908 if (IS_ERR(new_root)) { 2909 ret = PTR_ERR(new_root); 2910 goto out; 2911 } 2912 if (!is_fstree(new_root->root_key.objectid)) { 2913 ret = -ENOENT; 2914 goto out_free; 2915 } 2916 2917 path = btrfs_alloc_path(); 2918 if (!path) { 2919 ret = -ENOMEM; 2920 goto out_free; 2921 } 2922 2923 trans = btrfs_start_transaction(root, 1); 2924 if (IS_ERR(trans)) { 2925 ret = PTR_ERR(trans); 2926 goto out_free; 2927 } 2928 2929 dir_id = btrfs_super_root_dir(fs_info->super_copy); 2930 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 2931 dir_id, &name, 1); 2932 if (IS_ERR_OR_NULL(di)) { 2933 btrfs_release_path(path); 2934 btrfs_end_transaction(trans); 2935 btrfs_err(fs_info, 2936 "Umm, you don't have the default diritem, this isn't going to work"); 2937 ret = -ENOENT; 2938 goto out_free; 2939 } 2940 2941 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 2942 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 2943 btrfs_mark_buffer_dirty(path->nodes[0]); 2944 btrfs_release_path(path); 2945 2946 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 2947 btrfs_end_transaction(trans); 2948 out_free: 2949 btrfs_put_root(new_root); 2950 btrfs_free_path(path); 2951 out: 2952 mnt_drop_write_file(file); 2953 return ret; 2954 } 2955 2956 static void get_block_group_info(struct list_head *groups_list, 2957 struct btrfs_ioctl_space_info *space) 2958 { 2959 struct btrfs_block_group *block_group; 2960 2961 space->total_bytes = 0; 2962 space->used_bytes = 0; 2963 space->flags = 0; 2964 list_for_each_entry(block_group, groups_list, list) { 2965 space->flags = block_group->flags; 2966 space->total_bytes += block_group->length; 2967 space->used_bytes += block_group->used; 2968 } 2969 } 2970 2971 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 2972 void __user *arg) 2973 { 2974 struct btrfs_ioctl_space_args space_args; 2975 struct btrfs_ioctl_space_info space; 2976 struct btrfs_ioctl_space_info *dest; 2977 struct btrfs_ioctl_space_info *dest_orig; 2978 struct btrfs_ioctl_space_info __user *user_dest; 2979 struct btrfs_space_info *info; 2980 static const u64 types[] = { 2981 BTRFS_BLOCK_GROUP_DATA, 2982 BTRFS_BLOCK_GROUP_SYSTEM, 2983 BTRFS_BLOCK_GROUP_METADATA, 2984 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 2985 }; 2986 int num_types = 4; 2987 int alloc_size; 2988 int ret = 0; 2989 u64 slot_count = 0; 2990 int i, c; 2991 2992 if (copy_from_user(&space_args, 2993 (struct btrfs_ioctl_space_args __user *)arg, 2994 sizeof(space_args))) 2995 return -EFAULT; 2996 2997 for (i = 0; i < num_types; i++) { 2998 struct btrfs_space_info *tmp; 2999 3000 info = NULL; 3001 list_for_each_entry(tmp, &fs_info->space_info, list) { 3002 if (tmp->flags == types[i]) { 3003 info = tmp; 3004 break; 3005 } 3006 } 3007 3008 if (!info) 3009 continue; 3010 3011 down_read(&info->groups_sem); 3012 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3013 if (!list_empty(&info->block_groups[c])) 3014 slot_count++; 3015 } 3016 up_read(&info->groups_sem); 3017 } 3018 3019 /* 3020 * Global block reserve, exported as a space_info 3021 */ 3022 slot_count++; 3023 3024 /* space_slots == 0 means they are asking for a count */ 3025 if (space_args.space_slots == 0) { 3026 space_args.total_spaces = slot_count; 3027 goto out; 3028 } 3029 3030 slot_count = min_t(u64, space_args.space_slots, slot_count); 3031 3032 alloc_size = sizeof(*dest) * slot_count; 3033 3034 /* we generally have at most 6 or so space infos, one for each raid 3035 * level. So, a whole page should be more than enough for everyone 3036 */ 3037 if (alloc_size > PAGE_SIZE) 3038 return -ENOMEM; 3039 3040 space_args.total_spaces = 0; 3041 dest = kmalloc(alloc_size, GFP_KERNEL); 3042 if (!dest) 3043 return -ENOMEM; 3044 dest_orig = dest; 3045 3046 /* now we have a buffer to copy into */ 3047 for (i = 0; i < num_types; i++) { 3048 struct btrfs_space_info *tmp; 3049 3050 if (!slot_count) 3051 break; 3052 3053 info = NULL; 3054 list_for_each_entry(tmp, &fs_info->space_info, list) { 3055 if (tmp->flags == types[i]) { 3056 info = tmp; 3057 break; 3058 } 3059 } 3060 3061 if (!info) 3062 continue; 3063 down_read(&info->groups_sem); 3064 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3065 if (!list_empty(&info->block_groups[c])) { 3066 get_block_group_info(&info->block_groups[c], 3067 &space); 3068 memcpy(dest, &space, sizeof(space)); 3069 dest++; 3070 space_args.total_spaces++; 3071 slot_count--; 3072 } 3073 if (!slot_count) 3074 break; 3075 } 3076 up_read(&info->groups_sem); 3077 } 3078 3079 /* 3080 * Add global block reserve 3081 */ 3082 if (slot_count) { 3083 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3084 3085 spin_lock(&block_rsv->lock); 3086 space.total_bytes = block_rsv->size; 3087 space.used_bytes = block_rsv->size - block_rsv->reserved; 3088 spin_unlock(&block_rsv->lock); 3089 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3090 memcpy(dest, &space, sizeof(space)); 3091 space_args.total_spaces++; 3092 } 3093 3094 user_dest = (struct btrfs_ioctl_space_info __user *) 3095 (arg + sizeof(struct btrfs_ioctl_space_args)); 3096 3097 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3098 ret = -EFAULT; 3099 3100 kfree(dest_orig); 3101 out: 3102 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3103 ret = -EFAULT; 3104 3105 return ret; 3106 } 3107 3108 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3109 void __user *argp) 3110 { 3111 struct btrfs_trans_handle *trans; 3112 u64 transid; 3113 3114 trans = btrfs_attach_transaction_barrier(root); 3115 if (IS_ERR(trans)) { 3116 if (PTR_ERR(trans) != -ENOENT) 3117 return PTR_ERR(trans); 3118 3119 /* No running transaction, don't bother */ 3120 transid = root->fs_info->last_trans_committed; 3121 goto out; 3122 } 3123 transid = trans->transid; 3124 btrfs_commit_transaction_async(trans); 3125 out: 3126 if (argp) 3127 if (copy_to_user(argp, &transid, sizeof(transid))) 3128 return -EFAULT; 3129 return 0; 3130 } 3131 3132 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3133 void __user *argp) 3134 { 3135 u64 transid; 3136 3137 if (argp) { 3138 if (copy_from_user(&transid, argp, sizeof(transid))) 3139 return -EFAULT; 3140 } else { 3141 transid = 0; /* current trans */ 3142 } 3143 return