1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 52 #ifdef CONFIG_64BIT 53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 54 * structures are incorrect, as the timespec structure from userspace 55 * is 4 bytes too small. We define these alternatives here to teach 56 * the kernel about the 32-bit struct packing. 57 */ 58 struct btrfs_ioctl_timespec_32 { 59 __u64 sec; 60 __u32 nsec; 61 } __attribute__ ((__packed__)); 62 63 struct btrfs_ioctl_received_subvol_args_32 { 64 char uuid[BTRFS_UUID_SIZE]; /* in */ 65 __u64 stransid; /* in */ 66 __u64 rtransid; /* out */ 67 struct btrfs_ioctl_timespec_32 stime; /* in */ 68 struct btrfs_ioctl_timespec_32 rtime; /* out */ 69 __u64 flags; /* in */ 70 __u64 reserved[16]; /* in */ 71 } __attribute__ ((__packed__)); 72 73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 74 struct btrfs_ioctl_received_subvol_args_32) 75 #endif 76 77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 78 struct btrfs_ioctl_send_args_32 { 79 __s64 send_fd; /* in */ 80 __u64 clone_sources_count; /* in */ 81 compat_uptr_t clone_sources; /* in */ 82 __u64 parent_root; /* in */ 83 __u64 flags; /* in */ 84 __u64 reserved[4]; /* in */ 85 } __attribute__ ((__packed__)); 86 87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 88 struct btrfs_ioctl_send_args_32) 89 #endif 90 91 /* Mask out flags that are inappropriate for the given type of inode. */ 92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 93 unsigned int flags) 94 { 95 if (S_ISDIR(inode->i_mode)) 96 return flags; 97 else if (S_ISREG(inode->i_mode)) 98 return flags & ~FS_DIRSYNC_FL; 99 else 100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 101 } 102 103 /* 104 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 105 * ioctl. 106 */ 107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 108 { 109 unsigned int iflags = 0; 110 u32 flags = binode->flags; 111 u32 ro_flags = binode->ro_flags; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 if (ro_flags & BTRFS_INODE_RO_VERITY) 128 iflags |= FS_VERITY_FL; 129 130 if (flags & BTRFS_INODE_NOCOMPRESS) 131 iflags |= FS_NOCOMP_FL; 132 else if (flags & BTRFS_INODE_COMPRESS) 133 iflags |= FS_COMPR_FL; 134 135 return iflags; 136 } 137 138 /* 139 * Update inode->i_flags based on the btrfs internal flags. 140 */ 141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 142 { 143 struct btrfs_inode *binode = BTRFS_I(inode); 144 unsigned int new_fl = 0; 145 146 if (binode->flags & BTRFS_INODE_SYNC) 147 new_fl |= S_SYNC; 148 if (binode->flags & BTRFS_INODE_IMMUTABLE) 149 new_fl |= S_IMMUTABLE; 150 if (binode->flags & BTRFS_INODE_APPEND) 151 new_fl |= S_APPEND; 152 if (binode->flags & BTRFS_INODE_NOATIME) 153 new_fl |= S_NOATIME; 154 if (binode->flags & BTRFS_INODE_DIRSYNC) 155 new_fl |= S_DIRSYNC; 156 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 157 new_fl |= S_VERITY; 158 159 set_mask_bits(&inode->i_flags, 160 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 161 S_VERITY, new_fl); 162 } 163 164 /* 165 * Check if @flags are a supported and valid set of FS_*_FL flags and that 166 * the old and new flags are not conflicting 167 */ 168 static int check_fsflags(unsigned int old_flags, unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 /* COMPR and NOCOMP on new/old are valid */ 178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 179 return -EINVAL; 180 181 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 182 return -EINVAL; 183 184 /* NOCOW and compression options are mutually exclusive */ 185 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 186 return -EINVAL; 187 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 194 unsigned int flags) 195 { 196 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 197 return -EPERM; 198 199 return 0; 200 } 201 202 /* 203 * Set flags/xflags from the internal inode flags. The remaining items of 204 * fsxattr are zeroed. 205 */ 206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 207 { 208 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 209 210 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 211 return 0; 212 } 213 214 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 215 struct dentry *dentry, struct fileattr *fa) 216 { 217 struct inode *inode = d_inode(dentry); 218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 219 struct btrfs_inode *binode = BTRFS_I(inode); 220 struct btrfs_root *root = binode->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int fsflags, old_fsflags; 223 int ret; 224 const char *comp = NULL; 225 u32 binode_flags; 226 227 if (btrfs_root_readonly(root)) 228 return -EROFS; 229 230 if (fileattr_has_fsx(fa)) 231 return -EOPNOTSUPP; 232 233 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 234 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 235 ret = check_fsflags(old_fsflags, fsflags); 236 if (ret) 237 return ret; 238 239 ret = check_fsflags_compatible(fs_info, fsflags); 240 if (ret) 241 return ret; 242 243 binode_flags = binode->flags; 244 if (fsflags & FS_SYNC_FL) 245 binode_flags |= BTRFS_INODE_SYNC; 246 else 247 binode_flags &= ~BTRFS_INODE_SYNC; 248 if (fsflags & FS_IMMUTABLE_FL) 249 binode_flags |= BTRFS_INODE_IMMUTABLE; 250 else 251 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 252 if (fsflags & FS_APPEND_FL) 253 binode_flags |= BTRFS_INODE_APPEND; 254 else 255 binode_flags &= ~BTRFS_INODE_APPEND; 256 if (fsflags & FS_NODUMP_FL) 257 binode_flags |= BTRFS_INODE_NODUMP; 258 else 259 binode_flags &= ~BTRFS_INODE_NODUMP; 260 if (fsflags & FS_NOATIME_FL) 261 binode_flags |= BTRFS_INODE_NOATIME; 262 else 263 binode_flags &= ~BTRFS_INODE_NOATIME; 264 265 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 266 if (!fa->flags_valid) { 267 /* 1 item for the inode */ 268 trans = btrfs_start_transaction(root, 1); 269 if (IS_ERR(trans)) 270 return PTR_ERR(trans); 271 goto update_flags; 272 } 273 274 if (fsflags & FS_DIRSYNC_FL) 275 binode_flags |= BTRFS_INODE_DIRSYNC; 276 else 277 binode_flags &= ~BTRFS_INODE_DIRSYNC; 278 if (fsflags & FS_NOCOW_FL) { 279 if (S_ISREG(inode->i_mode)) { 280 /* 281 * It's safe to turn csums off here, no extents exist. 282 * Otherwise we want the flag to reflect the real COW 283 * status of the file and will not set it. 284 */ 285 if (inode->i_size == 0) 286 binode_flags |= BTRFS_INODE_NODATACOW | 287 BTRFS_INODE_NODATASUM; 288 } else { 289 binode_flags |= BTRFS_INODE_NODATACOW; 290 } 291 } else { 292 /* 293 * Revert back under same assumptions as above 294 */ 295 if (S_ISREG(inode->i_mode)) { 296 if (inode->i_size == 0) 297 binode_flags &= ~(BTRFS_INODE_NODATACOW | 298 BTRFS_INODE_NODATASUM); 299 } else { 300 binode_flags &= ~BTRFS_INODE_NODATACOW; 301 } 302 } 303 304 /* 305 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 306 * flag may be changed automatically if compression code won't make 307 * things smaller. 308 */ 309 if (fsflags & FS_NOCOMP_FL) { 310 binode_flags &= ~BTRFS_INODE_COMPRESS; 311 binode_flags |= BTRFS_INODE_NOCOMPRESS; 312 } else if (fsflags & FS_COMPR_FL) { 313 314 if (IS_SWAPFILE(inode)) 315 return -ETXTBSY; 316 317 binode_flags |= BTRFS_INODE_COMPRESS; 318 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 319 320 comp = btrfs_compress_type2str(fs_info->compress_type); 321 if (!comp || comp[0] == 0) 322 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 323 } else { 324 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 325 } 326 327 /* 328 * 1 for inode item 329 * 2 for properties 330 */ 331 trans = btrfs_start_transaction(root, 3); 332 if (IS_ERR(trans)) 333 return PTR_ERR(trans); 334 335 if (comp) { 336 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 337 strlen(comp), 0); 338 if (ret) { 339 btrfs_abort_transaction(trans, ret); 340 goto out_end_trans; 341 } 342 } else { 343 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 344 0, 0); 345 if (ret && ret != -ENODATA) { 346 btrfs_abort_transaction(trans, ret); 347 goto out_end_trans; 348 } 349 } 350 351 update_flags: 352 binode->flags = binode_flags; 353 btrfs_sync_inode_flags_to_i_flags(inode); 354 inode_inc_iversion(inode); 355 inode->i_ctime = current_time(inode); 356 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 357 358 out_end_trans: 359 btrfs_end_transaction(trans); 360 return ret; 361 } 362 363 /* 364 * Start exclusive operation @type, return true on success 365 */ 366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 367 enum btrfs_exclusive_operation type) 368 { 369 bool ret = false; 370 371 spin_lock(&fs_info->super_lock); 372 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 373 fs_info->exclusive_operation = type; 374 ret = true; 375 } 376 spin_unlock(&fs_info->super_lock); 377 378 return ret; 379 } 380 381 /* 382 * Conditionally allow to enter the exclusive operation in case it's compatible 383 * with the running one. This must be paired with btrfs_exclop_start_unlock and 384 * btrfs_exclop_finish. 385 * 386 * Compatibility: 387 * - the same type is already running 388 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 389 * must check the condition first that would allow none -> @type 390 */ 391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 392 enum btrfs_exclusive_operation type) 393 { 394 spin_lock(&fs_info->super_lock); 395 if (fs_info->exclusive_operation == type) 396 return true; 397 398 spin_unlock(&fs_info->super_lock); 399 return false; 400 } 401 402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 403 { 404 spin_unlock(&fs_info->super_lock); 405 } 406 407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 408 { 409 spin_lock(&fs_info->super_lock); 410 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 411 spin_unlock(&fs_info->super_lock); 412 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 413 } 414 415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 416 { 417 struct inode *inode = file_inode(file); 418 419 return put_user(inode->i_generation, arg); 420 } 421 422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 423 void __user *arg) 424 { 425 struct btrfs_device *device; 426 struct request_queue *q; 427 struct fstrim_range range; 428 u64 minlen = ULLONG_MAX; 429 u64 num_devices = 0; 430 int ret; 431 432 if (!capable(CAP_SYS_ADMIN)) 433 return -EPERM; 434 435 /* 436 * btrfs_trim_block_group() depends on space cache, which is not 437 * available in zoned filesystem. So, disallow fitrim on a zoned 438 * filesystem for now. 439 */ 440 if (btrfs_is_zoned(fs_info)) 441 return -EOPNOTSUPP; 442 443 /* 444 * If the fs is mounted with nologreplay, which requires it to be 445 * mounted in RO mode as well, we can not allow discard on free space 446 * inside block groups, because log trees refer to extents that are not 447 * pinned in a block group's free space cache (pinning the extents is 448 * precisely the first phase of replaying a log tree). 449 */ 450 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 451 return -EROFS; 452 453 rcu_read_lock(); 454 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 455 dev_list) { 456 if (!device->bdev) 457 continue; 458 q = bdev_get_queue(device->bdev); 459 if (blk_queue_discard(q)) { 460 num_devices++; 461 minlen = min_t(u64, q->limits.discard_granularity, 462 minlen); 463 } 464 } 465 rcu_read_unlock(); 466 467 if (!num_devices) 468 return -EOPNOTSUPP; 469 if (copy_from_user(&range, arg, sizeof(range))) 470 return -EFAULT; 471 472 /* 473 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 474 * block group is in the logical address space, which can be any 475 * sectorsize aligned bytenr in the range [0, U64_MAX]. 476 */ 477 if (range.len < fs_info->sb->s_blocksize) 478 return -EINVAL; 479 480 range.minlen = max(range.minlen, minlen); 481 ret = btrfs_trim_fs(fs_info, &range); 482 if (ret < 0) 483 return ret; 484 485 if (copy_to_user(arg, &range, sizeof(range))) 486 return -EFAULT; 487 488 return 0; 489 } 490 491 int __pure btrfs_is_empty_uuid(u8 *uuid) 492 { 493 int i; 494 495 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 496 if (uuid[i]) 497 return 0; 498 } 499 return 1; 500 } 501 502 static noinline int create_subvol(struct inode *dir, 503 struct dentry *dentry, 504 const char *name, int namelen, 505 struct btrfs_qgroup_inherit *inherit) 506 { 507 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 508 struct btrfs_trans_handle *trans; 509 struct btrfs_key key; 510 struct btrfs_root_item *root_item; 511 struct btrfs_inode_item *inode_item; 512 struct extent_buffer *leaf; 513 struct btrfs_root *root = BTRFS_I(dir)->root; 514 struct btrfs_root *new_root; 515 struct btrfs_block_rsv block_rsv; 516 struct timespec64 cur_time = current_time(dir); 517 struct inode *inode; 518 int ret; 519 int err; 520 dev_t anon_dev = 0; 521 u64 objectid; 522 u64 index = 0; 523 524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 525 if (!root_item) 526 return -ENOMEM; 527 528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 529 if (ret) 530 goto fail_free; 531 532 ret = get_anon_bdev(&anon_dev); 533 if (ret < 0) 534 goto fail_free; 535 536 /* 537 * Don't create subvolume whose level is not zero. Or qgroup will be 538 * screwed up since it assumes subvolume qgroup's level to be 0. 539 */ 540 if (btrfs_qgroup_level(objectid)) { 541 ret = -ENOSPC; 542 goto fail_free; 543 } 544 545 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 546 /* 547 * The same as the snapshot creation, please see the comment 548 * of create_snapshot(). 549 */ 550 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 551 if (ret) 552 goto fail_free; 553 554 trans = btrfs_start_transaction(root, 0); 555 if (IS_ERR(trans)) { 556 ret = PTR_ERR(trans); 557 btrfs_subvolume_release_metadata(root, &block_rsv); 558 goto fail_free; 559 } 560 trans->block_rsv = &block_rsv; 561 trans->bytes_reserved = block_rsv.size; 562 563 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 564 if (ret) 565 goto fail; 566 567 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 568 BTRFS_NESTING_NORMAL); 569 if (IS_ERR(leaf)) { 570 ret = PTR_ERR(leaf); 571 goto fail; 572 } 573 574 btrfs_mark_buffer_dirty(leaf); 575 576 inode_item = &root_item->inode; 577 btrfs_set_stack_inode_generation(inode_item, 1); 578 btrfs_set_stack_inode_size(inode_item, 3); 579 btrfs_set_stack_inode_nlink(inode_item, 1); 580 btrfs_set_stack_inode_nbytes(inode_item, 581 fs_info->nodesize); 582 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 583 584 btrfs_set_root_flags(root_item, 0); 585 btrfs_set_root_limit(root_item, 0); 586 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 587 588 btrfs_set_root_bytenr(root_item, leaf->start); 589 btrfs_set_root_generation(root_item, trans->transid); 590 btrfs_set_root_level(root_item, 0); 591 btrfs_set_root_refs(root_item, 1); 592 btrfs_set_root_used(root_item, leaf->len); 593 btrfs_set_root_last_snapshot(root_item, 0); 594 595 btrfs_set_root_generation_v2(root_item, 596 btrfs_root_generation(root_item)); 597 generate_random_guid(root_item->uuid); 598 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 599 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 600 root_item->ctime = root_item->otime; 601 btrfs_set_root_ctransid(root_item, trans->transid); 602 btrfs_set_root_otransid(root_item, trans->transid); 603 604 btrfs_tree_unlock(leaf); 605 606 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 607 608 key.objectid = objectid; 609 key.offset = 0; 610 key.type = BTRFS_ROOT_ITEM_KEY; 611 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 612 root_item); 613 if (ret) { 614 /* 615 * Since we don't abort the transaction in this case, free the 616 * tree block so that we don't leak space and leave the 617 * filesystem in an inconsistent state (an extent item in the 618 * extent tree without backreferences). Also no need to have 619 * the tree block locked since it is not in any tree at this 620 * point, so no other task can find it and use it. 621 */ 622 btrfs_free_tree_block(trans, root, leaf, 0, 1); 623 free_extent_buffer(leaf); 624 goto fail; 625 } 626 627 free_extent_buffer(leaf); 628 leaf = NULL; 629 630 key.offset = (u64)-1; 631 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 632 if (IS_ERR(new_root)) { 633 free_anon_bdev(anon_dev); 634 ret = PTR_ERR(new_root); 635 btrfs_abort_transaction(trans, ret); 636 goto fail; 637 } 638 /* Freeing will be done in btrfs_put_root() of new_root */ 639 anon_dev = 0; 640 641 ret = btrfs_record_root_in_trans(trans, new_root); 642 if (ret) { 643 btrfs_put_root(new_root); 644 btrfs_abort_transaction(trans, ret); 645 goto fail; 646 } 647 648 ret = btrfs_create_subvol_root(trans, new_root, root); 649 btrfs_put_root(new_root); 650 if (ret) { 651 /* We potentially lose an unused inode item here */ 652 btrfs_abort_transaction(trans, ret); 653 goto fail; 654 } 655 656 /* 657 * insert the directory item 658 */ 659 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 660 if (ret) { 661 btrfs_abort_transaction(trans, ret); 662 goto fail; 663 } 664 665 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 666 BTRFS_FT_DIR, index); 667 if (ret) { 668 btrfs_abort_transaction(trans, ret); 669 goto fail; 670 } 671 672 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 