xref: /openbmc/linux/fs/btrfs/ioctl.c (revision 0ff40a910f5649dfacc4fb5daa7e73692196342d)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2007 Oracle.  All rights reserved.
4  */
5 
6 #include <linux/kernel.h>
7 #include <linux/bio.h>
8 #include <linux/file.h>
9 #include <linux/fs.h>
10 #include <linux/fsnotify.h>
11 #include <linux/pagemap.h>
12 #include <linux/highmem.h>
13 #include <linux/time.h>
14 #include <linux/string.h>
15 #include <linux/backing-dev.h>
16 #include <linux/mount.h>
17 #include <linux/namei.h>
18 #include <linux/writeback.h>
19 #include <linux/compat.h>
20 #include <linux/security.h>
21 #include <linux/xattr.h>
22 #include <linux/mm.h>
23 #include <linux/slab.h>
24 #include <linux/blkdev.h>
25 #include <linux/uuid.h>
26 #include <linux/btrfs.h>
27 #include <linux/uaccess.h>
28 #include <linux/iversion.h>
29 #include <linux/fileattr.h>
30 #include <linux/fsverity.h>
31 #include "ctree.h"
32 #include "disk-io.h"
33 #include "export.h"
34 #include "transaction.h"
35 #include "btrfs_inode.h"
36 #include "print-tree.h"
37 #include "volumes.h"
38 #include "locking.h"
39 #include "backref.h"
40 #include "rcu-string.h"
41 #include "send.h"
42 #include "dev-replace.h"
43 #include "props.h"
44 #include "sysfs.h"
45 #include "qgroup.h"
46 #include "tree-log.h"
47 #include "compression.h"
48 #include "space-info.h"
49 #include "delalloc-space.h"
50 #include "block-group.h"
51 
52 #ifdef CONFIG_64BIT
53 /* If we have a 32-bit userspace and 64-bit kernel, then the UAPI
54  * structures are incorrect, as the timespec structure from userspace
55  * is 4 bytes too small. We define these alternatives here to teach
56  * the kernel about the 32-bit struct packing.
57  */
58 struct btrfs_ioctl_timespec_32 {
59 	__u64 sec;
60 	__u32 nsec;
61 } __attribute__ ((__packed__));
62 
63 struct btrfs_ioctl_received_subvol_args_32 {
64 	char	uuid[BTRFS_UUID_SIZE];	/* in */
65 	__u64	stransid;		/* in */
66 	__u64	rtransid;		/* out */
67 	struct btrfs_ioctl_timespec_32 stime; /* in */
68 	struct btrfs_ioctl_timespec_32 rtime; /* out */
69 	__u64	flags;			/* in */
70 	__u64	reserved[16];		/* in */
71 } __attribute__ ((__packed__));
72 
73 #define BTRFS_IOC_SET_RECEIVED_SUBVOL_32 _IOWR(BTRFS_IOCTL_MAGIC, 37, \
74 				struct btrfs_ioctl_received_subvol_args_32)
75 #endif
76 
77 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
78 struct btrfs_ioctl_send_args_32 {
79 	__s64 send_fd;			/* in */
80 	__u64 clone_sources_count;	/* in */
81 	compat_uptr_t clone_sources;	/* in */
82 	__u64 parent_root;		/* in */
83 	__u64 flags;			/* in */
84 	__u64 reserved[4];		/* in */
85 } __attribute__ ((__packed__));
86 
87 #define BTRFS_IOC_SEND_32 _IOW(BTRFS_IOCTL_MAGIC, 38, \
88 			       struct btrfs_ioctl_send_args_32)
89 #endif
90 
91 /* Mask out flags that are inappropriate for the given type of inode. */
92 static unsigned int btrfs_mask_fsflags_for_type(struct inode *inode,
93 		unsigned int flags)
94 {
95 	if (S_ISDIR(inode->i_mode))
96 		return flags;
97 	else if (S_ISREG(inode->i_mode))
98 		return flags & ~FS_DIRSYNC_FL;
99 	else
100 		return flags & (FS_NODUMP_FL | FS_NOATIME_FL);
101 }
102 
103 /*
104  * Export internal inode flags to the format expected by the FS_IOC_GETFLAGS
105  * ioctl.
106  */
107 static unsigned int btrfs_inode_flags_to_fsflags(struct btrfs_inode *binode)
108 {
109 	unsigned int iflags = 0;
110 	u32 flags = binode->flags;
111 	u32 ro_flags = binode->ro_flags;
112 
113 	if (flags & BTRFS_INODE_SYNC)
114 		iflags |= FS_SYNC_FL;
115 	if (flags & BTRFS_INODE_IMMUTABLE)
116 		iflags |= FS_IMMUTABLE_FL;
117 	if (flags & BTRFS_INODE_APPEND)
118 		iflags |= FS_APPEND_FL;
119 	if (flags & BTRFS_INODE_NODUMP)
120 		iflags |= FS_NODUMP_FL;
121 	if (flags & BTRFS_INODE_NOATIME)
122 		iflags |= FS_NOATIME_FL;
123 	if (flags & BTRFS_INODE_DIRSYNC)
124 		iflags |= FS_DIRSYNC_FL;
125 	if (flags & BTRFS_INODE_NODATACOW)
126 		iflags |= FS_NOCOW_FL;
127 	if (ro_flags & BTRFS_INODE_RO_VERITY)
128 		iflags |= FS_VERITY_FL;
129 
130 	if (flags & BTRFS_INODE_NOCOMPRESS)
131 		iflags |= FS_NOCOMP_FL;
132 	else if (flags & BTRFS_INODE_COMPRESS)
133 		iflags |= FS_COMPR_FL;
134 
135 	return iflags;
136 }
137 
138 /*
139  * Update inode->i_flags based on the btrfs internal flags.
140  */
141 void btrfs_sync_inode_flags_to_i_flags(struct inode *inode)
142 {
143 	struct btrfs_inode *binode = BTRFS_I(inode);
144 	unsigned int new_fl = 0;
145 
146 	if (binode->flags & BTRFS_INODE_SYNC)
147 		new_fl |= S_SYNC;
148 	if (binode->flags & BTRFS_INODE_IMMUTABLE)
149 		new_fl |= S_IMMUTABLE;
150 	if (binode->flags & BTRFS_INODE_APPEND)
151 		new_fl |= S_APPEND;
152 	if (binode->flags & BTRFS_INODE_NOATIME)
153 		new_fl |= S_NOATIME;
154 	if (binode->flags & BTRFS_INODE_DIRSYNC)
155 		new_fl |= S_DIRSYNC;
156 	if (binode->ro_flags & BTRFS_INODE_RO_VERITY)
157 		new_fl |= S_VERITY;
158 
159 	set_mask_bits(&inode->i_flags,
160 		      S_SYNC | S_APPEND | S_IMMUTABLE | S_NOATIME | S_DIRSYNC |
161 		      S_VERITY, new_fl);
162 }
163 
164 /*
165  * Check if @flags are a supported and valid set of FS_*_FL flags and that
166  * the old and new flags are not conflicting
167  */
168 static int check_fsflags(unsigned int old_flags, unsigned int flags)
169 {
170 	if (flags & ~(FS_IMMUTABLE_FL | FS_APPEND_FL | \
171 		      FS_NOATIME_FL | FS_NODUMP_FL | \
172 		      FS_SYNC_FL | FS_DIRSYNC_FL | \
173 		      FS_NOCOMP_FL | FS_COMPR_FL |
174 		      FS_NOCOW_FL))
175 		return -EOPNOTSUPP;
176 
177 	/* COMPR and NOCOMP on new/old are valid */
178 	if ((flags & FS_NOCOMP_FL) && (flags & FS_COMPR_FL))
179 		return -EINVAL;
180 
181 	if ((flags & FS_COMPR_FL) && (flags & FS_NOCOW_FL))
182 		return -EINVAL;
183 
184 	/* NOCOW and compression options are mutually exclusive */
185 	if ((old_flags & FS_NOCOW_FL) && (flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
186 		return -EINVAL;
187 	if ((flags & FS_NOCOW_FL) && (old_flags & (FS_COMPR_FL | FS_NOCOMP_FL)))
188 		return -EINVAL;
189 
190 	return 0;
191 }
192 
193 static int check_fsflags_compatible(struct btrfs_fs_info *fs_info,
194 				    unsigned int flags)
195 {
196 	if (btrfs_is_zoned(fs_info) && (flags & FS_NOCOW_FL))
197 		return -EPERM;
198 
199 	return 0;
200 }
201 
202 /*
203  * Set flags/xflags from the internal inode flags. The remaining items of
204  * fsxattr are zeroed.
205  */
206 int btrfs_fileattr_get(struct dentry *dentry, struct fileattr *fa)
207 {
208 	struct btrfs_inode *binode = BTRFS_I(d_inode(dentry));
209 
210 	fileattr_fill_flags(fa, btrfs_inode_flags_to_fsflags(binode));
211 	return 0;
212 }
213 
214 int btrfs_fileattr_set(struct user_namespace *mnt_userns,
215 		       struct dentry *dentry, struct fileattr *fa)
216 {
217 	struct inode *inode = d_inode(dentry);
218 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
219 	struct btrfs_inode *binode = BTRFS_I(inode);
220 	struct btrfs_root *root = binode->root;
221 	struct btrfs_trans_handle *trans;
222 	unsigned int fsflags, old_fsflags;
223 	int ret;
224 	const char *comp = NULL;
225 	u32 binode_flags;
226 
227 	if (btrfs_root_readonly(root))
228 		return -EROFS;
229 
230 	if (fileattr_has_fsx(fa))
231 		return -EOPNOTSUPP;
232 
233 	fsflags = btrfs_mask_fsflags_for_type(inode, fa->flags);
234 	old_fsflags = btrfs_inode_flags_to_fsflags(binode);
235 	ret = check_fsflags(old_fsflags, fsflags);
236 	if (ret)
237 		return ret;
238 
239 	ret = check_fsflags_compatible(fs_info, fsflags);
240 	if (ret)
241 		return ret;
242 
243 	binode_flags = binode->flags;
244 	if (fsflags & FS_SYNC_FL)
245 		binode_flags |= BTRFS_INODE_SYNC;
246 	else
247 		binode_flags &= ~BTRFS_INODE_SYNC;
248 	if (fsflags & FS_IMMUTABLE_FL)
249 		binode_flags |= BTRFS_INODE_IMMUTABLE;
250 	else
251 		binode_flags &= ~BTRFS_INODE_IMMUTABLE;
252 	if (fsflags & FS_APPEND_FL)
253 		binode_flags |= BTRFS_INODE_APPEND;
254 	else
255 		binode_flags &= ~BTRFS_INODE_APPEND;
256 	if (fsflags & FS_NODUMP_FL)
257 		binode_flags |= BTRFS_INODE_NODUMP;
258 	else
259 		binode_flags &= ~BTRFS_INODE_NODUMP;
260 	if (fsflags & FS_NOATIME_FL)
261 		binode_flags |= BTRFS_INODE_NOATIME;
262 	else
263 		binode_flags &= ~BTRFS_INODE_NOATIME;
264 
265 	/* If coming from FS_IOC_FSSETXATTR then skip unconverted flags */
266 	if (!fa->flags_valid) {
267 		/* 1 item for the inode */
268 		trans = btrfs_start_transaction(root, 1);
269 		if (IS_ERR(trans))
270 			return PTR_ERR(trans);
271 		goto update_flags;
272 	}
273 
274 	if (fsflags & FS_DIRSYNC_FL)
275 		binode_flags |= BTRFS_INODE_DIRSYNC;
276 	else
277 		binode_flags &= ~BTRFS_INODE_DIRSYNC;
278 	if (fsflags & FS_NOCOW_FL) {
279 		if (S_ISREG(inode->i_mode)) {
280 			/*
281 			 * It's safe to turn csums off here, no extents exist.
282 			 * Otherwise we want the flag to reflect the real COW
283 			 * status of the file and will not set it.
284 			 */
285 			if (inode->i_size == 0)
286 				binode_flags |= BTRFS_INODE_NODATACOW |
287 						BTRFS_INODE_NODATASUM;
288 		} else {
289 			binode_flags |= BTRFS_INODE_NODATACOW;
290 		}
291 	} else {
292 		/*
293 		 * Revert back under same assumptions as above
294 		 */
295 		if (S_ISREG(inode->i_mode)) {
296 			if (inode->i_size == 0)
297 				binode_flags &= ~(BTRFS_INODE_NODATACOW |
298 						  BTRFS_INODE_NODATASUM);
299 		} else {
300 			binode_flags &= ~BTRFS_INODE_NODATACOW;
301 		}
302 	}
303 
304 	/*
305 	 * The COMPRESS flag can only be changed by users, while the NOCOMPRESS
306 	 * flag may be changed automatically if compression code won't make
307 	 * things smaller.