btrfs_wait_for_commit(fs_info, transid); 3144 } 3145 3146 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3147 { 3148 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3149 struct btrfs_ioctl_scrub_args *sa; 3150 int ret; 3151 3152 if (!capable(CAP_SYS_ADMIN)) 3153 return -EPERM; 3154 3155 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3156 btrfs_err(fs_info, "scrub is not supported on extent tree v2 yet"); 3157 return -EINVAL; 3158 } 3159 3160 sa = memdup_user(arg, sizeof(*sa)); 3161 if (IS_ERR(sa)) 3162 return PTR_ERR(sa); 3163 3164 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3165 ret = mnt_want_write_file(file); 3166 if (ret) 3167 goto out; 3168 } 3169 3170 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3171 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3172 0); 3173 3174 /* 3175 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3176 * error. This is important as it allows user space to know how much 3177 * progress scrub has done. For example, if scrub is canceled we get 3178 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3179 * space. Later user space can inspect the progress from the structure 3180 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3181 * previously (btrfs-progs does this). 3182 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3183 * then return -EFAULT to signal the structure was not copied or it may 3184 * be corrupt and unreliable due to a partial copy. 3185 */ 3186 if (copy_to_user(arg, sa, sizeof(*sa))) 3187 ret = -EFAULT; 3188 3189 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3190 mnt_drop_write_file(file); 3191 out: 3192 kfree(sa); 3193 return ret; 3194 } 3195 3196 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3197 { 3198 if (!capable(CAP_SYS_ADMIN)) 3199 return -EPERM; 3200 3201 return btrfs_scrub_cancel(fs_info); 3202 } 3203 3204 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3205 void __user *arg) 3206 { 3207 struct btrfs_ioctl_scrub_args *sa; 3208 int ret; 3209 3210 if (!capable(CAP_SYS_ADMIN)) 3211 return -EPERM; 3212 3213 sa = memdup_user(arg, sizeof(*sa)); 3214 if (IS_ERR(sa)) 3215 return PTR_ERR(sa); 3216 3217 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3218 3219 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3220 ret = -EFAULT; 3221 3222 kfree(sa); 3223 return ret; 3224 } 3225 3226 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3227 void __user *arg) 3228 { 3229 struct btrfs_ioctl_get_dev_stats *sa; 3230 int ret; 3231 3232 sa = memdup_user(arg, sizeof(*sa)); 3233 if (IS_ERR(sa)) 3234 return PTR_ERR(sa); 3235 3236 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3237 kfree(sa); 3238 return -EPERM; 3239 } 3240 3241 ret = btrfs_get_dev_stats(fs_info, sa); 3242 3243 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3244 ret = -EFAULT; 3245 3246 kfree(sa); 3247 return ret; 3248 } 3249 3250 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3251 void __user *arg) 3252 { 3253 struct btrfs_ioctl_dev_replace_args *p; 3254 int ret; 3255 3256 if (!capable(CAP_SYS_ADMIN)) 3257 return -EPERM; 3258 3259 if (btrfs_fs_incompat(fs_info, EXTENT_TREE_V2)) { 3260 btrfs_err(fs_info, "device replace not supported on extent tree v2 yet"); 3261 return -EINVAL; 3262 } 3263 3264 p = memdup_user(arg, sizeof(*p)); 3265 if (IS_ERR(p)) 3266 return PTR_ERR(p); 3267 3268 switch (p->cmd) { 3269 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3270 if (sb_rdonly(fs_info->sb)) { 3271 ret = -EROFS; 3272 goto out; 3273 } 3274 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3275 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3276 } else { 3277 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3278 btrfs_exclop_finish(fs_info); 3279 } 3280 break; 3281 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3282 btrfs_dev_replace_status(fs_info, p); 3283 ret = 0; 3284 break; 3285 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3286 p->result = btrfs_dev_replace_cancel(fs_info); 3287 ret = 0; 3288 break; 3289 default: 3290 ret = -EINVAL; 3291 break; 3292 } 3293 3294 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3295 ret = -EFAULT; 3296 out: 3297 kfree(p); 3298 return ret; 3299 } 3300 3301 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3302 { 3303 int ret = 0; 3304 int i; 3305 u64 rel_ptr; 3306 int size; 3307 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3308 struct inode_fs_paths *ipath = NULL; 3309 struct btrfs_path *path; 3310 3311 if (!capable(CAP_DAC_READ_SEARCH)) 3312 return -EPERM; 3313 3314 path = btrfs_alloc_path(); 3315 if (!path) { 3316 ret = -ENOMEM; 3317 goto out; 3318 } 3319 3320 ipa = memdup_user(arg, sizeof(*ipa)); 3321 if (IS_ERR(ipa)) { 3322 ret = PTR_ERR(ipa); 3323 ipa = NULL; 3324 goto out; 3325 } 3326 3327 size = min_t(u32, ipa->size, 4096); 3328 ipath = init_ipath(size, root, path); 3329 if (IS_ERR(ipath)) { 3330 ret = PTR_ERR(ipath); 3331 ipath = NULL; 3332 goto out; 3333 } 3334 3335 ret = paths_from_inode(ipa->inum, ipath); 3336 if (ret < 0) 3337 goto out; 3338 3339 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3340 rel_ptr = ipath->fspath->val[i] - 3341 (u64)(unsigned long)ipath->fspath->val; 3342 ipath->fspath->val[i] = rel_ptr; 3343 } 3344 3345 btrfs_free_path(path); 3346 path = NULL; 3347 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3348 ipath->fspath, size); 3349 if (ret) { 3350 ret = -EFAULT; 3351 goto out; 3352 } 3353 3354 out: 3355 btrfs_free_path(path); 3356 free_ipath(ipath); 3357 kfree(ipa); 3358 3359 return ret; 3360 } 3361 3362 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3363 void __user *arg, int version) 3364 { 3365 int ret = 0; 3366 int size; 3367 struct btrfs_ioctl_logical_ino_args *loi; 3368 struct btrfs_data_container *inodes = NULL; 3369 struct btrfs_path *path = NULL; 3370 bool ignore_offset; 3371 3372 if (!capable(CAP_SYS_ADMIN)) 3373 return -EPERM; 3374 3375 loi = memdup_user(arg, sizeof(*loi)); 3376 if (IS_ERR(loi)) 3377 return PTR_ERR(loi); 3378 3379 if (version == 1) { 3380 ignore_offset = false; 3381 size = min_t(u32, loi->size, SZ_64K); 3382 } else { 3383 /* All reserved bits must be 0 for now */ 3384 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3385 ret = -EINVAL; 3386 goto out_loi; 3387 } 