673 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 674 if (ret) { 675 btrfs_abort_transaction(trans, ret); 676 goto fail; 677 } 678 679 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 680 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 681 if (ret) { 682 btrfs_abort_transaction(trans, ret); 683 goto fail; 684 } 685 686 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 687 BTRFS_UUID_KEY_SUBVOL, objectid); 688 if (ret) 689 btrfs_abort_transaction(trans, ret); 690 691 fail: 692 kfree(root_item); 693 trans->block_rsv = NULL; 694 trans->bytes_reserved = 0; 695 btrfs_subvolume_release_metadata(root, &block_rsv); 696 697 err = btrfs_commit_transaction(trans); 698 if (err && !ret) 699 ret = err; 700 701 if (!ret) { 702 inode = btrfs_lookup_dentry(dir, dentry); 703 if (IS_ERR(inode)) 704 return PTR_ERR(inode); 705 d_instantiate(dentry, inode); 706 } 707 return ret; 708 709 fail_free: 710 if (anon_dev) 711 free_anon_bdev(anon_dev); 712 kfree(root_item); 713 return ret; 714 } 715 716 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 717 struct dentry *dentry, bool readonly, 718 struct btrfs_qgroup_inherit *inherit) 719 { 720 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 721 struct inode *inode; 722 struct btrfs_pending_snapshot *pending_snapshot; 723 struct btrfs_trans_handle *trans; 724 int ret; 725 726 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 727 return -EINVAL; 728 729 if (atomic_read(&root->nr_swapfiles)) { 730 btrfs_warn(fs_info, 731 "cannot snapshot subvolume with active swapfile"); 732 return -ETXTBSY; 733 } 734 735 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 736 if (!pending_snapshot) 737 return -ENOMEM; 738 739 ret = get_anon_bdev(&pending_snapshot->anon_dev); 740 if (ret < 0) 741 goto free_pending; 742 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 743 GFP_KERNEL); 744 pending_snapshot->path = btrfs_alloc_path(); 745 if (!pending_snapshot->root_item || !pending_snapshot->path) { 746 ret = -ENOMEM; 747 goto free_pending; 748 } 749 750 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 751 BTRFS_BLOCK_RSV_TEMP); 752 /* 753 * 1 - parent dir inode 754 * 2 - dir entries 755 * 1 - root item 756 * 2 - root ref/backref 757 * 1 - root of snapshot 758 * 1 - UUID item 759 */ 760 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 761 &pending_snapshot->block_rsv, 8, 762 false); 763 if (ret) 764 goto free_pending; 765 766 pending_snapshot->dentry = dentry; 767 pending_snapshot->root = root; 768 pending_snapshot->readonly = readonly; 769 pending_snapshot->dir = dir; 770 pending_snapshot->inherit = inherit; 771 772 trans = btrfs_start_transaction(root, 0); 773 if (IS_ERR(trans)) { 774 ret = PTR_ERR(trans); 775 goto fail; 776 } 777 778 spin_lock(&fs_info->trans_lock); 779 list_add(&pending_snapshot->list, 780 &trans->transaction->pending_snapshots); 781 spin_unlock(&fs_info->trans_lock); 782 783 ret = btrfs_commit_transaction(trans); 784 if (ret) 785 goto fail; 786 787 ret = pending_snapshot->error; 788 if (ret) 789 goto fail; 790 791 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 792 if (ret) 793 goto fail; 794 795 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 796 if (IS_ERR(inode)) { 797 ret = PTR_ERR(inode); 798 goto fail; 799 } 800 801 d_instantiate(dentry, inode); 802 ret = 0; 803 pending_snapshot->anon_dev = 0; 804 fail: 805 /* Prevent double freeing of anon_dev */ 806 if (ret && pending_snapshot->snap) 807 pending_snapshot->snap->anon_dev = 0; 808 btrfs_put_root(pending_snapshot->snap); 809 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 810 free_pending: 811 if (pending_snapshot->anon_dev) 812 free_anon_bdev(pending_snapshot->anon_dev); 813 kfree(pending_snapshot->root_item); 814 btrfs_free_path(pending_snapshot->path); 815 kfree(pending_snapshot); 816 817 return ret; 818 } 819 820 /* copy of may_delete in fs/namei.c() 821 * Check whether we can remove a link victim from directory dir, check 822 * whether the type of victim is right. 823 * 1. We can't do it if dir is read-only (done in permission()) 824 * 2. We should have write and exec permissions on dir 825 * 3. We can't remove anything from append-only dir 826 * 4. We can't do anything with immutable dir (done in permission()) 827 * 5. If the sticky bit on dir is set we should either 828 * a. be owner of dir, or 829 * b. be owner of victim, or 830 * c. have CAP_FOWNER capability 831 * 6. If the victim is append-only or immutable we can't do anything with 832 * links pointing to it. 833 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 834 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 835 * 9. We can't remove a root or mountpoint. 836 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 837 * nfs_async_unlink(). 838 */ 839 840 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 841 { 842 int error; 843 844 if (d_really_is_negative(victim)) 845 return -ENOENT; 846 847 BUG_ON(d_inode(victim->d_parent) != dir); 848 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 849 850 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 851 if (error) 852 return error; 853 if (IS_APPEND(dir)) 854 return -EPERM; 855 if (check_sticky(&init_user_ns, dir, d_inode(victim)) || 856 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 857 IS_SWAPFILE(d_inode(victim))) 858 return -EPERM; 859 if (isdir) { 860 if (!d_is_dir(victim)) 861 return -ENOTDIR; 862 if (IS_ROOT(victim)) 863 return -EBUSY; 864 } else if (d_is_dir(victim)) 865 return -EISDIR; 866 if (IS_DEADDIR(dir)) 867 return -ENOENT; 868 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 869 return -EBUSY; 870 return 0; 871 } 872 873 /* copy of may_create in fs/namei.c() */ 874 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 875 { 876 if (d_really_is_positive(child)) 877 return -EEXIST; 878 if (IS_DEADDIR(dir)) 879 return -ENOENT; 880 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 881 } 882 883 /* 884 * Create a new subvolume below @parent. This is largely modeled after 885 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 886 * inside this filesystem so it's quite a bit simpler. 887 */ 888 static noinline int btrfs_mksubvol(const struct path *parent, 889 const char *name, int namelen, 890 struct btrfs_root *snap_src, 891 bool readonly, 892 struct btrfs_qgroup_inherit *inherit) 893 { 894 struct inode *dir = d_inode(parent->dentry); 895 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 896 struct dentry *dentry; 897 int error; 898 899 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 900 if (error == -EINTR) 901 return error; 902 903 dentry = lookup_one_len(name, parent->dentry, namelen); 904 error = PTR_ERR(dentry); 905 if (IS_ERR(dentry)) 906 goto out_unlock; 907 908 error = btrfs_may_create(dir, dentry); 909 if (error) 910 goto out_dput; 911 912 /* 913 * even if this name doesn't exist, we may get hash collisions. 914 * check for them now when we can safely fail 915 */ 916 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 917 dir->i_ino, name, 918 namelen); 919 if (error) 920 goto out_dput; 921 922 down_read(&fs_info->subvol_sem); 923 924 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 925 goto out_up_read; 926 927 if (snap_src) 928 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 929 else 930 error = create_subvol(dir, dentry, name, namelen, inherit); 931 932 if (!error) 933 fsnotify_mkdir(dir, dentry); 934 out_up_read: 935 up_read(&fs_info->subvol_sem); 936 out_dput: 937 dput(dentry); 938 out_unlock: 939 btrfs_inode_unlock(dir, 0); 940 return error; 941 } 942 943 static noinline int btrfs_mksnapshot(const struct path *parent, 944 const char *name, int namelen, 945 struct btrfs_root *root, 946 bool readonly, 947 struct btrfs_qgroup_inherit *inherit) 948 { 949 int ret; 950 bool snapshot_force_cow = false; 951 952 /* 953 * Force new buffered writes to reserve space even when NOCOW is 954 * possible. This is to avoid later writeback (running dealloc) to 955 * fallback to COW mode and unexpectedly fail with ENOSPC. 956 */ 957 btrfs_drew_read_lock(&root->snapshot_lock); 958 959 ret = btrfs_start_delalloc_snapshot(root, false); 960 if (ret) 961 goto out; 962 963 /* 964 * All previous writes have started writeback in NOCOW mode, so now 965 * we force future writes to fallback to COW mode during snapshot 966 * creation. 967 */ 968 atomic_inc(&root->snapshot_force_cow); 969 snapshot_force_cow = true; 970 971 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 972 973 ret = btrfs_mksubvol(parent, name, namelen, 974 root, readonly, inherit); 975 out: 976 if (snapshot_force_cow) 977 atomic_dec(&root->snapshot_force_cow); 978 btrfs_drew_read_unlock(&root->snapshot_lock); 979 return ret; 980 } 981 982 /* 983 * When we're defragging a range, we don't want to kick it off again 984 * if it is really just waiting for delalloc to send it down. 985 * If we find a nice big extent or delalloc range for the bytes in the 986 * file you want to defrag, we return 0 to let you know to skip this 987 * part of the file 988 */ 989 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 990 { 991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 992 struct extent_map *em = NULL; 993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 994 u64 end; 995 996 read_lock(&em_tree->lock); 997 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 998 read_unlock(&em_tree->lock); 999 1000 if (em) { 1001 end = extent_map_end(em); 1002 free_extent_map(em); 1003 if (end - offset > thresh) 1004 return 0; 1005 } 1006 /* if we already have a nice delalloc here, just stop */ 1007 thresh /= 2; 1008 end = count_range_bits(io_tree, &offset, offset + thresh, 1009 thresh, EXTENT_DELALLOC, 1); 1010 if (end >= thresh) 1011 return 0; 1012 return 1; 1013 } 1014 1015 /* 1016 * helper function to walk through a file and find extents 1017 * newer than a specific transid, and smaller than thresh. 1018 * 1019 * This is used by the defragging code to find new and small 1020 * extents 1021 */ 1022 static int find_new_extents(struct btrfs_root *root, 1023 struct inode *inode, u64 newer_than, 1024 u64 *off, u32 thresh) 1025 { 1026 struct btrfs_path *path; 1027 struct btrfs_key min_key; 1028 struct extent_buffer *leaf; 1029 struct btrfs_file_extent_item *extent; 1030 int type; 1031 int ret; 1032 u64 ino = btrfs_ino(BTRFS_I(inode)); 1033 1034 path = btrfs_alloc_path(); 1035 if (!path) 1036 return -ENOMEM; 1037 1038 min_key.objectid = ino; 1039 min_key.type = BTRFS_EXTENT_DATA_KEY; 1040 min_key.offset = *off; 1041 1042 while (1) { 1043 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1044 if (ret != 0) 1045 goto none; 1046 process_slot: 1047 if (min_key.objectid != ino) 1048 goto none; 1049 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1050 goto none; 1051 1052 leaf = path->nodes[0]; 1053 extent = btrfs_item_ptr(leaf, path->slots[0], 1054 struct btrfs_file_extent_item); 1055 1056 type = btrfs_file_extent_type(leaf, extent); 1057 if (type == BTRFS_FILE_EXTENT_REG && 1058 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1059 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1060 *off = min_key.offset; 1061 btrfs_free_path(path); 1062 return 0; 1063 } 1064 1065 path->slots[0]++; 1066 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1067 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1068 goto process_slot; 1069 } 1070 1071 if (min_key.offset == (u64)-1) 1072 goto none; 1073 1074 min_key.offset++; 1075 btrfs_release_path(path); 1076 } 1077 none: 1078 btrfs_free_path(path); 1079 return -ENOENT; 1080 } 1081 1082 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1083 { 1084 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1085 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1086 struct extent_map *em; 1087 u64 len = PAGE_SIZE; 1088 1089 /* 1090 * hopefully we have this extent in the tree already, try without 1091 * the full extent lock 1092 */ 1093 read_lock(&em_tree->lock); 1094 em = lookup_extent_mapping(em_tree, start, len); 1095 read_unlock(&em_tree->lock); 1096 1097 if (!em) { 1098 struct extent_state *cached = NULL; 1099 u64 end = start + len - 1; 1100 1101 /* get the big lock and read metadata off disk */ 1102 lock_extent_bits(io_tree, start, end, &cached); 1103 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1104 unlock_extent_cached(io_tree, start, end, &cached); 1105 1106 if (IS_ERR(em)) 1107 return NULL; 1108 } 1109 1110 return em; 1111 } 1112 1113 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1114 { 1115 struct extent_map *next; 1116 bool ret = true; 1117 1118 /* this is the last extent */ 1119 if (em->start + em->len >= i_size_read(inode)) 1120 return false; 1121 1122 next = defrag_lookup_extent(inode, em->start + em->len); 1123 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1124 ret = false; 1125 else if ((em->block_start + em->block_len == next->block_start) && 1126 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1127 ret = false; 1128 1129 free_extent_map(next); 1130 return ret; 1131 } 1132 1133 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1134 u64 *last_len, u64 *skip, u64 *defrag_end, 1135 int compress) 1136 { 1137 struct extent_map *em; 1138 int ret = 1; 1139 bool next_mergeable = true; 1140 bool prev_mergeable = true; 1141 1142 /* 1143 * make sure that once we start defragging an extent, we keep on 1144 * defragging it 1145 */ 1146 if (start < *defrag_end) 1147 return 1; 1148 1149 *skip = 0; 1150 1151 em = defrag_lookup_extent(inode, start); 1152 if (!em) 1153 return 0; 1154 1155 /* this will cover holes, and inline extents */ 1156 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1157 ret = 0; 1158 goto out; 1159 } 1160 1161 if (!*defrag_end) 1162 prev_mergeable = false; 1163 1164 next_mergeable = defrag_check_next_extent(inode, em); 1165 /* 1166 * we hit a real extent, if it is big or the next extent is not a 1167 * real extent, don't bother defragging it 1168 */ 1169 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1170 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1171 ret = 0; 1172 out: 1173 /* 1174 * last_len ends up being a counter of how many bytes we've defragged. 1175 * every time we choose not to defrag an extent, we reset *last_len 1176 * so that the next tiny extent will force a defrag. 1177 * 1178 * The end result of this is that tiny extents before a single big 1179 * extent will force at least part of that big extent to be defragged. 1180 */ 1181 if (ret) { 1182 *defrag_end = extent_map_end(em); 1183 } else { 1184 *last_len = 0; 1185 *skip = extent_map_end(em); 1186 *defrag_end = 0; 1187 } 1188 1189 free_extent_map(em); 1190 return ret; 1191 } 1192 1193 /* 1194 * it doesn't do much good to defrag one or two pages 1195 * at a time. This pulls in a nice chunk of pages 1196 * to COW and defrag. 1197 * 1198 * It also makes sure the delalloc code has enough 1199 * dirty data to avoid making new small extents as part 1200 * of the defrag 1201 * 1202 * It's a good idea to start RA on this range 1203 * before calling this. 1204 */ 1205 static int cluster_pages_for_defrag(struct inode *inode, 1206 struct page **pages, 1207 unsigned long start_index, 1208 unsigned long num_pages) 1209 { 1210 unsigned long file_end; 1211 u64 isize = i_size_read(inode); 1212 u64 page_start; 1213 u64 page_end; 1214 u64 page_cnt; 1215 u64 start = (u64)start_index << PAGE_SHIFT; 1216 u64 search_start; 1217 int ret; 1218 int i; 1219 int i_done; 1220 struct btrfs_ordered_extent *ordered; 1221 struct extent_state *cached_state = NULL; 1222 struct extent_io_tree *tree; 1223 struct extent_changeset *data_reserved = NULL; 1224 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1225 1226 file_end = (isize - 1) >> PAGE_SHIFT; 1227 if (!isize || start_index > file_end) 1228 return 0; 1229 1230 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1231 1232 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1233 start, page_cnt << PAGE_SHIFT); 1234 if (ret) 1235 return ret; 1236 i_done = 0; 1237 tree = &BTRFS_I(inode)->io_tree; 1238 1239 /* step one, lock all the pages */ 1240 for (i = 0; i < page_cnt; i++) { 1241 struct page *page; 1242 again: 1243 page = find_or_create_page(inode->i_mapping, 1244 start_index + i, mask); 1245 if (!page) 1246 break; 1247 1248 ret = set_page_extent_mapped(page); 1249 if (ret < 0) { 1250 unlock_page(page); 1251 put_page(page); 1252 break; 1253 } 1254 1255 page_start = page_offset(page); 1256 page_end = page_start + PAGE_SIZE - 1; 1257 while (1) { 1258 lock_extent_bits(tree, page_start, page_end, 1259 &cached_state); 1260 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1261 page_start); 1262 unlock_extent_cached(tree, page_start, page_end, 1263 &cached_state); 1264 if (!ordered) 1265 break; 1266 1267 unlock_page(page); 1268 btrfs_start_ordered_extent(ordered, 1); 1269 btrfs_put_ordered_extent(ordered); 1270 lock_page(page); 1271 /* 1272 * we unlocked the page above, so we need check if 1273 * it was released or not. 1274 */ 1275 if (page->mapping != inode->i_mapping) { 1276 unlock_page(page); 1277 put_page(page); 1278 goto again; 1279 } 1280 } 1281 1282 if (!PageUptodate(page)) { 1283 btrfs_readpage(NULL, page); 1284 lock_page(page); 1285 if (!PageUptodate(page)) { 1286 unlock_page(page); 1287 put_page(page); 1288 ret = -EIO; 1289 break; 1290 } 1291 } 1292 1293 if (page->mapping != inode->i_mapping) { 1294 unlock_page(page); 1295 put_page(page); 1296 goto again; 1297 } 1298 1299 pages[i] = page; 1300 i_done++; 1301 } 1302 if (!i_done || ret) 1303 goto out; 1304 1305 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1306 goto out; 1307 1308 /* 1309 * so now we have a nice long stream of locked 1310 * and up to date pages, lets wait on them 1311 */ 1312 for (i = 0; i < i_done; i++) 1313 wait_on_page_writeback(pages[i]); 1314 1315 page_start = page_offset(pages[0]); 1316 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1317 1318 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1319 page_start, page_end - 1, &cached_state); 1320 1321 /* 1322 * When defragmenting we skip ranges that have holes or inline extents, 1323 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1324 * space. At btrfs_defrag_file(), we check if a range should be defragged 1325 * before locking the inode and then, if it should, we trigger a sync 1326 * page cache readahead - we lock the inode only after that to avoid 1327 * blocking for too long other tasks that possibly want to operate on 1328 * other file ranges. But before we were able to get the inode lock, 1329 * some other task may have punched a hole in the range, or we may have 1330 * now an inline extent, in which case we should not defrag. So check 1331 * for that here, where we have the inode and the range locked, and bail 1332 * out if that happened. 