308 	 */
309 	if (fsflags & FS_NOCOMP_FL) {
310 		binode_flags &= ~BTRFS_INODE_COMPRESS;
311 		binode_flags |= BTRFS_INODE_NOCOMPRESS;
312 	} else if (fsflags & FS_COMPR_FL) {
313 
314 		if (IS_SWAPFILE(inode))
315 			return -ETXTBSY;
316 
317 		binode_flags |= BTRFS_INODE_COMPRESS;
318 		binode_flags &= ~BTRFS_INODE_NOCOMPRESS;
319 
320 		comp = btrfs_compress_type2str(fs_info->compress_type);
321 		if (!comp || comp[0] == 0)
322 			comp = btrfs_compress_type2str(BTRFS_COMPRESS_ZLIB);
323 	} else {
324 		binode_flags &= ~(BTRFS_INODE_COMPRESS | BTRFS_INODE_NOCOMPRESS);
325 	}
326 
327 	/*
328 	 * 1 for inode item
329 	 * 2 for properties
330 	 */
331 	trans = btrfs_start_transaction(root, 3);
332 	if (IS_ERR(trans))
333 		return PTR_ERR(trans);
334 
335 	if (comp) {
336 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", comp,
337 				     strlen(comp), 0);
338 		if (ret) {
339 			btrfs_abort_transaction(trans, ret);
340 			goto out_end_trans;
341 		}
342 	} else {
343 		ret = btrfs_set_prop(trans, inode, "btrfs.compression", NULL,
344 				     0, 0);
345 		if (ret && ret != -ENODATA) {
346 			btrfs_abort_transaction(trans, ret);
347 			goto out_end_trans;
348 		}
349 	}
350 
351 update_flags:
352 	binode->flags = binode_flags;
353 	btrfs_sync_inode_flags_to_i_flags(inode);
354 	inode_inc_iversion(inode);
355 	inode->i_ctime = current_time(inode);
356 	ret = btrfs_update_inode(trans, root, BTRFS_I(inode));
357 
358  out_end_trans:
359 	btrfs_end_transaction(trans);
360 	return ret;
361 }
362 
363 /*
364  * Start exclusive operation @type, return true on success
365  */
366 bool btrfs_exclop_start(struct btrfs_fs_info *fs_info,
367 			enum btrfs_exclusive_operation type)
368 {
369 	bool ret = false;
370 
371 	spin_lock(&fs_info->super_lock);
372 	if (fs_info->exclusive_operation == BTRFS_EXCLOP_NONE) {
373 		fs_info->exclusive_operation = type;
374 		ret = true;
375 	}
376 	spin_unlock(&fs_info->super_lock);
377 
378 	return ret;
379 }
380 
381 /*
382  * Conditionally allow to enter the exclusive operation in case it's compatible
383  * with the running one.  This must be paired with btrfs_exclop_start_unlock and
384  * btrfs_exclop_finish.
385  *
386  * Compatibility:
387  * - the same type is already running
388  * - not BTRFS_EXCLOP_NONE - this is intentionally incompatible and the caller
389  *   must check the condition first that would allow none -> @type
390  */
391 bool btrfs_exclop_start_try_lock(struct btrfs_fs_info *fs_info,
392 				 enum btrfs_exclusive_operation type)
393 {
394 	spin_lock(&fs_info->super_lock);
395 	if (fs_info->exclusive_operation == type)
396 		return true;
397 
398 	spin_unlock(&fs_info->super_lock);
399 	return false;
400 }
401 
402 void btrfs_exclop_start_unlock(struct btrfs_fs_info *fs_info)
403 {
404 	spin_unlock(&fs_info->super_lock);
405 }
406 
407 void btrfs_exclop_finish(struct btrfs_fs_info *fs_info)
408 {
409 	spin_lock(&fs_info->super_lock);
410 	WRITE_ONCE(fs_info->exclusive_operation, BTRFS_EXCLOP_NONE);
411 	spin_unlock(&fs_info->super_lock);
412 	sysfs_notify(&fs_info->fs_devices->fsid_kobj, NULL, "exclusive_operation");
413 }
414 
415 static int btrfs_ioctl_getversion(struct file *file, int __user *arg)
416 {
417 	struct inode *inode = file_inode(file);
418 
419 	return put_user(inode->i_generation, arg);
420 }
421 
422 static noinline int btrfs_ioctl_fitrim(struct btrfs_fs_info *fs_info,
423 					void __user *arg)
424 {
425 	struct btrfs_device *device;
426 	struct request_queue *q;
427 	struct fstrim_range range;
428 	u64 minlen = ULLONG_MAX;
429 	u64 num_devices = 0;
430 	int ret;
431 
432 	if (!capable(CAP_SYS_ADMIN))
433 		return -EPERM;
434 
435 	/*
436 	 * btrfs_trim_block_group() depends on space cache, which is not
437 	 * available in zoned filesystem. So, disallow fitrim on a zoned
438 	 * filesystem for now.
439 	 */
440 	if (btrfs_is_zoned(fs_info))
441 		return -EOPNOTSUPP;
442 
443 	/*
444 	 * If the fs is mounted with nologreplay, which requires it to be
445 	 * mounted in RO mode as well, we can not allow discard on free space
446 	 * inside block groups, because log trees refer to extents that are not
447 	 * pinned in a block group's free space cache (pinning the extents is
448 	 * precisely the first phase of replaying a log tree).
449 	 */
450 	if (btrfs_test_opt(fs_info, NOLOGREPLAY))
451 		return -EROFS;
452 
453 	rcu_read_lock();
454 	list_for_each_entry_rcu(device, &fs_info->fs_devices->devices,
455 				dev_list) {
456 		if (!device->bdev)
457 			continue;
458 		q = bdev_get_queue(device->bdev);
459 		if (blk_queue_discard(q)) {
460 			num_devices++;
461 			minlen = min_t(u64, q->limits.discard_granularity,
462 				     minlen);
463 		}
464 	}
465 	rcu_read_unlock();
466 
467 	if (!num_devices)
468 		return -EOPNOTSUPP;
469 	if (copy_from_user(&range, arg, sizeof(range)))
470 		return -EFAULT;
471 
472 	/*
473 	 * NOTE: Don't truncate the range using super->total_bytes.  Bytenr of
474 	 * block group is in the logical address space, which can be any
475 	 * sectorsize aligned bytenr in  the range [0, U64_MAX].
476 	 */
477 	if (range.len < fs_info->sb->s_blocksize)
478 		return -EINVAL;
479 
480 	range.minlen = max(range.minlen, minlen);
481 	ret = btrfs_trim_fs(fs_info, &range);
482 	if (ret < 0)
483 		return ret;
484 
485 	if (copy_to_user(arg, &range, sizeof(range)))
486 		return -EFAULT;
487 
488 	return 0;
489 }
490 
491 int __pure btrfs_is_empty_uuid(u8 *uuid)
492 {
493 	int i;
494 
495 	for (i = 0; i < BTRFS_UUID_SIZE; i++) {
496 		if (uuid[i])
497 			return 0;
498 	}
499 	return 1;
500 }
501 
502 static noinline int create_subvol(struct inode *dir,
503 				  struct dentry *dentry,
504 				  const char *name, int namelen,
505 				  struct btrfs_qgroup_inherit *inherit)
506 {
507 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
508 	struct btrfs_trans_handle *trans;
509 	struct btrfs_key key;
510 	struct btrfs_root_item *root_item;
511 	struct btrfs_inode_item *inode_item;
512 	struct extent_buffer *leaf;
513 	struct btrfs_root *root = BTRFS_I(dir)->root;
514 	struct btrfs_root *new_root;
515 	struct btrfs_block_rsv block_rsv;
516 	struct timespec64 cur_time = current_time(dir);
517 	struct inode *inode;
518 	int ret;
519 	int err;
520 	dev_t anon_dev = 0;
521 	u64 objectid;
522 	u64 index = 0;
523 
524 	root_item = kzalloc(sizeof(*root_item), GFP_KERNEL);
525 	if (!root_item)
526 		return -ENOMEM;
527 
528 	ret = btrfs_get_free_objectid(fs_info->tree_root, &objectid);
529 	if (ret)
530 		goto fail_free;
531 
532 	ret = get_anon_bdev(&anon_dev);
533 	if (ret < 0)
534 		goto fail_free;
535 
536 	/*
537 	 * Don't create subvolume whose level is not zero. Or qgroup will be
538 	 * screwed up since it assumes subvolume qgroup's level to be 0.
539 	 */
540 	if (btrfs_qgroup_level(objectid)) {
541 		ret = -ENOSPC;
542 		goto fail_free;
543 	}
544 
545 	btrfs_init_block_rsv(&block_rsv, BTRFS_BLOCK_RSV_TEMP);
546 	/*
547 	 * The same as the snapshot creation, please see the comment
548 	 * of create_snapshot().
549 	 */
550 	ret = btrfs_subvolume_reserve_metadata(root, &block_rsv, 8, false);
551 	if (ret)
552 		goto fail_free;
553 
554 	trans = btrfs_start_transaction(root, 0);
555 	if (IS_ERR(trans)) {
556 		ret = PTR_ERR(trans);
557 		btrfs_subvolume_release_metadata(root, &block_rsv);
558 		goto fail_free;
559 	}
560 	trans->block_rsv = &block_rsv;
561 	trans->bytes_reserved = block_rsv.size;
562 
563 	ret = btrfs_qgroup_inherit(trans, 0, objectid, inherit);
564 	if (ret)
565 		goto fail;
566 
567 	leaf = btrfs_alloc_tree_block(trans, root, 0, objectid, NULL, 0, 0, 0,
568 				      BTRFS_NESTING_NORMAL);
569 	if (IS_ERR(leaf)) {
570 		ret = PTR_ERR(leaf);
571 		goto fail;
572 	}
573 
574 	btrfs_mark_buffer_dirty(leaf);
575 
576 	inode_item = &root_item->inode;
577 	btrfs_set_stack_inode_generation(inode_item, 1);
578 	btrfs_set_stack_inode_size(inode_item, 3);
579 	btrfs_set_stack_inode_nlink(inode_item, 1);
580 	btrfs_set_stack_inode_nbytes(inode_item,
581 				     fs_info->nodesize);
582 	btrfs_set_stack_inode_mode(inode_item, S_IFDIR | 0755);
583 
584 	btrfs_set_root_flags(root_item, 0);
585 	btrfs_set_root_limit(root_item, 0);
586 	btrfs_set_stack_inode_flags(inode_item, BTRFS_INODE_ROOT_ITEM_INIT);
587 
588 	btrfs_set_root_bytenr(root_item, leaf->start);
589 	btrfs_set_root_generation(root_item, trans->transid);
590 	btrfs_set_root_level(root_item, 0);
591 	btrfs_set_root_refs(root_item, 1);
592 	btrfs_set_root_used(root_item, leaf->len);
593 	btrfs_set_root_last_snapshot(root_item, 0);
594 
595 	btrfs_set_root_generation_v2(root_item,
596 			btrfs_root_generation(root_item));
597 	generate_random_guid(root_item->uuid);
598 	btrfs_set_stack_timespec_sec(&root_item->otime, cur_time.tv_sec);
599 	btrfs_set_stack_timespec_nsec(&root_item->otime, cur_time.tv_nsec);
600 	root_item->ctime = root_item->otime;
601 	btrfs_set_root_ctransid(root_item, trans->transid);
602 	btrfs_set_root_otransid(root_item, trans->transid);
603 
604 	btrfs_tree_unlock(leaf);
605 
606 	btrfs_set_root_dirid(root_item, BTRFS_FIRST_FREE_OBJECTID);
607 
608 	key.objectid = objectid;
609 	key.offset = 0;
610 	key.type = BTRFS_ROOT_ITEM_KEY;
611 	ret = btrfs_insert_root(trans, fs_info->tree_root, &key,
612 				root_item);
613 	if (ret) {
614 		/*
615 		 * Since we don't abort the transaction in this case, free the
616 		 * tree block so that we don't leak space and leave the
617 		 * filesystem in an inconsistent state (an extent item in the
618 		 * extent tree without backreferences). Also no need to have
619 		 * the tree block locked since it is not in any tree at this
620 		 * point, so no other task can find it and use it.