3388 /* Only accept flags we have defined so far */ 3389 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3390 ret = -EINVAL; 3391 goto out_loi; 3392 } 3393 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3394 size = min_t(u32, loi->size, SZ_16M); 3395 } 3396 3397 inodes = init_data_container(size); 3398 if (IS_ERR(inodes)) { 3399 ret = PTR_ERR(inodes); 3400 goto out_loi; 3401 } 3402 3403 path = btrfs_alloc_path(); 3404 if (!path) { 3405 ret = -ENOMEM; 3406 goto out; 3407 } 3408 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3409 inodes, ignore_offset); 3410 btrfs_free_path(path); 3411 if (ret == -EINVAL) 3412 ret = -ENOENT; 3413 if (ret < 0) 3414 goto out; 3415 3416 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3417 size); 3418 if (ret) 3419 ret = -EFAULT; 3420 3421 out: 3422 kvfree(inodes); 3423 out_loi: 3424 kfree(loi); 3425 3426 return ret; 3427 } 3428 3429 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3430 struct btrfs_ioctl_balance_args *bargs) 3431 { 3432 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3433 3434 bargs->flags = bctl->flags; 3435 3436 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3437 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3438 if (atomic_read(&fs_info->balance_pause_req)) 3439 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3440 if (atomic_read(&fs_info->balance_cancel_req)) 3441 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3442 3443 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3444 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3445 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3446 3447 spin_lock(&fs_info->balance_lock); 3448 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3449 spin_unlock(&fs_info->balance_lock); 3450 } 3451 3452 /* 3453 * Try to acquire fs_info::balance_mutex as well as set BTRFS_EXLCOP_BALANCE as 3454 * required. 3455 * 3456 * @fs_info: the filesystem 3457 * @excl_acquired: ptr to boolean value which is set to false in case balance 3458 * is being resumed 3459 * 3460 * Return 0 on success in which case both fs_info::balance is acquired as well 3461 * as exclusive ops are blocked. In case of failure return an error code. 3462 */ 3463 static int btrfs_try_lock_balance(struct btrfs_fs_info *fs_info, bool *excl_acquired) 3464 { 3465 int ret; 3466 3467 /* 3468 * Exclusive operation is locked. Three possibilities: 3469 * (1) some other op is running 3470 * (2) balance is running 3471 * (3) balance is paused -- special case (think resume) 3472 */ 3473 while (1) { 3474 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 3475 *excl_acquired = true; 3476 mutex_lock(&fs_info->balance_mutex); 3477 return 0; 3478 } 3479 3480 mutex_lock(&fs_info->balance_mutex); 3481 if (fs_info->balance_ctl) { 3482 /* This is either (2) or (3) */ 3483 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3484 /* This is (2) */ 3485 ret = -EINPROGRESS; 3486 goto out_failure; 3487 3488 } else { 3489 mutex_unlock(&fs_info->balance_mutex); 3490 /* 3491 * Lock released to allow other waiters to 3492 * continue, we'll reexamine the status again. 3493 */ 3494 mutex_lock(&fs_info->balance_mutex); 3495 3496 if (fs_info->balance_ctl && 3497 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 3498 /* This is (3) */ 3499 *excl_acquired = false; 3500 return 0; 3501 } 3502 } 3503 } else { 3504 /* This is (1) */ 3505 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3506 goto out_failure; 3507 } 3508 3509 mutex_unlock(&fs_info->balance_mutex); 3510 } 3511 3512 out_failure: 3513 mutex_unlock(&fs_info->balance_mutex); 3514 *excl_acquired = false; 3515 return ret; 3516 } 3517 3518 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3519 { 3520 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3521 struct btrfs_fs_info *fs_info = root->fs_info; 3522 struct btrfs_ioctl_balance_args *bargs; 3523 struct btrfs_balance_control *bctl; 3524 bool need_unlock = true; 3525 int ret; 3526 3527 if (!capable(CAP_SYS_ADMIN)) 3528 return -EPERM; 3529 3530 ret = mnt_want_write_file(file); 3531 if (ret) 3532 return ret; 3533 3534 bargs = memdup_user(arg, sizeof(*bargs)); 3535 if (IS_ERR(bargs)) { 3536 ret = PTR_ERR(bargs); 3537 bargs = NULL; 3538 goto out; 3539 } 3540 3541 ret = btrfs_try_lock_balance(fs_info, &need_unlock); 3542 if (ret) 3543 goto out; 3544 3545 lockdep_assert_held(&fs_info->balance_mutex); 3546 3547 if (bargs->flags & BTRFS_BALANCE_RESUME) { 3548 if (!fs_info->balance_ctl) { 3549 ret = -ENOTCONN; 3550 goto out_unlock; 3551 } 3552 3553 bctl = fs_info->balance_ctl; 3554 spin_lock(&fs_info->balance_lock); 3555 bctl->flags |= BTRFS_BALANCE_RESUME; 3556 spin_unlock(&fs_info->balance_lock); 3557 btrfs_exclop_balance(fs_info, BTRFS_EXCLOP_BALANCE); 3558 3559 goto do_balance; 3560 } 3561 3562 if (bargs->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 3563 ret = -EINVAL; 3564 goto out_unlock; 3565 } 3566 3567 if (fs_info->balance_ctl) { 3568 ret = -EINPROGRESS; 3569 goto out_unlock; 3570 } 3571 3572 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 3573 if (!bctl) { 3574 ret = -ENOMEM; 3575 goto out_unlock; 3576 } 3577 3578 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 3579 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 3580 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 3581 3582 bctl->flags = bargs->flags; 3583 do_balance: 3584 /* 3585 * Ownership of bctl and exclusive operation goes to btrfs_balance. 3586 * bctl is freed in reset_balance_state, or, if restriper was paused 3587 * all the way until unmount, in free_fs_info. The flag should be 3588 * cleared after reset_balance_state. 