1333 */ 1334 search_start = page_start; 1335 while (search_start < page_end) { 1336 struct extent_map *em; 1337 1338 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1339 page_end - search_start); 1340 if (IS_ERR(em)) { 1341 ret = PTR_ERR(em); 1342 goto out_unlock_range; 1343 } 1344 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1345 free_extent_map(em); 1346 /* Ok, 0 means we did not defrag anything */ 1347 ret = 0; 1348 goto out_unlock_range; 1349 } 1350 search_start = extent_map_end(em); 1351 free_extent_map(em); 1352 } 1353 1354 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1355 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1356 EXTENT_DEFRAG, 0, 0, &cached_state); 1357 1358 if (i_done != page_cnt) { 1359 spin_lock(&BTRFS_I(inode)->lock); 1360 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1361 spin_unlock(&BTRFS_I(inode)->lock); 1362 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1363 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1364 } 1365 1366 1367 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1368 &cached_state); 1369 1370 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1371 page_start, page_end - 1, &cached_state); 1372 1373 for (i = 0; i < i_done; i++) { 1374 clear_page_dirty_for_io(pages[i]); 1375 ClearPageChecked(pages[i]); 1376 set_page_dirty(pages[i]); 1377 unlock_page(pages[i]); 1378 put_page(pages[i]); 1379 } 1380 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1381 extent_changeset_free(data_reserved); 1382 return i_done; 1383 1384 out_unlock_range: 1385 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1386 page_start, page_end - 1, &cached_state); 1387 out: 1388 for (i = 0; i < i_done; i++) { 1389 unlock_page(pages[i]); 1390 put_page(pages[i]); 1391 } 1392 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1393 start, page_cnt << PAGE_SHIFT, true); 1394 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1395 extent_changeset_free(data_reserved); 1396 return ret; 1397 1398 } 1399 1400 int btrfs_defrag_file(struct inode *inode, struct file *file, 1401 struct btrfs_ioctl_defrag_range_args *range, 1402 u64 newer_than, unsigned long max_to_defrag) 1403 { 1404 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1405 struct btrfs_root *root = BTRFS_I(inode)->root; 1406 struct file_ra_state *ra = NULL; 1407 unsigned long last_index; 1408 u64 isize = i_size_read(inode); 1409 u64 last_len = 0; 1410 u64 skip = 0; 1411 u64 defrag_end = 0; 1412 u64 newer_off = range->start; 1413 unsigned long i; 1414 unsigned long ra_index = 0; 1415 int ret; 1416 int defrag_count = 0; 1417 int compress_type = BTRFS_COMPRESS_ZLIB; 1418 u32 extent_thresh = range->extent_thresh; 1419 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1420 unsigned long cluster = max_cluster; 1421 u64 new_align = ~((u64)SZ_128K - 1); 1422 struct page **pages = NULL; 1423 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1424 1425 if (isize == 0) 1426 return 0; 1427 1428 if (range->start >= isize) 1429 return -EINVAL; 1430 1431 if (do_compress) { 1432 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1433 return -EINVAL; 1434 if (range->compress_type) 1435 compress_type = range->compress_type; 1436 } 1437 1438 if (extent_thresh == 0) 1439 extent_thresh = SZ_256K; 1440 1441 /* 1442 * If we were not given a file, allocate a readahead context. As 1443 * readahead is just an optimization, defrag will work without it so 1444 * we don't error out. 1445 */ 1446 if (!file) { 1447 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1448 if (ra) 1449 file_ra_state_init(ra, inode->i_mapping); 1450 } else { 1451 ra = &file->f_ra; 1452 } 1453 1454 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1455 if (!pages) { 1456 ret = -ENOMEM; 1457 goto out_ra; 1458 } 1459 1460 /* find the last page to defrag */ 1461 if (range->start + range->len > range->start) { 1462 last_index = min_t(u64, isize - 1, 1463 range->start + range->len - 1) >> PAGE_SHIFT; 1464 } else { 1465 last_index = (isize - 1) >> PAGE_SHIFT; 1466 } 1467 1468 if (newer_than) { 1469 ret = find_new_extents(root, inode, newer_than, 1470 &newer_off, SZ_64K); 1471 if (!ret) { 1472 range->start = newer_off; 1473 /* 1474 * we always align our defrag to help keep 1475 * the extents in the file evenly spaced 1476 */ 1477 i = (newer_off & new_align) >> PAGE_SHIFT; 1478 } else 1479 goto out_ra; 1480 } else { 1481 i = range->start >> PAGE_SHIFT; 1482 } 1483 if (!max_to_defrag) 1484 max_to_defrag = last_index - i + 1; 1485 1486 /* 1487 * make writeback starts from i, so the defrag range can be 1488 * written sequentially. 1489 */ 1490 if (i < inode->i_mapping->writeback_index) 1491 inode->i_mapping->writeback_index = i; 1492 1493 while (i <= last_index && defrag_count < max_to_defrag && 1494 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1495 /* 1496 * make sure we stop running if someone unmounts 1497 * the FS 1498 */ 1499 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1500 break; 1501 1502 if (btrfs_defrag_cancelled(fs_info)) { 1503 btrfs_debug(fs_info, "defrag_file cancelled"); 1504 ret = -EAGAIN; 1505 goto error; 1506 } 1507 1508 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1509 extent_thresh, &last_len, &skip, 1510 &defrag_end, do_compress)){ 1511 unsigned long next; 1512 /* 1513 * the should_defrag function tells us how much to skip 1514 * bump our counter by the suggested amount 1515 */ 1516 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1517 i = max(i + 1, next); 1518 continue; 1519 } 1520 1521 if (!newer_than) { 1522 cluster = (PAGE_ALIGN(defrag_end) >> 1523 PAGE_SHIFT) - i; 1524 cluster = min(cluster, max_cluster); 1525 } else { 1526 cluster = max_cluster; 1527 } 1528 1529 if (i + cluster > ra_index) { 1530 ra_index = max(i, ra_index); 1531 if (ra) 1532 page_cache_sync_readahead(inode->i_mapping, ra, 1533 file, ra_index, cluster); 1534 ra_index += cluster; 1535 } 1536 1537 btrfs_inode_lock(inode, 0); 1538 if (IS_SWAPFILE(inode)) { 1539 ret = -ETXTBSY; 1540 } else { 1541 if (do_compress) 1542 BTRFS_I(inode)->defrag_compress = compress_type; 1543 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1544 } 1545 if (ret < 0) { 1546 btrfs_inode_unlock(inode, 0); 1547 goto out_ra; 1548 } 1549 1550 defrag_count += ret; 1551 balance_dirty_pages_ratelimited(inode->i_mapping); 1552 btrfs_inode_unlock(inode, 0); 1553 1554 if (newer_than) { 1555 if (newer_off == (u64)-1) 1556 break; 1557 1558 if (ret > 0) 1559 i += ret; 1560 1561 newer_off = max(newer_off + 1, 1562 (u64)i << PAGE_SHIFT); 1563 1564 ret = find_new_extents(root, inode, newer_than, 1565 &newer_off, SZ_64K); 1566 if (!ret) { 1567 range->start = newer_off; 1568 i = (newer_off & new_align) >> PAGE_SHIFT; 1569 } else { 1570 break; 1571 } 1572 } else { 1573 if (ret > 0) { 1574 i += ret; 1575 last_len += ret << PAGE_SHIFT; 1576 } else { 1577 i++; 1578 last_len = 0; 1579 } 1580 } 1581 } 1582 1583 ret = defrag_count; 1584 error: 1585 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1586 filemap_flush(inode->i_mapping); 1587 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1588 &BTRFS_I(inode)->runtime_flags)) 1589 filemap_flush(inode->i_mapping); 1590 } 1591 1592 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1593 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1594 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1595 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1596 } 1597 1598 out_ra: 1599 if (do_compress) { 1600 btrfs_inode_lock(inode, 0); 1601 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1602 btrfs_inode_unlock(inode, 0); 1603 } 1604 if (!file) 1605 kfree(ra); 1606 kfree(pages); 1607 return ret; 1608 } 1609 1610 /* 1611 * Try to start exclusive operation @type or cancel it if it's running. 1612 * 1613 * Return: 1614 * 0 - normal mode, newly claimed op started 1615 * >0 - normal mode, something else is running, 1616 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1617 * ECANCELED - cancel mode, successful cancel 1618 * ENOTCONN - cancel mode, operation not running anymore 1619 */ 1620 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1621 enum btrfs_exclusive_operation type, bool cancel) 1622 { 1623 if (!cancel) { 1624 /* Start normal op */ 1625 if (!btrfs_exclop_start(fs_info, type)) 1626 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1627 /* Exclusive operation is now claimed */ 1628 return 0; 1629 } 1630 1631 /* Cancel running op */ 1632 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1633 /* 1634 * This blocks any exclop finish from setting it to NONE, so we 1635 * request cancellation. Either it runs and we will wait for it, 1636 * or it has finished and no waiting will happen. 1637 */ 1638 atomic_inc(&fs_info->reloc_cancel_req); 1639 btrfs_exclop_start_unlock(fs_info); 1640 1641 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1642 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1643 TASK_INTERRUPTIBLE); 1644 1645 return -ECANCELED; 1646 } 1647 1648 /* Something else is running or none */ 1649 return -ENOTCONN; 1650 } 1651 1652 static noinline int btrfs_ioctl_resize(struct file *file, 1653 void __user *arg) 1654 { 1655 struct inode *inode = file_inode(file); 1656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1657 u64 new_size; 1658 u64 old_size; 1659 u64 devid = 1; 1660 struct btrfs_root *root = BTRFS_I(inode)->root; 1661 struct btrfs_ioctl_vol_args *vol_args; 1662 struct btrfs_trans_handle *trans; 1663 struct btrfs_device *device = NULL; 1664 char *sizestr; 1665 char *retptr; 1666 char *devstr = NULL; 1667 int ret = 0; 1668 int mod = 0; 1669 bool cancel; 1670 1671 if (!capable(CAP_SYS_ADMIN)) 1672 return -EPERM; 1673 1674 ret = mnt_want_write_file(file); 1675 if (ret) 1676 return ret; 1677 1678 /* 1679 * Read the arguments before checking exclusivity to be able to 1680 * distinguish regular resize and cancel 1681 */ 1682 vol_args = memdup_user(arg, sizeof(*vol_args)); 1683 if (IS_ERR(vol_args)) { 1684 ret = PTR_ERR(vol_args); 1685 goto out_drop; 1686 } 1687 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1688 sizestr = vol_args->name; 1689 cancel = (strcmp("cancel", sizestr) == 0); 1690 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1691 if (ret) 1692 goto out_free; 1693 /* Exclusive operation is now claimed */ 1694 1695 devstr = strchr(sizestr, ':'); 1696 if (devstr) { 1697 sizestr = devstr + 1; 1698 *devstr = '\0'; 1699 devstr = vol_args->name; 1700 ret = kstrtoull(devstr, 10, &devid); 1701 if (ret) 1702 goto out_finish; 1703 if (!devid) { 1704 ret = -EINVAL; 1705 goto out_finish; 1706 } 1707 btrfs_info(fs_info, "resizing devid %llu", devid); 1708 } 1709 1710 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1711 if (!device) { 1712 btrfs_info(fs_info, "resizer unable to find device %llu", 1713 devid); 1714 ret = -ENODEV; 1715 goto out_finish; 1716 } 1717 1718 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1719 btrfs_info(fs_info, 1720 "resizer unable to apply on readonly device %llu", 1721 devid); 1722 ret = -EPERM; 1723 goto out_finish; 1724 } 1725 1726 if (!strcmp(sizestr, "max")) 1727 new_size = device->bdev->bd_inode->i_size; 1728 else { 1729 if (sizestr[0] == '-') { 1730 mod = -1; 1731 sizestr++; 1732 } else if (sizestr[0] == '+') { 1733 mod = 1; 1734 sizestr++; 1735 } 1736 new_size = memparse(sizestr, &retptr); 1737 if (*retptr != '\0' || new_size == 0) { 1738 ret = -EINVAL; 1739 goto out_finish; 1740 } 1741 } 1742 1743 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1744 ret = -EPERM; 1745 goto out_finish; 1746 } 1747 1748 old_size = btrfs_device_get_total_bytes(device); 1749 1750 if (mod < 0) { 1751 if (new_size > old_size) { 1752 ret = -EINVAL; 1753 goto out_finish; 1754 } 1755 new_size = old_size - new_size; 1756 } else if (mod > 0) { 1757 if (new_size > ULLONG_MAX - old_size) { 1758 ret = -ERANGE; 1759 goto out_finish; 1760 } 1761 new_size = old_size + new_size; 1762 } 1763 1764 if (new_size < SZ_256M) { 1765 ret = -EINVAL; 1766 goto out_finish; 1767 } 1768 if (new_size > device->bdev->bd_inode->i_size) { 1769 ret = -EFBIG; 1770 goto out_finish; 1771 } 1772 1773 new_size = round_down(new_size, fs_info->sectorsize); 1774 1775 if (new_size > old_size) { 1776 trans = btrfs_start_transaction(root, 0); 1777 if (IS_ERR(trans)) { 1778 ret = PTR_ERR(trans); 1779 goto out_finish; 1780 } 1781 ret = btrfs_grow_device(trans, device, new_size); 1782 btrfs_commit_transaction(trans); 1783 } else if (new_size < old_size) { 1784 ret = btrfs_shrink_device(device, new_size); 1785 } /* equal, nothing need to do */ 1786 1787 if (ret == 0 && new_size != old_size) 1788 btrfs_info_in_rcu(fs_info, 1789 "resize device %s (devid %llu) from %llu to %llu", 1790 rcu_str_deref(device->name), device->devid, 1791 old_size, new_size); 1792 out_finish: 1793 btrfs_exclop_finish(fs_info); 1794 out_free: 1795 kfree(vol_args); 1796 out_drop: 1797 mnt_drop_write_file(file); 1798 return ret; 1799 } 1800 1801 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1802 const char *name, unsigned long fd, int subvol, 1803 bool readonly, 1804 struct btrfs_qgroup_inherit *inherit) 1805 { 1806 int namelen; 1807 int ret = 0; 1808 1809 if (!S_ISDIR(file_inode(file)->i_mode)) 1810 return -ENOTDIR; 1811 1812 ret = mnt_want_write_file(file); 1813 if (ret) 1814 goto out; 1815 1816 namelen = strlen(name); 1817 if (strchr(name, '/')) { 1818 ret = -EINVAL; 1819 goto out_drop_write; 1820 } 1821 1822 if (name[0] == '.' && 1823 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1824 ret = -EEXIST; 1825 goto out_drop_write; 1826 } 1827 1828 if (subvol) { 1829 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1830 NULL, readonly, inherit); 1831 } else { 1832 struct fd src = fdget(fd); 1833 struct inode *src_inode; 1834 if (!src.file) { 1835 ret = -EINVAL; 1836 goto out_drop_write; 1837 } 1838 1839 src_inode = file_inode(src.file); 1840 if (src_inode->i_sb != file_inode(file)->i_sb) { 1841 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1842 "Snapshot src from another FS"); 1843 ret = -EXDEV; 1844 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) { 1845 /* 1846 * Subvolume creation is not restricted, but snapshots 1847 * are limited to own subvolumes only 1848 */ 1849 ret = -EPERM; 1850 } else { 1851 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1852 BTRFS_I(src_inode)->root, 1853 readonly, inherit); 1854 } 1855 fdput(src); 1856 } 1857 out_drop_write: 1858 mnt_drop_write_file(file); 1859 out: 1860 return ret; 1861 } 1862 1863 static noinline int btrfs_ioctl_snap_create(struct file *file, 1864 void __user *arg, int subvol) 1865 { 1866 struct btrfs_ioctl_vol_args *vol_args; 1867 int ret; 1868 1869 if (!S_ISDIR(file_inode(file)->i_mode)) 1870 return -ENOTDIR; 1871 1872 vol_args = memdup_user(arg, sizeof(*vol_args)); 1873 if (IS_ERR(vol_args)) 1874 return PTR_ERR(vol_args); 1875 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1876 1877 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1878 subvol, false, NULL); 1879 1880 kfree(vol_args); 1881 return ret; 1882 } 1883 1884 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1885 void __user *arg, int subvol) 1886 { 1887 struct btrfs_ioctl_vol_args_v2 *vol_args; 1888 int ret; 1889 bool readonly = false; 1890 struct btrfs_qgroup_inherit *inherit = NULL; 1891 1892 if (!S_ISDIR(file_inode(file)->i_mode)) 1893 return -ENOTDIR; 1894 1895 vol_args = memdup_user(arg, sizeof(*vol_args)); 1896 if (IS_ERR(vol_args)) 1897 return PTR_ERR(vol_args); 