xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 29e1c1ad3ff7f345d80c7b81b08175f5a8c84122)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include "ctree.h"
31 #include "disk-io.h"
32 #include "export.h"
33 #include "transaction.h"
34 #include "btrfs_inode.h"
35 #include "print-tree.h"
36 #include "volumes.h"
37 #include "locking.h"
38 #include "backref.h"
39 #include "rcu-string.h"
40 #include "send.h"
41 #include "dev-replace.h"
42 #include "props.h"
43 #include "sysfs.h"
44 #include "qgroup.h"
45 #include "tree-log.h"
46 #include "compression.h"
47 #include "space-info.h"
48 #include "delalloc-space.h"
49 #include "block-group.h"
50 
51 #ifdef CONFIG_64BIT
52 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
53  * structures are incorrect, as the timespec structure from userspace
54  * is 4 bytes too small. We define these alternatives here to teach
55  * the kernel about the 32-bit struct packing.
56  */
57 struct btrfs_ioctl_timespec_32 {
58 	__u64 sec;
59 	__u32 nsec;
60 } __attribute__ ((__packed__));
61 
62 struct btrfs_ioctl_received_subvol_args_32 {
63 	char	uuid[BTRFS_UUID_SIZE];	/* in */
64 	__u64	stransid;		/* in */
65 	__u64	rtransid;		/* out */
66 	struct btrfs_ioctl_timespec_32 stime; /* in */
67 	struct btrfs_ioctl_timespec_32 rtime; /* out */
68 	__u64	flags;			/* in */
69 	__u64	reserved[16];		/* in */
70 } __attribute__ ((__packed__));
71 
72 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
73 				struct btrfs_ioctl_received_subvol_args_32)
74 #endif
75 
76 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
77 struct btrfs_ioctl_send_args_32 {
78 	__s64 send_fd;			/* in */
79 	__u64 clone_sources_count;	/* in */
80 	compat_uptr_t clone_sources;	/* in */
81 	__u64 parent_root;		/* in */
82 	__u64 flags;			/* in */
83 	__u64 reserved[4];		/* in */
84 } __attribute__ ((__packed__));
85 
86 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
87 			       struct btrfs_ioctl_send_args_32)
88 #endif
89 
90 /* Mask out flags that are inappropriate for the given type of inode. */
91 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
92 		unsigned int flags)
93 {
94 	if (S_ISDIR(inode->i_mode))
95 		return flags;
96 	else if (S_ISREG(inode->i_mode))
97 		return flags & ~FS_DIRSYNC_FL;
98 	else
99 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
100 }
101 
102 /*
103  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
104  * ioctl.
105  */
106 static unsigned int btrfs_inode_flags_to_fsflags(unsigned int flags)
107 {
108 	unsigned int iflags = 0;
109 
110 	if (flags & BTRFS_INODE_SYNC)
111 		iflags |= FS_SYNC_FL;
112 	if (flags & BTRFS_INODE_IMMUTABLE)
113 		iflags |= FS_IMMUTABLE_FL;
114 	if (flags & BTRFS_INODE_APPEND)
115 		iflags |= FS_APPEND_FL;
116 	if (flags & BTRFS_INODE_NODUMP)
117 		iflags |= FS_NODUMP_FL;
118 	if (flags & BTRFS_INODE_NOATIME)
119 		iflags |= FS_NOATIME_FL;
120 	if (flags & BTRFS_INODE_DIRSYNC)
121 		iflags |= FS_DIRSYNC_FL;
122 	if (flags & BTRFS_INODE_NODATACOW)
123 		iflags |= FS_NOCOW_FL;
124 
125 	if (flags & BTRFS_INODE_NOCOMPRESS)
126 		iflags |= FS_NOCOMP_FL;
127 	else if (flags & BTRFS_INODE_COMPRESS)
128 		iflags |= FS_COMPR_FL;
129 
130 	return iflags;
131 }
132 
133 /*
134  * Update inode->i_flags based on the btrfs internal flags.
135  */
136 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
137 {
138 	struct btrfs_inode *binode = BTRFS_I(inode);
139 	unsigned int new_fl = 0;
140 
141 	if (binode->flags & BTRFS_INODE_SYNC)
142 		new_fl |= S_SYNC;
143 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
144 		new_fl |= S_IMMUTABLE;
145 	if (binode->flags & BTRFS_INODE_APPEND)
146 		new_fl |= S_APPEND;
147 	if (binode->flags & BTRFS_INODE_NOATIME)
148 		new_fl |= S_NOATIME;
149 	if (binode->flags & BTRFS_INODE_DIRSYNC)
150 		new_fl |= S_DIRSYNC;
151 
152 	set_mask_bits(&inode->i_flags,
153 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC,
154 		      new_fl);
155 }
156 
157 /*
158  * Check if @flags are a supported and valid set of FS_*_FL flags and that
159  * the old and new flags are not conflicting
160  */
161 static int check_fsflags(unsigned int old_flags, unsigned int flags)
162 {
163 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
164 		      FS_NOATIME_FL | FS_NODUMP_FL | \
165 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
166 		      FS_NOCOMP_FL | FS_COMPR_FL |
167 		      FS_NOCOW_FL))
168 		return -EOPNOTSUPP;
169 
170 	/* COMPR and NOCOMP on new/old are valid */
171 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
172 		return -EINVAL;
173 
174 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
175 		return -EINVAL;
176 
177 	/* NOCOW and compression options are mutually exclusive */
178 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
179 		return -EINVAL;
180 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
181 		return -EINVAL;
182 
183 	return 0;
184 }
185 
186 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
187 				    unsigned int flags)
188 {
189 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
190 		return -EPERM;
191 
192 	return 0;
193 }
194 
195 /*
196  * Set flags/xflags from the internal inode flags. The remaining items of
197  * fsxattr are zeroed.
198  */
199 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
200 {
201 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
202 
203 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode->flags));
204 	return 0;
205 }
206 
207 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
208 		       struct dentry *dentry, struct fileattr *fa)
209 {
210 	struct inode *inode = d_inode(dentry);
211 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
212 	struct btrfs_inode *binode = BTRFS_I(inode);
213 	struct btrfs_root *root = binode->root;
214 	struct btrfs_trans_handle *trans;
215 	unsigned int fsflags, old_fsflags;
216 	int ret;
217 	const char *comp = NULL;
218 	u32 binode_flags;
219 
220 	if (btrfs_root_readonly(root))
221 		return -EROFS;
222 
223 	if (fileattr_has_fsx(fa))
224 		return -EOPNOTSUPP;
225 
226 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
227 	old_fsflags = btrfs_inode_flags_to_fsflags(binode->flags);
228 	ret = check_fsflags(old_fsflags, fsflags);
229 	if (ret)
230 		return ret;
231 
232 	ret = check_fsflags_compatible(fs_info, fsflags);
233 	if (ret)
234 		return ret;
235 
236 	binode_flags = binode->flags;
237 	if (fsflags & FS_SYNC_FL)
238 		binode_flags |= BTRFS_INODE_SYNC;
239 	else
240 		binode_flags &= ~BTRFS_INODE_SYNC;
241 	if (fsflags & FS_IMMUTABLE_FL)
242 		binode_flags |= BTRFS_INODE_IMMUTABLE;
243 	else
244 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
245 	if (fsflags & FS_APPEND_FL)
246 		binode_flags |= BTRFS_INODE_APPEND;
247 	else
248 		binode_flags &= ~BTRFS_INODE_APPEND;
249 	if (fsflags & FS_NODUMP_FL)
250 		binode_flags |= BTRFS_INODE_NODUMP;
251 	else
252 		binode_flags &= ~BTRFS_INODE_NODUMP;
253 	if (fsflags & FS_NOATIME_FL)
254 		binode_flags |= BTRFS_INODE_NOATIME;
255 	else
256 		binode_flags &= ~BTRFS_INODE_NOATIME;
257 
258 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
259 	if (!fa->flags_valid) {
260 		/* 1 item for the inode */
261 		trans = btrfs_start_transaction(root, 1);
262 		if (IS_ERR(trans))
263 			return PTR_ERR(trans);
264 		goto update_flags;
265 	}
266 
267 	if (fsflags & FS_DIRSYNC_FL)
268 		binode_flags |= BTRFS_INODE_DIRSYNC;
269 	else
270 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
271 	if (fsflags & FS_NOCOW_FL) {
272 		if (S_ISREG(inode->i_mode)) {
273 			/*
274 			 * It's safe to turn csums off here, no extents exist.
275 			 * Otherwise we want the flag to reflect the real COW
276 			 * status of the file and will not set it.
277 			 */
278 			if (inode->i_size == 0)
279 				binode_flags |= BTRFS_INODE_NODATACOW |
280 						BTRFS_INODE_NODATASUM;
281 		} else {
282 			binode_flags |= BTRFS_INODE_NODATACOW;
283 		}
284 	} else {
285 		/*
286 		 * Revert back under same assumptions as above
287 		 */
288 		if (S_ISREG(inode->i_mode)) {
289 			if (inode->i_size == 0)
290 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
291 						  BTRFS_INODE_NODATASUM);
292 		} else {
293 			binode_flags &= ~BTRFS_INODE_NODATACOW;
294 		}
295 	}
296 
297 	/*
298 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
299 	 * flag may be changed automatically if compression code won't make
300 	 * things smaller.
301 	 */
302 	if (fsflags & FS_NOCOMP_FL) {
303 		binode_flags &= ~BTRFS_INODE_COMPRESS;
304 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
305 	} else if (fsflags & FS_COMPR_FL) {
306 
307 		if (IS_SWAPFILE(inode))
308 			return -ETXTBSY;
309 
310 		binode_flags |= BTRFS_INODE_COMPRESS;
311 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
312 
313 		comp = btrfs_compress_type2str(fs_info->compress_type);
314 		if (!comp || comp[0] == 0)
315 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
316 	} else {
317 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
318 	}
319 
320 	/*
321 	 * 1 for inode item
322 	 * 2 for properties
323 	 */
324 	trans = btrfs_start_transaction(root, 3);
325 	if (IS_ERR(trans))
326 		return PTR_ERR(trans);
327 
328 	if (comp) {
329 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
330 				     strlen(comp), 0);
331 		if (ret) {
332 			btrfs_abort_transaction(trans, ret);
333 			goto out_end_trans;
334 		}
335 	} else {
336 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
337 				     0, 0);
338 		if (ret && ret != -ENODATA) {
339 			btrfs_abort_transaction(trans, ret);
340 			goto out_end_trans;
341 		}
342 	}
343 
344 update_flags:
345 	binode->flags = binode_flags;
346 	btrfs_sync_inode_flags_to_i_flags(inode);
347 	inode_inc_iversion(inode);
348 	inode->i_ctime = current_time(inode);
349 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
350 
351  out_end_trans:
352 	btrfs_end_transaction(trans);
353 	return ret;
354 }
355 
356 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
357 			enum btrfs_exclusive_operation type)
358 {
359 	return !cmpxchg(&fs_info->exclusive_operation, BTRFS_EXCLOP_NONE, type);
360 }
361 
362 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
363 {
364 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
365 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
366 }
367 
368 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
369 {
370 	struct inode *inode = file_inode(file);
371 
372 	return put_user(inode->i_generation, arg);
373 }
374 
375 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
376 					void __user *arg)
377 {
378 	struct btrfs_device *device;
379 	struct request_queue *q;
380 	struct fstrim_range range;
381 	u64 minlen = ULLONG_MAX;
382 	u64 num_devices = 0;
383 	int ret;
384 
385 	if (!capable(CAP_SYS_ADMIN))
386 		return -EPERM;
387 
388 	/*
389 	 * btrfs_trim_block_group() depends on space cache, which is not
390 	 * available in zoned filesystem. So, disallow fitrim on a zoned
391 	 * filesystem for now.
392 	 */
393 	if (btrfs_is_zoned(fs_info))
394 		return -EOPNOTSUPP;
395 
396 	/*
397 	 * If the fs is mounted with nologreplay, which requires it to be
398 	 * mounted in RO mode as well, we can not allow discard on free space
399 	 * inside block groups, because log trees refer to extents that are not
400 	 * pinned in a block group's free space cache (pinning the extents is
401 	 * precisely the first phase of replaying a log tree).
402 	 */
403 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
404 		return -EROFS;
405 
406 	rcu_read_lock();
407 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
408 				dev_list) {
409 		if (!device->bdev)
410 			continue;
411 		q = bdev_get_queue(device->bdev);
412 		if (blk_queue_discard(q)) {
413 			num_devices++;
414 			minlen = min_t(u64, q->limits.discard_granularity,
415 				     minlen);
416 		}
417 	}
418 	rcu_read_unlock();
419 
420 	if (!num_devices)
421 		return -EOPNOTSUPP;
422 	if (copy_from_user(&range, arg, sizeof(range)))
423 		return -EFAULT;
424 
425 	/*
426 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
427 	 * block group is in the logical address space, which can be any
428 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
429 	 */
430 	if (range.len < fs_info->sb->s_blocksize)
431 		return -EINVAL;
432 
433 	range.minlen = max(range.minlen, minlen);
434 	ret = btrfs_trim_fs(fs_info, &range);
435 	if (ret < 0)
436 		return ret;
437 
438 	if (copy_to_user(arg, &range, sizeof(range)))
439 		return -EFAULT;
440 
441 	return 0;
442 }
443 
444 int __pure btrfs_is_empty_uuid(u8 *uuid)
445 {
446 	int i;
447 
448 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
449 		if (uuid[i])
450 			return 0;
451 	}
452 	return 1;
453 }
454 
455 static noinline int create_subvol(struct inode *dir,
456 				  struct dentry *dentry,
457 				  const char *name, int namelen,
458 				  struct btrfs_qgroup_inherit *inherit)
459 {
460 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
461 	struct btrfs_trans_handle *trans;
462 	struct btrfs_key key;
463 	struct btrfs_root_item *root_item;
464 	struct btrfs_inode_item *inode_item;
465 	struct extent_buffer *leaf;
466 	struct btrfs_root *root = BTRFS_I(dir)->root;
467 	struct btrfs_root *new_root;
468 	struct btrfs_block_rsv block_rsv;
469 	struct timespec64 cur_time = current_time(dir);
470 	struct inode *inode;
471 	int ret;
472 	int err;
473 	dev_t anon_dev = 0;
474 	u64 objectid;
475 	u64 index = 0;
476 
477 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
478 	if (!root_item)
479 		return -ENOMEM;
480 
481 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
482 	if (ret)
483 		goto fail_free;
484 
485 	ret = get_anon_bdev(&anon_dev);
486 	if (ret < 0)
487 		goto fail_free;
488 
489 	/*
490 	 * Don't create subvolume whose level is not zero. Or qgroup will be
491 	 * screwed up since it assumes subvolume qgroup's level to be 0.
492 	 */
493 	if (btrfs_qgroup_level(objectid)) {
494 		ret = -ENOSPC;
495 		goto fail_free;
496 	}
497 
498 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
499 	/*
500 	 * The same as the snapshot creation, please see the comment
501 	 * of create_snapshot().
502 	 */
503 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
504 	if (ret)
505 		goto fail_free;
506 
507 	trans = btrfs_start_transaction(root, 0);
508 	if (IS_ERR(trans)) {
509 		ret = PTR_ERR(trans);
510 		btrfs_subvolume_release_metadata(root, &block_rsv);
511 		goto fail_free;
512 	}
513 	trans->block_rsv = &block_rsv;
514 	trans->bytes_reserved = block_rsv.size;
515 
516 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
517 	if (ret)
518 		goto fail;
519 
520 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
521 				      BTRFS_NESTING_NORMAL);
522 	if (IS_ERR(leaf)) {
523 		ret = PTR_ERR(leaf);
524 		goto fail;
525 	}
526 
527 	btrfs_mark_buffer_dirty(leaf);
528 
529 	inode_item = &root_item->inode;
530 	btrfs_set_stack_inode_generation(inode_item, 1);
531 	btrfs_set_stack_inode_size(inode_item, 3);
532 	btrfs_set_stack_inode_nlink(inode_item, 1);
533 	btrfs_set_stack_inode_nbytes(inode_item,
534 				     fs_info->nodesize);
535 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
536 
537 	btrfs_set_root_flags(root_item, 0);
538 	btrfs_set_root_limit(root_item, 0);
539 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
540 
541 	btrfs_set_root_bytenr(root_item, leaf->start);
542 	btrfs_set_root_generation(root_item, trans->transid);
543 	btrfs_set_root_level(root_item, 0);
544 	btrfs_set_root_refs(root_item, 1);
545 	btrfs_set_root_used(root_item, leaf->len);
546 	btrfs_set_root_last_snapshot(root_item, 0);
547 
548 	btrfs_set_root_generation_v2(root_item,
549 			btrfs_root_generation(root_item));
550 	generate_random_guid(root_item->uuid);
551 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
552 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
553 	root_item->ctime = root_item->otime;
554 	btrfs_set_root_ctransid(root_item, trans->transid);
555 	btrfs_set_root_otransid(root_item, trans->transid);
556 
557 	btrfs_tree_unlock(leaf);
558 
559 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
560 
561 	key.objectid = objectid;
562 	key.offset = 0;
563 	key.type = BTRFS_ROOT_ITEM_KEY;
564 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
565 				root_item);
566 	if (ret) {
567 		/*
568 		 * Since we don't abort the transaction in this case, free the
569 		 * tree block so that we don't leak space and leave the
570 		 * filesystem in an inconsistent state (an extent item in the
571 		 * extent tree without backreferences). Also no need to have
572 		 * the tree block locked since it is not in any tree at this
573 		 * point, so no other task can find it and use it.