3589 */ 3590 need_unlock = false; 3591 3592 ret = btrfs_balance(fs_info, bctl, bargs); 3593 bctl = NULL; 3594 3595 if (ret == 0 || ret == -ECANCELED) { 3596 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3597 ret = -EFAULT; 3598 } 3599 3600 kfree(bctl); 3601 out_unlock: 3602 mutex_unlock(&fs_info->balance_mutex); 3603 if (need_unlock) 3604 btrfs_exclop_finish(fs_info); 3605 out: 3606 mnt_drop_write_file(file); 3607 kfree(bargs); 3608 return ret; 3609 } 3610 3611 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 3612 { 3613 if (!capable(CAP_SYS_ADMIN)) 3614 return -EPERM; 3615 3616 switch (cmd) { 3617 case BTRFS_BALANCE_CTL_PAUSE: 3618 return btrfs_pause_balance(fs_info); 3619 case BTRFS_BALANCE_CTL_CANCEL: 3620 return btrfs_cancel_balance(fs_info); 3621 } 3622 3623 return -EINVAL; 3624 } 3625 3626 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 3627 void __user *arg) 3628 { 3629 struct btrfs_ioctl_balance_args *bargs; 3630 int ret = 0; 3631 3632 if (!capable(CAP_SYS_ADMIN)) 3633 return -EPERM; 3634 3635 mutex_lock(&fs_info->balance_mutex); 3636 if (!fs_info->balance_ctl) { 3637 ret = -ENOTCONN; 3638 goto out; 3639 } 3640 3641 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 3642 if (!bargs) { 3643 ret = -ENOMEM; 3644 goto out; 3645 } 3646 3647 btrfs_update_ioctl_balance_args(fs_info, bargs); 3648 3649 if (copy_to_user(arg, bargs, sizeof(*bargs))) 3650 ret = -EFAULT; 3651 3652 kfree(bargs); 3653 out: 3654 mutex_unlock(&fs_info->balance_mutex); 3655 return ret; 3656 } 3657 3658 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 3659 { 3660 struct inode *inode = file_inode(file); 3661 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3662 struct btrfs_ioctl_quota_ctl_args *sa; 3663 int ret; 3664 3665 if (!capable(CAP_SYS_ADMIN)) 3666 return -EPERM; 3667 3668 ret = mnt_want_write_file(file); 3669 if (ret) 3670 return ret; 3671 3672 sa = memdup_user(arg, sizeof(*sa)); 3673 if (IS_ERR(sa)) { 3674 ret = PTR_ERR(sa); 3675 goto drop_write; 3676 } 3677 3678 down_write(&fs_info->subvol_sem); 3679 3680 switch (sa->cmd) { 3681 case BTRFS_QUOTA_CTL_ENABLE: 3682 ret = btrfs_quota_enable(fs_info); 3683 break; 3684 case BTRFS_QUOTA_CTL_DISABLE: 3685 ret = btrfs_quota_disable(fs_info); 3686 break; 3687 default: 3688 ret = -EINVAL; 3689 break; 3690 } 3691 3692 kfree(sa); 3693 up_write(&fs_info->subvol_sem); 3694 drop_write: 3695 mnt_drop_write_file(file); 3696 return ret; 3697 } 3698 3699 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 3700 { 3701 struct inode *inode = file_inode(file); 3702 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3703 struct btrfs_root *root = BTRFS_I(inode)->root; 3704 struct btrfs_ioctl_qgroup_assign_args *sa; 3705 struct btrfs_trans_handle *trans; 3706 int ret; 3707 int err; 3708 3709 if (!capable(CAP_SYS_ADMIN)) 3710 return -EPERM; 3711 3712 ret = mnt_want_write_file(file); 3713 if (ret) 3714 return ret; 3715 3716 sa = memdup_user(arg, sizeof(*sa)); 3717 if (IS_ERR(sa)) { 3718 ret = PTR_ERR(sa); 3719 goto drop_write; 3720 } 3721 3722 trans = btrfs_join_transaction(root); 3723 if (IS_ERR(trans)) { 3724 ret = PTR_ERR(trans); 3725 goto out; 3726 } 3727 3728 if (sa->assign) { 3729 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 3730 } else { 3731 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 3732 } 3733 3734 /* update qgroup status and info */ 3735 err = btrfs_run_qgroups(trans); 3736 if (err < 0) 3737 btrfs_handle_fs_error(fs_info, err, 3738 "failed to update qgroup status and info"); 3739 err = btrfs_end_transaction(trans); 3740 if (err && !ret) 3741 ret = err; 3742 3743 out: 3744 kfree(sa); 3745 drop_write: 3746 mnt_drop_write_file(file); 3747 return ret; 3748 } 3749 3750 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 3751 { 3752 struct inode *inode = file_inode(file); 3753 struct btrfs_root *root = BTRFS_I(inode)->root; 3754 struct btrfs_ioctl_qgroup_create_args *sa; 3755 struct btrfs_trans_handle *trans; 3756 int ret; 3757 int err; 3758 3759 if (!capable(CAP_SYS_ADMIN)) 3760 return -EPERM; 3761 3762 ret = mnt_want_write_file(file); 3763 if (ret) 3764 return ret; 3765 3766 sa = memdup_user(arg, sizeof(*sa)); 3767 if (IS_ERR(sa)) { 3768 ret = PTR_ERR(sa); 3769 goto drop_write; 3770 } 3771 3772 if (!sa->qgroupid) { 3773 ret = -EINVAL; 3774 goto out; 3775 } 3776 3777 trans = btrfs_join_transaction(root); 3778 if (IS_ERR(trans)) { 3779 ret = PTR_ERR(trans); 3780 goto out; 3781 } 3782 3783 if (sa->create) { 3784 ret = btrfs_create_qgroup(trans, sa->qgroupid); 3785 } else { 3786 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 3787 } 3788 3789 err = btrfs_end_transaction(trans); 3790 if (err && !ret) 3791 ret = err; 3792 3793 out: 3794 kfree(sa); 3795 drop_write: 3796 mnt_drop_write_file(file); 3797 return ret; 3798 } 3799 3800 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 3801 { 3802 struct inode *inode = file_inode(file); 3803 struct btrfs_root *root = BTRFS_I(inode)->root; 3804 struct btrfs_ioctl_qgroup_limit_args *sa; 3805 struct btrfs_trans_handle *trans; 3806 int ret; 3807 int err; 3808 u64 qgroupid; 3809 3810 if (!capable(CAP_SYS_ADMIN)) 3811 return -EPERM; 3812 3813 ret = mnt_want_write_file(file); 3814 if (ret) 3815 return ret; 3816 3817 sa = memdup_user(arg, sizeof(*sa)); 3818 if (IS_ERR(sa)) { 3819 ret = PTR_ERR(sa); 3820 goto drop_write; 3821 } 3822 3823 trans = btrfs_join_transaction(root); 3824 if (IS_ERR(trans)) { 3825 ret = PTR_ERR(trans); 3826 goto out; 3827 } 3828 3829 qgroupid = sa->qgroupid; 3830 if (!qgroupid) { 3831 /* take the current subvol as qgroup */ 3832 qgroupid = root->root_key.objectid; 3833 } 3834 3835 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 3836 3837 err = btrfs_end_transaction(trans); 3838 if (err && !ret) 3839 ret = err; 3840 3841 out: 3842 kfree(sa); 3843 drop_write: 3844 mnt_drop_write_file(file); 3845 return ret; 3846 } 3847 3848 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 3849 { 3850 struct inode *inode = file_inode(file); 3851 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3852 struct btrfs_ioctl_quota_rescan_args *qsa; 3853 int ret; 3854 3855 if (!capable(CAP_SYS_ADMIN)) 3856 return -EPERM; 3857 3858 ret = mnt_want_write_file(file); 3859 if (ret) 3860 return ret; 3861 3862 qsa = memdup_user(arg, sizeof(*qsa)); 3863 if (IS_ERR(qsa)) { 3864 ret = PTR_ERR(qsa); 3865 goto drop_write; 3866 } 3867 3868 if (qsa->flags) { 3869 ret = -EINVAL; 3870 goto out; 3871 } 3872 3873 ret = btrfs_qgroup_rescan(fs_info); 3874 3875 out: 3876 kfree(qsa); 3877 drop_write: 3878 mnt_drop_write_file(file); 3879 return ret; 3880 } 3881 3882 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 3883 void __user *arg) 3884 { 3885 struct btrfs_ioctl_quota_rescan_args qsa = {0}; 3886 3887 if (!capable(CAP_SYS_ADMIN)) 3888 return -EPERM; 3889 3890 