1898 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1899 1900 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1901 ret = -EOPNOTSUPP; 1902 goto free_args; 1903 } 1904 1905 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1906 readonly = true; 1907 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1908 u64 nums; 1909 1910 if (vol_args->size < sizeof(*inherit) || 1911 vol_args->size > PAGE_SIZE) { 1912 ret = -EINVAL; 1913 goto free_args; 1914 } 1915 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1916 if (IS_ERR(inherit)) { 1917 ret = PTR_ERR(inherit); 1918 goto free_args; 1919 } 1920 1921 if (inherit->num_qgroups > PAGE_SIZE || 1922 inherit->num_ref_copies > PAGE_SIZE || 1923 inherit->num_excl_copies > PAGE_SIZE) { 1924 ret = -EINVAL; 1925 goto free_inherit; 1926 } 1927 1928 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1929 2 * inherit->num_excl_copies; 1930 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1931 ret = -EINVAL; 1932 goto free_inherit; 1933 } 1934 } 1935 1936 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1937 subvol, readonly, inherit); 1938 if (ret) 1939 goto free_inherit; 1940 free_inherit: 1941 kfree(inherit); 1942 free_args: 1943 kfree(vol_args); 1944 return ret; 1945 } 1946 1947 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1948 void __user *arg) 1949 { 1950 struct inode *inode = file_inode(file); 1951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1952 struct btrfs_root *root = BTRFS_I(inode)->root; 1953 int ret = 0; 1954 u64 flags = 0; 1955 1956 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1957 return -EINVAL; 1958 1959 down_read(&fs_info->subvol_sem); 1960 if (btrfs_root_readonly(root)) 1961 flags |= BTRFS_SUBVOL_RDONLY; 1962 up_read(&fs_info->subvol_sem); 1963 1964 if (copy_to_user(arg, &flags, sizeof(flags))) 1965 ret = -EFAULT; 1966 1967 return ret; 1968 } 1969 1970 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1971 void __user *arg) 1972 { 1973 struct inode *inode = file_inode(file); 1974 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1975 struct btrfs_root *root = BTRFS_I(inode)->root; 1976 struct btrfs_trans_handle *trans; 1977 u64 root_flags; 1978 u64 flags; 1979 int ret = 0; 1980 1981 if (!inode_owner_or_capable(&init_user_ns, inode)) 1982 return -EPERM; 1983 1984 ret = mnt_want_write_file(file); 1985 if (ret) 1986 goto out; 1987 1988 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1989 ret = -EINVAL; 1990 goto out_drop_write; 1991 } 1992 1993 if (copy_from_user(&flags, arg, sizeof(flags))) { 1994 ret = -EFAULT; 1995 goto out_drop_write; 1996 } 1997 1998 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1999 ret = -EOPNOTSUPP; 2000 goto out_drop_write; 2001 } 2002 2003 down_write(&fs_info->subvol_sem); 2004 2005 /* nothing to do */ 2006 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2007 goto out_drop_sem; 2008 2009 root_flags = btrfs_root_flags(&root->root_item); 2010 if (flags & BTRFS_SUBVOL_RDONLY) { 2011 btrfs_set_root_flags(&root->root_item, 2012 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2013 } else { 2014 /* 2015 * Block RO -> RW transition if this subvolume is involved in 2016 * send 2017 */ 2018 spin_lock(&root->root_item_lock); 2019 if (root->send_in_progress == 0) { 2020 btrfs_set_root_flags(&root->root_item, 2021 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2022 spin_unlock(&root->root_item_lock); 2023 } else { 2024 spin_unlock(&root->root_item_lock); 2025 btrfs_warn(fs_info, 2026 "Attempt to set subvolume %llu read-write during send", 2027 root->root_key.objectid); 2028 ret = -EPERM; 2029 goto out_drop_sem; 2030 } 2031 } 2032 2033 trans = btrfs_start_transaction(root, 1); 2034 if (IS_ERR(trans)) { 2035 ret = PTR_ERR(trans); 2036 goto out_reset; 2037 } 2038 2039 ret = btrfs_update_root(trans, fs_info->tree_root, 2040 &root->root_key, &root->root_item); 2041 if (ret < 0) { 2042 btrfs_end_transaction(trans); 2043 goto out_reset; 2044 } 2045 2046 ret = btrfs_commit_transaction(trans); 2047 2048 out_reset: 2049 if (ret) 2050 btrfs_set_root_flags(&root->root_item, root_flags); 2051 out_drop_sem: 2052 up_write(&fs_info->subvol_sem); 2053 out_drop_write: 2054 mnt_drop_write_file(file); 2055 out: 2056 return ret; 2057 } 2058 2059 static noinline int key_in_sk(struct btrfs_key *key, 2060 struct btrfs_ioctl_search_key *sk) 2061 { 2062 struct btrfs_key test; 2063 int ret; 2064 2065 test.objectid = sk->min_objectid; 2066 test.type = sk->min_type; 2067 test.offset = sk->min_offset; 2068 2069 ret = btrfs_comp_cpu_keys(key, &test); 2070 if (ret < 0) 2071 return 0; 2072 2073 test.objectid = sk->max_objectid; 2074 test.type = sk->max_type; 2075 test.offset = sk->max_offset; 2076 2077 ret = btrfs_comp_cpu_keys(key, &test); 2078 if (ret > 0) 2079 return 0; 2080 return 1; 2081 } 2082 2083 static noinline int copy_to_sk(struct btrfs_path *path, 2084 struct btrfs_key *key, 2085 struct btrfs_ioctl_search_key *sk, 2086 size_t *buf_size, 2087 char __user *ubuf, 2088 unsigned long *sk_offset, 2089 int *num_found) 2090 { 2091 u64 found_transid; 2092 struct extent_buffer *leaf; 2093 struct btrfs_ioctl_search_header sh; 2094 struct btrfs_key test; 2095 unsigned long item_off; 2096 unsigned long item_len; 2097 int nritems; 2098 int i; 2099 int slot; 2100 int ret = 0; 2101 2102 leaf = path->nodes[0]; 2103 slot = path->slots[0]; 2104 nritems = btrfs_header_nritems(leaf); 2105 2106 if (btrfs_header_generation(leaf) > sk->max_transid) { 2107 i = nritems; 2108 goto advance_key; 2109 } 2110 found_transid = btrfs_header_generation(leaf); 2111 2112 for (i = slot; i < nritems; i++) { 2113 item_off = btrfs_item_ptr_offset(leaf, i); 2114 item_len = btrfs_item_size_nr(leaf, i); 2115 2116 btrfs_item_key_to_cpu(leaf, key, i); 2117 if (!key_in_sk(key, sk)) 2118 continue; 2119 2120 if (sizeof(sh) + item_len > *buf_size) { 2121 if (*num_found) { 2122 ret = 1; 2123 goto out; 2124 } 2125 2126 /* 2127 * return one empty item back for v1, which does not 2128 * handle -EOVERFLOW 2129 */ 2130 2131 *buf_size = sizeof(sh) + item_len; 2132 item_len = 0; 2133 ret = -EOVERFLOW; 2134 } 2135 2136 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2137 ret = 1; 2138 goto out; 2139 } 2140 2141 sh.objectid = key->objectid; 2142 sh.offset = key->offset; 2143 sh.type = key->type; 2144 sh.len = item_len; 2145 sh.transid = found_transid; 2146 2147 /* 2148 * Copy search result header. If we fault then loop again so we 2149 * can fault in the pages and -EFAULT there if there's a 2150 * problem. Otherwise we'll fault and then copy the buffer in 2151 * properly this next time through 2152 */ 2153 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2154 ret = 0; 2155 goto out; 2156 } 2157 2158 *sk_offset += sizeof(sh); 2159 2160 if (item_len) { 2161 char __user *up = ubuf + *sk_offset; 2162 /* 2163 * Copy the item, same behavior as above, but reset the 2164 * * sk_offset so we copy the full thing again. 2165 */ 2166 if (read_extent_buffer_to_user_nofault(leaf, up, 2167 item_off, item_len)) { 2168 ret = 0; 2169 *sk_offset -= sizeof(sh); 2170 goto out; 2171 } 2172 2173 *sk_offset += item_len; 2174 } 2175 (*num_found)++; 2176 2177 if (ret) /* -EOVERFLOW from above */ 2178 goto out; 2179 2180 if (*num_found >= sk->nr_items) { 2181 ret = 1; 2182 goto out; 2183 } 2184 } 2185 advance_key: 2186 ret = 0; 2187 test.objectid = sk->max_objectid; 2188 test.type = sk->max_type; 2189 test.offset = sk->max_offset; 2190 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2191 ret = 1; 2192 else if (key->offset < (u64)-1) 2193 key->offset++; 2194 else if (key->type < (u8)-1) { 2195 key->offset = 0; 2196 key->type++; 2197 } else if (key->objectid < (u64)-1) { 2198 key->offset = 0; 2199 key->type = 0; 2200 key->objectid++; 2201 } else 2202 ret = 1; 2203 out: 2204 /* 2205 * 0: all items from this leaf copied, continue with next 2206 * 1: * more items can be copied, but unused buffer is too small 2207 * * all items were found 2208 * Either way, it will stops the loop which iterates to the next 2209 * leaf 2210 * -EOVERFLOW: item was to large for buffer 2211 * -EFAULT: could not copy extent buffer back to userspace 2212 */ 2213 return ret; 2214 } 2215 2216 static noinline int search_ioctl(struct inode *inode, 2217 struct btrfs_ioctl_search_key *sk, 2218 size_t *buf_size, 2219 char __user *ubuf) 2220 { 2221 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2222 struct btrfs_root *root; 2223 struct btrfs_key key; 2224 struct btrfs_path *path; 2225 int ret; 2226 int num_found = 0; 2227 unsigned long sk_offset = 0; 2228 2229 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2230 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2231 return -EOVERFLOW; 2232 } 2233 2234 path = btrfs_alloc_path(); 2235 if (!path) 2236 return -ENOMEM; 2237 2238 if (sk->tree_id == 0) { 2239 /* search the root of the inode that was passed */ 2240 root = btrfs_grab_root(BTRFS_I(inode)->root); 2241 } else { 2242 root = btrfs_get_fs_root(info, sk->tree_id, true); 2243 if (IS_ERR(root)) { 2244 btrfs_free_path(path); 2245 return PTR_ERR(root); 2246 } 2247 } 2248 2249 key.objectid = sk->min_objectid; 2250 key.type = sk->min_type; 2251 key.offset = sk->min_offset; 2252 2253 while (1) { 2254 ret = fault_in_pages_writeable(ubuf + sk_offset, 2255 *buf_size - sk_offset); 2256 if (ret) 2257 break; 2258 2259 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2260 if (ret != 0) { 2261 if (ret > 0) 2262 ret = 0; 2263 goto err; 2264 } 2265 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2266 &sk_offset, &num_found); 2267 btrfs_release_path(path); 2268 if (ret) 2269 break; 2270 2271 } 2272 if (ret > 0) 2273 ret = 0; 2274 err: 2275 sk->nr_items = num_found; 2276 btrfs_put_root(root); 2277 btrfs_free_path(path); 2278 return ret; 2279 } 2280 2281 static noinline int btrfs_ioctl_tree_search(struct file *file, 2282 void __user *argp) 2283 { 2284 struct btrfs_ioctl_search_args __user *uargs; 2285 struct btrfs_ioctl_search_key sk; 2286 struct inode *inode; 2287 int ret; 2288 size_t buf_size; 2289 2290 if (!capable(CAP_SYS_ADMIN)) 2291 return -EPERM; 2292 2293 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2294 2295 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2296 return -EFAULT; 2297 2298 buf_size = sizeof(uargs->buf); 2299 2300 inode = file_inode(file); 2301 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2302 2303 /* 2304 * In the origin implementation an overflow is handled by returning a 2305 * search header with a len of zero, so reset ret. 2306 */ 2307 if (ret == -EOVERFLOW) 2308 ret = 0; 2309 2310 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2311 ret = -EFAULT; 2312 return ret; 2313 } 2314 2315 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2316 void __user *argp) 2317 { 2318 struct btrfs_ioctl_search_args_v2 __user *uarg; 2319 struct btrfs_ioctl_search_args_v2 args; 2320 struct inode *inode; 2321 int ret; 2322 size_t buf_size; 2323 const size_t buf_limit = SZ_16M; 2324 2325 if (!capable(CAP_SYS_ADMIN)) 2326 return -EPERM; 2327 2328 /* copy search header and buffer size */ 2329 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2330 if (copy_from_user(&args, uarg, sizeof(args))) 2331 return -EFAULT; 2332 2333 buf_size = args.buf_size; 2334 2335 /* limit result size to 16MB */ 2336 if (buf_size > buf_limit) 2337 buf_size = buf_limit; 2338 2339 inode = file_inode(file); 2340 ret = search_ioctl(inode, &args.key, &buf_size, 2341 (char __user *)(&uarg->buf[0])); 2342 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2343 ret = -EFAULT; 2344 else if (ret == -EOVERFLOW && 2345 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2346 ret = -EFAULT; 2347 2348 return ret; 2349 } 2350 2351 /* 2352 * Search INODE_REFs to identify path name of 'dirid' directory 2353 * in a 'tree_id' tree. and sets path name to 'name'. 2354 */ 2355 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2356 u64 tree_id, u64 dirid, char *name) 2357 { 2358 struct btrfs_root *root; 2359 struct btrfs_key key; 2360 char *ptr; 2361 int ret = -1; 2362 int slot; 2363 int len; 2364 int total_len = 0; 2365 struct btrfs_inode_ref *iref; 2366 struct extent_buffer *l; 2367 struct btrfs_path *path; 2368 2369 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2370 name[0]='\0'; 2371 return 0; 2372 } 2373 2374 path = btrfs_alloc_path(); 2375 if (!path) 2376 return -ENOMEM; 2377 2378 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2379 2380 root = btrfs_get_fs_root(info, tree_id, true); 2381 if (IS_ERR(root)) { 2382 ret = PTR_ERR(root); 2383 root = NULL; 2384 goto out; 2385 } 2386 2387 key.objectid = dirid; 2388 key.type = BTRFS_INODE_REF_KEY; 2389 key.offset = (u64)-1; 2390 2391 while (1) { 2392 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2393 if (ret < 0) 2394 goto out; 2395 else if (ret > 0) { 2396 ret = btrfs_previous_item(root, path, dirid, 2397 BTRFS_INODE_REF_KEY); 2398 if (ret < 0) 2399 goto out; 2400 else if (ret > 0) { 2401 ret = -ENOENT; 2402 goto out; 2403 } 2404 } 2405 2406 l = path->nodes[0]; 2407 slot = path->slots[0]; 2408 btrfs_item_key_to_cpu(l, &key, slot); 2409 2410 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2411 len = btrfs_inode_ref_name_len(l, iref); 2412 ptr -= len + 1; 2413 total_len += len + 1; 2414 if (ptr < name) { 2415 ret = -ENAMETOOLONG; 2416 goto out; 2417 } 2418 2419 *(ptr + len) = '/'; 2420 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2421 2422 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2423 break; 2424 2425 btrfs_release_path(path); 2426 key.objectid = key.offset; 2427 key.offset = (u64)-1; 2428 dirid = key.objectid; 2429 } 2430 memmove(name, ptr, total_len); 2431 name[total_len] = '\0'; 2432 ret = 0; 2433 out: 2434 btrfs_put_root(root); 2435 btrfs_free_path(path); 2436 return ret; 2437 } 2438 2439 static int btrfs_search_path_in_tree_user(struct inode *inode, 2440 struct btrfs_ioctl_ino_lookup_user_args *args) 2441 { 2442 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2443 struct super_block *sb = inode->i_sb; 2444 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2445 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2446 u64 dirid = args->dirid; 2447 unsigned long item_off; 2448 unsigned long item_len; 2449 struct btrfs_inode_ref *iref; 2450 struct btrfs_root_ref *rref; 2451 struct btrfs_root *root = NULL; 2452 struct btrfs_path *path; 2453 struct btrfs_key key, key2; 2454 struct extent_buffer *leaf; 2455 struct inode *temp_inode; 2456 char *ptr; 2457 int slot; 2458 int len; 2459 int total_len = 0; 2460 int ret; 2461 2462 path = btrfs_alloc_path(); 2463 if (!path) 2464 return -ENOMEM; 2465 2466 /* 2467 * If the bottom subvolume does not exist directly under upper_limit, 2468 * construct the path in from the bottom up. 2469 */ 2470 if (dirid != upper_limit.objectid) { 2471 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2472 2473 root = btrfs_get_fs_root(fs_info, treeid, true); 2474 if (IS_ERR(root)) { 2475 ret = PTR_ERR(root); 2476 goto out; 2477 } 2478 2479 key.objectid = dirid; 2480 key.type = BTRFS_INODE_REF_KEY; 2481 key.offset = (u64)-1; 2482 while (1) { 2483 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2484 if (ret < 0) { 2485 goto out_put; 2486 } else if (ret > 0) { 2487 ret = btrfs_previous_item(root, path, dirid, 2488 BTRFS_INODE_REF_KEY); 2489 if (ret < 0) { 2490 goto out_put; 2491 } else if (ret > 0) { 2492 ret = -ENOENT; 2493 goto out_put; 2494 } 2495 } 2496 2497 leaf = path->nodes[0]; 2498 slot = path->slots[0]; 2499 btrfs_item_key_to_cpu(leaf, &key, slot); 2500 2501 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2502 len = btrfs_inode_ref_name_len(leaf, iref); 2503 ptr -= len + 1; 2504 total_len += len + 1; 2505 if (ptr < args->path) { 2506 ret = -ENAMETOOLONG; 2507 goto out_put; 2508 } 2509 2510 *(ptr + len) = '/'; 2511 read_extent_buffer(leaf, ptr, 2512 (unsigned long)(iref + 1), len); 2513 2514 /* Check the read+exec permission of this directory */ 2515 ret = btrfs_previous_item(root, path, dirid, 2516 BTRFS_INODE_ITEM_KEY); 2517 if (ret < 0) { 2518 goto out_put; 2519 } else if (ret > 0) { 2520 ret = -ENOENT; 2521 goto out_put; 2522 } 2523 2524 leaf = path->nodes[0]; 2525 slot = path->slots[0]; 2526 btrfs_item_key_to_cpu(leaf, &key2, slot); 2527 if (key2.objectid != dirid) { 2528 ret = -ENOENT; 2529 goto out_put; 2530 } 2531 2532 temp_inode = btrfs_iget(sb, key2.objectid, root); 2533 if (IS_ERR(temp_inode)) { 2534 ret = PTR_ERR(temp_inode); 2535 goto out_put; 2536 } 2537 ret = inode_permission(&init_user_ns, temp_inode, 2538 MAY_READ | MAY_EXEC); 2539 iput(temp_inode); 2540 if (ret) { 2541 ret = -EACCES; 2542 goto out_put; 2543 } 2544 2545 if (key.offset == upper_limit.objectid) 2546 break; 2547 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2548 ret = -EACCES; 2549 goto out_put; 2550 } 2551 2552 btrfs_release_path(path); 2553 key.objectid = key.offset; 2554 key.offset = (u64)-1; 2555 dirid = key.objectid; 2556 } 2557 2558 memmove(args->path, ptr, total_len); 2559 args->path[total_len] = '\0'; 2560 btrfs_put_root(root); 2561 root = NULL; 2562 btrfs_release_path(path); 2563 } 2564 2565 /* Get the bottom subvolume's name from ROOT_REF */ 2566 key.objectid = treeid; 2567 key.type = BTRFS_ROOT_REF_KEY; 2568 key.offset = args->treeid; 2569 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2570 if (ret < 0) { 2571 goto out; 2572 } else if (ret > 0) { 2573 ret = -ENOENT; 2574 goto out; 2575 } 2576 2577 leaf = path->nodes[0]; 2578 slot = path->slots[0]; 2579 btrfs_item_key_to_cpu(leaf, &key, slot); 2580 2581 item_off = btrfs_item_ptr_offset(leaf, slot); 2582 item_len = btrfs_item_size_nr(leaf, slot); 2583 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2584 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2585 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2586 ret = -EINVAL; 2587 goto out; 2588 } 2589 2590 /* Copy subvolume's name */ 2591 item_off += sizeof(struct btrfs_root_ref); 2592 item_len -= sizeof(struct btrfs_root_ref); 2593 read_extent_buffer(leaf, args->name, item_off, item_len); 2594 args->name[item_len] = 0; 2595 2596 out_put: 2597 btrfs_put_root(root); 2598 out: 2599 btrfs_free_path(path); 2600 return ret; 2601 } 2602 2603 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2604 void __user *argp) 2605 { 2606 struct btrfs_ioctl_ino_lookup_args *args; 2607 struct inode *inode; 2608 int ret = 0; 2609 2610 args = memdup_user(argp, sizeof(*args)); 2611 if (IS_ERR(args)) 2612 return PTR_ERR(args); 2613 2614 inode = file_inode(file); 2615 2616 /* 2617 * Unprivileged query to obtain the containing subvolume root id. The 2618 * path is reset so it's consistent with btrfs_search_path_in_tree. 2619 */ 2620 if (args->treeid == 0) 2621 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2622 2623 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2624 args->name[0] = 0; 2625 goto out; 2626 } 2627 2628 if (!capable(CAP_SYS_ADMIN)) { 2629 ret = -EPERM; 2630 goto out; 2631 } 2632 2633 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2634 args->treeid, args->objectid, 2635 args->name); 2636 2637 out: 2638 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2639 ret = -EFAULT; 2640 2641 kfree(args); 2642 return ret; 2643 } 2644 2645 /* 2646 * Version of ino_lookup ioctl (unprivileged) 2647 * 2648 * The main differences from ino_lookup ioctl are: 2649 * 2650 * 1. Read + Exec permission will be checked using inode_permission() during 2651 * path construction. -EACCES will be returned in case of failure. 