1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright (C) 2007 Oracle. All rights reserved. 4 */ 5 6 #include <linux/kernel.h> 7 #include <linux/bio.h> 8 #include <linux/file.h> 9 #include <linux/fs.h> 10 #include <linux/fsnotify.h> 11 #include <linux/pagemap.h> 12 #include <linux/highmem.h> 13 #include <linux/time.h> 14 #include <linux/string.h> 15 #include <linux/backing-dev.h> 16 #include <linux/mount.h> 17 #include <linux/namei.h> 18 #include <linux/writeback.h> 19 #include <linux/compat.h> 20 #include <linux/security.h> 21 #include <linux/xattr.h> 22 #include <linux/mm.h> 23 #include <linux/slab.h> 24 #include <linux/blkdev.h> 25 #include <linux/uuid.h> 26 #include <linux/btrfs.h> 27 #include <linux/uaccess.h> 28 #include <linux/iversion.h> 29 #include <linux/fileattr.h> 30 #include <linux/fsverity.h> 31 #include "ctree.h" 32 #include "disk-io.h" 33 #include "export.h" 34 #include "transaction.h" 35 #include "btrfs_inode.h" 36 #include "print-tree.h" 37 #include "volumes.h" 38 #include "locking.h" 39 #include "backref.h" 40 #include "rcu-string.h" 41 #include "send.h" 42 #include "dev-replace.h" 43 #include "props.h" 44 #include "sysfs.h" 45 #include "qgroup.h" 46 #include "tree-log.h" 47 #include "compression.h" 48 #include "space-info.h" 49 #include "delalloc-space.h" 50 #include "block-group.h" 51 52 #ifdef CONFIG_64BIT 53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI 54 * structures are incorrect, as the timespec structure from userspace 55 * is 4 bytes too small. We define these alternatives here to teach 56 * the kernel about the 32-bit struct packing. 57 */ 58 struct btrfs_ioctl_timespec_32 { 59 __u64 sec; 60 __u32 nsec; 61 } __attribute__ ((__packed__)); 62 63 struct btrfs_ioctl_received_subvol_args_32 { 64 char uuid[BTRFS_UUID_SIZE]; /* in */ 65 __u64 stransid; /* in */ 66 __u64 rtransid; /* out */ 67 struct btrfs_ioctl_timespec_32 stime; /* in */ 68 struct btrfs_ioctl_timespec_32 rtime; /* out */ 69 __u64 flags; /* in */ 70 __u64 reserved[16]; /* in */ 71 } __attribute__ ((__packed__)); 72 73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \ 74 struct btrfs_ioctl_received_subvol_args_32) 75 #endif 76 77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 78 struct btrfs_ioctl_send_args_32 { 79 __s64 send_fd; /* in */ 80 __u64 clone_sources_count; /* in */ 81 compat_uptr_t clone_sources; /* in */ 82 __u64 parent_root; /* in */ 83 __u64 flags; /* in */ 84 __u64 reserved[4]; /* in */ 85 } __attribute__ ((__packed__)); 86 87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \ 88 struct btrfs_ioctl_send_args_32) 89 #endif 90 91 /* Mask out flags that are inappropriate for the given type of inode. */ 92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode, 93 unsigned int flags) 94 { 95 if (S_ISDIR(inode->i_mode)) 96 return flags; 97 else if (S_ISREG(inode->i_mode)) 98 return flags & ~FS_DIRSYNC_FL; 99 else 100 return flags & (FS_NODUMP_FL | FS_NOATIME_FL); 101 } 102 103 /* 104 * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS 105 * ioctl. 106 */ 107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode) 108 { 109 unsigned int iflags = 0; 110 u32 flags = binode->flags; 111 u32 ro_flags = binode->ro_flags; 112 113 if (flags & BTRFS_INODE_SYNC) 114 iflags |= FS_SYNC_FL; 115 if (flags & BTRFS_INODE_IMMUTABLE) 116 iflags |= FS_IMMUTABLE_FL; 117 if (flags & BTRFS_INODE_APPEND) 118 iflags |= FS_APPEND_FL; 119 if (flags & BTRFS_INODE_NODUMP) 120 iflags |= FS_NODUMP_FL; 121 if (flags & BTRFS_INODE_NOATIME) 122 iflags |= FS_NOATIME_FL; 123 if (flags & BTRFS_INODE_DIRSYNC) 124 iflags |= FS_DIRSYNC_FL; 125 if (flags & BTRFS_INODE_NODATACOW) 126 iflags |= FS_NOCOW_FL; 127 if (ro_flags & BTRFS_INODE_RO_VERITY) 128 iflags |= FS_VERITY_FL; 129 130 if (flags & BTRFS_INODE_NOCOMPRESS) 131 iflags |= FS_NOCOMP_FL; 132 else if (flags & BTRFS_INODE_COMPRESS) 133 iflags |= FS_COMPR_FL; 134 135 return iflags; 136 } 137 138 /* 139 * Update inode->i_flags based on the btrfs internal flags. 140 */ 141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode) 142 { 143 struct btrfs_inode *binode = BTRFS_I(inode); 144 unsigned int new_fl = 0; 145 146 if (binode->flags & BTRFS_INODE_SYNC) 147 new_fl |= S_SYNC; 148 if (binode->flags & BTRFS_INODE_IMMUTABLE) 149 new_fl |= S_IMMUTABLE; 150 if (binode->flags & BTRFS_INODE_APPEND) 151 new_fl |= S_APPEND; 152 if (binode->flags & BTRFS_INODE_NOATIME) 153 new_fl |= S_NOATIME; 154 if (binode->flags & BTRFS_INODE_DIRSYNC) 155 new_fl |= S_DIRSYNC; 156 if (binode->ro_flags & BTRFS_INODE_RO_VERITY) 157 new_fl |= S_VERITY; 158 159 set_mask_bits(&inode->i_flags, 160 S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC | 161 S_VERITY, new_fl); 162 } 163 164 /* 165 * Check if @flags are a supported and valid set of FS_*_FL flags and that 166 * the old and new flags are not conflicting 167 */ 168 static int check_fsflags(unsigned int old_flags, unsigned int flags) 169 { 170 if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \ 171 FS_NOATIME_FL | FS_NODUMP_FL | \ 172 FS_SYNC_FL | FS_DIRSYNC_FL | \ 173 FS_NOCOMP_FL | FS_COMPR_FL | 174 FS_NOCOW_FL)) 175 return -EOPNOTSUPP; 176 177 /* COMPR and NOCOMP on new/old are valid */ 178 if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL)) 179 return -EINVAL; 180 181 if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL)) 182 return -EINVAL; 183 184 /* NOCOW and compression options are mutually exclusive */ 185 if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 186 return -EINVAL; 187 if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL))) 188 return -EINVAL; 189 190 return 0; 191 } 192 193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info, 194 unsigned int flags) 195 { 196 if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL)) 197 return -EPERM; 198 199 return 0; 200 } 201 202 /* 203 * Set flags/xflags from the internal inode flags. The remaining items of 204 * fsxattr are zeroed. 205 */ 206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa) 207 { 208 struct btrfs_inode *binode = BTRFS_I(d_inode(dentry)); 209 210 fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode)); 211 return 0; 212 } 213 214 int btrfs_fileattr_set(struct user_namespace *mnt_userns, 215 struct dentry *dentry, struct fileattr *fa) 216 { 217 struct inode *inode = d_inode(dentry); 218 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 219 struct btrfs_inode *binode = BTRFS_I(inode); 220 struct btrfs_root *root = binode->root; 221 struct btrfs_trans_handle *trans; 222 unsigned int fsflags, old_fsflags; 223 int ret; 224 const char *comp = NULL; 225 u32 binode_flags; 226 227 if (btrfs_root_readonly(root)) 228 return -EROFS; 229 230 if (fileattr_has_fsx(fa)) 231 return -EOPNOTSUPP; 232 233 fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags); 234 old_fsflags = btrfs_inode_flags_to_fsflags(binode); 235 ret = check_fsflags(old_fsflags, fsflags); 236 if (ret) 237 return ret; 238 239 ret = check_fsflags_compatible(fs_info, fsflags); 240 if (ret) 241 return ret; 242 243 binode_flags = binode->flags; 244 if (fsflags & FS_SYNC_FL) 245 binode_flags |= BTRFS_INODE_SYNC; 246 else 247 binode_flags &= ~BTRFS_INODE_SYNC; 248 if (fsflags & FS_IMMUTABLE_FL) 249 binode_flags |= BTRFS_INODE_IMMUTABLE; 250 else 251 binode_flags &= ~BTRFS_INODE_IMMUTABLE; 252 if (fsflags & FS_APPEND_FL) 253 binode_flags |= BTRFS_INODE_APPEND; 254 else 255 binode_flags &= ~BTRFS_INODE_APPEND; 256 if (fsflags & FS_NODUMP_FL) 257 binode_flags |= BTRFS_INODE_NODUMP; 258 else 259 binode_flags &= ~BTRFS_INODE_NODUMP; 260 if (fsflags & FS_NOATIME_FL) 261 binode_flags |= BTRFS_INODE_NOATIME; 262 else 263 binode_flags &= ~BTRFS_INODE_NOATIME; 264 265 /* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */ 266 if (!fa->flags_valid) { 267 /* 1 item for the inode */ 268 trans = btrfs_start_transaction(root, 1); 269 if (IS_ERR(trans)) 270 return PTR_ERR(trans); 271 goto update_flags; 272 } 273 274 if (fsflags & FS_DIRSYNC_FL) 275 binode_flags |= BTRFS_INODE_DIRSYNC; 276 else 277 binode_flags &= ~BTRFS_INODE_DIRSYNC; 278 if (fsflags & FS_NOCOW_FL) { 279 if (S_ISREG(inode->i_mode)) { 280 /* 281 * It's safe to turn csums off here, no extents exist. 282 * Otherwise we want the flag to reflect the real COW 283 * status of the file and will not set it. 284 */ 285 if (inode->i_size == 0) 286 binode_flags |= BTRFS_INODE_NODATACOW | 287 BTRFS_INODE_NODATASUM; 288 } else { 289 binode_flags |= BTRFS_INODE_NODATACOW; 290 } 291 } else { 292 /* 293 * Revert back under same assumptions as above 294 */ 295 if (S_ISREG(inode->i_mode)) { 296 if (inode->i_size == 0) 297 binode_flags &= ~(BTRFS_INODE_NODATACOW | 298 BTRFS_INODE_NODATASUM); 299 } else { 300 binode_flags &= ~BTRFS_INODE_NODATACOW; 301 } 302 } 303 304 /* 305 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS 306 * flag may be changed automatically if compression code won't make 307 * things smaller. 308 */ 309 if (fsflags & FS_NOCOMP_FL) { 310 binode_flags &= ~BTRFS_INODE_COMPRESS; 311 binode_flags |= BTRFS_INODE_NOCOMPRESS; 312 } else if (fsflags & FS_COMPR_FL) { 313 314 if (IS_SWAPFILE(inode)) 315 return -ETXTBSY; 316 317 binode_flags |= BTRFS_INODE_COMPRESS; 318 binode_flags &= ~BTRFS_INODE_NOCOMPRESS; 319 320 comp = btrfs_compress_type2str(fs_info->compress_type); 321 if (!comp || comp[0] == 0) 322 comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB); 323 } else { 324 binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS); 325 } 326 327 /* 328 * 1 for inode item 329 * 2 for properties 330 */ 331 trans = btrfs_start_transaction(root, 3); 332 if (IS_ERR(trans)) 333 return PTR_ERR(trans); 334 335 if (comp) { 336 ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp, 337 strlen(comp), 0); 338 if (ret) { 339 btrfs_abort_transaction(trans, ret); 340 goto out_end_trans; 341 } 342 } else { 343 ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL, 344 0, 0); 345 if (ret && ret != -ENODATA) { 346 btrfs_abort_transaction(trans, ret); 347 goto out_end_trans; 348 } 349 } 350 351 update_flags: 352 binode->flags = binode_flags; 353 btrfs_sync_inode_flags_to_i_flags(inode); 354 inode_inc_iversion(inode); 355 inode->i_ctime = current_time(inode); 356 ret = btrfs_update_inode(trans, root, BTRFS_I(inode)); 357 358 out_end_trans: 359 btrfs_end_transaction(trans); 360 return ret; 361 } 362 363 /* 364 * Start exclusive operation @type, return true on success 365 */ 366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info, 367 enum btrfs_exclusive_operation type) 368 { 369 bool ret = false; 370 371 spin_lock(&fs_info->super_lock); 372 if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) { 373 fs_info->exclusive_operation = type; 374 ret = true; 375 } 376 spin_unlock(&fs_info->super_lock); 377 378 return ret; 379 } 380 381 /* 382 * Conditionally allow to enter the exclusive operation in case it's compatible 383 * with the running one. This must be paired with btrfs_exclop_start_unlock and 384 * btrfs_exclop_finish. 385 * 386 * Compatibility: 387 * - the same type is already running 388 * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller 389 * must check the condition first that would allow none -> @type 390 */ 391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info, 392 enum btrfs_exclusive_operation type) 393 { 394 spin_lock(&fs_info->super_lock); 395 if (fs_info->exclusive_operation == type) 396 return true; 397 398 spin_unlock(&fs_info->super_lock); 399 return false; 400 } 401 402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info) 403 { 404 spin_unlock(&fs_info->super_lock); 405 } 406 407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info) 408 { 409 spin_lock(&fs_info->super_lock); 410 WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE); 411 spin_unlock(&fs_info->super_lock); 412 sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation"); 413 } 414 415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg) 416 { 417 struct inode *inode = file_inode(file); 418 419 return put_user(inode->i_generation, arg); 420 } 421 422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info, 423 void __user *arg) 424 { 425 struct btrfs_device *device; 426 struct request_queue *q; 427 struct fstrim_range range; 428 u64 minlen = ULLONG_MAX; 429 u64 num_devices = 0; 430 int ret; 431 432 if (!capable(CAP_SYS_ADMIN)) 433 return -EPERM; 434 435 /* 436 * btrfs_trim_block_group() depends on space cache, which is not 437 * available in zoned filesystem. So, disallow fitrim on a zoned 438 * filesystem for now. 439 */ 440 if (btrfs_is_zoned(fs_info)) 441 return -EOPNOTSUPP; 442 443 /* 444 * If the fs is mounted with nologreplay, which requires it to be 445 * mounted in RO mode as well, we can not allow discard on free space 446 * inside block groups, because log trees refer to extents that are not 447 * pinned in a block group's free space cache (pinning the extents is 448 * precisely the first phase of replaying a log tree). 449 */ 450 if (btrfs_test_opt(fs_info, NOLOGREPLAY)) 451 return -EROFS; 452 453 rcu_read_lock(); 454 list_for_each_entry_rcu(device, &fs_info->fs_devices->devices, 455 dev_list) { 456 if (!device->bdev) 457 continue; 458 q = bdev_get_queue(device->bdev); 459 if (blk_queue_discard(q)) { 460 num_devices++; 461 minlen = min_t(u64, q->limits.discard_granularity, 462 minlen); 463 } 464 } 465 rcu_read_unlock(); 466 467 if (!num_devices) 468 return -EOPNOTSUPP; 469 if (copy_from_user(&range, arg, sizeof(range))) 470 return -EFAULT; 471 472 /* 473 * NOTE: Don't truncate the range using super->total_bytes. Bytenr of 474 * block group is in the logical address space, which can be any 475 * sectorsize aligned bytenr in the range [0, U64_MAX]. 476 */ 477 if (range.len < fs_info->sb->s_blocksize) 478 return -EINVAL; 479 480 range.minlen = max(range.minlen, minlen); 481 ret = btrfs_trim_fs(fs_info, &range); 482 if (ret < 0) 483 return ret; 484 485 if (copy_to_user(arg, &range, sizeof(range))) 486 return -EFAULT; 487 488 return 0; 489 } 490 491 int __pure btrfs_is_empty_uuid(u8 *uuid) 492 { 493 int i; 494 495 for (i = 0; i < BTRFS_UUID_SIZE; i++) { 496 if (uuid[i]) 497 return 0; 498 } 499 return 1; 500 } 501 502 static noinline int create_subvol(struct inode *dir, 503 struct dentry *dentry, 504 const char *name, int namelen, 505 struct btrfs_qgroup_inherit *inherit) 506 { 507 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 508 struct btrfs_trans_handle *trans; 509 struct btrfs_key key; 510 struct btrfs_root_item *root_item; 511 struct btrfs_inode_item *inode_item; 512 struct extent_buffer *leaf; 513 struct btrfs_root *root = BTRFS_I(dir)->root; 514 struct btrfs_root *new_root; 515 struct btrfs_block_rsv block_rsv; 516 struct timespec64 cur_time = current_time(dir); 517 struct inode *inode; 518 int ret; 519 int err; 520 dev_t anon_dev = 0; 521 u64 objectid; 522 u64 index = 0; 523 524 root_item = kzalloc(sizeof(*root_item), GFP_KERNEL); 525 if (!root_item) 526 return -ENOMEM; 527 528 ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid); 529 if (ret) 530 goto fail_free; 531 532 ret = get_anon_bdev(&anon_dev); 533 if (ret < 0) 534 goto fail_free; 535 536 /* 537 * Don't create subvolume whose level is not zero. Or qgroup will be 538 * screwed up since it assumes subvolume qgroup's level to be 0. 539 */ 540 if (btrfs_qgroup_level(objectid)) { 541 ret = -ENOSPC; 542 goto fail_free; 543 } 544 545 btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP); 546 /* 547 * The same as the snapshot creation, please see the comment 548 * of create_snapshot(). 