621 		 */
622 		btrfs_free_tree_block(trans, root, leaf, 0, 1);
623 		free_extent_buffer(leaf);
624 		goto fail;
625 	}
626 
627 	free_extent_buffer(leaf);
628 	leaf = NULL;
629 
630 	key.offset = (u64)-1;
631 	new_root = btrfs_get_new_fs_root(fs_info, objectid, anon_dev);
632 	if (IS_ERR(new_root)) {
633 		free_anon_bdev(anon_dev);
634 		ret = PTR_ERR(new_root);
635 		btrfs_abort_transaction(trans, ret);
636 		goto fail;
637 	}
638 	/* Freeing will be done in btrfs_put_root() of new_root */
639 	anon_dev = 0;
640 
641 	ret = btrfs_record_root_in_trans(trans, new_root);
642 	if (ret) {
643 		btrfs_put_root(new_root);
644 		btrfs_abort_transaction(trans, ret);
645 		goto fail;
646 	}
647 
648 	ret = btrfs_create_subvol_root(trans, new_root, root);
649 	btrfs_put_root(new_root);
650 	if (ret) {
651 		/* We potentially lose an unused inode item here */
652 		btrfs_abort_transaction(trans, ret);
653 		goto fail;
654 	}
655 
656 	/*
657 	 * insert the directory item
658 	 */
659 	ret = btrfs_set_inode_index(BTRFS_I(dir), &index);
660 	if (ret) {
661 		btrfs_abort_transaction(trans, ret);
662 		goto fail;
663 	}
664 
665 	ret = btrfs_insert_dir_item(trans, name, namelen, BTRFS_I(dir), &key,
666 				    BTRFS_FT_DIR, index);
667 	if (ret) {
668 		btrfs_abort_transaction(trans, ret);
669 		goto fail;
670 	}
671 
672 	btrfs_i_size_write(BTRFS_I(dir), dir->i_size + namelen * 2);
673 	ret = btrfs_update_inode(trans, root, BTRFS_I(dir));
674 	if (ret) {
675 		btrfs_abort_transaction(trans, ret);
676 		goto fail;
677 	}
678 
679 	ret = btrfs_add_root_ref(trans, objectid, root->root_key.objectid,
680 				 btrfs_ino(BTRFS_I(dir)), index, name, namelen);
681 	if (ret) {
682 		btrfs_abort_transaction(trans, ret);
683 		goto fail;
684 	}
685 
686 	ret = btrfs_uuid_tree_add(trans, root_item->uuid,
687 				  BTRFS_UUID_KEY_SUBVOL, objectid);
688 	if (ret)
689 		btrfs_abort_transaction(trans, ret);
690 
691 fail:
692 	kfree(root_item);
693 	trans->block_rsv = NULL;
694 	trans->bytes_reserved = 0;
695 	btrfs_subvolume_release_metadata(root, &block_rsv);
696 
697 	err = btrfs_commit_transaction(trans);
698 	if (err && !ret)
699 		ret = err;
700 
701 	if (!ret) {
702 		inode = btrfs_lookup_dentry(dir, dentry);
703 		if (IS_ERR(inode))
704 			return PTR_ERR(inode);
705 		d_instantiate(dentry, inode);
706 	}
707 	return ret;
708 
709 fail_free:
710 	if (anon_dev)
711 		free_anon_bdev(anon_dev);
712 	kfree(root_item);
713 	return ret;
714 }
715 
716 static int create_snapshot(struct btrfs_root *root, struct inode *dir,
717 			   struct dentry *dentry, bool readonly,
718 			   struct btrfs_qgroup_inherit *inherit)
719 {
720 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
721 	struct inode *inode;
722 	struct btrfs_pending_snapshot *pending_snapshot;
723 	struct btrfs_trans_handle *trans;
724 	int ret;
725 
726 	if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
727 		return -EINVAL;
728 
729 	if (atomic_read(&root->nr_swapfiles)) {
730 		btrfs_warn(fs_info,
731 			   "cannot snapshot subvolume with active swapfile");
732 		return -ETXTBSY;
733 	}
734 
735 	pending_snapshot = kzalloc(sizeof(*pending_snapshot), GFP_KERNEL);
736 	if (!pending_snapshot)
737 		return -ENOMEM;
738 
739 	ret = get_anon_bdev(&pending_snapshot->anon_dev);
740 	if (ret < 0)
741 		goto free_pending;
742 	pending_snapshot->root_item = kzalloc(sizeof(struct btrfs_root_item),
743 			GFP_KERNEL);
744 	pending_snapshot->path = btrfs_alloc_path();
745 	if (!pending_snapshot->root_item || !pending_snapshot->path) {
746 		ret = -ENOMEM;
747 		goto free_pending;
748 	}
749 
750 	btrfs_init_block_rsv(&pending_snapshot->block_rsv,
751 			     BTRFS_BLOCK_RSV_TEMP);
752 	/*
753 	 * 1 - parent dir inode
754 	 * 2 - dir entries
755 	 * 1 - root item
756 	 * 2 - root ref/backref
757 	 * 1 - root of snapshot
758 	 * 1 - UUID item
759 	 */
760 	ret = btrfs_subvolume_reserve_metadata(BTRFS_I(dir)->root,
761 					&pending_snapshot->block_rsv, 8,
762 					false);
763 	if (ret)
764 		goto free_pending;
765 
766 	pending_snapshot->dentry = dentry;
767 	pending_snapshot->root = root;
768 	pending_snapshot->readonly = readonly;
769 	pending_snapshot->dir = dir;
770 	pending_snapshot->inherit = inherit;
771 
772 	trans = btrfs_start_transaction(root, 0);
773 	if (IS_ERR(trans)) {
774 		ret = PTR_ERR(trans);
775 		goto fail;
776 	}
777 
778 	spin_lock(&fs_info->trans_lock);
779 	list_add(&pending_snapshot->list,
780 		 &trans->transaction->pending_snapshots);
781 	spin_unlock(&fs_info->trans_lock);
782 
783 	ret = btrfs_commit_transaction(trans);
784 	if (ret)
785 		goto fail;
786 
787 	ret = pending_snapshot->error;
788 	if (ret)
789 		goto fail;
790 
791 	ret = btrfs_orphan_cleanup(pending_snapshot->snap);
792 	if (ret)
793 		goto fail;
794 
795 	inode = btrfs_lookup_dentry(d_inode(dentry->d_parent), dentry);
796 	if (IS_ERR(inode)) {
797 		ret = PTR_ERR(inode);
798 		goto fail;
799 	}
800 
801 	d_instantiate(dentry, inode);
802 	ret = 0;
803 	pending_snapshot->anon_dev = 0;
804 fail:
805 	/* Prevent double freeing of anon_dev */
806 	if (ret && pending_snapshot->snap)
807 		pending_snapshot->snap->anon_dev = 0;
808 	btrfs_put_root(pending_snapshot->snap);
809 	btrfs_subvolume_release_metadata(root, &pending_snapshot->block_rsv);
810 free_pending:
811 	if (pending_snapshot->anon_dev)
812 		free_anon_bdev(pending_snapshot->anon_dev);
813 	kfree(pending_snapshot->root_item);
814 	btrfs_free_path(pending_snapshot->path);
815 	kfree(pending_snapshot);
816 
817 	return ret;
818 }
819 
820 /*  copy of may_delete in fs/namei.c()
821  *	Check whether we can remove a link victim from directory dir, check
822  *  whether the type of victim is right.
823  *  1. We can't do it if dir is read-only (done in permission())
824  *  2. We should have write and exec permissions on dir
825  *  3. We can't remove anything from append-only dir
826  *  4. We can't do anything with immutable dir (done in permission())
827  *  5. If the sticky bit on dir is set we should either
828  *	a. be owner of dir, or
829  *	b. be owner of victim, or
830  *	c. have CAP_FOWNER capability
831  *  6. If the victim is append-only or immutable we can't do anything with
832  *     links pointing to it.
833  *  7. If we were asked to remove a directory and victim isn't one - ENOTDIR.
834  *  8. If we were asked to remove a non-directory and victim isn't one - EISDIR.
835  *  9. We can't remove a root or mountpoint.
836  * 10. We don't allow removal of NFS sillyrenamed files; it's handled by
837  *     nfs_async_unlink().
838  */
839 
840 static int btrfs_may_delete(struct inode *dir, struct dentry *victim, int isdir)
841 {
842 	int error;
843 
844 	if (d_really_is_negative(victim))
845 		return -ENOENT;
846 
847 	BUG_ON(d_inode(victim->d_parent) != dir);
848 	audit_inode_child(dir, victim, AUDIT_TYPE_CHILD_DELETE);
849 
850 	error = inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
851 	if (error)
852 		return error;
853 	if (IS_APPEND(dir))
854 		return -EPERM;
855 	if (check_sticky(&init_user_ns, dir, d_inode(victim)) ||
856 	    IS_APPEND(d_inode(victim)) || IS_IMMUTABLE(d_inode(victim)) ||
857 	    IS_SWAPFILE(d_inode(victim)))
858 		return -EPERM;
859 	if (isdir) {
860 		if (!d_is_dir(victim))
861 			return -ENOTDIR;
862 		if (IS_ROOT(victim))
863 			return -EBUSY;
864 	} else if (d_is_dir(victim))
865 		return -EISDIR;
866 	if (IS_DEADDIR(dir))
867 		return -ENOENT;
868 	if (victim->d_flags & DCACHE_NFSFS_RENAMED)
869 		return -EBUSY;
870 	return 0;
871 }
872 
873 /* copy of may_create in fs/namei.c() */
874 static inline int btrfs_may_create(struct inode *dir, struct dentry *child)
875 {
876 	if (d_really_is_positive(child))
877 		return -EEXIST;
878 	if (IS_DEADDIR(dir))
879 		return -ENOENT;
880 	return inode_permission(&init_user_ns, dir, MAY_WRITE | MAY_EXEC);
881 }
882 
883 /*
884  * Create a new subvolume below @parent.  This is largely modeled after
885  * sys_mkdirat and vfs_mkdir, but we only do a single component lookup
886  * inside this filesystem so it's quite a bit simpler.
887  */
888 static noinline int btrfs_mksubvol(const struct path *parent,
889 				   const char *name, int namelen,
890 				   struct btrfs_root *snap_src,
891 				   bool readonly,
892 				   struct btrfs_qgroup_inherit *inherit)
893 {
894 	struct inode *dir = d_inode(parent->dentry);
895 	struct btrfs_fs_info *fs_info = btrfs_sb(dir->i_sb);
896 	struct dentry *dentry;
897 	int error;
898 
899 	error = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
900 	if (error == -EINTR)
901 		return error;
902 
903 	dentry = lookup_one_len(name, parent->dentry, namelen);
904 	error = PTR_ERR(dentry);
905 	if (IS_ERR(dentry))
906 		goto out_unlock;
907 
908 	error = btrfs_may_create(dir, dentry);
909 	if (error)
910 		goto out_dput;
911 
912 	/*
913 	 * even if this name doesn't exist, we may get hash collisions.
914 	 * check for them now when we can safely fail
915 	 */
916 	error = btrfs_check_dir_item_collision(BTRFS_I(dir)->root,
917 					       dir->i_ino, name,
918 					       namelen);
919 	if (error)
920 		goto out_dput;
921 
922 	down_read(&fs_info->subvol_sem);
923 
924 	if (btrfs_root_refs(&BTRFS_I(dir)->root->root_item) == 0)
925 		goto out_up_read;
926 
927 	if (snap_src)
928 		error = create_snapshot(snap_src, dir, dentry, readonly, inherit);
929 	else
930 		error = create_subvol(dir, dentry, name, namelen, inherit);
931 
932 	if (!error)
933 		fsnotify_mkdir(dir, dentry);
934 out_up_read:
935 	up_read(&fs_info->subvol_sem);
936 out_dput:
937 	dput(dentry);
938 out_unlock:
939 	btrfs_inode_unlock(dir, 0);
940 	return error;
941 }
942 
943 static noinline int btrfs_mksnapshot(const struct path *parent,
944 				   const char *name, int namelen,
945 				   struct btrfs_root *root,
946 				   bool readonly,
947 				   struct btrfs_qgroup_inherit *inherit)
948 {
949 	int ret;
950 	bool snapshot_force_cow = false;
951 
952 	/*
953 	 * Force new buffered writes to reserve space even when NOCOW is
954 	 * possible. This is to avoid later writeback (running dealloc) to
955 	 * fallback to COW mode and unexpectedly fail with ENOSPC.
956 	 */
957 	btrfs_drew_read_lock(&root->snapshot_lock);
958 
959 	ret = btrfs_start_delalloc_snapshot(root, false);
960 	if (ret)
961 		goto out;
962 
963 	/*
964 	 * All previous writes have started writeback in NOCOW mode, so now
965 	 * we force future writes to fallback to COW mode during snapshot
966 	 * creation.
967 	 */
968 	atomic_inc(&root->snapshot_force_cow);
969 	snapshot_force_cow = true;
970 
971 	btrfs_wait_ordered_extents(root, U64_MAX, 0, (u64)-1);
972 
973 	ret = btrfs_mksubvol(parent, name, namelen,
974 			     root, readonly, inherit);
975 out:
976 	if (snapshot_force_cow)
977 		atomic_dec(&root->snapshot_force_cow);
978 	btrfs_drew_read_unlock(&root->snapshot_lock);
979 	return ret;
980 }
981 
982 /*
983  * When we're defragging a range, we don't want to kick it off again
984  * if it is really just waiting for delalloc to send it down.
985  * If we find a nice big extent or delalloc range for the bytes in the
986  * file you want to defrag, we return 0 to let you know to skip this
987  * part of the file
988  */
989 static int check_defrag_in_cache(struct inode *inode, u64 offset, u32 thresh)
990 {
991 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
992 	struct extent_map *em = NULL;
993 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
994 	u64 end;
995 
996 	read_lock(&em_tree->lock);
997 	em = lookup_extent_mapping(em_tree, offset, PAGE_SIZE);
998 	read_unlock(&em_tree->lock);
999 
1000 	if (em) {
1001 		end = extent_map_end(em);
1002 		free_extent_map(em);
1003 		if (end - offset > thresh)
1004 			return 0;
1005 	}
1006 	/* if we already have a nice delalloc here, just stop */
1007 	thresh /= 2;
1008 	end = count_range_bits(io_tree, &offset, offset + thresh,
1009 			       thresh, EXTENT_DELALLOC, 1);
1010 	if (end >= thresh)
1011 		return 0;
1012 	return 1;
1013 }
1014 
1015 /*
1016  * helper function to walk through a file and find extents
1017  * newer than a specific transid, and smaller than thresh.