2652 * 2. Path construction will be stopped at the inode number which corresponds 2653 * to the fd with which this ioctl is called. If constructed path does not 2654 * exist under fd's inode, -EACCES will be returned. 2655 * 3. The name of bottom subvolume is also searched and filled. 2656 */ 2657 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2658 { 2659 struct btrfs_ioctl_ino_lookup_user_args *args; 2660 struct inode *inode; 2661 int ret; 2662 2663 args = memdup_user(argp, sizeof(*args)); 2664 if (IS_ERR(args)) 2665 return PTR_ERR(args); 2666 2667 inode = file_inode(file); 2668 2669 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2670 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2671 /* 2672 * The subvolume does not exist under fd with which this is 2673 * called 2674 */ 2675 kfree(args); 2676 return -EACCES; 2677 } 2678 2679 ret = btrfs_search_path_in_tree_user(inode, args); 2680 2681 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2682 ret = -EFAULT; 2683 2684 kfree(args); 2685 return ret; 2686 } 2687 2688 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2689 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2690 { 2691 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2692 struct btrfs_fs_info *fs_info; 2693 struct btrfs_root *root; 2694 struct btrfs_path *path; 2695 struct btrfs_key key; 2696 struct btrfs_root_item *root_item; 2697 struct btrfs_root_ref *rref; 2698 struct extent_buffer *leaf; 2699 unsigned long item_off; 2700 unsigned long item_len; 2701 struct inode *inode; 2702 int slot; 2703 int ret = 0; 2704 2705 path = btrfs_alloc_path(); 2706 if (!path) 2707 return -ENOMEM; 2708 2709 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2710 if (!subvol_info) { 2711 btrfs_free_path(path); 2712 return -ENOMEM; 2713 } 2714 2715 inode = file_inode(file); 2716 fs_info = BTRFS_I(inode)->root->fs_info; 2717 2718 /* Get root_item of inode's subvolume */ 2719 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2720 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2721 if (IS_ERR(root)) { 2722 ret = PTR_ERR(root); 2723 goto out_free; 2724 } 2725 root_item = &root->root_item; 2726 2727 subvol_info->treeid = key.objectid; 2728 2729 subvol_info->generation = btrfs_root_generation(root_item); 2730 subvol_info->flags = btrfs_root_flags(root_item); 2731 2732 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2733 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2734 BTRFS_UUID_SIZE); 2735 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2736 BTRFS_UUID_SIZE); 2737 2738 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2739 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2740 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2741 2742 subvol_info->otransid = btrfs_root_otransid(root_item); 2743 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2744 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2745 2746 subvol_info->stransid = btrfs_root_stransid(root_item); 2747 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2748 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2749 2750 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2751 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2752 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2753 2754 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2755 /* Search root tree for ROOT_BACKREF of this subvolume */ 2756 key.type = BTRFS_ROOT_BACKREF_KEY; 2757 key.offset = 0; 2758 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2759 if (ret < 0) { 2760 goto out; 2761 } else if (path->slots[0] >= 2762 btrfs_header_nritems(path->nodes[0])) { 2763 ret = btrfs_next_leaf(fs_info->tree_root, path); 2764 if (ret < 0) { 2765 goto out; 2766 } else if (ret > 0) { 2767 ret = -EUCLEAN; 2768 goto out; 2769 } 2770 } 2771 2772 leaf = path->nodes[0]; 2773 slot = path->slots[0]; 2774 btrfs_item_key_to_cpu(leaf, &key, slot); 2775 if (key.objectid == subvol_info->treeid && 2776 key.type == BTRFS_ROOT_BACKREF_KEY) { 2777 subvol_info->parent_id = key.offset; 2778 2779 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2780 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2781 2782 item_off = btrfs_item_ptr_offset(leaf, slot) 2783 + sizeof(struct btrfs_root_ref); 2784 item_len = btrfs_item_size_nr(leaf, slot) 2785 - sizeof(struct btrfs_root_ref); 2786 read_extent_buffer(leaf, subvol_info->name, 2787 item_off, item_len); 2788 } else { 2789 ret = -ENOENT; 2790 goto out; 2791 } 2792 } 2793 2794 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2795 ret = -EFAULT; 2796 2797 out: 2798 btrfs_put_root(root); 2799 out_free: 2800 btrfs_free_path(path); 2801 kfree(subvol_info); 2802 return ret; 2803 } 2804 2805 /* 2806 * Return ROOT_REF information of the subvolume containing this inode 2807 * except the subvolume name. 2808 */ 2809 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2810 { 2811 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2812 struct btrfs_root_ref *rref; 2813 struct btrfs_root *root; 2814 struct btrfs_path *path; 2815 struct btrfs_key key; 2816 struct extent_buffer *leaf; 2817 struct inode *inode; 2818 u64 objectid; 2819 int slot; 2820 int ret; 2821 u8 found; 2822 2823 path = btrfs_alloc_path(); 2824 if (!path) 2825 return -ENOMEM; 2826 2827 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2828 if (IS_ERR(rootrefs)) { 2829 btrfs_free_path(path); 2830 return PTR_ERR(rootrefs); 2831 } 2832 2833 inode = file_inode(file); 2834 root = BTRFS_I(inode)->root->fs_info->tree_root; 2835 objectid = BTRFS_I(inode)->root->root_key.objectid; 2836 2837 key.objectid = objectid; 2838 key.type = BTRFS_ROOT_REF_KEY; 2839 key.offset = rootrefs->min_treeid; 2840 found = 0; 2841 2842 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2843 if (ret < 0) { 2844 goto out; 2845 } else if (path->slots[0] >= 2846 btrfs_header_nritems(path->nodes[0])) { 2847 ret = btrfs_next_leaf(root, path); 2848 if (ret < 0) { 2849 goto out; 2850 } else if (ret > 0) { 2851 ret = -EUCLEAN; 2852 goto out; 2853 } 2854 } 2855 while (1) { 2856 leaf = path->nodes[0]; 2857 slot = path->slots[0]; 2858 2859 btrfs_item_key_to_cpu(leaf, &key, slot); 2860 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2861 ret = 0; 2862 goto out; 2863 } 2864 2865 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2866 ret = -EOVERFLOW; 2867 goto out; 2868 } 2869 2870 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2871 rootrefs->rootref[found].treeid = key.offset; 2872 rootrefs->rootref[found].dirid = 2873 btrfs_root_ref_dirid(leaf, rref); 2874 found++; 2875 2876 ret = btrfs_next_item(root, path); 2877 if (ret < 0) { 2878 goto out; 2879 } else if (ret > 0) { 2880 ret = -EUCLEAN; 2881 goto out; 2882 } 2883 } 2884 2885 out: 2886 if (!ret || ret == -EOVERFLOW) { 2887 rootrefs->num_items = found; 2888 /* update min_treeid for next search */ 2889 if (found) 2890 rootrefs->min_treeid = 2891 rootrefs->rootref[found - 1].treeid + 1; 2892 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2893 ret = -EFAULT; 2894 } 2895 2896 kfree(rootrefs); 2897 btrfs_free_path(path); 2898 2899 return ret; 2900 } 2901 2902 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2903 void __user *arg, 2904 bool destroy_v2) 2905 { 2906 struct dentry *parent = file->f_path.dentry; 2907 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2908 struct dentry *dentry; 2909 struct inode *dir = d_inode(parent); 2910 struct inode *inode; 2911 struct btrfs_root *root = BTRFS_I(dir)->root; 2912 struct btrfs_root *dest = NULL; 2913 struct btrfs_ioctl_vol_args *vol_args = NULL; 2914 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2915 char *subvol_name, *subvol_name_ptr = NULL; 2916 int subvol_namelen; 2917 int err = 0; 2918 bool destroy_parent = false; 2919 2920 if (destroy_v2) { 2921 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2922 if (IS_ERR(vol_args2)) 2923 return PTR_ERR(vol_args2); 2924 2925 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2926 err = -EOPNOTSUPP; 2927 goto out; 2928 } 2929 2930 /* 2931 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2932 * name, same as v1 currently does. 2933 */ 2934 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2935 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2936 subvol_name = vol_args2->name; 2937 2938 err = mnt_want_write_file(file); 2939 if (err) 2940 goto out; 2941 } else { 2942 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2943 err = -EINVAL; 2944 goto out; 2945 } 2946 2947 err = mnt_want_write_file(file); 2948 if (err) 2949 goto out; 2950 2951 dentry = btrfs_get_dentry(fs_info->sb, 2952 BTRFS_FIRST_FREE_OBJECTID, 2953 vol_args2->subvolid, 0, 0); 2954 if (IS_ERR(dentry)) { 2955 err = PTR_ERR(dentry); 2956 goto out_drop_write; 2957 } 2958 2959 /* 2960 * Change the default parent since the subvolume being 2961 * deleted can be outside of the current mount point. 2962 */ 2963 parent = btrfs_get_parent(dentry); 2964 2965 /* 2966 * At this point dentry->d_name can point to '/' if the 2967 * subvolume we want to destroy is outsite of the 2968 * current mount point, so we need to release the 2969 * current dentry and execute the lookup to return a new 2970 * one with ->d_name pointing to the 2971 * <mount point>/subvol_name. 2972 */ 2973 dput(dentry); 2974 if (IS_ERR(parent)) { 2975 err = PTR_ERR(parent); 2976 goto out_drop_write; 2977 } 2978 dir = d_inode(parent); 2979 2980 /* 2981 * If v2 was used with SPEC_BY_ID, a new parent was 2982 * allocated since the subvolume can be outside of the 2983 * current mount point. Later on we need to release this 2984 * new parent dentry. 2985 */ 2986 destroy_parent = true; 2987 2988 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2989 fs_info, vol_args2->subvolid); 2990 if (IS_ERR(subvol_name_ptr)) { 2991 err = PTR_ERR(subvol_name_ptr); 2992 goto free_parent; 2993 } 2994 /* subvol_name_ptr is already nul terminated */ 2995 subvol_name = (char *)kbasename(subvol_name_ptr); 2996 } 2997 } else { 2998 vol_args = memdup_user(arg, sizeof(*vol_args)); 2999 if (IS_ERR(vol_args)) 3000 return PTR_ERR(vol_args); 3001 3002 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 3003 subvol_name = vol_args->name; 3004 3005 err = mnt_want_write_file(file); 3006 if (err) 3007 goto out; 3008 } 3009 3010 subvol_namelen = strlen(subvol_name); 3011 3012 if (strchr(subvol_name, '/') || 3013 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3014 err = -EINVAL; 3015 goto free_subvol_name; 3016 } 3017 3018 if (!S_ISDIR(dir->i_mode)) { 3019 err = -ENOTDIR; 3020 goto free_subvol_name; 3021 } 3022 3023 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3024 if (err == -EINTR) 3025 goto free_subvol_name; 3026 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3027 if (IS_ERR(dentry)) { 3028 err = PTR_ERR(dentry); 3029 goto out_unlock_dir; 3030 } 3031 3032 if (d_really_is_negative(dentry)) { 3033 err = -ENOENT; 3034 goto out_dput; 3035 } 3036 3037 inode = d_inode(dentry); 3038 dest = BTRFS_I(inode)->root; 3039 if (!capable(CAP_SYS_ADMIN)) { 3040 /* 3041 * Regular user. Only allow this with a special mount 3042 * option, when the user has write+exec access to the 3043 * subvol root, and when rmdir(2) would have been 3044 * allowed. 3045 * 3046 * Note that this is _not_ check that the subvol is 3047 * empty or doesn't contain data that we wouldn't 3048 * otherwise be able to delete. 3049 * 3050 * Users who want to delete empty subvols should try 3051 * rmdir(2). 3052 */ 3053 err = -EPERM; 3054 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3055 goto out_dput; 3056 3057 /* 3058 * Do not allow deletion if the parent dir is the same 3059 * as the dir to be deleted. That means the ioctl 3060 * must be called on the dentry referencing the root 3061 * of the subvol, not a random directory contained 3062 * within it. 3063 */ 3064 err = -EINVAL; 3065 if (root == dest) 3066 goto out_dput; 3067 3068 err = inode_permission(&init_user_ns, inode, 3069 MAY_WRITE | MAY_EXEC); 3070 if (err) 3071 goto out_dput; 3072 } 3073 3074 /* check if subvolume may be deleted by a user */ 3075 err = btrfs_may_delete(dir, dentry, 1); 3076 if (err) 3077 goto out_dput; 3078 3079 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3080 err = -EINVAL; 3081 goto out_dput; 3082 } 3083 3084 btrfs_inode_lock(inode, 0); 3085 err = btrfs_delete_subvolume(dir, dentry); 3086 btrfs_inode_unlock(inode, 0); 3087 if (!err) { 3088 fsnotify_rmdir(dir, dentry); 3089 d_delete(dentry); 3090 } 3091 3092 out_dput: 3093 dput(dentry); 3094 out_unlock_dir: 3095 btrfs_inode_unlock(dir, 0); 3096 free_subvol_name: 3097 kfree(subvol_name_ptr); 3098 free_parent: 3099 if (destroy_parent) 3100 dput(parent); 3101 out_drop_write: 3102 mnt_drop_write_file(file); 3103 out: 3104 kfree(vol_args2); 3105 kfree(vol_args); 3106 return err; 3107 } 3108 3109 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3110 { 3111 struct inode *inode = file_inode(file); 3112 struct btrfs_root *root = BTRFS_I(inode)->root; 3113 struct btrfs_ioctl_defrag_range_args *range; 3114 int ret; 3115 3116 ret = mnt_want_write_file(file); 3117 if (ret) 3118 return ret; 3119 3120 if (btrfs_root_readonly(root)) { 3121 ret = -EROFS; 3122 goto out; 3123 } 3124 3125 /* Subpage defrag will be supported in later commits */ 3126 if (root->fs_info->sectorsize < PAGE_SIZE) { 3127 ret = -ENOTTY; 3128 goto out; 3129 } 3130 3131 switch (inode->i_mode & S_IFMT) { 3132 case S_IFDIR: 3133 if (!capable(CAP_SYS_ADMIN)) { 3134 ret = -EPERM; 3135 goto out; 3136 } 3137 ret = btrfs_defrag_root(root); 3138 break; 3139 case S_IFREG: 3140 /* 3141 * Note that this does not check the file descriptor for write 3142 * access. This prevents defragmenting executables that are 3143 * running and allows defrag on files open in read-only mode. 3144 */ 3145 if (!capable(CAP_SYS_ADMIN) && 3146 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3147 ret = -EPERM; 3148 goto out; 3149 } 3150 3151 range = kzalloc(sizeof(*range), GFP_KERNEL); 3152 if (!range) { 3153 ret = -ENOMEM; 3154 goto out; 3155 } 3156 3157 if (argp) { 3158 if (copy_from_user(range, argp, 3159 sizeof(*range))) { 3160 ret = -EFAULT; 3161 kfree(range); 3162 goto out; 3163 } 3164 /* compression requires us to start the IO */ 3165 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3166 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3167 range->extent_thresh = (u32)-1; 3168 } 3169 } else { 3170 /* the rest are all set to zero by kzalloc */ 3171 range->len = (u64)-1; 3172 } 3173 ret = btrfs_defrag_file(file_inode(file), file, 3174 range, BTRFS_OLDEST_GENERATION, 0); 3175 if (ret > 0) 3176 ret = 0; 3177 kfree(range); 3178 break; 3179 default: 3180 ret = -EINVAL; 3181 } 3182 out: 3183 mnt_drop_write_file(file); 3184 return ret; 3185 } 3186 3187 