549 */ 550 ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false); 551 if (ret) 552 goto fail_free; 553 554 trans = btrfs_start_transaction(root, 0); 555 if (IS_ERR(trans)) { 556 ret = PTR_ERR(trans); 557 btrfs_subvolume_release_metadata(root, &block_rsv); 558 goto fail_free; 559 } 560 trans->block_rsv = &block_rsv; 561 trans->bytes_reserved = block_rsv.size; 562 563 ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit); 564 if (ret) 565 goto fail; 566 567 leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0, 568 BTRFS_NESTING_NORMAL); 569 if (IS_ERR(leaf)) { 570 ret = PTR_ERR(leaf); 571 goto fail; 572 } 573 574 btrfs_mark_buffer_dirty(leaf); 575 576 inode_item = &root_item->inode; 577 btrfs_set_stack_inode_generation(inode_item, 1); 578 btrfs_set_stack_inode_size(inode_item, 3); 579 btrfs_set_stack_inode_nlink(inode_item, 1); 580 btrfs_set_stack_inode_nbytes(inode_item, 581 fs_info->nodesize); 582 btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755); 583 584 btrfs_set_root_flags(root_item, 0); 585 btrfs_set_root_limit(root_item, 0); 586 btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT); 587 588 btrfs_set_root_bytenr(root_item, leaf->start); 589 btrfs_set_root_generation(root_item, trans->transid); 590 btrfs_set_root_level(root_item, 0); 591 btrfs_set_root_refs(root_item, 1); 592 btrfs_set_root_used(root_item, leaf->len); 593 btrfs_set_root_last_snapshot(root_item, 0); 594 595 btrfs_set_root_generation_v2(root_item, 596 btrfs_root_generation(root_item)); 597 generate_random_guid(root_item->uuid); 598 btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec); 599 btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec); 600 root_item->ctime = root_item->otime; 601 btrfs_set_root_ctransid(root_item, trans->transid); 602 btrfs_set_root_otransid(root_item, trans->transid); 603 604 btrfs_tree_unlock(leaf); 605 606 btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID); 607 608 key.objectid = objectid; 609 key.offset = 0; 610 key.type = BTRFS_ROOT_ITEM_KEY; 611 ret = btrfs_insert_root(trans, fs_info->tree_root, &key, 612 root_item); 613 if (ret) { 614 /* 615 * Since we don't abort the transaction in this case, free the 616 * tree block so that we don't leak space and leave the 617 * filesystem in an inconsistent state (an extent item in the 618 * extent tree without backreferences). Also no need to have 619 * the tree block locked since it is not in any tree at this 620 * point, so no other task can find it and use it. 621 */ 622 btrfs_free_tree_block(trans, root, leaf, 0, 1); 623 free_extent_buffer(leaf); 624 goto fail; 625 } 626 627 free_extent_buffer(leaf); 628 leaf = NULL; 629 630 key.offset = (u64)-1; 631 new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev); 632 if (IS_ERR(new_root)) { 633 free_anon_bdev(anon_dev); 634 ret = PTR_ERR(new_root); 635 btrfs_abort_transaction(trans, ret); 636 goto fail; 637 } 638 /* Freeing will be done in btrfs_put_root() of new_root */ 639 anon_dev = 0; 640 641 ret = btrfs_record_root_in_trans(trans, new_root); 642 if (ret) { 643 btrfs_put_root(new_root); 644 btrfs_abort_transaction(trans, ret); 645 goto fail; 646 } 647 648 ret = btrfs_create_subvol_root(trans, new_root, root); 649 btrfs_put_root(new_root); 650 if (ret) { 651 /* We potentially lose an unused inode item here */ 652 btrfs_abort_transaction(trans, ret); 653 goto fail; 654 } 655 656 /* 657 * insert the directory item 658 */ 659 ret = btrfs_set_inode_index(BTRFS_I(dir), &index); 660 if (ret) { 661 btrfs_abort_transaction(trans, ret); 662 goto fail; 663 } 664 665 ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key, 666 BTRFS_FT_DIR, index); 667 if (ret) { 668 btrfs_abort_transaction(trans, ret); 669 goto fail; 670 } 671 672 btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2); 673 ret = btrfs_update_inode(trans, root, BTRFS_I(dir)); 674 if (ret) { 675 btrfs_abort_transaction(trans, ret); 676 goto fail; 677 } 678 679 ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid, 680 btrfs_ino(BTRFS_I(dir)), index, name, namelen); 681 if (ret) { 682 btrfs_abort_transaction(trans, ret); 683 goto fail; 684 } 685 686 ret = btrfs_uuid_tree_add(trans, root_item->uuid, 687 BTRFS_UUID_KEY_SUBVOL, objectid); 688 if (ret) 689 btrfs_abort_transaction(trans, ret); 690 691 fail: 692 kfree(root_item); 693 trans->block_rsv = NULL; 694 trans->bytes_reserved = 0; 695 btrfs_subvolume_release_metadata(root, &block_rsv); 696 697 err = btrfs_commit_transaction(trans); 698 if (err && !ret) 699 ret = err; 700 701 if (!ret) { 702 inode = btrfs_lookup_dentry(dir, dentry); 703 if (IS_ERR(inode)) 704 return PTR_ERR(inode); 705 d_instantiate(dentry, inode); 706 } 707 return ret; 708 709 fail_free: 710 if (anon_dev) 711 free_anon_bdev(anon_dev); 712 kfree(root_item); 713 return ret; 714 } 715 716 static int create_snapshot(struct btrfs_root *root, struct inode *dir, 717 struct dentry *dentry, bool readonly, 718 struct btrfs_qgroup_inherit *inherit) 719 { 720 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 721 struct inode *inode; 722 struct btrfs_pending_snapshot *pending_snapshot; 723 struct btrfs_trans_handle *trans; 724 int ret; 725 726 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state)) 727 return -EINVAL; 728 729 if (atomic_read(&root->nr_swapfiles)) { 730 btrfs_warn(fs_info, 731 "cannot snapshot subvolume with active swapfile"); 732 return -ETXTBSY; 733 } 734 735 pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL); 736 if (!pending_snapshot) 737 return -ENOMEM; 738 739 ret = get_anon_bdev(&pending_snapshot->anon_dev); 740 if (ret < 0) 741 goto free_pending; 742 pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item), 743 GFP_KERNEL); 744 pending_snapshot->path = btrfs_alloc_path(); 745 if (!pending_snapshot->root_item || !pending_snapshot->path) { 746 ret = -ENOMEM; 747 goto free_pending; 748 } 749 750 btrfs_init_block_rsv(&pending_snapshot->block_rsv, 751 BTRFS_BLOCK_RSV_TEMP); 752 /* 753 * 1 - parent dir inode 754 * 2 - dir entries 755 * 1 - root item 756 * 2 - root ref/backref 757 * 1 - root of snapshot 758 * 1 - UUID item 759 */ 760 ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root, 761 &pending_snapshot->block_rsv, 8, 762 false); 763 if (ret) 764 goto free_pending; 765 766 pending_snapshot->dentry = dentry; 767 pending_snapshot->root = root; 768 pending_snapshot->readonly = readonly; 769 pending_snapshot->dir = dir; 770 pending_snapshot->inherit = inherit; 771 772 trans = btrfs_start_transaction(root, 0); 773 if (IS_ERR(trans)) { 774 ret = PTR_ERR(trans); 775 goto fail; 776 } 777 778 spin_lock(&fs_info->trans_lock); 779 list_add(&pending_snapshot->list, 780 &trans->transaction->pending_snapshots); 781 spin_unlock(&fs_info->trans_lock); 782 783 ret = btrfs_commit_transaction(trans); 784 if (ret) 785 goto fail; 786 787 ret = pending_snapshot->error; 788 if (ret) 789 goto fail; 790 791 ret = btrfs_orphan_cleanup(pending_snapshot->snap); 792 if (ret) 793 goto fail; 794 795 inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry); 796 if (IS_ERR(inode)) { 797 ret = PTR_ERR(inode); 798 goto fail; 799 } 800 801 d_instantiate(dentry, inode); 802 ret = 0; 803 pending_snapshot->anon_dev = 0; 804 fail: 805 /* Prevent double freeing of anon_dev */ 806 if (ret && pending_snapshot->snap) 807 pending_snapshot->snap->anon_dev = 0; 808 btrfs_put_root(pending_snapshot->snap); 809 btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv); 810 free_pending: 811 if (pending_snapshot->anon_dev) 812 free_anon_bdev(pending_snapshot->anon_dev); 813 kfree(pending_snapshot->root_item); 814 btrfs_free_path(pending_snapshot->path); 815 kfree(pending_snapshot); 816 817 return ret; 818 } 819 820 /* copy of may_delete in fs/namei.c() 821 * Check whether we can remove a link victim from directory dir, check 822 * whether the type of victim is right. 823 * 1. We can't do it if dir is read-only (done in permission()) 824 * 2. We should have write and exec permissions on dir 825 * 3. We can't remove anything from append-only dir 826 * 4. We can't do anything with immutable dir (done in permission()) 827 * 5. If the sticky bit on dir is set we should either 828 * a. be owner of dir, or 829 * b. be owner of victim, or 830 * c. have CAP_FOWNER capability 831 * 6. If the victim is append-only or immutable we can't do anything with 832 * links pointing to it. 833 * 7. If we were asked to remove a directory and victim isn't one - ENOTDIR. 834 * 8. If we were asked to remove a non-directory and victim isn't one - EISDIR. 835 * 9. We can't remove a root or mountpoint. 836 * 10. We don't allow removal of NFS sillyrenamed files; it's handled by 837 * nfs_async_unlink(). 838 */ 839 840 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir) 841 { 842 int error; 843 844 if (d_really_is_negative(victim)) 845 return -ENOENT; 846 847 BUG_ON(d_inode(victim->d_parent) != dir); 848 audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE); 849 850 error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 851 if (error) 852 return error; 853 if (IS_APPEND(dir)) 854 return -EPERM; 855 if (check_sticky(&init_user_ns, dir, d_inode(victim)) || 856 IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) || 857 IS_SWAPFILE(d_inode(victim))) 858 return -EPERM; 859 if (isdir) { 860 if (!d_is_dir(victim)) 861 return -ENOTDIR; 862 if (IS_ROOT(victim)) 863 return -EBUSY; 864 } else if (d_is_dir(victim)) 865 return -EISDIR; 866 if (IS_DEADDIR(dir)) 867 return -ENOENT; 868 if (victim->d_flags & DCACHE_NFSFS_RENAMED) 869 return -EBUSY; 870 return 0; 871 } 872 873 /* copy of may_create in fs/namei.c() */ 874 static inline int btrfs_may_create(struct inode *dir, struct dentry *child) 875 { 876 if (d_really_is_positive(child)) 877 return -EEXIST; 878 if (IS_DEADDIR(dir)) 879 return -ENOENT; 880 return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC); 881 } 882 883 /* 884 * Create a new subvolume below @parent. This is largely modeled after 885 * sys_mkdirat and vfs_mkdir, but we only do a single component lookup 886 * inside this filesystem so it's quite a bit simpler. 887 */ 888 static noinline int btrfs_mksubvol(const struct path *parent, 889 const char *name, int namelen, 890 struct btrfs_root *snap_src, 891 bool readonly, 892 struct btrfs_qgroup_inherit *inherit) 893 { 894 struct inode *dir = d_inode(parent->dentry); 895 struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb); 896 struct dentry *dentry; 897 int error; 898 899 error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 900 if (error == -EINTR) 901 return error; 902 903 dentry = lookup_one_len(name, parent->dentry, namelen); 904 error = PTR_ERR(dentry); 905 if (IS_ERR(dentry)) 906 goto out_unlock; 907 908 error = btrfs_may_create(dir, dentry); 909 if (error) 910 goto out_dput; 911 912 /* 913 * even if this name doesn't exist, we may get hash collisions. 914 * check for them now when we can safely fail 915 */ 916 error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root, 917 dir->i_ino, name, 918 namelen); 919 if (error) 920 goto out_dput; 921 922 down_read(&fs_info->subvol_sem); 923 924 if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0) 925 goto out_up_read; 926 927 if (snap_src) 928 error = create_snapshot(snap_src, dir, dentry, readonly, inherit); 929 else 930 error = create_subvol(dir, dentry, name, namelen, inherit); 931 932 if (!error) 933 fsnotify_mkdir(dir, dentry); 934 out_up_read: 935 up_read(&fs_info->subvol_sem); 936 out_dput: 937 dput(dentry); 938 out_unlock: 939 btrfs_inode_unlock(dir, 0); 940 return error; 941 } 942 943 static noinline int btrfs_mksnapshot(const struct path *parent, 944 const char *name, int namelen, 945 struct btrfs_root *root, 946 bool readonly, 947 struct btrfs_qgroup_inherit *inherit) 948 { 949 int ret; 950 bool snapshot_force_cow = false; 951 952 /* 953 * Force new buffered writes to reserve space even when NOCOW is 954 * possible. This is to avoid later writeback (running dealloc) to 955 * fallback to COW mode and unexpectedly fail with ENOSPC. 956 */ 957 btrfs_drew_read_lock(&root->snapshot_lock); 958 959 ret = btrfs_start_delalloc_snapshot(root, false); 960 if (ret) 961 goto out; 962 963 /* 964 * All previous writes have started writeback in NOCOW mode, so now 965 * we force future writes to fallback to COW mode during snapshot 966 * creation. 967 */ 968 atomic_inc(&root->snapshot_force_cow); 969 snapshot_force_cow = true; 970 971 btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1); 972 973 ret = btrfs_mksubvol(parent, name, namelen, 974 root, readonly, inherit); 975 out: 976 if (snapshot_force_cow) 977 atomic_dec(&root->snapshot_force_cow); 978 btrfs_drew_read_unlock(&root->snapshot_lock); 979 return ret; 980 } 981 982 /* 983 * When we're defragging a range, we don't want to kick it off again 984 * if it is really just waiting for delalloc to send it down. 985 * If we find a nice big extent or delalloc range for the bytes in the 986 * file you want to defrag, we return 0 to let you know to skip this 987 * part of the file 988 */ 989 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh) 990 { 991 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 992 struct extent_map *em = NULL; 993 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 994 u64 end; 995 996 read_lock(&em_tree->lock); 997 em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE); 998 read_unlock(&em_tree->lock); 999 1000 if (em) { 1001 end = extent_map_end(em); 1002 free_extent_map(em); 1003 if (end - offset > thresh) 1004 return 0; 1005 } 1006 /* if we already have a nice delalloc here, just stop */ 1007 thresh /= 2; 1008 end = count_range_bits(io_tree, &offset, offset + thresh, 1009 thresh, EXTENT_DELALLOC, 1); 1010 if (end >= thresh) 1011 return 0; 1012 return 1; 1013 } 1014 1015 /* 1016 * helper function to walk through a file and find extents 1017 * newer than a specific transid, and smaller than thresh. 1018 * 1019 * This is used by the defragging code to find new and small 1020 * extents 1021 */ 1022 static int find_new_extents(struct btrfs_root *root, 1023 struct inode *inode, u64 newer_than, 1024 u64 *off, u32 thresh) 1025 { 1026 struct btrfs_path *path; 1027 struct btrfs_key min_key; 1028 struct extent_buffer *leaf; 1029 struct btrfs_file_extent_item *extent; 1030 int type; 1031 int ret; 1032 u64 ino = btrfs_ino(BTRFS_I(inode)); 1033 1034 path = btrfs_alloc_path(); 1035 if (!path) 1036 return -ENOMEM; 1037 1038 min_key.objectid = ino; 1039 min_key.type = BTRFS_EXTENT_DATA_KEY; 1040 min_key.offset = *off; 1041 1042 while (1) { 1043 ret = btrfs_search_forward(root, &min_key, path, newer_than); 1044 if (ret != 0) 1045 goto none; 1046 process_slot: 1047 if (min_key.objectid != ino) 1048 goto none; 1049 if (min_key.type != BTRFS_EXTENT_DATA_KEY) 1050 goto none; 1051 1052 leaf = path->nodes[0]; 1053 extent = btrfs_item_ptr(leaf, path->slots[0], 1054 struct btrfs_file_extent_item); 1055 1056 type = btrfs_file_extent_type(leaf, extent); 1057 if (type == BTRFS_FILE_EXTENT_REG && 1058 btrfs_file_extent_num_bytes(leaf, extent) < thresh && 1059 check_defrag_in_cache(inode, min_key.offset, thresh)) { 1060 *off = min_key.offset; 1061 btrfs_free_path(path); 1062 return 0; 1063 } 1064 1065 path->slots[0]++; 1066 if (path->slots[0] < btrfs_header_nritems(leaf)) { 1067 btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]); 1068 goto process_slot; 1069 } 1070 1071 if (min_key.offset == (u64)-1) 1072 goto none; 1073 1074 min_key.offset++; 1075 btrfs_release_path(path); 1076 } 1077 none: 1078 btrfs_free_path(path); 1079 return -ENOENT; 1080 } 1081 1082 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start) 1083 { 1084 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 1085 struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree; 1086 struct extent_map *em; 1087 u64 len = PAGE_SIZE; 1088 1089 /* 1090 * hopefully we have this extent in the tree already, try without 1091 * the full extent lock 1092 */ 1093 read_lock(&em_tree->lock); 1094 em = lookup_extent_mapping(em_tree, start, len); 1095 read_unlock(&em_tree->lock); 1096 1097 if (!em) { 1098 struct extent_state *cached = NULL; 1099 u64 end = start + len - 1; 1100 1101 /* get the big lock and read metadata off disk */ 1102 lock_extent_bits(io_tree, start, end, &cached); 1103 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len); 1104 unlock_extent_cached(io_tree, start, end, &cached); 1105 1106 if (IS_ERR(em)) 1107 return NULL; 1108 } 1109 1110 return em; 1111 } 1112 1113 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em) 1114 { 1115 struct extent_map *next; 1116 bool ret = true; 1117 1118 /* this is the last extent */ 1119 if (em->start + em->len >= i_size_read(inode)) 1120 return false; 1121 1122 next = defrag_lookup_extent(inode, em->start + em->len); 1123 if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE) 1124 ret = false; 1125 else if ((em->block_start + em->block_len == next->block_start) && 1126 (em->block_len > SZ_128K && next->block_len > SZ_128K)) 1127 ret = false; 1128 1129 free_extent_map(next); 1130 return ret; 1131 } 1132 1133 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh, 1134 u64 *last_len, u64 *skip, u64 *defrag_end, 1135 int compress) 1136 { 1137 struct extent_map *em; 1138 int ret = 1; 1139 bool next_mergeable = true; 1140 bool prev_mergeable = true; 1141 1142 /* 1143 * make sure that once we start defragging an extent, we keep on 1144 * defragging it 1145 */ 1146 if (start < *defrag_end) 1147 return 1; 1148 1149 *skip = 0; 1150 1151 em = defrag_lookup_extent(inode, start); 1152 if (!em) 1153 return 0; 1154 1155 /* this will cover holes, and inline extents */ 1156 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1157 ret = 0; 1158 goto out; 1159 } 1160 1161 if (!*defrag_end) 1162 prev_mergeable = false; 1163 1164 next_mergeable = defrag_check_next_extent(inode, em); 1165 /* 1166 * we hit a real extent, if it is big or the next extent is not a 1167 * real extent, don't bother defragging it 1168 */ 1169 if (!compress && (*last_len == 0 || *last_len >= thresh) && 1170 (em->len >= thresh || (!next_mergeable && !prev_mergeable))) 1171 ret = 0; 1172 out: 1173 /* 1174 * last_len ends up being a counter of how many bytes we've defragged. 1175 * every time we choose not to defrag an extent, we reset *last_len 1176 * so that the next tiny extent will force a defrag. 1177 * 1178 * The end result of this is that tiny extents before a single big 1179 * extent will force at least part of that big extent to be defragged. 1180 */ 1181 if (ret) { 1182 *defrag_end = extent_map_end(em); 1183 } else { 1184 *last_len = 0; 1185 *skip = extent_map_end(em); 1186 *defrag_end = 0; 1187 } 1188 1189 free_extent_map(em); 1190 return ret; 1191 } 1192 1193 /* 1194 * it doesn't do much good to defrag one or two pages 1195 * at a time. This pulls in a nice chunk of pages 1196 * to COW and defrag. 