1018  *
1019  * This is used by the defragging code to find new and small
1020  * extents
1021  */
1022 static int find_new_extents(struct btrfs_root *root,
1023 			    struct inode *inode, u64 newer_than,
1024 			    u64 *off, u32 thresh)
1025 {
1026 	struct btrfs_path *path;
1027 	struct btrfs_key min_key;
1028 	struct extent_buffer *leaf;
1029 	struct btrfs_file_extent_item *extent;
1030 	int type;
1031 	int ret;
1032 	u64 ino = btrfs_ino(BTRFS_I(inode));
1033 
1034 	path = btrfs_alloc_path();
1035 	if (!path)
1036 		return -ENOMEM;
1037 
1038 	min_key.objectid = ino;
1039 	min_key.type = BTRFS_EXTENT_DATA_KEY;
1040 	min_key.offset = *off;
1041 
1042 	while (1) {
1043 		ret = btrfs_search_forward(root, &min_key, path, newer_than);
1044 		if (ret != 0)
1045 			goto none;
1046 process_slot:
1047 		if (min_key.objectid != ino)
1048 			goto none;
1049 		if (min_key.type != BTRFS_EXTENT_DATA_KEY)
1050 			goto none;
1051 
1052 		leaf = path->nodes[0];
1053 		extent = btrfs_item_ptr(leaf, path->slots[0],
1054 					struct btrfs_file_extent_item);
1055 
1056 		type = btrfs_file_extent_type(leaf, extent);
1057 		if (type == BTRFS_FILE_EXTENT_REG &&
1058 		    btrfs_file_extent_num_bytes(leaf, extent) < thresh &&
1059 		    check_defrag_in_cache(inode, min_key.offset, thresh)) {
1060 			*off = min_key.offset;
1061 			btrfs_free_path(path);
1062 			return 0;
1063 		}
1064 
1065 		path->slots[0]++;
1066 		if (path->slots[0] < btrfs_header_nritems(leaf)) {
1067 			btrfs_item_key_to_cpu(leaf, &min_key, path->slots[0]);
1068 			goto process_slot;
1069 		}
1070 
1071 		if (min_key.offset == (u64)-1)
1072 			goto none;
1073 
1074 		min_key.offset++;
1075 		btrfs_release_path(path);
1076 	}
1077 none:
1078 	btrfs_free_path(path);
1079 	return -ENOENT;
1080 }
1081 
1082 static struct extent_map *defrag_lookup_extent(struct inode *inode, u64 start)
1083 {
1084 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
1085 	struct extent_io_tree *io_tree = &BTRFS_I(inode)->io_tree;
1086 	struct extent_map *em;
1087 	u64 len = PAGE_SIZE;
1088 
1089 	/*
1090 	 * hopefully we have this extent in the tree already, try without
1091 	 * the full extent lock
1092 	 */
1093 	read_lock(&em_tree->lock);
1094 	em = lookup_extent_mapping(em_tree, start, len);
1095 	read_unlock(&em_tree->lock);
1096 
1097 	if (!em) {
1098 		struct extent_state *cached = NULL;
1099 		u64 end = start + len - 1;
1100 
1101 		/* get the big lock and read metadata off disk */
1102 		lock_extent_bits(io_tree, start, end, &cached);
1103 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, start, len);
1104 		unlock_extent_cached(io_tree, start, end, &cached);
1105 
1106 		if (IS_ERR(em))
1107 			return NULL;
1108 	}
1109 
1110 	return em;
1111 }
1112 
1113 static bool defrag_check_next_extent(struct inode *inode, struct extent_map *em)
1114 {
1115 	struct extent_map *next;
1116 	bool ret = true;
1117 
1118 	/* this is the last extent */
1119 	if (em->start + em->len >= i_size_read(inode))
1120 		return false;
1121 
1122 	next = defrag_lookup_extent(inode, em->start + em->len);
1123 	if (!next || next->block_start >= EXTENT_MAP_LAST_BYTE)
1124 		ret = false;
1125 	else if ((em->block_start + em->block_len == next->block_start) &&
1126 		 (em->block_len > SZ_128K && next->block_len > SZ_128K))
1127 		ret = false;
1128 
1129 	free_extent_map(next);
1130 	return ret;
1131 }
1132 
1133 static int should_defrag_range(struct inode *inode, u64 start, u32 thresh,
1134 			       u64 *last_len, u64 *skip, u64 *defrag_end,
1135 			       int compress)
1136 {
1137 	struct extent_map *em;
1138 	int ret = 1;
1139 	bool next_mergeable = true;
1140 	bool prev_mergeable = true;
1141 
1142 	/*
1143 	 * make sure that once we start defragging an extent, we keep on
1144 	 * defragging it
1145 	 */
1146 	if (start < *defrag_end)
1147 		return 1;
1148 
1149 	*skip = 0;
1150 
1151 	em = defrag_lookup_extent(inode, start);
1152 	if (!em)
1153 		return 0;
1154 
1155 	/* this will cover holes, and inline extents */
1156 	if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1157 		ret = 0;
1158 		goto out;
1159 	}
1160 
1161 	if (!*defrag_end)
1162 		prev_mergeable = false;
1163 
1164 	next_mergeable = defrag_check_next_extent(inode, em);
1165 	/*
1166 	 * we hit a real extent, if it is big or the next extent is not a
1167 	 * real extent, don't bother defragging it
1168 	 */
1169 	if (!compress && (*last_len == 0 || *last_len >= thresh) &&
1170 	    (em->len >= thresh || (!next_mergeable && !prev_mergeable)))
1171 		ret = 0;
1172 out:
1173 	/*
1174 	 * last_len ends up being a counter of how many bytes we've defragged.
1175 	 * every time we choose not to defrag an extent, we reset *last_len
1176 	 * so that the next tiny extent will force a defrag.
1177 	 *
1178 	 * The end result of this is that tiny extents before a single big
1179 	 * extent will force at least part of that big extent to be defragged.
1180 	 */
1181 	if (ret) {
1182 		*defrag_end = extent_map_end(em);
1183 	} else {
1184 		*last_len = 0;
1185 		*skip = extent_map_end(em);
1186 		*defrag_end = 0;
1187 	}
1188 
1189 	free_extent_map(em);
1190 	return ret;
1191 }
1192 
1193 /*
1194  * it doesn't do much good to defrag one or two pages
1195  * at a time.  This pulls in a nice chunk of pages
1196  * to COW and defrag.
1197  *
1198  * It also makes sure the delalloc code has enough
1199  * dirty data to avoid making new small extents as part
1200  * of the defrag
1201  *
1202  * It's a good idea to start RA on this range
1203  * before calling this.
1204  */
1205 static int cluster_pages_for_defrag(struct inode *inode,
1206 				    struct page **pages,
1207 				    unsigned long start_index,
1208 				    unsigned long num_pages)
1209 {
1210 	unsigned long file_end;
1211 	u64 isize = i_size_read(inode);
1212 	u64 page_start;
1213 	u64 page_end;
1214 	u64 page_cnt;
1215 	u64 start = (u64)start_index << PAGE_SHIFT;
1216 	u64 search_start;
1217 	int ret;
1218 	int i;
1219 	int i_done;
1220 	struct btrfs_ordered_extent *ordered;
1221 	struct extent_state *cached_state = NULL;
1222 	struct extent_io_tree *tree;
1223 	struct extent_changeset *data_reserved = NULL;
1224 	gfp_t mask = btrfs_alloc_write_mask(inode->i_mapping);
1225 
1226 	file_end = (isize - 1) >> PAGE_SHIFT;
1227 	if (!isize || start_index > file_end)
1228 		return 0;
1229 
1230 	page_cnt = min_t(u64, (u64)num_pages, (u64)file_end - start_index + 1);
1231 
1232 	ret = btrfs_delalloc_reserve_space(BTRFS_I(inode), &data_reserved,
1233 			start, page_cnt << PAGE_SHIFT);
1234 	if (ret)
1235 		return ret;
1236 	i_done = 0;
1237 	tree = &BTRFS_I(inode)->io_tree;
1238 
1239 	/* step one, lock all the pages */
1240 	for (i = 0; i < page_cnt; i++) {
1241 		struct page *page;
1242 again:
1243 		page = find_or_create_page(inode->i_mapping,
1244 					   start_index + i, mask);
1245 		if (!page)
1246 			break;
1247 
1248 		ret = set_page_extent_mapped(page);
1249 		if (ret < 0) {
1250 			unlock_page(page);
1251 			put_page(page);
1252 			break;
1253 		}
1254 
1255 		page_start = page_offset(page);
1256 		page_end = page_start + PAGE_SIZE - 1;
1257 		while (1) {
1258 			lock_extent_bits(tree, page_start, page_end,
1259 					 &cached_state);
1260 			ordered = btrfs_lookup_ordered_extent(BTRFS_I(inode),
1261 							      page_start);
1262 			unlock_extent_cached(tree, page_start, page_end,
1263 					     &cached_state);
1264 			if (!ordered)
1265 				break;
1266 
1267 			unlock_page(page);
1268 			btrfs_start_ordered_extent(ordered, 1);
1269 			btrfs_put_ordered_extent(ordered);
1270 			lock_page(page);
1271 			/*
1272 			 * we unlocked the page above, so we need check if
1273 			 * it was released or not.
1274 			 */
1275 			if (page->mapping != inode->i_mapping) {
1276 				unlock_page(page);
1277 				put_page(page);
1278 				goto again;
1279 			}
1280 		}
1281 
1282 		if (!PageUptodate(page)) {
1283 			btrfs_readpage(NULL, page);
1284 			lock_page(page);
1285 			if (!PageUptodate(page)) {
1286 				unlock_page(page);
1287 				put_page(page);
1288 				ret = -EIO;
1289 				break;
1290 			}
1291 		}
1292 
1293 		if (page->mapping != inode->i_mapping) {
1294 			unlock_page(page);
1295 			put_page(page);
1296 			goto again;
1297 		}
1298 
1299 		pages[i] = page;
1300 		i_done++;
1301 	}
1302 	if (!i_done || ret)
1303 		goto out;
1304 
1305 	if (!(inode->i_sb->s_flags & SB_ACTIVE))
1306 		goto out;
1307 
1308 	/*
1309 	 * so now we have a nice long stream of locked
1310 	 * and up to date pages, lets wait on them
1311 	 */
1312 	for (i = 0; i < i_done; i++)
1313 		wait_on_page_writeback(pages[i]);
1314 
1315 	page_start = page_offset(pages[0]);
1316 	page_end = page_offset(pages[i_done - 1]) + PAGE_SIZE;
1317 
1318 	lock_extent_bits(&BTRFS_I(inode)->io_tree,
1319 			 page_start, page_end - 1, &cached_state);
1320 
1321 	/*
1322 	 * When defragmenting we skip ranges that have holes or inline extents,
1323 	 * (check should_defrag_range()), to avoid unnecessary IO and wasting
1324 	 * space. At btrfs_defrag_file(), we check if a range should be defragged
1325 	 * before locking the inode and then, if it should, we trigger a sync
1326 	 * page cache readahead - we lock the inode only after that to avoid
1327 	 * blocking for too long other tasks that possibly want to operate on
1328 	 * other file ranges. But before we were able to get the inode lock,
1329 	 * some other task may have punched a hole in the range, or we may have
1330 	 * now an inline extent, in which case we should not defrag. So check
1331 	 * for that here, where we have the inode and the range locked, and bail
1332 	 * out if that happened.
1333 	 */
1334 	search_start = page_start;
1335 	while (search_start < page_end) {
1336 		struct extent_map *em;
1337 
1338 		em = btrfs_get_extent(BTRFS_I(inode), NULL, 0, search_start,
1339 				      page_end - search_start);
1340 		if (IS_ERR(em)) {
1341 			ret = PTR_ERR(em);
1342 			goto out_unlock_range;
1343 		}
1344 		if (em->block_start >= EXTENT_MAP_LAST_BYTE) {
1345 			free_extent_map(em);
1346 			/* Ok, 0 means we did not defrag anything */
1347 			ret = 0;
1348 			goto out_unlock_range;
1349 		}
1350 		search_start = extent_map_end(em);
1351 		free_extent_map(em);
1352 	}
1353 
1354 	clear_extent_bit(&BTRFS_I(inode)->io_tree, page_start,
1355 			  page_end - 1, EXTENT_DELALLOC | EXTENT_DO_ACCOUNTING |
1356 			  EXTENT_DEFRAG, 0, 0, &cached_state);
1357 
1358 	if (i_done != page_cnt) {
1359 		spin_lock(&BTRFS_I(inode)->lock);
1360 		btrfs_mod_outstanding_extents(BTRFS_I(inode), 1);
1361 		spin_unlock(&BTRFS_I(inode)->lock);
1362 		btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1363 				start, (page_cnt - i_done) << PAGE_SHIFT, true);
1364 	}
1365 
1366 
1367 	set_extent_defrag(&BTRFS_I(inode)->io_tree, page_start, page_end - 1,
1368 			  &cached_state);
1369 
1370 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1371 			     page_start, page_end - 1, &cached_state);
1372 
1373 	for (i = 0; i < i_done; i++) {
1374 		clear_page_dirty_for_io(pages[i]);
1375 		ClearPageChecked(pages[i]);
1376 		set_page_dirty(pages[i]);
1377 		unlock_page(pages[i]);
1378 		put_page(pages[i]);
1379 	}
1380 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1381 	extent_changeset_free(data_reserved);
1382 	return i_done;
1383 
1384 out_unlock_range:
1385 	unlock_extent_cached(&BTRFS_I(inode)->io_tree,
1386 			     page_start, page_end - 1, &cached_state);
1387 out:
1388 	for (i = 0; i < i_done; i++) {
1389 		unlock_page(pages[i]);
1390 		put_page(pages[i]);
1391 	}
1392 	btrfs_delalloc_release_space(BTRFS_I(inode), data_reserved,
1393 			start, page_cnt << PAGE_SHIFT, true);
1394 	btrfs_delalloc_release_extents(BTRFS_I(inode), page_cnt << PAGE_SHIFT);
1395 	extent_changeset_free(data_reserved);
1396 	return ret;
1397 
1398 }
1399 
1400 int btrfs_defrag_file(struct inode *inode, struct file *file,
1401 		      struct btrfs_ioctl_defrag_range_args *range,
1402 		      u64 newer_than, unsigned long max_to_defrag)
1403 {
1404 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1405 	struct btrfs_root *root = BTRFS_I(inode)->root;
1406 	struct file_ra_state *ra = NULL;
1407 	unsigned long last_index;
1408 	u64 isize = i_size_read(inode);
1409 	u64 last_len = 0;
1410 	u64 skip = 0;
1411 	u64 defrag_end = 0;
1412 	u64 newer_off = range->start;
1413 	unsigned long i;
1414 	unsigned long ra_index = 0;
1415 	int ret;
1416 	int defrag_count = 0;
1417 	int compress_type = BTRFS_COMPRESS_ZLIB;
1418 	u32 extent_thresh = range->extent_thresh;
1419 	unsigned long max_cluster = SZ_256K >> PAGE_SHIFT;
1420 	unsigned long cluster = max_cluster;
1421 	u64 new_align = ~((u64)SZ_128K - 1);
1422 	struct page **pages = NULL;
1423 	bool do_compress = range->flags & BTRFS_DEFRAG_RANGE_COMPRESS;
1424 
1425 	if (isize == 0)
1426 		return 0;
1427 
1428 	if (range->start >= isize)
1429 		return -EINVAL;
1430 
1431 	if (do_compress) {
1432 		if (range->compress_type >= BTRFS_NR_COMPRESS_TYPES)
1433 			return -EINVAL;
1434 		if (range->compress_type)
1435 			compress_type = range->compress_type;
1436 	}
1437 
1438 	if (extent_thresh == 0)
1439 		extent_thresh = SZ_256K;
1440 
1441 	/*
1442 	 * If we were not given a file, allocate a readahead context. As
1443 	 * readahead is just an optimization, defrag will work without it so
1444 	 * we don't error out.