574 		 */
575 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
576 		free_extent_buffer(leaf);
577 		goto fail;
578 	}
579 
580 	free_extent_buffer(leaf);
581 	leaf = NULL;
582 
583 	key.offset = (u64)-1;
584 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
585 	if (IS_ERR(new_root)) {
586 		free_anon_bdev(anon_dev);
587 		ret = PTR_ERR(new_root);
588 		btrfs_abort_transaction(trans, ret);
589 		goto fail;
590 	}
591 	/* Freeing will be done in btrfs_put_root() of new_root */
592 	anon_dev = 0;
593 
594 	ret = btrfs_record_root_in_trans(trans, new_root);
595 	if (ret) {
596 		btrfs_put_root(new_root);
597 		btrfs_abort_transaction(trans, ret);
598 		goto fail;
599 	}
600 
601 	ret = btrfs_create_subvol_root(trans, new_root, root);
602 	btrfs_put_root(new_root);
603 	if (ret) {
604 		/* We potentially lose an unused inode item here */
605 		btrfs_abort_transaction(trans, ret);
606 		goto fail;
607 	}
608 
609 	/*
610 	 * insert the directory item
611 	 */
612 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
613 	if (ret) {
614 		btrfs_abort_transaction(trans, ret);
615 		goto fail;
616 	}
617 
618 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
619 				    BTRFS_FT_DIR, index);
620 	if (ret) {
621 		btrfs_abort_transaction(trans, ret);
622 		goto fail;
623 	}
624 
625 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
626 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
627 	if (ret) {
628 		btrfs_abort_transaction(trans, ret);
629 		goto fail;
630 	}
631 
632 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
633 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
634 	if (ret) {
635 		btrfs_abort_transaction(trans, ret);
636 		goto fail;
637 	}
638 
639 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
640 				  BTRFS_UUID_KEY_SUBVOL, objectid);
641 	if (ret)
642 		btrfs_abort_transaction(trans, ret);
643 
644 fail:
645 	kfree(root_item);
646 	trans->block_rsv = NULL;
647 	trans->bytes_reserved = 0;
648 	btrfs_subvolume_release_metadata(root, &block_rsv);
649 
650 	err = btrfs_commit_transaction(trans);
651 	if (err && !ret)
652 		ret = err;
653 
654 	if (!ret) {
655 		inode = btrfs_lookup_dentry(dir, dentry);
656 		if (IS_ERR(inode))
657 			return PTR_ERR(inode);
658 		d_instantiate(dentry, inode);
659 	}
660 	return ret;
661 
662 fail_free:
663 	if (anon_dev)
664 		free_anon_bdev(anon_dev);
665 	kfree(root_item);
666 	return ret;
667 }
668 
669 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
670 			   struct dentry *dentry, bool readonly,
671 			   struct btrfs_qgroup_inherit *inherit)
672 {
673 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
674 	struct inode *inode;
675 	struct btrfs_pending_snapshot *pending_snapshot;
676 	struct btrfs_trans_handle *trans;
677 	int ret;
678 
679 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
680 		return -EINVAL;
681 
682 	if (atomic_read(&root->nr_swapfiles)) {
683 		btrfs_warn(fs_info,
684 			   "cannot snapshot subvolume with active swapfile");
685 		return -ETXTBSY;
686 	}
687 
688 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
689 	if (!pending_snapshot)
690 		return -ENOMEM;
691 
692 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
693 	if (ret < 0)
694 		goto free_pending;
695 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
696 			GFP_KERNEL);
697 	pending_snapshot->path = btrfs_alloc_path();
698 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
699 		ret = -ENOMEM;
700 		goto free_pending;
701 	}
702 
703 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
704 			     BTRFS_BLOCK_RSV_TEMP);
705 	/*
706 	 * 1 - parent dir inode
707 	 * 2 - dir entries
708 	 * 1 - root item
709 	 * 2 - root ref/backref
710 	 * 1 - root of snapshot
711 	 * 1 - UUID item
712 	 */
713 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
714 					&pending_snapshot->block_rsv, 8,
715 					false);
716 	if (ret)
717 		goto free_pending;
718 
719 	pending_snapshot->dentry = dentry;
720 	pending_snapshot->root = root;
721 	pending_snapshot->readonly = readonly;
722 	pending_snapshot->dir = dir;
723 	pending_snapshot->inherit = inherit;
724 
725 	trans = btrfs_start_transaction(root, 0);
726 	if (IS_ERR(trans)) {
727 		ret = PTR_ERR(trans);
728 		goto fail;
729 	}
730 
731 	spin_lock(&fs_info->trans_lock);
732 	list_add(&pending_snapshot->list,
733 		 &trans->transaction->pending_snapshots);
734 	spin_unlock(&fs_info->trans_lock);
735 
736 	ret = btrfs_commit_transaction(trans);
737 	if (ret)
738 		goto fail;
739 
740 	ret = pending_snapshot->error;
741 	if (ret)
742 		goto fail;
743 
744 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
745 	if (ret)
746 		goto fail;
747 
748 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
749 	if (IS_ERR(inode)) {
750 		ret = PTR_ERR(inode);
751 		goto fail;
752 	}
753 
754 	d_instantiate(dentry, inode);
755 	ret = 0;
756 	pending_snapshot->anon_dev = 0;
757 fail:
758 	/* Prevent double freeing of anon_dev */
759 	if (ret && pending_snapshot->snap)
760 		pending_snapshot->snap->anon_dev = 0;
761 	btrfs_put_root(pending_snapshot->snap);
762 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
763 free_pending:
764 	if (pending_snapshot->anon_dev)
765 		free_anon_bdev(pending_snapshot->anon_dev);
766 	kfree(pending_snapshot->root_item);
767 	btrfs_free_path(pending_snapshot->path);
768 	kfree(pending_snapshot);
769 
770 	return ret;
771 }
772 
773 /*  copy of may_delete in fs/namei.c()
774  *	Check whether we can remove a link victim from directory dir, check
775  *  whether the type of victim is right.
776  *  1. We can't do it if dir is read-only (done in permission())
777  *  2. We should have write and exec permissions on dir
778  *  3. We can't remove anything from append-only dir
779  *  4. We can't do anything with immutable dir (done in permission())
780  *  5. If the sticky bit on dir is set we should either
781  *	a. be owner of dir, or
782  *	b. be owner of victim, or
783  *	c. have CAP_FOWNER capability
784  *  6. If the victim is append-only or immutable we can't do anything with
785  *     links pointing to it.
786  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
787  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
788  *  9. We can't remove a root or mountpoint.
789  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
790  *     nfs_async_unlink().
791  */
792 
793 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
794 {
795 	int error;
796 
797 	if (d_really_is_negative(victim))
798 		return -ENOENT;
799 
800 	BUG_ON(d_inode(victim->d_parent) != dir);
801 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
802 
803 	error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
804 	if (error)
805 		return error;
806 	if (IS_APPEND(dir))
807 		return -EPERM;
808 	if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
809 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
810 	    IS_SWAPFILE(d_inode(victim)))
811 		return -EPERM;
812 	if (isdir) {
813 		if (!d_is_dir(victim))
814 			return -ENOTDIR;
815 		if (IS_ROOT(victim))
816 			return -EBUSY;
817 	} else if (d_is_dir(victim))
818 		return -EISDIR;
819 	if (IS_DEADDIR(dir))
820 		return -ENOENT;
821 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
822 		return -EBUSY;
823 	return 0;
824 }
825 
826 /* copy of may_create in fs/namei.c() */
827 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
828 {
829 	if (d_really_is_positive(child))
830 		return -EEXIST;
831 	if (IS_DEADDIR(dir))
832 		return -ENOENT;
833 	return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
834 }
835 
836 /*
837  * Create a new subvolume below @parent.  This is largely modeled after
838  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
839  * inside this filesystem so it's quite a bit simpler.
840  */
841 static noinline int btrfs_mksubvol(const struct path *parent,
842 				   const char *name, int namelen,
843 				   struct btrfs_root *snap_src,
844 				   bool readonly,
845 				   struct btrfs_qgroup_inherit *inherit)
846 {
847 	struct inode *dir = d_inode(parent->dentry);
848 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
849 	struct dentry *dentry;
850 	int error;
851 
852 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
853 	if (error == -EINTR)
854 		return error;
855 
856 	dentry = lookup_one_len(name, parent->dentry, namelen);
857 	error = PTR_ERR(dentry);
858 	if (IS_ERR(dentry))
859 		goto out_unlock;
860 
861 	error = btrfs_may_create(dir, dentry);
862 	if (error)
863 		goto out_dput;
864 
865 	/*
866 	 * even if this name doesn't exist, we may get hash collisions.
867 	 * check for them now when we can safely fail
868 	 */
869 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
870 					       dir->i_ino, name,
871 					       namelen);
872 	if (error)
873 		goto out_dput;
874 
875 	down_read(&fs_info->subvol_sem);
876 
877 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
878 		goto out_up_read;
879 
880 	if (snap_src)
881 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
882 	else
883 		error = create_subvol(dir, dentry, name, namelen, inherit);
884 
885 	if (!error)
886 		fsnotify_mkdir(dir, dentry);
887 out_up_read:
888 	up_read(&fs_info->subvol_sem);
889 out_dput:
890 	dput(dentry);
891 out_unlock:
892 	btrfs_inode_unlock(dir, 0);
893 	return error;
894 }
895 
896 static noinline int btrfs_mksnapshot(const struct path *parent,
897 				   const char *name, int namelen,
898 				   struct btrfs_root *root,
899 				   bool readonly,
900 				   struct btrfs_qgroup_inherit *inherit)
901 {
902 	int ret;
903 	bool snapshot_force_cow = false;
904 
905 	/*
906 	 * Force new buffered writes to reserve space even when NOCOW is
907 	 * possible. This is to avoid later writeback (running dealloc) to
908 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
909 	 */
910 	btrfs_drew_read_lock(&root->snapshot_lock);
911 
912 	ret = btrfs_start_delalloc_snapshot(root, false);
913 	if (ret)
914 		goto out;
915 
916 	/*
917 	 * All previous writes have started writeback in NOCOW mode, so now
918 	 * we force future writes to fallback to COW mode during snapshot
919 	 * creation.
920 	 */
921 	atomic_inc(&root->snapshot_force_cow);
922 	snapshot_force_cow = true;
923 
924 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
925 
926 	ret = btrfs_mksubvol(parent, name, namelen,
927 			     root, readonly, inherit);
928 out:
929 	if (snapshot_force_cow)
930 		atomic_dec(&root->snapshot_force_cow);
931 	btrfs_drew_read_unlock(&root->snapshot_lock);
932 	return ret;
933 }
934 
935 /*
936  * When we're defragging a range, we don't want to kick it off again
937  * if it is really just waiting for delalloc to send it down.
938  * If we find a nice big extent or delalloc range for the bytes in the
939  * file you want to defrag, we return 0 to let you know to skip this
940  * part of the file
941  */
942 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
943 {
944 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
945 	struct extent_map *em = NULL;
946 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
947 	u64 end;
948 
949 	read_lock(&em_tree->lock);
950 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
951 	read_unlock(&em_tree->lock);
952 
953 	if (em) {
954 		end = extent_map_end(em);
955 		free_extent_map(em);
956 		if (end - offset > thresh)
957 			return 0;
958 	}
959 	/* if we already have a nice delalloc here, just stop */
960 	thresh /= 2;
961 	end = count_range_bits(io_tree, &offset, offset + thresh,
962 			       thresh, EXTENT_DELALLOC, 1);
963 	if (end >= thresh)
964 		return 0;
965 	return 1;
966 }
967 
968 /*
969  * helper function to walk through a file and find extents
970  * newer than a specific transid, and smaller than thresh.
971  *
972  * This is used by the defragging code to find new and small
973  * extents
974  */
975 static int find_new_extents(struct btrfs_root *root,
976 			    struct inode *inode, u64 newer_than,
977 			    u64 *off, u32 thresh)
978 {
979 	struct btrfs_path *path;
980 	struct btrfs_key min_key;
981 	struct extent_buffer *leaf;
982 	struct btrfs_file_extent_item *extent;
983 	int type;
984 	int ret;
985 	u64 ino = btrfs_ino(BTRFS_I(inode));
986 
987 	path = btrfs_alloc_path();
988 	if (!path)
989 		return -ENOMEM;
990 
991 	min_key.objectid = ino;
992 	min_key.type = BTRFS_EXTENT_DATA_KEY;
993 	min_key.offset = *off;
994 
995 	while (1) {
996 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
997 		if (ret != 0)
998 			goto none;
999 process_slot:
1000 		if (min_key.objectid != ino)
1001 			goto none;
1002 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1003 			goto none;
1004 
1005 		leaf = path->nodes[0];
1006 		extent = btrfs_item_ptr(leaf, path->slots[0],
1007 					struct btrfs_file_extent_item);
1008 
1009 		type = btrfs_file_extent_type(leaf, extent);
1010 		if (type == BTRFS_FILE_EXTENT_REG &&
1011 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1012 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1013 			*off = min_key.offset;
1014 			btrfs_free_path(path);
1015 			return 0;
1016 		}
1017 
1018 		path->slots[0]++;
1019 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1020 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1021 			goto process_slot;
1022 		}
1023 
1024 		if (min_key.offset == (u64)-1)
1025 			goto none;
1026 
1027 		min_key.offset++;
1028 		btrfs_release_path(path);
1029 	}
1030 none:
1031 	btrfs_free_path(path);
1032 	return -ENOENT;
1033 }
1034 
1035 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1036 {
1037 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1038 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1039 	struct extent_map *em;
1040 	u64 len = PAGE_SIZE;
1041 
1042 	/*
1043 	 * hopefully we have this extent in the tree already, try without
1044 	 * the full extent lock
1045 	 */
1046 	read_lock(&em_tree->lock);
1047 	em = lookup_extent_mapping(em_tree, start, len);
1048 	read_unlock(&em_tree->lock);
1049 
1050 	if (!em) {
1051 		struct extent_state *cached = NULL;
1052 		u64 end = start + len - 1;
1053 
1054 		/* get the big lock and read metadata off disk */
1055 		lock_extent_bits(io_tree, start, end, &cached);
1056 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1057 		unlock_extent_cached(io_tree, start, end, &cached);
1058 
1059 		if (IS_ERR(em))
1060 			return NULL;
1061 	}
1062 
1063 	return em;
1064 }
1065 
1066 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1067 {
1068 	struct extent_map *next;
1069 	bool ret = true;
1070 
1071 	/* this is the last extent */
1072 	if (em->start + em->len >= i_size_read(inode))
1073 		return false;
1074 
1075 	next = defrag_lookup_extent(inode, em->start + em->len);
1076 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1077 		ret = false;
1078 	else if ((em->block_start + em->block_len == next->block_start) &&
1079 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1080 		ret = false;
1081 
1082 	free_extent_map(next);
1083 	return ret;
1084 }
1085 
1086 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1087 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1088 			       int compress)
1089 {
1090 	struct extent_map *em;
1091 	int ret = 1;
1092 	bool next_mergeable = true;
1093 	bool prev_mergeable = true;
1094 
1095 	/*
1096 	 * make sure that once we start defragging an extent, we keep on
1097 	 * defragging it
1098 	 */
1099 	if (start < *defrag_end)
1100 		return 1;
1101 
1102 	*skip = 0;
1103 
1104 	em = defrag_lookup_extent(inode, start);
1105 	if (!em)
1106 		return 0;
1107 
1108 	/* this will cover holes, and inline extents */
1109 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1110 		ret = 0;
1111 		goto out;
1112 	}
1113 
1114 	if (!*defrag_end)
1115 		prev_mergeable = false;
1116 
1117 	next_mergeable = defrag_check_next_extent(inode, em);
1118 	/*
1119 	 * we hit a real extent, if it is big or the next extent is not a
1120 	 * real extent, don't bother defragging it
1121 	 */
1122 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1123 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1124 		ret = 0;
1125 out:
1126 	/*
1127 	 * last_len ends up being a counter of how many bytes we've defragged.
1128 	 * every time we choose not to defrag an extent, we reset *last_len
1129 	 * so that the next tiny extent will force a defrag.
1130 	 *
1131 	 * The end result of this is that tiny extents before a single big
1132 	 * extent will force at least part of that big extent to be defragged.
1133 	 */
1134 	if (ret) {
1135 		*defrag_end = extent_map_end(em);
1136 	} else {
1137 		*last_len = 0;
1138 		*skip = extent_map_end(em);
1139 		*defrag_end = 0;
1140 	}
1141 
1142 	free_extent_map(em);
1143 	return ret;
1144 }
1145 
1146 /*
1147  * it doesn't do much good to defrag one or two pages
1148  * at a time.  This pulls in a nice chunk of pages
1149  * to COW and defrag.
1150  *
1151  * It also makes sure the delalloc code has enough
1152  * dirty data to avoid making new small extents as part
1153  * of the defrag
1154  *
1155  * It's a good idea to start RA on this range
1156  * before calling this.
1157  */
1158 static int cluster_pages_for_defrag(struct inode *inode,
1159 				    struct page **pages,
1160 				    unsigned long start_index,
1161 				    unsigned long num_pages)
1162 {
1163 	unsigned long file_end;
1164 	u64 isize = i_size_read(inode);
1165 	u64 page_start;
1166 	u64 page_end;
1167 	u64 page_cnt;
1168 	u64 start = (u64)start_index << PAGE_SHIFT;
1169 	u64 search_start;
1170 	int ret;
1171 	int i;
1172 	int i_done;
1173 	struct btrfs_ordered_extent *ordered;
1174 	struct extent_state *cached_state = NULL;
1175 	struct extent_io_tree *tree;
1176 	struct extent_changeset *data_reserved = NULL;
1177 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1178 
1179 	file_end = (isize - 1) >> PAGE_SHIFT;
1180 	if (!isize || start_index > file_end)
1181 		return 0;
1182 
1183 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1184 
1185 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1186 			start, page_cnt << PAGE_SHIFT);
1187 	if (ret)
1188 		return ret;
1189 	i_done = 0;
1190 	tree = &BTRFS_I(inode)->io_tree;
1191 
1192 	/* step one, lock all the pages */
1193 	for (i = 0; i < page_cnt; i++) {
1194 		struct page *page;
1195 again:
1196 		page = find_or_create_page(inode->i_mapping,
1197 					   start_index + i, mask);
1198 		if (!page)
1199 			break;
1200 
1201 		ret = set_page_extent_mapped(page);
1202 		if (ret < 0) {
1203 			unlock_page(page);
1204 			put_page(page);
1205 			break;
1206 		}
1207 
1208 		page_start = page_offset(page);
1209 		page_end = page_start + PAGE_SIZE - 1;
1210 		while (1) {
1211 			lock_extent_bits(tree, page_start, page_end,
1212 					 &cached_state);
1213 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1214 							      page_start);
1215 			unlock_extent_cached(tree, page_start, page_end,
1216 					     &cached_state);
1217 			if (!ordered)
1218 				break;
1219 
1220 			unlock_page(page);
1221 			btrfs_start_ordered_extent(ordered, 1);
1222 			btrfs_put_ordered_extent(ordered);
1223 			lock_page(page);
1224 			/*
1225 			 * we unlocked the page above, so we need check if
1226 			 * it was released or not.
1227 			 */
1228 			if (page->mapping != inode->i_mapping) {
1229 				unlock_page(page);
1230 				put_page(page);
1231 				goto again;
1232 			}
1233 		}
1234 
1235 		if (!PageUptodate(page)) {
1236 			btrfs_readpage(NULL, page);
1237 			lock_page(page);
1238 			if (!PageUptodate(page)) {
1239 				unlock_page(page);
1240 				put_page(page);
1241 				ret = -EIO;
1242 				break;
1243 			}
1244 		}
1245 
1246 		if (page->mapping != inode->i_mapping) {
1247 			unlock_page(page);
1248 			put_page(page);
1249 			goto again;
1250 		}
1251 
1252 		pages[i] = page;
1253 		i_done++;
1254 	}
1255 	if (!i_done || ret)
1256 		goto out;
1257 
1258 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1259 		goto out;
1260 
1261 	/*
1262 	 * so now we have a nice long stream of locked
1263 	 * and up to date pages, lets wait on them
1264 	 */
1265 	for (i = 0; i < i_done; i++)
1266 		wait_on_page_writeback(pages[i]);
1267 
1268 	page_start = page_offset(pages[0]);
1269 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1270 
1271 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1272 			 page_start, page_end - 1, &cached_state);
1273 
1274 	/*
1275 	 * When defragmenting we skip ranges that have holes or inline extents,
1276 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1277 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1278 	 * before locking the inode and then, if it should, we trigger a sync
1279 	 * page cache readahead - we lock the inode only after that to avoid
1280 	 * blocking for too long other tasks that possibly want to operate on
1281 	 * other file ranges. But before we were able to get the inode lock,
1282 	 * some other task may have punched a hole in the range, or we may have
1283 	 * now an inline extent, in which case we should not defrag. So check
1284 	 * for that here, where we have the inode and the range locked, and bail
1285 	 * out if that happened.