1197 * 1198 * It also makes sure the delalloc code has enough 1199 * dirty data to avoid making new small extents as part 1200 * of the defrag 1201 * 1202 * It's a good idea to start RA on this range 1203 * before calling this. 1204 */ 1205 static int cluster_pages_for_defrag(struct inode *inode, 1206 struct page **pages, 1207 unsigned long start_index, 1208 unsigned long num_pages) 1209 { 1210 unsigned long file_end; 1211 u64 isize = i_size_read(inode); 1212 u64 page_start; 1213 u64 page_end; 1214 u64 page_cnt; 1215 u64 start = (u64)start_index << PAGE_SHIFT; 1216 u64 search_start; 1217 int ret; 1218 int i; 1219 int i_done; 1220 struct btrfs_ordered_extent *ordered; 1221 struct extent_state *cached_state = NULL; 1222 struct extent_io_tree *tree; 1223 struct extent_changeset *data_reserved = NULL; 1224 gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping); 1225 1226 file_end = (isize - 1) >> PAGE_SHIFT; 1227 if (!isize || start_index > file_end) 1228 return 0; 1229 1230 page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1); 1231 1232 ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved, 1233 start, page_cnt << PAGE_SHIFT); 1234 if (ret) 1235 return ret; 1236 i_done = 0; 1237 tree = &BTRFS_I(inode)->io_tree; 1238 1239 /* step one, lock all the pages */ 1240 for (i = 0; i < page_cnt; i++) { 1241 struct page *page; 1242 again: 1243 page = find_or_create_page(inode->i_mapping, 1244 start_index + i, mask); 1245 if (!page) 1246 break; 1247 1248 ret = set_page_extent_mapped(page); 1249 if (ret < 0) { 1250 unlock_page(page); 1251 put_page(page); 1252 break; 1253 } 1254 1255 page_start = page_offset(page); 1256 page_end = page_start + PAGE_SIZE - 1; 1257 while (1) { 1258 lock_extent_bits(tree, page_start, page_end, 1259 &cached_state); 1260 ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode), 1261 page_start); 1262 unlock_extent_cached(tree, page_start, page_end, 1263 &cached_state); 1264 if (!ordered) 1265 break; 1266 1267 unlock_page(page); 1268 btrfs_start_ordered_extent(ordered, 1); 1269 btrfs_put_ordered_extent(ordered); 1270 lock_page(page); 1271 /* 1272 * we unlocked the page above, so we need check if 1273 * it was released or not. 1274 */ 1275 if (page->mapping != inode->i_mapping) { 1276 unlock_page(page); 1277 put_page(page); 1278 goto again; 1279 } 1280 } 1281 1282 if (!PageUptodate(page)) { 1283 btrfs_readpage(NULL, page); 1284 lock_page(page); 1285 if (!PageUptodate(page)) { 1286 unlock_page(page); 1287 put_page(page); 1288 ret = -EIO; 1289 break; 1290 } 1291 } 1292 1293 if (page->mapping != inode->i_mapping) { 1294 unlock_page(page); 1295 put_page(page); 1296 goto again; 1297 } 1298 1299 pages[i] = page; 1300 i_done++; 1301 } 1302 if (!i_done || ret) 1303 goto out; 1304 1305 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1306 goto out; 1307 1308 /* 1309 * so now we have a nice long stream of locked 1310 * and up to date pages, lets wait on them 1311 */ 1312 for (i = 0; i < i_done; i++) 1313 wait_on_page_writeback(pages[i]); 1314 1315 page_start = page_offset(pages[0]); 1316 page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE; 1317 1318 lock_extent_bits(&BTRFS_I(inode)->io_tree, 1319 page_start, page_end - 1, &cached_state); 1320 1321 /* 1322 * When defragmenting we skip ranges that have holes or inline extents, 1323 * (check should_defrag_range()), to avoid unnecessary IO and wasting 1324 * space. At btrfs_defrag_file(), we check if a range should be defragged 1325 * before locking the inode and then, if it should, we trigger a sync 1326 * page cache readahead - we lock the inode only after that to avoid 1327 * blocking for too long other tasks that possibly want to operate on 1328 * other file ranges. But before we were able to get the inode lock, 1329 * some other task may have punched a hole in the range, or we may have 1330 * now an inline extent, in which case we should not defrag. So check 1331 * for that here, where we have the inode and the range locked, and bail 1332 * out if that happened. 1333 */ 1334 search_start = page_start; 1335 while (search_start < page_end) { 1336 struct extent_map *em; 1337 1338 em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start, 1339 page_end - search_start); 1340 if (IS_ERR(em)) { 1341 ret = PTR_ERR(em); 1342 goto out_unlock_range; 1343 } 1344 if (em->block_start >= EXTENT_MAP_LAST_BYTE) { 1345 free_extent_map(em); 1346 /* Ok, 0 means we did not defrag anything */ 1347 ret = 0; 1348 goto out_unlock_range; 1349 } 1350 search_start = extent_map_end(em); 1351 free_extent_map(em); 1352 } 1353 1354 clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start, 1355 page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING | 1356 EXTENT_DEFRAG, 0, 0, &cached_state); 1357 1358 if (i_done != page_cnt) { 1359 spin_lock(&BTRFS_I(inode)->lock); 1360 btrfs_mod_outstanding_extents(BTRFS_I(inode), 1); 1361 spin_unlock(&BTRFS_I(inode)->lock); 1362 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1363 start, (page_cnt - i_done) << PAGE_SHIFT, true); 1364 } 1365 1366 1367 set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1, 1368 &cached_state); 1369 1370 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1371 page_start, page_end - 1, &cached_state); 1372 1373 for (i = 0; i < i_done; i++) { 1374 clear_page_dirty_for_io(pages[i]); 1375 ClearPageChecked(pages[i]); 1376 set_page_dirty(pages[i]); 1377 unlock_page(pages[i]); 1378 put_page(pages[i]); 1379 } 1380 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1381 extent_changeset_free(data_reserved); 1382 return i_done; 1383 1384 out_unlock_range: 1385 unlock_extent_cached(&BTRFS_I(inode)->io_tree, 1386 page_start, page_end - 1, &cached_state); 1387 out: 1388 for (i = 0; i < i_done; i++) { 1389 unlock_page(pages[i]); 1390 put_page(pages[i]); 1391 } 1392 btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved, 1393 start, page_cnt << PAGE_SHIFT, true); 1394 btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT); 1395 extent_changeset_free(data_reserved); 1396 return ret; 1397 1398 } 1399 1400 int btrfs_defrag_file(struct inode *inode, struct file *file, 1401 struct btrfs_ioctl_defrag_range_args *range, 1402 u64 newer_than, unsigned long max_to_defrag) 1403 { 1404 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1405 struct btrfs_root *root = BTRFS_I(inode)->root; 1406 struct file_ra_state *ra = NULL; 1407 unsigned long last_index; 1408 u64 isize = i_size_read(inode); 1409 u64 last_len = 0; 1410 u64 skip = 0; 1411 u64 defrag_end = 0; 1412 u64 newer_off = range->start; 1413 unsigned long i; 1414 unsigned long ra_index = 0; 1415 int ret; 1416 int defrag_count = 0; 1417 int compress_type = BTRFS_COMPRESS_ZLIB; 1418 u32 extent_thresh = range->extent_thresh; 1419 unsigned long max_cluster = SZ_256K >> PAGE_SHIFT; 1420 unsigned long cluster = max_cluster; 1421 u64 new_align = ~((u64)SZ_128K - 1); 1422 struct page **pages = NULL; 1423 bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS; 1424 1425 if (isize == 0) 1426 return 0; 1427 1428 if (range->start >= isize) 1429 return -EINVAL; 1430 1431 if (do_compress) { 1432 if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES) 1433 return -EINVAL; 1434 if (range->compress_type) 1435 compress_type = range->compress_type; 1436 } 1437 1438 if (extent_thresh == 0) 1439 extent_thresh = SZ_256K; 1440 1441 /* 1442 * If we were not given a file, allocate a readahead context. As 1443 * readahead is just an optimization, defrag will work without it so 1444 * we don't error out. 1445 */ 1446 if (!file) { 1447 ra = kzalloc(sizeof(*ra), GFP_KERNEL); 1448 if (ra) 1449 file_ra_state_init(ra, inode->i_mapping); 1450 } else { 1451 ra = &file->f_ra; 1452 } 1453 1454 pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL); 1455 if (!pages) { 1456 ret = -ENOMEM; 1457 goto out_ra; 1458 } 1459 1460 /* find the last page to defrag */ 1461 if (range->start + range->len > range->start) { 1462 last_index = min_t(u64, isize - 1, 1463 range->start + range->len - 1) >> PAGE_SHIFT; 1464 } else { 1465 last_index = (isize - 1) >> PAGE_SHIFT; 1466 } 1467 1468 if (newer_than) { 1469 ret = find_new_extents(root, inode, newer_than, 1470 &newer_off, SZ_64K); 1471 if (!ret) { 1472 range->start = newer_off; 1473 /* 1474 * we always align our defrag to help keep 1475 * the extents in the file evenly spaced 1476 */ 1477 i = (newer_off & new_align) >> PAGE_SHIFT; 1478 } else 1479 goto out_ra; 1480 } else { 1481 i = range->start >> PAGE_SHIFT; 1482 } 1483 if (!max_to_defrag) 1484 max_to_defrag = last_index - i + 1; 1485 1486 /* 1487 * make writeback starts from i, so the defrag range can be 1488 * written sequentially. 1489 */ 1490 if (i < inode->i_mapping->writeback_index) 1491 inode->i_mapping->writeback_index = i; 1492 1493 while (i <= last_index && defrag_count < max_to_defrag && 1494 (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) { 1495 /* 1496 * make sure we stop running if someone unmounts 1497 * the FS 1498 */ 1499 if (!(inode->i_sb->s_flags & SB_ACTIVE)) 1500 break; 1501 1502 if (btrfs_defrag_cancelled(fs_info)) { 1503 btrfs_debug(fs_info, "defrag_file cancelled"); 1504 ret = -EAGAIN; 1505 goto error; 1506 } 1507 1508 if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT, 1509 extent_thresh, &last_len, &skip, 1510 &defrag_end, do_compress)){ 1511 unsigned long next; 1512 /* 1513 * the should_defrag function tells us how much to skip 1514 * bump our counter by the suggested amount 1515 */ 1516 next = DIV_ROUND_UP(skip, PAGE_SIZE); 1517 i = max(i + 1, next); 1518 continue; 1519 } 1520 1521 if (!newer_than) { 1522 cluster = (PAGE_ALIGN(defrag_end) >> 1523 PAGE_SHIFT) - i; 1524 cluster = min(cluster, max_cluster); 1525 } else { 1526 cluster = max_cluster; 1527 } 1528 1529 if (i + cluster > ra_index) { 1530 ra_index = max(i, ra_index); 1531 if (ra) 1532 page_cache_sync_readahead(inode->i_mapping, ra, 1533 file, ra_index, cluster); 1534 ra_index += cluster; 1535 } 1536 1537 btrfs_inode_lock(inode, 0); 1538 if (IS_SWAPFILE(inode)) { 1539 ret = -ETXTBSY; 1540 } else { 1541 if (do_compress) 1542 BTRFS_I(inode)->defrag_compress = compress_type; 1543 ret = cluster_pages_for_defrag(inode, pages, i, cluster); 1544 } 1545 if (ret < 0) { 1546 btrfs_inode_unlock(inode, 0); 1547 goto out_ra; 1548 } 1549 1550 defrag_count += ret; 1551 balance_dirty_pages_ratelimited(inode->i_mapping); 1552 btrfs_inode_unlock(inode, 0); 1553 1554 if (newer_than) { 1555 if (newer_off == (u64)-1) 1556 break; 1557 1558 if (ret > 0) 1559 i += ret; 1560 1561 newer_off = max(newer_off + 1, 1562 (u64)i << PAGE_SHIFT); 1563 1564 ret = find_new_extents(root, inode, newer_than, 1565 &newer_off, SZ_64K); 1566 if (!ret) { 1567 range->start = newer_off; 1568 i = (newer_off & new_align) >> PAGE_SHIFT; 1569 } else { 1570 break; 1571 } 1572 } else { 1573 if (ret > 0) { 1574 i += ret; 1575 last_len += ret << PAGE_SHIFT; 1576 } else { 1577 i++; 1578 last_len = 0; 1579 } 1580 } 1581 } 1582 1583 ret = defrag_count; 1584 error: 1585 if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) { 1586 filemap_flush(inode->i_mapping); 1587 if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT, 1588 &BTRFS_I(inode)->runtime_flags)) 1589 filemap_flush(inode->i_mapping); 1590 } 1591 1592 if (range->compress_type == BTRFS_COMPRESS_LZO) { 1593 btrfs_set_fs_incompat(fs_info, COMPRESS_LZO); 1594 } else if (range->compress_type == BTRFS_COMPRESS_ZSTD) { 1595 btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD); 1596 } 1597 1598 out_ra: 1599 if (do_compress) { 1600 btrfs_inode_lock(inode, 0); 1601 BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE; 1602 btrfs_inode_unlock(inode, 0); 1603 } 1604 if (!file) 1605 kfree(ra); 1606 kfree(pages); 1607 return ret; 1608 } 1609 1610 /* 1611 * Try to start exclusive operation @type or cancel it if it's running. 1612 * 1613 * Return: 1614 * 0 - normal mode, newly claimed op started 1615 * >0 - normal mode, something else is running, 1616 * return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space 1617 * ECANCELED - cancel mode, successful cancel 1618 * ENOTCONN - cancel mode, operation not running anymore 1619 */ 1620 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info, 1621 enum btrfs_exclusive_operation type, bool cancel) 1622 { 1623 if (!cancel) { 1624 /* Start normal op */ 1625 if (!btrfs_exclop_start(fs_info, type)) 1626 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 1627 /* Exclusive operation is now claimed */ 1628 return 0; 1629 } 1630 1631 /* Cancel running op */ 1632 if (btrfs_exclop_start_try_lock(fs_info, type)) { 1633 /* 1634 * This blocks any exclop finish from setting it to NONE, so we 1635 * request cancellation. Either it runs and we will wait for it, 1636 * or it has finished and no waiting will happen. 1637 */ 1638 atomic_inc(&fs_info->reloc_cancel_req); 1639 btrfs_exclop_start_unlock(fs_info); 1640 1641 if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags)) 1642 wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING, 1643 TASK_INTERRUPTIBLE); 1644 1645 return -ECANCELED; 1646 } 1647 1648 /* Something else is running or none */ 1649 return -ENOTCONN; 1650 } 1651 1652 static noinline int btrfs_ioctl_resize(struct file *file, 1653 void __user *arg) 1654 { 1655 struct inode *inode = file_inode(file); 1656 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1657 u64 new_size; 1658 u64 old_size; 1659 u64 devid = 1; 1660 struct btrfs_root *root = BTRFS_I(inode)->root; 1661 struct btrfs_ioctl_vol_args *vol_args; 1662 struct btrfs_trans_handle *trans; 1663 struct btrfs_device *device = NULL; 1664 char *sizestr; 1665 char *retptr; 1666 char *devstr = NULL; 1667 int ret = 0; 1668 int mod = 0; 1669 bool cancel; 1670 1671 if (!capable(CAP_SYS_ADMIN)) 1672 return -EPERM; 1673 1674 ret = mnt_want_write_file(file); 1675 if (ret) 1676 return ret; 1677 1678 /* 1679 * Read the arguments before checking exclusivity to be able to 1680 * distinguish regular resize and cancel 1681 */ 1682 vol_args = memdup_user(arg, sizeof(*vol_args)); 1683 if (IS_ERR(vol_args)) { 1684 ret = PTR_ERR(vol_args); 1685 goto out_drop; 1686 } 1687 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1688 sizestr = vol_args->name; 1689 cancel = (strcmp("cancel", sizestr) == 0); 1690 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel); 1691 if (ret) 1692 goto out_free; 1693 /* Exclusive operation is now claimed */ 1694 1695 devstr = strchr(sizestr, ':'); 1696 if (devstr) { 1697 sizestr = devstr + 1; 1698 *devstr = '\0'; 1699 devstr = vol_args->name; 1700 ret = kstrtoull(devstr, 10, &devid); 1701 if (ret) 1702 goto out_finish; 1703 if (!devid) { 1704 ret = -EINVAL; 1705 goto out_finish; 1706 } 1707 btrfs_info(fs_info, "resizing devid %llu", devid); 1708 } 1709 1710 device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL); 1711 if (!device) { 1712 btrfs_info(fs_info, "resizer unable to find device %llu", 1713 devid); 1714 ret = -ENODEV; 1715 goto out_finish; 1716 } 1717 1718 if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) { 1719 btrfs_info(fs_info, 1720 "resizer unable to apply on readonly device %llu", 1721 devid); 1722 ret = -EPERM; 1723 goto out_finish; 1724 } 1725 1726 if (!strcmp(sizestr, "max")) 1727 new_size = device->bdev->bd_inode->i_size; 1728 else { 1729 if (sizestr[0] == '-') { 1730 mod = -1; 1731 sizestr++; 1732 } else if (sizestr[0] == '+') { 1733 mod = 1; 1734 sizestr++; 1735 } 1736 new_size = memparse(sizestr, &retptr); 1737 if (*retptr != '\0' || new_size == 0) { 1738 ret = -EINVAL; 1739 goto out_finish; 1740 } 1741 } 1742 1743 if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) { 1744 ret = -EPERM; 1745 goto out_finish; 1746 } 1747 1748 old_size = btrfs_device_get_total_bytes(device); 1749 1750 if (mod < 0) { 1751 if (new_size > old_size) { 1752 ret = -EINVAL; 1753 goto out_finish; 1754 } 1755 new_size = old_size - new_size; 1756 } else if (mod > 0) { 1757 if (new_size > ULLONG_MAX - old_size) { 1758 ret = -ERANGE; 1759 goto out_finish; 1760 } 1761 new_size = old_size + new_size; 1762 } 1763 1764 if (new_size < SZ_256M) { 1765 ret = -EINVAL; 1766 goto out_finish; 1767 } 1768 if (new_size > device->bdev->bd_inode->i_size) { 1769 ret = -EFBIG; 1770 goto out_finish; 1771 } 1772 1773 new_size = round_down(new_size, fs_info->sectorsize); 1774 1775 if (new_size > old_size) { 1776 trans = btrfs_start_transaction(root, 0); 1777 if (IS_ERR(trans)) { 1778 ret = PTR_ERR(trans); 1779 goto out_finish; 1780 } 1781 ret = btrfs_grow_device(trans, device, new_size); 1782 btrfs_commit_transaction(trans); 1783 } else if (new_size < old_size) { 1784 ret = btrfs_shrink_device(device, new_size); 1785 } /* equal, nothing need to do */ 1786 1787 if (ret == 0 && new_size != old_size) 1788 btrfs_info_in_rcu(fs_info, 1789 "resize device %s (devid %llu) from %llu to %llu", 1790 rcu_str_deref(device->name), device->devid, 1791 old_size, new_size); 1792 out_finish: 1793 btrfs_exclop_finish(fs_info); 1794 out_free: 1795 kfree(vol_args); 1796 out_drop: 1797 mnt_drop_write_file(file); 1798 return ret; 1799 } 1800 1801 static noinline int __btrfs_ioctl_snap_create(struct file *file, 1802 const char *name, unsigned long fd, int subvol, 1803 bool readonly, 1804 struct btrfs_qgroup_inherit *inherit) 1805 { 1806 int namelen; 1807 int ret = 0; 1808 1809 if (!S_ISDIR(file_inode(file)->i_mode)) 1810 return -ENOTDIR; 1811 1812 ret = mnt_want_write_file(file); 1813 if (ret) 1814 goto out; 1815 1816 namelen = strlen(name); 1817 if (strchr(name, '/')) { 1818 ret = -EINVAL; 1819 goto out_drop_write; 1820 } 1821 1822 if (name[0] == '.' && 1823 (namelen == 1 || (name[1] == '.' && namelen == 2))) { 1824 ret = -EEXIST; 1825 goto out_drop_write; 1826 } 1827 1828 if (subvol) { 1829 ret = btrfs_mksubvol(&file->f_path, name, namelen, 1830 NULL, readonly, inherit); 1831 } else { 1832 struct fd src = fdget(fd); 1833 struct inode *src_inode; 1834 if (!src.file) { 1835 ret = -EINVAL; 1836 goto out_drop_write; 1837 } 1838 1839 src_inode = file_inode(src.file); 1840 if (src_inode->i_sb != file_inode(file)->i_sb) { 1841 btrfs_info(BTRFS_I(file_inode(file))->root->fs_info, 1842 "Snapshot src from another FS"); 1843 ret = -EXDEV; 1844 } else if (!inode_owner_or_capable(&init_user_ns, src_inode)) { 