1445 	 */
1446 	if (!file) {
1447 		ra = kzalloc(sizeof(*ra), GFP_KERNEL);
1448 		if (ra)
1449 			file_ra_state_init(ra, inode->i_mapping);
1450 	} else {
1451 		ra = &file->f_ra;
1452 	}
1453 
1454 	pages = kmalloc_array(max_cluster, sizeof(struct page *), GFP_KERNEL);
1455 	if (!pages) {
1456 		ret = -ENOMEM;
1457 		goto out_ra;
1458 	}
1459 
1460 	/* find the last page to defrag */
1461 	if (range->start + range->len > range->start) {
1462 		last_index = min_t(u64, isize - 1,
1463 			 range->start + range->len - 1) >> PAGE_SHIFT;
1464 	} else {
1465 		last_index = (isize - 1) >> PAGE_SHIFT;
1466 	}
1467 
1468 	if (newer_than) {
1469 		ret = find_new_extents(root, inode, newer_than,
1470 				       &newer_off, SZ_64K);
1471 		if (!ret) {
1472 			range->start = newer_off;
1473 			/*
1474 			 * we always align our defrag to help keep
1475 			 * the extents in the file evenly spaced
1476 			 */
1477 			i = (newer_off & new_align) >> PAGE_SHIFT;
1478 		} else
1479 			goto out_ra;
1480 	} else {
1481 		i = range->start >> PAGE_SHIFT;
1482 	}
1483 	if (!max_to_defrag)
1484 		max_to_defrag = last_index - i + 1;
1485 
1486 	/*
1487 	 * make writeback starts from i, so the defrag range can be
1488 	 * written sequentially.
1489 	 */
1490 	if (i < inode->i_mapping->writeback_index)
1491 		inode->i_mapping->writeback_index = i;
1492 
1493 	while (i <= last_index && defrag_count < max_to_defrag &&
1494 	       (i < DIV_ROUND_UP(i_size_read(inode), PAGE_SIZE))) {
1495 		/*
1496 		 * make sure we stop running if someone unmounts
1497 		 * the FS
1498 		 */
1499 		if (!(inode->i_sb->s_flags & SB_ACTIVE))
1500 			break;
1501 
1502 		if (btrfs_defrag_cancelled(fs_info)) {
1503 			btrfs_debug(fs_info, "defrag_file cancelled");
1504 			ret = -EAGAIN;
1505 			goto error;
1506 		}
1507 
1508 		if (!should_defrag_range(inode, (u64)i << PAGE_SHIFT,
1509 					 extent_thresh, &last_len, &skip,
1510 					 &defrag_end, do_compress)){
1511 			unsigned long next;
1512 			/*
1513 			 * the should_defrag function tells us how much to skip
1514 			 * bump our counter by the suggested amount
1515 			 */
1516 			next = DIV_ROUND_UP(skip, PAGE_SIZE);
1517 			i = max(i + 1, next);
1518 			continue;
1519 		}
1520 
1521 		if (!newer_than) {
1522 			cluster = (PAGE_ALIGN(defrag_end) >>
1523 				   PAGE_SHIFT) - i;
1524 			cluster = min(cluster, max_cluster);
1525 		} else {
1526 			cluster = max_cluster;
1527 		}
1528 
1529 		if (i + cluster > ra_index) {
1530 			ra_index = max(i, ra_index);
1531 			if (ra)
1532 				page_cache_sync_readahead(inode->i_mapping, ra,
1533 						file, ra_index, cluster);
1534 			ra_index += cluster;
1535 		}
1536 
1537 		btrfs_inode_lock(inode, 0);
1538 		if (IS_SWAPFILE(inode)) {
1539 			ret = -ETXTBSY;
1540 		} else {
1541 			if (do_compress)
1542 				BTRFS_I(inode)->defrag_compress = compress_type;
1543 			ret = cluster_pages_for_defrag(inode, pages, i, cluster);
1544 		}
1545 		if (ret < 0) {
1546 			btrfs_inode_unlock(inode, 0);
1547 			goto out_ra;
1548 		}
1549 
1550 		defrag_count += ret;
1551 		balance_dirty_pages_ratelimited(inode->i_mapping);
1552 		btrfs_inode_unlock(inode, 0);
1553 
1554 		if (newer_than) {
1555 			if (newer_off == (u64)-1)
1556 				break;
1557 
1558 			if (ret > 0)
1559 				i += ret;
1560 
1561 			newer_off = max(newer_off + 1,
1562 					(u64)i << PAGE_SHIFT);
1563 
1564 			ret = find_new_extents(root, inode, newer_than,
1565 					       &newer_off, SZ_64K);
1566 			if (!ret) {
1567 				range->start = newer_off;
1568 				i = (newer_off & new_align) >> PAGE_SHIFT;
1569 			} else {
1570 				break;
1571 			}
1572 		} else {
1573 			if (ret > 0) {
1574 				i += ret;
1575 				last_len += ret << PAGE_SHIFT;
1576 			} else {
1577 				i++;
1578 				last_len = 0;
1579 			}
1580 		}
1581 	}
1582 
1583 	ret = defrag_count;
1584 error:
1585 	if ((range->flags & BTRFS_DEFRAG_RANGE_START_IO)) {
1586 		filemap_flush(inode->i_mapping);
1587 		if (test_bit(BTRFS_INODE_HAS_ASYNC_EXTENT,
1588 			     &BTRFS_I(inode)->runtime_flags))
1589 			filemap_flush(inode->i_mapping);
1590 	}
1591 
1592 	if (range->compress_type == BTRFS_COMPRESS_LZO) {
1593 		btrfs_set_fs_incompat(fs_info, COMPRESS_LZO);
1594 	} else if (range->compress_type == BTRFS_COMPRESS_ZSTD) {
1595 		btrfs_set_fs_incompat(fs_info, COMPRESS_ZSTD);
1596 	}
1597 
1598 out_ra:
1599 	if (do_compress) {
1600 		btrfs_inode_lock(inode, 0);
1601 		BTRFS_I(inode)->defrag_compress = BTRFS_COMPRESS_NONE;
1602 		btrfs_inode_unlock(inode, 0);
1603 	}
1604 	if (!file)
1605 		kfree(ra);
1606 	kfree(pages);
1607 	return ret;
1608 }
1609 
1610 /*
1611  * Try to start exclusive operation @type or cancel it if it's running.
1612  *
1613  * Return:
1614  *   0        - normal mode, newly claimed op started
1615  *  >0        - normal mode, something else is running,
1616  *              return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS to user space
1617  * ECANCELED  - cancel mode, successful cancel
1618  * ENOTCONN   - cancel mode, operation not running anymore
1619  */
1620 static int exclop_start_or_cancel_reloc(struct btrfs_fs_info *fs_info,
1621 			enum btrfs_exclusive_operation type, bool cancel)
1622 {
1623 	if (!cancel) {
1624 		/* Start normal op */
1625 		if (!btrfs_exclop_start(fs_info, type))
1626 			return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
1627 		/* Exclusive operation is now claimed */
1628 		return 0;
1629 	}
1630 
1631 	/* Cancel running op */
1632 	if (btrfs_exclop_start_try_lock(fs_info, type)) {
1633 		/*
1634 		 * This blocks any exclop finish from setting it to NONE, so we
1635 		 * request cancellation. Either it runs and we will wait for it,
1636 		 * or it has finished and no waiting will happen.
1637 		 */
1638 		atomic_inc(&fs_info->reloc_cancel_req);
1639 		btrfs_exclop_start_unlock(fs_info);
1640 
1641 		if (test_bit(BTRFS_FS_RELOC_RUNNING, &fs_info->flags))
1642 			wait_on_bit(&fs_info->flags, BTRFS_FS_RELOC_RUNNING,
1643 				    TASK_INTERRUPTIBLE);
1644 
1645 		return -ECANCELED;
1646 	}
1647 
1648 	/* Something else is running or none */
1649 	return -ENOTCONN;
1650 }
1651 
1652 static noinline int btrfs_ioctl_resize(struct file *file,
1653 					void __user *arg)
1654 {
1655 	struct inode *inode = file_inode(file);
1656 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1657 	u64 new_size;
1658 	u64 old_size;
1659 	u64 devid = 1;
1660 	struct btrfs_root *root = BTRFS_I(inode)->root;
1661 	struct btrfs_ioctl_vol_args *vol_args;
1662 	struct btrfs_trans_handle *trans;
1663 	struct btrfs_device *device = NULL;
1664 	char *sizestr;
1665 	char *retptr;
1666 	char *devstr = NULL;
1667 	int ret = 0;
1668 	int mod = 0;
1669 	bool cancel;
1670 
1671 	if (!capable(CAP_SYS_ADMIN))
1672 		return -EPERM;
1673 
1674 	ret = mnt_want_write_file(file);
1675 	if (ret)
1676 		return ret;
1677 
1678 	/*
1679 	 * Read the arguments before checking exclusivity to be able to
1680 	 * distinguish regular resize and cancel
1681 	 */
1682 	vol_args = memdup_user(arg, sizeof(*vol_args));
1683 	if (IS_ERR(vol_args)) {
1684 		ret = PTR_ERR(vol_args);
1685 		goto out_drop;
1686 	}
1687 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1688 	sizestr = vol_args->name;
1689 	cancel = (strcmp("cancel", sizestr) == 0);
1690 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_RESIZE, cancel);
1691 	if (ret)
1692 		goto out_free;
1693 	/* Exclusive operation is now claimed */
1694 
1695 	devstr = strchr(sizestr, ':');
1696 	if (devstr) {
1697 		sizestr = devstr + 1;
1698 		*devstr = '\0';
1699 		devstr = vol_args->name;
1700 		ret = kstrtoull(devstr, 10, &devid);
1701 		if (ret)
1702 			goto out_finish;
1703 		if (!devid) {
1704 			ret = -EINVAL;
1705 			goto out_finish;
1706 		}
1707 		btrfs_info(fs_info, "resizing devid %llu", devid);
1708 	}
1709 
1710 	device = btrfs_find_device(fs_info->fs_devices, devid, NULL, NULL);
1711 	if (!device) {
1712 		btrfs_info(fs_info, "resizer unable to find device %llu",
1713 			   devid);
1714 		ret = -ENODEV;
1715 		goto out_finish;
1716 	}
1717 
1718 	if (!test_bit(BTRFS_DEV_STATE_WRITEABLE, &device->dev_state)) {
1719 		btrfs_info(fs_info,
1720 			   "resizer unable to apply on readonly device %llu",
1721 		       devid);
1722 		ret = -EPERM;
1723 		goto out_finish;
1724 	}
1725 
1726 	if (!strcmp(sizestr, "max"))
1727 		new_size = device->bdev->bd_inode->i_size;
1728 	else {
1729 		if (sizestr[0] == '-') {
1730 			mod = -1;
1731 			sizestr++;
1732 		} else if (sizestr[0] == '+') {
1733 			mod = 1;
1734 			sizestr++;
1735 		}
1736 		new_size = memparse(sizestr, &retptr);
1737 		if (*retptr != '\0' || new_size == 0) {
1738 			ret = -EINVAL;
1739 			goto out_finish;
1740 		}
1741 	}
1742 
1743 	if (test_bit(BTRFS_DEV_STATE_REPLACE_TGT, &device->dev_state)) {
1744 		ret = -EPERM;
1745 		goto out_finish;
1746 	}
1747 
1748 	old_size = btrfs_device_get_total_bytes(device);
1749 
1750 	if (mod < 0) {
1751 		if (new_size > old_size) {
1752 			ret = -EINVAL;
1753 			goto out_finish;
1754 		}
1755 		new_size = old_size - new_size;
1756 	} else if (mod > 0) {
1757 		if (new_size > ULLONG_MAX - old_size) {
1758 			ret = -ERANGE;
1759 			goto out_finish;
1760 		}
1761 		new_size = old_size + new_size;
1762 	}
1763 
1764 	if (new_size < SZ_256M) {
1765 		ret = -EINVAL;
1766 		goto out_finish;
1767 	}
1768 	if (new_size > device->bdev->bd_inode->i_size) {
1769 		ret = -EFBIG;
1770 		goto out_finish;
1771 	}
1772 
1773 	new_size = round_down(new_size, fs_info->sectorsize);
1774 
1775 	if (new_size > old_size) {
1776 		trans = btrfs_start_transaction(root, 0);
1777 		if (IS_ERR(trans)) {
1778 			ret = PTR_ERR(trans);
1779 			goto out_finish;
1780 		}
1781 		ret = btrfs_grow_device(trans, device, new_size);
1782 		btrfs_commit_transaction(trans);
1783 	} else if (new_size < old_size) {
1784 		ret = btrfs_shrink_device(device, new_size);
1785 	} /* equal, nothing need to do */
1786 
1787 	if (ret == 0 && new_size != old_size)
1788 		btrfs_info_in_rcu(fs_info,
1789 			"resize device %s (devid %llu) from %llu to %llu",
1790 			rcu_str_deref(device->name), device->devid,
1791 			old_size, new_size);
1792 out_finish:
1793 	btrfs_exclop_finish(fs_info);
1794 out_free:
1795 	kfree(vol_args);
1796 out_drop:
1797 	mnt_drop_write_file(file);
1798 	return ret;
1799 }
1800 