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3188 { 3189 struct btrfs_ioctl_vol_args *vol_args; 3190 int ret; 3191 3192 if (!capable(CAP_SYS_ADMIN)) 3193 return -EPERM; 3194 3195 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3196 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3197 3198 vol_args = memdup_user(arg, sizeof(*vol_args)); 3199 if (IS_ERR(vol_args)) { 3200 ret = PTR_ERR(vol_args); 3201 goto out; 3202 } 3203 3204 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3205 ret = btrfs_init_new_device(fs_info, vol_args->name); 3206 3207 if (!ret) 3208 btrfs_info(fs_info, "disk added %s", vol_args->name); 3209 3210 kfree(vol_args); 3211 out: 3212 btrfs_exclop_finish(fs_info); 3213 return ret; 3214 } 3215 3216 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3217 { 3218 struct inode *inode = file_inode(file); 3219 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3220 struct btrfs_ioctl_vol_args_v2 *vol_args; 3221 int ret; 3222 bool cancel = false; 3223 3224 if (!capable(CAP_SYS_ADMIN)) 3225 return -EPERM; 3226 3227 ret = mnt_want_write_file(file); 3228 if (ret) 3229 return ret; 3230 3231 vol_args = memdup_user(arg, sizeof(*vol_args)); 3232 if (IS_ERR(vol_args)) { 3233 ret = PTR_ERR(vol_args); 3234 goto err_drop; 3235 } 3236 3237 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3238 ret = -EOPNOTSUPP; 3239 goto out; 3240 } 3241 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3242 if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) && 3243 strcmp("cancel", vol_args->name) == 0) 3244 cancel = true; 3245 3246 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3247 cancel); 3248 if (ret) 3249 goto out; 3250 /* Exclusive operation is now claimed */ 3251 3252 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3253 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3254 else 3255 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3256 3257 btrfs_exclop_finish(fs_info); 3258 3259 if (!ret) { 3260 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3261 btrfs_info(fs_info, "device deleted: id %llu", 3262 vol_args->devid); 3263 else 3264 btrfs_info(fs_info, "device deleted: %s", 3265 vol_args->name); 3266 } 3267 out: 3268 kfree(vol_args); 3269 err_drop: 3270 mnt_drop_write_file(file); 3271 return ret; 3272 } 3273 3274 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3275 { 3276 struct inode *inode = file_inode(file); 3277 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3278 struct btrfs_ioctl_vol_args *vol_args; 3279 int ret; 3280 bool cancel; 3281 3282 if (!capable(CAP_SYS_ADMIN)) 3283 return -EPERM; 3284 3285 ret = mnt_want_write_file(file); 3286 if (ret) 3287 return ret; 3288 3289 vol_args = memdup_user(arg, sizeof(*vol_args)); 3290 if (IS_ERR(vol_args)) { 3291 ret = PTR_ERR(vol_args); 3292 goto out_drop_write; 3293 } 3294 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3295 cancel = (strcmp("cancel", vol_args->name) == 0); 3296 3297 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3298 cancel); 3299 if (ret == 0) { 3300 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3301 if (!ret) 3302 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3303 btrfs_exclop_finish(fs_info); 3304 } 3305 3306 kfree(vol_args); 3307 out_drop_write: 3308 mnt_drop_write_file(file); 3309 3310 return ret; 3311 } 3312 3313 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3314 void __user *arg) 3315 { 3316 struct btrfs_ioctl_fs_info_args *fi_args; 3317 struct btrfs_device *device; 3318 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3319 u64 flags_in; 3320 int ret = 0; 3321 3322 fi_args = memdup_user(arg, sizeof(*fi_args)); 3323 if (IS_ERR(fi_args)) 3324 return PTR_ERR(fi_args); 3325 3326 flags_in = fi_args->flags; 3327 memset(fi_args, 0, sizeof(*fi_args)); 3328 3329 rcu_read_lock(); 3330 fi_args->num_devices = fs_devices->num_devices; 3331 3332 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3333 if (device->devid > fi_args->max_id) 3334 fi_args->max_id = device->devid; 3335 } 3336 rcu_read_unlock(); 3337 3338 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3339 fi_args->nodesize = fs_info->nodesize; 3340 fi_args->sectorsize = fs_info->sectorsize; 3341 fi_args->clone_alignment = fs_info->sectorsize; 3342 3343 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3344 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3345 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3346 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3347 } 3348 3349 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3350 fi_args->generation = fs_info->generation; 3351 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3352 } 3353 3354 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3355 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3356 sizeof(fi_args->metadata_uuid)); 3357 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3358 } 3359 3360 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3361 ret = -EFAULT; 3362 3363 kfree(fi_args); 3364 return ret; 3365 } 3366 3367 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3368 void __user *arg) 3369 { 3370 struct btrfs_ioctl_dev_info_args *di_args; 3371 struct btrfs_device *dev; 3372 int ret = 0; 3373 char *s_uuid = NULL; 3374 3375 di_args = memdup_user(arg, sizeof(*di_args)); 3376 if (IS_ERR(di_args)) 3377 return PTR_ERR(di_args); 3378 3379 if (!btrfs_is_empty_uuid(di_args->uuid)) 3380 s_uuid = di_args->uuid; 3381 3382 rcu_read_lock(); 3383 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3384 NULL); 3385 3386 if (!dev) { 3387 ret = -ENODEV; 3388 goto out; 3389 } 3390 3391 di_args->devid = dev->devid; 3392 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3393 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3394 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3395 if (dev->name) { 3396 strncpy(di_args->path, rcu_str_deref(dev->name), 3397 sizeof(di_args->path) - 1); 3398 di_args->path[sizeof(di_args->path) - 1] = 0; 3399 } else { 3400 di_args->path[0] = '\0'; 3401 } 3402 3403 out: 3404 rcu_read_unlock(); 3405 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3406 ret = -EFAULT; 3407 3408 kfree(di_args); 3409 return ret; 3410 } 3411 3412 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3413 { 3414 struct inode *inode = file_inode(file); 3415 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3416 struct btrfs_root *root = BTRFS_I(inode)->root; 3417 struct btrfs_root *new_root; 3418 struct btrfs_dir_item *di; 3419 struct btrfs_trans_handle *trans; 3420 struct btrfs_path *path = NULL; 3421 struct btrfs_disk_key disk_key; 3422 u64 objectid = 0; 3423 u64 dir_id; 3424 int ret; 3425 3426 if (!capable(CAP_SYS_ADMIN)) 3427 return -EPERM; 3428 3429 ret = mnt_want_write_file(file); 3430 if (ret) 3431 return ret; 3432 3433 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3434 ret = -EFAULT; 3435 goto out; 3436 } 3437 3438 if (!objectid) 3439 objectid = BTRFS_FS_TREE_OBJECTID; 3440 3441 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3442 if (IS_ERR(new_root)) { 3443 ret = PTR_ERR(new_root); 3444 goto out; 3445 } 3446 if (!is_fstree(new_root->root_key.objectid)) { 3447 ret = -ENOENT; 3448 goto out_free; 3449 } 3450 3451 path = btrfs_alloc_path(); 3452 if (!path) { 3453 ret = -ENOMEM; 3454 goto out_free; 3455 } 3456 3457 trans = btrfs_start_transaction(root, 1); 3458 if (IS_ERR(trans)) { 3459 ret = PTR_ERR(trans); 3460 goto out_free; 3461 } 3462 3463 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3464 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3465 dir_id, "default", 7, 1); 3466 if (IS_ERR_OR_NULL(di)) { 3467 btrfs_release_path(path); 3468 btrfs_end_transaction(trans); 3469 btrfs_err(fs_info, 3470 "Umm, you don't have the default diritem, this isn't going to work"); 3471 ret = -ENOENT; 3472 goto out_free; 3473 } 3474 3475 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3476 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3477 btrfs_mark_buffer_dirty(path->nodes[0]); 3478 btrfs_release_path(path); 3479 3480 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3481 btrfs_end_transaction(trans); 3482 out_free: 3483 btrfs_put_root(new_root); 3484 btrfs_free_path(path); 3485 out: 3486 mnt_drop_write_file(file); 3487 return ret; 3488 } 3489 3490 static void get_block_group_info(struct list_head *groups_list, 3491 struct btrfs_ioctl_space_info *space) 3492 { 3493 struct btrfs_block_group *block_group; 3494 3495 space->total_bytes = 0; 3496 space->used_bytes = 0; 3497 space->flags = 0; 3498 list_for_each_entry(block_group, groups_list, list) { 3499 space->flags = block_group->flags; 3500 space->total_bytes += block_group->length; 3501 space->used_bytes += block_group->used; 3502 } 3503 } 3504 3505 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3506 void __user *arg) 3507 { 3508 struct btrfs_ioctl_space_args space_args; 3509 struct btrfs_ioctl_space_info space; 3510 struct btrfs_ioctl_space_info *dest; 3511 struct btrfs_ioctl_space_info *dest_orig; 3512 struct btrfs_ioctl_space_info __user *user_dest; 3513 struct btrfs_space_info *info; 3514 static const u64 types[] = { 3515 BTRFS_BLOCK_GROUP_DATA, 3516 BTRFS_BLOCK_GROUP_SYSTEM, 3517 BTRFS_BLOCK_GROUP_METADATA, 3518 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3519 }; 3520 int num_types = 4; 3521 int alloc_size; 3522 int ret = 0; 3523 u64 slot_count = 0; 3524 int i, c; 3525 3526 if (copy_from_user(&space_args, 3527 (struct btrfs_ioctl_space_args __user *)arg, 3528 sizeof(space_args))) 3529 return -EFAULT; 3530 3531 for (i = 0; i < num_types; i++) { 3532 struct btrfs_space_info *tmp; 3533 3534 info = NULL; 3535 list_for_each_entry(tmp, &fs_info->space_info, list) { 3536 if (tmp->flags == types[i]) { 3537 info = tmp; 3538 break; 3539 } 3540 } 3541 3542 if (!info) 3543 continue; 3544 3545 down_read(&info->groups_sem); 3546 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3547 if (!list_empty(&info->block_groups[c])) 3548 slot_count++; 3549 } 3550 up_read(&info->groups_sem); 3551 } 3552 3553 /* 3554 * Global block reserve, exported as a space_info 3555 */ 3556 slot_count++; 3557 3558 /* space_slots == 0 means they are asking for a count */ 3559 if (space_args.space_slots == 0) { 3560 space_args.total_spaces = slot_count; 3561 goto out; 3562 } 3563 3564 slot_count = min_t(u64, space_args.space_slots, slot_count); 3565 3566 alloc_size = sizeof(*dest) * slot_count; 3567 3568 /* we generally have at most 6 or so space infos, one for each raid 3569 * level. So, a whole page should be more than enough for everyone 3570 */ 3571 if (alloc_size > PAGE_SIZE) 3572 return -ENOMEM; 3573 3574 space_args.total_spaces = 0; 3575 dest = kmalloc(alloc_size, GFP_KERNEL); 3576 if (!dest) 3577 return -ENOMEM; 3578 dest_orig = dest; 3579 3580 /* now we have a buffer to copy into */ 3581 for (i = 0; i < num_types; i++) { 3582 struct btrfs_space_info *tmp; 3583 3584 if (!slot_count) 3585 break; 3586 3587 info = NULL; 3588 list_for_each_entry(tmp, &fs_info->space_info, list) { 3589 if (tmp->flags == types[i]) { 3590 info = tmp; 3591 break; 3592 } 3593 } 3594 3595 if (!info) 3596 continue; 3597 down_read(&info->groups_sem); 3598 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3599 if (!list_empty(&info->block_groups[c])) { 3600 get_block_group_info(&info->block_groups[c], 3601 &space); 3602 memcpy(dest, &space, sizeof(space)); 3603 dest++; 3604 space_args.total_spaces++; 3605 slot_count--; 3606 } 3607 if (!slot_count) 3608 break; 3609 } 3610 up_read(&info->groups_sem); 3611 } 3612 3613 /* 3614 * Add global block reserve 3615 */ 3616 if (slot_count) { 3617 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3618 3619 spin_lock(&block_rsv->lock); 3620 space.total_bytes = block_rsv->size; 3621 space.used_bytes = block_rsv->size - block_rsv->reserved; 3622 spin_unlock(&block_rsv->lock); 3623 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3624 memcpy(dest, &space, sizeof(space)); 3625 space_args.total_spaces++; 3626 } 3627 3628 user_dest = (struct btrfs_ioctl_space_info __user *) 3629 (arg + sizeof(struct btrfs_ioctl_space_args)); 3630 3631 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3632 ret = -EFAULT; 3633 3634 kfree(dest_orig); 3635 out: 3636 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3637 ret = -EFAULT; 3638 3639 return ret; 3640 } 3641 3642 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3643 void __user *argp) 3644 { 3645 struct btrfs_trans_handle *trans; 3646 u64 transid; 3647 int ret; 3648 3649 trans = btrfs_attach_transaction_barrier(root); 3650 if (IS_ERR(trans)) { 3651 if (PTR_ERR(trans) != -ENOENT) 3652 return PTR_ERR(trans); 3653 3654 /* No running transaction, don't bother */ 3655 transid = root->fs_info->last_trans_committed; 3656 goto out; 3657 } 3658 transid = trans->transid; 3659 ret = btrfs_commit_transaction_async(trans); 3660 if (ret) { 3661 btrfs_end_transaction(trans); 3662 return ret; 3663 } 3664 out: 3665 if (argp) 3666 if (copy_to_user(argp, &transid, sizeof(transid))) 3667 return -EFAULT; 3668 return 0; 3669 } 3670 3671 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3672 void __user *argp) 3673 { 3674 u64 transid; 3675 3676 if (argp) { 3677 if (copy_from_user(&transid, argp, sizeof(transid))) 3678 return -EFAULT; 3679 } else { 3680 transid = 0; /* current trans */ 3681 } 3682 return btrfs_wait_for_commit(fs_info, transid); 3683 } 3684 3685 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3686 { 3687 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3688 struct btrfs_ioctl_scrub_args *sa; 3689 int ret; 3690 3691 if (!capable(CAP_SYS_ADMIN)) 3692 return -EPERM; 3693 3694 sa = memdup_user(arg, sizeof(*sa)); 3695 if (IS_ERR(sa)) 3696 return PTR_ERR(sa); 3697 3698 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3699 ret = mnt_want_write_file(file); 3700 if (ret) 3701 goto out; 3702 } 3703 3704 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3705 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3706 0); 3707 3708 /* 3709 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3710 * error. This is important as it allows user space to know how much 3711 * progress scrub has done. For example, if scrub is canceled we get 3712 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3713 * space. Later user space can inspect the progress from the structure 3714 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3715 * previously (btrfs-progs does this). 3716 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3717 * then return -EFAULT to signal the structure was not copied or it may 3718 * be corrupt and unreliable due to a partial copy. 3719 */ 3720 if (copy_to_user(arg, sa, sizeof(*sa))) 3721 ret = -EFAULT; 3722 3723 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3724 mnt_drop_write_file(file); 3725 out: 3726 kfree(sa); 3727 return ret; 3728 } 3729 3730 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3731 { 3732 if (!capable(CAP_SYS_ADMIN)) 3733 return -EPERM; 3734 3735 return btrfs_scrub_cancel(fs_info); 3736 } 3737 3738 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3739 void __user *arg) 3740 { 3741 struct btrfs_ioctl_scrub_args *sa; 3742 int ret; 3743 3744 if (!capable(CAP_SYS_ADMIN)) 3745 return -EPERM; 3746 3747 sa = memdup_user(arg, sizeof(*sa)); 3748 if (IS_ERR(sa)) 3749 return PTR_ERR(sa); 3750 3751 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3752 3753 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3754 ret = -EFAULT; 3755 3756 kfree(sa); 3757 return ret; 3758 } 3759 3760 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3761 void __user *arg) 3762 { 3763 struct btrfs_ioctl_get_dev_stats *sa; 3764 int ret; 3765 3766 sa = memdup_user(arg, sizeof(*sa)); 3767 if (IS_ERR(sa)) 3768 return PTR_ERR(sa); 3769 3770 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3771 kfree(sa); 3772 return -EPERM; 3773 } 3774 3775 ret = btrfs_get_dev_stats(fs_info, sa); 3776 3777 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3778 ret = -EFAULT; 3779 3780 kfree(sa); 3781 return ret; 3782 } 3783 3784 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3785 void __user *arg) 3786 { 3787 struct btrfs_ioctl_dev_replace_args *p; 3788 int ret; 3789 3790 if (!capable(CAP_SYS_ADMIN)) 3791 return -EPERM; 3792 3793 p = memdup_user(arg, sizeof(*p)); 3794 if (IS_ERR(p)) 3795 return PTR_ERR(p); 3796 3797 switch (p->cmd) { 3798 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3799 if (sb_rdonly(fs_info->sb)) { 3800 ret = -EROFS; 3801 goto out; 3802 } 3803 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3804 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3805 } else { 3806 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3807 btrfs_exclop_finish(fs_info); 3808 } 3809 break; 3810 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3811 btrfs_dev_replace_status(fs_info, p); 3812 ret = 0; 3813 break; 3814 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3815 p->result = btrfs_dev_replace_cancel(fs_info); 3816 ret = 0; 3817 break; 3818 default: 3819 ret = -EINVAL; 3820 break; 3821 } 3822 3823 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3824 ret = -EFAULT; 3825 out: 