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 3891 qsa.flags = 1; 3892 qsa.progress = fs_info->qgroup_rescan_progress.objectid; 3893 } 3894 3895 if (copy_to_user(arg, &qsa, sizeof(qsa))) 3896 return -EFAULT; 3897 3898 return 0; 3899 } 3900 3901 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 3902 void __user *arg) 3903 { 3904 if (!capable(CAP_SYS_ADMIN)) 3905 return -EPERM; 3906 3907 return btrfs_qgroup_wait_for_completion(fs_info, true); 3908 } 3909 3910 static long _btrfs_ioctl_set_received_subvol(struct file *file, 3911 struct user_namespace *mnt_userns, 3912 struct btrfs_ioctl_received_subvol_args *sa) 3913 { 3914 struct inode *inode = file_inode(file); 3915 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3916 struct btrfs_root *root = BTRFS_I(inode)->root; 3917 struct btrfs_root_item *root_item = &root->root_item; 3918 struct btrfs_trans_handle *trans; 3919 struct timespec64 ct = current_time(inode); 3920 int ret = 0; 3921 int received_uuid_changed; 3922 3923 if (!inode_owner_or_capable(mnt_userns, inode)) 3924 return -EPERM; 3925 3926 ret = mnt_want_write_file(file); 3927 if (ret < 0) 3928 return ret; 3929 3930 down_write(&fs_info->subvol_sem); 3931 3932 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3933 ret = -EINVAL; 3934 goto out; 3935 } 3936 3937 if (btrfs_root_readonly(root)) { 3938 ret = -EROFS; 3939 goto out; 3940 } 3941 3942 /* 3943 * 1 - root item 3944 * 2 - uuid items (received uuid + subvol uuid) 3945 */ 3946 trans = btrfs_start_transaction(root, 3); 3947 if (IS_ERR(trans)) { 3948 ret = PTR_ERR(trans); 3949 trans = NULL; 3950 goto out; 3951 } 3952 3953 sa->rtransid = trans->transid; 3954 sa->rtime.sec = ct.tv_sec; 3955 sa->rtime.nsec = ct.tv_nsec; 3956 3957 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 3958 BTRFS_UUID_SIZE); 3959 if (received_uuid_changed && 3960 !btrfs_is_empty_uuid(root_item->received_uuid)) { 3961 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 3962 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3963 root->root_key.objectid); 3964 if (ret && ret != -ENOENT) { 3965 btrfs_abort_transaction(trans, ret); 3966 btrfs_end_transaction(trans); 3967 goto out; 3968 } 3969 } 3970 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 3971 btrfs_set_root_stransid(root_item, sa->stransid); 3972 btrfs_set_root_rtransid(root_item, sa->rtransid); 3973 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 3974 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 3975 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 3976 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 3977 3978 ret = btrfs_update_root(trans, fs_info->tree_root, 3979 &root->root_key, &root->root_item); 3980 if (ret < 0) { 3981 btrfs_end_transaction(trans); 3982 goto out; 3983 } 3984 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 3985 ret = btrfs_uuid_tree_add(trans, sa->uuid, 3986 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 3987 root->root_key.objectid); 3988 if (ret < 0 && ret != -EEXIST) { 3989 btrfs_abort_transaction(trans, ret); 3990 btrfs_end_transaction(trans); 3991 goto out; 3992 } 3993 } 3994 ret = btrfs_commit_transaction(trans); 3995 out: 3996 up_write(&fs_info->subvol_sem); 3997 mnt_drop_write_file(file); 3998 return ret; 3999 } 4000 4001 #ifdef CONFIG_64BIT 4002 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4003 void __user *arg) 4004 { 4005 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4006 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4007 int ret = 0; 4008 4009 args32 = memdup_user(arg, sizeof(*args32)); 4010 if (IS_ERR(args32)) 4011 return PTR_ERR(args32); 4012 4013 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4014 if (!args64) { 4015 ret = -ENOMEM; 4016 goto out; 4017 } 4018 4019 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4020 args64->stransid = args32->stransid; 4021 args64->rtransid = args32->rtransid; 4022 args64->stime.sec = args32->stime.sec; 4023 args64->stime.nsec = args32->stime.nsec; 4024 args64->rtime.sec = args32->rtime.sec; 4025 args64->rtime.nsec = args32->rtime.nsec; 4026 args64->flags = args32->flags; 4027 4028 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), args64); 4029 if (ret) 4030 goto out; 4031 4032 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4033 args32->stransid = args64->stransid; 4034 args32->rtransid = args64->rtransid; 4035 args32->stime.sec = args64->stime.sec; 4036 args32->stime.nsec = args64->stime.nsec; 4037 args32->rtime.sec = args64->rtime.sec; 4038 args32->rtime.nsec = args64->rtime.nsec; 4039 args32->flags = args64->flags; 4040 4041 ret = copy_to_user(arg, args32, sizeof(*args32)); 4042 if (ret) 4043 ret = -EFAULT; 4044 4045 out: 4046 kfree(args32); 4047 kfree(args64); 4048 return ret; 4049 } 4050 #endif 4051 4052 static long btrfs_ioctl_set_received_subvol(struct file *file, 4053 void __user *arg) 4054 { 4055 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4056 int ret = 0; 4057 4058 sa = memdup_user(arg, sizeof(*sa)); 4059 if (IS_ERR(sa)) 4060 return PTR_ERR(sa); 4061 4062 ret = _btrfs_ioctl_set_received_subvol(file, file_mnt_user_ns(file), sa); 4063 4064 if (ret) 4065 goto out; 4066 4067 ret = copy_to_user(arg, sa, sizeof(*sa)); 4068 if (ret) 4069 ret = -EFAULT; 4070 4071 out: 4072 kfree(sa); 4073 return ret; 4074 } 4075 4076 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4077 void __user *arg) 4078 { 4079 size_t len; 4080 int ret; 4081 char label[BTRFS_LABEL_SIZE]; 4082 4083 spin_lock(&fs_info->super_lock); 4084 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4085 spin_unlock(&fs_info->super_lock); 4086 4087 len = strnlen(label, BTRFS_LABEL_SIZE); 4088 4089 if (len == BTRFS_LABEL_SIZE) { 4090 btrfs_warn(fs_info, 4091 "label is too long, return the first %zu bytes", 4092 --len); 4093 } 4094 4095 ret = copy_to_user(arg, label, len); 4096 4097 return ret ? -EFAULT : 0; 4098 } 4099 4100 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4101 { 4102 struct inode *inode = file_inode(file); 4103 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4104 struct btrfs_root *root = BTRFS_I(inode)->root; 4105 struct btrfs_super_block *super_block = fs_info->super_copy; 4106 struct btrfs_trans_handle *trans; 4107 char label[BTRFS_LABEL_SIZE]; 