1286 	 */
1287 	search_start = page_start;
1288 	while (search_start < page_end) {
1289 		struct extent_map *em;
1290 
1291 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1292 				      page_end - search_start);
1293 		if (IS_ERR(em)) {
1294 			ret = PTR_ERR(em);
1295 			goto out_unlock_range;
1296 		}
1297 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1298 			free_extent_map(em);
1299 			/* Ok, 0 means we did not defrag anything */
1300 			ret = 0;
1301 			goto out_unlock_range;
1302 		}
1303 		search_start = extent_map_end(em);
1304 		free_extent_map(em);
1305 	}
1306 
1307 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1308 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1309 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1310 
1311 	if (i_done != page_cnt) {
1312 		spin_lock(&BTRFS_I(inode)->lock);
1313 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1314 		spin_unlock(&BTRFS_I(inode)->lock);
1315 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1316 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1317 	}
1318 
1319 
1320 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1321 			  &cached_state);
1322 
1323 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1324 			     page_start, page_end - 1, &cached_state);
1325 
1326 	for (i = 0; i < i_done; i++) {
1327 		clear_page_dirty_for_io(pages[i]);
1328 		ClearPageChecked(pages[i]);
1329 		set_page_dirty(pages[i]);
1330 		unlock_page(pages[i]);
1331 		put_page(pages[i]);
1332 	}
1333 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1334 	extent_changeset_free(data_reserved);
1335 	return i_done;
1336 
1337 out_unlock_range:
1338 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1339 			     page_start, page_end - 1, &cached_state);
1340 out:
1341 	for (i = 0; i < i_done; i++) {
1342 		unlock_page(pages[i]);
1343 		put_page(pages[i]);
1344 	}
1345 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1346 			start, page_cnt << PAGE_SHIFT, true);
1347 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1348 	extent_changeset_free(data_reserved);
1349 	return ret;
1350 
1351 }
1352 
1353 int btrfs_defrag_file(struct inode *inode, struct file *file,
1354 		      struct btrfs_ioctl_defrag_range_args *range,
1355 		      u64 newer_than, unsigned long max_to_defrag)
1356 {
1357 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1358 	struct btrfs_root *root = BTRFS_I(inode)->root;
1359 	struct file_ra_state *ra = NULL;
1360 	unsigned long last_index;
1361 	u64 isize = i_size_read(inode);
1362 	u64 last_len = 0;
1363 	u64 skip = 0;
1364 	u64 defrag_end = 0;
1365 	u64 newer_off = range->start;
1366 	unsigned long i;
1367 	unsigned long ra_index = 0;
1368 	int ret;
1369 	int defrag_count = 0;
1370 	int compress_type = BTRFS_COMPRESS_ZLIB;
1371 	u32 extent_thresh = range->extent_thresh;
1372 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1373 	unsigned long cluster = max_cluster;
1374 	u64 new_align = ~((u64)SZ_128K - 1);
1375 	struct page **pages = NULL;
1376 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1377 
1378 	if (isize == 0)
1379 		return 0;
1380 
1381 	if (range->start >= isize)
1382 		return -EINVAL;
1383 
1384 	if (do_compress) {
1385 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1386 			return -EINVAL;
1387 		if (range->compress_type)
1388 			compress_type = range->compress_type;
1389 	}
1390 
1391 	if (extent_thresh == 0)
1392 		extent_thresh = SZ_256K;
1393 
1394 	/*
1395 	 * If we were not given a file, allocate a readahead context. As
1396 	 * readahead is just an optimization, defrag will work without it so
1397 	 * we don't error out.
1398 	 */
1399 	if (!file) {
1400 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1401 		if (ra)
1402 			file_ra_state_init(ra, inode->i_mapping);
1403 	} else {
1404 		ra = &file->f_ra;
1405 	}
1406 
1407 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1408 	if (!pages) {
1409 		ret = -ENOMEM;
1410 		goto out_ra;
1411 	}
1412 
1413 	/* find the last page to defrag */
1414 	if (range->start + range->len > range->start) {
1415 		last_index = min_t(u64, isize - 1,
1416 			 range->start + range->len - 1) >> PAGE_SHIFT;
1417 	} else {
1418 		last_index = (isize - 1) >> PAGE_SHIFT;
1419 	}
1420 
1421 	if (newer_than) {
1422 		ret = find_new_extents(root, inode, newer_than,
1423 				       &newer_off, SZ_64K);
1424 		if (!ret) {
1425 			range->start = newer_off;
1426 			/*
1427 			 * we always align our defrag to help keep
1428 			 * the extents in the file evenly spaced
1429 			 */
1430 			i = (newer_off & new_align) >> PAGE_SHIFT;
1431 		} else
1432 			goto out_ra;
1433 	} else {
1434 		i = range->start >> PAGE_SHIFT;
1435 	}
1436 	if (!max_to_defrag)
1437 		max_to_defrag = last_index - i + 1;
1438 
1439 	/*
1440 	 * make writeback starts from i, so the defrag range can be
1441 	 * written sequentially.
1442 	 */
1443 	if (i < inode->i_mapping->writeback_index)
1444 		inode->i_mapping->writeback_index = i;
1445 
1446 	while (i <= last_index && defrag_count < max_to_defrag &&
1447 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1448 		/*
1449 		 * make sure we stop running if someone unmounts
1450 		 * the FS
1451 		 */
1452 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1453 			break;
1454 
1455 		if (btrfs_defrag_cancelled(fs_info)) {
1456 			btrfs_debug(fs_info, "defrag_file cancelled");
1457 			ret = -EAGAIN;
1458 			break;
1459 		}
1460 
1461 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1462 					 extent_thresh, &last_len, &skip,
1463 					 &defrag_end, do_compress)){
1464 			unsigned long next;
1465 			/*
1466 			 * the should_defrag function tells us how much to skip
1467 			 * bump our counter by the suggested amount
1468 			 */
1469 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1470 			i = max(i + 1, next);
1471 			continue;
1472 		}
1473 
1474 		if (!newer_than) {
1475 			cluster = (PAGE_ALIGN(defrag_end) >>
1476 				   PAGE_SHIFT) - i;
1477 			cluster = min(cluster, max_cluster);
1478 		} else {
1479 			cluster = max_cluster;
1480 		}
1481 
1482 		if (i + cluster > ra_index) {
1483 			ra_index = max(i, ra_index);
1484 			if (ra)
1485 				page_cache_sync_readahead(inode->i_mapping, ra,
1486 						file, ra_index, cluster);
1487 			ra_index += cluster;
1488 		}
1489 
1490 		btrfs_inode_lock(inode, 0);
1491 		if (IS_SWAPFILE(inode)) {
1492 			ret = -ETXTBSY;
1493 		} else {
1494 			if (do_compress)
1495 				BTRFS_I(inode)->defrag_compress = compress_type;
1496 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1497 		}
1498 		if (ret < 0) {
1499 			btrfs_inode_unlock(inode, 0);
1500 			goto out_ra;
1501 		}
1502 
1503 		defrag_count += ret;
1504 		balance_dirty_pages_ratelimited(inode->i_mapping);
1505 		btrfs_inode_unlock(inode, 0);
1506 
1507 		if (newer_than) {
1508 			if (newer_off == (u64)-1)
1509 				break;
1510 
1511 			if (ret > 0)
1512 				i += ret;
1513 
1514 			newer_off = max(newer_off + 1,
1515 					(u64)i << PAGE_SHIFT);
1516 
1517 			ret = find_new_extents(root, inode, newer_than,
1518 					       &newer_off, SZ_64K);
1519 			if (!ret) {
1520 				range->start = newer_off;
1521 				i = (newer_off & new_align) >> PAGE_SHIFT;
1522 			} else {
1523 				break;
1524 			}
1525 		} else {
1526 			if (ret > 0) {
1527 				i += ret;
1528 				last_len += ret << PAGE_SHIFT;
1529 			} else {
1530 				i++;
1531 				last_len = 0;
1532 			}
1533 		}
1534 	}
1535 
1536 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1537 		filemap_flush(inode->i_mapping);
1538 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1539 			     &BTRFS_I(inode)->runtime_flags))
1540 			filemap_flush(inode->i_mapping);
1541 	}
1542 
1543 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1544 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1545 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1546 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1547 	}
1548 
1549 	ret = defrag_count;
1550 
1551 out_ra:
1552 	if (do_compress) {
1553 		btrfs_inode_lock(inode, 0);
1554 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1555 		btrfs_inode_unlock(inode, 0);
1556 	}
1557 	if (!file)
1558 		kfree(ra);
1559 	kfree(pages);
1560 	return ret;
1561 }
1562 
1563 static noinline int btrfs_ioctl_resize(struct file *file,
1564 					void __user *arg)
1565 {
1566 	struct inode *inode = file_inode(file);
1567 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1568 	u64 new_size;
1569 	u64 old_size;
1570 	u64 devid = 1;
1571 	struct btrfs_root *root = BTRFS_I(inode)->root;
1572 	struct btrfs_ioctl_vol_args *vol_args;
1573 	struct btrfs_trans_handle *trans;
1574 	struct btrfs_device *device = NULL;
1575 	char *sizestr;
1576 	char *retptr;
1577 	char *devstr = NULL;
1578 	int ret = 0;
1579 	int mod = 0;
1580 
1581 	if (!capable(CAP_SYS_ADMIN))
1582 		return -EPERM;
1583 
1584 	ret = mnt_want_write_file(file);
1585 	if (ret)
1586 		return ret;
1587 
1588 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_RESIZE)) {
1589 		mnt_drop_write_file(file);
1590 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1591 	}
1592 
1593 	vol_args = memdup_user(arg, sizeof(*vol_args));
1594 	if (IS_ERR(vol_args)) {
1595 		ret = PTR_ERR(vol_args);
1596 		goto out;
1597 	}
1598 
1599 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1600 
1601 	sizestr = vol_args->name;
1602 	devstr = strchr(sizestr, ':');
1603 	if (devstr) {
1604 		sizestr = devstr + 1;
1605 		*devstr = '\0';
1606 		devstr = vol_args->name;
1607 		ret = kstrtoull(devstr, 10, &devid);
1608 		if (ret)
1609 			goto out_free;
1610 		if (!devid) {
1611 			ret = -EINVAL;
1612 			goto out_free;
1613 		}
1614 		btrfs_info(fs_info, "resizing devid %llu", devid);
1615 	}
1616 
1617 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1618 	if (!device) {
1619 		btrfs_info(fs_info, "resizer unable to find device %llu",
1620 			   devid);
1621 		ret = -ENODEV;
1622 		goto out_free;
1623 	}
1624 
1625 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1626 		btrfs_info(fs_info,
1627 			   "resizer unable to apply on readonly device %llu",
1628 		       devid);
1629 		ret = -EPERM;
1630 		goto out_free;
1631 	}
1632 
1633 	if (!strcmp(sizestr, "max"))
1634 		new_size = device->bdev->bd_inode->i_size;
1635 	else {
1636 		if (sizestr[0] == '-') {
1637 			mod = -1;
1638 			sizestr++;
1639 		} else if (sizestr[0] == '+') {
1640 			mod = 1;
1641 			sizestr++;
1642 		}
1643 		new_size = memparse(sizestr, &retptr);
1644 		if (*retptr != '\0' || new_size == 0) {
1645 			ret = -EINVAL;
1646 			goto out_free;
1647 		}
1648 	}
1649 
1650 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1651 		ret = -EPERM;
1652 		goto out_free;
1653 	}
1654 
1655 	old_size = btrfs_device_get_total_bytes(device);
1656 
1657 	if (mod < 0) {
1658 		if (new_size > old_size) {
1659 			ret = -EINVAL;
1660 			goto out_free;
1661 		}
1662 		new_size = old_size - new_size;
1663 	} else if (mod > 0) {
1664 		if (new_size > ULLONG_MAX - old_size) {
1665 			ret = -ERANGE;
1666 			goto out_free;
1667 		}
1668 		new_size = old_size + new_size;
1669 	}
1670 
1671 	if (new_size < SZ_256M) {
1672 		ret = -EINVAL;
1673 		goto out_free;
1674 	}
1675 	if (new_size > device->bdev->bd_inode->i_size) {
1676 		ret = -EFBIG;
1677 		goto out_free;
1678 	}
1679 
1680 	new_size = round_down(new_size, fs_info->sectorsize);
1681 
1682 	if (new_size > old_size) {
1683 		trans = btrfs_start_transaction(root, 0);
1684 		if (IS_ERR(trans)) {
1685 			ret = PTR_ERR(trans);
1686 			goto out_free;
1687 		}
1688 		ret = btrfs_grow_device(trans, device, new_size);
1689 		btrfs_commit_transaction(trans);
1690 	} else if (new_size < old_size) {
1691 		ret = btrfs_shrink_device(device, new_size);
1692 	} /* equal, nothing need to do */
1693 
1694 	if (ret == 0 && new_size != old_size)
1695 		btrfs_info_in_rcu(fs_info,
1696 			"resize device %s (devid %llu) from %llu to %llu",
1697 			rcu_str_deref(device->name), device->devid,
1698 			old_size, new_size);
1699 out_free:
1700 	kfree(vol_args);
1701 out:
1702 	btrfs_exclop_finish(fs_info);
1703 	mnt_drop_write_file(file);
1704 	return ret;
1705 }
1706 
1707 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1708 				const char *name, unsigned long fd, int subvol,
1709 				bool readonly,
1710 				struct btrfs_qgroup_inherit *inherit)
1711 {
1712 	int namelen;
1713 	int ret = 0;
1714 
1715 	if (!S_ISDIR(file_inode(file)->i_mode))
1716 		return -ENOTDIR;
1717 
1718 	ret = mnt_want_write_file(file);
1719 	if (ret)
1720 		goto out;
1721 
1722 	namelen = strlen(name);
1723 	if (strchr(name, '/')) {
1724 		ret = -EINVAL;
1725 		goto out_drop_write;
1726 	}
1727 
1728 	if (name[0] == '.' &&
1729 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1730 		ret = -EEXIST;
1731 		goto out_drop_write;
1732 	}
1733 
1734 	if (subvol) {
1735 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1736 				     NULL, readonly, inherit);
1737 	} else {
1738 		struct fd src = fdget(fd);
1739 		struct inode *src_inode;
1740 		if (!src.file) {
1741 			ret = -EINVAL;
1742 			goto out_drop_write;
1743 		}
1744 
1745 		src_inode = file_inode(src.file);
1746 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1747 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1748 				   "Snapshot src from another FS");
1749 			ret = -EXDEV;
1750 		} else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1751 			/*
1752 			 * Subvolume creation is not restricted, but snapshots
1753 			 * are limited to own subvolumes only
1754 			 */
1755 			ret = -EPERM;
1756 		} else {
1757 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1758 					     BTRFS_I(src_inode)->root,
1759 					     readonly, inherit);
1760 		}
1761 		fdput(src);
1762 	}
1763 out_drop_write:
1764 	mnt_drop_write_file(file);
1765 out:
1766 	return ret;
1767 }
1768 
1769 static noinline int btrfs_ioctl_snap_create(struct file *file,
1770 					    void __user *arg, int subvol)
1771 {
1772 	struct btrfs_ioctl_vol_args *vol_args;
1773 	int ret;
1774 
1775 	if (!S_ISDIR(file_inode(file)->i_mode))
1776 		return -ENOTDIR;
1777 
1778 	vol_args = memdup_user(arg, sizeof(*vol_args));
1779 	if (IS_ERR(vol_args))
1780 		return PTR_ERR(vol_args);
1781 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1782 
1783 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1784 					subvol, false, NULL);
1785 
1786 	kfree(vol_args);
1787 	return ret;
1788 }
1789 
1790 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1791 					       void __user *arg, int subvol)
1792 {
1793 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1794 	int ret;
1795 	bool readonly = false;
1796 	struct btrfs_qgroup_inherit *inherit = NULL;
1797 
1798 	if (!S_ISDIR(file_inode(file)->i_mode))
1799 		return -ENOTDIR;
1800 
1801 	vol_args = memdup_user(arg, sizeof(*vol_args));
1802 	if (IS_ERR(vol_args))
1803 		return PTR_ERR(vol_args);
1804 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1805 
1806 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1807 		ret = -EOPNOTSUPP;
1808 		goto free_args;
1809 	}
1810 
1811 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1812 		readonly = true;
1813 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1814 		u64 nums;
1815 
1816 		if (vol_args->size < sizeof(*inherit) ||
1817 		    vol_args->size > PAGE_SIZE) {
1818 			ret = -EINVAL;
1819 			goto free_args;
1820 		}
1821 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1822 		if (IS_ERR(inherit)) {
1823 			ret = PTR_ERR(inherit);
1824 			goto free_args;
1825 		}
1826 
1827 		if (inherit->num_qgroups > PAGE_SIZE ||
1828 		    inherit->num_ref_copies > PAGE_SIZE ||
1829 		    inherit->num_excl_copies > PAGE_SIZE) {
1830 			ret = -EINVAL;
1831 			goto free_inherit;
1832 		}
1833 
1834 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1835 		       2 * inherit->num_excl_copies;
1836 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1837 			ret = -EINVAL;
1838 			goto free_inherit;
1839 		}
1840 	}
1841 
1842 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1843 					subvol, readonly, inherit);
1844 	if (ret)
1845 		goto free_inherit;
1846 free_inherit:
1847 	kfree(inherit);
1848 free_args:
1849 	kfree(vol_args);
1850 	return ret;
1851 }
1852 
1853 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1854 						void __user *arg)
1855 {
1856 	struct inode *inode = file_inode(file);
1857 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1858 	struct btrfs_root *root = BTRFS_I(inode)->root;
1859 	int ret = 0;
1860 	u64 flags = 0;
1861 
1862 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1863 		return -EINVAL;
1864 
1865 	down_read(&fs_info->subvol_sem);
1866 	if (btrfs_root_readonly(root))
1867 		flags |= BTRFS_SUBVOL_RDONLY;
1868 	up_read(&fs_info->subvol_sem);
1869 
1870 	if (copy_to_user(arg, &flags, sizeof(flags)))
1871 		ret = -EFAULT;
1872 
1873 	return ret;
1874 }
1875 
1876 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1877 					      void __user *arg)
1878 {
1879 	struct inode *inode = file_inode(file);
1880 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1881 	struct btrfs_root *root = BTRFS_I(inode)->root;
1882 	struct btrfs_trans_handle *trans;
1883 	u64 root_flags;
1884 	u64 flags;
1885 	int ret = 0;
1886 
1887 	if (!inode_owner_or_capable(&init_user_ns, inode))
1888 		return -EPERM;
1889 
1890 	ret = mnt_want_write_file(file);
1891 	if (ret)
1892 		goto out;
1893 
1894 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1895 		ret = -EINVAL;
1896 		goto out_drop_write;
1897 	}
1898 
1899 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1900 		ret = -EFAULT;
1901 		goto out_drop_write;
1902 	}
1903 
1904 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1905 		ret = -EOPNOTSUPP;
1906 		goto out_drop_write;
1907 	}
1908 
1909 	down_write(&fs_info->subvol_sem);
1910 
1911 	/* nothing to do */
1912 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