1801 static noinline int __btrfs_ioctl_snap_create(struct file *file,
1802 				const char *name, unsigned long fd, int subvol,
1803 				bool readonly,
1804 				struct btrfs_qgroup_inherit *inherit)
1805 {
1806 	int namelen;
1807 	int ret = 0;
1808 
1809 	if (!S_ISDIR(file_inode(file)->i_mode))
1810 		return -ENOTDIR;
1811 
1812 	ret = mnt_want_write_file(file);
1813 	if (ret)
1814 		goto out;
1815 
1816 	namelen = strlen(name);
1817 	if (strchr(name, '/')) {
1818 		ret = -EINVAL;
1819 		goto out_drop_write;
1820 	}
1821 
1822 	if (name[0] == '.' &&
1823 	   (namelen == 1 || (name[1] == '.' && namelen == 2))) {
1824 		ret = -EEXIST;
1825 		goto out_drop_write;
1826 	}
1827 
1828 	if (subvol) {
1829 		ret = btrfs_mksubvol(&file->f_path, name, namelen,
1830 				     NULL, readonly, inherit);
1831 	} else {
1832 		struct fd src = fdget(fd);
1833 		struct inode *src_inode;
1834 		if (!src.file) {
1835 			ret = -EINVAL;
1836 			goto out_drop_write;
1837 		}
1838 
1839 		src_inode = file_inode(src.file);
1840 		if (src_inode->i_sb != file_inode(file)->i_sb) {
1841 			btrfs_info(BTRFS_I(file_inode(file))->root->fs_info,
1842 				   "Snapshot src from another FS");
1843 			ret = -EXDEV;
1844 		} else if (!inode_owner_or_capable(&init_user_ns, src_inode)) {
1845 			/*
1846 			 * Subvolume creation is not restricted, but snapshots
1847 			 * are limited to own subvolumes only
1848 			 */
1849 			ret = -EPERM;
1850 		} else {
1851 			ret = btrfs_mksnapshot(&file->f_path, name, namelen,
1852 					     BTRFS_I(src_inode)->root,
1853 					     readonly, inherit);
1854 		}
1855 		fdput(src);
1856 	}
1857 out_drop_write:
1858 	mnt_drop_write_file(file);
1859 out:
1860 	return ret;
1861 }
1862 
1863 static noinline int btrfs_ioctl_snap_create(struct file *file,
1864 					    void __user *arg, int subvol)
1865 {
1866 	struct btrfs_ioctl_vol_args *vol_args;
1867 	int ret;
1868 
1869 	if (!S_ISDIR(file_inode(file)->i_mode))
1870 		return -ENOTDIR;
1871 
1872 	vol_args = memdup_user(arg, sizeof(*vol_args));
1873 	if (IS_ERR(vol_args))
1874 		return PTR_ERR(vol_args);
1875 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
1876 
1877 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1878 					subvol, false, NULL);
1879 
1880 	kfree(vol_args);
1881 	return ret;
1882 }
1883 
1884 static noinline int btrfs_ioctl_snap_create_v2(struct file *file,
1885 					       void __user *arg, int subvol)
1886 {
1887 	struct btrfs_ioctl_vol_args_v2 *vol_args;
1888 	int ret;
1889 	bool readonly = false;
1890 	struct btrfs_qgroup_inherit *inherit = NULL;
1891 
1892 	if (!S_ISDIR(file_inode(file)->i_mode))
1893 		return -ENOTDIR;
1894 
1895 	vol_args = memdup_user(arg, sizeof(*vol_args));
1896 	if (IS_ERR(vol_args))
1897 		return PTR_ERR(vol_args);
1898 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
1899 
1900 	if (vol_args->flags & ~BTRFS_SUBVOL_CREATE_ARGS_MASK) {
1901 		ret = -EOPNOTSUPP;
1902 		goto free_args;
1903 	}
1904 
1905 	if (vol_args->flags & BTRFS_SUBVOL_RDONLY)
1906 		readonly = true;
1907 	if (vol_args->flags & BTRFS_SUBVOL_QGROUP_INHERIT) {
1908 		u64 nums;
1909 
1910 		if (vol_args->size < sizeof(*inherit) ||
1911 		    vol_args->size > PAGE_SIZE) {
1912 			ret = -EINVAL;
1913 			goto free_args;
1914 		}
1915 		inherit = memdup_user(vol_args->qgroup_inherit, vol_args->size);
1916 		if (IS_ERR(inherit)) {
1917 			ret = PTR_ERR(inherit);
1918 			goto free_args;
1919 		}
1920 
1921 		if (inherit->num_qgroups > PAGE_SIZE ||
1922 		    inherit->num_ref_copies > PAGE_SIZE ||
1923 		    inherit->num_excl_copies > PAGE_SIZE) {
1924 			ret = -EINVAL;
1925 			goto free_inherit;
1926 		}
1927 
1928 		nums = inherit->num_qgroups + 2 * inherit->num_ref_copies +
1929 		       2 * inherit->num_excl_copies;
1930 		if (vol_args->size != struct_size(inherit, qgroups, nums)) {
1931 			ret = -EINVAL;
1932 			goto free_inherit;
1933 		}
1934 	}
1935 
1936 	ret = __btrfs_ioctl_snap_create(file, vol_args->name, vol_args->fd,
1937 					subvol, readonly, inherit);
1938 	if (ret)
1939 		goto free_inherit;
1940 free_inherit:
1941 	kfree(inherit);
1942 free_args:
1943 	kfree(vol_args);
1944 	return ret;
1945 }
1946 
1947 static noinline int btrfs_ioctl_subvol_getflags(struct file *file,
1948 						void __user *arg)
1949 {
1950 	struct inode *inode = file_inode(file);
1951 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1952 	struct btrfs_root *root = BTRFS_I(inode)->root;
1953 	int ret = 0;
1954 	u64 flags = 0;
1955 
1956 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID)
1957 		return -EINVAL;
1958 
1959 	down_read(&fs_info->subvol_sem);
1960 	if (btrfs_root_readonly(root))
1961 		flags |= BTRFS_SUBVOL_RDONLY;
1962 	up_read(&fs_info->subvol_sem);
1963 
1964 	if (copy_to_user(arg, &flags, sizeof(flags)))
1965 		ret = -EFAULT;
1966 
1967 	return ret;
1968 }
1969 
1970 static noinline int btrfs_ioctl_subvol_setflags(struct file *file,
1971 					      void __user *arg)
1972 {
1973 	struct inode *inode = file_inode(file);
1974 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
1975 	struct btrfs_root *root = BTRFS_I(inode)->root;
1976 	struct btrfs_trans_handle *trans;
1977 	u64 root_flags;
1978 	u64 flags;
1979 	int ret = 0;
1980 
1981 	if (!inode_owner_or_capable(&init_user_ns, inode))
1982 		return -EPERM;
1983 
1984 	ret = mnt_want_write_file(file);
1985 	if (ret)
1986 		goto out;
1987 
1988 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
1989 		ret = -EINVAL;
1990 		goto out_drop_write;
1991 	}
1992 
1993 	if (copy_from_user(&flags, arg, sizeof(flags))) {
1994 		ret = -EFAULT;
1995 		goto out_drop_write;
1996 	}
1997 
1998 	if (flags & ~BTRFS_SUBVOL_RDONLY) {
1999 		ret = -EOPNOTSUPP;
2000 		goto out_drop_write;
2001 	}
2002 
2003 	down_write(&fs_info->subvol_sem);
2004 
2005 	/* nothing to do */
2006 	if (!!(flags & BTRFS_SUBVOL_RDONLY) == btrfs_root_readonly(root))
2007 		goto out_drop_sem;
2008 
2009 	root_flags = btrfs_root_flags(&root->root_item);
2010 	if (flags & BTRFS_SUBVOL_RDONLY) {
2011 		btrfs_set_root_flags(&root->root_item,
2012 				     root_flags | BTRFS_ROOT_SUBVOL_RDONLY);
2013 	} else {
2014 		/*
2015 		 * Block RO -> RW transition if this subvolume is involved in
2016 		 * send
2017 		 */
2018 		spin_lock(&root->root_item_lock);
2019 		if (root->send_in_progress == 0) {
2020 			btrfs_set_root_flags(&root->root_item,
2021 				     root_flags & ~BTRFS_ROOT_SUBVOL_RDONLY);
2022 			spin_unlock(&root->root_item_lock);
2023 		} else {
2024 			spin_unlock(&root->root_item_lock);
2025 			btrfs_warn(fs_info,
2026 				   "Attempt to set subvolume %llu read-write during send",
2027 				   root->root_key.objectid);
2028 			ret = -EPERM;
2029 			goto out_drop_sem;
2030 		}
2031 	}
2032 
2033 	trans = btrfs_start_transaction(root, 1);
2034 	if (IS_ERR(trans)) {
2035 		ret = PTR_ERR(trans);
2036 		goto out_reset;
2037 	}
2038 
2039 	ret = btrfs_update_root(trans, fs_info->tree_root,
2040 				&root->root_key, &root->root_item);
2041 	if (ret < 0) {
2042 		btrfs_end_transaction(trans);
2043 		goto out_reset;
2044 	}
2045 
2046 	ret = btrfs_commit_transaction(trans);
2047 
2048 out_reset:
2049 	if (ret)
2050 		btrfs_set_root_flags(&root->root_item, root_flags);
2051 out_drop_sem:
2052 	up_write(&fs_info->subvol_sem);
2053 out_drop_write:
2054 	mnt_drop_write_file(file);
2055 out:
2056 	return ret;
2057 }
2058 
2059 static noinline int key_in_sk(struct btrfs_key *key,
2060 			      struct btrfs_ioctl_search_key *sk)
2061 {
2062 	struct btrfs_key test;
2063 	int ret;
2064 
2065 	test.objectid = sk->min_objectid;
2066 	test.type = sk->min_type;
2067 	test.offset = sk->min_offset;
2068 
2069 	ret = btrfs_comp_cpu_keys(key, &test);
2070 	if (ret < 0)
2071 		return 0;
2072 
2073 	test.objectid = sk->max_objectid;
2074 	test.type = sk->max_type;
2075 	test.offset = sk->max_offset;
2076 
2077 	ret = btrfs_comp_cpu_keys(key, &test);
2078 	if (ret > 0)
2079 		return 0;
2080 	return 1;
2081 }
2082 
2083 static noinline int copy_to_sk(struct btrfs_path *path,
2084 			       struct btrfs_key *key,
2085 			       struct btrfs_ioctl_search_key *sk,
2086 			       size_t *buf_size,
2087 			       char __user *ubuf,
2088 			       unsigned long *sk_offset,
2089 			       int *num_found)
2090 {
2091 	u64 found_transid;
2092 	struct extent_buffer *leaf;
2093 	struct btrfs_ioctl_search_header sh;
2094 	struct btrfs_key test;
2095 	unsigned long item_off;
2096 	unsigned long item_len;
2097 	int nritems;
2098 	int i;
2099 	int slot;
2100 	int ret = 0;
2101 
2102 	leaf = path->nodes[0];
2103 	slot = path->slots[0];
2104 	nritems = btrfs_header_nritems(leaf);
2105 
2106 	if (btrfs_header_generation(leaf) > sk->max_transid) {
2107 		i = nritems;
2108 		goto advance_key;
2109 	}
2110 	found_transid = btrfs_header_generation(leaf);
2111 
2112 	for (i = slot; i < nritems; i++) {
2113 		item_off = btrfs_item_ptr_offset(leaf, i);
2114 		item_len = btrfs_item_size_nr(leaf, i);
2115 
2116 		btrfs_item_key_to_cpu(leaf, key, i);
2117 		if (!key_in_sk(key, sk))
2118 			continue;
2119 
2120 		if (sizeof(sh) + item_len > *buf_size) {
2121 			if (*num_found) {
2122 				ret = 1;
2123 				goto out;
2124 			}
2125 
2126 			/*
2127 			 * return one empty item back for v1, which does not
2128 			 * handle -EOVERFLOW
2129 			 */
2130 
2131 			*buf_size = sizeof(sh) + item_len;
2132 			item_len = 0;
2133 			ret = -EOVERFLOW;
2134 		}
2135 
2136 		if (sizeof(sh) + item_len + *sk_offset > *buf_size) {
2137 			ret = 1;
2138 			goto out;
2139 		}
2140 
2141 		sh.objectid = key->objectid;
2142 		sh.offset = key->offset;
2143 		sh.type = key->type;
2144 		sh.len = item_len;
2145 		sh.transid = found_transid;
2146 
2147 		/*
2148 		 * Copy search result header. If we fault then loop again so we
2149 		 * can fault in the pages and -EFAULT there if there's a
2150 		 * problem. Otherwise we'll fault and then copy the buffer in
2151 		 * properly this next time through
2152 		 */
2153 		if (copy_to_user_nofault(ubuf + *sk_offset, &sh, sizeof(sh))) {
2154 			ret = 0;
2155 			goto out;
2156 		}
2157 
2158 		*sk_offset += sizeof(sh);
2159 
2160 		if (item_len) {
2161 			char __user *up = ubuf + *sk_offset;
2162 			/*
2163 			 * Copy the item, same behavior as above, but reset the
2164 			 * * sk_offset so we copy the full thing again.