1845 /* 1846 * Subvolume creation is not restricted, but snapshots 1847 * are limited to own subvolumes only 1848 */ 1849 ret = -EPERM; 1850 } else { 1851 ret = btrfs_mksnapshot(&file->f_path, name, namelen, 1852 BTRFS_I(src_inode)->root, 1853 readonly, inherit); 1854 } 1855 fdput(src); 1856 } 1857 out_drop_write: 1858 mnt_drop_write_file(file); 1859 out: 1860 return ret; 1861 } 1862 1863 static noinline int btrfs_ioctl_snap_create(struct file *file, 1864 void __user *arg, int subvol) 1865 { 1866 struct btrfs_ioctl_vol_args *vol_args; 1867 int ret; 1868 1869 if (!S_ISDIR(file_inode(file)->i_mode)) 1870 return -ENOTDIR; 1871 1872 vol_args = memdup_user(arg, sizeof(*vol_args)); 1873 if (IS_ERR(vol_args)) 1874 return PTR_ERR(vol_args); 1875 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 1876 1877 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1878 subvol, false, NULL); 1879 1880 kfree(vol_args); 1881 return ret; 1882 } 1883 1884 static noinline int btrfs_ioctl_snap_create_v2(struct file *file, 1885 void __user *arg, int subvol) 1886 { 1887 struct btrfs_ioctl_vol_args_v2 *vol_args; 1888 int ret; 1889 bool readonly = false; 1890 struct btrfs_qgroup_inherit *inherit = NULL; 1891 1892 if (!S_ISDIR(file_inode(file)->i_mode)) 1893 return -ENOTDIR; 1894 1895 vol_args = memdup_user(arg, sizeof(*vol_args)); 1896 if (IS_ERR(vol_args)) 1897 return PTR_ERR(vol_args); 1898 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 1899 1900 if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) { 1901 ret = -EOPNOTSUPP; 1902 goto free_args; 1903 } 1904 1905 if (vol_args->flags & BTRFS_SUBVOL_RDONLY) 1906 readonly = true; 1907 if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) { 1908 u64 nums; 1909 1910 if (vol_args->size < sizeof(*inherit) || 1911 vol_args->size > PAGE_SIZE) { 1912 ret = -EINVAL; 1913 goto free_args; 1914 } 1915 inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size); 1916 if (IS_ERR(inherit)) { 1917 ret = PTR_ERR(inherit); 1918 goto free_args; 1919 } 1920 1921 if (inherit->num_qgroups > PAGE_SIZE || 1922 inherit->num_ref_copies > PAGE_SIZE || 1923 inherit->num_excl_copies > PAGE_SIZE) { 1924 ret = -EINVAL; 1925 goto free_inherit; 1926 } 1927 1928 nums = inherit->num_qgroups + 2 * inherit->num_ref_copies + 1929 2 * inherit->num_excl_copies; 1930 if (vol_args->size != struct_size(inherit, qgroups, nums)) { 1931 ret = -EINVAL; 1932 goto free_inherit; 1933 } 1934 } 1935 1936 ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd, 1937 subvol, readonly, inherit); 1938 if (ret) 1939 goto free_inherit; 1940 free_inherit: 1941 kfree(inherit); 1942 free_args: 1943 kfree(vol_args); 1944 return ret; 1945 } 1946 1947 static noinline int btrfs_ioctl_subvol_getflags(struct file *file, 1948 void __user *arg) 1949 { 1950 struct inode *inode = file_inode(file); 1951 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1952 struct btrfs_root *root = BTRFS_I(inode)->root; 1953 int ret = 0; 1954 u64 flags = 0; 1955 1956 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) 1957 return -EINVAL; 1958 1959 down_read(&fs_info->subvol_sem); 1960 if (btrfs_root_readonly(root)) 1961 flags |= BTRFS_SUBVOL_RDONLY; 1962 up_read(&fs_info->subvol_sem); 1963 1964 if (copy_to_user(arg, &flags, sizeof(flags))) 1965 ret = -EFAULT; 1966 1967 return ret; 1968 } 1969 1970 static noinline int btrfs_ioctl_subvol_setflags(struct file *file, 1971 void __user *arg) 1972 { 1973 struct inode *inode = file_inode(file); 1974 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 1975 struct btrfs_root *root = BTRFS_I(inode)->root; 1976 struct btrfs_trans_handle *trans; 1977 u64 root_flags; 1978 u64 flags; 1979 int ret = 0; 1980 1981 if (!inode_owner_or_capable(&init_user_ns, inode)) 1982 return -EPERM; 1983 1984 ret = mnt_want_write_file(file); 1985 if (ret) 1986 goto out; 1987 1988 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 1989 ret = -EINVAL; 1990 goto out_drop_write; 1991 } 1992 1993 if (copy_from_user(&flags, arg, sizeof(flags))) { 1994 ret = -EFAULT; 1995 goto out_drop_write; 1996 } 1997 1998 if (flags & ~BTRFS_SUBVOL_RDONLY) { 1999 ret = -EOPNOTSUPP; 2000 goto out_drop_write; 2001 } 2002 2003 down_write(&fs_info->subvol_sem); 2004 2005 /* nothing to do */ 2006 if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root)) 2007 goto out_drop_sem; 2008 2009 root_flags = btrfs_root_flags(&root->root_item); 2010 if (flags & BTRFS_SUBVOL_RDONLY) { 2011 btrfs_set_root_flags(&root->root_item, 2012 root_flags | BTRFS_ROOT_SUBVOL_RDONLY); 2013 } else { 2014 /* 2015 * Block RO -> RW transition if this subvolume is involved in 2016 * send 2017 */ 2018 spin_lock(&root->root_item_lock); 2019 if (root->send_in_progress == 0) { 2020 btrfs_set_root_flags(&root->root_item, 2021 root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY); 2022 spin_unlock(&root->root_item_lock); 2023 } else { 2024 spin_unlock(&root->root_item_lock); 2025 btrfs_warn(fs_info, 2026 "Attempt to set subvolume %llu read-write during send", 2027 root->root_key.objectid); 2028 ret = -EPERM; 2029 goto out_drop_sem; 2030 } 2031 } 2032 2033 trans = btrfs_start_transaction(root, 1); 2034 if (IS_ERR(trans)) { 2035 ret = PTR_ERR(trans); 2036 goto out_reset; 2037 } 2038 2039 ret = btrfs_update_root(trans, fs_info->tree_root, 2040 &root->root_key, &root->root_item); 2041 if (ret < 0) { 2042 btrfs_end_transaction(trans); 2043 goto out_reset; 2044 } 2045 2046 ret = btrfs_commit_transaction(trans); 2047 2048 out_reset: 2049 if (ret) 2050 btrfs_set_root_flags(&root->root_item, root_flags); 2051 out_drop_sem: 2052 up_write(&fs_info->subvol_sem); 2053 out_drop_write: 2054 mnt_drop_write_file(file); 2055 out: 2056 return ret; 2057 } 2058 2059 static noinline int key_in_sk(struct btrfs_key *key, 2060 struct btrfs_ioctl_search_key *sk) 2061 { 2062 struct btrfs_key test; 2063 int ret; 2064 2065 test.objectid = sk->min_objectid; 2066 test.type = sk->min_type; 2067 test.offset = sk->min_offset; 2068 2069 ret = btrfs_comp_cpu_keys(key, &test); 2070 if (ret < 0) 2071 return 0; 2072 2073 test.objectid = sk->max_objectid; 2074 test.type = sk->max_type; 2075 test.offset = sk->max_offset; 2076 2077 ret = btrfs_comp_cpu_keys(key, &test); 2078 if (ret > 0) 2079 return 0; 2080 return 1; 2081 } 2082 2083 static noinline int copy_to_sk(struct btrfs_path *path, 2084 struct btrfs_key *key, 2085 struct btrfs_ioctl_search_key *sk, 2086 size_t *buf_size, 2087 char __user *ubuf, 2088 unsigned long *sk_offset, 2089 int *num_found) 2090 { 2091 u64 found_transid; 2092 struct extent_buffer *leaf; 2093 struct btrfs_ioctl_search_header sh; 2094 struct btrfs_key test; 2095 unsigned long item_off; 2096 unsigned long item_len; 2097 int nritems; 2098 int i; 2099 int slot; 2100 int ret = 0; 2101 2102 leaf = path->nodes[0]; 2103 slot = path->slots[0]; 2104 nritems = btrfs_header_nritems(leaf); 2105 2106 if (btrfs_header_generation(leaf) > sk->max_transid) { 2107 i = nritems; 2108 goto advance_key; 2109 } 2110 found_transid = btrfs_header_generation(leaf); 2111 2112 for (i = slot; i < nritems; i++) { 2113 item_off = btrfs_item_ptr_offset(leaf, i); 2114 item_len = btrfs_item_size_nr(leaf, i); 2115 2116 btrfs_item_key_to_cpu(leaf, key, i); 2117 if (!key_in_sk(key, sk)) 2118 continue; 2119 2120 if (sizeof(sh) + item_len > *buf_size) { 2121 if (*num_found) { 2122 ret = 1; 2123 goto out; 2124 } 2125 2126 /* 2127 * return one empty item back for v1, which does not 2128 * handle -EOVERFLOW 2129 */ 2130 2131 *buf_size = sizeof(sh) + item_len; 2132 item_len = 0; 2133 ret = -EOVERFLOW; 2134 } 2135 2136 if (sizeof(sh) + item_len + *sk_offset > *buf_size) { 2137 ret = 1; 2138 goto out; 2139 } 2140 2141 sh.objectid = key->objectid; 2142 sh.offset = key->offset; 2143 sh.type = key->type; 2144 sh.len = item_len; 2145 sh.transid = found_transid; 2146 2147 /* 2148 * Copy search result header. If we fault then loop again so we 2149 * can fault in the pages and -EFAULT there if there's a 2150 * problem. Otherwise we'll fault and then copy the buffer in 2151 * properly this next time through 2152 */ 2153 if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) { 2154 ret = 0; 2155 goto out; 2156 } 2157 2158 *sk_offset += sizeof(sh); 2159 2160 if (item_len) { 2161 char __user *up = ubuf + *sk_offset; 2162 /* 2163 * Copy the item, same behavior as above, but reset the 2164 * * sk_offset so we copy the full thing again. 2165 */ 2166 if (read_extent_buffer_to_user_nofault(leaf, up, 2167 item_off, item_len)) { 2168 ret = 0; 2169 *sk_offset -= sizeof(sh); 2170 goto out; 2171 } 2172 2173 *sk_offset += item_len; 2174 } 2175 (*num_found)++; 2176 2177 if (ret) /* -EOVERFLOW from above */ 2178 goto out; 2179 2180 if (*num_found >= sk->nr_items) { 2181 ret = 1; 2182 goto out; 2183 } 2184 } 2185 advance_key: 2186 ret = 0; 2187 test.objectid = sk->max_objectid; 2188 test.type = sk->max_type; 2189 test.offset = sk->max_offset; 2190 if (btrfs_comp_cpu_keys(key, &test) >= 0) 2191 ret = 1; 2192 else if (key->offset < (u64)-1) 2193 key->offset++; 2194 else if (key->type < (u8)-1) { 2195 key->offset = 0; 2196 key->type++; 2197 } else if (key->objectid < (u64)-1) { 2198 key->offset = 0; 2199 key->type = 0; 2200 key->objectid++; 2201 } else 2202 ret = 1; 2203 out: 2204 /* 2205 * 0: all items from this leaf copied, continue with next 2206 * 1: * more items can be copied, but unused buffer is too small 2207 * * all items were found 2208 * Either way, it will stops the loop which iterates to the next 2209 * leaf 2210 * -EOVERFLOW: item was to large for buffer 2211 * -EFAULT: could not copy extent buffer back to userspace 2212 */ 2213 return ret; 2214 } 2215 2216 static noinline int search_ioctl(struct inode *inode, 2217 struct btrfs_ioctl_search_key *sk, 2218 size_t *buf_size, 2219 char __user *ubuf) 2220 { 2221 struct btrfs_fs_info *info = btrfs_sb(inode->i_sb); 2222 struct btrfs_root *root; 2223 struct btrfs_key key; 2224 struct btrfs_path *path; 2225 int ret; 2226 int num_found = 0; 2227 unsigned long sk_offset = 0; 2228 2229 if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) { 2230 *buf_size = sizeof(struct btrfs_ioctl_search_header); 2231 return -EOVERFLOW; 2232 } 2233 2234 path = btrfs_alloc_path(); 2235 if (!path) 2236 return -ENOMEM; 2237 2238 if (sk->tree_id == 0) { 2239 /* search the root of the inode that was passed */ 2240 root = btrfs_grab_root(BTRFS_I(inode)->root); 2241 } else { 2242 root = btrfs_get_fs_root(info, sk->tree_id, true); 2243 if (IS_ERR(root)) { 2244 btrfs_free_path(path); 2245 return PTR_ERR(root); 2246 } 2247 } 2248 2249 key.objectid = sk->min_objectid; 2250 key.type = sk->min_type; 2251 key.offset = sk->min_offset; 2252 2253 while (1) { 2254 ret = fault_in_pages_writeable(ubuf + sk_offset, 2255 *buf_size - sk_offset); 2256 if (ret) 2257 break; 2258 2259 ret = btrfs_search_forward(root, &key, path, sk->min_transid); 2260 if (ret != 0) { 2261 if (ret > 0) 2262 ret = 0; 2263 goto err; 2264 } 2265 ret = copy_to_sk(path, &key, sk, buf_size, ubuf, 2266 &sk_offset, &num_found); 2267 btrfs_release_path(path); 2268 if (ret) 2269 break; 2270 2271 } 2272 if (ret > 0) 2273 ret = 0; 2274 err: 2275 sk->nr_items = num_found; 2276 btrfs_put_root(root); 2277 btrfs_free_path(path); 2278 return ret; 2279 } 2280 2281 static noinline int btrfs_ioctl_tree_search(struct file *file, 2282 void __user *argp) 2283 { 2284 struct btrfs_ioctl_search_args __user *uargs; 2285 struct btrfs_ioctl_search_key sk; 2286 struct inode *inode; 2287 int ret; 2288 size_t buf_size; 2289 2290 if (!capable(CAP_SYS_ADMIN)) 2291 return -EPERM; 2292 2293 uargs = (struct btrfs_ioctl_search_args __user *)argp; 2294 2295 if (copy_from_user(&sk, &uargs->key, sizeof(sk))) 2296 return -EFAULT; 2297 2298 buf_size = sizeof(uargs->buf); 2299 2300 inode = file_inode(file); 2301 ret = search_ioctl(inode, &sk, &buf_size, uargs->buf); 2302 2303 /* 2304 * In the origin implementation an overflow is handled by returning a 2305 * search header with a len of zero, so reset ret. 2306 */ 2307 if (ret == -EOVERFLOW) 2308 ret = 0; 2309 2310 if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk))) 2311 ret = -EFAULT; 2312 return ret; 2313 } 2314 2315 static noinline int btrfs_ioctl_tree_search_v2(struct file *file, 2316 void __user *argp) 2317 { 2318 struct btrfs_ioctl_search_args_v2 __user *uarg; 2319 struct btrfs_ioctl_search_args_v2 args; 2320 struct inode *inode; 2321 int ret; 2322 size_t buf_size; 2323 const size_t buf_limit = SZ_16M; 2324 2325 if (!capable(CAP_SYS_ADMIN)) 2326 return -EPERM; 2327 2328 /* copy search header and buffer size */ 2329 uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp; 2330 if (copy_from_user(&args, uarg, sizeof(args))) 2331 return -EFAULT; 2332 2333 buf_size = args.buf_size; 2334 2335 /* limit result size to 16MB */ 2336 if (buf_size > buf_limit) 2337 buf_size = buf_limit; 2338 2339 inode = file_inode(file); 2340 ret = search_ioctl(inode, &args.key, &buf_size, 2341 (char __user *)(&uarg->buf[0])); 2342 if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key))) 2343 ret = -EFAULT; 2344 else if (ret == -EOVERFLOW && 2345 copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size))) 2346 ret = -EFAULT; 2347 2348 return ret; 2349 } 2350 2351 /* 2352 * Search INODE_REFs to identify path name of 'dirid' directory 2353 * in a 'tree_id' tree. and sets path name to 'name'. 2354 */ 2355 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info, 2356 u64 tree_id, u64 dirid, char *name) 2357 { 2358 struct btrfs_root *root; 2359 struct btrfs_key key; 2360 char *ptr; 2361 int ret = -1; 2362 int slot; 2363 int len; 2364 int total_len = 0; 2365 struct btrfs_inode_ref *iref; 2366 struct extent_buffer *l; 2367 struct btrfs_path *path; 2368 2369 if (dirid == BTRFS_FIRST_FREE_OBJECTID) { 2370 name[0]='\0'; 2371 return 0; 2372 } 2373 2374 path = btrfs_alloc_path(); 2375 if (!path) 2376 return -ENOMEM; 2377 2378 ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1]; 2379 2380 root = btrfs_get_fs_root(info, tree_id, true); 2381 if (IS_ERR(root)) { 2382 ret = PTR_ERR(root); 2383 root = NULL; 2384 goto out; 2385 } 2386 2387 key.objectid = dirid; 2388 key.type = BTRFS_INODE_REF_KEY; 2389 key.offset = (u64)-1; 2390 2391 while (1) { 2392 ret = btrfs_search_backwards(root, &key, path); 2393 if (ret < 0) 2394 goto out; 2395 else if (ret > 0) { 2396 ret = -ENOENT; 2397 goto out; 2398 } 2399 2400 l = path->nodes[0]; 2401 slot = path->slots[0]; 2402 2403 iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref); 2404 len = btrfs_inode_ref_name_len(l, iref); 2405 ptr -= len + 1; 2406 total_len += len + 1; 2407 if (ptr < name) { 2408 ret = -ENAMETOOLONG; 2409 goto out; 2410 } 2411 2412 *(ptr + len) = '/'; 2413 read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len); 2414 2415 if (key.offset == BTRFS_FIRST_FREE_OBJECTID) 2416 break; 2417 2418 btrfs_release_path(path); 2419 key.objectid = key.offset; 2420 key.offset = (u64)-1; 2421 dirid = key.objectid; 2422 } 2423 memmove(name, ptr, total_len); 2424 name[total_len] = '\0'; 2425 ret = 0; 2426 out: 2427 btrfs_put_root(root); 2428 btrfs_free_path(path); 2429 return ret; 2430 } 2431 2432 static int btrfs_search_path_in_tree_user(struct inode *inode, 2433 struct btrfs_ioctl_ino_lookup_user_args *args) 2434 { 2435 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2436 struct super_block *sb = inode->i_sb; 2437 struct btrfs_key upper_limit = BTRFS_I(inode)->location; 2438 u64 treeid = BTRFS_I(inode)->root->root_key.objectid; 2439 u64 dirid = args->dirid; 2440 unsigned long item_off; 2441 unsigned long item_len; 2442 struct btrfs_inode_ref *iref; 2443 struct btrfs_root_ref *rref; 2444 struct btrfs_root *root = NULL; 2445 struct btrfs_path *path; 2446 struct btrfs_key key, key2; 2447 struct extent_buffer *leaf; 2448 struct inode *temp_inode; 2449 char *ptr; 2450 int slot; 2451 int len; 2452 int total_len = 0; 2453 int ret; 2454 2455 path = btrfs_alloc_path(); 2456 if (!path) 2457 return -ENOMEM; 2458 2459 /* 2460 * If the bottom subvolume does not exist directly under upper_limit, 2461 * construct the path in from the bottom up. 2462 */ 2463 if (dirid != upper_limit.objectid) { 2464 ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1]; 2465 2466 root = btrfs_get_fs_root(fs_info, treeid, true); 2467 if (IS_ERR(root)) { 2468 ret = PTR_ERR(root); 2469 goto out; 2470 } 2471 2472 key.objectid = dirid; 2473 key.type = BTRFS_INODE_REF_KEY; 2474 key.offset = (u64)-1; 2475 while (1) { 2476 ret = btrfs_search_backwards(root, &key, path); 2477 if (ret < 0) 2478 goto out_put; 2479 else if (ret > 0) { 2480 ret = -ENOENT; 2481 goto out_put; 2482 } 2483 2484 leaf = path->nodes[0]; 2485 slot = path->slots[0]; 2486 2487 iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref); 2488 len = btrfs_inode_ref_name_len(leaf, iref); 2489 ptr -= len + 1; 2490 total_len += len + 1; 2491 if (ptr < args->path) { 2492 ret = -ENAMETOOLONG; 2493 goto out_put; 2494 } 2495 2496 *(ptr + len) = '/'; 2497 read_extent_buffer(leaf, ptr, 2498 (unsigned long)(iref + 1), len); 2499 2500 /* Check the read+exec permission of this directory */ 2501 ret = btrfs_previous_item(root, path, dirid, 2502 BTRFS_INODE_ITEM_KEY); 2503 if (ret < 0) { 2504 goto out_put; 2505 } else if (ret > 0) { 2506 ret = -ENOENT; 2507 goto out_put; 2508 } 2509 2510 leaf = path->nodes[0]; 2511 slot = path->slots[0]; 2512 btrfs_item_key_to_cpu(leaf, &key2, slot); 2513 if (key2.objectid != dirid) { 2514 ret = -ENOENT; 2515 goto out_put; 2516 } 2517 2518 temp_inode = btrfs_iget(sb, key2.objectid, root); 2519 if (IS_ERR(temp_inode)) { 