1913 		goto out_drop_sem;
1914 
1915 	root_flags = btrfs_root_flags(&root->root_item);
1916 	if (flags & BTRFS_SUBVOL_RDONLY) {
1917 		btrfs_set_root_flags(&root->root_item,
1918 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
1919 	} else {
1920 		/*
1921 		 * Block RO -> RW transition if this subvolume is involved in
1922 		 * send
1923 		 */
1924 		spin_lock(&root->root_item_lock);
1925 		if (root->send_in_progress == 0) {
1926 			btrfs_set_root_flags(&root->root_item,
1927 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
1928 			spin_unlock(&root->root_item_lock);
1929 		} else {
1930 			spin_unlock(&root->root_item_lock);
1931 			btrfs_warn(fs_info,
1932 				   "Attempt to set subvolume %llu read-write during send",
1933 				   root->root_key.objectid);
1934 			ret = -EPERM;
1935 			goto out_drop_sem;
1936 		}
1937 	}
1938 
1939 	trans = btrfs_start_transaction(root, 1);
1940 	if (IS_ERR(trans)) {
1941 		ret = PTR_ERR(trans);
1942 		goto out_reset;
1943 	}
1944 
1945 	ret = btrfs_update_root(trans, fs_info->tree_root,
1946 				&root->root_key, &root->root_item);
1947 	if (ret < 0) {
1948 		btrfs_end_transaction(trans);
1949 		goto out_reset;
1950 	}
1951 
1952 	ret = btrfs_commit_transaction(trans);
1953 
1954 out_reset:
1955 	if (ret)
1956 		btrfs_set_root_flags(&root->root_item, root_flags);
1957 out_drop_sem:
1958 	up_write(&fs_info->subvol_sem);
1959 out_drop_write:
1960 	mnt_drop_write_file(file);
1961 out:
1962 	return ret;
1963 }
1964 
1965 static noinline int key_in_sk(struct btrfs_key *key,
1966 			      struct btrfs_ioctl_search_key *sk)
1967 {
1968 	struct btrfs_key test;
1969 	int ret;
1970 
1971 	test.objectid = sk->min_objectid;
1972 	test.type = sk->min_type;
1973 	test.offset = sk->min_offset;
1974 
1975 	ret = btrfs_comp_cpu_keys(key, &test);
1976 	if (ret < 0)
1977 		return 0;
1978 
1979 	test.objectid = sk->max_objectid;
1980 	test.type = sk->max_type;
1981 	test.offset = sk->max_offset;
1982 
1983 	ret = btrfs_comp_cpu_keys(key, &test);
1984 	if (ret > 0)
1985 		return 0;
1986 	return 1;
1987 }
1988 
1989 static noinline int copy_to_sk(struct btrfs_path *path,
1990 			       struct btrfs_key *key,
1991 			       struct btrfs_ioctl_search_key *sk,
1992 			       size_t *buf_size,
1993 			       char __user *ubuf,
1994 			       unsigned long *sk_offset,
1995 			       int *num_found)
1996 {
1997 	u64 found_transid;
1998 	struct extent_buffer *leaf;
1999 	struct btrfs_ioctl_search_header sh;
2000 	struct btrfs_key test;
2001 	unsigned long item_off;
2002 	unsigned long item_len;
2003 	int nritems;
2004 	int i;
2005 	int slot;
2006 	int ret = 0;
2007 
2008 	leaf = path->nodes[0];
2009 	slot = path->slots[0];
2010 	nritems = btrfs_header_nritems(leaf);
2011 
2012 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2013 		i = nritems;
2014 		goto advance_key;
2015 	}
2016 	found_transid = btrfs_header_generation(leaf);
2017 
2018 	for (i = slot; i < nritems; i++) {
2019 		item_off = btrfs_item_ptr_offset(leaf, i);
2020 		item_len = btrfs_item_size_nr(leaf, i);
2021 
2022 		btrfs_item_key_to_cpu(leaf, key, i);
2023 		if (!key_in_sk(key, sk))
2024 			continue;
2025 
2026 		if (sizeof(sh) + item_len > *buf_size) {
2027 			if (*num_found) {
2028 				ret = 1;
2029 				goto out;
2030 			}
2031 
2032 			/*
2033 			 * return one empty item back for v1, which does not
2034 			 * handle -EOVERFLOW
2035 			 */
2036 
2037 			*buf_size = sizeof(sh) + item_len;
2038 			item_len = 0;
2039 			ret = -EOVERFLOW;
2040 		}
2041 
2042 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2043 			ret = 1;
2044 			goto out;
2045 		}
2046 
2047 		sh.objectid = key->objectid;
2048 		sh.offset = key->offset;
2049 		sh.type = key->type;
2050 		sh.len = item_len;
2051 		sh.transid = found_transid;
2052 
2053 		/*
2054 		 * Copy search result header. If we fault then loop again so we
2055 		 * can fault in the pages and -EFAULT there if there's a
2056 		 * problem. Otherwise we'll fault and then copy the buffer in
2057 		 * properly this next time through
2058 		 */
2059 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2060 			ret = 0;
2061 			goto out;
2062 		}
2063 
2064 		*sk_offset += sizeof(sh);
2065 
2066 		if (item_len) {
2067 			char __user *up = ubuf + *sk_offset;
2068 			/*
2069 			 * Copy the item, same behavior as above, but reset the
2070 			 * * sk_offset so we copy the full thing again.
2071 			 */
2072 			if (read_extent_buffer_to_user_nofault(leaf, up,
2073 						item_off, item_len)) {
2074 				ret = 0;
2075 				*sk_offset -= sizeof(sh);
2076 				goto out;
2077 			}
2078 
2079 			*sk_offset += item_len;
2080 		}
2081 		(*num_found)++;
2082 
2083 		if (ret) /* -EOVERFLOW from above */
2084 			goto out;
2085 
2086 		if (*num_found >= sk->nr_items) {
2087 			ret = 1;
2088 			goto out;
2089 		}
2090 	}
2091 advance_key:
2092 	ret = 0;
2093 	test.objectid = sk->max_objectid;
2094 	test.type = sk->max_type;
2095 	test.offset = sk->max_offset;
2096 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2097 		ret = 1;
2098 	else if (key->offset < (u64)-1)
2099 		key->offset++;
2100 	else if (key->type < (u8)-1) {
2101 		key->offset = 0;
2102 		key->type++;
2103 	} else if (key->objectid < (u64)-1) {
2104 		key->offset = 0;
2105 		key->type = 0;
2106 		key->objectid++;
2107 	} else
2108 		ret = 1;
2109 out:
2110 	/*
2111 	 *  0: all items from this leaf copied, continue with next
2112 	 *  1: * more items can be copied, but unused buffer is too small
2113 	 *     * all items were found
2114 	 *     Either way, it will stops the loop which iterates to the next
2115 	 *     leaf
2116 	 *  -EOVERFLOW: item was to large for buffer
2117 	 *  -EFAULT: could not copy extent buffer back to userspace
2118 	 */
2119 	return ret;
2120 }
2121 
2122 static noinline int search_ioctl(struct inode *inode,
2123 				 struct btrfs_ioctl_search_key *sk,
2124 				 size_t *buf_size,
2125 				 char __user *ubuf)
2126 {
2127 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2128 	struct btrfs_root *root;
2129 	struct btrfs_key key;
2130 	struct btrfs_path *path;
2131 	int ret;
2132 	int num_found = 0;
2133 	unsigned long sk_offset = 0;
2134 
2135 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2136 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2137 		return -EOVERFLOW;
2138 	}
2139 
2140 	path = btrfs_alloc_path();
2141 	if (!path)
2142 		return -ENOMEM;
2143 
2144 	if (sk->tree_id == 0) {
2145 		/* search the root of the inode that was passed */
2146 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2147 	} else {
2148 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2149 		if (IS_ERR(root)) {
2150 			btrfs_free_path(path);
2151 			return PTR_ERR(root);
2152 		}
2153 	}
2154 
2155 	key.objectid = sk->min_objectid;
2156 	key.type = sk->min_type;
2157 	key.offset = sk->min_offset;
2158 
2159 	while (1) {
2160 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2161 					       *buf_size - sk_offset);
2162 		if (ret)
2163 			break;
2164 
2165 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2166 		if (ret != 0) {
2167 			if (ret > 0)
2168 				ret = 0;
2169 			goto err;
2170 		}
2171 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2172 				 &sk_offset, &num_found);
2173 		btrfs_release_path(path);
2174 		if (ret)
2175 			break;
2176 
2177 	}
2178 	if (ret > 0)
2179 		ret = 0;
2180 err:
2181 	sk->nr_items = num_found;
2182 	btrfs_put_root(root);
2183 	btrfs_free_path(path);
2184 	return ret;
2185 }
2186 
2187 static noinline int btrfs_ioctl_tree_search(struct file *file,
2188 					   void __user *argp)
2189 {
2190 	struct btrfs_ioctl_search_args __user *uargs;
2191 	struct btrfs_ioctl_search_key sk;
2192 	struct inode *inode;
2193 	int ret;
2194 	size_t buf_size;
2195 
2196 	if (!capable(CAP_SYS_ADMIN))
2197 		return -EPERM;
2198 
2199 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2200 
2201 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2202 		return -EFAULT;
2203 
2204 	buf_size = sizeof(uargs->buf);
2205 
2206 	inode = file_inode(file);
2207 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2208 
2209 	/*
2210 	 * In the origin implementation an overflow is handled by returning a
2211 	 * search header with a len of zero, so reset ret.
2212 	 */
2213 	if (ret == -EOVERFLOW)
2214 		ret = 0;
2215 
2216 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2217 		ret = -EFAULT;
2218 	return ret;
2219 }
2220 
2221 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2222 					       void __user *argp)
2223 {
2224 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2225 	struct btrfs_ioctl_search_args_v2 args;
2226 	struct inode *inode;
2227 	int ret;
2228 	size_t buf_size;
2229 	const size_t buf_limit = SZ_16M;
2230 
2231 	if (!capable(CAP_SYS_ADMIN))
2232 		return -EPERM;
2233 
2234 	/* copy search header and buffer size */
2235 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2236 	if (copy_from_user(&args, uarg, sizeof(args)))
2237 		return -EFAULT;
2238 
2239 	buf_size = args.buf_size;
2240 
2241 	/* limit result size to 16MB */
2242 	if (buf_size > buf_limit)
2243 		buf_size = buf_limit;
2244 
2245 	inode = file_inode(file);
2246 	ret = search_ioctl(inode, &args.key, &buf_size,
2247 			   (char __user *)(&uarg->buf[0]));
2248 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2249 		ret = -EFAULT;
2250 	else if (ret == -EOVERFLOW &&
2251 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2252 		ret = -EFAULT;
2253 
2254 	return ret;
2255 }
2256 
2257 /*
2258  * Search INODE_REFs to identify path name of 'dirid' directory
2259  * in a 'tree_id' tree. and sets path name to 'name'.
2260  */
2261 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2262 				u64 tree_id, u64 dirid, char *name)
2263 {
2264 	struct btrfs_root *root;
2265 	struct btrfs_key key;
2266 	char *ptr;
2267 	int ret = -1;
2268 	int slot;
2269 	int len;
2270 	int total_len = 0;
2271 	struct btrfs_inode_ref *iref;
2272 	struct extent_buffer *l;
2273 	struct btrfs_path *path;
2274 
2275 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2276 		name[0]='\0';
2277 		return 0;
2278 	}
2279 
2280 	path = btrfs_alloc_path();
2281 	if (!path)
2282 		return -ENOMEM;
2283 
2284 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2285 
2286 	root = btrfs_get_fs_root(info, tree_id, true);
2287 	if (IS_ERR(root)) {
2288 		ret = PTR_ERR(root);
2289 		root = NULL;
2290 		goto out;
2291 	}
2292 
2293 	key.objectid = dirid;
2294 	key.type = BTRFS_INODE_REF_KEY;
2295 	key.offset = (u64)-1;
2296 
2297 	while (1) {
2298 		ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2299 		if (ret < 0)
2300 			goto out;
2301 		else if (ret > 0) {
2302 			ret = btrfs_previous_item(root, path, dirid,
2303 						  BTRFS_INODE_REF_KEY);
2304 			if (ret < 0)
2305 				goto out;
2306 			else if (ret > 0) {
2307 				ret = -ENOENT;
2308 				goto out;
2309 			}
2310 		}
2311 
2312 		l = path->nodes[0];
2313 		slot = path->slots[0];
2314 		btrfs_item_key_to_cpu(l, &key, slot);
2315 
2316 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2317 		len = btrfs_inode_ref_name_len(l, iref);
2318 		ptr -= len + 1;
2319 		total_len += len + 1;
2320 		if (ptr < name) {
2321 			ret = -ENAMETOOLONG;
2322 			goto out;
2323 		}
2324 
2325 		*(ptr + len) = '/';
2326 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2327 
2328 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2329 			break;
2330 
2331 		btrfs_release_path(path);
2332 		key.objectid = key.offset;
2333 		key.offset = (u64)-1;
2334 		dirid = key.objectid;
2335 	}
2336 	memmove(name, ptr, total_len);
2337 	name[total_len] = '\0';
2338 	ret = 0;
2339 out:
2340 	btrfs_put_root(root);
2341 	btrfs_free_path(path);
2342 	return ret;
2343 }
2344 
2345 static int btrfs_search_path_in_tree_user(struct inode *inode,
2346 				struct btrfs_ioctl_ino_lookup_user_args *args)
2347 {
2348 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2349 	struct super_block *sb = inode->i_sb;
2350 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2351 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2352 	u64 dirid = args->dirid;
2353 	unsigned long item_off;
2354 	unsigned long item_len;
2355 	struct btrfs_inode_ref *iref;
2356 	struct btrfs_root_ref *rref;
2357 	struct btrfs_root *root = NULL;
2358 	struct btrfs_path *path;
2359 	struct btrfs_key key, key2;
2360 	struct extent_buffer *leaf;
2361 	struct inode *temp_inode;
2362 	char *ptr;
2363 	int slot;
2364 	int len;
2365 	int total_len = 0;
2366 	int ret;
2367 
2368 	path = btrfs_alloc_path();
2369 	if (!path)
2370 		return -ENOMEM;
2371 
2372 	/*
2373 	 * If the bottom subvolume does not exist directly under upper_limit,
2374 	 * construct the path in from the bottom up.
2375 	 */
2376 	if (dirid != upper_limit.objectid) {
2377 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2378 
2379 		root = btrfs_get_fs_root(fs_info, treeid, true);
2380 		if (IS_ERR(root)) {
2381 			ret = PTR_ERR(root);
2382 			goto out;
2383 		}
2384 
2385 		key.objectid = dirid;
2386 		key.type = BTRFS_INODE_REF_KEY;
2387 		key.offset = (u64)-1;
2388 		while (1) {
2389 			ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2390 			if (ret < 0) {
2391 				goto out_put;
2392 			} else if (ret > 0) {
2393 				ret = btrfs_previous_item(root, path, dirid,
2394 							  BTRFS_INODE_REF_KEY);
2395 				if (ret < 0) {
2396 					goto out_put;
2397 				} else if (ret > 0) {
2398 					ret = -ENOENT;
2399 					goto out_put;
2400 				}
2401 			}
2402 
2403 			leaf = path->nodes[0];
2404 			slot = path->slots[0];
2405 			btrfs_item_key_to_cpu(leaf, &key, slot);
2406 
2407 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2408 			len = btrfs_inode_ref_name_len(leaf, iref);
2409 			ptr -= len + 1;
2410 			total_len += len + 1;
2411 			if (ptr < args->path) {
2412 				ret = -ENAMETOOLONG;
2413 				goto out_put;
2414 			}
2415 
2416 			*(ptr + len) = '/';
2417 			read_extent_buffer(leaf, ptr,
2418 					(unsigned long)(iref + 1), len);
2419 
2420 			/* Check the read+exec permission of this directory */
2421 			ret = btrfs_previous_item(root, path, dirid,
2422 						  BTRFS_INODE_ITEM_KEY);
2423 			if (ret < 0) {
2424 				goto out_put;
2425 			} else if (ret > 0) {
2426 				ret = -ENOENT;
2427 				goto out_put;
2428 			}
2429 
2430 			leaf = path->nodes[0];
2431 			slot = path->slots[0];
2432 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2433 			if (key2.objectid != dirid) {
2434 				ret = -ENOENT;
2435 				goto out_put;
2436 			}
2437 
2438 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2439 			if (IS_ERR(temp_inode)) {
2440 				ret = PTR_ERR(temp_inode);
2441 				goto out_put;
2442 			}
2443 			ret = inode_permission(&init_user_ns, temp_inode,
2444 					       MAY_READ | MAY_EXEC);
2445 			iput(temp_inode);
2446 			if (ret) {
2447 				ret = -EACCES;
2448 				goto out_put;
2449 			}
2450 
2451 			if (key.offset == upper_limit.objectid)
2452 				break;
2453 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2454 				ret = -EACCES;
2455 				goto out_put;
2456 			}
2457 
2458 			btrfs_release_path(path);
2459 			key.objectid = key.offset;
2460 			key.offset = (u64)-1;
2461 			dirid = key.objectid;
2462 		}
2463 
2464 		memmove(args->path, ptr, total_len);
2465 		args->path[total_len] = '\0';
2466 		btrfs_put_root(root);
2467 		root = NULL;
2468 		btrfs_release_path(path);
2469 	}
2470 
2471 	/* Get the bottom subvolume's name from ROOT_REF */
2472 	key.objectid = treeid;
2473 	key.type = BTRFS_ROOT_REF_KEY;
2474 	key.offset = args->treeid;
2475 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2476 	if (ret < 0) {
2477 		goto out;
2478 	} else if (ret > 0) {
2479 		ret = -ENOENT;
2480 		goto out;
2481 	}
2482 
2483 	leaf = path->nodes[0];
2484 	slot = path->slots[0];
2485 	btrfs_item_key_to_cpu(leaf, &key, slot);
2486 
2487 	item_off = btrfs_item_ptr_offset(leaf, slot);
2488 	item_len = btrfs_item_size_nr(leaf, slot);
2489 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2490 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2491 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2492 		ret = -EINVAL;
2493 		goto out;
2494 	}
2495 
2496 	/* Copy subvolume's name */
2497 	item_off += sizeof(struct btrfs_root_ref);
2498 	item_len -= sizeof(struct btrfs_root_ref);
2499 	read_extent_buffer(leaf, args->name, item_off, item_len);
2500 	args->name[item_len] = 0;
2501 
2502 out_put:
2503 	btrfs_put_root(root);
2504 out:
2505 	btrfs_free_path(path);
2506 	return ret;
2507 }
2508 
2509 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2510 					   void __user *argp)
2511 {
2512 	struct btrfs_ioctl_ino_lookup_args *args;
2513 	struct inode *inode;
2514 	int ret = 0;
2515 
2516 	args = memdup_user(argp, sizeof(*args));
2517 	if (IS_ERR(args))
2518 		return PTR_ERR(args);
2519 
2520 	inode = file_inode(file);
2521 
2522 	/*
2523 	 * Unprivileged query to obtain the containing subvolume root id. The
2524 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2525 	 */
2526 	if (args->treeid == 0)
2527 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2528 
2529 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2530 		args->name[0] = 0;
2531 		goto out;
2532 	}
2533 
2534 	if (!capable(CAP_SYS_ADMIN)) {
2535 		ret = -EPERM;
2536 		goto out;
2537 	}
2538 
2539 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2540 					args->treeid, args->objectid,
2541 					args->name);
2542 
2543 out:
2544 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2545 		ret = -EFAULT;
2546 
2547 	kfree(args);
2548 	return ret;
2549 }
2550 
2551 /*
2552  * Version of ino_lookup ioctl (unprivileged)
2553  *
2554  * The main differences from ino_lookup ioctl are:
2555  *
2556  *   1. Read + Exec permission will be checked using inode_permission() during
2557  *      path construction. -EACCES will be returned in case of failure.