4108 int ret; 4109 4110 if (!capable(CAP_SYS_ADMIN)) 4111 return -EPERM; 4112 4113 if (copy_from_user(label, arg, sizeof(label))) 4114 return -EFAULT; 4115 4116 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4117 btrfs_err(fs_info, 4118 "unable to set label with more than %d bytes", 4119 BTRFS_LABEL_SIZE - 1); 4120 return -EINVAL; 4121 } 4122 4123 ret = mnt_want_write_file(file); 4124 if (ret) 4125 return ret; 4126 4127 trans = btrfs_start_transaction(root, 0); 4128 if (IS_ERR(trans)) { 4129 ret = PTR_ERR(trans); 4130 goto out_unlock; 4131 } 4132 4133 spin_lock(&fs_info->super_lock); 4134 strcpy(super_block->label, label); 4135 spin_unlock(&fs_info->super_lock); 4136 ret = btrfs_commit_transaction(trans); 4137 4138 out_unlock: 4139 mnt_drop_write_file(file); 4140 return ret; 4141 } 4142 4143 #define INIT_FEATURE_FLAGS(suffix) \ 4144 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4145 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4146 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4147 4148 int btrfs_ioctl_get_supported_features(void __user *arg) 4149 { 4150 static const struct btrfs_ioctl_feature_flags features[3] = { 4151 INIT_FEATURE_FLAGS(SUPP), 4152 INIT_FEATURE_FLAGS(SAFE_SET), 4153 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4154 }; 4155 4156 if (copy_to_user(arg, &features, sizeof(features))) 4157 return -EFAULT; 4158 4159 return 0; 4160 } 4161 4162 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4163 void __user *arg) 4164 { 4165 struct btrfs_super_block *super_block = fs_info->super_copy; 4166 struct btrfs_ioctl_feature_flags features; 4167 4168 features.compat_flags = btrfs_super_compat_flags(super_block); 4169 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4170 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4171 4172 if (copy_to_user(arg, &features, sizeof(features))) 4173 return -EFAULT; 4174 4175 return 0; 4176 } 4177 4178 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4179 enum btrfs_feature_set set, 4180 u64 change_mask, u64 flags, u64 supported_flags, 4181 u64 safe_set, u64 safe_clear) 4182 { 4183 const char *type = btrfs_feature_set_name(set); 4184 char *names; 4185 u64 disallowed, unsupported; 4186 u64 set_mask = flags & change_mask; 4187 u64 clear_mask = ~flags & change_mask; 4188 4189 unsupported = set_mask & ~supported_flags; 4190 if (unsupported) { 4191 names = btrfs_printable_features(set, unsupported); 4192 if (names) { 4193 btrfs_warn(fs_info, 4194 "this kernel does not support the %s feature bit%s", 4195 names, strchr(names, ',') ? "s" : ""); 4196 kfree(names); 4197 } else 4198 btrfs_warn(fs_info, 4199 "this kernel does not support %s bits 0x%llx", 4200 type, unsupported); 4201 return -EOPNOTSUPP; 4202 } 4203 4204 disallowed = set_mask & ~safe_set; 4205 if (disallowed) { 4206 names = btrfs_printable_features(set, disallowed); 4207 if (names) { 4208 btrfs_warn(fs_info, 4209 "can't set the %s feature bit%s while mounted", 4210 names, strchr(names, ',') ? "s" : ""); 4211 kfree(names); 4212 } else 4213 btrfs_warn(fs_info, 4214 "can't set %s bits 0x%llx while mounted", 4215 type, disallowed); 4216 return -EPERM; 4217 } 4218 4219 disallowed = clear_mask & ~safe_clear; 4220 if (disallowed) { 4221 names = btrfs_printable_features(set, disallowed); 4222 if (names) { 4223 btrfs_warn(fs_info, 4224 "can't clear the %s feature bit%s while mounted", 4225 names, strchr(names, ',') ? "s" : ""); 4226 kfree(names); 4227 } else 4228 btrfs_warn(fs_info, 4229 "can't clear %s bits 0x%llx while mounted", 4230 type, disallowed); 4231 return -EPERM; 4232 } 4233 4234 return 0; 4235 } 4236 4237 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4238 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4239 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4240 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4241 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4242 4243 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4244 { 4245 struct inode *inode = file_inode(file); 4246 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4247 struct btrfs_root *root = BTRFS_I(inode)->root; 4248 struct btrfs_super_block *super_block = fs_info->super_copy; 4249 struct btrfs_ioctl_feature_flags flags[2]; 4250 struct btrfs_trans_handle *trans; 4251 u64 newflags; 4252 int ret; 4253 4254 if (!capable(CAP_SYS_ADMIN)) 4255 return -EPERM; 4256 4257 if (copy_from_user(flags, arg, sizeof(flags))) 4258 return -EFAULT; 4259 4260 /* Nothing to do */ 4261 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4262 !flags[0].incompat_flags) 4263 return 0; 4264 4265 ret = check_feature(fs_info, flags[0].compat_flags, 4266 flags[1].compat_flags, COMPAT); 4267 if (ret) 4268 return ret; 4269 4270 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4271 flags[1].compat_ro_flags, COMPAT_RO); 4272 if (ret) 4273 return ret; 4274 4275 ret = check_feature(fs_info, flags[0].incompat_flags, 4276 flags[1].incompat_flags, INCOMPAT); 4277 if (ret) 4278 return ret; 4279 4280 ret = mnt_want_write_file(file); 4281 if (ret) 4282 return ret; 4283 4284 trans = btrfs_start_transaction(root, 0); 4285 if (IS_ERR(trans)) { 4286 ret = PTR_ERR(trans); 4287 goto out_drop_write; 4288 } 4289 4290 spin_lock(&fs_info->super_lock); 4291 newflags = btrfs_super_compat_flags(super_block); 4292 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4293 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4294 btrfs_set_super_compat_flags(super_block, newflags); 4295 4296 newflags = btrfs_super_compat_ro_flags(super_block); 4297 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4298 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4299 btrfs_set_super_compat_ro_flags(super_block, newflags); 4300 4301 newflags = btrfs_super_incompat_flags(super_block); 4302 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4303 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4304 btrfs_set_super_incompat_flags(super_block, newflags); 4305 spin_unlock(&fs_info->super_lock); 4306 4307 ret = btrfs_commit_transaction(trans); 4308 out_drop_write: 4309 mnt_drop_write_file(file); 4310 4311 return ret; 4312 } 4313 4314 static int _btrfs_ioctl_send(struct inode *inode, void __user *argp, bool