1 /* 2 * Copyright (C) 2007 Oracle. All rights reserved. 3 * 4 * This program is free software; you can redistribute it and/or 5 * modify it under the terms of the GNU General Public 6 * License v2 as published by the Free Software Foundation. 7 * 8 * This program is distributed in the hope that it will be useful, 9 * but WITHOUT ANY WARRANTY; without even the implied warranty of 10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 11 * General Public License for more details. 12 * 13 * You should have received a copy of the GNU General Public 14 * License along with this program; if not, write to the 15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330, 16 * Boston, MA 021110-1307, USA. 17 */ 18 19 #include <linux/kernel.h> 20 #include <linux/bio.h> 21 #include <linux/buffer_head.h> 22 #include <linux/file.h> 23 #include <linux/fs.h> 24 #include <linux/fsnotify.h> 25 #include <linux/pagemap.h> 26 #include <linux/highmem.h> 27 #include <linux/time.h> 28 #include <linux/init.h> 29 #include <linux/string.h> 30 #include <linux/backing-dev.h> 31 #include <linux/mount.h> 32 #include <linux/mpage.h> 33 #include <linux/namei.h> 34 #include <linux/swap.h> 35 #include <linux/writeback.h> 36 #include <linux/statfs.h> 37 #include <linux/compat.h> 38 #include <linux/bit_spinlock.h> 39 #include <linux/security.h> 40 #include <linux/xattr.h> 41 #include <linux/vmalloc.h> 42 #include <linux/slab.h> 43 #include <linux/blkdev.h> 44 #include <linux/uuid.h> 45 #include <linux/btrfs.h> 46 #include <linux/uaccess.h> 47 #include "ctree.h" 48 #include "disk-io.h" 49 #include "transaction.h" 50 #include "btrfs_inode.h" 51 #include "print-tree.h" 52 #include "volumes.h" 53 #include "locking.h" 54 #include "inode-map.h" 55 #include "backref.h" 56 #include "rcu-string.h" 57 #include "send.h" 58 #include "dev-replace.h" 59 #include "props.h" 60 #include "sysfs.h" 61 #include "qgroup.h" 62 63 #ifdef CONFIG_64BIT 64 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 65 * structures are incorrect, as the timespec structure from userspace 66 * is 4 bytes too small. We define these alternatives here to teach 67 * the kernel about the 32-bit struct packing. 68 */ 69 struct btrfs_ioctl_timespec_32 { 70 __u64 sec; 71 __u32 nsec; 72 } __attribute__ ((__packed__)); 73 74 struct btrfs_ioctl_received_subvol_args_32 { 75 char uuid[BTRFS_UUID_SIZE]; /* in */ 76 __u64 stransid; /* in */ 77 __u64 rtransid; /* out */ 78 struct btrfs_ioctl_timespec_32 stime; /* in */ 79 struct btrfs_ioctl_timespec_32 rtime; /* out */ 80 __u64 flags; /* in */ 81 __u64 reserved[16]; /* in */ 82 } __attribute__ ((__packed__)); 83 84 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 85 struct btrfs_ioctl_received_subvol_args_32) 86 #endif 87 88 89 static int btrfs_clone(struct inode *src, struct inode *inode, 90 u64 off, u64 olen, u64 olen_aligned, u64 destoff); 91 92 /* Mask out flags that are inappropriate for the given type of inode. */ 93 static inline __u32 btrfs_mask_flags(umode_t mode, __u32 flags) 94 { 95 if (S_ISDIR(mode)) 96 return flags; 97 else if (S_ISREG(mode)) 98 return flags & ~FS_DIRSYNC_FL; 99 else 100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 101 } 102 103 /* 104 * Export inode flags to the format expected by the FS_IOC_GETFLAGS ioctl. 105 */ 106 static unsigned int btrfs_flags_to_ioctl(unsigned int flags) 107 { 108 unsigned int iflags = 0; 109 110 if (flags & BTRFS_INODE_SYNC) 111 iflags |= FS_SYNC_FL; 112 if (flags & BTRFS_INODE_IMMUTABLE) 113 iflags |= FS_IMMUTABLE_FL; 114 if (flags & BTRFS_INODE_APPEND) 115 iflags |= FS_APPEND_FL; 116 if (flags & BTRFS_INODE_NODUMP) 117 iflags |= FS_NODUMP_FL; 118 if (flags & BTRFS_INODE_NOATIME) 119 iflags |= FS_NOATIME_FL; 120 if (flags & BTRFS_INODE_DIRSYNC) 121 iflags |= FS_DIRSYNC_FL; 122 if (flags & BTRFS_INODE_NODATACOW) 123 iflags |= FS_NOCOW_FL; 124 125 if ((flags & BTRFS_INODE_COMPRESS) && !(flags & BTRFS_INODE_NOCOMPRESS)) 126 iflags |= FS_COMPR_FL; 127 else if (flags & BTRFS_INODE_NOCOMPRESS) 128 iflags |= FS_NOCOMP_FL; 129 130 return iflags; 131 } 132 133 /* 134 * Update inode->i_flags based on the btrfs internal flags. 135 */ 136 void btrfs_update_iflags(struct inode *inode) 137 { 138 struct btrfs_inode *ip = BTRFS_I(inode); 139 unsigned int new_fl = 0; 140 141 if (ip->flags & BTRFS_INODE_SYNC) 142 new_fl |= S_SYNC; 143 if (ip->flags & BTRFS_INODE_IMMUTABLE) 144 new_fl |= S_IMMUTABLE; 145 if (ip->flags & BTRFS_INODE_APPEND) 146 new_fl |= S_APPEND; 147 if (ip->flags & BTRFS_INODE_NOATIME) 148 new_fl |= S_NOATIME; 149 if (ip->flags & BTRFS_INODE_DIRSYNC) 150 new_fl |= S_DIRSYNC; 151 152 set_mask_bits(&inode->i_flags, 153 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC, 154 new_fl); 155 } 156 157 /* 158 * Inherit flags from the parent inode. 159 * 160 * Currently only the compression flags and the cow flags are inherited. 161 */ 162 void btrfs_inherit_iflags(struct inode *inode, struct inode *dir) 163 { 164 unsigned int flags; 165 166 if (!dir) 167 return; 168 169 flags = BTRFS_I(dir)->flags; 170 171 if (flags & BTRFS_INODE_NOCOMPRESS) { 172 BTRFS_I(inode)->flags &= ~BTRFS_INODE_COMPRESS; 173 BTRFS_I(inode)->flags |= BTRFS_INODE_NOCOMPRESS; 174 } else if (flags & BTRFS_INODE_COMPRESS) { 175 BTRFS_I(inode)->flags &= ~BTRFS_INODE_NOCOMPRESS; 176 BTRFS_I(inode)->flags |= BTRFS_INODE_COMPRESS; 177 } 178 179 if (flags & BTRFS_INODE_NODATACOW) { 180 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATACOW; 181 if (S_ISREG(inode->i_mode)) 182 BTRFS_I(inode)->flags |= BTRFS_INODE_NODATASUM; 183 } 184 185 btrfs_update_iflags(inode); 186 } 187 188 static int btrfs_ioctl_getflags(struct file *file, void __user *arg) 189 { 190 struct btrfs_inode *ip = BTRFS_I(file_inode(file)); 191 unsigned int flags = btrfs_flags_to_ioctl(ip->flags); 192 193 if (copy_to_user(arg, &flags, sizeof(flags))) 194 return -EFAULT; 195 return 0; 196 } 197 198 static int check_flags(unsigned int flags) 199 { 200 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 201 FS_NOATIME_FL | FS_NODUMP_FL | \ 202 FS_SYNC_FL | FS_DIRSYNC_FL | \ 203 FS_NOCOMP_FL | FS_COMPR_FL | 204 FS_NOCOW_FL)) 205 return -EOPNOTSUPP; 206 207 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 208 return -EINVAL; 209 210 return 0; 211 } 212 213 static int btrfs_ioctl_setflags(struct file *file, void __user *arg) 214 { 215 struct inode *inode = file_inode(file); 216 struct btrfs_inode *ip = BTRFS_I(inode); 217 struct btrfs_root *root = ip->root; 218 struct btrfs_trans_handle *trans; 219 unsigned int flags, oldflags; 220 int ret; 221 u64 ip_oldflags; 222 unsigned int i_oldflags; 223 umode_t mode; 224 225 if (!inode_owner_or_capable(inode)) 226 return -EPERM; 227 228 if (btrfs_root_readonly(root)) 229 return -EROFS; 230 231 if (copy_from_user(&flags, arg, sizeof(flags))) 232 return -EFAULT; 233 234 ret = check_flags(flags); 235 if (ret) 236 return ret; 237 238 ret = mnt_want_write_file(file); 239 if (ret) 240 return ret; 241 242 mutex_lock(&inode->i_mutex); 243 244 ip_oldflags = ip->flags; 245 i_oldflags = inode->i_flags; 246 mode = inode->i_mode; 247 248 flags = btrfs_mask_flags(inode->i_mode, flags); 249 oldflags = btrfs_flags_to_ioctl(ip->flags); 250 if ((flags ^ oldflags) & (FS_APPEND_FL | FS_IMMUTABLE_FL)) { 251 if (!capable(CAP_LINUX_IMMUTABLE)) { 252 ret = -EPERM; 253 goto out_unlock; 254 } 255 } 256 257 if (flags & FS_SYNC_FL) 258 ip->flags |= BTRFS_INODE_SYNC; 259 else 260 ip->flags &= ~BTRFS_INODE_SYNC; 261 if (flags & FS_IMMUTABLE_FL) 262 ip->flags |= BTRFS_INODE_IMMUTABLE; 263 else 264 ip->flags &= ~BTRFS_INODE_IMMUTABLE; 265 if (flags & FS_APPEND_FL) 266 ip->flags |= BTRFS_INODE_APPEND; 267 else 268 ip->flags &= ~BTRFS_INODE_APPEND; 269 if (flags & FS_NODUMP_FL) 270 ip->flags |= BTRFS_INODE_NODUMP; 271 else 272 ip->flags &= ~BTRFS_INODE_NODUMP; 273 if (flags & FS_NOATIME_FL) 274 ip->flags |= BTRFS_INODE_NOATIME; 275 else 276 ip->flags &= ~BTRFS_INODE_NOATIME; 277 if (flags & FS_DIRSYNC_FL) 278 ip->flags |= BTRFS_INODE_DIRSYNC; 279 else 280 ip->flags &= ~BTRFS_INODE_DIRSYNC; 281 if (flags & FS_NOCOW_FL) { 282 if (S_ISREG(mode)) { 283 /* 284 * It's safe to turn csums off here, no extents exist. 285 * Otherwise we want the flag to reflect the real COW 286 * status of the file and will not set it. 287 */ 288 if (inode->i_size == 0) 289 ip->flags |= BTRFS_INODE_NODATACOW 290 | BTRFS_INODE_NODATASUM; 291 } else { 292 ip->flags |= BTRFS_INODE_NODATACOW; 293 } 294 } else { 295 /* 296 * Revert back under same assuptions as above 297 */ 298 if (S_ISREG(mode)) { 299 if (inode->i_size == 0) 300 ip->flags &= ~(BTRFS_INODE_NODATACOW 301 | BTRFS_INODE_NODATASUM); 302 } else { 303 ip->flags &= ~BTRFS_INODE_NODATACOW; 304 } 305 } 306 307 /* 308 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 309 * flag may be changed automatically if compression code won't make 310 * things smaller. 311 */ 312 if (flags & FS_NOCOMP_FL) { 313 ip->flags &= ~BTRFS_INODE_COMPRESS; 314 ip->flags |= BTRFS_INODE_NOCOMPRESS; 315 316 ret = btrfs_set_prop(inode, "btrfs.compression", NULL, 0, 0); 317 if (ret && ret != -ENODATA) 318 goto out_drop; 319 } else if (flags & FS_COMPR_FL) { 320 const char *comp; 321 322 ip->flags |= BTRFS_INODE_COMPRESS; 323 ip->flags &= ~BTRFS_INODE_NOCOMPRESS; 324 325 if (root->fs_info->compress_type == BTRFS_COMPRESS_LZO) 326 comp = "lzo"; 327 else 328 comp = "zlib"; 329 ret = btrfs_set_prop(inode, "btrfs.compression", 330 comp, strlen(comp), 0); 331 if (ret) 332 goto out_drop; 333 334 } else { 335 ip->flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 336 } 337 338 trans = btrfs_start_transaction(root, 1); 339 if (IS_ERR(trans)) { 340 ret = PTR_ERR(trans); 341 goto out_drop; 342 } 343 344 btrfs_update_iflags(inode); 345 inode_inc_iversion(inode); 346 inode->i_ctime = CURRENT_TIME; 347 ret = btrfs_update_inode(trans, root, inode); 348 349 btrfs_end_transaction(trans, root); 350 out_drop: 351 if (ret) { 352 ip->flags = ip_oldflags; 353 inode->i_flags = i_oldflags; 354 } 355 356 out_unlock: 357 mutex_unlock(&inode->i_mutex); 358 mnt_drop_write_file(file); 359 return ret; 360 } 361 362 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 363 { 364 struct inode *inode = file_inode(file); 365 366 return put_user(inode->i_generation, arg); 367 } 368 369 static noinline int btrfs_ioctl_fitrim(struct file *file, void __user *arg) 370 { 371 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 372 struct btrfs_device *device; 373 struct request_queue *q; 374 struct fstrim_range range; 375 u64 minlen = ULLONG_MAX; 376 u64 num_devices = 0; 377 u64 total_bytes = btrfs_super_total_bytes(fs_info->super_copy); 378 int ret; 379 380 if (!capable(CAP_SYS_ADMIN)) 381 return -EPERM; 382 383 rcu_read_lock(); 384 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 385 dev_list) { 386 if (!device->bdev) 387 continue; 388 q = bdev_get_queue(device->bdev); 389 if (blk_queue_discard(q)) { 390 num_devices++; 391 minlen = min((u64)q->limits.discard_granularity, 392 minlen); 393 } 394 } 395 rcu_read_unlock(); 396 397 if (!num_devices) 398 return -EOPNOTSUPP; 399 if (copy_from_user(&range, arg, sizeof(range))) 400 return -EFAULT; 401 if (range.start > total_bytes || 402 range.len < fs_info->sb->s_blocksize) 403 return -EINVAL; 404 405 range.len = min(range.len, total_bytes - range.start); 406 range.minlen = max(range.minlen, minlen); 407 ret = btrfs_trim_fs(fs_info->tree_root, &range); 408 if (ret < 0) 409 return ret; 410 411 if (copy_to_user(arg, &range, sizeof(range))) 412 return -EFAULT; 413 414 return 0; 415 } 416 417 int btrfs_is_empty_uuid(u8 *uuid) 418 { 419 int i; 420 421 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 422 if (uuid[i]) 423 return 0; 424 } 425 return 1; 426 } 427 428 static noinline int create_subvol(struct inode *dir, 429 struct dentry *dentry, 430 char *name, int namelen, 431 u64 *async_transid, 432 struct btrfs_qgroup_inherit *inherit) 433 { 434 struct btrfs_trans_handle *trans; 435 struct btrfs_key key; 436 struct btrfs_root_item root_item; 437 struct btrfs_inode_item *inode_item; 438 struct extent_buffer *leaf; 439 struct btrfs_root *root = BTRFS_I(dir)->root; 440 struct btrfs_root *new_root; 441 struct btrfs_block_rsv block_rsv; 442 struct timespec cur_time = CURRENT_TIME; 443 struct inode *inode; 444 int ret; 445 int err; 446 u64 objectid; 447 u64 new_dirid = BTRFS_FIRST_FREE_OBJECTID; 448 u64 index = 0; 449 u64 qgroup_reserved; 450 uuid_le new_uuid; 451 452 ret = btrfs_find_free_objectid(root->fs_info->tree_root, &objectid); 453 if (ret) 454 return ret; 455 456 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 457 /* 458 * The same as the snapshot creation, please see the comment 459 * of create_snapshot(). 460 */ 461 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 462 8, &qgroup_reserved, false); 463 if (ret) 464 return ret; 465 466 trans = btrfs_start_transaction(root, 0); 467 if (IS_ERR(trans)) { 468 ret = PTR_ERR(trans); 469 btrfs_subvolume_release_metadata(root, &block_rsv, 470 qgroup_reserved); 471 return ret; 472 } 473 trans->block_rsv = &block_rsv; 474 trans->bytes_reserved = block_rsv.size; 475 476 ret = btrfs_qgroup_inherit(trans, root->fs_info, 0, objectid, inherit); 477 if (ret) 478 goto fail; 479 480 leaf = btrfs_alloc_free_block(trans, root, root->leafsize, 481 0, objectid, NULL, 0, 0, 0); 482 if (IS_ERR(leaf)) { 483 ret = PTR_ERR(leaf); 484 goto fail; 485 } 486 487 memset_extent_buffer(leaf, 0, 0, sizeof(struct btrfs_header)); 488 btrfs_set_header_bytenr(leaf, leaf->start); 489 btrfs_set_header_generation(leaf, trans->transid); 490 btrfs_set_header_backref_rev(leaf, BTRFS_MIXED_BACKREF_REV); 491 btrfs_set_header_owner(leaf, objectid); 492 493 write_extent_buffer(leaf, root->fs_info->fsid, btrfs_header_fsid(), 494 BTRFS_FSID_SIZE); 495 write_extent_buffer(leaf, root->fs_info->chunk_tree_uuid, 496 btrfs_header_chunk_tree_uuid(leaf), 497 BTRFS_UUID_SIZE); 498 btrfs_mark_buffer_dirty(leaf); 499 500 memset(&root_item, 0, sizeof(root_item)); 501 502 inode_item = &root_item.inode; 503 btrfs_set_stack_inode_generation(inode_item, 1); 504 btrfs_set_stack_inode_size(inode_item, 3); 505 btrfs_set_stack_inode_nlink(inode_item, 1); 506 btrfs_set_stack_inode_nbytes(inode_item, root->leafsize); 507 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 508 509 btrfs_set_root_flags(&root_item, 0); 510 btrfs_set_root_limit(&root_item, 0); 511 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 512 513 btrfs_set_root_bytenr(&root_item, leaf->start); 514 btrfs_set_root_generation(&root_item, trans->transid); 515 btrfs_set_root_level(&root_item, 0); 516 btrfs_set_root_refs(&root_item, 1); 517 btrfs_set_root_used(&root_item, leaf->len); 518 btrfs_set_root_last_snapshot(&root_item, 0); 519 520 btrfs_set_root_generation_v2(&root_item, 521 btrfs_root_generation(&root_item)); 522 uuid_le_gen(&new_uuid); 523 memcpy(root_item.uuid, new_uuid.b, BTRFS_UUID_SIZE); 524 btrfs_set_stack_timespec_sec(&root_item.otime, cur_time.tv_sec); 525 btrfs_set_stack_timespec_nsec(&root_item.otime, cur_time.tv_nsec); 526 root_item.ctime = root_item.otime; 527 btrfs_set_root_ctransid(&root_item, trans->transid); 528 btrfs_set_root_otransid(&root_item, trans->transid); 529 530 btrfs_tree_unlock(leaf); 531 free_extent_buffer(leaf); 532 leaf = NULL; 533 534 btrfs_set_root_dirid(&root_item, new_dirid); 535 536 key.objectid = objectid; 537 key.offset = 0; 538 btrfs_set_key_type(&key, BTRFS_ROOT_ITEM_KEY); 539 ret = btrfs_insert_root(trans, root->fs_info->tree_root, &key, 540 &root_item); 541 if (ret) 542 goto fail; 543 544 key.offset = (u64)-1; 545 new_root = btrfs_read_fs_root_no_name(root->fs_info, &key); 546 if (IS_ERR(new_root)) { 547 btrfs_abort_transaction(trans, root, PTR_ERR(new_root)); 548 ret = PTR_ERR(new_root); 549 goto fail; 550 } 551 552 btrfs_record_root_in_trans(trans, new_root); 553 554 ret = btrfs_create_subvol_root(trans, new_root, root, new_dirid); 555 if (ret) { 556 /* We potentially lose an unused inode item here */ 557 btrfs_abort_transaction(trans, root, ret); 558 goto fail; 559 } 560 561 /* 562 * insert the directory item 563 */ 564 ret = btrfs_set_inode_index(dir, &index); 565 if (ret) { 566 btrfs_abort_transaction(trans, root, ret); 567 goto fail; 568 } 569 570 ret = btrfs_insert_dir_item(trans, root, 571 name, namelen, dir, &key, 572 BTRFS_FT_DIR, index); 573 if (ret) { 574 btrfs_abort_transaction(trans, root, ret); 575 goto fail; 576 } 577 578 btrfs_i_size_write(dir, dir->i_size + namelen * 2); 579 ret = btrfs_update_inode(trans, root, dir); 580 BUG_ON(ret); 581 582 ret = btrfs_add_root_ref(trans, root->fs_info->tree_root, 583 objectid, root->root_key.objectid, 584 btrfs_ino(dir), index, name, namelen); 585 BUG_ON(ret); 586 587 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 588 root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 589 objectid); 590 if (ret) 591 btrfs_abort_transaction(trans, root, ret); 592 593 fail: 594 trans->block_rsv = NULL; 595 trans->bytes_reserved = 0; 596 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 597 598 if (async_transid) { 599 *async_transid = trans->transid; 600 err = btrfs_commit_transaction_async(trans, root, 1); 601 if (err) 602 err = btrfs_commit_transaction(trans, root); 603 } else { 604 err = btrfs_commit_transaction(trans, root); 605 } 606 if (err && !ret) 607 ret = err; 608 609 if (!ret) { 610 inode = btrfs_lookup_dentry(dir, dentry); 611 if (IS_ERR(inode)) 612 return PTR_ERR(inode); 613 d_instantiate(dentry, inode); 614 } 615 return ret; 616 } 617 618 static void btrfs_wait_nocow_write(struct btrfs_root *root) 619 { 620 s64 writers; 621 DEFINE_WAIT(wait); 622 623 do { 624 prepare_to_wait(&root->subv_writers->wait, &wait, 625 TASK_UNINTERRUPTIBLE); 626 627 writers = percpu_counter_sum(&root->subv_writers->counter); 628 if (writers) 629 schedule(); 630 631 finish_wait(&root->subv_writers->wait, &wait); 632 } while (writers); 633 } 634 635 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 636 struct dentry *dentry, char *name, int namelen, 637 u64 *async_transid, bool readonly, 638 struct btrfs_qgroup_inherit *inherit) 639 { 640 struct inode *inode; 641 struct btrfs_pending_snapshot *pending_snapshot; 642 struct btrfs_trans_handle *trans; 643 int ret; 644 645 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state)) 646 return -EINVAL; 647 648 atomic_inc(&root->will_be_snapshoted); 649 smp_mb__after_atomic(); 650 btrfs_wait_nocow_write(root); 651 652 ret = btrfs_start_delalloc_inodes(root, 0); 653 if (ret) 654 goto out; 655 656 btrfs_wait_ordered_extents(root, -1); 657 658 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_NOFS); 659 if (!pending_snapshot) { 660 ret = -ENOMEM; 661 goto out; 662 } 663 664 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 665 BTRFS_BLOCK_RSV_TEMP); 666 /* 667 * 1 - parent dir inode 668 * 2 - dir entries 669 * 1 - root item 670 * 2 - root ref/backref 671 * 1 - root of snapshot 672 * 1 - UUID item 673 */ 674 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 675 &pending_snapshot->block_rsv, 8, 676 &pending_snapshot->qgroup_reserved, 677 false); 678 if (ret) 679 goto free; 680 681 pending_snapshot->dentry = dentry; 682 pending_snapshot->root = root; 683 pending_snapshot->readonly = readonly; 684 pending_snapshot->dir = dir; 685 pending_snapshot->inherit = inherit; 686 687 trans = btrfs_start_transaction(root, 0); 688 if (IS_ERR(trans)) { 689 ret = PTR_ERR(trans); 690 goto fail; 691 } 692 693 spin_lock(&root->fs_info->trans_lock); 694 list_add(&pending_snapshot->list, 695 &trans->transaction->pending_snapshots); 696 spin_unlock(&root->fs_info->trans_lock); 697 if (async_transid) { 698 *async_transid = trans->transid; 699 ret = btrfs_commit_transaction_async(trans, 700 root->fs_info->extent_root, 1); 701 if (ret) 702 ret = btrfs_commit_transaction(trans, root); 703 } else { 704 ret = btrfs_commit_transaction(trans, 705 root->fs_info->extent_root); 706 } 707 if (ret) 708 goto fail; 709 710 ret = pending_snapshot->error; 711 if (ret) 712 goto fail; 713 714 inode = btrfs_lookup_dentry(dentry->d_parent->d_inode, dentry); 715 if (IS_ERR(inode)) { 716 ret = PTR_ERR(inode); 717 goto fail; 718 } 719 720 d_instantiate(dentry, inode); 721 ret = 0; 722 fail: 723 btrfs_subvolume_release_metadata(BTRFS_I(dir)->root, 724 &pending_snapshot->block_rsv, 725 pending_snapshot->qgroup_reserved); 726 free: 727 kfree(pending_snapshot); 728 out: 729 atomic_dec(&root->will_be_snapshoted); 730 return ret; 731 } 732 733 /* copy of check_sticky in fs/namei.c() 734 * It's inline, so penalty for filesystems that don't use sticky bit is 735 * minimal. 