2520 ret = PTR_ERR(temp_inode); 2521 goto out_put; 2522 } 2523 ret = inode_permission(&init_user_ns, temp_inode, 2524 MAY_READ | MAY_EXEC); 2525 iput(temp_inode); 2526 if (ret) { 2527 ret = -EACCES; 2528 goto out_put; 2529 } 2530 2531 if (key.offset == upper_limit.objectid) 2532 break; 2533 if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) { 2534 ret = -EACCES; 2535 goto out_put; 2536 } 2537 2538 btrfs_release_path(path); 2539 key.objectid = key.offset; 2540 key.offset = (u64)-1; 2541 dirid = key.objectid; 2542 } 2543 2544 memmove(args->path, ptr, total_len); 2545 args->path[total_len] = '\0'; 2546 btrfs_put_root(root); 2547 root = NULL; 2548 btrfs_release_path(path); 2549 } 2550 2551 /* Get the bottom subvolume's name from ROOT_REF */ 2552 key.objectid = treeid; 2553 key.type = BTRFS_ROOT_REF_KEY; 2554 key.offset = args->treeid; 2555 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2556 if (ret < 0) { 2557 goto out; 2558 } else if (ret > 0) { 2559 ret = -ENOENT; 2560 goto out; 2561 } 2562 2563 leaf = path->nodes[0]; 2564 slot = path->slots[0]; 2565 btrfs_item_key_to_cpu(leaf, &key, slot); 2566 2567 item_off = btrfs_item_ptr_offset(leaf, slot); 2568 item_len = btrfs_item_size_nr(leaf, slot); 2569 /* Check if dirid in ROOT_REF corresponds to passed dirid */ 2570 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2571 if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) { 2572 ret = -EINVAL; 2573 goto out; 2574 } 2575 2576 /* Copy subvolume's name */ 2577 item_off += sizeof(struct btrfs_root_ref); 2578 item_len -= sizeof(struct btrfs_root_ref); 2579 read_extent_buffer(leaf, args->name, item_off, item_len); 2580 args->name[item_len] = 0; 2581 2582 out_put: 2583 btrfs_put_root(root); 2584 out: 2585 btrfs_free_path(path); 2586 return ret; 2587 } 2588 2589 static noinline int btrfs_ioctl_ino_lookup(struct file *file, 2590 void __user *argp) 2591 { 2592 struct btrfs_ioctl_ino_lookup_args *args; 2593 struct inode *inode; 2594 int ret = 0; 2595 2596 args = memdup_user(argp, sizeof(*args)); 2597 if (IS_ERR(args)) 2598 return PTR_ERR(args); 2599 2600 inode = file_inode(file); 2601 2602 /* 2603 * Unprivileged query to obtain the containing subvolume root id. The 2604 * path is reset so it's consistent with btrfs_search_path_in_tree. 2605 */ 2606 if (args->treeid == 0) 2607 args->treeid = BTRFS_I(inode)->root->root_key.objectid; 2608 2609 if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) { 2610 args->name[0] = 0; 2611 goto out; 2612 } 2613 2614 if (!capable(CAP_SYS_ADMIN)) { 2615 ret = -EPERM; 2616 goto out; 2617 } 2618 2619 ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info, 2620 args->treeid, args->objectid, 2621 args->name); 2622 2623 out: 2624 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2625 ret = -EFAULT; 2626 2627 kfree(args); 2628 return ret; 2629 } 2630 2631 /* 2632 * Version of ino_lookup ioctl (unprivileged) 2633 * 2634 * The main differences from ino_lookup ioctl are: 2635 * 2636 * 1. Read + Exec permission will be checked using inode_permission() during 2637 * path construction. -EACCES will be returned in case of failure. 2638 * 2. Path construction will be stopped at the inode number which corresponds 2639 * to the fd with which this ioctl is called. If constructed path does not 2640 * exist under fd's inode, -EACCES will be returned. 2641 * 3. The name of bottom subvolume is also searched and filled. 2642 */ 2643 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp) 2644 { 2645 struct btrfs_ioctl_ino_lookup_user_args *args; 2646 struct inode *inode; 2647 int ret; 2648 2649 args = memdup_user(argp, sizeof(*args)); 2650 if (IS_ERR(args)) 2651 return PTR_ERR(args); 2652 2653 inode = file_inode(file); 2654 2655 if (args->dirid == BTRFS_FIRST_FREE_OBJECTID && 2656 BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) { 2657 /* 2658 * The subvolume does not exist under fd with which this is 2659 * called 2660 */ 2661 kfree(args); 2662 return -EACCES; 2663 } 2664 2665 ret = btrfs_search_path_in_tree_user(inode, args); 2666 2667 if (ret == 0 && copy_to_user(argp, args, sizeof(*args))) 2668 ret = -EFAULT; 2669 2670 kfree(args); 2671 return ret; 2672 } 2673 2674 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */ 2675 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp) 2676 { 2677 struct btrfs_ioctl_get_subvol_info_args *subvol_info; 2678 struct btrfs_fs_info *fs_info; 2679 struct btrfs_root *root; 2680 struct btrfs_path *path; 2681 struct btrfs_key key; 2682 struct btrfs_root_item *root_item; 2683 struct btrfs_root_ref *rref; 2684 struct extent_buffer *leaf; 2685 unsigned long item_off; 2686 unsigned long item_len; 2687 struct inode *inode; 2688 int slot; 2689 int ret = 0; 2690 2691 path = btrfs_alloc_path(); 2692 if (!path) 2693 return -ENOMEM; 2694 2695 subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL); 2696 if (!subvol_info) { 2697 btrfs_free_path(path); 2698 return -ENOMEM; 2699 } 2700 2701 inode = file_inode(file); 2702 fs_info = BTRFS_I(inode)->root->fs_info; 2703 2704 /* Get root_item of inode's subvolume */ 2705 key.objectid = BTRFS_I(inode)->root->root_key.objectid; 2706 root = btrfs_get_fs_root(fs_info, key.objectid, true); 2707 if (IS_ERR(root)) { 2708 ret = PTR_ERR(root); 2709 goto out_free; 2710 } 2711 root_item = &root->root_item; 2712 2713 subvol_info->treeid = key.objectid; 2714 2715 subvol_info->generation = btrfs_root_generation(root_item); 2716 subvol_info->flags = btrfs_root_flags(root_item); 2717 2718 memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE); 2719 memcpy(subvol_info->parent_uuid, root_item->parent_uuid, 2720 BTRFS_UUID_SIZE); 2721 memcpy(subvol_info->received_uuid, root_item->received_uuid, 2722 BTRFS_UUID_SIZE); 2723 2724 subvol_info->ctransid = btrfs_root_ctransid(root_item); 2725 subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime); 2726 subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime); 2727 2728 subvol_info->otransid = btrfs_root_otransid(root_item); 2729 subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime); 2730 subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime); 2731 2732 subvol_info->stransid = btrfs_root_stransid(root_item); 2733 subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime); 2734 subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime); 2735 2736 subvol_info->rtransid = btrfs_root_rtransid(root_item); 2737 subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime); 2738 subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime); 2739 2740 if (key.objectid != BTRFS_FS_TREE_OBJECTID) { 2741 /* Search root tree for ROOT_BACKREF of this subvolume */ 2742 key.type = BTRFS_ROOT_BACKREF_KEY; 2743 key.offset = 0; 2744 ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0); 2745 if (ret < 0) { 2746 goto out; 2747 } else if (path->slots[0] >= 2748 btrfs_header_nritems(path->nodes[0])) { 2749 ret = btrfs_next_leaf(fs_info->tree_root, path); 2750 if (ret < 0) { 2751 goto out; 2752 } else if (ret > 0) { 2753 ret = -EUCLEAN; 2754 goto out; 2755 } 2756 } 2757 2758 leaf = path->nodes[0]; 2759 slot = path->slots[0]; 2760 btrfs_item_key_to_cpu(leaf, &key, slot); 2761 if (key.objectid == subvol_info->treeid && 2762 key.type == BTRFS_ROOT_BACKREF_KEY) { 2763 subvol_info->parent_id = key.offset; 2764 2765 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2766 subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref); 2767 2768 item_off = btrfs_item_ptr_offset(leaf, slot) 2769 + sizeof(struct btrfs_root_ref); 2770 item_len = btrfs_item_size_nr(leaf, slot) 2771 - sizeof(struct btrfs_root_ref); 2772 read_extent_buffer(leaf, subvol_info->name, 2773 item_off, item_len); 2774 } else { 2775 ret = -ENOENT; 2776 goto out; 2777 } 2778 } 2779 2780 if (copy_to_user(argp, subvol_info, sizeof(*subvol_info))) 2781 ret = -EFAULT; 2782 2783 out: 2784 btrfs_put_root(root); 2785 out_free: 2786 btrfs_free_path(path); 2787 kfree(subvol_info); 2788 return ret; 2789 } 2790 2791 /* 2792 * Return ROOT_REF information of the subvolume containing this inode 2793 * except the subvolume name. 2794 */ 2795 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp) 2796 { 2797 struct btrfs_ioctl_get_subvol_rootref_args *rootrefs; 2798 struct btrfs_root_ref *rref; 2799 struct btrfs_root *root; 2800 struct btrfs_path *path; 2801 struct btrfs_key key; 2802 struct extent_buffer *leaf; 2803 struct inode *inode; 2804 u64 objectid; 2805 int slot; 2806 int ret; 2807 u8 found; 2808 2809 path = btrfs_alloc_path(); 2810 if (!path) 2811 return -ENOMEM; 2812 2813 rootrefs = memdup_user(argp, sizeof(*rootrefs)); 2814 if (IS_ERR(rootrefs)) { 2815 btrfs_free_path(path); 2816 return PTR_ERR(rootrefs); 2817 } 2818 2819 inode = file_inode(file); 2820 root = BTRFS_I(inode)->root->fs_info->tree_root; 2821 objectid = BTRFS_I(inode)->root->root_key.objectid; 2822 2823 key.objectid = objectid; 2824 key.type = BTRFS_ROOT_REF_KEY; 2825 key.offset = rootrefs->min_treeid; 2826 found = 0; 2827 2828 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0); 2829 if (ret < 0) { 2830 goto out; 2831 } else if (path->slots[0] >= 2832 btrfs_header_nritems(path->nodes[0])) { 2833 ret = btrfs_next_leaf(root, path); 2834 if (ret < 0) { 2835 goto out; 2836 } else if (ret > 0) { 2837 ret = -EUCLEAN; 2838 goto out; 2839 } 2840 } 2841 while (1) { 2842 leaf = path->nodes[0]; 2843 slot = path->slots[0]; 2844 2845 btrfs_item_key_to_cpu(leaf, &key, slot); 2846 if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) { 2847 ret = 0; 2848 goto out; 2849 } 2850 2851 if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) { 2852 ret = -EOVERFLOW; 2853 goto out; 2854 } 2855 2856 rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref); 2857 rootrefs->rootref[found].treeid = key.offset; 2858 rootrefs->rootref[found].dirid = 2859 btrfs_root_ref_dirid(leaf, rref); 2860 found++; 2861 2862 ret = btrfs_next_item(root, path); 2863 if (ret < 0) { 2864 goto out; 2865 } else if (ret > 0) { 2866 ret = -EUCLEAN; 2867 goto out; 2868 } 2869 } 2870 2871 out: 2872 if (!ret || ret == -EOVERFLOW) { 2873 rootrefs->num_items = found; 2874 /* update min_treeid for next search */ 2875 if (found) 2876 rootrefs->min_treeid = 2877 rootrefs->rootref[found - 1].treeid + 1; 2878 if (copy_to_user(argp, rootrefs, sizeof(*rootrefs))) 2879 ret = -EFAULT; 2880 } 2881 2882 kfree(rootrefs); 2883 btrfs_free_path(path); 2884 2885 return ret; 2886 } 2887 2888 static noinline int btrfs_ioctl_snap_destroy(struct file *file, 2889 void __user *arg, 2890 bool destroy_v2) 2891 { 2892 struct dentry *parent = file->f_path.dentry; 2893 struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb); 2894 struct dentry *dentry; 2895 struct inode *dir = d_inode(parent); 2896 struct inode *inode; 2897 struct btrfs_root *root = BTRFS_I(dir)->root; 2898 struct btrfs_root *dest = NULL; 2899 struct btrfs_ioctl_vol_args *vol_args = NULL; 2900 struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL; 2901 char *subvol_name, *subvol_name_ptr = NULL; 2902 int subvol_namelen; 2903 int err = 0; 2904 bool destroy_parent = false; 2905 2906 if (destroy_v2) { 2907 vol_args2 = memdup_user(arg, sizeof(*vol_args2)); 2908 if (IS_ERR(vol_args2)) 2909 return PTR_ERR(vol_args2); 2910 2911 if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) { 2912 err = -EOPNOTSUPP; 2913 goto out; 2914 } 2915 2916 /* 2917 * If SPEC_BY_ID is not set, we are looking for the subvolume by 2918 * name, same as v1 currently does. 2919 */ 2920 if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) { 2921 vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0; 2922 subvol_name = vol_args2->name; 2923 2924 err = mnt_want_write_file(file); 2925 if (err) 2926 goto out; 2927 } else { 2928 if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) { 2929 err = -EINVAL; 2930 goto out; 2931 } 2932 2933 err = mnt_want_write_file(file); 2934 if (err) 2935 goto out; 2936 2937 dentry = btrfs_get_dentry(fs_info->sb, 2938 BTRFS_FIRST_FREE_OBJECTID, 2939 vol_args2->subvolid, 0, 0); 2940 if (IS_ERR(dentry)) { 2941 err = PTR_ERR(dentry); 2942 goto out_drop_write; 2943 } 2944 2945 /* 2946 * Change the default parent since the subvolume being 2947 * deleted can be outside of the current mount point. 2948 */ 2949 parent = btrfs_get_parent(dentry); 2950 2951 /* 2952 * At this point dentry->d_name can point to '/' if the 2953 * subvolume we want to destroy is outsite of the 2954 * current mount point, so we need to release the 2955 * current dentry and execute the lookup to return a new 2956 * one with ->d_name pointing to the 2957 * <mount point>/subvol_name. 2958 */ 2959 dput(dentry); 2960 if (IS_ERR(parent)) { 2961 err = PTR_ERR(parent); 2962 goto out_drop_write; 2963 } 2964 dir = d_inode(parent); 2965 2966 /* 2967 * If v2 was used with SPEC_BY_ID, a new parent was 2968 * allocated since the subvolume can be outside of the 2969 * current mount point. Later on we need to release this 2970 * new parent dentry. 2971 */ 2972 destroy_parent = true; 2973 2974 subvol_name_ptr = btrfs_get_subvol_name_from_objectid( 2975 fs_info, vol_args2->subvolid); 2976 if (IS_ERR(subvol_name_ptr)) { 2977 err = PTR_ERR(subvol_name_ptr); 2978 goto free_parent; 2979 } 2980 /* subvol_name_ptr is already nul terminated */ 2981 subvol_name = (char *)kbasename(subvol_name_ptr); 2982 } 2983 } else { 2984 vol_args = memdup_user(arg, sizeof(*vol_args)); 2985 if (IS_ERR(vol_args)) 2986 return PTR_ERR(vol_args); 2987 2988 vol_args->name[BTRFS_PATH_NAME_MAX] = 0; 2989 subvol_name = vol_args->name; 2990 2991 err = mnt_want_write_file(file); 2992 if (err) 2993 goto out; 2994 } 2995 2996 subvol_namelen = strlen(subvol_name); 2997 2998 if (strchr(subvol_name, '/') || 2999 strncmp(subvol_name, "..", subvol_namelen) == 0) { 3000 err = -EINVAL; 3001 goto free_subvol_name; 3002 } 3003 3004 if (!S_ISDIR(dir->i_mode)) { 3005 err = -ENOTDIR; 3006 goto free_subvol_name; 3007 } 3008 3009 err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT); 3010 if (err == -EINTR) 3011 goto free_subvol_name; 3012 dentry = lookup_one_len(subvol_name, parent, subvol_namelen); 3013 if (IS_ERR(dentry)) { 3014 err = PTR_ERR(dentry); 3015 goto out_unlock_dir; 3016 } 3017 3018 if (d_really_is_negative(dentry)) { 3019 err = -ENOENT; 3020 goto out_dput; 3021 } 3022 3023 inode = d_inode(dentry); 3024 dest = BTRFS_I(inode)->root; 3025 if (!capable(CAP_SYS_ADMIN)) { 3026 /* 3027 * Regular user. Only allow this with a special mount 3028 * option, when the user has write+exec access to the 3029 * subvol root, and when rmdir(2) would have been 3030 * allowed. 3031 * 3032 * Note that this is _not_ check that the subvol is 3033 * empty or doesn't contain data that we wouldn't 3034 * otherwise be able to delete. 3035 * 3036 * Users who want to delete empty subvols should try 3037 * rmdir(2). 3038 */ 3039 err = -EPERM; 3040 if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED)) 3041 goto out_dput; 3042 3043 /* 3044 * Do not allow deletion if the parent dir is the same 3045 * as the dir to be deleted. That means the ioctl 3046 * must be called on the dentry referencing the root 3047 * of the subvol, not a random directory contained 3048 * within it. 3049 */ 3050 err = -EINVAL; 3051 if (root == dest) 3052 goto out_dput; 3053 3054 err = inode_permission(&init_user_ns, inode, 3055 MAY_WRITE | MAY_EXEC); 3056 if (err) 3057 goto out_dput; 3058 } 3059 3060 /* check if subvolume may be deleted by a user */ 3061 err = btrfs_may_delete(dir, dentry, 1); 3062 if (err) 3063 goto out_dput; 3064 3065 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 3066 err = -EINVAL; 3067 goto out_dput; 3068 } 3069 3070 btrfs_inode_lock(inode, 0); 3071 err = btrfs_delete_subvolume(dir, dentry); 3072 btrfs_inode_unlock(inode, 0); 3073 if (!err) { 3074 fsnotify_rmdir(dir, dentry); 3075 d_delete(dentry); 3076 } 3077 3078 out_dput: 3079 dput(dentry); 3080 out_unlock_dir: 3081 btrfs_inode_unlock(dir, 0); 3082 free_subvol_name: 3083 kfree(subvol_name_ptr); 3084 free_parent: 3085 if (destroy_parent) 3086 dput(parent); 3087 out_drop_write: 3088 mnt_drop_write_file(file); 3089 out: 3090 kfree(vol_args2); 3091 kfree(vol_args); 3092 return err; 3093 } 3094 3095 static int btrfs_ioctl_defrag(struct file *file, void __user *argp) 3096 { 3097 struct inode *inode = file_inode(file); 3098 struct btrfs_root *root = BTRFS_I(inode)->root; 3099 struct btrfs_ioctl_defrag_range_args *range; 3100 int ret; 3101 3102 ret = mnt_want_write_file(file); 3103 if (ret) 3104 return ret; 3105 3106 if (btrfs_root_readonly(root)) { 3107 ret = -EROFS; 3108 goto out; 3109 } 3110 3111 /* Subpage defrag will be supported in later commits */ 3112 if (root->fs_info->sectorsize < PAGE_SIZE) { 3113 ret = -ENOTTY; 3114 goto out; 3115 } 3116 3117 switch (inode->i_mode & S_IFMT) { 3118 case S_IFDIR: 3119 if (!capable(CAP_SYS_ADMIN)) { 3120 ret = -EPERM; 3121 goto out; 3122 } 3123 ret = btrfs_defrag_root(root); 3124 break; 3125 case S_IFREG: 3126 /* 3127 * Note that this does not check the file descriptor for write 3128 * access. This prevents defragmenting executables that are 3129 * running and allows defrag on files open in read-only mode. 3130 */ 3131 if (!capable(CAP_SYS_ADMIN) && 3132 inode_permission(&init_user_ns, inode, MAY_WRITE)) { 3133 ret = -EPERM; 3134 goto out; 3135 } 3136 3137 range = kzalloc(sizeof(*range), GFP_KERNEL); 3138 if (!range) { 3139 ret = -ENOMEM; 3140 goto out; 3141 } 3142 3143 if (argp) { 3144 if (copy_from_user(range, argp, 3145 sizeof(*range))) { 3146 ret = -EFAULT; 3147 kfree(range); 3148 goto out; 