compat) 4315 { 4316 struct btrfs_ioctl_send_args *arg; 4317 int ret; 4318 4319 if (compat) { 4320 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4321 struct btrfs_ioctl_send_args_32 args32; 4322 4323 ret = copy_from_user(&args32, argp, sizeof(args32)); 4324 if (ret) 4325 return -EFAULT; 4326 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4327 if (!arg) 4328 return -ENOMEM; 4329 arg->send_fd = args32.send_fd; 4330 arg->clone_sources_count = args32.clone_sources_count; 4331 arg->clone_sources = compat_ptr(args32.clone_sources); 4332 arg->parent_root = args32.parent_root; 4333 arg->flags = args32.flags; 4334 memcpy(arg->reserved, args32.reserved, 4335 sizeof(args32.reserved)); 4336 #else 4337 return -ENOTTY; 4338 #endif 4339 } else { 4340 arg = memdup_user(argp, sizeof(*arg)); 4341 if (IS_ERR(arg)) 4342 return PTR_ERR(arg); 4343 } 4344 ret = btrfs_ioctl_send(inode, arg); 4345 kfree(arg); 4346 return ret; 4347 } 4348 4349 static int btrfs_ioctl_encoded_read(struct file *file, void __user *argp, 4350 bool compat) 4351 { 4352 struct btrfs_ioctl_encoded_io_args args = { 0 }; 4353 size_t copy_end_kernel = offsetofend(struct btrfs_ioctl_encoded_io_args, 4354 flags); 4355 size_t copy_end; 4356 struct iovec iovstack[UIO_FASTIOV]; 4357 struct iovec *iov = iovstack; 4358 struct iov_iter iter; 4359 loff_t pos; 4360 struct kiocb kiocb; 4361 ssize_t ret; 4362 4363 if (!capable(CAP_SYS_ADMIN)) { 4364 ret = -EPERM; 4365 goto out_acct; 4366 } 4367 4368 if (compat) { 4369 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4370 struct btrfs_ioctl_encoded_io_args_32 args32; 4371 4372 copy_end = offsetofend(struct btrfs_ioctl_encoded_io_args_32, 4373 flags); 4374 if (copy_from_user(&args32, argp, copy_end)) { 4375 ret = -EFAULT; 4376 goto out_acct; 4377 } 4378 args.iov = compat_ptr(args32.iov); 4379 args.iovcnt = args32.iovcnt; 4380 args.offset = args32.offset; 4381 args.flags = args32.flags; 4382 #else 4383 return -ENOTTY; 4384 #endif 4385 } else { 4386 copy_end = copy_end_kernel; 4387 if (copy_from_user(&args, argp, copy_end)) { 4388 ret = -EFAULT; 4389 goto out_acct; 4390 } 4391 } 4392 if (args.flags != 0) { 4393 ret = -EINVAL; 4394 goto out_acct; 4395 } 4396 4397 ret = import_iovec(READ, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4398 &iov, &iter); 4399 if (ret < 0) 4400 goto out_acct; 4401 4402 if (iov_iter_count(&iter) == 0) { 4403 ret = 0; 4404 goto out_iov; 4405 } 4406 pos = args.offset; 4407 ret = rw_verify_area(READ, file, &pos, args.len); 4408 if (ret < 0) 4409 goto out_iov; 4410 4411 init_sync_kiocb(&kiocb, file); 4412 kiocb.ki_pos = pos; 4413 4414 ret = btrfs_encoded_read(&kiocb, &iter, &args); 4415 if (ret >= 0) { 4416 fsnotify_access(file); 4417 if (copy_to_user(argp + copy_end, 4418 (char *)&args + copy_end_kernel, 4419 sizeof(args) - copy_end_kernel)) 4420 ret = -EFAULT; 4421 } 4422 4423 out_iov: 4424 kfree(iov); 4425 out_acct: 4426 if (ret > 0) 4427 add_rchar(current, ret); 4428 inc_syscr(current); 4429 return ret; 4430 } 4431 4432 static int btrfs_ioctl_encoded_write(struct file *file, void __user *argp, bool compat) 4433 { 4434 struct btrfs_ioctl_encoded_io_args args; 4435 struct iovec iovstack[UIO_FASTIOV]; 4436 struct iovec *iov = iovstack; 4437 struct iov_iter iter; 4438 loff_t pos; 4439 struct kiocb kiocb; 4440 ssize_t ret; 4441 4442 if (!capable(CAP_SYS_ADMIN)) { 4443 ret = -EPERM; 4444 goto out_acct; 4445 } 4446 4447 if (!(file->f_mode & FMODE_WRITE)) { 4448 ret = -EBADF; 4449 goto out_acct; 4450 } 4451 4452 if (compat) { 4453 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4454 struct btrfs_ioctl_encoded_io_args_32 args32; 4455 4456 if (copy_from_user(&args32, argp, sizeof(args32))) { 4457 ret = -EFAULT; 4458 goto out_acct; 4459 } 4460 args.iov = compat_ptr(args32.iov); 4461 args.iovcnt = args32.iovcnt; 4462 args.offset = args32.offset; 4463 args.flags = args32.flags; 4464 args.len = args32.len; 4465 args.unencoded_len = args32.unencoded_len; 4466 args.unencoded_offset = args32.unencoded_offset; 4467 args.compression = args32.compression; 4468 args.encryption = args32.encryption; 4469 memcpy(args.reserved, args32.reserved, sizeof(args.reserved)); 4470 #else 4471 return -ENOTTY; 4472 #endif 4473 } else { 4474 if (copy_from_user(&args, argp, sizeof(args))) { 4475 ret = -EFAULT; 4476 goto out_acct; 4477 } 4478 } 4479 4480 ret = -EINVAL; 4481 if (args.flags != 0) 4482 goto out_acct; 4483 if (memchr_inv(args.reserved, 0, sizeof(args.reserved))) 4484 goto out_acct; 4485 if (args.compression == BTRFS_ENCODED_IO_COMPRESSION_NONE && 4486 args.encryption == BTRFS_ENCODED_IO_ENCRYPTION_NONE) 4487 goto out_acct; 4488 if (args.compression >= BTRFS_ENCODED_IO_COMPRESSION_TYPES || 4489 args.encryption >= BTRFS_ENCODED_IO_ENCRYPTION_TYPES) 4490 goto out_acct; 4491 if (args.unencoded_offset > args.unencoded_len) 4492 goto out_acct; 4493 if (args.len > args.unencoded_len - args.unencoded_offset) 4494 goto out_acct; 4495 4496 ret = import_iovec(WRITE, args.iov, args.iovcnt, ARRAY_SIZE(iovstack), 4497 &iov, &iter); 4498 if (ret < 0) 4499 goto out_acct; 4500 4501 file_start_write(file); 4502 4503 if (iov_iter_count(&iter) == 0) { 4504 ret = 0; 4505 goto out_end_write; 4506 } 4507 pos = args.offset; 4508 ret = rw_verify_area(WRITE, file, &pos, args.len); 4509 if (ret < 0) 4510 goto out_end_write; 4511 4512 init_sync_kiocb(&kiocb, file); 4513 ret = kiocb_set_rw_flags(&kiocb, 0); 4514 if (ret) 4515 goto out_end_write; 4516 kiocb.ki_pos = pos; 4517 4518 ret = btrfs_do_write_iter(&kiocb, &iter, &args); 4519 if (ret > 0) 4520 fsnotify_modify(file); 4521 4522 out_end_write: 4523 file_end_write(file); 4524 kfree(iov); 4525 out_acct: 4526 if (ret > 0) 4527 add_wchar(current, ret); 4528 inc_syscw(current); 4529 return ret; 4530 } 4531 4532 long btrfs_ioctl(struct file *file, unsigned int 4533 cmd, unsigned long arg) 4534 { 4535 struct inode *inode = file_inode(file); 4536 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4537 struct btrfs_root *root = BTRFS_I(inode)->root; 4538 void __user *argp = (void __user *)arg; 4539 4540 switch (cmd) { 4541 case FS_IOC_GETVERSION: 4542 return btrfs_ioctl_getversion(inode, argp); 4543 case FS_IOC_GETFSLABEL: 4544 return btrfs_ioctl_get_fslabel(fs_info, argp); 