736 */ 737 static inline int btrfs_check_sticky(struct inode *dir, struct inode *inode) 738 { 739 kuid_t fsuid = current_fsuid(); 740 741 if (!(dir->i_mode & S_ISVTX)) 742 return 0; 743 if (uid_eq(inode->i_uid, fsuid)) 744 return 0; 745 if (uid_eq(dir->i_uid, fsuid)) 746 return 0; 747 return !capable(CAP_FOWNER); 748 } 749 750 /* copy of may_delete in fs/namei.c() 751 * Check whether we can remove a link victim from directory dir, check 752 * whether the type of victim is right. 753 * 1. We can't do it if dir is read-only (done in permission()) 754 * 2. We should have write and exec permissions on dir 755 * 3. We can't remove anything from append-only dir 756 * 4. We can't do anything with immutable dir (done in permission()) 757 * 5. If the sticky bit on dir is set we should either 758 * a. be owner of dir, or 759 * b. be owner of victim, or 760 * c. have CAP_FOWNER capability 761 * 6. If the victim is append-only or immutable we can't do antyhing with 762 * links pointing to it. 763 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 764 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 765 * 9. We can't remove a root or mountpoint. 766 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 767 * nfs_async_unlink(). 768 */ 769 770 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 771 { 772 int error; 773 774 if (!victim->d_inode) 775 return -ENOENT; 776 777 BUG_ON(victim->d_parent->d_inode != dir); 778 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 779 780 error = inode_permission(dir, MAY_WRITE | MAY_EXEC); 781 if (error) 782 return error; 783 if (IS_APPEND(dir)) 784 return -EPERM; 785 if (btrfs_check_sticky(dir, victim->d_inode)|| 786 IS_APPEND(victim->d_inode)|| 787 IS_IMMUTABLE(victim->d_inode) || IS_SWAPFILE(victim->d_inode)) 788 return -EPERM; 789 if (isdir) { 790 if (!S_ISDIR(victim->d_inode->i_mode)) 791 return -ENOTDIR; 792 if (IS_ROOT(victim)) 793 return -EBUSY; 794 } else if (S_ISDIR(victim->d_inode->i_mode)) 795 return -EISDIR; 796 if (IS_DEADDIR(dir)) 797 return -ENOENT; 798 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 799 return -EBUSY; 800 return 0; 801 } 802 803 /* copy of may_create in fs/namei.c() */ 804 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 805 { 806 if (child->d_inode) 807 return -EEXIST; 808 if (IS_DEADDIR(dir)) 809 return -ENOENT; 810 return inode_permission(dir, MAY_WRITE | MAY_EXEC); 811 } 812 813 /* 814 * Create a new subvolume below @parent. This is largely modeled after 815 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 816 * inside this filesystem so it's quite a bit simpler. 817 */ 818 static noinline int btrfs_mksubvol(struct path *parent, 819 char *name, int namelen, 820 struct btrfs_root *snap_src, 821 u64 *async_transid, bool readonly, 822 struct btrfs_qgroup_inherit *inherit) 823 { 824 struct inode *dir = parent->dentry->d_inode; 825 struct dentry *dentry; 826 int error; 827 828 error = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 829 if (error == -EINTR) 830 return error; 831 832 dentry = lookup_one_len(name, parent->dentry, namelen); 833 error = PTR_ERR(dentry); 834 if (IS_ERR(dentry)) 835 goto out_unlock; 836 837 error = -EEXIST; 838 if (dentry->d_inode) 839 goto out_dput; 840 841 error = btrfs_may_create(dir, dentry); 842 if (error) 843 goto out_dput; 844 845 /* 846 * even if this name doesn't exist, we may get hash collisions. 847 * check for them now when we can safely fail 848 */ 849 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 850 dir->i_ino, name, 851 namelen); 852 if (error) 853 goto out_dput; 854 855 down_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 856 857 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 858 goto out_up_read; 859 860 if (snap_src) { 861 error = create_snapshot(snap_src, dir, dentry, name, namelen, 862 async_transid, readonly, inherit); 863 } else { 864 error = create_subvol(dir, dentry, name, namelen, 865 async_transid, inherit); 866 } 867 if (!error) 868 fsnotify_mkdir(dir, dentry); 869 out_up_read: 870 up_read(&BTRFS_I(dir)->root->fs_info->subvol_sem); 871 out_dput: 872 dput(dentry); 873 out_unlock: 874 mutex_unlock(&dir->i_mutex); 875 return error; 876 } 877 878 /* 879 * When we're defragging a range, we don't want to kick it off again 880 * if it is really just waiting for delalloc to send it down. 881 * If we find a nice big extent or delalloc range for the bytes in the 882 * file you want to defrag, we return 0 to let you know to skip this 883 * part of the file 884 */ 885 static int check_defrag_in_cache(struct inode *inode, u64 offset, int thresh) 886 { 887 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 888 struct extent_map *em = NULL; 889 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 890 u64 end; 891 892 read_lock(&em_tree->lock); 893 em = lookup_extent_mapping(em_tree, offset, PAGE_CACHE_SIZE); 894 read_unlock(&em_tree->lock); 895 896 if (em) { 897 end = extent_map_end(em); 898 free_extent_map(em); 899 if (end - offset > thresh) 900 return 0; 901 } 902 /* if we already have a nice delalloc here, just stop */ 903 thresh /= 2; 904 end = count_range_bits(io_tree, &offset, offset + thresh, 905 thresh, EXTENT_DELALLOC, 1); 906 if (end >= thresh) 907 return 0; 908 return 1; 909 } 910 911 /* 912 * helper function to walk through a file and find extents 913 * newer than a specific transid, and smaller than thresh. 914 * 915 * This is used by the defragging code to find new and small 916 * extents 917 */ 918 static int find_new_extents(struct btrfs_root *root, 919 struct inode *inode, u64 newer_than, 920 u64 *off, int thresh) 921 { 922 struct btrfs_path *path; 923 struct btrfs_key min_key; 924 struct extent_buffer *leaf; 925 struct btrfs_file_extent_item *extent; 926 int type; 927 int ret; 928 u64 ino = btrfs_ino(inode); 929 930 path = btrfs_alloc_path(); 931 if (!path) 932 return -ENOMEM; 933 934 min_key.objectid = ino; 935 min_key.type = BTRFS_EXTENT_DATA_KEY; 936 min_key.offset = *off; 937 938 while (1) { 939 path->keep_locks = 1; 940 ret = btrfs_search_forward(root, &min_key, path, newer_than); 941 if (ret != 0) 942 goto none; 943 path->keep_locks = 0; 944 btrfs_unlock_up_safe(path, 1); 945 process_slot: 946 if (min_key.objectid != ino) 947 goto none; 948 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 949 goto none; 950 951 leaf = path->nodes[0]; 952 extent = btrfs_item_ptr(leaf, path->slots[0], 953 struct btrfs_file_extent_item); 954 955 type = btrfs_file_extent_type(leaf, extent); 956 if (type == BTRFS_FILE_EXTENT_REG && 957 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 958 check_defrag_in_cache(inode, min_key.offset, thresh)) { 959 *off = min_key.offset; 960 btrfs_free_path(path); 961 return 0; 962 } 963 964 path->slots[0]++; 965 if (path->slots[0] < btrfs_header_nritems(leaf)) { 966 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 967 goto process_slot; 968 } 969 970 if (min_key.offset == (u64)-1) 971 goto none; 972 973 min_key.offset++; 974 btrfs_release_path(path); 975 } 976 none: 977 btrfs_free_path(path); 978 return -ENOENT; 979 } 980 981 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 982 { 983 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 984 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 985 struct extent_map *em; 986 u64 len = PAGE_CACHE_SIZE; 987 988 /* 989 * hopefully we have this extent in the tree already, try without 990 * the full extent lock 991 */ 992 read_lock(&em_tree->lock); 993 em = lookup_extent_mapping(em_tree, start, len); 994 read_unlock(&em_tree->lock); 995 996 if (!em) { 997 struct extent_state *cached = NULL; 998 u64 end = start + len - 1; 999 1000 /* get the big lock and read metadata off disk */ 1001 lock_extent_bits(io_tree, start, end, 0, &cached); 1002 em = btrfs_get_extent(inode, NULL, 0, start, len, 0); 1003 unlock_extent_cached(io_tree, start, end, &cached, GFP_NOFS); 1004 1005 if (IS_ERR(em)) 1006 return NULL; 1007 } 1008 1009 return em; 1010 } 1011 1012 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1013 { 1014 struct extent_map *next; 1015 bool ret = true; 1016 1017 /* this is the last extent */ 1018 if (em->start + em->len >= i_size_read(inode)) 1019 return false; 1020 1021 next = defrag_lookup_extent(inode, em->start + em->len); 1022 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1023 ret = false; 1024 else if ((em->block_start + em->block_len == next->block_start) && 1025 (em->block_len > 128 * 1024 && next->block_len > 128 * 1024)) 1026 ret = false; 1027 1028 free_extent_map(next); 1029 return ret; 1030 } 1031 1032 static int should_defrag_range(struct inode *inode, u64 start, int thresh, 1033 u64 *last_len, u64 *skip, u64 *defrag_end, 1034 int compress) 1035 { 1036 struct extent_map *em; 1037 int ret = 1; 1038 bool next_mergeable = true; 1039 1040 /* 1041 * make sure that once we start defragging an extent, we keep on 1042 * defragging it 1043 */ 1044 if (start < *defrag_end) 1045 return 1; 1046 1047 *skip = 0; 1048 1049 em = defrag_lookup_extent(inode, start); 1050 if (!em) 1051 return 0; 1052 1053 /* this will cover holes, and inline extents */ 1054 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1055 ret = 0; 1056 goto out; 1057 } 1058 1059 next_mergeable = defrag_check_next_extent(inode, em); 1060 /* 1061 * we hit a real extent, if it is big or the next extent is not a 1062 * real extent, don't bother defragging it 1063 */ 1064 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1065 (em->len >= thresh || !next_mergeable)) 1066 ret = 0; 1067 out: 1068 /* 1069 * last_len ends up being a counter of how many bytes we've defragged. 1070 * every time we choose not to defrag an extent, we reset *last_len 1071 * so that the next tiny extent will force a defrag. 1072 * 1073 * The end result of this is that tiny extents before a single big 1074 * extent will force at least part of that big extent to be defragged. 1075 */ 1076 if (ret) { 1077 *defrag_end = extent_map_end(em); 1078 } else { 1079 *last_len = 0; 1080 *skip = extent_map_end(em); 1081 *defrag_end = 0; 1082 } 1083 1084 free_extent_map(em); 1085 return ret; 1086 } 1087 1088 /* 1089 * it doesn't do much good to defrag one or two pages 1090 * at a time. This pulls in a nice chunk of pages 1091 * to COW and defrag. 1092 * 1093 * It also makes sure the delalloc code has enough 1094 * dirty data to avoid making new small extents as part 1095 * of the defrag 1096 * 1097 * It's a good idea to start RA on this range 1098 * before calling this. 1099 */ 1100 static int cluster_pages_for_defrag(struct inode *inode, 1101 struct page **pages, 1102 unsigned long start_index, 1103 unsigned long num_pages) 1104 { 1105 unsigned long file_end; 1106 u64 isize = i_size_read(inode); 1107 u64 page_start; 1108 u64 page_end; 1109 u64 page_cnt; 1110 int ret; 1111 int i; 1112 int i_done; 1113 struct btrfs_ordered_extent *ordered; 1114 struct extent_state *cached_state = NULL; 1115 struct extent_io_tree *tree; 1116 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1117 1118 file_end = (isize - 1) >> PAGE_CACHE_SHIFT; 1119 if (!isize || start_index > file_end) 1120 return 0; 1121 1122 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1123 1124 ret = btrfs_delalloc_reserve_space(inode, 1125 page_cnt << PAGE_CACHE_SHIFT); 1126 if (ret) 1127 return ret; 1128 i_done = 0; 1129 tree = &BTRFS_I(inode)->io_tree; 1130 1131 /* step one, lock all the pages */ 1132 for (i = 0; i < page_cnt; i++) { 1133 struct page *page; 1134 again: 1135 page = find_or_create_page(inode->i_mapping, 1136 start_index + i, mask); 1137 if (!page) 1138 break; 1139 1140 page_start = page_offset(page); 1141 page_end = page_start + PAGE_CACHE_SIZE - 1; 1142 while (1) { 1143 lock_extent_bits(tree, page_start, page_end, 1144 0, &cached_state); 1145 ordered = btrfs_lookup_ordered_extent(inode, 1146 page_start); 1147 unlock_extent_cached(tree, page_start, page_end, 1148 &cached_state, GFP_NOFS); 1149 if (!ordered) 1150 break; 1151 1152 unlock_page(page); 1153 btrfs_start_ordered_extent(inode, ordered, 1); 1154 btrfs_put_ordered_extent(ordered); 1155 lock_page(page); 1156 /* 1157 * we unlocked the page above, so we need check if 1158 * it was released or not. 1159 */ 1160 if (page->mapping != inode->i_mapping) { 1161 unlock_page(page); 1162 page_cache_release(page); 1163 goto again; 1164 } 1165 } 1166 1167 if (!PageUptodate(page)) { 1168 btrfs_readpage(NULL, page); 1169 lock_page(page); 1170 if (!PageUptodate(page)) { 1171 unlock_page(page); 1172 page_cache_release(page); 1173 ret = -EIO; 1174 break; 1175 } 1176 } 1177 1178 if (page->mapping != inode->i_mapping) { 1179 unlock_page(page); 1180 page_cache_release(page); 1181 goto again; 1182 } 1183 1184 pages[i] = page; 1185 i_done++; 1186 } 1187 if (!i_done || ret) 1188 goto out; 1189 1190 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1191 goto out; 1192 1193 /* 1194 * so now we have a nice long stream of locked 1195 * and up to date pages, lets wait on them 1196 */ 1197 for (i = 0; i < i_done; i++) 1198 wait_on_page_writeback(pages[i]); 1199 1200 page_start = page_offset(pages[0]); 1201 page_end = page_offset(pages[i_done - 1]) + PAGE_CACHE_SIZE; 1202 1203 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1204 page_start, page_end - 1, 0, &cached_state); 1205 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1206 page_end - 1, EXTENT_DIRTY | EXTENT_DELALLOC | 1207 EXTENT_DO_ACCOUNTING | EXTENT_DEFRAG, 0, 0, 1208 &cached_state, GFP_NOFS); 1209 1210 if (i_done != page_cnt) { 1211 spin_lock(&BTRFS_I(inode)->lock); 1212 BTRFS_I(inode)->outstanding_extents++; 1213 spin_unlock(&BTRFS_I(inode)->lock); 1214 btrfs_delalloc_release_space(inode, 1215 (page_cnt - i_done) << PAGE_CACHE_SHIFT); 1216 } 1217 1218 1219 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1220 &cached_state, GFP_NOFS); 1221 1222 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1223 page_start, page_end - 1, &cached_state, 1224 GFP_NOFS); 1225 1226 for (i = 0; i < i_done; i++) { 1227 clear_page_dirty_for_io(pages[i]); 1228 ClearPageChecked(pages[i]); 1229 set_page_extent_mapped(pages[i]); 1230 set_page_dirty(pages[i]); 1231 unlock_page(pages[i]); 1232 page_cache_release(pages[i]); 1233 } 1234 return i_done; 1235 out: 1236 for (i = 0; i < i_done; i++) { 1237 unlock_page(pages[i]); 1238 page_cache_release(pages[i]); 1239 } 1240 btrfs_delalloc_release_space(inode, page_cnt << PAGE_CACHE_SHIFT); 1241 return ret; 1242 1243 } 1244 1245 int btrfs_defrag_file(struct inode *inode, struct file *file, 1246 struct btrfs_ioctl_defrag_range_args *range, 1247 u64 newer_than, unsigned long max_to_defrag) 1248 { 1249 struct btrfs_root *root = BTRFS_I(inode)->root; 1250 struct file_ra_state *ra = NULL; 1251 unsigned long last_index; 1252 u64 isize = i_size_read(inode); 1253 u64 last_len = 0; 1254 u64 skip = 0; 1255 u64 defrag_end = 0; 1256 u64 newer_off = range->start; 1257 unsigned long i; 1258 unsigned long ra_index = 0; 1259 int ret; 1260 int defrag_count = 0; 1261 int compress_type = BTRFS_COMPRESS_ZLIB; 1262 int extent_thresh = range->extent_thresh; 1263 unsigned long max_cluster = (256 * 1024) >> PAGE_CACHE_SHIFT; 1264 unsigned long cluster = max_cluster; 1265 u64 new_align = ~((u64)128 * 1024 - 1); 1266 struct page **pages = NULL; 1267 1268 if (isize == 0) 1269 return 0; 1270 1271 if (range->start >= isize) 1272 return -EINVAL; 1273 1274 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1275 if (range->compress_type > BTRFS_COMPRESS_TYPES) 1276 return -EINVAL; 1277 if (range->compress_type) 1278 compress_type = range->compress_type; 1279 } 1280 1281 if (extent_thresh == 0) 1282 extent_thresh = 256 * 1024; 1283 1284 /* 1285 * if we were not given a file, allocate a readahead 1286 * context 1287 */ 1288 if (!file) { 1289 ra = kzalloc(sizeof(*ra), GFP_NOFS); 1290 if (!ra) 1291 return -ENOMEM; 1292 file_ra_state_init(ra, inode->i_mapping); 1293 } else { 1294 ra = &file->f_ra; 1295 } 1296 1297 pages = kmalloc_array(max_cluster, sizeof(struct page *), 1298 GFP_NOFS); 1299 if (!pages) { 1300 ret = -ENOMEM; 1301 goto out_ra; 1302 } 1303 1304 /* find the last page to defrag */ 1305 if (range->start + range->len > range->start) { 1306 last_index = min_t(u64, isize - 1, 1307 range->start + range->len - 1) >> PAGE_CACHE_SHIFT; 1308 } else { 1309 last_index = (isize - 1) >> PAGE_CACHE_SHIFT; 1310 } 1311 1312 if (newer_than) { 1313 ret = find_new_extents(root, inode, newer_than, 1314 &newer_off, 64 * 1024); 1315 if (!ret) { 1316 range->start = newer_off; 1317 /* 1318 * we always align our defrag to help keep 1319 * the extents in the file evenly spaced 1320 */ 1321 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1322 } else 1323 goto out_ra; 1324 } else { 1325 i = range->start >> PAGE_CACHE_SHIFT; 1326 } 1327 if (!max_to_defrag) 1328 max_to_defrag = last_index + 1; 1329 1330 /* 1331 * make writeback starts from i, so the defrag range can be 1332 * written sequentially. 