2558  *   2. Path construction will be stopped at the inode number which corresponds
2559  *      to the fd with which this ioctl is called. If constructed path does not
2560  *      exist under fd's inode, -EACCES will be returned.
2561  *   3. The name of bottom subvolume is also searched and filled.
2562  */
2563 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2564 {
2565 	struct btrfs_ioctl_ino_lookup_user_args *args;
2566 	struct inode *inode;
2567 	int ret;
2568 
2569 	args = memdup_user(argp, sizeof(*args));
2570 	if (IS_ERR(args))
2571 		return PTR_ERR(args);
2572 
2573 	inode = file_inode(file);
2574 
2575 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2576 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2577 		/*
2578 		 * The subvolume does not exist under fd with which this is
2579 		 * called
2580 		 */
2581 		kfree(args);
2582 		return -EACCES;
2583 	}
2584 
2585 	ret = btrfs_search_path_in_tree_user(inode, args);
2586 
2587 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2588 		ret = -EFAULT;
2589 
2590 	kfree(args);
2591 	return ret;
2592 }
2593 
2594 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2595 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2596 {
2597 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2598 	struct btrfs_fs_info *fs_info;
2599 	struct btrfs_root *root;
2600 	struct btrfs_path *path;
2601 	struct btrfs_key key;
2602 	struct btrfs_root_item *root_item;
2603 	struct btrfs_root_ref *rref;
2604 	struct extent_buffer *leaf;
2605 	unsigned long item_off;
2606 	unsigned long item_len;
2607 	struct inode *inode;
2608 	int slot;
2609 	int ret = 0;
2610 
2611 	path = btrfs_alloc_path();
2612 	if (!path)
2613 		return -ENOMEM;
2614 
2615 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2616 	if (!subvol_info) {
2617 		btrfs_free_path(path);
2618 		return -ENOMEM;
2619 	}
2620 
2621 	inode = file_inode(file);
2622 	fs_info = BTRFS_I(inode)->root->fs_info;
2623 
2624 	/* Get root_item of inode's subvolume */
2625 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2626 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2627 	if (IS_ERR(root)) {
2628 		ret = PTR_ERR(root);
2629 		goto out_free;
2630 	}
2631 	root_item = &root->root_item;
2632 
2633 	subvol_info->treeid = key.objectid;
2634 
2635 	subvol_info->generation = btrfs_root_generation(root_item);
2636 	subvol_info->flags = btrfs_root_flags(root_item);
2637 
2638 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2639 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2640 						    BTRFS_UUID_SIZE);
2641 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2642 						    BTRFS_UUID_SIZE);
2643 
2644 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2645 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2646 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2647 
2648 	subvol_info->otransid = btrfs_root_otransid(root_item);
2649 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2650 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2651 
2652 	subvol_info->stransid = btrfs_root_stransid(root_item);
2653 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2654 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2655 
2656 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2657 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2658 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2659 
2660 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2661 		/* Search root tree for ROOT_BACKREF of this subvolume */
2662 		key.type = BTRFS_ROOT_BACKREF_KEY;
2663 		key.offset = 0;
2664 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2665 		if (ret < 0) {
2666 			goto out;
2667 		} else if (path->slots[0] >=
2668 			   btrfs_header_nritems(path->nodes[0])) {
2669 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2670 			if (ret < 0) {
2671 				goto out;
2672 			} else if (ret > 0) {
2673 				ret = -EUCLEAN;
2674 				goto out;
2675 			}
2676 		}
2677 
2678 		leaf = path->nodes[0];
2679 		slot = path->slots[0];
2680 		btrfs_item_key_to_cpu(leaf, &key, slot);
2681 		if (key.objectid == subvol_info->treeid &&
2682 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2683 			subvol_info->parent_id = key.offset;
2684 
2685 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2686 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2687 
2688 			item_off = btrfs_item_ptr_offset(leaf, slot)
2689 					+ sizeof(struct btrfs_root_ref);
2690 			item_len = btrfs_item_size_nr(leaf, slot)
2691 					- sizeof(struct btrfs_root_ref);
2692 			read_extent_buffer(leaf, subvol_info->name,
2693 					   item_off, item_len);
2694 		} else {
2695 			ret = -ENOENT;
2696 			goto out;
2697 		}
2698 	}
2699 
2700 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2701 		ret = -EFAULT;
2702 
2703 out:
2704 	btrfs_put_root(root);
2705 out_free:
2706 	btrfs_free_path(path);
2707 	kfree(subvol_info);
2708 	return ret;
2709 }
2710 
2711 /*
2712  * Return ROOT_REF information of the subvolume containing this inode
2713  * except the subvolume name.
2714  */
2715 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2716 {
2717 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2718 	struct btrfs_root_ref *rref;
2719 	struct btrfs_root *root;
2720 	struct btrfs_path *path;
2721 	struct btrfs_key key;
2722 	struct extent_buffer *leaf;
2723 	struct inode *inode;
2724 	u64 objectid;
2725 	int slot;
2726 	int ret;
2727 	u8 found;
2728 
2729 	path = btrfs_alloc_path();
2730 	if (!path)
2731 		return -ENOMEM;
2732 
2733 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2734 	if (IS_ERR(rootrefs)) {
2735 		btrfs_free_path(path);
2736 		return PTR_ERR(rootrefs);
2737 	}
2738 
2739 	inode = file_inode(file);
2740 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2741 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2742 
2743 	key.objectid = objectid;
2744 	key.type = BTRFS_ROOT_REF_KEY;
2745 	key.offset = rootrefs->min_treeid;
2746 	found = 0;
2747 
2748 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2749 	if (ret < 0) {
2750 		goto out;
2751 	} else if (path->slots[0] >=
2752 		   btrfs_header_nritems(path->nodes[0])) {
2753 		ret = btrfs_next_leaf(root, path);
2754 		if (ret < 0) {
2755 			goto out;
2756 		} else if (ret > 0) {
2757 			ret = -EUCLEAN;
2758 			goto out;
2759 		}
2760 	}
2761 	while (1) {
2762 		leaf = path->nodes[0];
2763 		slot = path->slots[0];
2764 
2765 		btrfs_item_key_to_cpu(leaf, &key, slot);
2766 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2767 			ret = 0;
2768 			goto out;
2769 		}
2770 
2771 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2772 			ret = -EOVERFLOW;
2773 			goto out;
2774 		}
2775 
2776 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2777 		rootrefs->rootref[found].treeid = key.offset;
2778 		rootrefs->rootref[found].dirid =
2779 				  btrfs_root_ref_dirid(leaf, rref);
2780 		found++;
2781 
2782 		ret = btrfs_next_item(root, path);
2783 		if (ret < 0) {
2784 			goto out;
2785 		} else if (ret > 0) {
2786 			ret = -EUCLEAN;
2787 			goto out;
2788 		}
2789 	}
2790 
2791 out:
2792 	if (!ret || ret == -EOVERFLOW) {
2793 		rootrefs->num_items = found;
2794 		/* update min_treeid for next search */
2795 		if (found)
2796 			rootrefs->min_treeid =
2797 				rootrefs->rootref[found - 1].treeid + 1;
2798 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2799 			ret = -EFAULT;
2800 	}
2801 
2802 	kfree(rootrefs);
2803 	btrfs_free_path(path);
2804 
2805 	return ret;
2806 }
2807 
2808 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2809 					     void __user *arg,
2810 					     bool destroy_v2)
2811 {
2812 	struct dentry *parent = file->f_path.dentry;
2813 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2814 	struct dentry *dentry;
2815 	struct inode *dir = d_inode(parent);
2816 	struct inode *inode;
2817 	struct btrfs_root *root = BTRFS_I(dir)->root;
2818 	struct btrfs_root *dest = NULL;
2819 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2820 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2821 	char *subvol_name, *subvol_name_ptr = NULL;
2822 	int subvol_namelen;
2823 	int err = 0;
2824 	bool destroy_parent = false;
2825 
2826 	if (destroy_v2) {
2827 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2828 		if (IS_ERR(vol_args2))
2829 			return PTR_ERR(vol_args2);
2830 
2831 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2832 			err = -EOPNOTSUPP;
2833 			goto out;
2834 		}
2835 
2836 		/*
2837 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2838 		 * name, same as v1 currently does.
2839 		 */
2840 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2841 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2842 			subvol_name = vol_args2->name;
2843 
2844 			err = mnt_want_write_file(file);
2845 			if (err)
2846 				goto out;
2847 		} else {
2848 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2849 				err = -EINVAL;
2850 				goto out;
2851 			}
2852 
2853 			err = mnt_want_write_file(file);
2854 			if (err)
2855 				goto out;
2856 
2857 			dentry = btrfs_get_dentry(fs_info->sb,
2858 					BTRFS_FIRST_FREE_OBJECTID,
2859 					vol_args2->subvolid, 0, 0);
2860 			if (IS_ERR(dentry)) {
2861 				err = PTR_ERR(dentry);
2862 				goto out_drop_write;
2863 			}
2864 
2865 			/*
2866 			 * Change the default parent since the subvolume being
2867 			 * deleted can be outside of the current mount point.
2868 			 */
2869 			parent = btrfs_get_parent(dentry);
2870 
2871 			/*
2872 			 * At this point dentry->d_name can point to '/' if the
2873 			 * subvolume we want to destroy is outsite of the
2874 			 * current mount point, so we need to release the
2875 			 * current dentry and execute the lookup to return a new
2876 			 * one with ->d_name pointing to the
2877 			 * <mount point>/subvol_name.
2878 			 */
2879 			dput(dentry);
2880 			if (IS_ERR(parent)) {
2881 				err = PTR_ERR(parent);
2882 				goto out_drop_write;
2883 			}
2884 			dir = d_inode(parent);
2885 
2886 			/*
2887 			 * If v2 was used with SPEC_BY_ID, a new parent was
2888 			 * allocated since the subvolume can be outside of the
2889 			 * current mount point. Later on we need to release this
2890 			 * new parent dentry.
2891 			 */
2892 			destroy_parent = true;
2893 
2894 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2895 						fs_info, vol_args2->subvolid);
2896 			if (IS_ERR(subvol_name_ptr)) {
2897 				err = PTR_ERR(subvol_name_ptr);
2898 				goto free_parent;
2899 			}
2900 			/* subvol_name_ptr is already NULL termined */
2901 			subvol_name = (char *)kbasename(subvol_name_ptr);
2902 		}
2903 	} else {
2904 		vol_args = memdup_user(arg, sizeof(*vol_args));
2905 		if (IS_ERR(vol_args))
2906 			return PTR_ERR(vol_args);
2907 
2908 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2909 		subvol_name = vol_args->name;
2910 
2911 		err = mnt_want_write_file(file);
2912 		if (err)
2913 			goto out;
2914 	}
2915 
2916 	subvol_namelen = strlen(subvol_name);
2917 
2918 	if (strchr(subvol_name, '/') ||
2919 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
2920 		err = -EINVAL;
2921 		goto free_subvol_name;
2922 	}
2923 
2924 	if (!S_ISDIR(dir->i_mode)) {
2925 		err = -ENOTDIR;
2926 		goto free_subvol_name;
2927 	}
2928 
2929 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
2930 	if (err == -EINTR)
2931 		goto free_subvol_name;
2932 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
2933 	if (IS_ERR(dentry)) {
2934 		err = PTR_ERR(dentry);
2935 		goto out_unlock_dir;
2936 	}
2937 
2938 	if (d_really_is_negative(dentry)) {
2939 		err = -ENOENT;
2940 		goto out_dput;
2941 	}
2942 
2943 	inode = d_inode(dentry);
2944 	dest = BTRFS_I(inode)->root;
2945 	if (!capable(CAP_SYS_ADMIN)) {
2946 		/*
2947 		 * Regular user.  Only allow this with a special mount
2948 		 * option, when the user has write+exec access to the
2949 		 * subvol root, and when rmdir(2) would have been
2950 		 * allowed.
2951 		 *
2952 		 * Note that this is _not_ check that the subvol is
2953 		 * empty or doesn't contain data that we wouldn't
2954 		 * otherwise be able to delete.
2955 		 *
2956 		 * Users who want to delete empty subvols should try
2957 		 * rmdir(2).
2958 		 */
2959 		err = -EPERM;
2960 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
2961 			goto out_dput;
2962 
2963 		/*
2964 		 * Do not allow deletion if the parent dir is the same
2965 		 * as the dir to be deleted.  That means the ioctl
2966 		 * must be called on the dentry referencing the root
2967 		 * of the subvol, not a random directory contained
2968 		 * within it.
2969 		 */
2970 		err = -EINVAL;
2971 		if (root == dest)
2972 			goto out_dput;
2973 
2974 		err = inode_permission(&init_user_ns, inode,
2975 				       MAY_WRITE | MAY_EXEC);
2976 		if (err)
2977 			goto out_dput;
2978 	}
2979 
2980 	/* check if subvolume may be deleted by a user */
2981 	err = btrfs_may_delete(dir, dentry, 1);
2982 	if (err)
2983 		goto out_dput;
2984 
2985 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
2986 		err = -EINVAL;
2987 		goto out_dput;
2988 	}
2989 
2990 	btrfs_inode_lock(inode, 0);
2991 	err = btrfs_delete_subvolume(dir, dentry);
2992 	btrfs_inode_unlock(inode, 0);
2993 	if (!err) {
2994 		fsnotify_rmdir(dir, dentry);
2995 		d_delete(dentry);
2996 	}
2997 
2998 out_dput:
2999 	dput(dentry);
3000 out_unlock_dir:
3001 	btrfs_inode_unlock(dir, 0);
3002 free_subvol_name:
3003 	kfree(subvol_name_ptr);
3004 free_parent:
3005 	if (destroy_parent)
3006 		dput(parent);
3007 out_drop_write:
3008 	mnt_drop_write_file(file);
3009 out:
3010 	kfree(vol_args2);
3011 	kfree(vol_args);
3012 	return err;
3013 }
3014 
3015 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3016 {
3017 	struct inode *inode = file_inode(file);
3018 	struct btrfs_root *root = BTRFS_I(inode)->root;
3019 	struct btrfs_ioctl_defrag_range_args *range;
3020 	int ret;
3021 
3022 	ret = mnt_want_write_file(file);
3023 	if (ret)
3024 		return ret;
3025 
3026 	if (btrfs_root_readonly(root)) {
3027 		ret = -EROFS;
3028 		goto out;
3029 	}
3030 
3031 	switch (inode->i_mode & S_IFMT) {
3032 	case S_IFDIR:
3033 		if (!capable(CAP_SYS_ADMIN)) {
3034 			ret = -EPERM;
3035 			goto out;
3036 		}
3037 		ret = btrfs_defrag_root(root);
3038 		break;
3039 	case S_IFREG:
3040 		/*
3041 		 * Note that this does not check the file descriptor for write
3042 		 * access. This prevents defragmenting executables that are
3043 		 * running and allows defrag on files open in read-only mode.