3826 kfree(p); 3827 return ret; 3828 } 3829 3830 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3831 { 3832 int ret = 0; 3833 int i; 3834 u64 rel_ptr; 3835 int size; 3836 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3837 struct inode_fs_paths *ipath = NULL; 3838 struct btrfs_path *path; 3839 3840 if (!capable(CAP_DAC_READ_SEARCH)) 3841 return -EPERM; 3842 3843 path = btrfs_alloc_path(); 3844 if (!path) { 3845 ret = -ENOMEM; 3846 goto out; 3847 } 3848 3849 ipa = memdup_user(arg, sizeof(*ipa)); 3850 if (IS_ERR(ipa)) { 3851 ret = PTR_ERR(ipa); 3852 ipa = NULL; 3853 goto out; 3854 } 3855 3856 size = min_t(u32, ipa->size, 4096); 3857 ipath = init_ipath(size, root, path); 3858 if (IS_ERR(ipath)) { 3859 ret = PTR_ERR(ipath); 3860 ipath = NULL; 3861 goto out; 3862 } 3863 3864 ret = paths_from_inode(ipa->inum, ipath); 3865 if (ret < 0) 3866 goto out; 3867 3868 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3869 rel_ptr = ipath->fspath->val[i] - 3870 (u64)(unsigned long)ipath->fspath->val; 3871 ipath->fspath->val[i] = rel_ptr; 3872 } 3873 3874 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3875 ipath->fspath, size); 3876 if (ret) { 3877 ret = -EFAULT; 3878 goto out; 3879 } 3880 3881 out: 3882 btrfs_free_path(path); 3883 free_ipath(ipath); 3884 kfree(ipa); 3885 3886 return ret; 3887 } 3888 3889 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3890 { 3891 struct btrfs_data_container *inodes = ctx; 3892 const size_t c = 3 * sizeof(u64); 3893 3894 if (inodes->bytes_left >= c) { 3895 inodes->bytes_left -= c; 3896 inodes->val[inodes->elem_cnt] = inum; 3897 inodes->val[inodes->elem_cnt + 1] = offset; 3898 inodes->val[inodes->elem_cnt + 2] = root; 3899 inodes->elem_cnt += 3; 3900 } else { 3901 inodes->bytes_missing += c - inodes->bytes_left; 3902 inodes->bytes_left = 0; 3903 inodes->elem_missed += 3; 3904 } 3905 3906 return 0; 3907 } 3908 3909 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3910 void __user *arg, int version) 3911 { 3912 int ret = 0; 3913 int size; 3914 struct btrfs_ioctl_logical_ino_args *loi; 3915 struct btrfs_data_container *inodes = NULL; 3916 struct btrfs_path *path = NULL; 3917 bool ignore_offset; 3918 3919 if (!capable(CAP_SYS_ADMIN)) 3920 return -EPERM; 3921 3922 loi = memdup_user(arg, sizeof(*loi)); 3923 if (IS_ERR(loi)) 3924 return PTR_ERR(loi); 3925 3926 if (version == 1) { 3927 ignore_offset = false; 3928 size = min_t(u32, loi->size, SZ_64K); 3929 } else { 3930 /* All reserved bits must be 0 for now */ 3931 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3932 ret = -EINVAL; 3933 goto out_loi; 3934 } 3935 /* Only accept flags we have defined so far */ 3936 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3937 ret = -EINVAL; 3938 goto out_loi; 3939 } 3940 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3941 size = min_t(u32, loi->size, SZ_16M); 3942 } 3943 3944 path = btrfs_alloc_path(); 3945 if (!path) { 3946 ret = -ENOMEM; 3947 goto out; 3948 } 3949 3950 inodes = init_data_container(size); 3951 if (IS_ERR(inodes)) { 3952 ret = PTR_ERR(inodes); 3953 inodes = NULL; 3954 goto out; 3955 } 3956 3957 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3958 build_ino_list, inodes, ignore_offset); 3959 if (ret == -EINVAL) 3960 ret = -ENOENT; 3961 if (ret < 0) 3962 goto out; 3963 3964 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3965 size); 3966 if (ret) 3967 ret = -EFAULT; 3968 3969 out: 3970 btrfs_free_path(path); 3971 kvfree(inodes); 3972 out_loi: 3973 kfree(loi); 3974 3975 return ret; 3976 } 3977 3978 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3979 struct btrfs_ioctl_balance_args *bargs) 3980 { 3981 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3982 3983 bargs->flags = bctl->flags; 3984 3985 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3986 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3987 if (atomic_read(&fs_info->balance_pause_req)) 3988 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3989 if (atomic_read(&fs_info->balance_cancel_req)) 3990 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3991 3992 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3993 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3994 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3995 3996 spin_lock(&fs_info->balance_lock); 3997 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3998 spin_unlock(&fs_info->balance_lock); 3999 } 4000 4001 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 4002 { 4003 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 4004 struct btrfs_fs_info *fs_info = root->fs_info; 4005 struct btrfs_ioctl_balance_args *bargs; 4006 struct btrfs_balance_control *bctl; 4007 bool need_unlock; /* for mut. excl. ops lock */ 4008 int ret; 4009 4010 if (!capable(CAP_SYS_ADMIN)) 4011 return -EPERM; 4012 4013 ret = mnt_want_write_file(file); 4014 if (ret) 4015 return ret; 4016 4017 again: 4018 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4019 mutex_lock(&fs_info->balance_mutex); 4020 need_unlock = true; 4021 goto locked; 4022 } 4023 4024 /* 4025 * mut. excl. ops lock is locked. Three possibilities: 4026 * (1) some other op is running 4027 * (2) balance is running 4028 * (3) balance is paused -- special case (think resume) 4029 */ 4030 mutex_lock(&fs_info->balance_mutex); 4031 if (fs_info->balance_ctl) { 4032 /* this is either (2) or (3) */ 4033 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4034 mutex_unlock(&fs_info->balance_mutex); 4035 /* 4036 * Lock released to allow other waiters to continue, 4037 * we'll reexamine the status again. 4038 */ 4039 mutex_lock(&fs_info->balance_mutex); 4040 4041 if (fs_info->balance_ctl && 4042 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4043 /* this is (3) */ 4044 need_unlock = false; 4045 goto locked; 4046 } 4047 4048 mutex_unlock(&fs_info->balance_mutex); 4049 goto again; 4050 } else { 4051 /* this is (2) */ 4052 mutex_unlock(&fs_info->balance_mutex); 4053 ret = -EINPROGRESS; 4054 goto out; 4055 } 4056 } else { 4057 /* this is (1) */ 4058 mutex_unlock(&fs_info->balance_mutex); 4059 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4060 goto out; 4061 } 4062 4063 locked: 4064 4065 if (arg) { 4066 bargs = memdup_user(arg, sizeof(*bargs)); 4067 if (IS_ERR(bargs)) { 4068 ret = PTR_ERR(bargs); 4069 goto out_unlock; 4070 } 4071 4072 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4073 if (!fs_info->balance_ctl) { 4074 ret = -ENOTCONN; 4075 goto out_bargs; 4076 } 4077 4078 bctl = fs_info->balance_ctl; 4079 spin_lock(&fs_info->balance_lock); 4080 bctl->flags |= BTRFS_BALANCE_RESUME; 4081 spin_unlock(&fs_info->balance_lock); 4082 4083 goto do_balance; 4084 } 4085 } else { 4086 bargs = NULL; 4087 } 4088 4089 if (fs_info->balance_ctl) { 4090 ret = -EINPROGRESS; 4091 goto out_bargs; 4092 } 4093 4094 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4095 if (!bctl) { 4096 ret = -ENOMEM; 4097 goto out_bargs; 4098 } 4099 4100 if (arg) { 4101 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4102 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4103 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4104 4105 bctl->flags = bargs->flags; 4106 } else { 4107 /* balance everything - no filters */ 4108 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4109 } 4110 4111 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4112 ret = -EINVAL; 4113 goto out_bctl; 4114 } 4115 4116 do_balance: 4117 /* 4118 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4119 * bctl is freed in reset_balance_state, or, if restriper was paused 4120 * all the way until unmount, in free_fs_info. The flag should be 4121 * cleared after reset_balance_state. 4122 */ 4123 need_unlock = false; 4124 4125 ret = btrfs_balance(fs_info, bctl, bargs); 4126 bctl = NULL; 4127 4128 if ((ret == 0 || ret == -ECANCELED) && arg) { 4129 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4130 ret = -EFAULT; 4131 } 4132 4133 out_bctl: 4134 kfree(bctl); 4135 out_bargs: 4136 kfree(bargs); 4137 out_unlock: 4138 mutex_unlock(&fs_info->balance_mutex); 4139 if (need_unlock) 4140 btrfs_exclop_finish(fs_info); 4141 out: 4142 mnt_drop_write_file(file); 4143 return ret; 4144 } 4145 4146 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4147 { 4148 if (!capable(CAP_SYS_ADMIN)) 4149 return -EPERM; 4150 4151 switch (cmd) { 4152 case BTRFS_BALANCE_CTL_PAUSE: 4153 return btrfs_pause_balance(fs_info); 4154 case BTRFS_BALANCE_CTL_CANCEL: 4155 return btrfs_cancel_balance(fs_info); 4156 } 4157 4158 return -EINVAL; 4159 } 4160 4161 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4162 void __user *arg) 4163 { 4164 struct btrfs_ioctl_balance_args *bargs; 4165 int ret = 0; 4166 4167 if (!capable(CAP_SYS_ADMIN)) 4168 return -EPERM; 4169 4170 mutex_lock(&fs_info->balance_mutex); 4171 if (!fs_info->balance_ctl) { 4172 ret = -ENOTCONN; 4173 goto out; 4174 } 4175 4176 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4177 if (!bargs) { 4178 ret = -ENOMEM; 4179 goto out; 4180 } 4181 4182 btrfs_update_ioctl_balance_args(fs_info, bargs); 4183 4184 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4185 ret = -EFAULT; 4186 4187 kfree(bargs); 4188 out: 4189 mutex_unlock(&fs_info->balance_mutex); 4190 return ret; 4191 } 4192 4193 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4194 { 4195 struct inode *inode = file_inode(file); 4196 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4197 struct btrfs_ioctl_quota_ctl_args *sa; 4198 int ret; 4199 4200 if (!capable(CAP_SYS_ADMIN)) 4201 return -EPERM; 4202 4203 ret = mnt_want_write_file(file); 4204 if (ret) 4205 return ret; 4206 4207 sa = memdup_user(arg, sizeof(*sa)); 4208 if (IS_ERR(sa)) { 4209 ret = PTR_ERR(sa); 4210 goto drop_write; 4211 } 4212 4213 down_write(&fs_info->subvol_sem); 4214 4215 switch (sa->cmd) { 4216 case BTRFS_QUOTA_CTL_ENABLE: 4217 ret = btrfs_quota_enable(fs_info); 4218 break; 4219 case BTRFS_QUOTA_CTL_DISABLE: 4220 ret = btrfs_quota_disable(fs_info); 4221 break; 4222 default: 4223 ret = -EINVAL; 4224 break; 4225 } 4226 4227 kfree(sa); 4228 up_write(&fs_info->subvol_sem); 4229 drop_write: 4230 mnt_drop_write_file(file); 4231 return ret; 4232 } 4233 4234 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4235 { 4236 struct inode *inode = file_inode(file); 4237 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4238 struct btrfs_root *root = BTRFS_I(inode)->root; 4239 struct btrfs_ioctl_qgroup_assign_args *sa; 4240 struct btrfs_trans_handle *trans; 4241 int ret; 4242 int err; 4243 4244 if (!capable(CAP_SYS_ADMIN)) 4245 return -EPERM; 4246 4247 ret = mnt_want_write_file(file); 4248 if (ret) 4249 return ret; 4250 4251 sa = memdup_user(arg, sizeof(*sa)); 4252 if (IS_ERR(sa)) { 4253 ret = PTR_ERR(sa); 4254 goto drop_write; 4255 } 4256 4257 trans = btrfs_join_transaction(root); 4258 if (IS_ERR(trans)) { 4259 ret = PTR_ERR(trans); 4260 goto out; 4261 } 4262 4263 if (sa->assign) { 4264 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4265 } else { 4266 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4267 } 4268 4269 /* update qgroup status and info */ 4270 err = btrfs_run_qgroups(trans); 4271 if (err < 0) 4272 btrfs_handle_fs_error(fs_info, err, 4273 "failed to update qgroup status and info"); 4274 err = btrfs_end_transaction(trans); 4275 if (err && !ret) 4276 ret = err; 4277 4278 out: 4279 kfree(sa); 4280 drop_write: 4281 mnt_drop_write_file(file); 4282 return ret; 4283 } 4284 4285 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4286 { 4287 struct inode *inode = file_inode(file); 4288 struct btrfs_root *root = BTRFS_I(inode)->root; 4289 struct btrfs_ioctl_qgroup_create_args *sa; 4290 struct btrfs_trans_handle *trans; 4291 int ret; 4292 int err; 4293 4294 if (!capable(CAP_SYS_ADMIN)) 4295 return -EPERM; 4296 4297 ret = mnt_want_write_file(file); 4298 if (ret) 4299 return ret; 4300 4301 sa = memdup_user(arg, sizeof(*sa)); 4302 if (IS_ERR(sa)) { 4303 ret = PTR_ERR(sa); 4304 goto drop_write; 4305 } 4306 4307 if (!sa->qgroupid) { 4308 ret = -EINVAL; 4309 goto out; 4310 } 4311 4312 trans = btrfs_join_transaction(root); 4313 if (IS_ERR(trans)) { 4314 ret = PTR_ERR(trans); 4315 goto out; 4316 } 4317 4318 if (sa->create) { 4319 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4320 } else { 4321 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4322 } 4323 4324 err = btrfs_end_transaction(trans); 4325 if (err && !ret) 4326 ret = err; 4327 4328 out: 4329 kfree(sa); 4330 drop_write: 4331 mnt_drop_write_file(file); 4332 return ret; 4333 } 4334 4335 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4336 { 4337 struct inode *inode = file_inode(file); 4338 struct btrfs_root *root = BTRFS_I(inode)->root; 4339 struct btrfs_ioctl_qgroup_limit_args *sa; 4340 struct btrfs_trans_handle *trans; 4341 int ret; 4342 int err; 4343 u64 qgroupid; 4344 4345 if (!capable(CAP_SYS_ADMIN)) 4346 return -EPERM; 4347 4348 ret = mnt_want_write_file(file); 4349 if (ret) 4350 return ret; 4351 4352 sa = memdup_user(arg, sizeof(*sa)); 4353 if (IS_ERR(sa)) { 4354 ret = PTR_ERR(sa); 4355 goto drop_write; 4356 } 4357 4358 trans = btrfs_join_transaction(root); 4359 if (IS_ERR(trans)) { 4360 ret = PTR_ERR(trans); 4361 goto out; 4362 } 4363 4364 qgroupid = sa->qgroupid; 4365 if (!qgroupid) { 4366 /* take the current subvol as qgroup */ 4367 qgroupid = root->root_key.objectid; 4368 } 4369 4370 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4371 4372 err = btrfs_end_transaction(trans); 4373 if (err && !ret) 4374 ret = err; 4375 4376 out: 4377 kfree(sa); 4378 drop_write: 4379 mnt_drop_write_file(file); 4380 return ret; 4381 } 4382 4383 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4384 { 4385 struct inode *inode = file_inode(file); 4386 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4387 struct btrfs_ioctl_quota_rescan_args *qsa; 4388 int ret; 4389 4390 if (!capable(CAP_SYS_ADMIN)) 4391 return -EPERM; 4392 4393 ret = mnt_want_write_file(file); 4394 if (ret) 4395 return ret; 4396 4397 qsa = memdup_user(arg, sizeof(*qsa)); 4398 if (IS_ERR(qsa)) { 4399 ret = PTR_ERR(qsa); 4400 goto drop_write; 4401 } 4402 4403 if (qsa->flags) { 4404 ret = -EINVAL; 4405 goto out; 4406 } 4407 4408 ret = btrfs_qgroup_rescan(fs_info); 4409 4410 out: 4411 kfree(qsa); 4412 drop_write: 4413 mnt_drop_write_file(file); 4414 return ret; 4415 } 4416 4417 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4418 void __user *arg) 4419 { 4420 struct btrfs_ioctl_quota_rescan_args *qsa; 4421 int ret = 0; 4422 4423 if (!capable(CAP_SYS_ADMIN)) 4424 return -EPERM; 4425 4426 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4427 if (!qsa) 4428 return -ENOMEM; 4429 4430 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4431 qsa->flags = 1; 4432 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4433 } 4434 4435 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4436 ret = -EFAULT; 4437 4438 kfree(qsa); 4439 return ret; 4440 } 4441 4442 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4443 void __user *arg) 4444 { 4445 if (!capable(CAP_SYS_ADMIN)) 4446 return -EPERM; 4447 4448 return btrfs_qgroup_wait_for_completion(fs_info, true); 4449 } 4450 4451 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4452 struct btrfs_ioctl_received_subvol_args *sa) 4453 { 4454 struct inode *inode = file_inode(file); 4455 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4456 struct btrfs_root *root = BTRFS_I(inode)->root; 4457 struct btrfs_root_item *root_item = &root->root_item; 4458 struct btrfs_trans_handle *trans; 4459 struct timespec64 ct = current_time(inode); 4460 int ret = 0; 4461 int received_uuid_changed; 4462 4463 if (!inode_owner_or_capable(&init_user_ns, inode)) 4464 return -EPERM; 4465 4466 ret = mnt_want_write_file(file); 4467 if (ret < 0) 4468 return ret; 4469 4470 down_write(&fs_info->subvol_sem); 4471 4472 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4473 ret = -EINVAL; 4474 goto out; 4475 } 4476 4477 if (btrfs_root_readonly(root)) { 4478 ret = -EROFS; 4479 goto out; 4480 } 4481 4482 /* 4483 * 1 - root item 4484 * 2 - uuid items (received uuid + subvol uuid) 4485 */ 4486 trans = btrfs_start_transaction(root, 3); 4487 if (IS_ERR(trans)) { 4488 ret = PTR_ERR(trans); 4489 trans = NULL; 4490 goto out; 4491 } 4492 4493 sa->rtransid = trans->transid; 4494 sa->rtime.sec = ct.tv_sec; 4495 sa->rtime.nsec = ct.tv_nsec; 4496 4497 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4498 BTRFS_UUID_SIZE); 4499 if (received_uuid_changed && 4500 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4501 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4502 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4503 root->root_key.objectid); 4504 if (ret && ret != -ENOENT) { 4505 btrfs_abort_transaction(trans, ret); 4506 btrfs_end_transaction(trans); 4507 goto out; 4508 } 4509 } 4510 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4511 btrfs_set_root_stransid(root_item, sa->stransid); 4512 btrfs_set_root_rtransid(root_item, sa->rtransid); 4513 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4514 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4515 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4516 