1333 */ 1334 if (i < inode->i_mapping->writeback_index) 1335 inode->i_mapping->writeback_index = i; 1336 1337 while (i <= last_index && defrag_count < max_to_defrag && 1338 (i < (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> 1339 PAGE_CACHE_SHIFT)) { 1340 /* 1341 * make sure we stop running if someone unmounts 1342 * the FS 1343 */ 1344 if (!(inode->i_sb->s_flags & MS_ACTIVE)) 1345 break; 1346 1347 if (btrfs_defrag_cancelled(root->fs_info)) { 1348 printk(KERN_DEBUG "BTRFS: defrag_file cancelled\n"); 1349 ret = -EAGAIN; 1350 break; 1351 } 1352 1353 if (!should_defrag_range(inode, (u64)i << PAGE_CACHE_SHIFT, 1354 extent_thresh, &last_len, &skip, 1355 &defrag_end, range->flags & 1356 BTRFS_DEFRAG_RANGE_COMPRESS)) { 1357 unsigned long next; 1358 /* 1359 * the should_defrag function tells us how much to skip 1360 * bump our counter by the suggested amount 1361 */ 1362 next = (skip + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT; 1363 i = max(i + 1, next); 1364 continue; 1365 } 1366 1367 if (!newer_than) { 1368 cluster = (PAGE_CACHE_ALIGN(defrag_end) >> 1369 PAGE_CACHE_SHIFT) - i; 1370 cluster = min(cluster, max_cluster); 1371 } else { 1372 cluster = max_cluster; 1373 } 1374 1375 if (i + cluster > ra_index) { 1376 ra_index = max(i, ra_index); 1377 btrfs_force_ra(inode->i_mapping, ra, file, ra_index, 1378 cluster); 1379 ra_index += max_cluster; 1380 } 1381 1382 mutex_lock(&inode->i_mutex); 1383 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) 1384 BTRFS_I(inode)->force_compress = compress_type; 1385 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1386 if (ret < 0) { 1387 mutex_unlock(&inode->i_mutex); 1388 goto out_ra; 1389 } 1390 1391 defrag_count += ret; 1392 balance_dirty_pages_ratelimited(inode->i_mapping); 1393 mutex_unlock(&inode->i_mutex); 1394 1395 if (newer_than) { 1396 if (newer_off == (u64)-1) 1397 break; 1398 1399 if (ret > 0) 1400 i += ret; 1401 1402 newer_off = max(newer_off + 1, 1403 (u64)i << PAGE_CACHE_SHIFT); 1404 1405 ret = find_new_extents(root, inode, 1406 newer_than, &newer_off, 1407 64 * 1024); 1408 if (!ret) { 1409 range->start = newer_off; 1410 i = (newer_off & new_align) >> PAGE_CACHE_SHIFT; 1411 } else { 1412 break; 1413 } 1414 } else { 1415 if (ret > 0) { 1416 i += ret; 1417 last_len += ret << PAGE_CACHE_SHIFT; 1418 } else { 1419 i++; 1420 last_len = 0; 1421 } 1422 } 1423 } 1424 1425 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1426 filemap_flush(inode->i_mapping); 1427 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1428 &BTRFS_I(inode)->runtime_flags)) 1429 filemap_flush(inode->i_mapping); 1430 } 1431 1432 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 1433 /* the filemap_flush will queue IO into the worker threads, but 1434 * we have to make sure the IO is actually started and that 1435 * ordered extents get created before we return 1436 */ 1437 atomic_inc(&root->fs_info->async_submit_draining); 1438 while (atomic_read(&root->fs_info->nr_async_submits) || 1439 atomic_read(&root->fs_info->async_delalloc_pages)) { 1440 wait_event(root->fs_info->async_submit_wait, 1441 (atomic_read(&root->fs_info->nr_async_submits) == 0 && 1442 atomic_read(&root->fs_info->async_delalloc_pages) == 0)); 1443 } 1444 atomic_dec(&root->fs_info->async_submit_draining); 1445 } 1446 1447 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1448 btrfs_set_fs_incompat(root->fs_info, COMPRESS_LZO); 1449 } 1450 1451 ret = defrag_count; 1452 1453 out_ra: 1454 if (range->flags & BTRFS_DEFRAG_RANGE_COMPRESS) { 1455 mutex_lock(&inode->i_mutex); 1456 BTRFS_I(inode)->force_compress = BTRFS_COMPRESS_NONE; 1457 mutex_unlock(&inode->i_mutex); 1458 } 1459 if (!file) 1460 kfree(ra); 1461 kfree(pages); 1462 return ret; 1463 } 1464 1465 static noinline int btrfs_ioctl_resize(struct file *file, 1466 void __user *arg) 1467 { 1468 u64 new_size; 1469 u64 old_size; 1470 u64 devid = 1; 1471 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 1472 struct btrfs_ioctl_vol_args *vol_args; 1473 struct btrfs_trans_handle *trans; 1474 struct btrfs_device *device = NULL; 1475 char *sizestr; 1476 char *retptr; 1477 char *devstr = NULL; 1478 int ret = 0; 1479 int mod = 0; 1480 1481 if (!capable(CAP_SYS_ADMIN)) 1482 return -EPERM; 1483 1484 ret = mnt_want_write_file(file); 1485 if (ret) 1486 return ret; 1487 1488 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 1489 1)) { 1490 mnt_drop_write_file(file); 1491 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1492 } 1493 1494 mutex_lock(&root->fs_info->volume_mutex); 1495 vol_args = memdup_user(arg, sizeof(*vol_args)); 1496 if (IS_ERR(vol_args)) { 1497 ret = PTR_ERR(vol_args); 1498 goto out; 1499 } 1500 1501 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1502 1503 sizestr = vol_args->name; 1504 devstr = strchr(sizestr, ':'); 1505 if (devstr) { 1506 sizestr = devstr + 1; 1507 *devstr = '\0'; 1508 devstr = vol_args->name; 1509 ret = kstrtoull(devstr, 10, &devid); 1510 if (ret) 1511 goto out_free; 1512 if (!devid) { 1513 ret = -EINVAL; 1514 goto out_free; 1515 } 1516 btrfs_info(root->fs_info, "resizing devid %llu", devid); 1517 } 1518 1519 device = btrfs_find_device(root->fs_info, devid, NULL, NULL); 1520 if (!device) { 1521 btrfs_info(root->fs_info, "resizer unable to find device %llu", 1522 devid); 1523 ret = -ENODEV; 1524 goto out_free; 1525 } 1526 1527 if (!device->writeable) { 1528 btrfs_info(root->fs_info, 1529 "resizer unable to apply on readonly device %llu", 1530 devid); 1531 ret = -EPERM; 1532 goto out_free; 1533 } 1534 1535 if (!strcmp(sizestr, "max")) 1536 new_size = device->bdev->bd_inode->i_size; 1537 else { 1538 if (sizestr[0] == '-') { 1539 mod = -1; 1540 sizestr++; 1541 } else if (sizestr[0] == '+') { 1542 mod = 1; 1543 sizestr++; 1544 } 1545 new_size = memparse(sizestr, &retptr); 1546 if (*retptr != '\0' || new_size == 0) { 1547 ret = -EINVAL; 1548 goto out_free; 1549 } 1550 } 1551 1552 if (device->is_tgtdev_for_dev_replace) { 1553 ret = -EPERM; 1554 goto out_free; 1555 } 1556 1557 old_size = device->total_bytes; 1558 1559 if (mod < 0) { 1560 if (new_size > old_size) { 1561 ret = -EINVAL; 1562 goto out_free; 1563 } 1564 new_size = old_size - new_size; 1565 } else if (mod > 0) { 1566 if (new_size > ULLONG_MAX - old_size) { 1567 ret = -ERANGE; 1568 goto out_free; 1569 } 1570 new_size = old_size + new_size; 1571 } 1572 1573 if (new_size < 256 * 1024 * 1024) { 1574 ret = -EINVAL; 1575 goto out_free; 1576 } 1577 if (new_size > device->bdev->bd_inode->i_size) { 1578 ret = -EFBIG; 1579 goto out_free; 1580 } 1581 1582 do_div(new_size, root->sectorsize); 1583 new_size *= root->sectorsize; 1584 1585 printk_in_rcu(KERN_INFO "BTRFS: new size for %s is %llu\n", 1586 rcu_str_deref(device->name), new_size); 1587 1588 if (new_size > old_size) { 1589 trans = btrfs_start_transaction(root, 0); 1590 if (IS_ERR(trans)) { 1591 ret = PTR_ERR(trans); 1592 goto out_free; 1593 } 1594 ret = btrfs_grow_device(trans, device, new_size); 1595 btrfs_commit_transaction(trans, root); 1596 } else if (new_size < old_size) { 1597 ret = btrfs_shrink_device(device, new_size); 1598 } /* equal, nothing need to do */ 1599 1600 out_free: 1601 kfree(vol_args); 1602 out: 1603 mutex_unlock(&root->fs_info->volume_mutex); 1604 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 1605 mnt_drop_write_file(file); 1606 return ret; 1607 } 1608 1609 static noinline int btrfs_ioctl_snap_create_transid(struct file *file, 1610 char *name, unsigned long fd, int subvol, 1611 u64 *transid, bool readonly, 1612 struct btrfs_qgroup_inherit *inherit) 1613 { 1614 int namelen; 1615 int ret = 0; 1616 1617 ret = mnt_want_write_file(file); 1618 if (ret) 1619 goto out; 1620 1621 namelen = strlen(name); 1622 if (strchr(name, '/')) { 1623 ret = -EINVAL; 1624 goto out_drop_write; 1625 } 1626 1627 if (name[0] == '.' && 1628 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1629 ret = -EEXIST; 1630 goto out_drop_write; 1631 } 1632 1633 if (subvol) { 1634 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1635 NULL, transid, readonly, inherit); 1636 } else { 1637 struct fd src = fdget(fd); 1638 struct inode *src_inode; 1639 if (!src.file) { 1640 ret = -EINVAL; 1641 goto out_drop_write; 1642 } 1643 1644 src_inode = file_inode(src.file); 1645 if (src_inode->i_sb != file_inode(file)->i_sb) { 1646 btrfs_info(BTRFS_I(src_inode)->root->fs_info, 1647 "Snapshot src from another FS"); 1648 ret = -EXDEV; 1649 } else if (!inode_owner_or_capable(src_inode)) { 1650 /* 1651 * Subvolume creation is not restricted, but snapshots 1652 * are limited to own subvolumes only 1653 */ 1654 ret = -EPERM; 1655 } else { 1656 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1657 BTRFS_I(src_inode)->root, 1658 transid, readonly, inherit); 1659 } 1660 fdput(src); 1661 } 1662 out_drop_write: 1663 mnt_drop_write_file(file); 1664 out: 1665 return ret; 1666 } 1667 1668 static noinline int btrfs_ioctl_snap_create(struct file *file, 1669 void __user *arg, int subvol) 1670 { 1671 struct btrfs_ioctl_vol_args *vol_args; 1672 int ret; 1673 1674 vol_args = memdup_user(arg, sizeof(*vol_args)); 1675 if (IS_ERR(vol_args)) 1676 return PTR_ERR(vol_args); 1677 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1678 1679 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1680 vol_args->fd, subvol, 1681 NULL, false, NULL); 1682 1683 kfree(vol_args); 1684 return ret; 1685 } 1686 1687 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1688 void __user *arg, int subvol) 1689 { 1690 struct btrfs_ioctl_vol_args_v2 *vol_args; 1691 int ret; 1692 u64 transid = 0; 1693 u64 *ptr = NULL; 1694 bool readonly = false; 1695 struct btrfs_qgroup_inherit *inherit = NULL; 1696 1697 vol_args = memdup_user(arg, sizeof(*vol_args)); 1698 if (IS_ERR(vol_args)) 1699 return PTR_ERR(vol_args); 1700 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1701 1702 if (vol_args->flags & 1703 ~(BTRFS_SUBVOL_CREATE_ASYNC | BTRFS_SUBVOL_RDONLY | 1704 BTRFS_SUBVOL_QGROUP_INHERIT)) { 1705 ret = -EOPNOTSUPP; 1706 goto free_args; 1707 } 1708 1709 if (vol_args->flags & BTRFS_SUBVOL_CREATE_ASYNC) 1710 ptr = &transid; 1711 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1712 readonly = true; 1713 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1714 if (vol_args->size > PAGE_CACHE_SIZE) { 1715 ret = -EINVAL; 1716 goto free_args; 1717 } 1718 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1719 if (IS_ERR(inherit)) { 1720 ret = PTR_ERR(inherit); 1721 goto free_args; 1722 } 1723 } 1724 1725 ret = btrfs_ioctl_snap_create_transid(file, vol_args->name, 1726 vol_args->fd, subvol, ptr, 1727 readonly, inherit); 1728 if (ret) 1729 goto free_inherit; 1730 1731 if (ptr && copy_to_user(arg + 1732 offsetof(struct btrfs_ioctl_vol_args_v2, 1733 transid), 1734 ptr, sizeof(*ptr))) 1735 ret = -EFAULT; 1736 1737 free_inherit: 1738 kfree(inherit); 1739 free_args: 1740 kfree(vol_args); 1741 return ret; 1742 } 1743 1744 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1745 void __user *arg) 1746 { 1747 struct inode *inode = file_inode(file); 1748 struct btrfs_root *root = BTRFS_I(inode)->root; 1749 int ret = 0; 1750 u64 flags = 0; 1751 1752 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) 1753 return -EINVAL; 1754 1755 down_read(&root->fs_info->subvol_sem); 1756 if (btrfs_root_readonly(root)) 1757 flags |= BTRFS_SUBVOL_RDONLY; 1758 up_read(&root->fs_info->subvol_sem); 1759 1760 if (copy_to_user(arg, &flags, sizeof(flags))) 1761 ret = -EFAULT; 1762 1763 return ret; 1764 } 1765 1766 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1767 void __user *arg) 1768 { 1769 struct inode *inode = file_inode(file); 1770 struct btrfs_root *root = BTRFS_I(inode)->root; 1771 struct btrfs_trans_handle *trans; 1772 u64 root_flags; 1773 u64 flags; 1774 int ret = 0; 1775 1776 if (!inode_owner_or_capable(inode)) 1777 return -EPERM; 1778 1779 ret = mnt_want_write_file(file); 1780 if (ret) 1781 goto out; 1782 1783 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 1784 ret = -EINVAL; 1785 goto out_drop_write; 1786 } 1787 1788 if (copy_from_user(&flags, arg, sizeof(flags))) { 1789 ret = -EFAULT; 1790 goto out_drop_write; 1791 } 1792 1793 if (flags & BTRFS_SUBVOL_CREATE_ASYNC) { 1794 ret = -EINVAL; 1795 goto out_drop_write; 1796 } 1797 1798 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1799 ret = -EOPNOTSUPP; 1800 goto out_drop_write; 1801 } 1802 1803 down_write(&root->fs_info->subvol_sem); 1804 1805 /* nothing to do */ 1806 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 1807 goto out_drop_sem; 1808 1809 root_flags = btrfs_root_flags(&root->root_item); 1810 if (flags & BTRFS_SUBVOL_RDONLY) { 1811 btrfs_set_root_flags(&root->root_item, 1812 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 1813 } else { 1814 /* 1815 * Block RO -> RW transition if this subvolume is involved in 1816 * send 1817 */ 1818 spin_lock(&root->root_item_lock); 1819 if (root->send_in_progress == 0) { 1820 btrfs_set_root_flags(&root->root_item, 1821 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 1822 spin_unlock(&root->root_item_lock); 1823 } else { 1824 spin_unlock(&root->root_item_lock); 1825 btrfs_warn(root->fs_info, 1826 "Attempt to set subvolume %llu read-write during send", 1827 root->root_key.objectid); 1828 ret = -EPERM; 1829 goto out_drop_sem; 1830 } 1831 } 1832 1833 trans = btrfs_start_transaction(root, 1); 1834 if (IS_ERR(trans)) { 1835 ret = PTR_ERR(trans); 1836 goto out_reset; 1837 } 1838 1839 ret = btrfs_update_root(trans, root->fs_info->tree_root, 1840 &root->root_key, &root->root_item); 1841 1842 btrfs_commit_transaction(trans, root); 1843 out_reset: 1844 if (ret) 1845 btrfs_set_root_flags(&root->root_item, root_flags); 1846 out_drop_sem: 1847 up_write(&root->fs_info->subvol_sem); 1848 out_drop_write: 1849 mnt_drop_write_file(file); 1850 out: 1851 return ret; 1852 } 1853 1854 /* 1855 * helper to check if the subvolume references other subvolumes 1856 */ 1857 static noinline int may_destroy_subvol(struct btrfs_root *root) 1858 { 1859 struct btrfs_path *path; 1860 struct btrfs_dir_item *di; 1861 struct btrfs_key key; 1862 u64 dir_id; 1863 int ret; 1864 1865 path = btrfs_alloc_path(); 1866 if (!path) 1867 return -ENOMEM; 1868 1869 /* Make sure this root isn't set as the default subvol */ 1870 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 1871 di = btrfs_lookup_dir_item(NULL, root->fs_info->tree_root, path, 1872 dir_id, "default", 7, 0); 1873 if (di && !IS_ERR(di)) { 1874 btrfs_dir_item_key_to_cpu(path->nodes[0], di, &key); 1875 if (key.objectid == root->root_key.objectid) { 1876 ret = -EPERM; 1877 btrfs_err(root->fs_info, "deleting default subvolume " 1878 "%llu is not allowed", key.objectid); 1879 goto out; 1880 } 1881 btrfs_release_path(path); 1882 } 1883 1884 key.objectid = root->root_key.objectid; 1885 key.type = BTRFS_ROOT_REF_KEY; 1886 key.offset = (u64)-1; 1887 1888 ret = btrfs_search_slot(NULL, root->fs_info->tree_root, 1889 &key, path, 0, 0); 1890 if (ret < 0) 1891 goto out; 1892 BUG_ON(ret == 0); 1893 1894 ret = 0; 1895 if (path->slots[0] > 0) { 1896 path->slots[0]--; 1897 btrfs_item_key_to_cpu(path->nodes[0], &key, path->slots[0]); 1898 if (key.objectid == root->root_key.objectid && 1899 key.type == BTRFS_ROOT_REF_KEY) 1900 ret = -ENOTEMPTY; 1901 } 1902 out: 1903 btrfs_free_path(path); 1904 return ret; 1905 } 1906 1907 static noinline int key_in_sk(struct btrfs_key *key, 1908 struct btrfs_ioctl_search_key *sk) 1909 { 1910 struct btrfs_key test; 1911 int ret; 1912 1913 test.objectid = sk->min_objectid; 1914 test.type = sk->min_type; 1915 test.offset = sk->min_offset; 1916 1917 ret = btrfs_comp_cpu_keys(key, &test); 1918 if (ret < 0) 1919 return 0; 1920 1921 test.objectid = sk->max_objectid; 1922 test.type = sk->max_type; 1923 test.offset = sk->max_offset; 1924 1925 ret = btrfs_comp_cpu_keys(key, &test); 1926 if (ret > 0) 1927 return 0; 1928 return 1; 1929 } 1930 1931 static noinline int copy_to_sk(struct btrfs_root *root, 1932 struct btrfs_path *path, 1933 struct btrfs_key *key, 1934 struct btrfs_ioctl_search_key *sk, 1935 size_t *buf_size, 1936 char __user *ubuf, 1937 unsigned long *sk_offset, 1938 int *num_found) 1939 { 1940 u64 found_transid; 1941 struct extent_buffer *leaf; 1942 struct btrfs_ioctl_search_header sh; 1943 unsigned long item_off; 1944 unsigned long item_len; 1945 int nritems; 1946 int i; 1947 int slot; 1948 int ret = 0; 1949 1950 leaf = path->nodes[0]; 1951 slot = path->slots[0]; 1952 nritems = btrfs_header_nritems(leaf); 1953 1954 if (btrfs_header_generation(leaf) > sk->max_transid) { 1955 i = nritems; 1956 goto advance_key; 1957 } 1958 found_transid = btrfs_header_generation(leaf); 1959 1960 for (i = slot; i < nritems; i++) { 1961 item_off = btrfs_item_ptr_offset(leaf, i); 1962 item_len = btrfs_item_size_nr(leaf, i); 1963 1964 btrfs_item_key_to_cpu(leaf, key, i); 1965 if (!key_in_sk(key, sk)) 1966 continue; 1967 1968 if (sizeof(sh) + item_len > *buf_size) { 1969 if (*num_found) { 1970 ret = 1; 1971 goto out; 1972 } 1973 1974 /* 1975 * return one empty item back for v1, which does not 1976 * handle -EOVERFLOW 1977 */ 1978 1979 *buf_size = sizeof(sh) + item_len; 1980 item_len = 0; 1981 ret = -EOVERFLOW; 1982 } 1983 1984 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 1985 ret = 1; 1986 goto out; 1987 } 1988 1989 sh.objectid = key->objectid; 1990 sh.offset = key->offset; 1991 sh.type = key->type; 1992 sh.len = item_len; 1993 sh.transid = found_transid; 1994 1995 /* copy search result header */ 1996 if (copy_to_user(ubuf + *sk_offset, &sh, sizeof(sh))) { 1997 ret = -EFAULT; 1998 goto out; 1999 } 