2165 			 */
2166 			if (read_extent_buffer_to_user_nofault(leaf, up,
2167 						item_off, item_len)) {
2168 				ret = 0;
2169 				*sk_offset -= sizeof(sh);
2170 				goto out;
2171 			}
2172 
2173 			*sk_offset += item_len;
2174 		}
2175 		(*num_found)++;
2176 
2177 		if (ret) /* -EOVERFLOW from above */
2178 			goto out;
2179 
2180 		if (*num_found >= sk->nr_items) {
2181 			ret = 1;
2182 			goto out;
2183 		}
2184 	}
2185 advance_key:
2186 	ret = 0;
2187 	test.objectid = sk->max_objectid;
2188 	test.type = sk->max_type;
2189 	test.offset = sk->max_offset;
2190 	if (btrfs_comp_cpu_keys(key, &test) >= 0)
2191 		ret = 1;
2192 	else if (key->offset < (u64)-1)
2193 		key->offset++;
2194 	else if (key->type < (u8)-1) {
2195 		key->offset = 0;
2196 		key->type++;
2197 	} else if (key->objectid < (u64)-1) {
2198 		key->offset = 0;
2199 		key->type = 0;
2200 		key->objectid++;
2201 	} else
2202 		ret = 1;
2203 out:
2204 	/*
2205 	 *  0: all items from this leaf copied, continue with next
2206 	 *  1: * more items can be copied, but unused buffer is too small
2207 	 *     * all items were found
2208 	 *     Either way, it will stops the loop which iterates to the next
2209 	 *     leaf
2210 	 *  -EOVERFLOW: item was to large for buffer
2211 	 *  -EFAULT: could not copy extent buffer back to userspace
2212 	 */
2213 	return ret;
2214 }
2215 
2216 static noinline int search_ioctl(struct inode *inode,
2217 				 struct btrfs_ioctl_search_key *sk,
2218 				 size_t *buf_size,
2219 				 char __user *ubuf)
2220 {
2221 	struct btrfs_fs_info *info = btrfs_sb(inode->i_sb);
2222 	struct btrfs_root *root;
2223 	struct btrfs_key key;
2224 	struct btrfs_path *path;
2225 	int ret;
2226 	int num_found = 0;
2227 	unsigned long sk_offset = 0;
2228 
2229 	if (*buf_size < sizeof(struct btrfs_ioctl_search_header)) {
2230 		*buf_size = sizeof(struct btrfs_ioctl_search_header);
2231 		return -EOVERFLOW;
2232 	}
2233 
2234 	path = btrfs_alloc_path();
2235 	if (!path)
2236 		return -ENOMEM;
2237 
2238 	if (sk->tree_id == 0) {
2239 		/* search the root of the inode that was passed */
2240 		root = btrfs_grab_root(BTRFS_I(inode)->root);
2241 	} else {
2242 		root = btrfs_get_fs_root(info, sk->tree_id, true);
2243 		if (IS_ERR(root)) {
2244 			btrfs_free_path(path);
2245 			return PTR_ERR(root);
2246 		}
2247 	}
2248 
2249 	key.objectid = sk->min_objectid;
2250 	key.type = sk->min_type;
2251 	key.offset = sk->min_offset;
2252 
2253 	while (1) {
2254 		ret = fault_in_pages_writeable(ubuf + sk_offset,
2255 					       *buf_size - sk_offset);
2256 		if (ret)
2257 			break;
2258 
2259 		ret = btrfs_search_forward(root, &key, path, sk->min_transid);
2260 		if (ret != 0) {
2261 			if (ret > 0)
2262 				ret = 0;
2263 			goto err;
2264 		}
2265 		ret = copy_to_sk(path, &key, sk, buf_size, ubuf,
2266 				 &sk_offset, &num_found);
2267 		btrfs_release_path(path);
2268 		if (ret)
2269 			break;
2270 
2271 	}
2272 	if (ret > 0)
2273 		ret = 0;
2274 err:
2275 	sk->nr_items = num_found;
2276 	btrfs_put_root(root);
2277 	btrfs_free_path(path);
2278 	return ret;
2279 }
2280 
2281 static noinline int btrfs_ioctl_tree_search(struct file *file,
2282 					   void __user *argp)
2283 {
2284 	struct btrfs_ioctl_search_args __user *uargs;
2285 	struct btrfs_ioctl_search_key sk;
2286 	struct inode *inode;
2287 	int ret;
2288 	size_t buf_size;
2289 
2290 	if (!capable(CAP_SYS_ADMIN))
2291 		return -EPERM;
2292 
2293 	uargs = (struct btrfs_ioctl_search_args __user *)argp;
2294 
2295 	if (copy_from_user(&sk, &uargs->key, sizeof(sk)))
2296 		return -EFAULT;
2297 
2298 	buf_size = sizeof(uargs->buf);
2299 
2300 	inode = file_inode(file);
2301 	ret = search_ioctl(inode, &sk, &buf_size, uargs->buf);
2302 
2303 	/*
2304 	 * In the origin implementation an overflow is handled by returning a
2305 	 * search header with a len of zero, so reset ret.
2306 	 */
2307 	if (ret == -EOVERFLOW)
2308 		ret = 0;
2309 
2310 	if (ret == 0 && copy_to_user(&uargs->key, &sk, sizeof(sk)))
2311 		ret = -EFAULT;
2312 	return ret;
2313 }
2314 
2315 static noinline int btrfs_ioctl_tree_search_v2(struct file *file,
2316 					       void __user *argp)
2317 {
2318 	struct btrfs_ioctl_search_args_v2 __user *uarg;
2319 	struct btrfs_ioctl_search_args_v2 args;
2320 	struct inode *inode;
2321 	int ret;
2322 	size_t buf_size;
2323 	const size_t buf_limit = SZ_16M;
2324 
2325 	if (!capable(CAP_SYS_ADMIN))
2326 		return -EPERM;
2327 
2328 	/* copy search header and buffer size */
2329 	uarg = (struct btrfs_ioctl_search_args_v2 __user *)argp;
2330 	if (copy_from_user(&args, uarg, sizeof(args)))
2331 		return -EFAULT;
2332 
2333 	buf_size = args.buf_size;
2334 
2335 	/* limit result size to 16MB */
2336 	if (buf_size > buf_limit)
2337 		buf_size = buf_limit;
2338 
2339 	inode = file_inode(file);
2340 	ret = search_ioctl(inode, &args.key, &buf_size,
2341 			   (char __user *)(&uarg->buf[0]));
2342 	if (ret == 0 && copy_to_user(&uarg->key, &args.key, sizeof(args.key)))
2343 		ret = -EFAULT;
2344 	else if (ret == -EOVERFLOW &&
2345 		copy_to_user(&uarg->buf_size, &buf_size, sizeof(buf_size)))
2346 		ret = -EFAULT;
2347 
2348 	return ret;
2349 }
2350 
2351 /*
2352  * Search INODE_REFs to identify path name of 'dirid' directory
2353  * in a 'tree_id' tree. and sets path name to 'name'.
2354  */
2355 static noinline int btrfs_search_path_in_tree(struct btrfs_fs_info *info,
2356 				u64 tree_id, u64 dirid, char *name)
2357 {
2358 	struct btrfs_root *root;
2359 	struct btrfs_key key;
2360 	char *ptr;
2361 	int ret = -1;
2362 	int slot;
2363 	int len;
2364 	int total_len = 0;
2365 	struct btrfs_inode_ref *iref;
2366 	struct extent_buffer *l;
2367 	struct btrfs_path *path;
2368 
2369 	if (dirid == BTRFS_FIRST_FREE_OBJECTID) {
2370 		name[0]='\0';
2371 		return 0;
2372 	}
2373 
2374 	path = btrfs_alloc_path();
2375 	if (!path)
2376 		return -ENOMEM;
2377 
2378 	ptr = &name[BTRFS_INO_LOOKUP_PATH_MAX - 1];
2379 
2380 	root = btrfs_get_fs_root(info, tree_id, true);
2381 	if (IS_ERR(root)) {
2382 		ret = PTR_ERR(root);
2383 		root = NULL;
2384 		goto out;
2385 	}
2386 
2387 	key.objectid = dirid;
2388 	key.type = BTRFS_INODE_REF_KEY;
2389 	key.offset = (u64)-1;
2390 
2391 	while (1) {
2392 		ret = btrfs_search_backwards(root, &key, path);
2393 		if (ret < 0)
2394 			goto out;
2395 		else if (ret > 0) {
2396 			ret = -ENOENT;
2397 			goto out;
2398 		}
2399 
2400 		l = path->nodes[0];
2401 		slot = path->slots[0];
2402 
2403 		iref = btrfs_item_ptr(l, slot, struct btrfs_inode_ref);
2404 		len = btrfs_inode_ref_name_len(l, iref);
2405 		ptr -= len + 1;
2406 		total_len += len + 1;
2407 		if (ptr < name) {
2408 			ret = -ENAMETOOLONG;
2409 			goto out;
2410 		}
2411 
2412 		*(ptr + len) = '/';
2413 		read_extent_buffer(l, ptr, (unsigned long)(iref + 1), len);
2414 
2415 		if (key.offset == BTRFS_FIRST_FREE_OBJECTID)
2416 			break;
2417 
2418 		btrfs_release_path(path);
2419 		key.objectid = key.offset;
2420 		key.offset = (u64)-1;
2421 		dirid = key.objectid;
2422 	}
2423 	memmove(name, ptr, total_len);
2424 	name[total_len] = '\0';
2425 	ret = 0;
2426 out:
2427 	btrfs_put_root(root);
2428 	btrfs_free_path(path);
2429 	return ret;
2430 }
2431 
2432 static int btrfs_search_path_in_tree_user(struct inode *inode,
2433 				struct btrfs_ioctl_ino_lookup_user_args *args)
2434 {
2435 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2436 	struct super_block *sb = inode->i_sb;
2437 	struct btrfs_key upper_limit = BTRFS_I(inode)->location;
2438 	u64 treeid = BTRFS_I(inode)->root->root_key.objectid;
2439 	u64 dirid = args->dirid;
2440 	unsigned long item_off;
2441 	unsigned long item_len;
2442 	struct btrfs_inode_ref *iref;
2443 	struct btrfs_root_ref *rref;
2444 	struct btrfs_root *root = NULL;
2445 	struct btrfs_path *path;
2446 	struct btrfs_key key, key2;
2447 	struct extent_buffer *leaf;
2448 	struct inode *temp_inode;
2449 	char *ptr;
2450 	int slot;
2451 	int len;
2452 	int total_len = 0;
2453 	int ret;
2454 
2455 	path = btrfs_alloc_path();
2456 	if (!path)
2457 		return -ENOMEM;
2458 
2459 	/*
2460 	 * If the bottom subvolume does not exist directly under upper_limit,
2461 	 * construct the path in from the bottom up.