3044 		 */
3045 		if (!capable(CAP_SYS_ADMIN) &&
3046 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3047 			ret = -EPERM;
3048 			goto out;
3049 		}
3050 
3051 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3052 		if (!range) {
3053 			ret = -ENOMEM;
3054 			goto out;
3055 		}
3056 
3057 		if (argp) {
3058 			if (copy_from_user(range, argp,
3059 					   sizeof(*range))) {
3060 				ret = -EFAULT;
3061 				kfree(range);
3062 				goto out;
3063 			}
3064 			/* compression requires us to start the IO */
3065 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3066 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3067 				range->extent_thresh = (u32)-1;
3068 			}
3069 		} else {
3070 			/* the rest are all set to zero by kzalloc */
3071 			range->len = (u64)-1;
3072 		}
3073 		ret = btrfs_defrag_file(file_inode(file), file,
3074 					range, BTRFS_OLDEST_GENERATION, 0);
3075 		if (ret > 0)
3076 			ret = 0;
3077 		kfree(range);
3078 		break;
3079 	default:
3080 		ret = -EINVAL;
3081 	}
3082 out:
3083 	mnt_drop_write_file(file);
3084 	return ret;
3085 }
3086 
3087 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3088 {
3089 	struct btrfs_ioctl_vol_args *vol_args;
3090 	int ret;
3091 
3092 	if (!capable(CAP_SYS_ADMIN))
3093 		return -EPERM;
3094 
3095 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3096 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3097 
3098 	vol_args = memdup_user(arg, sizeof(*vol_args));
3099 	if (IS_ERR(vol_args)) {
3100 		ret = PTR_ERR(vol_args);
3101 		goto out;
3102 	}
3103 
3104 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3105 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3106 
3107 	if (!ret)
3108 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3109 
3110 	kfree(vol_args);
3111 out:
3112 	btrfs_exclop_finish(fs_info);
3113 	return ret;
3114 }
3115 
3116 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3117 {
3118 	struct inode *inode = file_inode(file);
3119 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3120 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3121 	int ret;
3122 
3123 	if (!capable(CAP_SYS_ADMIN))
3124 		return -EPERM;
3125 
3126 	ret = mnt_want_write_file(file);
3127 	if (ret)
3128 		return ret;
3129 
3130 	vol_args = memdup_user(arg, sizeof(*vol_args));
3131 	if (IS_ERR(vol_args)) {
3132 		ret = PTR_ERR(vol_args);
3133 		goto err_drop;
3134 	}
3135 
3136 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3137 		ret = -EOPNOTSUPP;
3138 		goto out;
3139 	}
3140 
3141 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3142 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3143 		goto out;
3144 	}
3145 
3146 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) {
3147 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3148 	} else {
3149 		vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3150 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3151 	}
3152 	btrfs_exclop_finish(fs_info);
3153 
3154 	if (!ret) {
3155 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3156 			btrfs_info(fs_info, "device deleted: id %llu",
3157 					vol_args->devid);
3158 		else
3159 			btrfs_info(fs_info, "device deleted: %s",
3160 					vol_args->name);
3161 	}
3162 out:
3163 	kfree(vol_args);
3164 err_drop:
3165 	mnt_drop_write_file(file);
3166 	return ret;
3167 }
3168 
3169 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3170 {
3171 	struct inode *inode = file_inode(file);
3172 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3173 	struct btrfs_ioctl_vol_args *vol_args;
3174 	int ret;
3175 
3176 	if (!capable(CAP_SYS_ADMIN))
3177 		return -EPERM;
3178 
3179 	ret = mnt_want_write_file(file);
3180 	if (ret)
3181 		return ret;
3182 
3183 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REMOVE)) {
3184 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3185 		goto out_drop_write;
3186 	}
3187 
3188 	vol_args = memdup_user(arg, sizeof(*vol_args));
3189 	if (IS_ERR(vol_args)) {
3190 		ret = PTR_ERR(vol_args);
3191 		goto out;
3192 	}
3193 
3194 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3195 	ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3196 
3197 	if (!ret)
3198 		btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3199 	kfree(vol_args);
3200 out:
3201 	btrfs_exclop_finish(fs_info);
3202 out_drop_write:
3203 	mnt_drop_write_file(file);
3204 
3205 	return ret;
3206 }
3207 
3208 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3209 				void __user *arg)
3210 {
3211 	struct btrfs_ioctl_fs_info_args *fi_args;
3212 	struct btrfs_device *device;
3213 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3214 	u64 flags_in;
3215 	int ret = 0;
3216 
3217 	fi_args = memdup_user(arg, sizeof(*fi_args));
3218 	if (IS_ERR(fi_args))
3219 		return PTR_ERR(fi_args);
3220 
3221 	flags_in = fi_args->flags;
3222 	memset(fi_args, 0, sizeof(*fi_args));
3223 
3224 	rcu_read_lock();
3225 	fi_args->num_devices = fs_devices->num_devices;
3226 
3227 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3228 		if (device->devid > fi_args->max_id)
3229 			fi_args->max_id = device->devid;
3230 	}
3231 	rcu_read_unlock();
3232 
3233 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3234 	fi_args->nodesize = fs_info->nodesize;
3235 	fi_args->sectorsize = fs_info->sectorsize;
3236 	fi_args->clone_alignment = fs_info->sectorsize;
3237 
3238 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3239 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3240 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3241 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3242 	}
3243 
3244 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3245 		fi_args->generation = fs_info->generation;
3246 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3247 	}
3248 
3249 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3250 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3251 		       sizeof(fi_args->metadata_uuid));
3252 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3253 	}
3254 
3255 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3256 		ret = -EFAULT;
3257 
3258 	kfree(fi_args);
3259 	return ret;
3260 }
3261 
3262 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3263 				 void __user *arg)
3264 {
3265 	struct btrfs_ioctl_dev_info_args *di_args;
3266 	struct btrfs_device *dev;
3267 	int ret = 0;
3268 	char *s_uuid = NULL;
3269 
3270 	di_args = memdup_user(arg, sizeof(*di_args));
3271 	if (IS_ERR(di_args))
3272 		return PTR_ERR(di_args);
3273 
3274 	if (!btrfs_is_empty_uuid(di_args->uuid))
3275 		s_uuid = di_args->uuid;
3276 
3277 	rcu_read_lock();
3278 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3279 				NULL);
3280 
3281 	if (!dev) {
3282 		ret = -ENODEV;
3283 		goto out;
3284 	}
3285 
3286 	di_args->devid = dev->devid;
3287 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3288 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3289 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3290 	if (dev->name) {
3291 		strncpy(di_args->path, rcu_str_deref(dev->name),
3292 				sizeof(di_args->path) - 1);
3293 		di_args->path[sizeof(di_args->path) - 1] = 0;
3294 	} else {
3295 		di_args->path[0] = '\0';
3296 	}
3297 
3298 out:
3299 	rcu_read_unlock();
3300 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3301 		ret = -EFAULT;
3302 
3303 	kfree(di_args);
3304 	return ret;
3305 }
3306 
3307 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3308 {
3309 	struct inode *inode = file_inode(file);
3310 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3311 	struct btrfs_root *root = BTRFS_I(inode)->root;
3312 	struct btrfs_root *new_root;
3313 	struct btrfs_dir_item *di;
3314 	struct btrfs_trans_handle *trans;
3315 	struct btrfs_path *path = NULL;
3316 	struct btrfs_disk_key disk_key;
3317 	u64 objectid = 0;
3318 	u64 dir_id;
3319 	int ret;
3320 
3321 	if (!capable(CAP_SYS_ADMIN))
3322 		return -EPERM;
3323 
3324 	ret = mnt_want_write_file(file);
3325 	if (ret)
3326 		return ret;
3327 
3328 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3329 		ret = -EFAULT;
3330 		goto out;
3331 	}
3332 
3333 	if (!objectid)
3334 		objectid = BTRFS_FS_TREE_OBJECTID;
3335 
3336 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3337 	if (IS_ERR(new_root)) {
3338 		ret = PTR_ERR(new_root);
3339 		goto out;
3340 	}
3341 	if (!is_fstree(new_root->root_key.objectid)) {
3342 		ret = -ENOENT;
3343 		goto out_free;
3344 	}
3345 
3346 	path = btrfs_alloc_path();
3347 	if (!path) {
3348 		ret = -ENOMEM;
3349 		goto out_free;
3350 	}
3351 
3352 	trans = btrfs_start_transaction(root, 1);
3353 	if (IS_ERR(trans)) {
3354 		ret = PTR_ERR(trans);
3355 		goto out_free;
3356 	}
3357 
3358 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3359 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3360 				   dir_id, "default", 7, 1);
3361 	if (IS_ERR_OR_NULL(di)) {
3362 		btrfs_release_path(path);
3363 		btrfs_end_transaction(trans);
3364 		btrfs_err(fs_info,
3365 			  "Umm, you don't have the default diritem, this isn't going to work");
3366 		ret = -ENOENT;
3367 		goto out_free;
3368 	}
3369 
3370 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3371 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3372 	btrfs_mark_buffer_dirty(path->nodes[0]);
3373 	btrfs_release_path(path);
3374 
3375 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3376 	btrfs_end_transaction(trans);
3377 out_free:
3378 	btrfs_put_root(new_root);
3379 	btrfs_free_path(path);
3380 out:
3381 	mnt_drop_write_file(file);
3382 	return ret;
3383 }
3384 
3385 static void get_block_group_info(struct list_head *groups_list,
3386 				 struct btrfs_ioctl_space_info *space)
3387 {
3388 	struct btrfs_block_group *block_group;
3389 
3390 	space->total_bytes = 0;
3391 	space->used_bytes = 0;
3392 	space->flags = 0;
3393 	list_for_each_entry(block_group, groups_list, list) {
3394 		space->flags = block_group->flags;
3395 		space->total_bytes += block_group->length;
3396 		space->used_bytes += block_group->used;
3397 	}
3398 }
3399 
3400 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3401 				   void __user *arg)
3402 {
3403 	struct btrfs_ioctl_space_args space_args;
3404 	struct btrfs_ioctl_space_info space;
3405 	struct btrfs_ioctl_space_info *dest;
3406 	struct btrfs_ioctl_space_info *dest_orig;
3407 	struct btrfs_ioctl_space_info __user *user_dest;
3408 	struct btrfs_space_info *info;
3409 	static const u64 types[] = {
3410 		BTRFS_BLOCK_GROUP_DATA,
3411 		BTRFS_BLOCK_GROUP_SYSTEM,
3412 		BTRFS_BLOCK_GROUP_METADATA,
3413 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3414 	};
3415 	int num_types = 4;
3416 	int alloc_size;
3417 	int ret = 0;
3418 	u64 slot_count = 0;
3419 	int i, c;
3420 
3421 	if (copy_from_user(&space_args,
3422 			   (struct btrfs_ioctl_space_args __user *)arg,
3423 			   sizeof(space_args)))
3424 		return -EFAULT;
3425 
3426 	for (i = 0; i < num_types; i++) {
3427 		struct btrfs_space_info *tmp;
3428 
3429 		info = NULL;
3430 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3431 			if (tmp->flags == types[i]) {
3432 				info = tmp;
3433 				break;
3434 			}
3435 		}
3436 
3437 		if (!info)
3438 			continue;
3439 
3440 		down_read(&info->groups_sem);
3441 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3442 			if (!list_empty(&info->block_groups[c]))
3443 				slot_count++;
3444 		}
3445 		up_read(&info->groups_sem);
3446 	}
3447 
3448 	/*
3449 	 * Global block reserve, exported as a space_info
3450 	 */
3451 	slot_count++;
3452 
3453 	/* space_slots == 0 means they are asking for a count */
3454 	if (space_args.space_slots == 0) {
3455 		space_args.total_spaces = slot_count;
3456 		goto out;
3457 	}
3458 
3459 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3460 
3461 	alloc_size = sizeof(*dest) * slot_count;
3462 
3463 	/* we generally have at most 6 or so space infos, one for each raid
3464 	 * level.  So, a whole page should be more than enough for everyone
3465 	 */
3466 	if (alloc_size > PAGE_SIZE)
3467 		return -ENOMEM;
3468 
3469 	space_args.total_spaces = 0;
3470 	dest = kmalloc(alloc_size, GFP_KERNEL);
3471 	if (!dest)
3472 		return -ENOMEM;
3473 	dest_orig = dest;
3474 
3475 	/* now we have a buffer to copy into */
3476 	for (i = 0; i < num_types; i++) {
3477 		struct btrfs_space_info *tmp;
3478 
3479 		if (!slot_count)
3480 			break;
3481 
3482 		info = NULL;
3483 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3484 			if (tmp->flags == types[i]) {
3485 				info = tmp;
3486 				break;
3487 			}
3488 		}
3489 
3490 		if (!info)
3491 			continue;
3492 		down_read(&info->groups_sem);
3493 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3494 			if (!list_empty(&info->block_groups[c])) {
3495 				get_block_group_info(&info->block_groups[c],
3496 						     &space);
3497 				memcpy(dest, &space, sizeof(space));
3498 				dest++;
3499 				space_args.total_spaces++;
3500 				slot_count--;
3501 			}
3502 			if (!slot_count)
3503 				break;
3504 		}
3505 		up_read(&info->groups_sem);
3506 	}
3507 
3508 	/*
3509 	 * Add global block reserve
3510 	 */
3511 	if (slot_count) {
3512 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3513 
3514 		spin_lock(&block_rsv->lock);
3515 		space.total_bytes = block_rsv->size;
3516 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3517 		spin_unlock(&block_rsv->lock);
3518 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3519 		memcpy(dest, &space, sizeof(space));
3520 		space_args.total_spaces++;
3521 	}
3522 
3523 	user_dest = (struct btrfs_ioctl_space_info __user *)
3524 		(arg + sizeof(struct btrfs_ioctl_space_args));
3525 
3526 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3527 		ret = -EFAULT;
3528 
3529 	kfree(dest_orig);
3530 out:
3531 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3532 		ret = -EFAULT;
3533 
3534 	return ret;
3535 }
3536 
3537 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3538 					    void __user *argp)
3539 {
3540 	struct btrfs_trans_handle *trans;
3541 	u64 transid;
3542 	int ret;
3543 
3544 	trans = btrfs_attach_transaction_barrier(root);
3545 	if (IS_ERR(trans)) {
3546 		if (PTR_ERR(trans) != -ENOENT)
3547 			return PTR_ERR(trans);
3548 
3549 		/* No running transaction, don't bother */
3550 		transid = root->fs_info->last_trans_committed;
3551 		goto out;
3552 	}
3553 	transid = trans->transid;
3554 	ret = btrfs_commit_transaction_async(trans, 0);
3555 	if (ret) {
3556 		btrfs_end_transaction(trans);
3557 		return ret;
3558 	}
3559 out:
3560 	if (argp)
3561 		if (copy_to_user(argp, &transid, sizeof(transid)))
3562 			return -EFAULT;
3563 	return 0;
3564 }
3565 
3566 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3567 					   void __user *argp)
3568 {
3569 	u64 transid;
3570 
3571 	if (argp) {
3572 		if (copy_from_user(&transid, argp, sizeof(transid)))
3573 			return -EFAULT;
3574 	} else {
3575 		transid = 0;  /* current trans */
3576 	}
3577 	return btrfs_wait_for_commit(fs_info, transid);
3578 }
3579 
3580 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3581 {
3582 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3583 	struct btrfs_ioctl_scrub_args *sa;
3584 	int ret;
3585 
3586 	if (!capable(CAP_SYS_ADMIN))
3587 		return -EPERM;
3588 
3589 	sa = memdup_user(arg, sizeof(*sa));
3590 	if (IS_ERR(sa))
3591 		return PTR_ERR(sa);
3592 
3593 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3594 		ret = mnt_want_write_file(file);
3595 		if (ret)
3596 			goto out;
3597 	}
3598 
3599 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3600 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3601 			      0);
3602 
3603 	/*
3604 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3605 	 * error. This is important as it allows user space to know how much
3606 	 * progress scrub has done. For example, if scrub is canceled we get
3607 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3608 	 * space. Later user space can inspect the progress from the structure
3609 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3610 	 * previously (btrfs-progs does this).
3611 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3612 	 * then return -EFAULT to signal the structure was not copied or it may
3613 	 * be corrupt and unreliable due to a partial copy.