2000 2001 *sk_offset += sizeof(sh); 2002 2003 if (item_len) { 2004 char __user *up = ubuf + *sk_offset; 2005 /* copy the item */ 2006 if (read_extent_buffer_to_user(leaf, up, 2007 item_off, item_len)) { 2008 ret = -EFAULT; 2009 goto out; 2010 } 2011 2012 *sk_offset += item_len; 2013 } 2014 (*num_found)++; 2015 2016 if (ret) /* -EOVERFLOW from above */ 2017 goto out; 2018 2019 if (*num_found >= sk->nr_items) { 2020 ret = 1; 2021 goto out; 2022 } 2023 } 2024 advance_key: 2025 ret = 0; 2026 if (key->offset < (u64)-1 && key->offset < sk->max_offset) 2027 key->offset++; 2028 else if (key->type < (u8)-1 && key->type < sk->max_type) { 2029 key->offset = 0; 2030 key->type++; 2031 } else if (key->objectid < (u64)-1 && key->objectid < sk->max_objectid) { 2032 key->offset = 0; 2033 key->type = 0; 2034 key->objectid++; 2035 } else 2036 ret = 1; 2037 out: 2038 /* 2039 * 0: all items from this leaf copied, continue with next 2040 * 1: * more items can be copied, but unused buffer is too small 2041 * * all items were found 2042 * Either way, it will stops the loop which iterates to the next 2043 * leaf 2044 * -EOVERFLOW: item was to large for buffer 2045 * -EFAULT: could not copy extent buffer back to userspace 2046 */ 2047 return ret; 2048 } 2049 2050 static noinline int search_ioctl(struct inode *inode, 2051 struct btrfs_ioctl_search_key *sk, 2052 size_t *buf_size, 2053 char __user *ubuf) 2054 { 2055 struct btrfs_root *root; 2056 struct btrfs_key key; 2057 struct btrfs_path *path; 2058 struct btrfs_fs_info *info = BTRFS_I(inode)->root->fs_info; 2059 int ret; 2060 int num_found = 0; 2061 unsigned long sk_offset = 0; 2062 2063 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2064 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2065 return -EOVERFLOW; 2066 } 2067 2068 path = btrfs_alloc_path(); 2069 if (!path) 2070 return -ENOMEM; 2071 2072 if (sk->tree_id == 0) { 2073 /* search the root of the inode that was passed */ 2074 root = BTRFS_I(inode)->root; 2075 } else { 2076 key.objectid = sk->tree_id; 2077 key.type = BTRFS_ROOT_ITEM_KEY; 2078 key.offset = (u64)-1; 2079 root = btrfs_read_fs_root_no_name(info, &key); 2080 if (IS_ERR(root)) { 2081 printk(KERN_ERR "BTRFS: could not find root %llu\n", 2082 sk->tree_id); 2083 btrfs_free_path(path); 2084 return -ENOENT; 2085 } 2086 } 2087 2088 key.objectid = sk->min_objectid; 2089 key.type = sk->min_type; 2090 key.offset = sk->min_offset; 2091 2092 path->keep_locks = 1; 2093 2094 while (1) { 2095 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2096 if (ret != 0) { 2097 if (ret > 0) 2098 ret = 0; 2099 goto err; 2100 } 2101 ret = copy_to_sk(root, path, &key, sk, buf_size, ubuf, 2102 &sk_offset, &num_found); 2103 btrfs_release_path(path); 2104 if (ret) 2105 break; 2106 2107 } 2108 if (ret > 0) 2109 ret = 0; 2110 err: 2111 sk->nr_items = num_found; 2112 btrfs_free_path(path); 2113 return ret; 2114 } 2115 2116 static noinline int btrfs_ioctl_tree_search(struct file *file, 2117 void __user *argp) 2118 { 2119 struct btrfs_ioctl_search_args __user *uargs; 2120 struct btrfs_ioctl_search_key sk; 2121 struct inode *inode; 2122 int ret; 2123 size_t buf_size; 2124 2125 if (!capable(CAP_SYS_ADMIN)) 2126 return -EPERM; 2127 2128 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2129 2130 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2131 return -EFAULT; 2132 2133 buf_size = sizeof(uargs->buf); 2134 2135 inode = file_inode(file); 2136 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2137 2138 /* 2139 * In the origin implementation an overflow is handled by returning a 2140 * search header with a len of zero, so reset ret. 2141 */ 2142 if (ret == -EOVERFLOW) 2143 ret = 0; 2144 2145 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2146 ret = -EFAULT; 2147 return ret; 2148 } 2149 2150 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2151 void __user *argp) 2152 { 2153 struct btrfs_ioctl_search_args_v2 __user *uarg; 2154 struct btrfs_ioctl_search_args_v2 args; 2155 struct inode *inode; 2156 int ret; 2157 size_t buf_size; 2158 const size_t buf_limit = 16 * 1024 * 1024; 2159 2160 if (!capable(CAP_SYS_ADMIN)) 2161 return -EPERM; 2162 2163 /* copy search header and buffer size */ 2164 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2165 if (copy_from_user(&args, uarg, sizeof(args))) 2166 return -EFAULT; 2167 2168 buf_size = args.buf_size; 2169 2170 if (buf_size < sizeof(struct btrfs_ioctl_search_header)) 2171 return -EOVERFLOW; 2172 2173 /* limit result size to 16MB */ 2174 if (buf_size > buf_limit) 2175 buf_size = buf_limit; 2176 2177 inode = file_inode(file); 2178 ret = search_ioctl(inode, &args.key, &buf_size, 2179 (char *)(&uarg->buf[0])); 2180 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2181 ret = -EFAULT; 2182 else if (ret == -EOVERFLOW && 2183 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2184 ret = -EFAULT; 2185 2186 return ret; 2187 } 2188 2189 /* 2190 * Search INODE_REFs to identify path name of 'dirid' directory 2191 * in a 'tree_id' tree. and sets path name to 'name'. 2192 */ 2193 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2194 u64 tree_id, u64 dirid, char *name) 2195 { 2196 struct btrfs_root *root; 2197 struct btrfs_key key; 2198 char *ptr; 2199 int ret = -1; 2200 int slot; 2201 int len; 2202 int total_len = 0; 2203 struct btrfs_inode_ref *iref; 2204 struct extent_buffer *l; 2205 struct btrfs_path *path; 2206 2207 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2208 name[0]='\0'; 2209 return 0; 2210 } 2211 2212 path = btrfs_alloc_path(); 2213 if (!path) 2214 return -ENOMEM; 2215 2216 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX]; 2217 2218 key.objectid = tree_id; 2219 key.type = BTRFS_ROOT_ITEM_KEY; 2220 key.offset = (u64)-1; 2221 root = btrfs_read_fs_root_no_name(info, &key); 2222 if (IS_ERR(root)) { 2223 printk(KERN_ERR "BTRFS: could not find root %llu\n", tree_id); 2224 ret = -ENOENT; 2225 goto out; 2226 } 2227 2228 key.objectid = dirid; 2229 key.type = BTRFS_INODE_REF_KEY; 2230 key.offset = (u64)-1; 2231 2232 while (1) { 2233 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2234 if (ret < 0) 2235 goto out; 2236 else if (ret > 0) { 2237 ret = btrfs_previous_item(root, path, dirid, 2238 BTRFS_INODE_REF_KEY); 2239 if (ret < 0) 2240 goto out; 2241 else if (ret > 0) { 2242 ret = -ENOENT; 2243 goto out; 2244 } 2245 } 2246 2247 l = path->nodes[0]; 2248 slot = path->slots[0]; 2249 btrfs_item_key_to_cpu(l, &key, slot); 2250 2251 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2252 len = btrfs_inode_ref_name_len(l, iref); 2253 ptr -= len + 1; 2254 total_len += len + 1; 2255 if (ptr < name) { 2256 ret = -ENAMETOOLONG; 2257 goto out; 2258 } 2259 2260 *(ptr + len) = '/'; 2261 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2262 2263 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2264 break; 2265 2266 btrfs_release_path(path); 2267 key.objectid = key.offset; 2268 key.offset = (u64)-1; 2269 dirid = key.objectid; 2270 } 2271 memmove(name, ptr, total_len); 2272 name[total_len] = '\0'; 2273 ret = 0; 2274 out: 2275 btrfs_free_path(path); 2276 return ret; 2277 } 2278 2279 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2280 void __user *argp) 2281 { 2282 struct btrfs_ioctl_ino_lookup_args *args; 2283 struct inode *inode; 2284 int ret; 2285 2286 if (!capable(CAP_SYS_ADMIN)) 2287 return -EPERM; 2288 2289 args = memdup_user(argp, sizeof(*args)); 2290 if (IS_ERR(args)) 2291 return PTR_ERR(args); 2292 2293 inode = file_inode(file); 2294 2295 if (args->treeid == 0) 2296 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2297 2298 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2299 args->treeid, args->objectid, 2300 args->name); 2301 2302 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2303 ret = -EFAULT; 2304 2305 kfree(args); 2306 return ret; 2307 } 2308 2309 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2310 void __user *arg) 2311 { 2312 struct dentry *parent = file->f_path.dentry; 2313 struct dentry *dentry; 2314 struct inode *dir = parent->d_inode; 2315 struct inode *inode; 2316 struct btrfs_root *root = BTRFS_I(dir)->root; 2317 struct btrfs_root *dest = NULL; 2318 struct btrfs_ioctl_vol_args *vol_args; 2319 struct btrfs_trans_handle *trans; 2320 struct btrfs_block_rsv block_rsv; 2321 u64 root_flags; 2322 u64 qgroup_reserved; 2323 int namelen; 2324 int ret; 2325 int err = 0; 2326 2327 vol_args = memdup_user(arg, sizeof(*vol_args)); 2328 if (IS_ERR(vol_args)) 2329 return PTR_ERR(vol_args); 2330 2331 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2332 namelen = strlen(vol_args->name); 2333 if (strchr(vol_args->name, '/') || 2334 strncmp(vol_args->name, "..", namelen) == 0) { 2335 err = -EINVAL; 2336 goto out; 2337 } 2338 2339 err = mnt_want_write_file(file); 2340 if (err) 2341 goto out; 2342 2343 2344 err = mutex_lock_killable_nested(&dir->i_mutex, I_MUTEX_PARENT); 2345 if (err == -EINTR) 2346 goto out_drop_write; 2347 dentry = lookup_one_len(vol_args->name, parent, namelen); 2348 if (IS_ERR(dentry)) { 2349 err = PTR_ERR(dentry); 2350 goto out_unlock_dir; 2351 } 2352 2353 if (!dentry->d_inode) { 2354 err = -ENOENT; 2355 goto out_dput; 2356 } 2357 2358 inode = dentry->d_inode; 2359 dest = BTRFS_I(inode)->root; 2360 if (!capable(CAP_SYS_ADMIN)) { 2361 /* 2362 * Regular user. Only allow this with a special mount 2363 * option, when the user has write+exec access to the 2364 * subvol root, and when rmdir(2) would have been 2365 * allowed. 2366 * 2367 * Note that this is _not_ check that the subvol is 2368 * empty or doesn't contain data that we wouldn't 2369 * otherwise be able to delete. 2370 * 2371 * Users who want to delete empty subvols should try 2372 * rmdir(2). 2373 */ 2374 err = -EPERM; 2375 if (!btrfs_test_opt(root, USER_SUBVOL_RM_ALLOWED)) 2376 goto out_dput; 2377 2378 /* 2379 * Do not allow deletion if the parent dir is the same 2380 * as the dir to be deleted. That means the ioctl 2381 * must be called on the dentry referencing the root 2382 * of the subvol, not a random directory contained 2383 * within it. 2384 */ 2385 err = -EINVAL; 2386 if (root == dest) 2387 goto out_dput; 2388 2389 err = inode_permission(inode, MAY_WRITE | MAY_EXEC); 2390 if (err) 2391 goto out_dput; 2392 } 2393 2394 /* check if subvolume may be deleted by a user */ 2395 err = btrfs_may_delete(dir, dentry, 1); 2396 if (err) 2397 goto out_dput; 2398 2399 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 2400 err = -EINVAL; 2401 goto out_dput; 2402 } 2403 2404 mutex_lock(&inode->i_mutex); 2405 2406 /* 2407 * Don't allow to delete a subvolume with send in progress. This is 2408 * inside the i_mutex so the error handling that has to drop the bit 2409 * again is not run concurrently. 2410 */ 2411 spin_lock(&dest->root_item_lock); 2412 root_flags = btrfs_root_flags(&dest->root_item); 2413 if (dest->send_in_progress == 0) { 2414 btrfs_set_root_flags(&dest->root_item, 2415 root_flags | BTRFS_ROOT_SUBVOL_DEAD); 2416 spin_unlock(&dest->root_item_lock); 2417 } else { 2418 spin_unlock(&dest->root_item_lock); 2419 btrfs_warn(root->fs_info, 2420 "Attempt to delete subvolume %llu during send", 2421 dest->root_key.objectid); 2422 err = -EPERM; 2423 goto out_dput; 2424 } 2425 2426 d_invalidate(dentry); 2427 2428 down_write(&root->fs_info->subvol_sem); 2429 2430 err = may_destroy_subvol(dest); 2431 if (err) 2432 goto out_up_write; 2433 2434 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 2435 /* 2436 * One for dir inode, two for dir entries, two for root 2437 * ref/backref. 2438 */ 2439 err = btrfs_subvolume_reserve_metadata(root, &block_rsv, 2440 5, &qgroup_reserved, true); 2441 if (err) 2442 goto out_up_write; 2443 2444 trans = btrfs_start_transaction(root, 0); 2445 if (IS_ERR(trans)) { 2446 err = PTR_ERR(trans); 2447 goto out_release; 2448 } 2449 trans->block_rsv = &block_rsv; 2450 trans->bytes_reserved = block_rsv.size; 2451 2452 ret = btrfs_unlink_subvol(trans, root, dir, 2453 dest->root_key.objectid, 2454 dentry->d_name.name, 2455 dentry->d_name.len); 2456 if (ret) { 2457 err = ret; 2458 btrfs_abort_transaction(trans, root, ret); 2459 goto out_end_trans; 2460 } 2461 2462 btrfs_record_root_in_trans(trans, dest); 2463 2464 memset(&dest->root_item.drop_progress, 0, 2465 sizeof(dest->root_item.drop_progress)); 2466 dest->root_item.drop_level = 0; 2467 btrfs_set_root_refs(&dest->root_item, 0); 2468 2469 if (!test_and_set_bit(BTRFS_ROOT_ORPHAN_ITEM_INSERTED, &dest->state)) { 2470 ret = btrfs_insert_orphan_item(trans, 2471 root->fs_info->tree_root, 2472 dest->root_key.objectid); 2473 if (ret) { 2474 btrfs_abort_transaction(trans, root, ret); 2475 err = ret; 2476 goto out_end_trans; 2477 } 2478 } 2479 2480 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2481 dest->root_item.uuid, BTRFS_UUID_KEY_SUBVOL, 2482 dest->root_key.objectid); 2483 if (ret && ret != -ENOENT) { 2484 btrfs_abort_transaction(trans, root, ret); 2485 err = ret; 2486 goto out_end_trans; 2487 } 2488 if (!btrfs_is_empty_uuid(dest->root_item.received_uuid)) { 2489 ret = btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 2490 dest->root_item.received_uuid, 2491 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 2492 dest->root_key.objectid); 2493 if (ret && ret != -ENOENT) { 2494 btrfs_abort_transaction(trans, root, ret); 2495 err = ret; 2496 goto out_end_trans; 2497 } 2498 } 2499 2500 out_end_trans: 2501 trans->block_rsv = NULL; 2502 trans->bytes_reserved = 0; 2503 ret = btrfs_end_transaction(trans, root); 2504 if (ret && !err) 2505 err = ret; 2506 inode->i_flags |= S_DEAD; 2507 out_release: 2508 btrfs_subvolume_release_metadata(root, &block_rsv, qgroup_reserved); 2509 out_up_write: 2510 up_write(&root->fs_info->subvol_sem); 2511 if (err) { 2512 spin_lock(&dest->root_item_lock); 2513 root_flags = btrfs_root_flags(&dest->root_item); 2514 btrfs_set_root_flags(&dest->root_item, 2515 root_flags & ~BTRFS_ROOT_SUBVOL_DEAD); 2516 spin_unlock(&dest->root_item_lock); 2517 } 2518 mutex_unlock(&inode->i_mutex); 2519 if (!err) { 2520 shrink_dcache_sb(root->fs_info->sb); 2521 btrfs_invalidate_inodes(dest); 2522 d_delete(dentry); 2523 ASSERT(dest->send_in_progress == 0); 2524 2525 /* the last ref */ 2526 if (dest->cache_inode) { 2527 iput(dest->cache_inode); 2528 dest->cache_inode = NULL; 2529 } 2530 } 2531 out_dput: 2532 dput(dentry); 2533 out_unlock_dir: 2534 mutex_unlock(&dir->i_mutex); 2535 out_drop_write: 2536 mnt_drop_write_file(file); 2537 out: 2538 kfree(vol_args); 2539 return err; 2540 } 2541 2542 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 2543 { 2544 struct inode *inode = file_inode(file); 2545 struct btrfs_root *root = BTRFS_I(inode)->root; 2546 struct btrfs_ioctl_defrag_range_args *range; 2547 int ret; 2548 2549 ret = mnt_want_write_file(file); 2550 if (ret) 2551 return ret; 2552 2553 if (btrfs_root_readonly(root)) { 2554 ret = -EROFS; 2555 goto out; 2556 } 2557 2558 switch (inode->i_mode & S_IFMT) { 2559 case S_IFDIR: 2560 if (!capable(CAP_SYS_ADMIN)) { 2561 ret = -EPERM; 2562 goto out; 2563 } 2564 ret = btrfs_defrag_root(root); 2565 if (ret) 2566 goto out; 2567 ret = btrfs_defrag_root(root->fs_info->extent_root); 2568 break; 2569 case S_IFREG: 2570 if (!(file->f_mode & FMODE_WRITE)) { 2571 ret = -EINVAL; 2572 goto out; 2573 } 2574 2575 range = kzalloc(sizeof(*range), GFP_KERNEL); 2576 if (!range) { 2577 ret = -ENOMEM; 2578 goto out; 2579 } 2580 2581 if (argp) { 2582 if (copy_from_user(range, argp, 2583 sizeof(*range))) { 2584 ret = -EFAULT; 2585 kfree(range); 2586 goto out; 2587 } 2588 /* compression requires us to start the IO */ 2589 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 2590 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 2591 range->extent_thresh = (u32)-1; 2592 } 2593 } else { 2594 /* the rest are all set to zero by kzalloc */ 2595 range->len = (u64)-1; 2596 } 2597 ret = btrfs_defrag_file(file_inode(file), file, 2598 range, 0, 0); 2599 if (ret > 0) 2600 ret = 0; 2601 kfree(range); 2602 break; 2603 default: 2604 ret = -EINVAL; 2605 } 2606 out: 2607 mnt_drop_write_file(file); 2608 return ret; 2609 } 2610 2611 static long btrfs_ioctl_add_dev(struct btrfs_root *root, void __user *arg) 2612 { 2613 struct btrfs_ioctl_vol_args *vol_args; 2614 int ret; 2615 2616 if (!capable(CAP_SYS_ADMIN)) 2617 return -EPERM; 2618 2619 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2620 1)) { 2621 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2622 } 2623 2624 mutex_lock(&root->fs_info->volume_mutex); 2625 vol_args = memdup_user(arg, sizeof(*vol_args)); 2626 if (IS_ERR(vol_args)) { 2627 ret = PTR_ERR(vol_args); 2628 goto out; 2629 } 2630 2631 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2632 ret = btrfs_init_new_device(root, vol_args->name); 2633 2634 kfree(vol_args); 2635 out: 2636 mutex_unlock(&root->fs_info->volume_mutex); 2637 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2638 return ret; 2639 } 2640 2641 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 2642 { 2643 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 2644 struct btrfs_ioctl_vol_args *vol_args; 2645 int ret; 2646 2647 if (!capable(CAP_SYS_ADMIN)) 2648 return -EPERM; 2649 2650 ret = mnt_want_write_file(file); 2651 if (ret) 2652 return ret; 2653 2654 vol_args = memdup_user(arg, sizeof(*vol_args)); 2655 if (IS_ERR(vol_args)) { 2656 ret = PTR_ERR(vol_args); 2657 goto err_drop; 2658 } 2659 2660 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 2661 2662 if (atomic_xchg(&root->fs_info->mutually_exclusive_operation_running, 2663 1)) { 2664 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 2665 goto out; 2666 } 2667 2668 mutex_lock(&root->fs_info->volume_mutex); 2669 ret = btrfs_rm_device(root, vol_args->name); 2670 mutex_unlock(&root->fs_info->volume_mutex); 2671 atomic_set(&root->fs_info->mutually_exclusive_operation_running, 0); 2672 2673 out: 2674 kfree(vol_args); 2675 err_drop: 2676 mnt_drop_write_file(file); 2677 return ret; 2678 } 2679 2680 static long btrfs_ioctl_fs_info(struct btrfs_root *root, void __user *arg) 2681 { 2682 struct btrfs_ioctl_fs_info_args *fi_args; 2683 struct btrfs_device *device; 2684 struct btrfs_device *next; 2685 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2686 int ret = 0; 2687 2688 fi_args = kzalloc(sizeof(*fi_args), GFP_KERNEL); 2689 if (!fi_args) 2690 return -ENOMEM; 2691 2692 mutex_lock(&fs_devices->device_list_mutex); 