3149 } 3150 /* compression requires us to start the IO */ 3151 if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) { 3152 range->flags |= BTRFS_DEFRAG_RANGE_START_IO; 3153 range->extent_thresh = (u32)-1; 3154 } 3155 } else { 3156 /* the rest are all set to zero by kzalloc */ 3157 range->len = (u64)-1; 3158 } 3159 ret = btrfs_defrag_file(file_inode(file), file, 3160 range, BTRFS_OLDEST_GENERATION, 0); 3161 if (ret > 0) 3162 ret = 0; 3163 kfree(range); 3164 break; 3165 default: 3166 ret = -EINVAL; 3167 } 3168 out: 3169 mnt_drop_write_file(file); 3170 return ret; 3171 } 3172 3173 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg) 3174 { 3175 struct btrfs_ioctl_vol_args *vol_args; 3176 int ret; 3177 3178 if (!capable(CAP_SYS_ADMIN)) 3179 return -EPERM; 3180 3181 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD)) 3182 return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3183 3184 vol_args = memdup_user(arg, sizeof(*vol_args)); 3185 if (IS_ERR(vol_args)) { 3186 ret = PTR_ERR(vol_args); 3187 goto out; 3188 } 3189 3190 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3191 ret = btrfs_init_new_device(fs_info, vol_args->name); 3192 3193 if (!ret) 3194 btrfs_info(fs_info, "disk added %s", vol_args->name); 3195 3196 kfree(vol_args); 3197 out: 3198 btrfs_exclop_finish(fs_info); 3199 return ret; 3200 } 3201 3202 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg) 3203 { 3204 struct inode *inode = file_inode(file); 3205 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3206 struct btrfs_ioctl_vol_args_v2 *vol_args; 3207 int ret; 3208 bool cancel = false; 3209 3210 if (!capable(CAP_SYS_ADMIN)) 3211 return -EPERM; 3212 3213 ret = mnt_want_write_file(file); 3214 if (ret) 3215 return ret; 3216 3217 vol_args = memdup_user(arg, sizeof(*vol_args)); 3218 if (IS_ERR(vol_args)) { 3219 ret = PTR_ERR(vol_args); 3220 goto err_drop; 3221 } 3222 3223 if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) { 3224 ret = -EOPNOTSUPP; 3225 goto out; 3226 } 3227 vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0'; 3228 if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) && 3229 strcmp("cancel", vol_args->name) == 0) 3230 cancel = true; 3231 3232 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3233 cancel); 3234 if (ret) 3235 goto out; 3236 /* Exclusive operation is now claimed */ 3237 3238 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3239 ret = btrfs_rm_device(fs_info, NULL, vol_args->devid); 3240 else 3241 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3242 3243 btrfs_exclop_finish(fs_info); 3244 3245 if (!ret) { 3246 if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) 3247 btrfs_info(fs_info, "device deleted: id %llu", 3248 vol_args->devid); 3249 else 3250 btrfs_info(fs_info, "device deleted: %s", 3251 vol_args->name); 3252 } 3253 out: 3254 kfree(vol_args); 3255 err_drop: 3256 mnt_drop_write_file(file); 3257 return ret; 3258 } 3259 3260 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg) 3261 { 3262 struct inode *inode = file_inode(file); 3263 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3264 struct btrfs_ioctl_vol_args *vol_args; 3265 int ret; 3266 bool cancel; 3267 3268 if (!capable(CAP_SYS_ADMIN)) 3269 return -EPERM; 3270 3271 ret = mnt_want_write_file(file); 3272 if (ret) 3273 return ret; 3274 3275 vol_args = memdup_user(arg, sizeof(*vol_args)); 3276 if (IS_ERR(vol_args)) { 3277 ret = PTR_ERR(vol_args); 3278 goto out_drop_write; 3279 } 3280 vol_args->name[BTRFS_PATH_NAME_MAX] = '\0'; 3281 cancel = (strcmp("cancel", vol_args->name) == 0); 3282 3283 ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE, 3284 cancel); 3285 if (ret == 0) { 3286 ret = btrfs_rm_device(fs_info, vol_args->name, 0); 3287 if (!ret) 3288 btrfs_info(fs_info, "disk deleted %s", vol_args->name); 3289 btrfs_exclop_finish(fs_info); 3290 } 3291 3292 kfree(vol_args); 3293 out_drop_write: 3294 mnt_drop_write_file(file); 3295 3296 return ret; 3297 } 3298 3299 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info, 3300 void __user *arg) 3301 { 3302 struct btrfs_ioctl_fs_info_args *fi_args; 3303 struct btrfs_device *device; 3304 struct btrfs_fs_devices *fs_devices = fs_info->fs_devices; 3305 u64 flags_in; 3306 int ret = 0; 3307 3308 fi_args = memdup_user(arg, sizeof(*fi_args)); 3309 if (IS_ERR(fi_args)) 3310 return PTR_ERR(fi_args); 3311 3312 flags_in = fi_args->flags; 3313 memset(fi_args, 0, sizeof(*fi_args)); 3314 3315 rcu_read_lock(); 3316 fi_args->num_devices = fs_devices->num_devices; 3317 3318 list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) { 3319 if (device->devid > fi_args->max_id) 3320 fi_args->max_id = device->devid; 3321 } 3322 rcu_read_unlock(); 3323 3324 memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid)); 3325 fi_args->nodesize = fs_info->nodesize; 3326 fi_args->sectorsize = fs_info->sectorsize; 3327 fi_args->clone_alignment = fs_info->sectorsize; 3328 3329 if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) { 3330 fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy); 3331 fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy); 3332 fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO; 3333 } 3334 3335 if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) { 3336 fi_args->generation = fs_info->generation; 3337 fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION; 3338 } 3339 3340 if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) { 3341 memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid, 3342 sizeof(fi_args->metadata_uuid)); 3343 fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID; 3344 } 3345 3346 if (copy_to_user(arg, fi_args, sizeof(*fi_args))) 3347 ret = -EFAULT; 3348 3349 kfree(fi_args); 3350 return ret; 3351 } 3352 3353 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info, 3354 void __user *arg) 3355 { 3356 struct btrfs_ioctl_dev_info_args *di_args; 3357 struct btrfs_device *dev; 3358 int ret = 0; 3359 char *s_uuid = NULL; 3360 3361 di_args = memdup_user(arg, sizeof(*di_args)); 3362 if (IS_ERR(di_args)) 3363 return PTR_ERR(di_args); 3364 3365 if (!btrfs_is_empty_uuid(di_args->uuid)) 3366 s_uuid = di_args->uuid; 3367 3368 rcu_read_lock(); 3369 dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid, 3370 NULL); 3371 3372 if (!dev) { 3373 ret = -ENODEV; 3374 goto out; 3375 } 3376 3377 di_args->devid = dev->devid; 3378 di_args->bytes_used = btrfs_device_get_bytes_used(dev); 3379 di_args->total_bytes = btrfs_device_get_total_bytes(dev); 3380 memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid)); 3381 if (dev->name) { 3382 strncpy(di_args->path, rcu_str_deref(dev->name), 3383 sizeof(di_args->path) - 1); 3384 di_args->path[sizeof(di_args->path) - 1] = 0; 3385 } else { 3386 di_args->path[0] = '\0'; 3387 } 3388 3389 out: 3390 rcu_read_unlock(); 3391 if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args))) 3392 ret = -EFAULT; 3393 3394 kfree(di_args); 3395 return ret; 3396 } 3397 3398 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp) 3399 { 3400 struct inode *inode = file_inode(file); 3401 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 3402 struct btrfs_root *root = BTRFS_I(inode)->root; 3403 struct btrfs_root *new_root; 3404 struct btrfs_dir_item *di; 3405 struct btrfs_trans_handle *trans; 3406 struct btrfs_path *path = NULL; 3407 struct btrfs_disk_key disk_key; 3408 u64 objectid = 0; 3409 u64 dir_id; 3410 int ret; 3411 3412 if (!capable(CAP_SYS_ADMIN)) 3413 return -EPERM; 3414 3415 ret = mnt_want_write_file(file); 3416 if (ret) 3417 return ret; 3418 3419 if (copy_from_user(&objectid, argp, sizeof(objectid))) { 3420 ret = -EFAULT; 3421 goto out; 3422 } 3423 3424 if (!objectid) 3425 objectid = BTRFS_FS_TREE_OBJECTID; 3426 3427 new_root = btrfs_get_fs_root(fs_info, objectid, true); 3428 if (IS_ERR(new_root)) { 3429 ret = PTR_ERR(new_root); 3430 goto out; 3431 } 3432 if (!is_fstree(new_root->root_key.objectid)) { 3433 ret = -ENOENT; 3434 goto out_free; 3435 } 3436 3437 path = btrfs_alloc_path(); 3438 if (!path) { 3439 ret = -ENOMEM; 3440 goto out_free; 3441 } 3442 3443 trans = btrfs_start_transaction(root, 1); 3444 if (IS_ERR(trans)) { 3445 ret = PTR_ERR(trans); 3446 goto out_free; 3447 } 3448 3449 dir_id = btrfs_super_root_dir(fs_info->super_copy); 3450 di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path, 3451 dir_id, "default", 7, 1); 3452 if (IS_ERR_OR_NULL(di)) { 3453 btrfs_release_path(path); 3454 btrfs_end_transaction(trans); 3455 btrfs_err(fs_info, 3456 "Umm, you don't have the default diritem, this isn't going to work"); 3457 ret = -ENOENT; 3458 goto out_free; 3459 } 3460 3461 btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key); 3462 btrfs_set_dir_item_key(path->nodes[0], di, &disk_key); 3463 btrfs_mark_buffer_dirty(path->nodes[0]); 3464 btrfs_release_path(path); 3465 3466 btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL); 3467 btrfs_end_transaction(trans); 3468 out_free: 3469 btrfs_put_root(new_root); 3470 btrfs_free_path(path); 3471 out: 3472 mnt_drop_write_file(file); 3473 return ret; 3474 } 3475 3476 static void get_block_group_info(struct list_head *groups_list, 3477 struct btrfs_ioctl_space_info *space) 3478 { 3479 struct btrfs_block_group *block_group; 3480 3481 space->total_bytes = 0; 3482 space->used_bytes = 0; 3483 space->flags = 0; 3484 list_for_each_entry(block_group, groups_list, list) { 3485 space->flags = block_group->flags; 3486 space->total_bytes += block_group->length; 3487 space->used_bytes += block_group->used; 3488 } 3489 } 3490 3491 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info, 3492 void __user *arg) 3493 { 3494 struct btrfs_ioctl_space_args space_args; 3495 struct btrfs_ioctl_space_info space; 3496 struct btrfs_ioctl_space_info *dest; 3497 struct btrfs_ioctl_space_info *dest_orig; 3498 struct btrfs_ioctl_space_info __user *user_dest; 3499 struct btrfs_space_info *info; 3500 static const u64 types[] = { 3501 BTRFS_BLOCK_GROUP_DATA, 3502 BTRFS_BLOCK_GROUP_SYSTEM, 3503 BTRFS_BLOCK_GROUP_METADATA, 3504 BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA 3505 }; 3506 int num_types = 4; 3507 int alloc_size; 3508 int ret = 0; 3509 u64 slot_count = 0; 3510 int i, c; 3511 3512 if (copy_from_user(&space_args, 3513 (struct btrfs_ioctl_space_args __user *)arg, 3514 sizeof(space_args))) 3515 return -EFAULT; 3516 3517 for (i = 0; i < num_types; i++) { 3518 struct btrfs_space_info *tmp; 3519 3520 info = NULL; 3521 list_for_each_entry(tmp, &fs_info->space_info, list) { 3522 if (tmp->flags == types[i]) { 3523 info = tmp; 3524 break; 3525 } 3526 } 3527 3528 if (!info) 3529 continue; 3530 3531 down_read(&info->groups_sem); 3532 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3533 if (!list_empty(&info->block_groups[c])) 3534 slot_count++; 3535 } 3536 up_read(&info->groups_sem); 3537 } 3538 3539 /* 3540 * Global block reserve, exported as a space_info 3541 */ 3542 slot_count++; 3543 3544 /* space_slots == 0 means they are asking for a count */ 3545 if (space_args.space_slots == 0) { 3546 space_args.total_spaces = slot_count; 3547 goto out; 3548 } 3549 3550 slot_count = min_t(u64, space_args.space_slots, slot_count); 3551 3552 alloc_size = sizeof(*dest) * slot_count; 3553 3554 /* we generally have at most 6 or so space infos, one for each raid 3555 * level. So, a whole page should be more than enough for everyone 3556 */ 3557 if (alloc_size > PAGE_SIZE) 3558 return -ENOMEM; 3559 3560 space_args.total_spaces = 0; 3561 dest = kmalloc(alloc_size, GFP_KERNEL); 3562 if (!dest) 3563 return -ENOMEM; 3564 dest_orig = dest; 3565 3566 /* now we have a buffer to copy into */ 3567 for (i = 0; i < num_types; i++) { 3568 struct btrfs_space_info *tmp; 3569 3570 if (!slot_count) 3571 break; 3572 3573 info = NULL; 3574 list_for_each_entry(tmp, &fs_info->space_info, list) { 3575 if (tmp->flags == types[i]) { 3576 info = tmp; 3577 break; 3578 } 3579 } 3580 3581 if (!info) 3582 continue; 3583 down_read(&info->groups_sem); 3584 for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) { 3585 if (!list_empty(&info->block_groups[c])) { 3586 get_block_group_info(&info->block_groups[c], 3587 &space); 3588 memcpy(dest, &space, sizeof(space)); 3589 dest++; 3590 space_args.total_spaces++; 3591 slot_count--; 3592 } 3593 if (!slot_count) 3594 break; 3595 } 3596 up_read(&info->groups_sem); 3597 } 3598 3599 /* 3600 * Add global block reserve 3601 */ 3602 if (slot_count) { 3603 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv; 3604 3605 spin_lock(&block_rsv->lock); 3606 space.total_bytes = block_rsv->size; 3607 space.used_bytes = block_rsv->size - block_rsv->reserved; 3608 spin_unlock(&block_rsv->lock); 3609 space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV; 3610 memcpy(dest, &space, sizeof(space)); 3611 space_args.total_spaces++; 3612 } 3613 3614 user_dest = (struct btrfs_ioctl_space_info __user *) 3615 (arg + sizeof(struct btrfs_ioctl_space_args)); 3616 3617 if (copy_to_user(user_dest, dest_orig, alloc_size)) 3618 ret = -EFAULT; 3619 3620 kfree(dest_orig); 3621 out: 3622 if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args))) 3623 ret = -EFAULT; 3624 3625 return ret; 3626 } 3627 3628 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root, 3629 void __user *argp) 3630 { 3631 struct btrfs_trans_handle *trans; 3632 u64 transid; 3633 int ret; 3634 3635 trans = btrfs_attach_transaction_barrier(root); 3636 if (IS_ERR(trans)) { 3637 if (PTR_ERR(trans) != -ENOENT) 3638 return PTR_ERR(trans); 3639 3640 /* No running transaction, don't bother */ 3641 transid = root->fs_info->last_trans_committed; 3642 goto out; 3643 } 3644 transid = trans->transid; 3645 ret = btrfs_commit_transaction_async(trans); 3646 if (ret) { 3647 btrfs_end_transaction(trans); 3648 return ret; 3649 } 3650 out: 3651 if (argp) 3652 if (copy_to_user(argp, &transid, sizeof(transid))) 3653 return -EFAULT; 3654 return 0; 3655 } 3656 3657 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info, 3658 void __user *argp) 3659 { 3660 u64 transid; 3661 3662 if (argp) { 3663 if (copy_from_user(&transid, argp, sizeof(transid))) 3664 return -EFAULT; 3665 } else { 3666 transid = 0; /* current trans */ 3667 } 3668 return btrfs_wait_for_commit(fs_info, transid); 3669 } 3670 3671 static long btrfs_ioctl_scrub(struct file *file, void __user *arg) 3672 { 3673 struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb); 3674 struct btrfs_ioctl_scrub_args *sa; 3675 int ret; 3676 3677 if (!capable(CAP_SYS_ADMIN)) 3678 return -EPERM; 3679 3680 sa = memdup_user(arg, sizeof(*sa)); 3681 if (IS_ERR(sa)) 3682 return PTR_ERR(sa); 3683 3684 if (!(sa->flags & BTRFS_SCRUB_READONLY)) { 3685 ret = mnt_want_write_file(file); 3686 if (ret) 3687 goto out; 3688 } 3689 3690 ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end, 3691 &sa->progress, sa->flags & BTRFS_SCRUB_READONLY, 3692 0); 3693 3694 /* 3695 * Copy scrub args to user space even if btrfs_scrub_dev() returned an 3696 * error. This is important as it allows user space to know how much 3697 * progress scrub has done. For example, if scrub is canceled we get 3698 * -ECANCELED from btrfs_scrub_dev() and return that error back to user 3699 * space. Later user space can inspect the progress from the structure 3700 * btrfs_ioctl_scrub_args and resume scrub from where it left off 3701 * previously (btrfs-progs does this). 3702 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space 3703 * then return -EFAULT to signal the structure was not copied or it may 3704 * be corrupt and unreliable due to a partial copy. 3705 */ 3706 if (copy_to_user(arg, sa, sizeof(*sa))) 3707 ret = -EFAULT; 3708 3709 if (!