3614 	 */
3615 	if (copy_to_user(arg, sa, sizeof(*sa)))
3616 		ret = -EFAULT;
3617 
3618 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3619 		mnt_drop_write_file(file);
3620 out:
3621 	kfree(sa);
3622 	return ret;
3623 }
3624 
3625 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3626 {
3627 	if (!capable(CAP_SYS_ADMIN))
3628 		return -EPERM;
3629 
3630 	return btrfs_scrub_cancel(fs_info);
3631 }
3632 
3633 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3634 				       void __user *arg)
3635 {
3636 	struct btrfs_ioctl_scrub_args *sa;
3637 	int ret;
3638 
3639 	if (!capable(CAP_SYS_ADMIN))
3640 		return -EPERM;
3641 
3642 	sa = memdup_user(arg, sizeof(*sa));
3643 	if (IS_ERR(sa))
3644 		return PTR_ERR(sa);
3645 
3646 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3647 
3648 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3649 		ret = -EFAULT;
3650 
3651 	kfree(sa);
3652 	return ret;
3653 }
3654 
3655 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3656 				      void __user *arg)
3657 {
3658 	struct btrfs_ioctl_get_dev_stats *sa;
3659 	int ret;
3660 
3661 	sa = memdup_user(arg, sizeof(*sa));
3662 	if (IS_ERR(sa))
3663 		return PTR_ERR(sa);
3664 
3665 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3666 		kfree(sa);
3667 		return -EPERM;
3668 	}
3669 
3670 	ret = btrfs_get_dev_stats(fs_info, sa);
3671 
3672 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3673 		ret = -EFAULT;
3674 
3675 	kfree(sa);
3676 	return ret;
3677 }
3678 
3679 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3680 				    void __user *arg)
3681 {
3682 	struct btrfs_ioctl_dev_replace_args *p;
3683 	int ret;
3684 
3685 	if (!capable(CAP_SYS_ADMIN))
3686 		return -EPERM;
3687 
3688 	p = memdup_user(arg, sizeof(*p));
3689 	if (IS_ERR(p))
3690 		return PTR_ERR(p);
3691 
3692 	switch (p->cmd) {
3693 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3694 		if (sb_rdonly(fs_info->sb)) {
3695 			ret = -EROFS;
3696 			goto out;
3697 		}
3698 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3699 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3700 		} else {
3701 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3702 			btrfs_exclop_finish(fs_info);
3703 		}
3704 		break;
3705 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3706 		btrfs_dev_replace_status(fs_info, p);
3707 		ret = 0;
3708 		break;
3709 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3710 		p->result = btrfs_dev_replace_cancel(fs_info);
3711 		ret = 0;
3712 		break;
3713 	default:
3714 		ret = -EINVAL;
3715 		break;
3716 	}
3717 
3718 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3719 		ret = -EFAULT;
3720 out:
3721 	kfree(p);
3722 	return ret;
3723 }
3724 
3725 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3726 {
3727 	int ret = 0;
3728 	int i;
3729 	u64 rel_ptr;
3730 	int size;
3731 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3732 	struct inode_fs_paths *ipath = NULL;
3733 	struct btrfs_path *path;
3734 
3735 	if (!capable(CAP_DAC_READ_SEARCH))
3736 		return -EPERM;
3737 
3738 	path = btrfs_alloc_path();
3739 	if (!path) {
3740 		ret = -ENOMEM;
3741 		goto out;
3742 	}
3743 
3744 	ipa = memdup_user(arg, sizeof(*ipa));
3745 	if (IS_ERR(ipa)) {
3746 		ret = PTR_ERR(ipa);
3747 		ipa = NULL;
3748 		goto out;
3749 	}
3750 
3751 	size = min_t(u32, ipa->size, 4096);
3752 	ipath = init_ipath(size, root, path);
3753 	if (IS_ERR(ipath)) {
3754 		ret = PTR_ERR(ipath);
3755 		ipath = NULL;
3756 		goto out;
3757 	}
3758 
3759 	ret = paths_from_inode(ipa->inum, ipath);
3760 	if (ret < 0)
3761 		goto out;
3762 
3763 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3764 		rel_ptr = ipath->fspath->val[i] -
3765 			  (u64)(unsigned long)ipath->fspath->val;
3766 		ipath->fspath->val[i] = rel_ptr;
3767 	}
3768 
3769 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3770 			   ipath->fspath, size);
3771 	if (ret) {
3772 		ret = -EFAULT;
3773 		goto out;
3774 	}
3775 
3776 out:
3777 	btrfs_free_path(path);
3778 	free_ipath(ipath);
3779 	kfree(ipa);
3780 
3781 	return ret;
3782 }
3783 
3784 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3785 {
3786 	struct btrfs_data_container *inodes = ctx;
3787 	const size_t c = 3 * sizeof(u64);
3788 
3789 	if (inodes->bytes_left >= c) {
3790 		inodes->bytes_left -= c;
3791 		inodes->val[inodes->elem_cnt] = inum;
3792 		inodes->val[inodes->elem_cnt + 1] = offset;
3793 		inodes->val[inodes->elem_cnt + 2] = root;
3794 		inodes->elem_cnt += 3;
3795 	} else {
3796 		inodes->bytes_missing += c - inodes->bytes_left;
3797 		inodes->bytes_left = 0;
3798 		inodes->elem_missed += 3;
3799 	}
3800 
3801 	return 0;
3802 }
3803 
3804 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3805 					void __user *arg, int version)
3806 {
3807 	int ret = 0;
3808 	int size;
3809 	struct btrfs_ioctl_logical_ino_args *loi;
3810 	struct btrfs_data_container *inodes = NULL;
3811 	struct btrfs_path *path = NULL;
3812 	bool ignore_offset;
3813 
3814 	if (!capable(CAP_SYS_ADMIN))
3815 		return -EPERM;
3816 
3817 	loi = memdup_user(arg, sizeof(*loi));
3818 	if (IS_ERR(loi))
3819 		return PTR_ERR(loi);
3820 
3821 	if (version == 1) {
3822 		ignore_offset = false;
3823 		size = min_t(u32, loi->size, SZ_64K);
3824 	} else {
3825 		/* All reserved bits must be 0 for now */
3826 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3827 			ret = -EINVAL;
3828 			goto out_loi;
3829 		}
3830 		/* Only accept flags we have defined so far */
3831 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3832 			ret = -EINVAL;
3833 			goto out_loi;
3834 		}
3835 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3836 		size = min_t(u32, loi->size, SZ_16M);
3837 	}
3838 
3839 	path = btrfs_alloc_path();
3840 	if (!path) {
3841 		ret = -ENOMEM;
3842 		goto out;
3843 	}
3844 
3845 	inodes = init_data_container(size);
3846 	if (IS_ERR(inodes)) {
3847 		ret = PTR_ERR(inodes);
3848 		inodes = NULL;
3849 		goto out;
3850 	}
3851 
3852 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3853 					  build_ino_list, inodes, ignore_offset);
3854 	if (ret == -EINVAL)
3855 		ret = -ENOENT;
3856 	if (ret < 0)
3857 		goto out;
3858 
3859 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3860 			   size);
3861 	if (ret)
3862 		ret = -EFAULT;
3863 
3864 out:
3865 	btrfs_free_path(path);
3866 	kvfree(inodes);
3867 out_loi:
3868 	kfree(loi);
3869 
3870 	return ret;
3871 }
3872 
3873 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3874 			       struct btrfs_ioctl_balance_args *bargs)
3875 {
3876 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3877 
3878 	bargs->flags = bctl->flags;
3879 
3880 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3881 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3882 	if (atomic_read(&fs_info->balance_pause_req))
3883 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3884 	if (atomic_read(&fs_info->balance_cancel_req))
3885 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3886 
3887 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3888 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3889 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3890 
3891 	spin_lock(&fs_info->balance_lock);
3892 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3893 	spin_unlock(&fs_info->balance_lock);
3894 }
3895 
3896 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3897 {
3898 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3899 	struct btrfs_fs_info *fs_info = root->fs_info;
3900 	struct btrfs_ioctl_balance_args *bargs;
3901 	struct btrfs_balance_control *bctl;
3902 	bool need_unlock; /* for mut. excl. ops lock */
3903 	int ret;
3904 
3905 	if (!capable(CAP_SYS_ADMIN))
3906 		return -EPERM;
3907 
3908 	ret = mnt_want_write_file(file);
3909 	if (ret)
3910 		return ret;
3911 
3912 again:
3913 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
3914 		mutex_lock(&fs_info->balance_mutex);
3915 		need_unlock = true;
3916 		goto locked;
3917 	}
3918 
3919 	/*
3920 	 * mut. excl. ops lock is locked.  Three possibilities:
3921 	 *   (1) some other op is running
3922 	 *   (2) balance is running
3923 	 *   (3) balance is paused -- special case (think resume)
3924 	 */
3925 	mutex_lock(&fs_info->balance_mutex);
3926 	if (fs_info->balance_ctl) {
3927 		/* this is either (2) or (3) */
3928 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3929 			mutex_unlock(&fs_info->balance_mutex);
3930 			/*
3931 			 * Lock released to allow other waiters to continue,
3932 			 * we'll reexamine the status again.
3933 			 */
3934 			mutex_lock(&fs_info->balance_mutex);
3935 
3936 			if (fs_info->balance_ctl &&
3937 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
3938 				/* this is (3) */
3939 				need_unlock = false;
3940 				goto locked;
3941 			}
3942 
3943 			mutex_unlock(&fs_info->balance_mutex);
3944 			goto again;
3945 		} else {
3946 			/* this is (2) */
3947 			mutex_unlock(&fs_info->balance_mutex);
3948 			ret = -EINPROGRESS;
3949 			goto out;
3950 		}
3951 	} else {
3952 		/* this is (1) */
3953 		mutex_unlock(&fs_info->balance_mutex);
3954 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3955 		goto out;
3956 	}
3957 
3958 locked:
3959 
3960 	if (arg) {
3961 		bargs = memdup_user(arg, sizeof(*bargs));
3962 		if (IS_ERR(bargs)) {
3963 			ret = PTR_ERR(bargs);
3964 			goto out_unlock;
3965 		}
3966 
3967 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
3968 			if (!fs_info->balance_ctl) {
3969 				ret = -ENOTCONN;
3970 				goto out_bargs;
3971 			}
3972 
3973 			bctl = fs_info->balance_ctl;
3974 			spin_lock(&fs_info->balance_lock);
3975 			bctl->flags |= BTRFS_BALANCE_RESUME;
3976 			spin_unlock(&fs_info->balance_lock);
3977 
3978 			goto do_balance;
3979 		}
3980 	} else {
3981 		bargs = NULL;
3982 	}
3983 
3984 	if (fs_info->balance_ctl) {
3985 		ret = -EINPROGRESS;
3986 		goto out_bargs;
3987 	}
3988 
3989 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
3990 	if (!bctl) {
3991 		ret = -ENOMEM;
3992 		goto out_bargs;
3993 	}
3994 
3995 	if (arg) {
3996 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
3997 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
3998 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
3999 
4000 		bctl->flags = bargs->flags;
4001 	} else {
4002 		/* balance everything - no filters */
4003 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4004 	}
4005 
4006 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4007 		ret = -EINVAL;
4008 		goto out_bctl;
4009 	}
4010 
4011 do_balance:
4012 	/*
4013 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4014 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4015 	 * all the way until unmount, in free_fs_info.  The flag should be
4016 	 * cleared after reset_balance_state.
4017 	 */
4018 	need_unlock = false;
4019 
4020 	ret = btrfs_balance(fs_info, bctl, bargs);
4021 	bctl = NULL;
4022 
4023 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4024 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4025 			ret = -EFAULT;
4026 	}
4027 
4028 out_bctl:
4029 	kfree(bctl);
4030 out_bargs:
4031 	kfree(bargs);
4032 out_unlock:
4033 	mutex_unlock(&fs_info->balance_mutex);
4034 	if (need_unlock)
4035 		btrfs_exclop_finish(fs_info);
4036 out:
4037 	mnt_drop_write_file(file);
4038 	return ret;
4039 }
4040 
4041 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4042 {
4043 	if (!capable(CAP_SYS_ADMIN))
4044 		return -EPERM;
4045 
4046 	switch (cmd) {
4047 	case BTRFS_BALANCE_CTL_PAUSE:
4048 		return btrfs_pause_balance(fs_info);
4049 	case BTRFS_BALANCE_CTL_CANCEL:
4050 		return btrfs_cancel_balance(fs_info);
4051 	}
4052 
4053 	return -EINVAL;
4054 }
4055 
4056 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4057 					 void __user *arg)
4058 {
4059 	struct btrfs_ioctl_balance_args *bargs;
4060 	int ret = 0;
4061 
4062 	if (!capable(CAP_SYS_ADMIN))
4063 		return -EPERM;
4064 
4065 	mutex_lock(&fs_info->balance_mutex);
4066 	if (!fs_info->balance_ctl) {
4067 		ret = -ENOTCONN;
4068 		goto out;
4069 	}
4070 
4071 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4072 	if (!bargs) {
4073 		ret = -ENOMEM;
4074 		goto out;
4075 	}
4076 
4077 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4078 
4079 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4080 		ret = -EFAULT;
4081 
4082 	kfree(bargs);
4083 out:
4084 	mutex_unlock(&fs_info->balance_mutex);
4085 	return ret;
4086 }
4087 
4088 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4089 {
4090 	struct inode *inode = file_inode(file);
4091 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4092 	struct btrfs_ioctl_quota_ctl_args *sa;
4093 	int ret;
4094 
4095 	if (!capable(CAP_SYS_ADMIN))
4096 		return -EPERM;
4097 
4098 	ret = mnt_want_write_file(file);
4099 	if (ret)
4100 		return ret;
4101 
4102 	sa = memdup_user(arg, sizeof(*sa));
4103 	if (IS_ERR(sa)) {
4104 		ret = PTR_ERR(sa);
4105 		goto drop_write;
4106 	}
4107 
4108 	down_write(&fs_info->subvol_sem);
4109 
4110 	switch (sa->cmd) {
4111 	case BTRFS_QUOTA_CTL_ENABLE:
4112 		ret = btrfs_quota_enable(fs_info);
4113 		break;
4114 	case BTRFS_QUOTA_CTL_DISABLE:
4115 		ret = btrfs_quota_disable(fs_info);
4116 		break;
4117 	default:
4118 		ret = -EINVAL;
4119 		break;
4120 	}
4121 
4122 	kfree(sa);
4123 	up_write(&fs_info->subvol_sem);
4124 drop_write:
4125 	mnt_drop_write_file(file);
4126 	return ret;
4127 }
4128 
4129 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4130 {
4131 	struct inode *inode = file_inode(file);
4132 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4133 	struct btrfs_root *root = BTRFS_I(inode)->root;
4134 	struct btrfs_ioctl_qgroup_assign_args *sa;
4135 	struct btrfs_trans_handle *trans;
4136 	int ret;
4137 	int err;
4138 
4139 	if (!capable(CAP_SYS_ADMIN))
4140 		return -EPERM;
4141 
4142 	ret = mnt_want_write_file(file);
4143 	if (ret)
4144 		return ret;
4145 
4146 	sa = memdup_user(arg, sizeof(*sa));
4147 	if (IS_ERR(sa)) {
4148 		ret = PTR_ERR(sa);
4149 		goto drop_write;
4150 	}
4151 
4152 	trans = btrfs_join_transaction(root);
4153 	if (IS_ERR(trans)) {
4154 		ret = PTR_ERR(trans);
4155 		goto out;
4156 	}
4157 
4158 	if (sa->assign) {
4159 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4160 	} else {
4161 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4162 	}
4163 
4164 	/* update qgroup status and info */
4165 	err = btrfs_run_qgroups(trans);
4166 	if (err < 0)
4167 		btrfs_handle_fs_error(fs_info, err,
4168 				      "failed to update qgroup status and info");
4169 	err = btrfs_end_transaction(trans);
4170 	if (err && !ret)
4171 		ret = err;
4172 
4173 out:
4174 	kfree(sa);
4175 drop_write:
4176 	mnt_drop_write_file(file);
4177 	return ret;
4178 }
4179 
4180 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4181 {
4182 	struct inode *inode = file_inode(file);
4183 	struct btrfs_root *root = BTRFS_I(inode)->root;
4184 	struct btrfs_ioctl_qgroup_create_args *sa;
4185 	struct btrfs_trans_handle *trans;
4186 	int ret;
4187 	int err;
4188 
4189 	if (!capable(CAP_SYS_ADMIN))
4190 		return -EPERM;
4191 
4192 	ret = mnt_want_write_file(file);
4193 	if (ret)
4194 		return ret;
4195 
4196 	sa = memdup_user(arg, sizeof(*sa));
4197 	if (IS_ERR(sa)) {
4198 		ret = PTR_ERR(sa);
4199 		goto drop_write;
4200 	}
4201 
4202 	if (!sa->qgroupid) {
4203 		ret = -EINVAL;
4204 		goto out;
4205 	}
4206 
4207 	trans = btrfs_join_transaction(root);
4208 	if (IS_ERR(trans)) {
4209 		ret = PTR_ERR(trans);
4210 		goto out;
4211 	}
4212 
4213 	if (sa->create) {
4214 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4215 	} else {
4216 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4217 	}
4218 
4219 	err = btrfs_end_transaction(trans);
4220 	if (err && !ret)
4221 		ret = err;
4222 
4223 out:
4224 	kfree(sa);
4225 drop_write:
4226 	mnt_drop_write_file(file);
4227 	return ret;
4228 }
4229 
4230 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4231 {
4232 	struct inode *inode = file_inode(file);
4233 	struct btrfs_root *root = BTRFS_I(inode)->root;
4234 	struct btrfs_ioctl_qgroup_limit_args *sa;
4235 	struct btrfs_trans_handle *trans;
4236 	int ret;
4237 	int err;
4238 	u64 qgroupid;
4239 
4240 	if (!capable(CAP_SYS_ADMIN))
4241 		return -EPERM;
4242 
4243 	ret = mnt_want_write_file(file);
4244 	if (ret)
4245 		return ret;
4246 
4247 	sa = memdup_user(arg, sizeof(*sa));
4248 	if (IS_ERR(sa)) {
4249 		ret = PTR_ERR(sa);
4250 		goto drop_write;
4251 	}
4252 
4253 	trans = btrfs_join_transaction(root);
4254 	if (IS_ERR(trans)) {
4255 		ret = PTR_ERR(trans);
4256 		goto out;
4257 	}
4258 
4259 	qgroupid = sa->qgroupid;
4260 	if (!qgroupid) {
4261 		/* take the current subvol as qgroup */
4262 		qgroupid = root->root_key.objectid;
4263 	}
4264 
4265 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4266 
4267 	err = btrfs_end_transaction(trans);
4268 	if (err && !ret)
4269 		ret = err;
4270 
4271 out:
4272 	kfree(sa);
4273 drop_write:
4274 	mnt_drop_write_file(file);
4275 	return ret;
4276 }
4277 
4278 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4279 {
4280 	struct inode *inode = file_inode(file);
4281 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4282 	struct btrfs_ioctl_quota_rescan_args *qsa;
4283 	int ret;
4284 
4285 	if (!capable(CAP_SYS_ADMIN))
4286 		return -EPERM;
4287 
4288 	ret = mnt_want_write_file(file);
4289 	if (ret)
4290 		return ret;
4291 
4292 	qsa = memdup_user(arg, sizeof(*qsa));
4293 	if (IS_ERR(qsa)) {
4294 		ret = PTR_ERR(qsa);
4295 		goto drop_write;
4296 	}
4297 
4298 	if (qsa->flags) {
4299 		ret = -EINVAL;
4300 		goto out;
4301 	}
4302 
4303 	ret = btrfs_qgroup_rescan(fs_info);
4304 
4305 out:
4306 	kfree(qsa);
4307 drop_write:
4308 	mnt_drop_write_file(file);
4309 	return ret;
4310 }
4311 
4312 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4313 						void __user *arg)
4314 {
4315 	struct btrfs_ioctl_quota_rescan_args *qsa;
4316 	int ret = 0;
4317 
4318 	if (!capable(CAP_SYS_ADMIN))
4319 		return -EPERM;
4320 
4321 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4322 	if (!qsa)
4323 		return -ENOMEM;
4324 
4325 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4326 		qsa->flags = 1;
4327 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4328 	}
4329 
4330 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4331 		ret = -EFAULT;
4332 
4333 	kfree(qsa);
4334 	return ret;
4335 }
4336 
4337 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4338 						void __user *arg)
4339 {
4340 	if (!capable(CAP_SYS_ADMIN))
4341 		return -EPERM;
4342 
4343 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4344 }
4345 
4346 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4347 					    struct btrfs_ioctl_received_subvol_args *sa)
4348 {
4349 	struct inode *inode = file_inode(file);
4350 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4351 	struct btrfs_root *root = BTRFS_I(inode)->root;
4352 	struct btrfs_root_item *root_item = &root->root_item;
4353 	struct btrfs_trans_handle *trans;
4354 	struct timespec64 ct = current_time(inode);
4355 	int ret = 0;
4356 	int received_uuid_changed;
4357 
4358 	if (!inode_owner_or_capable(&init_user_ns, inode))
4359 		return -EPERM;
4360 
4361 	ret = mnt_want_write_file(file);
4362 	if (ret < 0)
4363 		return ret;
4364 