2693 fi_args->num_devices = fs_devices->num_devices; 2694 memcpy(&fi_args->fsid, root->fs_info->fsid, sizeof(fi_args->fsid)); 2695 2696 list_for_each_entry_safe(device, next, &fs_devices->devices, dev_list) { 2697 if (device->devid > fi_args->max_id) 2698 fi_args->max_id = device->devid; 2699 } 2700 mutex_unlock(&fs_devices->device_list_mutex); 2701 2702 fi_args->nodesize = root->fs_info->super_copy->nodesize; 2703 fi_args->sectorsize = root->fs_info->super_copy->sectorsize; 2704 fi_args->clone_alignment = root->fs_info->super_copy->sectorsize; 2705 2706 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 2707 ret = -EFAULT; 2708 2709 kfree(fi_args); 2710 return ret; 2711 } 2712 2713 static long btrfs_ioctl_dev_info(struct btrfs_root *root, void __user *arg) 2714 { 2715 struct btrfs_ioctl_dev_info_args *di_args; 2716 struct btrfs_device *dev; 2717 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices; 2718 int ret = 0; 2719 char *s_uuid = NULL; 2720 2721 di_args = memdup_user(arg, sizeof(*di_args)); 2722 if (IS_ERR(di_args)) 2723 return PTR_ERR(di_args); 2724 2725 if (!btrfs_is_empty_uuid(di_args->uuid)) 2726 s_uuid = di_args->uuid; 2727 2728 mutex_lock(&fs_devices->device_list_mutex); 2729 dev = btrfs_find_device(root->fs_info, di_args->devid, s_uuid, NULL); 2730 2731 if (!dev) { 2732 ret = -ENODEV; 2733 goto out; 2734 } 2735 2736 di_args->devid = dev->devid; 2737 di_args->bytes_used = dev->bytes_used; 2738 di_args->total_bytes = dev->total_bytes; 2739 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 2740 if (dev->name) { 2741 struct rcu_string *name; 2742 2743 rcu_read_lock(); 2744 name = rcu_dereference(dev->name); 2745 strncpy(di_args->path, name->str, sizeof(di_args->path)); 2746 rcu_read_unlock(); 2747 di_args->path[sizeof(di_args->path) - 1] = 0; 2748 } else { 2749 di_args->path[0] = '\0'; 2750 } 2751 2752 out: 2753 mutex_unlock(&fs_devices->device_list_mutex); 2754 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 2755 ret = -EFAULT; 2756 2757 kfree(di_args); 2758 return ret; 2759 } 2760 2761 static struct page *extent_same_get_page(struct inode *inode, u64 off) 2762 { 2763 struct page *page; 2764 pgoff_t index; 2765 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2766 2767 index = off >> PAGE_CACHE_SHIFT; 2768 2769 page = grab_cache_page(inode->i_mapping, index); 2770 if (!page) 2771 return NULL; 2772 2773 if (!PageUptodate(page)) { 2774 if (extent_read_full_page_nolock(tree, page, btrfs_get_extent, 2775 0)) 2776 return NULL; 2777 lock_page(page); 2778 if (!PageUptodate(page)) { 2779 unlock_page(page); 2780 page_cache_release(page); 2781 return NULL; 2782 } 2783 } 2784 unlock_page(page); 2785 2786 return page; 2787 } 2788 2789 static inline void lock_extent_range(struct inode *inode, u64 off, u64 len) 2790 { 2791 /* do any pending delalloc/csum calc on src, one way or 2792 another, and lock file content */ 2793 while (1) { 2794 struct btrfs_ordered_extent *ordered; 2795 lock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2796 ordered = btrfs_lookup_first_ordered_extent(inode, 2797 off + len - 1); 2798 if ((!ordered || 2799 ordered->file_offset + ordered->len <= off || 2800 ordered->file_offset >= off + len) && 2801 !test_range_bit(&BTRFS_I(inode)->io_tree, off, 2802 off + len - 1, EXTENT_DELALLOC, 0, NULL)) { 2803 if (ordered) 2804 btrfs_put_ordered_extent(ordered); 2805 break; 2806 } 2807 unlock_extent(&BTRFS_I(inode)->io_tree, off, off + len - 1); 2808 if (ordered) 2809 btrfs_put_ordered_extent(ordered); 2810 btrfs_wait_ordered_range(inode, off, len); 2811 } 2812 } 2813 2814 static void btrfs_double_unlock(struct inode *inode1, u64 loff1, 2815 struct inode *inode2, u64 loff2, u64 len) 2816 { 2817 unlock_extent(&BTRFS_I(inode1)->io_tree, loff1, loff1 + len - 1); 2818 unlock_extent(&BTRFS_I(inode2)->io_tree, loff2, loff2 + len - 1); 2819 2820 mutex_unlock(&inode1->i_mutex); 2821 mutex_unlock(&inode2->i_mutex); 2822 } 2823 2824 static void btrfs_double_lock(struct inode *inode1, u64 loff1, 2825 struct inode *inode2, u64 loff2, u64 len) 2826 { 2827 if (inode1 < inode2) { 2828 swap(inode1, inode2); 2829 swap(loff1, loff2); 2830 } 2831 2832 mutex_lock_nested(&inode1->i_mutex, I_MUTEX_PARENT); 2833 lock_extent_range(inode1, loff1, len); 2834 if (inode1 != inode2) { 2835 mutex_lock_nested(&inode2->i_mutex, I_MUTEX_CHILD); 2836 lock_extent_range(inode2, loff2, len); 2837 } 2838 } 2839 2840 static int btrfs_cmp_data(struct inode *src, u64 loff, struct inode *dst, 2841 u64 dst_loff, u64 len) 2842 { 2843 int ret = 0; 2844 struct page *src_page, *dst_page; 2845 unsigned int cmp_len = PAGE_CACHE_SIZE; 2846 void *addr, *dst_addr; 2847 2848 while (len) { 2849 if (len < PAGE_CACHE_SIZE) 2850 cmp_len = len; 2851 2852 src_page = extent_same_get_page(src, loff); 2853 if (!src_page) 2854 return -EINVAL; 2855 dst_page = extent_same_get_page(dst, dst_loff); 2856 if (!dst_page) { 2857 page_cache_release(src_page); 2858 return -EINVAL; 2859 } 2860 addr = kmap_atomic(src_page); 2861 dst_addr = kmap_atomic(dst_page); 2862 2863 flush_dcache_page(src_page); 2864 flush_dcache_page(dst_page); 2865 2866 if (memcmp(addr, dst_addr, cmp_len)) 2867 ret = BTRFS_SAME_DATA_DIFFERS; 2868 2869 kunmap_atomic(addr); 2870 kunmap_atomic(dst_addr); 2871 page_cache_release(src_page); 2872 page_cache_release(dst_page); 2873 2874 if (ret) 2875 break; 2876 2877 loff += cmp_len; 2878 dst_loff += cmp_len; 2879 len -= cmp_len; 2880 } 2881 2882 return ret; 2883 } 2884 2885 static int extent_same_check_offsets(struct inode *inode, u64 off, u64 len) 2886 { 2887 u64 bs = BTRFS_I(inode)->root->fs_info->sb->s_blocksize; 2888 2889 if (off + len > inode->i_size || off + len < off) 2890 return -EINVAL; 2891 /* Check that we are block aligned - btrfs_clone() requires this */ 2892 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs)) 2893 return -EINVAL; 2894 2895 return 0; 2896 } 2897 2898 static int btrfs_extent_same(struct inode *src, u64 loff, u64 len, 2899 struct inode *dst, u64 dst_loff) 2900 { 2901 int ret; 2902 2903 /* 2904 * btrfs_clone() can't handle extents in the same file 2905 * yet. Once that works, we can drop this check and replace it 2906 * with a check for the same inode, but overlapping extents. 2907 */ 2908 if (src == dst) 2909 return -EINVAL; 2910 2911 btrfs_double_lock(src, loff, dst, dst_loff, len); 2912 2913 ret = extent_same_check_offsets(src, loff, len); 2914 if (ret) 2915 goto out_unlock; 2916 2917 ret = extent_same_check_offsets(dst, dst_loff, len); 2918 if (ret) 2919 goto out_unlock; 2920 2921 /* don't make the dst file partly checksummed */ 2922 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 2923 (BTRFS_I(dst)->flags & BTRFS_INODE_NODATASUM)) { 2924 ret = -EINVAL; 2925 goto out_unlock; 2926 } 2927 2928 ret = btrfs_cmp_data(src, loff, dst, dst_loff, len); 2929 if (ret == 0) 2930 ret = btrfs_clone(src, dst, loff, len, len, dst_loff); 2931 2932 out_unlock: 2933 btrfs_double_unlock(src, loff, dst, dst_loff, len); 2934 2935 return ret; 2936 } 2937 2938 #define BTRFS_MAX_DEDUPE_LEN (16 * 1024 * 1024) 2939 2940 static long btrfs_ioctl_file_extent_same(struct file *file, 2941 struct btrfs_ioctl_same_args __user *argp) 2942 { 2943 struct btrfs_ioctl_same_args *same; 2944 struct btrfs_ioctl_same_extent_info *info; 2945 struct inode *src = file_inode(file); 2946 u64 off; 2947 u64 len; 2948 int i; 2949 int ret; 2950 unsigned long size; 2951 u64 bs = BTRFS_I(src)->root->fs_info->sb->s_blocksize; 2952 bool is_admin = capable(CAP_SYS_ADMIN); 2953 u16 count; 2954 2955 if (!(file->f_mode & FMODE_READ)) 2956 return -EINVAL; 2957 2958 ret = mnt_want_write_file(file); 2959 if (ret) 2960 return ret; 2961 2962 if (get_user(count, &argp->dest_count)) { 2963 ret = -EFAULT; 2964 goto out; 2965 } 2966 2967 size = offsetof(struct btrfs_ioctl_same_args __user, info[count]); 2968 2969 same = memdup_user(argp, size); 2970 2971 if (IS_ERR(same)) { 2972 ret = PTR_ERR(same); 2973 goto out; 2974 } 2975 2976 off = same->logical_offset; 2977 len = same->length; 2978 2979 /* 2980 * Limit the total length we will dedupe for each operation. 2981 * This is intended to bound the total time spent in this 2982 * ioctl to something sane. 2983 */ 2984 if (len > BTRFS_MAX_DEDUPE_LEN) 2985 len = BTRFS_MAX_DEDUPE_LEN; 2986 2987 if (WARN_ON_ONCE(bs < PAGE_CACHE_SIZE)) { 2988 /* 2989 * Btrfs does not support blocksize < page_size. As a 2990 * result, btrfs_cmp_data() won't correctly handle 2991 * this situation without an update. 2992 */ 2993 ret = -EINVAL; 2994 goto out; 2995 } 2996 2997 ret = -EISDIR; 2998 if (S_ISDIR(src->i_mode)) 2999 goto out; 3000 3001 ret = -EACCES; 3002 if (!S_ISREG(src->i_mode)) 3003 goto out; 3004 3005 /* pre-format output fields to sane values */ 3006 for (i = 0; i < count; i++) { 3007 same->info[i].bytes_deduped = 0ULL; 3008 same->info[i].status = 0; 3009 } 3010 3011 for (i = 0, info = same->info; i < count; i++, info++) { 3012 struct inode *dst; 3013 struct fd dst_file = fdget(info->fd); 3014 if (!dst_file.file) { 3015 info->status = -EBADF; 3016 continue; 3017 } 3018 dst = file_inode(dst_file.file); 3019 3020 if (!(is_admin || (dst_file.file->f_mode & FMODE_WRITE))) { 3021 info->status = -EINVAL; 3022 } else if (file->f_path.mnt != dst_file.file->f_path.mnt) { 3023 info->status = -EXDEV; 3024 } else if (S_ISDIR(dst->i_mode)) { 3025 info->status = -EISDIR; 3026 } else if (!S_ISREG(dst->i_mode)) { 3027 info->status = -EACCES; 3028 } else { 3029 info->status = btrfs_extent_same(src, off, len, dst, 3030 info->logical_offset); 3031 if (info->status == 0) 3032 info->bytes_deduped += len; 3033 } 3034 fdput(dst_file); 3035 } 3036 3037 ret = copy_to_user(argp, same, size); 3038 if (ret) 3039 ret = -EFAULT; 3040 3041 out: 3042 mnt_drop_write_file(file); 3043 return ret; 3044 } 3045 3046 /* Helper to check and see if this root currently has a ref on the given disk 3047 * bytenr. If it does then we need to update the quota for this root. This 3048 * doesn't do anything if quotas aren't enabled. 3049 */ 3050 static int check_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root, 3051 u64 disko) 3052 { 3053 struct seq_list tree_mod_seq_elem = {}; 3054 struct ulist *roots; 3055 struct ulist_iterator uiter; 3056 struct ulist_node *root_node = NULL; 3057 int ret; 3058 3059 if (!root->fs_info->quota_enabled) 3060 return 1; 3061 3062 btrfs_get_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3063 ret = btrfs_find_all_roots(trans, root->fs_info, disko, 3064 tree_mod_seq_elem.seq, &roots); 3065 if (ret < 0) 3066 goto out; 3067 ret = 0; 3068 ULIST_ITER_INIT(&uiter); 3069 while ((root_node = ulist_next(roots, &uiter))) { 3070 if (root_node->val == root->objectid) { 3071 ret = 1; 3072 break; 3073 } 3074 } 3075 ulist_free(roots); 3076 out: 3077 btrfs_put_tree_mod_seq(root->fs_info, &tree_mod_seq_elem); 3078 return ret; 3079 } 3080 3081 static int clone_finish_inode_update(struct btrfs_trans_handle *trans, 3082 struct inode *inode, 3083 u64 endoff, 3084 const u64 destoff, 3085 const u64 olen) 3086 { 3087 struct btrfs_root *root = BTRFS_I(inode)->root; 3088 int ret; 3089 3090 inode_inc_iversion(inode); 3091 inode->i_mtime = inode->i_ctime = CURRENT_TIME; 3092 /* 3093 * We round up to the block size at eof when determining which 3094 * extents to clone above, but shouldn't round up the file size. 3095 */ 3096 if (endoff > destoff + olen) 3097 endoff = destoff + olen; 3098 if (endoff > inode->i_size) 3099 btrfs_i_size_write(inode, endoff); 3100 3101 ret = btrfs_update_inode(trans, root, inode); 3102 if (ret) { 3103 btrfs_abort_transaction(trans, root, ret); 3104 btrfs_end_transaction(trans, root); 3105 goto out; 3106 } 3107 ret = btrfs_end_transaction(trans, root); 3108 out: 3109 return ret; 3110 } 3111 3112 static void clone_update_extent_map(struct inode *inode, 3113 const struct btrfs_trans_handle *trans, 3114 const struct btrfs_path *path, 3115 const u64 hole_offset, 3116 const u64 hole_len) 3117 { 3118 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 3119 struct extent_map *em; 3120 int ret; 3121 3122 em = alloc_extent_map(); 3123 if (!em) { 3124 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3125 &BTRFS_I(inode)->runtime_flags); 3126 return; 3127 } 3128 3129 if (path) { 3130 struct btrfs_file_extent_item *fi; 3131 3132 fi = btrfs_item_ptr(path->nodes[0], path->slots[0], 3133 struct btrfs_file_extent_item); 3134 btrfs_extent_item_to_extent_map(inode, path, fi, false, em); 3135 em->generation = -1; 3136 if (btrfs_file_extent_type(path->nodes[0], fi) == 3137 BTRFS_FILE_EXTENT_INLINE) 3138 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3139 &BTRFS_I(inode)->runtime_flags); 3140 } else { 3141 em->start = hole_offset; 3142 em->len = hole_len; 3143 em->ram_bytes = em->len; 3144 em->orig_start = hole_offset; 3145 em->block_start = EXTENT_MAP_HOLE; 3146 em->block_len = 0; 3147 em->orig_block_len = 0; 3148 em->compress_type = BTRFS_COMPRESS_NONE; 3149 em->generation = trans->transid; 3150 } 3151 3152 while (1) { 3153 write_lock(&em_tree->lock); 3154 ret = add_extent_mapping(em_tree, em, 1); 3155 write_unlock(&em_tree->lock); 3156 if (ret != -EEXIST) { 3157 free_extent_map(em); 3158 break; 3159 } 3160 btrfs_drop_extent_cache(inode, em->start, 3161 em->start + em->len - 1, 0); 3162 } 3163 3164 if (unlikely(ret)) 3165 set_bit(BTRFS_INODE_NEEDS_FULL_SYNC, 3166 &BTRFS_I(inode)->runtime_flags); 3167 } 3168 3169 /** 3170 * btrfs_clone() - clone a range from inode file to another 3171 * 3172 * @src: Inode to clone from 3173 * @inode: Inode to clone to 3174 * @off: Offset within source to start clone from 3175 * @olen: Original length, passed by user, of range to clone 3176 * @olen_aligned: Block-aligned value of olen, extent_same uses 3177 * identical values here 3178 * @destoff: Offset within @inode to start clone 3179 */ 3180 static int btrfs_clone(struct inode *src, struct inode *inode, 3181 const u64 off, const u64 olen, const u64 olen_aligned, 3182 const u64 destoff) 3183 { 3184 struct btrfs_root *root = BTRFS_I(inode)->root; 3185 struct btrfs_path *path = NULL; 3186 struct extent_buffer *leaf; 3187 struct btrfs_trans_handle *trans; 3188 char *buf = NULL; 3189 struct btrfs_key key; 3190 u32 nritems; 3191 int slot; 3192 int ret; 3193 int no_quota; 3194 const u64 len = olen_aligned; 3195 u64 last_disko = 0; 3196 u64 last_dest_end = destoff; 3197 3198 ret = -ENOMEM; 3199 buf = vmalloc(btrfs_level_size(root, 0)); 3200 if (!buf) 3201 return ret; 3202 3203 path = btrfs_alloc_path(); 3204 if (!path) { 3205 vfree(buf); 3206 return ret; 3207 } 3208 3209 path->reada = 2; 3210 /* clone data */ 3211 key.objectid = btrfs_ino(src); 3212 key.type = BTRFS_EXTENT_DATA_KEY; 3213 key.offset = off; 3214 3215 while (1) { 3216 /* 3217 * note the key will change type as we walk through the 3218 * tree. 3219 */ 3220 path->leave_spinning = 1; 3221 ret = btrfs_search_slot(NULL, BTRFS_I(src)->root, &key, path, 3222 0, 0); 3223 if (ret < 0) 3224 goto out; 3225 /* 3226 * First search, if no extent item that starts at offset off was 3227 * found but the previous item is an extent item, it's possible 3228 * it might overlap our target range, therefore process it. 3229 */ 3230 if (key.offset == off && ret > 0 && path->slots[0] > 0) { 3231 btrfs_item_key_to_cpu(path->nodes[0], &key, 3232 path->slots[0] - 1); 3233 if (key.type == BTRFS_EXTENT_DATA_KEY) 3234 path->slots[0]--; 3235 } 3236 3237 nritems = btrfs_header_nritems(path->nodes[0]); 3238 process_slot: 3239 no_quota = 1; 3240 if (path->slots[0] >= nritems) { 3241 ret = btrfs_next_leaf(BTRFS_I(src)->root, path); 3242 if (ret < 0) 3243 goto out; 3244 if (ret > 0) 3245 break; 3246 nritems = btrfs_header_nritems(path->nodes[0]); 3247 } 3248 leaf = path->nodes[0]; 3249 slot = path->slots[0]; 3250 3251 btrfs_item_key_to_cpu(leaf, &key, slot); 3252 if (btrfs_key_type(&key) > BTRFS_EXTENT_DATA_KEY || 3253 key.objectid != btrfs_ino(src)) 3254 break; 3255 3256 if (btrfs_key_type(&key) == BTRFS_EXTENT_DATA_KEY) { 3257 struct btrfs_file_extent_item *extent; 3258 int type; 3259 u32 size; 3260 struct btrfs_key new_key; 3261 u64 disko = 0, diskl = 0; 3262 u64 datao = 0, datal = 0; 3263 u8 comp; 3264 u64 drop_start; 3265 3266 extent = btrfs_item_ptr(leaf, slot, 3267 struct btrfs_file_extent_item); 3268 comp = btrfs_file_extent_compression(leaf, extent); 3269 type = btrfs_file_extent_type(leaf, extent); 3270 if (type == BTRFS_FILE_EXTENT_REG || 3271 type == BTRFS_FILE_EXTENT_PREALLOC) { 3272 disko = btrfs_file_extent_disk_bytenr(leaf, 3273 extent); 3274 diskl = btrfs_file_extent_disk_num_bytes(leaf, 3275 extent); 3276 datao = btrfs_file_extent_offset(leaf, extent); 3277 datal = btrfs_file_extent_num_bytes(leaf, 3278 extent); 3279 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3280 /* take upper bound, may be compressed */ 3281 datal = btrfs_file_extent_ram_bytes(leaf, 3282 extent); 3283 } 3284 3285 /* 3286 * The first search might have left us at an extent 3287 * item that ends before our target range's start, can 3288 * happen if we have holes and NO_HOLES feature enabled. 3289 */ 3290 if (key.offset + datal <= off) { 3291 path->slots[0]++; 3292 goto process_slot; 3293 } else if (key.offset >= off + len) { 3294 break; 3295 } 3296 3297 size = btrfs_item_size_nr(leaf, slot); 3298 read_extent_buffer(leaf, buf, 3299 btrfs_item_ptr_offset(leaf, slot), 3300 size); 3301 3302 btrfs_release_path(path); 3303 path->leave_spinning = 0; 3304 3305 memcpy(&new_key, &key, sizeof(new_key)); 3306 new_key.objectid = btrfs_ino(inode); 3307 if (off <= key.offset) 3308 new_key.offset = key.offset + destoff - off; 3309 else 3310 new_key.offset = destoff; 3311 3312 /* 3313 * Deal with a hole that doesn't have an extent item 3314 * that represents it (NO_HOLES feature enabled). 3315 * This hole is either in the middle of the cloning 3316 * range or at the beginning (fully overlaps it or 3317 * partially overlaps it). 