(sa->flags & BTRFS_SCRUB_READONLY)) 3710 mnt_drop_write_file(file); 3711 out: 3712 kfree(sa); 3713 return ret; 3714 } 3715 3716 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info) 3717 { 3718 if (!capable(CAP_SYS_ADMIN)) 3719 return -EPERM; 3720 3721 return btrfs_scrub_cancel(fs_info); 3722 } 3723 3724 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info, 3725 void __user *arg) 3726 { 3727 struct btrfs_ioctl_scrub_args *sa; 3728 int ret; 3729 3730 if (!capable(CAP_SYS_ADMIN)) 3731 return -EPERM; 3732 3733 sa = memdup_user(arg, sizeof(*sa)); 3734 if (IS_ERR(sa)) 3735 return PTR_ERR(sa); 3736 3737 ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress); 3738 3739 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3740 ret = -EFAULT; 3741 3742 kfree(sa); 3743 return ret; 3744 } 3745 3746 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info, 3747 void __user *arg) 3748 { 3749 struct btrfs_ioctl_get_dev_stats *sa; 3750 int ret; 3751 3752 sa = memdup_user(arg, sizeof(*sa)); 3753 if (IS_ERR(sa)) 3754 return PTR_ERR(sa); 3755 3756 if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) { 3757 kfree(sa); 3758 return -EPERM; 3759 } 3760 3761 ret = btrfs_get_dev_stats(fs_info, sa); 3762 3763 if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa))) 3764 ret = -EFAULT; 3765 3766 kfree(sa); 3767 return ret; 3768 } 3769 3770 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info, 3771 void __user *arg) 3772 { 3773 struct btrfs_ioctl_dev_replace_args *p; 3774 int ret; 3775 3776 if (!capable(CAP_SYS_ADMIN)) 3777 return -EPERM; 3778 3779 p = memdup_user(arg, sizeof(*p)); 3780 if (IS_ERR(p)) 3781 return PTR_ERR(p); 3782 3783 switch (p->cmd) { 3784 case BTRFS_IOCTL_DEV_REPLACE_CMD_START: 3785 if (sb_rdonly(fs_info->sb)) { 3786 ret = -EROFS; 3787 goto out; 3788 } 3789 if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) { 3790 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 3791 } else { 3792 ret = btrfs_dev_replace_by_ioctl(fs_info, p); 3793 btrfs_exclop_finish(fs_info); 3794 } 3795 break; 3796 case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS: 3797 btrfs_dev_replace_status(fs_info, p); 3798 ret = 0; 3799 break; 3800 case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL: 3801 p->result = btrfs_dev_replace_cancel(fs_info); 3802 ret = 0; 3803 break; 3804 default: 3805 ret = -EINVAL; 3806 break; 3807 } 3808 3809 if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p))) 3810 ret = -EFAULT; 3811 out: 3812 kfree(p); 3813 return ret; 3814 } 3815 3816 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg) 3817 { 3818 int ret = 0; 3819 int i; 3820 u64 rel_ptr; 3821 int size; 3822 struct btrfs_ioctl_ino_path_args *ipa = NULL; 3823 struct inode_fs_paths *ipath = NULL; 3824 struct btrfs_path *path; 3825 3826 if (!capable(CAP_DAC_READ_SEARCH)) 3827 return -EPERM; 3828 3829 path = btrfs_alloc_path(); 3830 if (!path) { 3831 ret = -ENOMEM; 3832 goto out; 3833 } 3834 3835 ipa = memdup_user(arg, sizeof(*ipa)); 3836 if (IS_ERR(ipa)) { 3837 ret = PTR_ERR(ipa); 3838 ipa = NULL; 3839 goto out; 3840 } 3841 3842 size = min_t(u32, ipa->size, 4096); 3843 ipath = init_ipath(size, root, path); 3844 if (IS_ERR(ipath)) { 3845 ret = PTR_ERR(ipath); 3846 ipath = NULL; 3847 goto out; 3848 } 3849 3850 ret = paths_from_inode(ipa->inum, ipath); 3851 if (ret < 0) 3852 goto out; 3853 3854 for (i = 0; i < ipath->fspath->elem_cnt; ++i) { 3855 rel_ptr = ipath->fspath->val[i] - 3856 (u64)(unsigned long)ipath->fspath->val; 3857 ipath->fspath->val[i] = rel_ptr; 3858 } 3859 3860 ret = copy_to_user((void __user *)(unsigned long)ipa->fspath, 3861 ipath->fspath, size); 3862 if (ret) { 3863 ret = -EFAULT; 3864 goto out; 3865 } 3866 3867 out: 3868 btrfs_free_path(path); 3869 free_ipath(ipath); 3870 kfree(ipa); 3871 3872 return ret; 3873 } 3874 3875 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx) 3876 { 3877 struct btrfs_data_container *inodes = ctx; 3878 const size_t c = 3 * sizeof(u64); 3879 3880 if (inodes->bytes_left >= c) { 3881 inodes->bytes_left -= c; 3882 inodes->val[inodes->elem_cnt] = inum; 3883 inodes->val[inodes->elem_cnt + 1] = offset; 3884 inodes->val[inodes->elem_cnt + 2] = root; 3885 inodes->elem_cnt += 3; 3886 } else { 3887 inodes->bytes_missing += c - inodes->bytes_left; 3888 inodes->bytes_left = 0; 3889 inodes->elem_missed += 3; 3890 } 3891 3892 return 0; 3893 } 3894 3895 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info, 3896 void __user *arg, int version) 3897 { 3898 int ret = 0; 3899 int size; 3900 struct btrfs_ioctl_logical_ino_args *loi; 3901 struct btrfs_data_container *inodes = NULL; 3902 struct btrfs_path *path = NULL; 3903 bool ignore_offset; 3904 3905 if (!capable(CAP_SYS_ADMIN)) 3906 return -EPERM; 3907 3908 loi = memdup_user(arg, sizeof(*loi)); 3909 if (IS_ERR(loi)) 3910 return PTR_ERR(loi); 3911 3912 if (version == 1) { 3913 ignore_offset = false; 3914 size = min_t(u32, loi->size, SZ_64K); 3915 } else { 3916 /* All reserved bits must be 0 for now */ 3917 if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) { 3918 ret = -EINVAL; 3919 goto out_loi; 3920 } 3921 /* Only accept flags we have defined so far */ 3922 if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) { 3923 ret = -EINVAL; 3924 goto out_loi; 3925 } 3926 ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET; 3927 size = min_t(u32, loi->size, SZ_16M); 3928 } 3929 3930 path = btrfs_alloc_path(); 3931 if (!path) { 3932 ret = -ENOMEM; 3933 goto out; 3934 } 3935 3936 inodes = init_data_container(size); 3937 if (IS_ERR(inodes)) { 3938 ret = PTR_ERR(inodes); 3939 inodes = NULL; 3940 goto out; 3941 } 3942 3943 ret = iterate_inodes_from_logical(loi->logical, fs_info, path, 3944 build_ino_list, inodes, ignore_offset); 3945 if (ret == -EINVAL) 3946 ret = -ENOENT; 3947 if (ret < 0) 3948 goto out; 3949 3950 ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes, 3951 size); 3952 if (ret) 3953 ret = -EFAULT; 3954 3955 out: 3956 btrfs_free_path(path); 3957 kvfree(inodes); 3958 out_loi: 3959 kfree(loi); 3960 3961 return ret; 3962 } 3963 3964 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info, 3965 struct btrfs_ioctl_balance_args *bargs) 3966 { 3967 struct btrfs_balance_control *bctl = fs_info->balance_ctl; 3968 3969 bargs->flags = bctl->flags; 3970 3971 if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) 3972 bargs->state |= BTRFS_BALANCE_STATE_RUNNING; 3973 if (atomic_read(&fs_info->balance_pause_req)) 3974 bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ; 3975 if (atomic_read(&fs_info->balance_cancel_req)) 3976 bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ; 3977 3978 memcpy(&bargs->data, &bctl->data, sizeof(bargs->data)); 3979 memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta)); 3980 memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys)); 3981 3982 spin_lock(&fs_info->balance_lock); 3983 memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat)); 3984 spin_unlock(&fs_info->balance_lock); 3985 } 3986 3987 static long btrfs_ioctl_balance(struct file *file, void __user *arg) 3988 { 3989 struct btrfs_root *root = BTRFS_I(file_inode(file))->root; 3990 struct btrfs_fs_info *fs_info = root->fs_info; 3991 struct btrfs_ioctl_balance_args *bargs; 3992 struct btrfs_balance_control *bctl; 3993 bool need_unlock; /* for mut. excl. ops lock */ 3994 int ret; 3995 3996 if (!capable(CAP_SYS_ADMIN)) 3997 return -EPERM; 3998 3999 ret = mnt_want_write_file(file); 4000 if (ret) 4001 return ret; 4002 4003 again: 4004 if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) { 4005 mutex_lock(&fs_info->balance_mutex); 4006 need_unlock = true; 4007 goto locked; 4008 } 4009 4010 /* 4011 * mut. excl. ops lock is locked. Three possibilities: 4012 * (1) some other op is running 4013 * (2) balance is running 4014 * (3) balance is paused -- special case (think resume) 4015 */ 4016 mutex_lock(&fs_info->balance_mutex); 4017 if (fs_info->balance_ctl) { 4018 /* this is either (2) or (3) */ 4019 if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4020 mutex_unlock(&fs_info->balance_mutex); 4021 /* 4022 * Lock released to allow other waiters to continue, 4023 * we'll reexamine the status again. 4024 */ 4025 mutex_lock(&fs_info->balance_mutex); 4026 4027 if (fs_info->balance_ctl && 4028 !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) { 4029 /* this is (3) */ 4030 need_unlock = false; 4031 goto locked; 4032 } 4033 4034 mutex_unlock(&fs_info->balance_mutex); 4035 goto again; 4036 } else { 4037 /* this is (2) */ 4038 mutex_unlock(&fs_info->balance_mutex); 4039 ret = -EINPROGRESS; 4040 goto out; 4041 } 4042 } else { 4043 /* this is (1) */ 4044 mutex_unlock(&fs_info->balance_mutex); 4045 ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS; 4046 goto out; 4047 } 4048 4049 locked: 4050 4051 if (arg) { 4052 bargs = memdup_user(arg, sizeof(*bargs)); 4053 if (IS_ERR(bargs)) { 4054 ret = PTR_ERR(bargs); 4055 goto out_unlock; 4056 } 4057 4058 if (bargs->flags & BTRFS_BALANCE_RESUME) { 4059 if (!fs_info->balance_ctl) { 4060 ret = -ENOTCONN; 4061 goto out_bargs; 4062 } 4063 4064 bctl = fs_info->balance_ctl; 4065 spin_lock(&fs_info->balance_lock); 4066 bctl->flags |= BTRFS_BALANCE_RESUME; 4067 spin_unlock(&fs_info->balance_lock); 4068 4069 goto do_balance; 4070 } 4071 } else { 4072 bargs = NULL; 4073 } 4074 4075 if (fs_info->balance_ctl) { 4076 ret = -EINPROGRESS; 4077 goto out_bargs; 4078 } 4079 4080 bctl = kzalloc(sizeof(*bctl), GFP_KERNEL); 4081 if (!bctl) { 4082 ret = -ENOMEM; 4083 goto out_bargs; 4084 } 4085 4086 if (arg) { 4087 memcpy(&bctl->data, &bargs->data, sizeof(bctl->data)); 4088 memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta)); 4089 memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys)); 4090 4091 bctl->flags = bargs->flags; 4092 } else { 4093 /* balance everything - no filters */ 4094 bctl->flags |= BTRFS_BALANCE_TYPE_MASK; 4095 } 4096 4097 if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) { 4098 ret = -EINVAL; 4099 goto out_bctl; 4100 } 4101 4102 do_balance: 4103 /* 4104 * Ownership of bctl and exclusive operation goes to btrfs_balance. 4105 * bctl is freed in reset_balance_state, or, if restriper was paused 4106 * all the way until unmount, in free_fs_info. The flag should be 4107 * cleared after reset_balance_state. 4108 */ 4109 need_unlock = false; 4110 4111 ret = btrfs_balance(fs_info, bctl, bargs); 4112 bctl = NULL; 4113 4114 if ((ret == 0 || ret == -ECANCELED) && arg) { 4115 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4116 ret = -EFAULT; 4117 } 4118 4119 out_bctl: 4120 kfree(bctl); 4121 out_bargs: 4122 kfree(bargs); 4123 out_unlock: 4124 mutex_unlock(&fs_info->balance_mutex); 4125 if (need_unlock) 4126 btrfs_exclop_finish(fs_info); 4127 out: 4128 mnt_drop_write_file(file); 4129 return ret; 4130 } 4131 4132 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd) 4133 { 4134 if (!capable(CAP_SYS_ADMIN)) 4135 return -EPERM; 4136 4137 switch (cmd) { 4138 case BTRFS_BALANCE_CTL_PAUSE: 4139 return btrfs_pause_balance(fs_info); 4140 case BTRFS_BALANCE_CTL_CANCEL: 4141 return btrfs_cancel_balance(fs_info); 4142 } 4143 4144 return -EINVAL; 4145 } 4146 4147 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info, 4148 void __user *arg) 4149 { 4150 struct btrfs_ioctl_balance_args *bargs; 4151 int ret = 0; 4152 4153 if (!capable(CAP_SYS_ADMIN)) 4154 return -EPERM; 4155 4156 mutex_lock(&fs_info->balance_mutex); 4157 if (!fs_info->balance_ctl) { 4158 ret = -ENOTCONN; 4159 goto out; 4160 } 4161 4162 bargs = kzalloc(sizeof(*bargs), GFP_KERNEL); 4163 if (!bargs) { 4164 ret = -ENOMEM; 4165 goto out; 4166 } 4167 4168 btrfs_update_ioctl_balance_args(fs_info, bargs); 4169 4170 if (copy_to_user(arg, bargs, sizeof(*bargs))) 4171 ret = -EFAULT; 4172 4173 kfree(bargs); 4174 out: 4175 mutex_unlock(&fs_info->balance_mutex); 4176 return ret; 4177 } 4178 4179 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg) 4180 { 4181 struct inode *inode = file_inode(file); 4182 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4183 struct btrfs_ioctl_quota_ctl_args *sa; 4184 int ret; 4185 4186 if (!capable(CAP_SYS_ADMIN)) 4187 return -EPERM; 4188 4189 ret = mnt_want_write_file(file); 4190 if (ret) 4191 return ret; 4192 4193 sa = memdup_user(arg, sizeof(*sa)); 4194 if (IS_ERR(sa)) { 4195 ret = PTR_ERR(sa); 4196 goto drop_write; 4197 } 4198 4199 down_write(&fs_info->subvol_sem); 4200 4201 switch (sa->cmd) { 4202 case BTRFS_QUOTA_CTL_ENABLE: 4203 ret = btrfs_quota_enable(fs_info); 4204 break; 4205 case BTRFS_QUOTA_CTL_DISABLE: 4206 ret = btrfs_quota_disable(fs_info); 4207 break; 4208 default: 4209 ret = -EINVAL; 4210 break; 4211 } 4212 4213 kfree(sa); 4214 up_write(&fs_info->subvol_sem); 4215 drop_write: 4216 mnt_drop_write_file(file); 4217 return ret; 4218 } 4219 4220 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg) 4221 { 4222 struct inode *inode = file_inode(file); 4223 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4224 struct btrfs_root *root = BTRFS_I(inode)->root; 4225 struct btrfs_ioctl_qgroup_assign_args *sa; 4226 struct btrfs_trans_handle *trans; 4227 int ret; 4228 int err; 4229 4230 if (!capable(CAP_SYS_ADMIN)) 4231 return -EPERM; 4232 4233 ret = mnt_want_write_file(file); 4234 if (ret) 4235 return ret; 4236 4237 sa = memdup_user(arg, sizeof(*sa)); 4238 if (IS_ERR(sa)) { 4239 ret = PTR_ERR(sa); 4240 goto drop_write; 4241 } 4242 4243 trans = btrfs_join_transaction(root); 4244 if (IS_ERR(trans)) { 4245 ret = PTR_ERR(trans); 4246 goto out; 4247 } 4248 4249 if (sa->assign) { 4250 ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst); 4251 } else { 4252 ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst); 4253 } 4254 4255 /* update qgroup status and info */ 4256 err = btrfs_run_qgroups(trans); 4257 if (err < 0) 4258 btrfs_handle_fs_error(fs_info, err, 4259 "failed to update qgroup status and info"); 4260 err = btrfs_end_transaction(trans); 4261 if (err && !ret) 4262 ret = err; 4263 4264 out: 4265 kfree(sa); 4266 drop_write: 4267 mnt_drop_write_file(file); 4268 return ret; 4269 } 4270 4271 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg) 4272 { 4273 struct inode *inode = file_inode(file); 4274 struct btrfs_root *root = BTRFS_I(inode)->root; 4275 struct btrfs_ioctl_qgroup_create_args *sa; 4276 struct btrfs_trans_handle *trans; 4277 int ret; 4278 int err; 4279 4280 if (!capable(CAP_SYS_ADMIN)) 4281 return -EPERM; 4282 4283 ret = mnt_want_write_file(file); 4284 if (ret) 4285 return ret; 4286 4287 sa = memdup_user(arg, sizeof(*sa)); 4288 if (IS_ERR(sa)) { 4289 ret = PTR_ERR(sa); 4290 goto drop_write; 4291 } 4292 4293 if (!sa->qgroupid) { 4294 ret = -EINVAL; 4295 goto out; 4296 } 4297 4298 trans = btrfs_join_transaction(root); 4299 if (IS_ERR(trans)) { 4300 ret = PTR_ERR(trans); 4301 goto out; 4302 } 4303 4304 if (sa->create) { 4305 ret = btrfs_create_qgroup(trans, sa->qgroupid); 4306 } else { 4307 ret = btrfs_remove_qgroup(trans, sa->qgroupid); 4308 } 4309 4310 err = btrfs_end_transaction(trans); 4311 if (err && !ret) 4312 ret = err; 4313 4314 out: 4315 kfree(sa); 4316 drop_write: 4317 mnt_drop_write_file(file); 4318 return ret; 4319 } 4320 4321 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg) 4322 { 4323 struct inode *inode = file_inode(file); 4324 struct btrfs_root *root = BTRFS_I(inode)->root; 4325 struct btrfs_ioctl_qgroup_limit_args *sa; 4326 struct btrfs_trans_handle *trans; 4327 int ret; 4328 int err; 4329 u64 qgroupid; 4330 4331 if (!capable(CAP_SYS_ADMIN)) 4332 return -EPERM; 4333 4334 ret = mnt_want_write_file(file); 4335 if (ret) 4336 return ret; 4337 4338 sa = memdup_user(arg, sizeof(*sa)); 4339 if (IS_ERR(sa)) { 4340 ret = PTR_ERR(sa); 4341 goto drop_write; 4342 } 4343 4344 trans = btrfs_join_transaction(root); 4345 if (IS_ERR(trans)) { 4346 ret = PTR_ERR(trans); 4347 goto out; 4348 } 4349 4350 qgroupid = sa->qgroupid; 4351 if (!qgroupid) { 4352 /* take the current subvol as qgroup */ 4353 qgroupid = root->root_key.objectid; 4354 } 4355 4356 ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim); 4357 4358 err = btrfs_end_transaction(trans); 4359 if (err && !ret) 4360 ret = err; 4361 4362 out: 4363 kfree(sa); 4364 drop_write: 4365 mnt_drop_write_file(file); 4366 return ret; 4367 } 4368 4369 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg) 4370 { 4371 struct inode *inode = file_inode(file); 4372 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4373 struct btrfs_ioctl_quota_rescan_args *qsa; 4374 int ret; 4375 4376 if (!capable(CAP_SYS_ADMIN)) 4377 return -EPERM; 4378 4379 ret = mnt_want_write_file(file); 4380 if (ret) 4381 return ret; 4382 4383 qsa = memdup_user(arg, sizeof(*qsa)); 4384 if (IS_ERR(qsa)) { 4385 ret = PTR_ERR(qsa); 4386 goto drop_write; 4387 } 4388 4389 if (qsa->flags) { 4390 ret = -EINVAL; 4391 goto out; 4392 } 4393 4394 ret = btrfs_qgroup_rescan(fs_info); 4395 4396 out: 4397 kfree(qsa); 4398 drop_write: 4399 mnt_drop_write_file(file); 4400 return ret; 4401 } 4402 4403 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info, 4404 void __user *arg) 4405 { 4406 struct btrfs_ioctl_quota_rescan_args *qsa; 4407 int ret = 0; 4408 4409 if (!capable(CAP_SYS_ADMIN)) 4410 return -EPERM; 4411 4412 qsa = kzalloc(sizeof(*qsa), GFP_KERNEL); 4413 if (!qsa) 4414 return -ENOMEM; 4415 4416 if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) { 4417 qsa->flags = 1; 4418 qsa->progress = fs_info->qgroup_rescan_progress.objectid; 4419 } 4420 4421 if (copy_to_user(arg, qsa, sizeof(*qsa))) 4422 ret = -EFAULT; 4423 4424 kfree(qsa); 4425 return ret; 4426 } 4427 4428 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info, 4429 void __user *arg) 4430 { 4431 if (!capable(CAP_SYS_ADMIN)) 4432 return -EPERM; 4433 4434 return btrfs_qgroup_wait_for_completion(fs_info, true); 4435 } 4436 4437 static long _btrfs_ioctl_set_received_subvol(struct file *file, 4438 struct btrfs_ioctl_received_subvol_args *sa) 4439 { 4440 struct inode *inode = file_inode(file); 4441 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4442 struct btrfs_root *root = BTRFS_I(inode)->root; 4443 struct btrfs_root_item *root_item = &root->root_item; 4444 struct btrfs_trans_handle *trans; 4445 struct timespec64 ct = current_time(inode); 4446 int ret = 0; 4447 int received_uuid_changed; 4448 4449 if (!inode_owner_or_capable(&init_user_ns, inode)) 4450 return -EPERM; 4451 4452 ret = mnt_want_write_file(file); 4453 if (ret < 0) 4454 return ret; 4455 4456 down_write(&fs_info->subvol_sem); 4457 4458 if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) { 4459 ret = -EINVAL; 4460 goto out; 4461 } 4462 4463 if (btrfs_root_readonly(root)) { 4464 ret = -EROFS; 4465 goto out; 4466 } 4467 4468 /* 4469 * 1 - root item 4470 * 2 - uuid items (received uuid + subvol uuid) 4471 */ 4472 trans = btrfs_start_transaction(root, 3); 4473 if (IS_ERR(trans)) { 4474 ret = PTR_ERR(trans); 4475 trans = NULL; 4476 goto out; 4477 } 4478 4479 sa->rtransid = trans->transid; 4480 sa->rtime.sec = ct.tv_sec; 4481 sa->rtime.nsec = ct.tv_nsec; 4482 4483 received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid, 4484 BTRFS_UUID_SIZE); 4485 if (received_uuid_changed && 4486 !btrfs_is_empty_uuid(root_item->received_uuid)) { 4487 ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid, 4488 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4489 root->root_key.objectid); 4490 if (ret && ret != -ENOENT) { 4491 btrfs_abort_transaction(trans, ret); 4492 btrfs_end_transaction(trans); 4493 goto out; 4494 } 4495 } 4496 memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE); 4497 btrfs_set_root_stransid(root_item, sa->stransid); 4498 btrfs_set_root_rtransid(root_item, sa->rtransid); 4499 btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec); 4500 btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec); 4501 btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec); 4502 btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec); 4503 4504 ret = btrfs_update_root(trans, fs_info->tree_root, 4505 &root->root_key, &root->root_item); 4506 if (ret < 0) { 4507 btrfs_end_transaction(trans); 4508 goto out; 4509 } 4510 if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) { 4511 ret = btrfs_uuid_tree_add(trans, sa->uuid, 4512 BTRFS_UUID_KEY_RECEIVED_SUBVOL, 4513 root->root_key.objectid); 4514 if (ret < 0 && ret != -EEXIST) { 4515 btrfs_abort_transaction(trans, ret); 4516 btrfs_end_transaction(trans); 4517 goto out; 4518 } 4519 } 4520 ret = btrfs_commit_transaction(trans); 4521 out: 4522 up_write(&fs_info->subvol_sem); 4523 mnt_drop_write_file(file); 4524 return ret; 4525 } 4526 4527 #ifdef CONFIG_64BIT 4528 static long btrfs_ioctl_set_received_subvol_32(struct file *file, 4529 void __user *arg) 4530 { 4531 struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL; 4532 struct btrfs_ioctl_received_subvol_args *args64 = NULL; 4533 int ret = 0; 4534 4535 args32 = memdup_user(arg, sizeof(*args32)); 4536 if (IS_ERR(args32)) 4537 return PTR_ERR(args32); 4538 4539 args64 = kmalloc(sizeof(*args64), GFP_KERNEL); 4540 if (!args64) { 4541 ret = -ENOMEM; 4542 goto out; 4543 } 4544 4545 memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE); 4546 args64->stransid = args32->stransid; 4547 args64->rtransid = args32->rtransid; 4548 args64->stime.sec = args32->stime.sec; 4549 args64->stime.nsec = args32->stime.nsec; 4550 args64->rtime.sec = args32->rtime.sec; 4551 args64->rtime.nsec = args32->rtime.nsec; 4552 args64->flags = args32->flags; 4553 4554 ret = _btrfs_ioctl_set_received_subvol(file, args64); 4555 if (ret) 4556 goto out; 4557 4558 memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE); 4559 args32->stransid = args64->stransid; 4560 args32->rtransid = args64->rtransid; 4561 args32->stime.sec = args64->stime.sec; 4562 args32->stime.nsec = args64->stime.nsec; 4563 args32->rtime.sec = args64->rtime.sec; 4564 args32->rtime.nsec = args64->rtime.nsec; 4565 args32->flags = args64->flags; 4566 4567 ret = copy_to_user(arg, args32, sizeof(*args32)); 4568 if (ret) 4569 ret = -EFAULT; 4570 4571 out: 4572 kfree(args32); 4573 kfree(args64); 4574 return ret; 4575 } 4576 #endif 4577 4578 static long btrfs_ioctl_set_received_subvol(struct file *file, 4579 void __user *arg) 4580 { 4581 struct btrfs_ioctl_received_subvol_args *sa = NULL; 4582 int ret = 0; 4583 4584 sa = memdup_user(arg, sizeof(*sa)); 4585 if (IS_ERR(sa)) 4586 return PTR_ERR(sa); 4587 4588 ret = _btrfs_ioctl_set_received_subvol(file, sa); 4589 4590 if (ret) 4591 goto out; 4592 4593 ret = copy_to_user(arg, sa, sizeof(*sa)); 4594 if (ret) 4595 ret = -EFAULT; 4596 4597 out: 4598 kfree(sa); 4599 return ret; 4600 } 4601 4602 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info, 4603 void __user *arg) 4604 { 4605 size_t len; 4606 int ret; 4607 char label[BTRFS_LABEL_SIZE]; 4608 4609 spin_lock(&fs_info->super_lock); 4610 memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE); 4611 spin_unlock(&fs_info->super_lock); 4612 4613 len = strnlen(label, BTRFS_LABEL_SIZE); 4614 4615 if (len == BTRFS_LABEL_SIZE) { 4616 btrfs_warn(fs_info, 4617 "label is too long, return the first %zu bytes", 4618 --len); 4619 } 4620 4621 ret = copy_to_user(arg, label, len); 4622 4623 return ret ? -EFAULT : 0; 4624 } 4625 4626 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg) 4627 { 4628 struct inode *inode = file_inode(file); 4629 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4630 struct btrfs_root *root = BTRFS_I(inode)->root; 4631 struct btrfs_super_block *super_block = fs_info->super_copy; 4632 struct btrfs_trans_handle *trans; 4633 char label[BTRFS_LABEL_SIZE]; 4634 int ret; 4635 4636 if (!capable(CAP_SYS_ADMIN)) 4637 return -EPERM; 4638 4639 if (copy_from_user(label, arg, sizeof(label))) 4640 return -EFAULT; 4641 4642 if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) { 4643 btrfs_err(fs_info, 4644 "unable to set label with more than %d bytes", 4645 BTRFS_LABEL_SIZE - 1); 4646 return -EINVAL; 4647 } 4648 4649 ret = mnt_want_write_file(file); 4650 if (ret) 4651 return ret; 4652 4653 trans = btrfs_start_transaction(root, 0); 4654 if (IS_ERR(trans)) { 4655 ret = PTR_ERR(trans); 4656 goto out_unlock; 4657 } 4658 4659 spin_lock(&fs_info->super_lock); 4660 strcpy(super_block->label, label); 4661 spin_unlock(&fs_info->super_lock); 4662 ret = btrfs_commit_transaction(trans); 4663 4664 out_unlock: 4665 mnt_drop_write_file(file); 4666 return ret; 4667 } 4668 4669 #define INIT_FEATURE_FLAGS(suffix) \ 4670 { .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \ 4671 .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \ 4672 .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix } 4673 4674 int btrfs_ioctl_get_supported_features(void __user *arg) 4675 { 4676 static const struct btrfs_ioctl_feature_flags features[3] = { 4677 INIT_FEATURE_FLAGS(SUPP), 4678 INIT_FEATURE_FLAGS(SAFE_SET), 4679 INIT_FEATURE_FLAGS(SAFE_CLEAR) 4680 }; 4681 4682 if (copy_to_user(arg, &features, sizeof(features))) 4683 return -EFAULT; 4684 4685 return 0; 4686 } 4687 4688 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info, 4689 void __user *arg) 4690 { 4691 struct btrfs_super_block *super_block = fs_info->super_copy; 4692 struct btrfs_ioctl_feature_flags features; 4693 4694 features.compat_flags = btrfs_super_compat_flags(super_block); 4695 features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block); 4696 features.incompat_flags = btrfs_super_incompat_flags(super_block); 4697 4698 if (copy_to_user(arg, &features, sizeof(features))) 4699 return -EFAULT; 4700 4701 return 0; 4702 } 4703 4704 static int check_feature_bits(struct btrfs_fs_info *fs_info, 4705 enum btrfs_feature_set set, 4706 u64 change_mask, u64 flags, u64 supported_flags, 4707 u64 safe_set, u64 safe_clear) 4708 { 4709 const char *type = btrfs_feature_set_name(set); 4710 char *names; 4711 u64 disallowed, unsupported; 4712 u64 set_mask = flags & change_mask; 4713 u64 clear_mask = ~flags & change_mask; 4714 4715 unsupported = set_mask & ~supported_flags; 4716 if (unsupported) { 4717 names = btrfs_printable_features(set, unsupported); 4718 if (names) { 4719 btrfs_warn(fs_info, 4720 "this kernel does not support the %s feature bit%s", 4721 names, strchr(names, ',') ? "s" : ""); 4722 kfree(names); 4723 } else 4724 btrfs_warn(fs_info, 4725 "this kernel does not support %s bits 0x%llx", 4726 type, unsupported); 4727 return -EOPNOTSUPP; 4728 } 4729 4730 disallowed = set_mask & ~safe_set; 4731 if (disallowed) { 4732 names = btrfs_printable_features(set, disallowed); 4733 if (names) { 4734 btrfs_warn(fs_info, 4735 "can't set the %s feature bit%s while mounted", 4736 names, strchr(names, ',') ? "s" : ""); 4737 kfree(names); 4738 } else 4739 btrfs_warn(fs_info, 4740 "can't set %s bits 0x%llx while mounted", 4741 type, disallowed); 4742 return -EPERM; 4743 } 4744 4745 disallowed = clear_mask & ~safe_clear; 4746 if (disallowed) { 4747 names = btrfs_printable_features(set, disallowed); 4748 if (names) { 4749 btrfs_warn(fs_info, 4750 "can't clear the %s feature bit%s while mounted", 4751 names, strchr(names, ',') ? "s" : ""); 4752 kfree(names); 4753 } else 4754 btrfs_warn(fs_info, 4755 "can't clear %s bits 0x%llx while mounted", 4756 type, disallowed); 4757 return -EPERM; 4758 } 4759 4760 return 0; 4761 } 4762 4763 #define check_feature(fs_info, change_mask, flags, mask_base) \ 4764 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags, \ 4765 BTRFS_FEATURE_ ## mask_base ## _SUPP, \ 4766 BTRFS_FEATURE_ ## mask_base ## _SAFE_SET, \ 4767 BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR) 4768 4769 static int btrfs_ioctl_set_features(struct file *file, void __user *arg) 4770 { 4771 struct inode *inode = file_inode(file); 4772 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4773 struct btrfs_root *root = BTRFS_I(inode)->root; 4774 struct btrfs_super_block *super_block = fs_info->super_copy; 4775 struct btrfs_ioctl_feature_flags flags[2]; 4776 struct btrfs_trans_handle *trans; 4777 u64 newflags; 4778 int ret; 4779 4780 if (!capable(CAP_SYS_ADMIN)) 4781 return -EPERM; 4782 4783 if (copy_from_user(flags, arg, sizeof(flags))) 4784 return -EFAULT; 4785 4786 /* Nothing to do */ 4787 if (!flags[0].compat_flags && !flags[0].compat_ro_flags && 4788 !flags[0].incompat_flags) 4789 return 0; 4790 4791 ret = check_feature(fs_info, flags[0].compat_flags, 4792 flags[1].compat_flags, COMPAT); 4793 if (ret) 4794 return ret; 4795 4796 ret = check_feature(fs_info, flags[0].compat_ro_flags, 4797 flags[1].compat_ro_flags, COMPAT_RO); 4798 if (ret) 4799 return ret; 4800 4801 ret = check_feature(fs_info, flags[0].incompat_flags, 4802 flags[1].incompat_flags, INCOMPAT); 4803 if (ret) 4804 return ret; 4805 4806 ret = mnt_want_write_file(file); 4807 if (ret) 4808 return ret; 4809 4810 trans = btrfs_start_transaction(root, 0); 4811 if (IS_ERR(trans)) { 4812 ret = PTR_ERR(trans); 4813 goto out_drop_write; 4814 } 4815 4816 spin_lock(&fs_info->super_lock); 4817 newflags = btrfs_super_compat_flags(super_block); 4818 newflags |= flags[0].compat_flags & flags[1].compat_flags; 4819 newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags); 4820 btrfs_set_super_compat_flags(super_block, newflags); 4821 4822 newflags = btrfs_super_compat_ro_flags(super_block); 4823 newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags; 4824 newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags); 4825 btrfs_set_super_compat_ro_flags(super_block, newflags); 4826 4827 newflags = btrfs_super_incompat_flags(super_block); 4828 newflags |= flags[0].incompat_flags & flags[1].incompat_flags; 4829 newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags); 4830 btrfs_set_super_incompat_flags(super_block, newflags); 4831 spin_unlock(&fs_info->super_lock); 4832 4833 ret = btrfs_commit_transaction(trans); 4834 out_drop_write: 4835 mnt_drop_write_file(file); 4836 4837 return ret; 4838 } 4839 4840 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat) 4841 { 4842 struct btrfs_ioctl_send_args *arg; 4843 int ret; 4844 4845 if (compat) { 4846 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4847 struct btrfs_ioctl_send_args_32 args32; 4848 4849 ret = copy_from_user(&args32, argp, sizeof(args32)); 4850 if (ret) 4851 return -EFAULT; 4852 arg = kzalloc(sizeof(*arg), GFP_KERNEL); 4853 if (!arg) 4854 return -ENOMEM; 4855 arg->send_fd = args32.send_fd; 4856 arg->clone_sources_count = args32.clone_sources_count; 4857 arg->clone_sources = compat_ptr(args32.clone_sources); 4858 arg->parent_root = args32.parent_root; 4859 arg->flags = args32.flags; 4860 memcpy(arg->reserved, args32.reserved, 4861 sizeof(args32.reserved)); 4862 #else 4863 return -ENOTTY; 4864 #endif 4865 } else { 4866 arg = memdup_user(argp, sizeof(*arg)); 4867 if (IS_ERR(arg)) 4868 return PTR_ERR(arg); 4869 } 4870 ret = btrfs_ioctl_send(file, arg); 4871 kfree(arg); 4872 return ret; 4873 } 4874 4875 long btrfs_ioctl(struct file *file, unsigned int 4876 cmd, unsigned long arg) 4877 { 4878 struct inode *inode = file_inode(file); 4879 struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb); 4880 struct btrfs_root *root = BTRFS_I(inode)->root; 4881 void __user *argp = (void __user *)arg; 4882 4883 switch (cmd) { 4884 case FS_IOC_GETVERSION: 4885 return btrfs_ioctl_getversion(file, argp); 4886 case FS_IOC_GETFSLABEL: 4887 return btrfs_ioctl_get_fslabel(fs_info, argp); 4888 case FS_IOC_SETFSLABEL: 4889 return btrfs_ioctl_set_fslabel(file, argp); 4890 case FITRIM: 4891 return btrfs_ioctl_fitrim(fs_info, argp); 4892 case BTRFS_IOC_SNAP_CREATE: 4893 return btrfs_ioctl_snap_create(file, argp, 0); 4894 case BTRFS_IOC_SNAP_CREATE_V2: 4895 return btrfs_ioctl_snap_create_v2(file, argp, 0); 4896 case BTRFS_IOC_SUBVOL_CREATE: 4897 return btrfs_ioctl_snap_create(file, argp, 1); 4898 case BTRFS_IOC_SUBVOL_CREATE_V2: 4899 return btrfs_ioctl_snap_create_v2(file, argp, 1); 4900 case BTRFS_IOC_SNAP_DESTROY: 4901 return btrfs_ioctl_snap_destroy(file, argp, false); 4902 case BTRFS_IOC_SNAP_DESTROY_V2: 4903 return btrfs_ioctl_snap_destroy(file, argp, true); 4904 case BTRFS_IOC_SUBVOL_GETFLAGS: 4905 return btrfs_ioctl_subvol_getflags(file, argp); 4906 case BTRFS_IOC_SUBVOL_SETFLAGS: 4907 return btrfs_ioctl_subvol_setflags(file, argp); 4908 case BTRFS_IOC_DEFAULT_SUBVOL: 4909 return btrfs_ioctl_default_subvol(file, argp); 4910 case BTRFS_IOC_DEFRAG: 4911 return btrfs_ioctl_defrag(file, NULL); 4912 case BTRFS_IOC_DEFRAG_RANGE: 4913 return btrfs_ioctl_defrag(file, argp); 4914 case BTRFS_IOC_RESIZE: 4915 return btrfs_ioctl_resize(file, argp); 4916 case BTRFS_IOC_ADD_DEV: 4917 return btrfs_ioctl_add_dev(fs_info, argp); 4918 case BTRFS_IOC_RM_DEV: 4919 return btrfs_ioctl_rm_dev(file, argp); 4920 case BTRFS_IOC_RM_DEV_V2: 4921 return btrfs_ioctl_rm_dev_v2(file, argp); 4922 case BTRFS_IOC_FS_INFO: 4923 return btrfs_ioctl_fs_info(fs_info, argp); 4924 case BTRFS_IOC_DEV_INFO: 4925 return btrfs_ioctl_dev_info(fs_info, argp); 4926 case BTRFS_IOC_BALANCE: 4927 return btrfs_ioctl_balance(file, NULL); 4928 case BTRFS_IOC_TREE_SEARCH: 4929 return btrfs_ioctl_tree_search(file, argp); 4930 case BTRFS_IOC_TREE_SEARCH_V2: 4931 return btrfs_ioctl_tree_search_v2(file, argp); 4932 case BTRFS_IOC_INO_LOOKUP: 4933 return btrfs_ioctl_ino_lookup(file, argp); 4934 case BTRFS_IOC_INO_PATHS: 4935 return btrfs_ioctl_ino_to_path(root, argp); 4936 case BTRFS_IOC_LOGICAL_INO: 4937 return btrfs_ioctl_logical_to_ino(fs_info, argp, 1); 4938 case BTRFS_IOC_LOGICAL_INO_V2: 4939 return btrfs_ioctl_logical_to_ino(fs_info, argp, 2); 4940 case BTRFS_IOC_SPACE_INFO: 4941 return btrfs_ioctl_space_info(fs_info, argp); 4942 case BTRFS_IOC_SYNC: { 4943 int ret; 4944 4945 ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false); 4946 if (ret) 4947 return ret; 4948 ret = btrfs_sync_fs(inode->i_sb, 1); 4949 /* 4950 * The transaction thread may want to do more work, 4951 * namely it pokes the cleaner kthread that will start 4952 * processing uncleaned subvols. 4953 */ 4954 wake_up_process(fs_info->transaction_kthread); 4955 return ret; 4956 } 4957 case BTRFS_IOC_START_SYNC: 4958 return btrfs_ioctl_start_sync(root, argp); 4959 case BTRFS_IOC_WAIT_SYNC: 4960 return btrfs_ioctl_wait_sync(fs_info, argp); 4961 case BTRFS_IOC_SCRUB: 4962 return btrfs_ioctl_scrub(file, argp); 4963 case BTRFS_IOC_SCRUB_CANCEL: 4964 return btrfs_ioctl_scrub_cancel(fs_info); 4965 case BTRFS_IOC_SCRUB_PROGRESS: 4966 return btrfs_ioctl_scrub_progress(fs_info, argp); 4967 case BTRFS_IOC_BALANCE_V2: 4968 return btrfs_ioctl_balance(file, argp); 4969 case BTRFS_IOC_BALANCE_CTL: 4970 return btrfs_ioctl_balance_ctl(fs_info, arg); 4971 case BTRFS_IOC_BALANCE_PROGRESS: 4972 return btrfs_ioctl_balance_progress(fs_info, argp); 4973 case BTRFS_IOC_SET_RECEIVED_SUBVOL: 4974 return btrfs_ioctl_set_received_subvol(file, argp); 4975 #ifdef CONFIG_64BIT 4976 case BTRFS_IOC_SET_RECEIVED_SUBVOL_32: 4977 return btrfs_ioctl_set_received_subvol_32(file, argp); 4978 #endif 4979 case BTRFS_IOC_SEND: 4980 return _btrfs_ioctl_send(file, argp, false); 4981 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT) 4982 case BTRFS_IOC_SEND_32: 4983 return _btrfs_ioctl_send(file, argp, true); 4984 #endif 4985 case BTRFS_IOC_GET_DEV_STATS: 4986 return btrfs_ioctl_get_dev_stats(fs_info, argp); 4987 case BTRFS_IOC_QUOTA_CTL: 4988 return btrfs_ioctl_quota_ctl(file, argp); 4989 case BTRFS_IOC_QGROUP_ASSIGN: 4990 return btrfs_ioctl_qgroup_assign(file, argp); 4991 case BTRFS_IOC_QGROUP_CREATE: 4992 return btrfs_ioctl_qgroup_create(file, argp); 4993 case BTRFS_IOC_QGROUP_LIMIT: 4994 return btrfs_ioctl_qgroup_limit(file, argp); 4995 case BTRFS_IOC_QUOTA_RESCAN: 4996 return btrfs_ioctl_quota_rescan(file, argp); 4997 case BTRFS_IOC_QUOTA_RESCAN_STATUS: 4998 return btrfs_ioctl_quota_rescan_status(fs_info, argp); 4999 case BTRFS_IOC_QUOTA_RESCAN_WAIT: 5000 return btrfs_ioctl_quota_rescan_wait(fs_info, argp); 5001 case BTRFS_IOC_DEV_REPLACE: 5002 return btrfs_ioctl_dev_replace(fs_info, argp); 5003 case BTRFS_IOC_GET_SUPPORTED_FEATURES: 5004 return btrfs_ioctl_get_supported_features(argp); 5005 case BTRFS_IOC_GET_FEATURES: 5006 return btrfs_ioctl_get_features(fs_info, argp); 5007 case BTRFS_IOC_SET_FEATURES: 5008 return btrfs_ioctl_set_features(file, argp); 5009 case BTRFS_IOC_GET_SUBVOL_INFO: 5010 return btrfs_ioctl_get_subvol_info(file, argp); 5011 case BTRFS_IOC_GET_SUBVOL_ROOTREF: 5012 return btrfs_ioctl_get_subvol_rootref(file, argp); 5013 case BTRFS_IOC_INO_LOOKUP_USER: 5014 return btrfs_ioctl_ino_lookup_user(file, argp); 5015 case FS_IOC_ENABLE_VERITY: 5016 return fsverity_ioctl_enable(file, (const void __user *)argp); 5017 case FS_IOC_MEASURE_VERITY: 5018 return fsverity_ioctl_measure(file, argp); 5019 } 5020 5021 return -ENOTTY; 5022 } 5023 5024 #ifdef CONFIG_COMPAT 5025 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 5026 { 5027 /* 5028 * These all access 32-bit values anyway so no further 5029 * handling is necessary. 5030 */ 5031 switch (cmd) { 5032 case FS_IOC32_GETVERSION: 5033 cmd = FS_IOC_GETVERSION; 5034 break; 5035 } 5036 5037 return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg)); 5038 } 5039 #endif 5040