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4517 4518 ret = btrfs_update_root(trans, fs_info->tree_root, 4519 &root->root_key, &root->root_item); 4520 if (ret < 0) { 4521 btrfs_end_transaction(trans); 4522 goto out; 4523 } 4524 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4525 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4526 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4527 root->root_key.objectid); 4528 if (ret < 0 && ret != -EEXIST) { 4529 btrfs_abort_transaction(trans, ret); 4530 btrfs_end_transaction(trans); 4531 goto out; 4532 } 4533 } 4534 ret = btrfs_commit_transaction(trans); 4535 out: 4536 up_write(&fs_info->subvol_sem); 4537 mnt_drop_write_file(file); 4538 return ret; 4539 } 4540 4541 #ifdef CONFIG_64BIT 4542 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4543 void __user *arg) 4544 { 4545 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4546 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4547 int ret = 0; 4548 4549 args32 = memdup_user(arg, sizeof(*args32)); 4550 if (IS_ERR(args32)) 4551 return PTR_ERR(args32); 4552 4553 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4554 if (!args64) { 4555 ret = -ENOMEM; 4556 goto out; 4557 } 4558 4559 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4560 args64->stransid = args32->stransid; 4561 args64->rtransid = args32->rtransid; 4562 args64->stime.sec = args32->stime.sec; 4563 args64->stime.nsec = args32->stime.nsec; 4564 args64->rtime.sec = args32->rtime.sec; 4565 args64->rtime.nsec = args32->rtime.nsec; 4566 args64->flags = args32->flags; 4567 4568 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4569 if (ret) 4570 goto out; 4571 4572 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4573 args32->stransid = args64->stransid; 4574 args32->rtransid = args64->rtransid; 4575 args32->stime.sec = args64->stime.sec; 4576 args32->stime.nsec = args64->stime.nsec; 4577 args32->rtime.sec = args64->rtime.sec; 4578 args32->rtime.nsec = args64->rtime.nsec; 4579 args32->flags = args64->flags; 4580 4581 ret = copy_to_user(arg, args32, sizeof(*args32)); 4582 if (ret) 4583 ret = -EFAULT; 4584 4585 out: 4586 kfree(args32); 4587 kfree(args64); 4588 return ret; 4589 } 4590 #endif 4591 4592 static long btrfs_ioctl_set_received_subvol(struct file *file, 4593 void __user *arg) 4594 { 4595 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4596 int ret = 0; 4597 4598 sa = memdup_user(arg, sizeof(*sa)); 4599 if (IS_ERR(sa)) 4600 return PTR_ERR(sa); 4601 4602 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4603 4604 if (ret) 4605 goto out; 4606 4607 ret = copy_to_user(arg, sa, sizeof(*sa)); 4608 if (ret) 4609 ret = -EFAULT; 4610 4611 out: 4612 kfree(sa); 4613 return ret; 4614 } 4615 4616 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4617 void __user *arg) 4618 { 4619 size_t len; 4620 int ret; 4621 char label[BTRFS_LABEL_SIZE]; 4622 4623 spin_lock(&fs_info->super_lock); 4624 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4625 spin_unlock(&fs_info->super_lock); 4626 4627 len = strnlen(label, BTRFS_LABEL_SIZE); 4628 4629 if (len == BTRFS_LABEL_SIZE) { 4630 btrfs_warn(fs_info, 4631 "label is too long, return the first %zu bytes", 4632 --len); 4633 } 4634 4635 ret = copy_to_user(arg, label, len); 4636 4637 return ret ? -EFAULT : 0; 4638 } 4639 4640 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4641 { 4642 struct inode *inode = file_inode(file); 4643 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4644 struct btrfs_root *root = BTRFS_I(inode)->root; 4645 struct btrfs_super_block *super_block = fs_info->super_copy; 4646 struct btrfs_trans_handle *trans; 4647 char label[BTRFS_LABEL_SIZE]; 4648 int ret; 4649 4650 if (!capable(CAP_SYS_ADMIN)) 4651 return -EPERM; 4652 4653 if (copy_from_user(label, arg, sizeof(label))) 4654 return -EFAULT; 4655 4656 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4657 btrfs_err(fs_info, 4658 "unable to set label with more than %d bytes", 4659 BTRFS_LABEL_SIZE - 1); 4660 return -EINVAL; 4661 } 4662 4663 ret = mnt_want_write_file(file); 4664 if (ret) 4665 return ret; 4666 4667 trans = btrfs_start_transaction(root, 0); 4668 if (IS_ERR(trans)) { 4669 ret = PTR_ERR(trans); 4670 goto out_unlock; 4671 } 4672 4673 spin_lock(&fs_info->super_lock); 4674 strcpy(super_block->label, label); 4675 spin_unlock(&fs_info->super_lock); 4676 ret = btrfs_commit_transaction(trans); 4677 4678 out_unlock: 4679 mnt_drop_write_file(file); 4680 return ret; 4681 } 4682 4683 #define INIT_FEATURE_FLAGS(suffix) \ 4684 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4685 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4686 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4687 4688 int btrfs_ioctl_get_supported_features(void __user *arg) 4689 { 4690 static const struct btrfs_ioctl_feature_flags features[3] = { 4691 INIT_FEATURE_FLAGS(SUPP), 4692 INIT_FEATURE_FLAGS(SAFE_SET), 4693 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4694 }; 4695 4696 if (copy_to_user(arg, &features, sizeof(features))) 4697 return -EFAULT; 4698 4699 return 0; 4700 } 4701 4702 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4703 void __user *arg) 4704 { 4705 struct btrfs_super_block *super_block = fs_info->super_copy; 4706 struct btrfs_ioctl_feature_flags features; 4707 4708 features.compat_flags = btrfs_super_compat_flags(super_block); 4709 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4710 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4711 4712 if (copy_to_user(arg, &features, sizeof(features))) 4713 return -EFAULT; 4714 4715 return 0; 4716 } 4717 4718 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4719 enum btrfs_feature_set set, 4720 u64 change_mask, u64 flags, u64 supported_flags, 4721 u64 safe_set, u64 safe_clear) 4722 { 4723 const char *type = btrfs_feature_set_name(set); 4724 char *names; 4725 u64 disallowed, unsupported; 4726 u64 set_mask = flags & change_mask; 4727 u64 clear_mask = ~flags & change_mask; 4728 4729 unsupported = set_mask & ~supported_flags; 4730 if (unsupported) { 4731 names = btrfs_printable_features(set, unsupported); 4732 if (names) { 4733 btrfs_warn(fs_info, 4734 "this kernel does not support the %s feature bit%s", 4735 names, strchr(names, ',') ? "s" : ""); 4736 kfree(names); 4737 } else 4738 btrfs_warn(fs_info, 4739 "this kernel does not support %s bits 0x%llx", 4740 type, unsupported); 4741 return -EOPNOTSUPP; 4742 } 4743 4744 disallowed = set_mask & ~safe_set; 4745 if (disallowed) { 4746 names = btrfs_printable_features(set, disallowed); 4747 if (names) { 4748 btrfs_warn(fs_info, 4749 "can't set the %s feature bit%s while mounted", 4750 names, strchr(names, ',') ? "s" : ""); 4751 kfree(names); 4752 } else 4753 btrfs_warn(fs_info, 4754 "can't set %s bits 0x%llx while mounted", 4755 type, disallowed); 4756 return -EPERM; 4757 } 4758 4759 disallowed = clear_mask & ~safe_clear; 4760 if (disallowed) { 4761 names = btrfs_printable_features(set, disallowed); 4762 if (names) { 4763 btrfs_warn(fs_info, 4764 "can't clear the %s feature bit%s while mounted", 4765 names, strchr(names, ',') ? "s" : ""); 4766 kfree(names); 4767 } else 4768 btrfs_warn(fs_info, 4769 "can't clear %s bits 0x%llx while mounted", 4770 type, disallowed); 4771 return -EPERM; 4772 } 4773 4774 return 0; 4775 } 4776 4777 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4778 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4779 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4780 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4781 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4782 4783 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4784 { 4785 struct inode *inode = file_inode(file); 4786 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4787 struct btrfs_root *root = BTRFS_I(inode)->root; 4788 struct btrfs_super_block *super_block = fs_info->super_copy; 4789 struct btrfs_ioctl_feature_flags flags[2]; 4790 struct btrfs_trans_handle *trans; 4791 u64 newflags; 4792 int ret; 4793 4794 if (!capable(CAP_SYS_ADMIN)) 4795 return -EPERM; 4796 4797 if (copy_from_user(flags, arg, sizeof(flags))) 4798 return -EFAULT; 4799 4800 /* Nothing to do */ 4801 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4802 !flags[0].incompat_flags) 4803 return 0; 4804 4805 ret = check_feature(fs_info, flags[0].compat_flags, 4806 flags[1].compat_flags, COMPAT); 4807 if (ret) 4808 return ret; 4809 4810 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4811 flags[1].compat_ro_flags, COMPAT_RO); 4812 if (ret) 4813 return ret; 4814 4815 ret = check_feature(fs_info, flags[0].incompat_flags, 4816 flags[1].incompat_flags, INCOMPAT); 4817 if (ret) 4818 return ret; 4819 4820 ret = mnt_want_write_file(file); 4821 if (ret) 4822 return ret; 4823 4824 trans = btrfs_start_transaction(root, 0); 4825 if (IS_ERR(trans)) { 4826 ret = PTR_ERR(trans); 4827 goto out_drop_write; 4828 } 4829 4830 spin_lock(&fs_info->super_lock); 4831 newflags = btrfs_super_compat_flags(super_block); 4832 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4833 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4834 btrfs_set_super_compat_flags(super_block, newflags); 4835 4836 newflags = btrfs_super_compat_ro_flags(super_block); 4837 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4838 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4839 btrfs_set_super_compat_ro_flags(super_block, newflags); 4840 4841 newflags = btrfs_super_incompat_flags(super_block); 4842 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4843 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4844 btrfs_set_super_incompat_flags(super_block, newflags); 4845 spin_unlock(&fs_info->super_lock); 4846 4847 ret = btrfs_commit_transaction(trans); 4848 out_drop_write: 4849 mnt_drop_write_file(file); 4850 4851 return ret; 4852 } 4853 4854 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4855 { 4856 struct btrfs_ioctl_send_args *arg; 4857 int ret; 4858 4859 if (compat) { 4860 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4861 struct btrfs_ioctl_send_args_32 args32; 4862 4863 ret = copy_from_user(&args32, argp, sizeof(args32)); 4864 if (ret) 4865 return -EFAULT; 4866 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4867 if (!arg) 4868 return -ENOMEM; 4869 arg->send_fd = args32.send_fd; 4870 arg->clone_sources_count = args32.clone_sources_count; 4871 arg->clone_sources = compat_ptr(args32.clone_sources); 4872 arg->parent_root = args32.parent_root; 4873 arg->flags = args32.flags; 4874 memcpy(arg->reserved, args32.reserved, 4875 sizeof(args32.reserved)); 4876 #else 4877 return -ENOTTY; 4878 #endif 4879 } else { 4880 arg = memdup_user(argp, sizeof(*arg)); 4881 if (IS_ERR(arg)) 4882 return PTR_ERR(arg); 4883 } 4884 ret = btrfs_ioctl_send(file, arg); 4885 kfree(arg); 4886 return ret; 4887 } 4888 4889 long btrfs_ioctl(struct file *file, unsigned int 4890 cmd, unsigned long arg) 4891 { 4892 struct inode *inode = file_inode(file); 4893 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4894 struct btrfs_root *root = BTRFS_I(inode)->root; 4895 void __user *argp = (void __user *)arg; 4896 4897 switch (cmd) { 4898 case FS_IOC_GETVERSION: 4899 return btrfs_ioctl_getversion(file, argp); 4900 case FS_IOC_GETFSLABEL: 4901 return btrfs_ioctl_get_fslabel(fs_info, argp); 4902 case FS_IOC_SETFSLABEL: 4903 return btrfs_ioctl_set_fslabel(file, argp); 4904 case FITRIM: 4905 return btrfs_ioctl_fitrim(fs_info, argp); 4906 case BTRFS_IOC_SNAP_CREATE: 4907 return btrfs_ioctl_snap_create(file, argp, 0); 4908 case BTRFS_IOC_SNAP_CREATE_V2: 4909 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4910 case BTRFS_IOC_SUBVOL_CREATE: 4911 return btrfs_ioctl_snap_create(file, argp, 1); 4912 case BTRFS_IOC_SUBVOL_CREATE_V2: 4913 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4914 case BTRFS_IOC_SNAP_DESTROY: 4915 return btrfs_ioctl_snap_destroy(file, argp, false); 4916 case BTRFS_IOC_SNAP_DESTROY_V2: 4917 return btrfs_ioctl_snap_destroy(file, argp, true); 4918 case BTRFS_IOC_SUBVOL_GETFLAGS: 4919 return btrfs_ioctl_subvol_getflags(file, argp); 4920 case BTRFS_IOC_SUBVOL_SETFLAGS: 4921 return btrfs_ioctl_subvol_setflags(file, argp); 4922 case BTRFS_IOC_DEFAULT_SUBVOL: 4923 return btrfs_ioctl_default_subvol(file, argp); 4924 case BTRFS_IOC_DEFRAG: 4925 return btrfs_ioctl_defrag(file, NULL); 4926 case BTRFS_IOC_DEFRAG_RANGE: 4927 return btrfs_ioctl_defrag(file, argp); 4928 case BTRFS_IOC_RESIZE: 4929 return btrfs_ioctl_resize(file, argp); 4930 case BTRFS_IOC_ADD_DEV: 4931 return btrfs_ioctl_add_dev(fs_info, argp); 4932 case BTRFS_IOC_RM_DEV: 4933 return btrfs_ioctl_rm_dev(file, argp); 4934 case BTRFS_IOC_RM_DEV_V2: 4935 return btrfs_ioctl_rm_dev_v2(file, argp); 4936 case BTRFS_IOC_FS_INFO: 4937 return btrfs_ioctl_fs_info(fs_info, argp); 4938 case BTRFS_IOC_DEV_INFO: 4939 return btrfs_ioctl_dev_info(fs_info, argp); 4940 case BTRFS_IOC_BALANCE: 4941 return btrfs_ioctl_balance(file, NULL); 4942 case BTRFS_IOC_TREE_SEARCH: 4943 return btrfs_ioctl_tree_search(file, argp); 4944 case BTRFS_IOC_TREE_SEARCH_V2: 4945 return btrfs_ioctl_tree_search_v2(file, argp); 4946 case BTRFS_IOC_INO_LOOKUP: 4947 return btrfs_ioctl_ino_lookup(file, argp); 4948 case BTRFS_IOC_INO_PATHS: 4949 return btrfs_ioctl_ino_to_path(root, argp); 4950 case BTRFS_IOC_LOGICAL_INO: 4951 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4952 case BTRFS_IOC_LOGICAL_INO_V2: 4953 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4954 case BTRFS_IOC_SPACE_INFO: 4955 return btrfs_ioctl_space_info(fs_info, argp); 4956 case BTRFS_IOC_SYNC: { 4957 int ret; 4958 4959 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4960 if (ret) 4961 return ret; 4962 ret = btrfs_sync_fs(inode->i_sb, 1); 4963 /* 4964 * The transaction thread may want to do more work, 4965 * namely it pokes the cleaner kthread that will start 4966 * processing uncleaned subvols. 4967 */ 4968 wake_up_process(fs_info->transaction_kthread); 4969 return ret; 4970 } 4971 case BTRFS_IOC_START_SYNC: 4972 return btrfs_ioctl_start_sync(root, argp); 4973 case BTRFS_IOC_WAIT_SYNC: 4974 return btrfs_ioctl_wait_sync(fs_info, argp); 4975 case BTRFS_IOC_SCRUB: 4976 return btrfs_ioctl_scrub(file, argp); 4977 case BTRFS_IOC_SCRUB_CANCEL: 4978 return btrfs_ioctl_scrub_cancel(fs_info); 4979 case BTRFS_IOC_SCRUB_PROGRESS: 4980 return btrfs_ioctl_scrub_progress(fs_info, argp); 4981 case BTRFS_IOC_BALANCE_V2: 4982 return btrfs_ioctl_balance(file, argp); 4983 case BTRFS_IOC_BALANCE_CTL: 4984 return btrfs_ioctl_balance_ctl(fs_info, arg); 4985 case BTRFS_IOC_BALANCE_PROGRESS: 4986 return btrfs_ioctl_balance_progress(fs_info, argp); 4987 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4988 return btrfs_ioctl_set_received_subvol(file, argp); 4989 #ifdef CONFIG_64BIT 4990 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4991 return btrfs_ioctl_set_received_subvol_32(file, argp); 4992 #endif 4993 case BTRFS_IOC_SEND: 4994 return _btrfs_ioctl_send(file, argp, false); 4995 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4996 case BTRFS_IOC_SEND_32: 4997 return _btrfs_ioctl_send(file, argp, true); 4998 #endif 4999 case BTRFS_IOC_GET_DEV_STATS: 5000 return btrfs_ioctl_get_dev_stats(fs_info, argp); 5001 case BTRFS_IOC_QUOTA_CTL: 5002 return btrfs_ioctl_quota_ctl(file, argp); 5003 case BTRFS_IOC_QGROUP_ASSIGN: 5004 return btrfs_ioctl_qgroup_assign(file, argp); 5005 case BTRFS_IOC_QGROUP_CREATE: 5006 return btrfs_ioctl_qgroup_create(file, argp); 5007 case BTRFS_IOC_QGROUP_LIMIT: 5008 return btrfs_ioctl_qgroup_limit(file, argp); 5009 case BTRFS_IOC_QUOTA_RESCAN: 5010 return btrfs_ioctl_quota_rescan(file, argp); 5011 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 5012 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 5013 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5014 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5015 case BTRFS_IOC_DEV_REPLACE: 5016 return btrfs_ioctl_dev_replace(fs_info, argp); 5017 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5018 return btrfs_ioctl_get_supported_features(argp); 5019 case BTRFS_IOC_GET_FEATURES: 5020 return btrfs_ioctl_get_features(fs_info, argp); 5021 case BTRFS_IOC_SET_FEATURES: 5022 return btrfs_ioctl_set_features(file, argp); 5023 case BTRFS_IOC_GET_SUBVOL_INFO: 5024 return btrfs_ioctl_get_subvol_info(file, argp); 5025 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5026 return btrfs_ioctl_get_subvol_rootref(file, argp); 5027 case BTRFS_IOC_INO_LOOKUP_USER: 5028 return btrfs_ioctl_ino_lookup_user(file, argp); 5029 case FS_IOC_ENABLE_VERITY: 5030 return fsverity_ioctl_enable(file, (const void __user *)argp); 5031 case FS_IOC_MEASURE_VERITY: 5032 return fsverity_ioctl_measure(file, argp); 5033 } 5034 5035 return -ENOTTY; 5036 } 5037 5038 #ifdef CONFIG_COMPAT 5039 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5040 { 5041 /* 5042 * These all access 32-bit values anyway so no further 5043 * handling is necessary. 5044 */ 5045 switch (cmd) { 5046 case FS_IOC32_GETVERSION: 5047 cmd = FS_IOC_GETVERSION; 5048 break; 5049 } 5050 5051 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5052 } 5053 #endif 5054