3318 */ 3319 if (new_key.offset != last_dest_end) 3320 drop_start = last_dest_end; 3321 else 3322 drop_start = new_key.offset; 3323 3324 /* 3325 * 1 - adjusting old extent (we may have to split it) 3326 * 1 - add new extent 3327 * 1 - inode update 3328 */ 3329 trans = btrfs_start_transaction(root, 3); 3330 if (IS_ERR(trans)) { 3331 ret = PTR_ERR(trans); 3332 goto out; 3333 } 3334 3335 if (type == BTRFS_FILE_EXTENT_REG || 3336 type == BTRFS_FILE_EXTENT_PREALLOC) { 3337 /* 3338 * a | --- range to clone ---| b 3339 * | ------------- extent ------------- | 3340 */ 3341 3342 /* subtract range b */ 3343 if (key.offset + datal > off + len) 3344 datal = off + len - key.offset; 3345 3346 /* subtract range a */ 3347 if (off > key.offset) { 3348 datao += off - key.offset; 3349 datal -= off - key.offset; 3350 } 3351 3352 ret = btrfs_drop_extents(trans, root, inode, 3353 drop_start, 3354 new_key.offset + datal, 3355 1); 3356 if (ret) { 3357 if (ret != -EOPNOTSUPP) 3358 btrfs_abort_transaction(trans, 3359 root, ret); 3360 btrfs_end_transaction(trans, root); 3361 goto out; 3362 } 3363 3364 ret = btrfs_insert_empty_item(trans, root, path, 3365 &new_key, size); 3366 if (ret) { 3367 btrfs_abort_transaction(trans, root, 3368 ret); 3369 btrfs_end_transaction(trans, root); 3370 goto out; 3371 } 3372 3373 leaf = path->nodes[0]; 3374 slot = path->slots[0]; 3375 write_extent_buffer(leaf, buf, 3376 btrfs_item_ptr_offset(leaf, slot), 3377 size); 3378 3379 extent = btrfs_item_ptr(leaf, slot, 3380 struct btrfs_file_extent_item); 3381 3382 /* disko == 0 means it's a hole */ 3383 if (!disko) 3384 datao = 0; 3385 3386 btrfs_set_file_extent_offset(leaf, extent, 3387 datao); 3388 btrfs_set_file_extent_num_bytes(leaf, extent, 3389 datal); 3390 3391 /* 3392 * We need to look up the roots that point at 3393 * this bytenr and see if the new root does. If 3394 * it does not we need to make sure we update 3395 * quotas appropriately. 3396 */ 3397 if (disko && root != BTRFS_I(src)->root && 3398 disko != last_disko) { 3399 no_quota = check_ref(trans, root, 3400 disko); 3401 if (no_quota < 0) { 3402 btrfs_abort_transaction(trans, 3403 root, 3404 ret); 3405 btrfs_end_transaction(trans, 3406 root); 3407 ret = no_quota; 3408 goto out; 3409 } 3410 } 3411 3412 if (disko) { 3413 inode_add_bytes(inode, datal); 3414 ret = btrfs_inc_extent_ref(trans, root, 3415 disko, diskl, 0, 3416 root->root_key.objectid, 3417 btrfs_ino(inode), 3418 new_key.offset - datao, 3419 no_quota); 3420 if (ret) { 3421 btrfs_abort_transaction(trans, 3422 root, 3423 ret); 3424 btrfs_end_transaction(trans, 3425 root); 3426 goto out; 3427 3428 } 3429 } 3430 } else if (type == BTRFS_FILE_EXTENT_INLINE) { 3431 u64 skip = 0; 3432 u64 trim = 0; 3433 u64 aligned_end = 0; 3434 3435 if (off > key.offset) { 3436 skip = off - key.offset; 3437 new_key.offset += skip; 3438 } 3439 3440 if (key.offset + datal > off + len) 3441 trim = key.offset + datal - (off + len); 3442 3443 if (comp && (skip || trim)) { 3444 ret = -EINVAL; 3445 btrfs_end_transaction(trans, root); 3446 goto out; 3447 } 3448 size -= skip + trim; 3449 datal -= skip + trim; 3450 3451 aligned_end = ALIGN(new_key.offset + datal, 3452 root->sectorsize); 3453 ret = btrfs_drop_extents(trans, root, inode, 3454 drop_start, 3455 aligned_end, 3456 1); 3457 if (ret) { 3458 if (ret != -EOPNOTSUPP) 3459 btrfs_abort_transaction(trans, 3460 root, ret); 3461 btrfs_end_transaction(trans, root); 3462 goto out; 3463 } 3464 3465 ret = btrfs_insert_empty_item(trans, root, path, 3466 &new_key, size); 3467 if (ret) { 3468 btrfs_abort_transaction(trans, root, 3469 ret); 3470 btrfs_end_transaction(trans, root); 3471 goto out; 3472 } 3473 3474 if (skip) { 3475 u32 start = 3476 btrfs_file_extent_calc_inline_size(0); 3477 memmove(buf+start, buf+start+skip, 3478 datal); 3479 } 3480 3481 leaf = path->nodes[0]; 3482 slot = path->slots[0]; 3483 write_extent_buffer(leaf, buf, 3484 btrfs_item_ptr_offset(leaf, slot), 3485 size); 3486 inode_add_bytes(inode, datal); 3487 } 3488 3489 /* If we have an implicit hole (NO_HOLES feature). */ 3490 if (drop_start < new_key.offset) 3491 clone_update_extent_map(inode, trans, 3492 NULL, drop_start, 3493 new_key.offset - drop_start); 3494 3495 clone_update_extent_map(inode, trans, path, 0, 0); 3496 3497 btrfs_mark_buffer_dirty(leaf); 3498 btrfs_release_path(path); 3499 3500 last_dest_end = ALIGN(new_key.offset + datal, 3501 root->sectorsize); 3502 ret = clone_finish_inode_update(trans, inode, 3503 last_dest_end, 3504 destoff, olen); 3505 if (ret) 3506 goto out; 3507 if (new_key.offset + datal >= destoff + len) 3508 break; 3509 } 3510 btrfs_release_path(path); 3511 key.offset++; 3512 } 3513 ret = 0; 3514 3515 if (last_dest_end < destoff + len) { 3516 /* 3517 * We have an implicit hole (NO_HOLES feature is enabled) that 3518 * fully or partially overlaps our cloning range at its end. 3519 */ 3520 btrfs_release_path(path); 3521 3522 /* 3523 * 1 - remove extent(s) 3524 * 1 - inode update 3525 */ 3526 trans = btrfs_start_transaction(root, 2); 3527 if (IS_ERR(trans)) { 3528 ret = PTR_ERR(trans); 3529 goto out; 3530 } 3531 ret = btrfs_drop_extents(trans, root, inode, 3532 last_dest_end, destoff + len, 1); 3533 if (ret) { 3534 if (ret != -EOPNOTSUPP) 3535 btrfs_abort_transaction(trans, root, ret); 3536 btrfs_end_transaction(trans, root); 3537 goto out; 3538 } 3539 clone_update_extent_map(inode, trans, NULL, last_dest_end, 3540 destoff + len - last_dest_end); 3541 ret = clone_finish_inode_update(trans, inode, destoff + len, 3542 destoff, olen); 3543 } 3544 3545 out: 3546 btrfs_free_path(path); 3547 vfree(buf); 3548 return ret; 3549 } 3550 3551 static noinline long btrfs_ioctl_clone(struct file *file, unsigned long srcfd, 3552 u64 off, u64 olen, u64 destoff) 3553 { 3554 struct inode *inode = file_inode(file); 3555 struct btrfs_root *root = BTRFS_I(inode)->root; 3556 struct fd src_file; 3557 struct inode *src; 3558 int ret; 3559 u64 len = olen; 3560 u64 bs = root->fs_info->sb->s_blocksize; 3561 int same_inode = 0; 3562 3563 /* 3564 * TODO: 3565 * - split compressed inline extents. annoying: we need to 3566 * decompress into destination's address_space (the file offset 3567 * may change, so source mapping won't do), then recompress (or 3568 * otherwise reinsert) a subrange. 3569 * 3570 * - split destination inode's inline extents. The inline extents can 3571 * be either compressed or non-compressed. 3572 */ 3573 3574 /* the destination must be opened for writing */ 3575 if (!(file->f_mode & FMODE_WRITE) || (file->f_flags & O_APPEND)) 3576 return -EINVAL; 3577 3578 if (btrfs_root_readonly(root)) 3579 return -EROFS; 3580 3581 ret = mnt_want_write_file(file); 3582 if (ret) 3583 return ret; 3584 3585 src_file = fdget(srcfd); 3586 if (!src_file.file) { 3587 ret = -EBADF; 3588 goto out_drop_write; 3589 } 3590 3591 ret = -EXDEV; 3592 if (src_file.file->f_path.mnt != file->f_path.mnt) 3593 goto out_fput; 3594 3595 src = file_inode(src_file.file); 3596 3597 ret = -EINVAL; 3598 if (src == inode) 3599 same_inode = 1; 3600 3601 /* the src must be open for reading */ 3602 if (!(src_file.file->f_mode & FMODE_READ)) 3603 goto out_fput; 3604 3605 /* don't make the dst file partly checksummed */ 3606 if ((BTRFS_I(src)->flags & BTRFS_INODE_NODATASUM) != 3607 (BTRFS_I(inode)->flags & BTRFS_INODE_NODATASUM)) 3608 goto out_fput; 3609 3610 ret = -EISDIR; 3611 if (S_ISDIR(src->i_mode) || S_ISDIR(inode->i_mode)) 3612 goto out_fput; 3613 3614 ret = -EXDEV; 3615 if (src->i_sb != inode->i_sb) 3616 goto out_fput; 3617 3618 if (!same_inode) { 3619 if (inode < src) { 3620 mutex_lock_nested(&inode->i_mutex, I_MUTEX_PARENT); 3621 mutex_lock_nested(&src->i_mutex, I_MUTEX_CHILD); 3622 } else { 3623 mutex_lock_nested(&src->i_mutex, I_MUTEX_PARENT); 3624 mutex_lock_nested(&inode->i_mutex, I_MUTEX_CHILD); 3625 } 3626 } else { 3627 mutex_lock(&src->i_mutex); 3628 } 3629 3630 /* determine range to clone */ 3631 ret = -EINVAL; 3632 if (off + len > src->i_size || off + len < off) 3633 goto out_unlock; 3634 if (len == 0) 3635 olen = len = src->i_size - off; 3636 /* if we extend to eof, continue to block boundary */ 3637 if (off + len == src->i_size) 3638 len = ALIGN(src->i_size, bs) - off; 3639 3640 /* verify the end result is block aligned */ 3641 if (!IS_ALIGNED(off, bs) || !IS_ALIGNED(off + len, bs) || 3642 !IS_ALIGNED(destoff, bs)) 3643 goto out_unlock; 3644 3645 /* verify if ranges are overlapped within the same file */ 3646 if (same_inode) { 3647 if (destoff + len > off && destoff < off + len) 3648 goto out_unlock; 3649 } 3650 3651 if (destoff > inode->i_size) { 3652 ret = btrfs_cont_expand(inode, inode->i_size, destoff); 3653 if (ret) 3654 goto out_unlock; 3655 } 3656 3657 /* 3658 * Lock the target range too. Right after we replace the file extent 3659 * items in the fs tree (which now point to the cloned data), we might 3660 * have a worker replace them with extent items relative to a write 3661 * operation that was issued before this clone operation (i.e. confront 3662 * with inode.c:btrfs_finish_ordered_io). 3663 */ 3664 if (same_inode) { 3665 u64 lock_start = min_t(u64, off, destoff); 3666 u64 lock_len = max_t(u64, off, destoff) + len - lock_start; 3667 3668 lock_extent_range(src, lock_start, lock_len); 3669 } else { 3670 lock_extent_range(src, off, len); 3671 lock_extent_range(inode, destoff, len); 3672 } 3673 3674 ret = btrfs_clone(src, inode, off, olen, len, destoff); 3675 3676 if (same_inode) { 3677 u64 lock_start = min_t(u64, off, destoff); 3678 u64 lock_end = max_t(u64, off, destoff) + len - 1; 3679 3680 unlock_extent(&BTRFS_I(src)->io_tree, lock_start, lock_end); 3681 } else { 3682 unlock_extent(&BTRFS_I(src)->io_tree, off, off + len - 1); 3683 unlock_extent(&BTRFS_I(inode)->io_tree, destoff, 3684 destoff + len - 1); 3685 } 3686 /* 3687 * Truncate page cache pages so that future reads will see the cloned 3688 * data immediately and not the previous data. 3689 */ 3690 truncate_inode_pages_range(&inode->i_data, destoff, 3691 PAGE_CACHE_ALIGN(destoff + len) - 1); 3692 out_unlock: 3693 if (!same_inode) { 3694 if (inode < src) { 3695 mutex_unlock(&src->i_mutex); 3696 mutex_unlock(&inode->i_mutex); 3697 } else { 3698 mutex_unlock(&inode->i_mutex); 3699 mutex_unlock(&src->i_mutex); 3700 } 3701 } else { 3702 mutex_unlock(&src->i_mutex); 3703 } 3704 out_fput: 3705 fdput(src_file); 3706 out_drop_write: 3707 mnt_drop_write_file(file); 3708 return ret; 3709 } 3710 3711 static long btrfs_ioctl_clone_range(struct file *file, void __user *argp) 3712 { 3713 struct btrfs_ioctl_clone_range_args args; 3714 3715 if (copy_from_user(&args, argp, sizeof(args))) 3716 return -EFAULT; 3717 return btrfs_ioctl_clone(file, args.src_fd, args.src_offset, 3718 args.src_length, args.dest_offset); 3719 } 3720 3721 /* 3722 * there are many ways the trans_start and trans_end ioctls can lead 3723 * to deadlocks. They should only be used by applications that 3724 * basically own the machine, and have a very in depth understanding 3725 * of all the possible deadlocks and enospc problems. 3726 */ 3727 static long btrfs_ioctl_trans_start(struct file *file) 3728 { 3729 struct inode *inode = file_inode(file); 3730 struct btrfs_root *root = BTRFS_I(inode)->root; 3731 struct btrfs_trans_handle *trans; 3732 int ret; 3733 3734 ret = -EPERM; 3735 if (!capable(CAP_SYS_ADMIN)) 3736 goto out; 3737 3738 ret = -EINPROGRESS; 3739 if (file->private_data) 3740 goto out; 3741 3742 ret = -EROFS; 3743 if (btrfs_root_readonly(root)) 3744 goto out; 3745 3746 ret = mnt_want_write_file(file); 3747 if (ret) 3748 goto out; 3749 3750 atomic_inc(&root->fs_info->open_ioctl_trans); 3751 3752 ret = -ENOMEM; 3753 trans = btrfs_start_ioctl_transaction(root); 3754 if (IS_ERR(trans)) 3755 goto out_drop; 3756 3757 file->private_data = trans; 3758 return 0; 3759 3760 out_drop: 3761 atomic_dec(&root->fs_info->open_ioctl_trans); 3762 mnt_drop_write_file(file); 3763 out: 3764 return ret; 3765 } 3766 3767 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3768 { 3769 struct inode *inode = file_inode(file); 3770 struct btrfs_root *root = BTRFS_I(inode)->root; 3771 struct btrfs_root *new_root; 3772 struct btrfs_dir_item *di; 3773 struct btrfs_trans_handle *trans; 3774 struct btrfs_path *path; 3775 struct btrfs_key location; 3776 struct btrfs_disk_key disk_key; 3777 u64 objectid = 0; 3778 u64 dir_id; 3779 int ret; 3780 3781 if (!capable(CAP_SYS_ADMIN)) 3782 return -EPERM; 3783 3784 ret = mnt_want_write_file(file); 3785 if (ret) 3786 return ret; 3787 3788 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3789 ret = -EFAULT; 3790 goto out; 3791 } 3792 3793 if (!objectid) 3794 objectid = BTRFS_FS_TREE_OBJECTID; 3795 3796 location.objectid = objectid; 3797 location.type = BTRFS_ROOT_ITEM_KEY; 3798 location.offset = (u64)-1; 3799 3800 new_root = btrfs_read_fs_root_no_name(root->fs_info, &location); 3801 if (IS_ERR(new_root)) { 3802 ret = PTR_ERR(new_root); 3803 goto out; 3804 } 3805 3806 path = btrfs_alloc_path(); 3807 if (!path) { 3808 ret = -ENOMEM; 3809 goto out; 3810 } 3811 path->leave_spinning = 1; 3812 3813 trans = btrfs_start_transaction(root, 1); 3814 if (IS_ERR(trans)) { 3815 btrfs_free_path(path); 3816 ret = PTR_ERR(trans); 3817 goto out; 3818 } 3819 3820 dir_id = btrfs_super_root_dir(root->fs_info->super_copy); 3821 di = btrfs_lookup_dir_item(trans, root->fs_info->tree_root, path, 3822 dir_id, "default", 7, 1); 3823 if (IS_ERR_OR_NULL(di)) { 3824 btrfs_free_path(path); 3825 btrfs_end_transaction(trans, root); 3826 btrfs_err(new_root->fs_info, "Umm, you don't have the default dir" 3827 "item, this isn't going to work"); 3828 ret = -ENOENT; 3829 goto out; 3830 } 3831 3832 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3833 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3834 btrfs_mark_buffer_dirty(path->nodes[0]); 3835 btrfs_free_path(path); 3836 3837 btrfs_set_fs_incompat(root->fs_info, DEFAULT_SUBVOL); 3838 btrfs_end_transaction(trans, root); 3839 out: 3840 mnt_drop_write_file(file); 3841 return ret; 3842 } 3843 3844 void btrfs_get_block_group_info(struct list_head *groups_list, 3845 struct btrfs_ioctl_space_info *space) 3846 { 3847 struct btrfs_block_group_cache *block_group; 3848 3849 space->total_bytes = 0; 3850 space->used_bytes = 0; 3851 space->flags = 0; 3852 list_for_each_entry(block_group, groups_list, list) { 3853 space->flags = block_group->flags; 3854 space->total_bytes += block_group->key.offset; 3855 space->used_bytes += 3856 btrfs_block_group_used(&block_group->item); 3857 } 3858 } 3859 3860 static long btrfs_ioctl_space_info(struct btrfs_root *root, void __user *arg) 3861 { 3862 struct btrfs_ioctl_space_args space_args; 3863 struct btrfs_ioctl_space_info space; 3864 struct btrfs_ioctl_space_info *dest; 3865 struct btrfs_ioctl_space_info *dest_orig; 3866 struct btrfs_ioctl_space_info __user *user_dest; 3867 struct btrfs_space_info *info; 3868 u64 types[] = {BTRFS_BLOCK_GROUP_DATA, 3869 BTRFS_BLOCK_GROUP_SYSTEM, 3870 BTRFS_BLOCK_GROUP_METADATA, 3871 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA}; 3872 int num_types = 4; 3873 int alloc_size; 3874 int ret = 0; 3875 u64 slot_count = 0; 3876 int i, c; 3877 3878 if (copy_from_user(&space_args, 3879 (struct btrfs_ioctl_space_args __user *)arg, 3880 sizeof(space_args))) 3881 return -EFAULT; 3882 3883 for (i = 0; i < num_types; i++) { 3884 struct btrfs_space_info *tmp; 3885 3886 info = NULL; 3887 rcu_read_lock(); 3888 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3889 list) { 3890 if (tmp->flags == types[i]) { 3891 info = tmp; 3892 break; 3893 } 3894 } 3895 rcu_read_unlock(); 3896 3897 if (!info) 3898 continue; 3899 3900 down_read(&info->groups_sem); 3901 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3902 if (!list_empty(&info->block_groups[c])) 3903 slot_count++; 3904 } 3905 up_read(&info->groups_sem); 3906 } 3907 3908 /* 3909 * Global block reserve, exported as a space_info 3910 */ 3911 slot_count++; 3912 3913 /* space_slots == 0 means they are asking for a count */ 3914 if (space_args.space_slots == 0) { 3915 space_args.total_spaces = slot_count; 3916 goto out; 3917 } 3918 3919 slot_count = min_t(u64, space_args.space_slots, slot_count); 3920 3921 alloc_size = sizeof(*dest) * slot_count; 3922 3923 /* we generally have at most 6 or so space infos, one for each raid 3924 * level. So, a whole page should be more than enough for everyone 3925 */ 3926 if (alloc_size > PAGE_CACHE_SIZE) 3927 return -ENOMEM; 3928 3929 space_args.total_spaces = 0; 3930 dest = kmalloc(alloc_size, GFP_NOFS); 3931 if (!dest) 3932 return -ENOMEM; 3933 dest_orig = dest; 3934 3935 /* now we have a buffer to copy into */ 3936 for (i = 0; i < num_types; i++) { 3937 struct btrfs_space_info *tmp; 3938 3939 if (!slot_count) 3940 break; 3941 3942 info = NULL; 3943 rcu_read_lock(); 3944 list_for_each_entry_rcu(tmp, &root->fs_info->space_info, 3945 list) { 3946 if (tmp->flags == types[i]) { 3947 info = tmp; 3948 break; 3949 } 3950 } 3951 rcu_read_unlock(); 3952 3953 if (!info) 3954 continue; 3955 down_read(&info->groups_sem); 3956 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3957 if (!list_empty(&info->block_groups[c])) { 3958 btrfs_get_block_group_info( 3959 &info->block_groups[c], &space); 3960 memcpy(dest, &space, sizeof(space)); 3961 dest++; 3962 space_args.total_spaces++; 3963 slot_count--; 3964 } 3965 if (!slot_count) 3966 break; 3967 } 3968 up_read(&info->groups_sem); 3969 } 3970 3971 /* 3972 * Add global block reserve 3973 */ 3974 if (slot_count) { 3975 struct btrfs_block_rsv *block_rsv = &root->fs_info->global_block_rsv; 3976 3977 spin_lock(&block_rsv->lock); 3978 space.total_bytes = block_rsv->size; 3979 space.used_bytes = block_rsv->size - block_rsv->reserved; 3980 spin_unlock(&block_rsv->lock); 3981 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3982 memcpy(dest, &space, sizeof(space)); 3983 space_args.total_spaces++; 3984 } 3985 3986 user_dest = (struct btrfs_ioctl_space_info __user *) 3987 (arg + sizeof(struct btrfs_ioctl_space_args)); 3988 3989 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3990 ret = -EFAULT; 3991 3992 kfree(dest_orig); 3993 out: 3994 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3995 ret = -EFAULT; 3996 3997 return ret; 3998 } 3999 4000 /* 4001 * there are many ways the trans_start and trans_end ioctls can lead 4002 * to deadlocks. They should only be used by applications that 4003 * basically own the machine, and have a very in depth understanding 4004 * of all the possible deadlocks and enospc problems. 