4365 	down_write(&fs_info->subvol_sem);
4366 
4367 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4368 		ret = -EINVAL;
4369 		goto out;
4370 	}
4371 
4372 	if (btrfs_root_readonly(root)) {
4373 		ret = -EROFS;
4374 		goto out;
4375 	}
4376 
4377 	/*
4378 	 * 1 - root item
4379 	 * 2 - uuid items (received uuid + subvol uuid)
4380 	 */
4381 	trans = btrfs_start_transaction(root, 3);
4382 	if (IS_ERR(trans)) {
4383 		ret = PTR_ERR(trans);
4384 		trans = NULL;
4385 		goto out;
4386 	}
4387 
4388 	sa->rtransid = trans->transid;
4389 	sa->rtime.sec = ct.tv_sec;
4390 	sa->rtime.nsec = ct.tv_nsec;
4391 
4392 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4393 				       BTRFS_UUID_SIZE);
4394 	if (received_uuid_changed &&
4395 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4396 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4397 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4398 					  root->root_key.objectid);
4399 		if (ret && ret != -ENOENT) {
4400 		        btrfs_abort_transaction(trans, ret);
4401 		        btrfs_end_transaction(trans);
4402 		        goto out;
4403 		}
4404 	}
4405 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4406 	btrfs_set_root_stransid(root_item, sa->stransid);
4407 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4408 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4409 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4410 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4411 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4412 
4413 	ret = btrfs_update_root(trans, fs_info->tree_root,
4414 				&root->root_key, &root->root_item);
4415 	if (ret < 0) {
4416 		btrfs_end_transaction(trans);
4417 		goto out;
4418 	}
4419 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4420 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4421 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4422 					  root->root_key.objectid);
4423 		if (ret < 0 && ret != -EEXIST) {
4424 			btrfs_abort_transaction(trans, ret);
4425 			btrfs_end_transaction(trans);
4426 			goto out;
4427 		}
4428 	}
4429 	ret = btrfs_commit_transaction(trans);
4430 out:
4431 	up_write(&fs_info->subvol_sem);
4432 	mnt_drop_write_file(file);
4433 	return ret;
4434 }
4435 
4436 #ifdef CONFIG_64BIT
4437 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4438 						void __user *arg)
4439 {
4440 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4441 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4442 	int ret = 0;
4443 
4444 	args32 = memdup_user(arg, sizeof(*args32));
4445 	if (IS_ERR(args32))
4446 		return PTR_ERR(args32);
4447 
4448 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4449 	if (!args64) {
4450 		ret = -ENOMEM;
4451 		goto out;
4452 	}
4453 
4454 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4455 	args64->stransid = args32->stransid;
4456 	args64->rtransid = args32->rtransid;
4457 	args64->stime.sec = args32->stime.sec;
4458 	args64->stime.nsec = args32->stime.nsec;
4459 	args64->rtime.sec = args32->rtime.sec;
4460 	args64->rtime.nsec = args32->rtime.nsec;
4461 	args64->flags = args32->flags;
4462 
4463 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4464 	if (ret)
4465 		goto out;
4466 
4467 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4468 	args32->stransid = args64->stransid;
4469 	args32->rtransid = args64->rtransid;
4470 	args32->stime.sec = args64->stime.sec;
4471 	args32->stime.nsec = args64->stime.nsec;
4472 	args32->rtime.sec = args64->rtime.sec;
4473 	args32->rtime.nsec = args64->rtime.nsec;
4474 	args32->flags = args64->flags;
4475 
4476 	ret = copy_to_user(arg, args32, sizeof(*args32));
4477 	if (ret)
4478 		ret = -EFAULT;
4479 
4480 out:
4481 	kfree(args32);
4482 	kfree(args64);
4483 	return ret;
4484 }
4485 #endif
4486 
4487 static long btrfs_ioctl_set_received_subvol(struct file *file,
4488 					    void __user *arg)
4489 {
4490 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4491 	int ret = 0;
4492 
4493 	sa = memdup_user(arg, sizeof(*sa));
4494 	if (IS_ERR(sa))
4495 		return PTR_ERR(sa);
4496 
4497 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4498 
4499 	if (ret)
4500 		goto out;
4501 
4502 	ret = copy_to_user(arg, sa, sizeof(*sa));
4503 	if (ret)
4504 		ret = -EFAULT;
4505 
4506 out:
4507 	kfree(sa);
4508 	return ret;
4509 }
4510 
4511 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4512 					void __user *arg)
4513 {
4514 	size_t len;
4515 	int ret;
4516 	char label[BTRFS_LABEL_SIZE];
4517 
4518 	spin_lock(&fs_info->super_lock);
4519 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4520 	spin_unlock(&fs_info->super_lock);
4521 
4522 	len = strnlen(label, BTRFS_LABEL_SIZE);
4523 
4524 	if (len == BTRFS_LABEL_SIZE) {
4525 		btrfs_warn(fs_info,
4526 			   "label is too long, return the first %zu bytes",
4527 			   --len);
4528 	}
4529 
4530 	ret = copy_to_user(arg, label, len);
4531 
4532 	return ret ? -EFAULT : 0;
4533 }
4534 
4535 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4536 {
4537 	struct inode *inode = file_inode(file);
4538 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4539 	struct btrfs_root *root = BTRFS_I(inode)->root;
4540 	struct btrfs_super_block *super_block = fs_info->super_copy;
4541 	struct btrfs_trans_handle *trans;
4542 	char label[BTRFS_LABEL_SIZE];
4543 	int ret;
4544 
4545 	if (!capable(CAP_SYS_ADMIN))
4546 		return -EPERM;
4547 
4548 	if (copy_from_user(label, arg, sizeof(label)))
4549 		return -EFAULT;
4550 
4551 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4552 		btrfs_err(fs_info,
4553 			  "unable to set label with more than %d bytes",
4554 			  BTRFS_LABEL_SIZE - 1);
4555 		return -EINVAL;
4556 	}
4557 
4558 	ret = mnt_want_write_file(file);
4559 	if (ret)
4560 		return ret;
4561 
4562 	trans = btrfs_start_transaction(root, 0);
4563 	if (IS_ERR(trans)) {
4564 		ret = PTR_ERR(trans);
4565 		goto out_unlock;
4566 	}
4567 
4568 	spin_lock(&fs_info->super_lock);
4569 	strcpy(super_block->label, label);
4570 	spin_unlock(&fs_info->super_lock);
4571 	ret = btrfs_commit_transaction(trans);
4572 
4573 out_unlock:
4574 	mnt_drop_write_file(file);
4575 	return ret;
4576 }
4577 
4578 #define INIT_FEATURE_FLAGS(suffix) \
4579 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4580 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4581 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4582 
4583 int btrfs_ioctl_get_supported_features(void __user *arg)
4584 {
4585 	static const struct btrfs_ioctl_feature_flags features[3] = {
4586 		INIT_FEATURE_FLAGS(SUPP),
4587 		INIT_FEATURE_FLAGS(SAFE_SET),
4588 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4589 	};
4590 
4591 	if (copy_to_user(arg, &features, sizeof(features)))
4592 		return -EFAULT;
4593 
4594 	return 0;
4595 }
4596 
4597 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4598 					void __user *arg)
4599 {
4600 	struct btrfs_super_block *super_block = fs_info->super_copy;
4601 	struct btrfs_ioctl_feature_flags features;
4602 
4603 	features.compat_flags = btrfs_super_compat_flags(super_block);
4604 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4605 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4606 
4607 	if (copy_to_user(arg, &features, sizeof(features)))
4608 		return -EFAULT;
4609 
4610 	return 0;
4611 }
4612 
4613 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4614 			      enum btrfs_feature_set set,
4615 			      u64 change_mask, u64 flags, u64 supported_flags,
4616 			      u64 safe_set, u64 safe_clear)
4617 {
4618 	const char *type = btrfs_feature_set_name(set);
4619 	char *names;
4620 	u64 disallowed, unsupported;
4621 	u64 set_mask = flags & change_mask;
4622 	u64 clear_mask = ~flags & change_mask;
4623 
4624 	unsupported = set_mask & ~supported_flags;
4625 	if (unsupported) {
4626 		names = btrfs_printable_features(set, unsupported);
4627 		if (names) {
4628 			btrfs_warn(fs_info,
4629 				   "this kernel does not support the %s feature bit%s",
4630 				   names, strchr(names, ',') ? "s" : "");
4631 			kfree(names);
4632 		} else
4633 			btrfs_warn(fs_info,
4634 				   "this kernel does not support %s bits 0x%llx",
4635 				   type, unsupported);
4636 		return -EOPNOTSUPP;
4637 	}
4638 
4639 	disallowed = set_mask & ~safe_set;
4640 	if (disallowed) {
4641 		names = btrfs_printable_features(set, disallowed);
4642 		if (names) {
4643 			btrfs_warn(fs_info,
4644 				   "can't set the %s feature bit%s while mounted",
4645 				   names, strchr(names, ',') ? "s" : "");
4646 			kfree(names);
4647 		} else
4648 			btrfs_warn(fs_info,
4649 				   "can't set %s bits 0x%llx while mounted",
4650 				   type, disallowed);
4651 		return -EPERM;
4652 	}
4653 
4654 	disallowed = clear_mask & ~safe_clear;
4655 	if (disallowed) {
4656 		names = btrfs_printable_features(set, disallowed);
4657 		if (names) {
4658 			btrfs_warn(fs_info,
4659 				   "can't clear the %s feature bit%s while mounted",
4660 				   names, strchr(names, ',') ? "s" : "");
4661 			kfree(names);
4662 		} else
4663 			btrfs_warn(fs_info,
4664 				   "can't clear %s bits 0x%llx while mounted",
4665 				   type, disallowed);
4666 		return -EPERM;
4667 	}
4668 
4669 	return 0;
4670 }
4671 
4672 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4673 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4674 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4675 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4676 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4677 
4678 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4679 {
4680 	struct inode *inode = file_inode(file);
4681 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4682 	struct btrfs_root *root = BTRFS_I(inode)->root;
4683 	struct btrfs_super_block *super_block = fs_info->super_copy;
4684 	struct btrfs_ioctl_feature_flags flags[2];
4685 	struct btrfs_trans_handle *trans;
4686 	u64 newflags;
4687 	int ret;
4688 
4689 	if (!capable(CAP_SYS_ADMIN))
4690 		return -EPERM;
4691 
4692 	if (copy_from_user(flags, arg, sizeof(flags)))
4693 		return -EFAULT;
4694 
4695 	/* Nothing to do */
4696 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4697 	    !flags[0].incompat_flags)
4698 		return 0;
4699 
4700 	ret = check_feature(fs_info, flags[0].compat_flags,
4701 			    flags[1].compat_flags, COMPAT);
4702 	if (ret)
4703 		return ret;
4704 
4705 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4706 			    flags[1].compat_ro_flags, COMPAT_RO);
4707 	if (ret)
4708 		return ret;
4709 
4710 	ret = check_feature(fs_info, flags[0].incompat_flags,
4711 			    flags[1].incompat_flags, INCOMPAT);
4712 	if (ret)
4713 		return ret;
4714 
4715 	ret = mnt_want_write_file(file);
4716 	if (ret)
4717 		return ret;
4718 
4719 	trans = btrfs_start_transaction(root, 0);
4720 	if (IS_ERR(trans)) {
4721 		ret = PTR_ERR(trans);
4722 		goto out_drop_write;
4723 	}
4724 
4725 	spin_lock(&fs_info->super_lock);
4726 	newflags = btrfs_super_compat_flags(super_block);
4727 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4728 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4729 	btrfs_set_super_compat_flags(super_block, newflags);
4730 
4731 	newflags = btrfs_super_compat_ro_flags(super_block);
4732 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4733 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4734 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4735 
4736 	newflags = btrfs_super_incompat_flags(super_block);
4737 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4738 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4739 	btrfs_set_super_incompat_flags(super_block, newflags);
4740 	spin_unlock(&fs_info->super_lock);
4741 
4742 	ret = btrfs_commit_transaction(trans);
4743 out_drop_write:
4744 	mnt_drop_write_file(file);
4745 
4746 	return ret;
4747 }
4748 
4749 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4750 {
4751 	struct btrfs_ioctl_send_args *arg;
4752 	int ret;
4753 
4754 	if (compat) {
4755 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4756 		struct btrfs_ioctl_send_args_32 args32;
4757 
4758 		ret = copy_from_user(&args32, argp, sizeof(args32));
4759 		if (ret)
4760 			return -EFAULT;
4761 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4762 		if (!arg)
4763 			return -ENOMEM;
4764 		arg->send_fd = args32.send_fd;
4765 		arg->clone_sources_count = args32.clone_sources_count;
4766 		arg->clone_sources = compat_ptr(args32.clone_sources);
4767 		arg->parent_root = args32.parent_root;
4768 		arg->flags = args32.flags;
4769 		memcpy(arg->reserved, args32.reserved,
4770 		       sizeof(args32.reserved));
4771 #else
4772 		return -ENOTTY;
4773 #endif
4774 	} else {
4775 		arg = memdup_user(argp, sizeof(*arg));
4776 		if (IS_ERR(arg))
4777 			return PTR_ERR(arg);
4778 	}
4779 	ret = btrfs_ioctl_send(file, arg);
4780 	kfree(arg);
4781 	return ret;
4782 }
4783 
4784 long btrfs_ioctl(struct file *file, unsigned int
4785 		cmd, unsigned long arg)
4786 {
4787 	struct inode *inode = file_inode(file);
4788 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4789 	struct btrfs_root *root = BTRFS_I(inode)->root;
4790 	void __user *argp = (void __user *)arg;
4791 
4792 	switch (cmd) {
4793 	case FS_IOC_GETVERSION:
4794 		return btrfs_ioctl_getversion(file, argp);
4795 	case FS_IOC_GETFSLABEL:
4796 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4797 	case FS_IOC_SETFSLABEL:
4798 		return btrfs_ioctl_set_fslabel(file, argp);
4799 	case FITRIM:
4800 		return btrfs_ioctl_fitrim(fs_info, argp);
4801 	case BTRFS_IOC_SNAP_CREATE:
4802 		return btrfs_ioctl_snap_create(file, argp, 0);
4803 	case BTRFS_IOC_SNAP_CREATE_V2:
4804 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4805 	case BTRFS_IOC_SUBVOL_CREATE:
4806 		return btrfs_ioctl_snap_create(file, argp, 1);
4807 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4808 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4809 	case BTRFS_IOC_SNAP_DESTROY:
4810 		return btrfs_ioctl_snap_destroy(file, argp, false);
4811 	case BTRFS_IOC_SNAP_DESTROY_V2:
4812 		return btrfs_ioctl_snap_destroy(file, argp, true);
4813 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4814 		return btrfs_ioctl_subvol_getflags(file, argp);
4815 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4816 		return btrfs_ioctl_subvol_setflags(file, argp);
4817 	case BTRFS_IOC_DEFAULT_SUBVOL:
4818 		return btrfs_ioctl_default_subvol(file, argp);
4819 	case BTRFS_IOC_DEFRAG:
4820 		return btrfs_ioctl_defrag(file, NULL);
4821 	case BTRFS_IOC_DEFRAG_RANGE:
4822 		return btrfs_ioctl_defrag(file, argp);
4823 	case BTRFS_IOC_RESIZE:
4824 		return btrfs_ioctl_resize(file, argp);
4825 	case BTRFS_IOC_ADD_DEV:
4826 		return btrfs_ioctl_add_dev(fs_info, argp);
4827 	case BTRFS_IOC_RM_DEV:
4828 		return btrfs_ioctl_rm_dev(file, argp);
4829 	case BTRFS_IOC_RM_DEV_V2:
4830 		return btrfs_ioctl_rm_dev_v2(file, argp);
4831 	case BTRFS_IOC_FS_INFO:
4832 		return btrfs_ioctl_fs_info(fs_info, argp);
4833 	case BTRFS_IOC_DEV_INFO:
4834 		return btrfs_ioctl_dev_info(fs_info, argp);
4835 	case BTRFS_IOC_BALANCE:
4836 		return btrfs_ioctl_balance(file, NULL);
4837 	case BTRFS_IOC_TREE_SEARCH:
4838 		return btrfs_ioctl_tree_search(file, argp);
4839 	case BTRFS_IOC_TREE_SEARCH_V2:
4840 		return btrfs_ioctl_tree_search_v2(file, argp);
4841 	case BTRFS_IOC_INO_LOOKUP:
4842 		return btrfs_ioctl_ino_lookup(file, argp);
4843 	case BTRFS_IOC_INO_PATHS:
4844 		return btrfs_ioctl_ino_to_path(root, argp);
4845 	case BTRFS_IOC_LOGICAL_INO:
4846 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4847 	case BTRFS_IOC_LOGICAL_INO_V2:
4848 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4849 	case BTRFS_IOC_SPACE_INFO:
4850 		return btrfs_ioctl_space_info(fs_info, argp);
4851 	case BTRFS_IOC_SYNC: {
4852 		int ret;
4853 
4854 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4855 		if (ret)
4856 			return ret;
4857 		ret = btrfs_sync_fs(inode->i_sb, 1);
4858 		/*
4859 		 * The transaction thread may want to do more work,
4860 		 * namely it pokes the cleaner kthread that will start
4861 		 * processing uncleaned subvols.
4862 		 */
4863 		wake_up_process(fs_info->transaction_kthread);
4864 		return ret;
4865 	}
4866 	case BTRFS_IOC_START_SYNC:
4867 		return btrfs_ioctl_start_sync(root, argp);
4868 	case BTRFS_IOC_WAIT_SYNC:
4869 		return btrfs_ioctl_wait_sync(fs_info, argp);
4870 	case BTRFS_IOC_SCRUB:
4871 		return btrfs_ioctl_scrub(file, argp);
4872 	case BTRFS_IOC_SCRUB_CANCEL:
4873 		return btrfs_ioctl_scrub_cancel(fs_info);
4874 	case BTRFS_IOC_SCRUB_PROGRESS:
4875 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4876 	case BTRFS_IOC_BALANCE_V2:
4877 		return btrfs_ioctl_balance(file, argp);
4878 	case BTRFS_IOC_BALANCE_CTL:
4879 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4880 	case BTRFS_IOC_BALANCE_PROGRESS:
4881 		return btrfs_ioctl_balance_progress(fs_info, argp);
4882 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4883 		return btrfs_ioctl_set_received_subvol(file, argp);
4884 #ifdef CONFIG_64BIT
4885 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4886 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4887 #endif
4888 	case BTRFS_IOC_SEND:
4889 		return _btrfs_ioctl_send(file, argp, false);
4890 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4891 	case BTRFS_IOC_SEND_32:
4892 		return _btrfs_ioctl_send(file, argp, true);
4893 #endif
4894 	case BTRFS_IOC_GET_DEV_STATS:
4895 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4896 	case BTRFS_IOC_QUOTA_CTL:
4897 		return btrfs_ioctl_quota_ctl(file, argp);
4898 	case BTRFS_IOC_QGROUP_ASSIGN:
4899 		return btrfs_ioctl_qgroup_assign(file, argp);
4900 	case BTRFS_IOC_QGROUP_CREATE:
4901 		return btrfs_ioctl_qgroup_create(file, argp);
4902 	case BTRFS_IOC_QGROUP_LIMIT:
4903 		return btrfs_ioctl_qgroup_limit(file, argp);
4904 	case BTRFS_IOC_QUOTA_RESCAN:
4905 		return btrfs_ioctl_quota_rescan(file, argp);
4906 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4907 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4908 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
4909 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
4910 	case BTRFS_IOC_DEV_REPLACE:
4911 		return btrfs_ioctl_dev_replace(fs_info, argp);
4912 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
4913 		return btrfs_ioctl_get_supported_features(argp);
4914 	case BTRFS_IOC_GET_FEATURES:
4915 		return btrfs_ioctl_get_features(fs_info, argp);
4916 	case BTRFS_IOC_SET_FEATURES:
4917 		return btrfs_ioctl_set_features(file, argp);
4918 	case BTRFS_IOC_GET_SUBVOL_INFO:
4919 		return btrfs_ioctl_get_subvol_info(file, argp);
4920 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
4921 		return btrfs_ioctl_get_subvol_rootref(file, argp);
4922 	case BTRFS_IOC_INO_LOOKUP_USER:
4923 		return btrfs_ioctl_ino_lookup_user(file, argp);
4924 	}
4925 
4926 	return -ENOTTY;
4927 }
4928 
4929 #ifdef CONFIG_COMPAT
4930 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4931 {
4932 	/*
4933 	 * These all access 32-bit values anyway so no further
4934 	 * handling is necessary.
4935 	 */
4936 	switch (cmd) {
4937 	case FS_IOC32_GETVERSION:
4938 		cmd = FS_IOC_GETVERSION;
4939 		break;
4940 	}
4941 
4942 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
4943 }
4944 #endif
4945