4545 case FS_IOC_SETFSLABEL: 4546 return btrfs_ioctl_set_fslabel(file, argp); 4547 case FITRIM: 4548 return btrfs_ioctl_fitrim(fs_info, argp); 4549 case BTRFS_IOC_SNAP_CREATE: 4550 return btrfs_ioctl_snap_create(file, argp, 0); 4551 case BTRFS_IOC_SNAP_CREATE_V2: 4552 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4553 case BTRFS_IOC_SUBVOL_CREATE: 4554 return btrfs_ioctl_snap_create(file, argp, 1); 4555 case BTRFS_IOC_SUBVOL_CREATE_V2: 4556 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4557 case BTRFS_IOC_SNAP_DESTROY: 4558 return btrfs_ioctl_snap_destroy(file, argp, false); 4559 case BTRFS_IOC_SNAP_DESTROY_V2: 4560 return btrfs_ioctl_snap_destroy(file, argp, true); 4561 case BTRFS_IOC_SUBVOL_GETFLAGS: 4562 return btrfs_ioctl_subvol_getflags(inode, argp); 4563 case BTRFS_IOC_SUBVOL_SETFLAGS: 4564 return btrfs_ioctl_subvol_setflags(file, argp); 4565 case BTRFS_IOC_DEFAULT_SUBVOL: 4566 return btrfs_ioctl_default_subvol(file, argp); 4567 case BTRFS_IOC_DEFRAG: 4568 return btrfs_ioctl_defrag(file, NULL); 4569 case BTRFS_IOC_DEFRAG_RANGE: 4570 return btrfs_ioctl_defrag(file, argp); 4571 case BTRFS_IOC_RESIZE: 4572 return btrfs_ioctl_resize(file, argp); 4573 case BTRFS_IOC_ADD_DEV: 4574 return btrfs_ioctl_add_dev(fs_info, argp); 4575 case BTRFS_IOC_RM_DEV: 4576 return btrfs_ioctl_rm_dev(file, argp); 4577 case BTRFS_IOC_RM_DEV_V2: 4578 return btrfs_ioctl_rm_dev_v2(file, argp); 4579 case BTRFS_IOC_FS_INFO: 4580 return btrfs_ioctl_fs_info(fs_info, argp); 4581 case BTRFS_IOC_DEV_INFO: 4582 return btrfs_ioctl_dev_info(fs_info, argp); 4583 case BTRFS_IOC_TREE_SEARCH: 4584 return btrfs_ioctl_tree_search(inode, argp); 4585 case BTRFS_IOC_TREE_SEARCH_V2: 4586 return btrfs_ioctl_tree_search_v2(inode, argp); 4587 case BTRFS_IOC_INO_LOOKUP: 4588 return btrfs_ioctl_ino_lookup(root, argp); 4589 case BTRFS_IOC_INO_PATHS: 4590 return btrfs_ioctl_ino_to_path(root, argp); 4591 case BTRFS_IOC_LOGICAL_INO: 4592 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4593 case BTRFS_IOC_LOGICAL_INO_V2: 4594 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4595 case BTRFS_IOC_SPACE_INFO: 4596 return btrfs_ioctl_space_info(fs_info, argp); 4597 case BTRFS_IOC_SYNC: { 4598 int ret; 4599 4600 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4601 if (ret) 4602 return ret; 4603 ret = btrfs_sync_fs(inode->i_sb, 1); 4604 /* 4605 * The transaction thread may want to do more work, 4606 * namely it pokes the cleaner kthread that will start 4607 * processing uncleaned subvols. 4608 */ 4609 wake_up_process(fs_info->transaction_kthread); 4610 return ret; 4611 } 4612 case BTRFS_IOC_START_SYNC: 4613 return btrfs_ioctl_start_sync(root, argp); 4614 case BTRFS_IOC_WAIT_SYNC: 4615 return btrfs_ioctl_wait_sync(fs_info, argp); 4616 case BTRFS_IOC_SCRUB: 4617 return btrfs_ioctl_scrub(file, argp); 4618 case BTRFS_IOC_SCRUB_CANCEL: 4619 return btrfs_ioctl_scrub_cancel(fs_info); 4620 case BTRFS_IOC_SCRUB_PROGRESS: 4621 return btrfs_ioctl_scrub_progress(fs_info, argp); 4622 case BTRFS_IOC_BALANCE_V2: 4623 return btrfs_ioctl_balance(file, argp); 4624 case BTRFS_IOC_BALANCE_CTL: 4625 return btrfs_ioctl_balance_ctl(fs_info, arg); 4626 case BTRFS_IOC_BALANCE_PROGRESS: 4627 return btrfs_ioctl_balance_progress(fs_info, argp); 4628 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4629 return btrfs_ioctl_set_received_subvol(file, argp); 4630 #ifdef CONFIG_64BIT 4631 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4632 return btrfs_ioctl_set_received_subvol_32(file, argp); 4633 #endif 4634 case BTRFS_IOC_SEND: 4635 return _btrfs_ioctl_send(inode, argp, false); 4636 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4637 case BTRFS_IOC_SEND_32: 4638 return _btrfs_ioctl_send(inode, argp, true); 4639 #endif 4640 case BTRFS_IOC_GET_DEV_STATS: 4641 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4642 case BTRFS_IOC_QUOTA_CTL: 4643 return btrfs_ioctl_quota_ctl(file, argp); 4644 case BTRFS_IOC_QGROUP_ASSIGN: 4645 return btrfs_ioctl_qgroup_assign(file, argp); 4646 case BTRFS_IOC_QGROUP_CREATE: 4647 return btrfs_ioctl_qgroup_create(file, argp); 4648 case BTRFS_IOC_QGROUP_LIMIT: 4649 return btrfs_ioctl_qgroup_limit(file, argp); 4650 case BTRFS_IOC_QUOTA_RESCAN: 4651 return btrfs_ioctl_quota_rescan(file, argp); 4652 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4653 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4654 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 4655 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 4656 case BTRFS_IOC_DEV_REPLACE: 4657 return btrfs_ioctl_dev_replace(fs_info, argp); 4658 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 4659 return btrfs_ioctl_get_supported_features(argp); 4660 case BTRFS_IOC_GET_FEATURES: 4661 return btrfs_ioctl_get_features(fs_info, argp); 4662 case BTRFS_IOC_SET_FEATURES: 4663 return btrfs_ioctl_set_features(file, argp); 4664 case BTRFS_IOC_GET_SUBVOL_INFO: 4665 return btrfs_ioctl_get_subvol_info(inode, argp); 4666 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 4667 return btrfs_ioctl_get_subvol_rootref(root, argp); 4668 case BTRFS_IOC_INO_LOOKUP_USER: 4669 return btrfs_ioctl_ino_lookup_user(file, argp); 4670 case FS_IOC_ENABLE_VERITY: 4671 return fsverity_ioctl_enable(file, (const void __user *)argp); 4672 case FS_IOC_MEASURE_VERITY: 4673 return fsverity_ioctl_measure(file, argp); 4674 case BTRFS_IOC_ENCODED_READ: 4675 return btrfs_ioctl_encoded_read(file, argp, false); 4676 case BTRFS_IOC_ENCODED_WRITE: 4677 return btrfs_ioctl_encoded_write(file, argp, false); 4678 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4679 case BTRFS_IOC_ENCODED_READ_32: 4680 return btrfs_ioctl_encoded_read(file, argp, true); 4681 case BTRFS_IOC_ENCODED_WRITE_32: 4682 return btrfs_ioctl_encoded_write(file, argp, true); 4683 #endif 4684 } 4685 4686 return -ENOTTY; 4687 } 4688 4689 #ifdef CONFIG_COMPAT 4690 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 4691 { 4692 /* 4693 * These all access 32-bit values anyway so no further 4694 * handling is necessary. 4695 */ 4696 switch (cmd) { 4697 case FS_IOC32_GETVERSION: 4698 cmd = FS_IOC_GETVERSION; 4699 break; 4700 } 4701 4702 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 4703 } 4704 #endif 4705