4005 */ 4006 long btrfs_ioctl_trans_end(struct file *file) 4007 { 4008 struct inode *inode = file_inode(file); 4009 struct btrfs_root *root = BTRFS_I(inode)->root; 4010 struct btrfs_trans_handle *trans; 4011 4012 trans = file->private_data; 4013 if (!trans) 4014 return -EINVAL; 4015 file->private_data = NULL; 4016 4017 btrfs_end_transaction(trans, root); 4018 4019 atomic_dec(&root->fs_info->open_ioctl_trans); 4020 4021 mnt_drop_write_file(file); 4022 return 0; 4023 } 4024 4025 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 4026 void __user *argp) 4027 { 4028 struct btrfs_trans_handle *trans; 4029 u64 transid; 4030 int ret; 4031 4032 trans = btrfs_attach_transaction_barrier(root); 4033 if (IS_ERR(trans)) { 4034 if (PTR_ERR(trans) != -ENOENT) 4035 return PTR_ERR(trans); 4036 4037 /* No running transaction, don't bother */ 4038 transid = root->fs_info->last_trans_committed; 4039 goto out; 4040 } 4041 transid = trans->transid; 4042 ret = btrfs_commit_transaction_async(trans, root, 0); 4043 if (ret) { 4044 btrfs_end_transaction(trans, root); 4045 return ret; 4046 } 4047 out: 4048 if (argp) 4049 if (copy_to_user(argp, &transid, sizeof(transid))) 4050 return -EFAULT; 4051 return 0; 4052 } 4053 4054 static noinline long btrfs_ioctl_wait_sync(struct btrfs_root *root, 4055 void __user *argp) 4056 { 4057 u64 transid; 4058 4059 if (argp) { 4060 if (copy_from_user(&transid, argp, sizeof(transid))) 4061 return -EFAULT; 4062 } else { 4063 transid = 0; /* current trans */ 4064 } 4065 return btrfs_wait_for_commit(root, transid); 4066 } 4067 4068 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 4069 { 4070 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4071 struct btrfs_ioctl_scrub_args *sa; 4072 int ret; 4073 4074 if (!capable(CAP_SYS_ADMIN)) 4075 return -EPERM; 4076 4077 sa = memdup_user(arg, sizeof(*sa)); 4078 if (IS_ERR(sa)) 4079 return PTR_ERR(sa); 4080 4081 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 4082 ret = mnt_want_write_file(file); 4083 if (ret) 4084 goto out; 4085 } 4086 4087 ret = btrfs_scrub_dev(root->fs_info, sa->devid, sa->start, sa->end, 4088 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 4089 0); 4090 4091 if (copy_to_user(arg, sa, sizeof(*sa))) 4092 ret = -EFAULT; 4093 4094 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 4095 mnt_drop_write_file(file); 4096 out: 4097 kfree(sa); 4098 return ret; 4099 } 4100 4101 static long btrfs_ioctl_scrub_cancel(struct btrfs_root *root, void __user *arg) 4102 { 4103 if (!capable(CAP_SYS_ADMIN)) 4104 return -EPERM; 4105 4106 return btrfs_scrub_cancel(root->fs_info); 4107 } 4108 4109 static long btrfs_ioctl_scrub_progress(struct btrfs_root *root, 4110 void __user *arg) 4111 { 4112 struct btrfs_ioctl_scrub_args *sa; 4113 int ret; 4114 4115 if (!capable(CAP_SYS_ADMIN)) 4116 return -EPERM; 4117 4118 sa = memdup_user(arg, sizeof(*sa)); 4119 if (IS_ERR(sa)) 4120 return PTR_ERR(sa); 4121 4122 ret = btrfs_scrub_progress(root, sa->devid, &sa->progress); 4123 4124 if (copy_to_user(arg, sa, sizeof(*sa))) 4125 ret = -EFAULT; 4126 4127 kfree(sa); 4128 return ret; 4129 } 4130 4131 static long btrfs_ioctl_get_dev_stats(struct btrfs_root *root, 4132 void __user *arg) 4133 { 4134 struct btrfs_ioctl_get_dev_stats *sa; 4135 int ret; 4136 4137 sa = memdup_user(arg, sizeof(*sa)); 4138 if (IS_ERR(sa)) 4139 return PTR_ERR(sa); 4140 4141 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 4142 kfree(sa); 4143 return -EPERM; 4144 } 4145 4146 ret = btrfs_get_dev_stats(root, sa); 4147 4148 if (copy_to_user(arg, sa, sizeof(*sa))) 4149 ret = -EFAULT; 4150 4151 kfree(sa); 4152 return ret; 4153 } 4154 4155 static long btrfs_ioctl_dev_replace(struct btrfs_root *root, void __user *arg) 4156 { 4157 struct btrfs_ioctl_dev_replace_args *p; 4158 int ret; 4159 4160 if (!capable(CAP_SYS_ADMIN)) 4161 return -EPERM; 4162 4163 p = memdup_user(arg, sizeof(*p)); 4164 if (IS_ERR(p)) 4165 return PTR_ERR(p); 4166 4167 switch (p->cmd) { 4168 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 4169 if (root->fs_info->sb->s_flags & MS_RDONLY) { 4170 ret = -EROFS; 4171 goto out; 4172 } 4173 if (atomic_xchg( 4174 &root->fs_info->mutually_exclusive_operation_running, 4175 1)) { 4176 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4177 } else { 4178 ret = btrfs_dev_replace_start(root, p); 4179 atomic_set( 4180 &root->fs_info->mutually_exclusive_operation_running, 4181 0); 4182 } 4183 break; 4184 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 4185 btrfs_dev_replace_status(root->fs_info, p); 4186 ret = 0; 4187 break; 4188 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 4189 ret = btrfs_dev_replace_cancel(root->fs_info, p); 4190 break; 4191 default: 4192 ret = -EINVAL; 4193 break; 4194 } 4195 4196 if (copy_to_user(arg, p, sizeof(*p))) 4197 ret = -EFAULT; 4198 out: 4199 kfree(p); 4200 return ret; 4201 } 4202 4203 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 4204 { 4205 int ret = 0; 4206 int i; 4207 u64 rel_ptr; 4208 int size; 4209 struct btrfs_ioctl_ino_path_args *ipa = NULL; 4210 struct inode_fs_paths *ipath = NULL; 4211 struct btrfs_path *path; 4212 4213 if (!capable(CAP_DAC_READ_SEARCH)) 4214 return -EPERM; 4215 4216 path = btrfs_alloc_path(); 4217 if (!path) { 4218 ret = -ENOMEM; 4219 goto out; 4220 } 4221 4222 ipa = memdup_user(arg, sizeof(*ipa)); 4223 if (IS_ERR(ipa)) { 4224 ret = PTR_ERR(ipa); 4225 ipa = NULL; 4226 goto out; 4227 } 4228 4229 size = min_t(u32, ipa->size, 4096); 4230 ipath = init_ipath(size, root, path); 4231 if (IS_ERR(ipath)) { 4232 ret = PTR_ERR(ipath); 4233 ipath = NULL; 4234 goto out; 4235 } 4236 4237 ret = paths_from_inode(ipa->inum, ipath); 4238 if (ret < 0) 4239 goto out; 4240 4241 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 4242 rel_ptr = ipath->fspath->val[i] - 4243 (u64)(unsigned long)ipath->fspath->val; 4244 ipath->fspath->val[i] = rel_ptr; 4245 } 4246 4247 ret = copy_to_user((void *)(unsigned long)ipa->fspath, 4248 (void *)(unsigned long)ipath->fspath, size); 4249 if (ret) { 4250 ret = -EFAULT; 4251 goto out; 4252 } 4253 4254 out: 4255 btrfs_free_path(path); 4256 free_ipath(ipath); 4257 kfree(ipa); 4258 4259 return ret; 4260 } 4261 4262 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 4263 { 4264 struct btrfs_data_container *inodes = ctx; 4265 const size_t c = 3 * sizeof(u64); 4266 4267 if (inodes->bytes_left >= c) { 4268 inodes->bytes_left -= c; 4269 inodes->val[inodes->elem_cnt] = inum; 4270 inodes->val[inodes->elem_cnt + 1] = offset; 4271 inodes->val[inodes->elem_cnt + 2] = root; 4272 inodes->elem_cnt += 3; 4273 } else { 4274 inodes->bytes_missing += c - inodes->bytes_left; 4275 inodes->bytes_left = 0; 4276 inodes->elem_missed += 3; 4277 } 4278 4279 return 0; 4280 } 4281 4282 static long btrfs_ioctl_logical_to_ino(struct btrfs_root *root, 4283 void __user *arg) 4284 { 4285 int ret = 0; 4286 int size; 4287 struct btrfs_ioctl_logical_ino_args *loi; 4288 struct btrfs_data_container *inodes = NULL; 4289 struct btrfs_path *path = NULL; 4290 4291 if (!capable(CAP_SYS_ADMIN)) 4292 return -EPERM; 4293 4294 loi = memdup_user(arg, sizeof(*loi)); 4295 if (IS_ERR(loi)) { 4296 ret = PTR_ERR(loi); 4297 loi = NULL; 4298 goto out; 4299 } 4300 4301 path = btrfs_alloc_path(); 4302 if (!path) { 4303 ret = -ENOMEM; 4304 goto out; 4305 } 4306 4307 size = min_t(u32, loi->size, 64 * 1024); 4308 inodes = init_data_container(size); 4309 if (IS_ERR(inodes)) { 4310 ret = PTR_ERR(inodes); 4311 inodes = NULL; 4312 goto out; 4313 } 4314 4315 ret = iterate_inodes_from_logical(loi->logical, root->fs_info, path, 4316 build_ino_list, inodes); 4317 if (ret == -EINVAL) 4318 ret = -ENOENT; 4319 if (ret < 0) 4320 goto out; 4321 4322 ret = copy_to_user((void *)(unsigned long)loi->inodes, 4323 (void *)(unsigned long)inodes, size); 4324 if (ret) 4325 ret = -EFAULT; 4326 4327 out: 4328 btrfs_free_path(path); 4329 vfree(inodes); 4330 kfree(loi); 4331 4332 return ret; 4333 } 4334 4335 void update_ioctl_balance_args(struct btrfs_fs_info *fs_info, int lock, 4336 struct btrfs_ioctl_balance_args *bargs) 4337 { 4338 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 4339 4340 bargs->flags = bctl->flags; 4341 4342 if (atomic_read(&fs_info->balance_running)) 4343 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 4344 if (atomic_read(&fs_info->balance_pause_req)) 4345 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 4346 if (atomic_read(&fs_info->balance_cancel_req)) 4347 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 4348 4349 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 4350 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 4351 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 4352 4353 if (lock) { 4354 spin_lock(&fs_info->balance_lock); 4355 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4356 spin_unlock(&fs_info->balance_lock); 4357 } else { 4358 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 4359 } 4360 } 4361 4362 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4363 { 4364 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4365 struct btrfs_fs_info *fs_info = root->fs_info; 4366 struct btrfs_ioctl_balance_args *bargs; 4367 struct btrfs_balance_control *bctl; 4368 bool need_unlock; /* for mut. excl. ops lock */ 4369 int ret; 4370 4371 if (!capable(CAP_SYS_ADMIN)) 4372 return -EPERM; 4373 4374 ret = mnt_want_write_file(file); 4375 if (ret) 4376 return ret; 4377 4378 again: 4379 if (!atomic_xchg(&fs_info->mutually_exclusive_operation_running, 1)) { 4380 mutex_lock(&fs_info->volume_mutex); 4381 mutex_lock(&fs_info->balance_mutex); 4382 need_unlock = true; 4383 goto locked; 4384 } 4385 4386 /* 4387 * mut. excl. ops lock is locked. Three possibilites: 4388 * (1) some other op is running 4389 * (2) balance is running 4390 * (3) balance is paused -- special case (think resume) 4391 */ 4392 mutex_lock(&fs_info->balance_mutex); 4393 if (fs_info->balance_ctl) { 4394 /* this is either (2) or (3) */ 4395 if (!atomic_read(&fs_info->balance_running)) { 4396 mutex_unlock(&fs_info->balance_mutex); 4397 if (!mutex_trylock(&fs_info->volume_mutex)) 4398 goto again; 4399 mutex_lock(&fs_info->balance_mutex); 4400 4401 if (fs_info->balance_ctl && 4402 !atomic_read(&fs_info->balance_running)) { 4403 /* this is (3) */ 4404 need_unlock = false; 4405 goto locked; 4406 } 4407 4408 mutex_unlock(&fs_info->balance_mutex); 4409 mutex_unlock(&fs_info->volume_mutex); 4410 goto again; 4411 } else { 4412 /* this is (2) */ 4413 mutex_unlock(&fs_info->balance_mutex); 4414 ret = -EINPROGRESS; 4415 goto out; 4416 } 4417 } else { 4418 /* this is (1) */ 4419 mutex_unlock(&fs_info->balance_mutex); 4420 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4421 goto out; 4422 } 4423 4424 locked: 4425 BUG_ON(!atomic_read(&fs_info->mutually_exclusive_operation_running)); 4426 4427 if (arg) { 4428 bargs = memdup_user(arg, sizeof(*bargs)); 4429 if (IS_ERR(bargs)) { 4430 ret = PTR_ERR(bargs); 4431 goto out_unlock; 4432 } 4433 4434 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4435 if (!fs_info->balance_ctl) { 4436 ret = -ENOTCONN; 4437 goto out_bargs; 4438 } 4439 4440 bctl = fs_info->balance_ctl; 4441 spin_lock(&fs_info->balance_lock); 4442 bctl->flags |= BTRFS_BALANCE_RESUME; 4443 spin_unlock(&fs_info->balance_lock); 4444 4445 goto do_balance; 4446 } 4447 } else { 4448 bargs = NULL; 4449 } 4450 4451 if (fs_info->balance_ctl) { 4452 ret = -EINPROGRESS; 4453 goto out_bargs; 4454 } 4455 4456 bctl = kzalloc(sizeof(*bctl), GFP_NOFS); 4457 if (!bctl) { 4458 ret = -ENOMEM; 4459 goto out_bargs; 4460 } 4461 4462 bctl->fs_info = fs_info; 4463 if (arg) { 4464 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4465 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4466 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4467 4468 bctl->flags = bargs->flags; 4469 } else { 4470 /* balance everything - no filters */ 4471 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4472 } 4473 4474 do_balance: 4475 /* 4476 * Ownership of bctl and mutually_exclusive_operation_running 4477 * goes to to btrfs_balance. bctl is freed in __cancel_balance, 4478 * or, if restriper was paused all the way until unmount, in 4479 * free_fs_info. mutually_exclusive_operation_running is 4480 * cleared in __cancel_balance. 4481 */ 4482 need_unlock = false; 4483 4484 ret = btrfs_balance(bctl, bargs); 4485 4486 if (arg) { 4487 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4488 ret = -EFAULT; 4489 } 4490 4491 out_bargs: 4492 kfree(bargs); 4493 out_unlock: 4494 mutex_unlock(&fs_info->balance_mutex); 4495 mutex_unlock(&fs_info->volume_mutex); 4496 if (need_unlock) 4497 atomic_set(&fs_info->mutually_exclusive_operation_running, 0); 4498 out: 4499 mnt_drop_write_file(file); 4500 return ret; 4501 } 4502 4503 static long btrfs_ioctl_balance_ctl(struct btrfs_root *root, int cmd) 4504 { 4505 if (!capable(CAP_SYS_ADMIN)) 4506 return -EPERM; 4507 4508 switch (cmd) { 4509 case BTRFS_BALANCE_CTL_PAUSE: 4510 return btrfs_pause_balance(root->fs_info); 4511 case BTRFS_BALANCE_CTL_CANCEL: 4512 return btrfs_cancel_balance(root->fs_info); 4513 } 4514 4515 return -EINVAL; 4516 } 4517 4518 static long btrfs_ioctl_balance_progress(struct btrfs_root *root, 4519 void __user *arg) 4520 { 4521 struct btrfs_fs_info *fs_info = root->fs_info; 4522 struct btrfs_ioctl_balance_args *bargs; 4523 int ret = 0; 4524 4525 if (!capable(CAP_SYS_ADMIN)) 4526 return -EPERM; 4527 4528 mutex_lock(&fs_info->balance_mutex); 4529 if (!fs_info->balance_ctl) { 4530 ret = -ENOTCONN; 4531 goto out; 4532 } 4533 4534 bargs = kzalloc(sizeof(*bargs), GFP_NOFS); 4535 if (!bargs) { 4536 ret = -ENOMEM; 4537 goto out; 4538 } 4539 4540 update_ioctl_balance_args(fs_info, 1, bargs); 4541 4542 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4543 ret = -EFAULT; 4544 4545 kfree(bargs); 4546 out: 4547 mutex_unlock(&fs_info->balance_mutex); 4548 return ret; 4549 } 4550 4551 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4552 { 4553 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4554 struct btrfs_ioctl_quota_ctl_args *sa; 4555 struct btrfs_trans_handle *trans = NULL; 4556 int ret; 4557 int err; 4558 4559 if (!capable(CAP_SYS_ADMIN)) 4560 return -EPERM; 4561 4562 ret = mnt_want_write_file(file); 4563 if (ret) 4564 return ret; 4565 4566 sa = memdup_user(arg, sizeof(*sa)); 4567 if (IS_ERR(sa)) { 4568 ret = PTR_ERR(sa); 4569 goto drop_write; 4570 } 4571 4572 down_write(&root->fs_info->subvol_sem); 4573 trans = btrfs_start_transaction(root->fs_info->tree_root, 2); 4574 if (IS_ERR(trans)) { 4575 ret = PTR_ERR(trans); 4576 goto out; 4577 } 4578 4579 switch (sa->cmd) { 4580 case BTRFS_QUOTA_CTL_ENABLE: 4581 ret = btrfs_quota_enable(trans, root->fs_info); 4582 break; 4583 case BTRFS_QUOTA_CTL_DISABLE: 4584 ret = btrfs_quota_disable(trans, root->fs_info); 4585 break; 4586 default: 4587 ret = -EINVAL; 4588 break; 4589 } 4590 4591 err = btrfs_commit_transaction(trans, root->fs_info->tree_root); 4592 if (err && !ret) 4593 ret = err; 4594 out: 4595 kfree(sa); 4596 up_write(&root->fs_info->subvol_sem); 4597 drop_write: 4598 mnt_drop_write_file(file); 4599 return ret; 4600 } 4601 4602 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4603 { 4604 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4605 struct btrfs_ioctl_qgroup_assign_args *sa; 4606 struct btrfs_trans_handle *trans; 4607 int ret; 4608 int err; 4609 4610 if (!capable(CAP_SYS_ADMIN)) 4611 return -EPERM; 4612 4613 ret = mnt_want_write_file(file); 4614 if (ret) 4615 return ret; 4616 4617 sa = memdup_user(arg, sizeof(*sa)); 4618 if (IS_ERR(sa)) { 4619 ret = PTR_ERR(sa); 4620 goto drop_write; 4621 } 4622 4623 trans = btrfs_join_transaction(root); 4624 if (IS_ERR(trans)) { 4625 ret = PTR_ERR(trans); 4626 goto out; 4627 } 4628 4629 /* FIXME: check if the IDs really exist */ 4630 if (sa->assign) { 4631 ret = btrfs_add_qgroup_relation(trans, root->fs_info, 4632 sa->src, sa->dst); 4633 } else { 4634 ret = btrfs_del_qgroup_relation(trans, root->fs_info, 4635 sa->src, sa->dst); 4636 } 4637 4638 err = btrfs_end_transaction(trans, root); 4639 if (err && !ret) 4640 ret = err; 4641 4642 out: 4643 kfree(sa); 4644 drop_write: 4645 mnt_drop_write_file(file); 4646 return ret; 4647 } 4648 4649 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4650 { 4651 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4652 struct btrfs_ioctl_qgroup_create_args *sa; 4653 struct btrfs_trans_handle *trans; 4654 int ret; 4655 int err; 4656 4657 if (!capable(CAP_SYS_ADMIN)) 4658 return -EPERM; 4659 4660 ret = mnt_want_write_file(file); 4661 if (ret) 4662 return ret; 4663 4664 sa = memdup_user(arg, sizeof(*sa)); 4665 if (IS_ERR(sa)) { 4666 ret = PTR_ERR(sa); 4667 goto drop_write; 4668 } 4669 4670 if (!sa->qgroupid) { 4671 ret = -EINVAL; 4672 goto out; 4673 } 4674 4675 trans = btrfs_join_transaction(root); 4676 if (IS_ERR(trans)) { 4677 ret = PTR_ERR(trans); 4678 goto out; 4679 } 4680 4681 /* FIXME: check if the IDs really exist */ 4682 if (sa->create) { 4683 ret = btrfs_create_qgroup(trans, root->fs_info, sa->qgroupid, 4684 NULL); 4685 } else { 4686 ret = btrfs_remove_qgroup(trans, root->fs_info, sa->qgroupid); 4687 } 4688 4689 err = btrfs_end_transaction(trans, root); 4690 if (err && !ret) 4691 ret = err; 4692 4693 out: 4694 kfree(sa); 4695 drop_write: 4696 mnt_drop_write_file(file); 4697 return ret; 4698 } 4699 4700 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4701 { 4702 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4703 struct btrfs_ioctl_qgroup_limit_args *sa; 4704 struct btrfs_trans_handle *trans; 4705 int ret; 4706 int err; 4707 u64 qgroupid; 4708 4709 if (!capable(CAP_SYS_ADMIN)) 4710 return -EPERM; 4711 4712 ret = mnt_want_write_file(file); 4713 if (ret) 4714 return ret; 4715 4716 sa = memdup_user(arg, sizeof(*sa)); 4717 if (IS_ERR(sa)) { 4718 ret = PTR_ERR(sa); 4719 goto drop_write; 4720 } 4721 4722 trans = btrfs_join_transaction(root); 4723 if (IS_ERR(trans)) { 4724 ret = PTR_ERR(trans); 4725 goto out; 4726 } 4727 4728 qgroupid = sa->qgroupid; 4729 if (!qgroupid) { 4730 /* take the current subvol as qgroup */ 4731 qgroupid = root->root_key.objectid; 4732 } 4733 4734 /* FIXME: check if the IDs really exist */ 4735 ret = btrfs_limit_qgroup(trans, root->fs_info, qgroupid, &sa->lim); 4736 4737 err = btrfs_end_transaction(trans, root); 4738 if (err && !ret) 4739 ret = err; 4740 4741 out: 4742 kfree(sa); 4743 drop_write: 4744 mnt_drop_write_file(file); 4745 return ret; 4746 } 4747 4748 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4749 { 4750 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4751 struct btrfs_ioctl_quota_rescan_args *qsa; 4752 int ret; 4753 4754 if (!capable(CAP_SYS_ADMIN)) 4755 return -EPERM; 4756 4757 ret = mnt_want_write_file(file); 4758 if (ret) 4759 return ret; 4760 4761 qsa = memdup_user(arg, sizeof(*qsa)); 4762 if (IS_ERR(qsa)) { 4763 ret = PTR_ERR(qsa); 4764 goto drop_write; 4765 } 4766 4767 if (qsa->flags) { 4768 ret = -EINVAL; 4769 goto out; 4770 } 4771 4772 ret = btrfs_qgroup_rescan(root->fs_info); 4773 4774 out: 4775 kfree(qsa); 4776 drop_write: 4777 mnt_drop_write_file(file); 4778 return ret; 4779 } 4780 4781 static long btrfs_ioctl_quota_rescan_status(struct file *file, void __user *arg) 4782 { 4783 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4784 struct btrfs_ioctl_quota_rescan_args *qsa; 4785 int ret = 0; 4786 4787 if (!capable(CAP_SYS_ADMIN)) 4788 return -EPERM; 4789 4790 qsa = kzalloc(sizeof(*qsa), GFP_NOFS); 4791 if (!qsa) 4792 return -ENOMEM; 4793 4794 if (root->fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4795 qsa->flags = 1; 4796 qsa->progress = root->fs_info->qgroup_rescan_progress.objectid; 4797 } 4798 4799 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4800 ret = -EFAULT; 4801 4802 kfree(qsa); 4803 return ret; 4804 } 4805 4806 static long btrfs_ioctl_quota_rescan_wait(struct file *file, void __user *arg) 4807 { 4808 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4809 4810 if (!capable(CAP_SYS_ADMIN)) 4811 return -EPERM; 4812 4813 return btrfs_qgroup_wait_for_completion(root->fs_info); 4814 } 4815 4816 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4817 struct btrfs_ioctl_received_subvol_args *sa) 4818 { 4819 struct inode *inode = file_inode(file); 4820 struct btrfs_root *root = BTRFS_I(inode)->root; 4821 struct btrfs_root_item *root_item = &root->root_item; 4822 struct btrfs_trans_handle *trans; 4823 struct timespec ct = CURRENT_TIME; 4824 int ret = 0; 4825 int received_uuid_changed; 4826 4827 if (!inode_owner_or_capable(inode)) 4828 return -EPERM; 4829 4830 ret = mnt_want_write_file(file); 4831 if (ret < 0) 4832 return ret; 4833 4834 down_write(&root->fs_info->subvol_sem); 4835 4836 if (btrfs_ino(inode) != BTRFS_FIRST_FREE_OBJECTID) { 4837 ret = -EINVAL; 4838 goto out; 4839 } 4840 4841 if (btrfs_root_readonly(root)) { 4842 ret = -EROFS; 4843 goto out; 4844 } 4845 4846 /* 4847 * 1 - root item 4848 * 2 - uuid items (received uuid + subvol uuid) 4849 */ 4850 trans = btrfs_start_transaction(root, 3); 4851 if (IS_ERR(trans)) { 4852 ret = PTR_ERR(trans); 4853 trans = NULL; 4854 goto out; 4855 } 4856 4857 sa->rtransid = trans->transid; 4858 sa->rtime.sec = ct.tv_sec; 4859 sa->rtime.nsec = ct.tv_nsec; 4860 4861 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4862 BTRFS_UUID_SIZE); 4863 if (received_uuid_changed && 4864 !btrfs_is_empty_uuid(root_item->received_uuid)) 4865 btrfs_uuid_tree_rem(trans, root->fs_info->uuid_root, 4866 root_item->received_uuid, 4867 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4868 root->root_key.objectid); 4869 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4870 btrfs_set_root_stransid(root_item, sa->stransid); 4871 btrfs_set_root_rtransid(root_item, sa->rtransid); 4872 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4873 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4874 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4875 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4876 4877 ret = btrfs_update_root(trans, root->fs_info->tree_root, 4878 &root->root_key, &root->root_item); 4879 if (ret < 0) { 4880 btrfs_end_transaction(trans, root); 4881 goto out; 4882 } 4883 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4884 ret = btrfs_uuid_tree_add(trans, root->fs_info->uuid_root, 4885 sa->uuid, 4886 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4887 root->root_key.objectid); 4888 if (ret < 0 && ret != -EEXIST) { 4889 btrfs_abort_transaction(trans, root, ret); 4890 goto out; 4891 } 4892 } 4893 ret = btrfs_commit_transaction(trans, root); 4894 if (ret < 0) { 4895 btrfs_abort_transaction(trans, root, ret); 4896 goto out; 4897 } 4898 4899 out: 4900 up_write(&root->fs_info->subvol_sem); 4901 mnt_drop_write_file(file); 4902 return ret; 4903 } 4904 4905 #ifdef CONFIG_64BIT 4906 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4907 void __user *arg) 4908 { 4909 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4910 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4911 int ret = 0; 4912 4913 args32 = memdup_user(arg, sizeof(*args32)); 4914 if (IS_ERR(args32)) { 4915 ret = PTR_ERR(args32); 4916 args32 = NULL; 4917 goto out; 4918 } 4919 4920 args64 = kmalloc(sizeof(*args64), GFP_NOFS); 4921 if (!args64) { 4922 ret = -ENOMEM; 4923 goto out; 4924 } 4925 4926 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4927 args64->stransid = args32->stransid; 4928 args64->rtransid = args32->rtransid; 4929 args64->stime.sec = args32->stime.sec; 4930 args64->stime.nsec = args32->stime.nsec; 4931 args64->rtime.sec = args32->rtime.sec; 4932 args64->rtime.nsec = args32->rtime.nsec; 4933 args64->flags = args32->flags; 4934 4935 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4936 if (ret) 4937 goto out; 4938 4939 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4940 args32->stransid = args64->stransid; 4941 args32->rtransid = args64->rtransid; 4942 args32->stime.sec = args64->stime.sec; 4943 args32->stime.nsec = args64->stime.nsec; 4944 args32->rtime.sec = args64->rtime.sec; 4945 args32->rtime.nsec = args64->rtime.nsec; 4946 args32->flags = args64->flags; 4947 4948 ret = copy_to_user(arg, args32, sizeof(*args32)); 4949 if (ret) 4950 ret = -EFAULT; 4951 4952 out: 4953 kfree(args32); 4954 kfree(args64); 4955 return ret; 4956 } 4957 #endif 4958 4959 static long btrfs_ioctl_set_received_subvol(struct file *file, 4960 void __user *arg) 4961 { 4962 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4963 int ret = 0; 4964 4965 sa = memdup_user(arg, sizeof(*sa)); 4966 if (IS_ERR(sa)) { 4967 ret = PTR_ERR(sa); 4968 sa = NULL; 4969 goto out; 4970 } 4971 4972 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4973 4974 if (ret) 4975 goto out; 4976 4977 ret = copy_to_user(arg, sa, sizeof(*sa)); 4978 if (ret) 4979 ret = -EFAULT; 4980 4981 out: 4982 kfree(sa); 4983 return ret; 4984 } 4985 4986 static int btrfs_ioctl_get_fslabel(struct file *file, void __user *arg) 4987 { 4988 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4989 size_t len; 4990 int ret; 4991 char label[BTRFS_LABEL_SIZE]; 4992 4993 spin_lock(&root->fs_info->super_lock); 4994 memcpy(label, root->fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4995 spin_unlock(&root->fs_info->super_lock); 4996 4997 len = strnlen(label, BTRFS_LABEL_SIZE); 4998 4999 if (len == BTRFS_LABEL_SIZE) { 5000 btrfs_warn(root->fs_info, 5001 "label is too long, return the first %zu bytes", --len); 5002 } 5003 5004 ret = copy_to_user(arg, label, len); 5005 5006 return ret ? -EFAULT : 0; 5007 } 5008 5009 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 5010 { 5011 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5012 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5013 struct btrfs_trans_handle *trans; 5014 char label[BTRFS_LABEL_SIZE]; 5015 int ret; 5016 5017 if (!capable(CAP_SYS_ADMIN)) 5018 return -EPERM; 5019 5020 if (copy_from_user(label, arg, sizeof(label))) 5021 return -EFAULT; 5022 5023 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 5024 btrfs_err(root->fs_info, "unable to set label with more than %d bytes", 5025 BTRFS_LABEL_SIZE - 1); 5026 return -EINVAL; 5027 } 5028 5029 ret = mnt_want_write_file(file); 5030 if (ret) 5031 return ret; 5032 5033 trans = btrfs_start_transaction(root, 0); 5034 if (IS_ERR(trans)) { 5035 ret = PTR_ERR(trans); 5036 goto out_unlock; 5037 } 5038 5039 spin_lock(&root->fs_info->super_lock); 5040 strcpy(super_block->label, label); 5041 spin_unlock(&root->fs_info->super_lock); 5042 ret = btrfs_commit_transaction(trans, root); 5043 5044 out_unlock: 5045 mnt_drop_write_file(file); 5046 return ret; 5047 } 5048 5049 #define INIT_FEATURE_FLAGS(suffix) \ 5050 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 5051 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 5052 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 5053 5054 static int btrfs_ioctl_get_supported_features(struct file *file, 5055 void __user *arg) 5056 { 5057 static struct btrfs_ioctl_feature_flags features[3] = { 5058 INIT_FEATURE_FLAGS(SUPP), 5059 INIT_FEATURE_FLAGS(SAFE_SET), 5060 INIT_FEATURE_FLAGS(SAFE_CLEAR) 5061 }; 5062 5063 if (copy_to_user(arg, &features, sizeof(features))) 5064 return -EFAULT; 5065 5066 return 0; 5067 } 5068 5069 static int btrfs_ioctl_get_features(struct file *file, void __user *arg) 5070 { 5071 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5072 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5073 struct btrfs_ioctl_feature_flags features; 5074 5075 features.compat_flags = btrfs_super_compat_flags(super_block); 5076 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 5077 features.incompat_flags = btrfs_super_incompat_flags(super_block); 5078 5079 if (copy_to_user(arg, &features, sizeof(features))) 5080 return -EFAULT; 5081 5082 return 0; 5083 } 5084 5085 static int check_feature_bits(struct btrfs_root *root, 5086 enum btrfs_feature_set set, 5087 u64 change_mask, u64 flags, u64 supported_flags, 5088 u64 safe_set, u64 safe_clear) 5089 { 5090 const char *type = btrfs_feature_set_names[set]; 5091 char *names; 5092 u64 disallowed, unsupported; 5093 u64 set_mask = flags & change_mask; 5094 u64 clear_mask = ~flags & change_mask; 5095 5096 unsupported = set_mask & ~supported_flags; 5097 if (unsupported) { 5098 names = btrfs_printable_features(set, unsupported); 5099 if (names) { 5100 btrfs_warn(root->fs_info, 5101 "this kernel does not support the %s feature bit%s", 5102 names, strchr(names, ',') ? "s" : ""); 5103 kfree(names); 5104 } else 5105 btrfs_warn(root->fs_info, 5106 "this kernel does not support %s bits 0x%llx", 5107 type, unsupported); 5108 return -EOPNOTSUPP; 5109 } 5110 5111 disallowed = set_mask & ~safe_set; 5112 if (disallowed) { 5113 names = btrfs_printable_features(set, disallowed); 5114 if (names) { 5115 btrfs_warn(root->fs_info, 5116 "can't set the %s feature bit%s while mounted", 5117 names, strchr(names, ',') ? "s" : ""); 5118 kfree(names); 5119 } else 5120 btrfs_warn(root->fs_info, 5121 "can't set %s bits 0x%llx while mounted", 5122 type, disallowed); 5123 return -EPERM; 5124 } 5125 5126 disallowed = clear_mask & ~safe_clear; 5127 if (disallowed) { 5128 names = btrfs_printable_features(set, disallowed); 5129 if (names) { 5130 btrfs_warn(root->fs_info, 5131 "can't clear the %s feature bit%s while mounted", 5132 names, strchr(names, ',') ? "s" : ""); 5133 kfree(names); 5134 } else 5135 btrfs_warn(root->fs_info, 5136 "can't clear %s bits 0x%llx while mounted", 5137 type, disallowed); 5138 return -EPERM; 5139 } 5140 5141 return 0; 5142 } 5143 5144 #define check_feature(root, change_mask, flags, mask_base) \ 5145 check_feature_bits(root, FEAT_##mask_base, change_mask, flags, \ 5146 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 5147 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 5148 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 5149 5150 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 5151 { 5152 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5153 struct btrfs_super_block *super_block = root->fs_info->super_copy; 5154 struct btrfs_ioctl_feature_flags flags[2]; 5155 struct btrfs_trans_handle *trans; 5156 u64 newflags; 5157 int ret; 5158 5159 if (!capable(CAP_SYS_ADMIN)) 5160 return -EPERM; 5161 5162 if (copy_from_user(flags, arg, sizeof(flags))) 5163 return -EFAULT; 5164 5165 /* Nothing to do */ 5166 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 5167 !flags[0].incompat_flags) 5168 return 0; 5169 5170 ret = check_feature(root, flags[0].compat_flags, 5171 flags[1].compat_flags, COMPAT); 5172 if (ret) 5173 return ret; 5174 5175 ret = check_feature(root, flags[0].compat_ro_flags, 5176 flags[1].compat_ro_flags, COMPAT_RO); 5177 if (ret) 5178 return ret; 5179 5180 ret = check_feature(root, flags[0].incompat_flags, 5181 flags[1].incompat_flags, INCOMPAT); 5182 if (ret) 5183 return ret; 5184 5185 trans = btrfs_start_transaction(root, 0); 5186 if (IS_ERR(trans)) 5187 return PTR_ERR(trans); 5188 5189 spin_lock(&root->fs_info->super_lock); 5190 newflags = btrfs_super_compat_flags(super_block); 5191 newflags |= flags[0].compat_flags & flags[1].compat_flags; 5192 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 5193 btrfs_set_super_compat_flags(super_block, newflags); 5194 5195 newflags = btrfs_super_compat_ro_flags(super_block); 5196 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 5197 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 5198 btrfs_set_super_compat_ro_flags(super_block, newflags); 5199 5200 newflags = btrfs_super_incompat_flags(super_block); 5201 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 5202 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 5203 btrfs_set_super_incompat_flags(super_block, newflags); 5204 spin_unlock(&root->fs_info->super_lock); 5205 5206 return btrfs_commit_transaction(trans, root); 5207 } 5208 5209 long btrfs_ioctl(struct file *file, unsigned int 5210 cmd, unsigned long arg) 5211 { 5212 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 5213 void __user *argp = (void __user *)arg; 5214 5215 switch (cmd) { 5216 case FS_IOC_GETFLAGS: 5217 return btrfs_ioctl_getflags(file, argp); 5218 case FS_IOC_SETFLAGS: 5219 return btrfs_ioctl_setflags(file, argp); 5220 case FS_IOC_GETVERSION: 5221 return btrfs_ioctl_getversion(file, argp); 5222 case FITRIM: 5223 return btrfs_ioctl_fitrim(file, argp); 5224 case BTRFS_IOC_SNAP_CREATE: 5225 return btrfs_ioctl_snap_create(file, argp, 0); 5226 case BTRFS_IOC_SNAP_CREATE_V2: 5227 return btrfs_ioctl_snap_create_v2(file, argp, 0); 5228 case BTRFS_IOC_SUBVOL_CREATE: 5229 return btrfs_ioctl_snap_create(file, argp, 1); 5230 case BTRFS_IOC_SUBVOL_CREATE_V2: 5231 return btrfs_ioctl_snap_create_v2(file, argp, 1); 5232 case BTRFS_IOC_SNAP_DESTROY: 5233 return btrfs_ioctl_snap_destroy(file, argp); 5234 case BTRFS_IOC_SUBVOL_GETFLAGS: 5235 return btrfs_ioctl_subvol_getflags(file, argp); 5236 case BTRFS_IOC_SUBVOL_SETFLAGS: 5237 return btrfs_ioctl_subvol_setflags(file, argp); 5238 case BTRFS_IOC_DEFAULT_SUBVOL: 5239 return btrfs_ioctl_default_subvol(file, argp); 5240 case BTRFS_IOC_DEFRAG: 5241 return btrfs_ioctl_defrag(file, NULL); 5242 case BTRFS_IOC_DEFRAG_RANGE: 5243 return btrfs_ioctl_defrag(file, argp); 5244 case BTRFS_IOC_RESIZE: 5245 return btrfs_ioctl_resize(file, argp); 5246 case BTRFS_IOC_ADD_DEV: 5247 return btrfs_ioctl_add_dev(root, argp); 5248 case BTRFS_IOC_RM_DEV: 5249 return btrfs_ioctl_rm_dev(file, argp); 5250 case BTRFS_IOC_FS_INFO: 5251 return btrfs_ioctl_fs_info(root, argp); 5252 case BTRFS_IOC_DEV_INFO: 5253 return btrfs_ioctl_dev_info(root, argp); 5254 case BTRFS_IOC_BALANCE: 5255 return btrfs_ioctl_balance(file, NULL); 5256 case BTRFS_IOC_CLONE: 5257 return btrfs_ioctl_clone(file, arg, 0, 0, 0); 5258 case BTRFS_IOC_CLONE_RANGE: 5259 return btrfs_ioctl_clone_range(file, argp); 5260 case BTRFS_IOC_TRANS_START: 5261 return btrfs_ioctl_trans_start(file); 5262 case BTRFS_IOC_TRANS_END: 5263 return btrfs_ioctl_trans_end(file); 5264 case BTRFS_IOC_TREE_SEARCH: 5265 return btrfs_ioctl_tree_search(file, argp); 5266 case BTRFS_IOC_TREE_SEARCH_V2: 5267 return btrfs_ioctl_tree_search_v2(file, argp); 5268 case BTRFS_IOC_INO_LOOKUP: 5269 return btrfs_ioctl_ino_lookup(file, argp); 5270 case BTRFS_IOC_INO_PATHS: 5271 return btrfs_ioctl_ino_to_path(root, argp); 5272 case BTRFS_IOC_LOGICAL_INO: 5273 return btrfs_ioctl_logical_to_ino(root, argp); 5274 case BTRFS_IOC_SPACE_INFO: 5275 return btrfs_ioctl_space_info(root, argp); 5276 case BTRFS_IOC_SYNC: { 5277 int ret; 5278 5279 ret = btrfs_start_delalloc_roots(root->fs_info, 0, -1); 5280 if (ret) 5281 return ret; 5282 ret = btrfs_sync_fs(file->f_dentry->d_sb, 1); 5283 return ret; 5284 } 5285 case BTRFS_IOC_START_SYNC: 5286 return btrfs_ioctl_start_sync(root, argp); 5287 case BTRFS_IOC_WAIT_SYNC: 5288 return btrfs_ioctl_wait_sync(root, argp); 5289 case BTRFS_IOC_SCRUB: 5290 return btrfs_ioctl_scrub(file, argp); 5291 case BTRFS_IOC_SCRUB_CANCEL: 5292 return btrfs_ioctl_scrub_cancel(root, argp); 5293 case BTRFS_IOC_SCRUB_PROGRESS: 5294 return btrfs_ioctl_scrub_progress(root, argp); 5295 case BTRFS_IOC_BALANCE_V2: 5296 return btrfs_ioctl_balance(file, argp); 5297 case BTRFS_IOC_BALANCE_CTL: 5298 return btrfs_ioctl_balance_ctl(root, arg); 5299 case BTRFS_IOC_BALANCE_PROGRESS: 5300 return btrfs_ioctl_balance_progress(root, argp); 5301 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 5302 return btrfs_ioctl_set_received_subvol(file, argp); 5303 #ifdef CONFIG_64BIT 5304 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 5305 return btrfs_ioctl_set_received_subvol_32(file, argp); 5306 #endif 5307 case BTRFS_IOC_SEND: 5308 return btrfs_ioctl_send(file, argp); 5309 case BTRFS_IOC_GET_DEV_STATS: 5310 return btrfs_ioctl_get_dev_stats(root, argp); 5311 case BTRFS_IOC_QUOTA_CTL: 5312 return btrfs_ioctl_quota_ctl(file, argp); 5313 case BTRFS_IOC_QGROUP_ASSIGN: 5314 return btrfs_ioctl_qgroup_assign(file, argp); 5315 case BTRFS_IOC_QGROUP_CREATE: 5316 return btrfs_ioctl_qgroup_create(file, argp); 5317 case BTRFS_IOC_QGROUP_LIMIT: 5318 return btrfs_ioctl_qgroup_limit(file, argp); 5319 case BTRFS_IOC_QUOTA_RESCAN: 5320 return btrfs_ioctl_quota_rescan(file, argp); 5321 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5322 return btrfs_ioctl_quota_rescan_status(file, argp); 5323 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5324 return btrfs_ioctl_quota_rescan_wait(file, argp); 5325 case BTRFS_IOC_DEV_REPLACE: 5326 return btrfs_ioctl_dev_replace(root, argp); 5327 case BTRFS_IOC_GET_FSLABEL: 5328 return btrfs_ioctl_get_fslabel(file, argp); 5329 case BTRFS_IOC_SET_FSLABEL: 5330 return btrfs_ioctl_set_fslabel(file, argp); 5331 case BTRFS_IOC_FILE_EXTENT_SAME: 5332 return btrfs_ioctl_file_extent_same(file, argp); 5333 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5334 return btrfs_ioctl_get_supported_features(file, argp); 5335 case BTRFS_IOC_GET_FEATURES: 5336 return btrfs_ioctl_get_features(file, argp); 5337 case BTRFS_IOC_SET_FEATURES: 5338 return btrfs_ioctl_set_features(file, argp); 5339 } 5340 5341 return -ENOTTY; 5342 } 5343