2462 	 */
2463 	if (dirid != upper_limit.objectid) {
2464 		ptr = &args->path[BTRFS_INO_LOOKUP_USER_PATH_MAX - 1];
2465 
2466 		root = btrfs_get_fs_root(fs_info, treeid, true);
2467 		if (IS_ERR(root)) {
2468 			ret = PTR_ERR(root);
2469 			goto out;
2470 		}
2471 
2472 		key.objectid = dirid;
2473 		key.type = BTRFS_INODE_REF_KEY;
2474 		key.offset = (u64)-1;
2475 		while (1) {
2476 			ret = btrfs_search_backwards(root, &key, path);
2477 			if (ret < 0)
2478 				goto out_put;
2479 			else if (ret > 0) {
2480 				ret = -ENOENT;
2481 				goto out_put;
2482 			}
2483 
2484 			leaf = path->nodes[0];
2485 			slot = path->slots[0];
2486 
2487 			iref = btrfs_item_ptr(leaf, slot, struct btrfs_inode_ref);
2488 			len = btrfs_inode_ref_name_len(leaf, iref);
2489 			ptr -= len + 1;
2490 			total_len += len + 1;
2491 			if (ptr < args->path) {
2492 				ret = -ENAMETOOLONG;
2493 				goto out_put;
2494 			}
2495 
2496 			*(ptr + len) = '/';
2497 			read_extent_buffer(leaf, ptr,
2498 					(unsigned long)(iref + 1), len);
2499 
2500 			/* Check the read+exec permission of this directory */
2501 			ret = btrfs_previous_item(root, path, dirid,
2502 						  BTRFS_INODE_ITEM_KEY);
2503 			if (ret < 0) {
2504 				goto out_put;
2505 			} else if (ret > 0) {
2506 				ret = -ENOENT;
2507 				goto out_put;
2508 			}
2509 
2510 			leaf = path->nodes[0];
2511 			slot = path->slots[0];
2512 			btrfs_item_key_to_cpu(leaf, &key2, slot);
2513 			if (key2.objectid != dirid) {
2514 				ret = -ENOENT;
2515 				goto out_put;
2516 			}
2517 
2518 			temp_inode = btrfs_iget(sb, key2.objectid, root);
2519 			if (IS_ERR(temp_inode)) {
2520 				ret = PTR_ERR(temp_inode);
2521 				goto out_put;
2522 			}
2523 			ret = inode_permission(&init_user_ns, temp_inode,
2524 					       MAY_READ | MAY_EXEC);
2525 			iput(temp_inode);
2526 			if (ret) {
2527 				ret = -EACCES;
2528 				goto out_put;
2529 			}
2530 
2531 			if (key.offset == upper_limit.objectid)
2532 				break;
2533 			if (key.objectid == BTRFS_FIRST_FREE_OBJECTID) {
2534 				ret = -EACCES;
2535 				goto out_put;
2536 			}
2537 
2538 			btrfs_release_path(path);
2539 			key.objectid = key.offset;
2540 			key.offset = (u64)-1;
2541 			dirid = key.objectid;
2542 		}
2543 
2544 		memmove(args->path, ptr, total_len);
2545 		args->path[total_len] = '\0';
2546 		btrfs_put_root(root);
2547 		root = NULL;
2548 		btrfs_release_path(path);
2549 	}
2550 
2551 	/* Get the bottom subvolume's name from ROOT_REF */
2552 	key.objectid = treeid;
2553 	key.type = BTRFS_ROOT_REF_KEY;
2554 	key.offset = args->treeid;
2555 	ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2556 	if (ret < 0) {
2557 		goto out;
2558 	} else if (ret > 0) {
2559 		ret = -ENOENT;
2560 		goto out;
2561 	}
2562 
2563 	leaf = path->nodes[0];
2564 	slot = path->slots[0];
2565 	btrfs_item_key_to_cpu(leaf, &key, slot);
2566 
2567 	item_off = btrfs_item_ptr_offset(leaf, slot);
2568 	item_len = btrfs_item_size_nr(leaf, slot);
2569 	/* Check if dirid in ROOT_REF corresponds to passed dirid */
2570 	rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2571 	if (args->dirid != btrfs_root_ref_dirid(leaf, rref)) {
2572 		ret = -EINVAL;
2573 		goto out;
2574 	}
2575 
2576 	/* Copy subvolume's name */
2577 	item_off += sizeof(struct btrfs_root_ref);
2578 	item_len -= sizeof(struct btrfs_root_ref);
2579 	read_extent_buffer(leaf, args->name, item_off, item_len);
2580 	args->name[item_len] = 0;
2581 
2582 out_put:
2583 	btrfs_put_root(root);
2584 out:
2585 	btrfs_free_path(path);
2586 	return ret;
2587 }
2588 
2589 static noinline int btrfs_ioctl_ino_lookup(struct file *file,
2590 					   void __user *argp)
2591 {
2592 	struct btrfs_ioctl_ino_lookup_args *args;
2593 	struct inode *inode;
2594 	int ret = 0;
2595 
2596 	args = memdup_user(argp, sizeof(*args));
2597 	if (IS_ERR(args))
2598 		return PTR_ERR(args);
2599 
2600 	inode = file_inode(file);
2601 
2602 	/*
2603 	 * Unprivileged query to obtain the containing subvolume root id. The
2604 	 * path is reset so it's consistent with btrfs_search_path_in_tree.
2605 	 */
2606 	if (args->treeid == 0)
2607 		args->treeid = BTRFS_I(inode)->root->root_key.objectid;
2608 
2609 	if (args->objectid == BTRFS_FIRST_FREE_OBJECTID) {
2610 		args->name[0] = 0;
2611 		goto out;
2612 	}
2613 
2614 	if (!capable(CAP_SYS_ADMIN)) {
2615 		ret = -EPERM;
2616 		goto out;
2617 	}
2618 
2619 	ret = btrfs_search_path_in_tree(BTRFS_I(inode)->root->fs_info,
2620 					args->treeid, args->objectid,
2621 					args->name);
2622 
2623 out:
2624 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2625 		ret = -EFAULT;
2626 
2627 	kfree(args);
2628 	return ret;
2629 }
2630 
2631 /*
2632  * Version of ino_lookup ioctl (unprivileged)
2633  *
2634  * The main differences from ino_lookup ioctl are:
2635  *
2636  *   1. Read + Exec permission will be checked using inode_permission() during
2637  *      path construction. -EACCES will be returned in case of failure.
2638  *   2. Path construction will be stopped at the inode number which corresponds
2639  *      to the fd with which this ioctl is called. If constructed path does not
2640  *      exist under fd's inode, -EACCES will be returned.
2641  *   3. The name of bottom subvolume is also searched and filled.
2642  */
2643 static int btrfs_ioctl_ino_lookup_user(struct file *file, void __user *argp)
2644 {
2645 	struct btrfs_ioctl_ino_lookup_user_args *args;
2646 	struct inode *inode;
2647 	int ret;
2648 
2649 	args = memdup_user(argp, sizeof(*args));
2650 	if (IS_ERR(args))
2651 		return PTR_ERR(args);
2652 
2653 	inode = file_inode(file);
2654 
2655 	if (args->dirid == BTRFS_FIRST_FREE_OBJECTID &&
2656 	    BTRFS_I(inode)->location.objectid != BTRFS_FIRST_FREE_OBJECTID) {
2657 		/*
2658 		 * The subvolume does not exist under fd with which this is
2659 		 * called
2660 		 */
2661 		kfree(args);
2662 		return -EACCES;
2663 	}
2664 
2665 	ret = btrfs_search_path_in_tree_user(inode, args);
2666 
2667 	if (ret == 0 && copy_to_user(argp, args, sizeof(*args)))
2668 		ret = -EFAULT;
2669 
2670 	kfree(args);
2671 	return ret;
2672 }
2673 
2674 /* Get the subvolume information in BTRFS_ROOT_ITEM and BTRFS_ROOT_BACKREF */
2675 static int btrfs_ioctl_get_subvol_info(struct file *file, void __user *argp)
2676 {
2677 	struct btrfs_ioctl_get_subvol_info_args *subvol_info;
2678 	struct btrfs_fs_info *fs_info;
2679 	struct btrfs_root *root;
2680 	struct btrfs_path *path;
2681 	struct btrfs_key key;
2682 	struct btrfs_root_item *root_item;
2683 	struct btrfs_root_ref *rref;
2684 	struct extent_buffer *leaf;
2685 	unsigned long item_off;
2686 	unsigned long item_len;
2687 	struct inode *inode;
2688 	int slot;
2689 	int ret = 0;
2690 
2691 	path = btrfs_alloc_path();
2692 	if (!path)
2693 		return -ENOMEM;
2694 
2695 	subvol_info = kzalloc(sizeof(*subvol_info), GFP_KERNEL);
2696 	if (!subvol_info) {
2697 		btrfs_free_path(path);
2698 		return -ENOMEM;
2699 	}
2700 
2701 	inode = file_inode(file);
2702 	fs_info = BTRFS_I(inode)->root->fs_info;
2703 
2704 	/* Get root_item of inode's subvolume */
2705 	key.objectid = BTRFS_I(inode)->root->root_key.objectid;
2706 	root = btrfs_get_fs_root(fs_info, key.objectid, true);
2707 	if (IS_ERR(root)) {
2708 		ret = PTR_ERR(root);
2709 		goto out_free;
2710 	}
2711 	root_item = &root->root_item;
2712 
2713 	subvol_info->treeid = key.objectid;
2714 
2715 	subvol_info->generation = btrfs_root_generation(root_item);
2716 	subvol_info->flags = btrfs_root_flags(root_item);
2717 
2718 	memcpy(subvol_info->uuid, root_item->uuid, BTRFS_UUID_SIZE);
2719 	memcpy(subvol_info->parent_uuid, root_item->parent_uuid,
2720 						    BTRFS_UUID_SIZE);
2721 	memcpy(subvol_info->received_uuid, root_item->received_uuid,
2722 						    BTRFS_UUID_SIZE);
2723 
2724 	subvol_info->ctransid = btrfs_root_ctransid(root_item);
2725 	subvol_info->ctime.sec = btrfs_stack_timespec_sec(&root_item->ctime);
2726 	subvol_info->ctime.nsec = btrfs_stack_timespec_nsec(&root_item->ctime);
2727 
2728 	subvol_info->otransid = btrfs_root_otransid(root_item);
2729 	subvol_info->otime.sec = btrfs_stack_timespec_sec(&root_item->otime);
2730 	subvol_info->otime.nsec = btrfs_stack_timespec_nsec(&root_item->otime);
2731 
2732 	subvol_info->stransid = btrfs_root_stransid(root_item);
2733 	subvol_info->stime.sec = btrfs_stack_timespec_sec(&root_item->stime);
2734 	subvol_info->stime.nsec = btrfs_stack_timespec_nsec(&root_item->stime);
2735 
2736 	subvol_info->rtransid = btrfs_root_rtransid(root_item);
2737 	subvol_info->rtime.sec = btrfs_stack_timespec_sec(&root_item->rtime);
2738 	subvol_info->rtime.nsec = btrfs_stack_timespec_nsec(&root_item->rtime);
2739 
2740 	if (key.objectid != BTRFS_FS_TREE_OBJECTID) {
2741 		/* Search root tree for ROOT_BACKREF of this subvolume */
2742 		key.type = BTRFS_ROOT_BACKREF_KEY;
2743 		key.offset = 0;
2744 		ret = btrfs_search_slot(NULL, fs_info->tree_root, &key, path, 0, 0);
2745 		if (ret < 0) {
2746 			goto out;
2747 		} else if (path->slots[0] >=
2748 			   btrfs_header_nritems(path->nodes[0])) {
2749 			ret = btrfs_next_leaf(fs_info->tree_root, path);
2750 			if (ret < 0) {
2751 				goto out;
2752 			} else if (ret > 0) {
2753 				ret = -EUCLEAN;
2754 				goto out;
2755 			}
2756 		}
2757 
2758 		leaf = path->nodes[0];
2759 		slot = path->slots[0];
2760 		btrfs_item_key_to_cpu(leaf, &key, slot);
2761 		if (key.objectid == subvol_info->treeid &&
2762 		    key.type == BTRFS_ROOT_BACKREF_KEY) {
2763 			subvol_info->parent_id = key.offset;
2764 
2765 			rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2766 			subvol_info->dirid = btrfs_root_ref_dirid(leaf, rref);
2767 
2768 			item_off = btrfs_item_ptr_offset(leaf, slot)
2769 					+ sizeof(struct btrfs_root_ref);
2770 			item_len = btrfs_item_size_nr(leaf, slot)
2771 					- sizeof(struct btrfs_root_ref);
2772 			read_extent_buffer(leaf, subvol_info->name,
2773 					   item_off, item_len);
2774 		} else {
2775 			ret = -ENOENT;
2776 			goto out;
2777 		}
2778 	}
2779 
2780 	if (copy_to_user(argp, subvol_info, sizeof(*subvol_info)))
2781 		ret = -EFAULT;
2782 
2783 out:
2784 	btrfs_put_root(root);
2785 out_free:
2786 	btrfs_free_path(path);
2787 	kfree(subvol_info);
2788 	return ret;
2789 }
2790 
2791 /*
2792  * Return ROOT_REF information of the subvolume containing this inode
2793  * except the subvolume name.
2794  */
2795 static int btrfs_ioctl_get_subvol_rootref(struct file *file, void __user *argp)
2796 {
2797 	struct btrfs_ioctl_get_subvol_rootref_args *rootrefs;
2798 	struct btrfs_root_ref *rref;
2799 	struct btrfs_root *root;
2800 	struct btrfs_path *path;
2801 	struct btrfs_key key;
2802 	struct extent_buffer *leaf;
2803 	struct inode *inode;
2804 	u64 objectid;
2805 	int slot;
2806 	int ret;
2807 	u8 found;
2808 
2809 	path = btrfs_alloc_path();
2810 	if (!path)
2811 		return -ENOMEM;
2812 
2813 	rootrefs = memdup_user(argp, sizeof(*rootrefs));
2814 	if (IS_ERR(rootrefs)) {
2815 		btrfs_free_path(path);
2816 		return PTR_ERR(rootrefs);
2817 	}
2818 
2819 	inode = file_inode(file);
2820 	root = BTRFS_I(inode)->root->fs_info->tree_root;
2821 	objectid = BTRFS_I(inode)->root->root_key.objectid;
2822 
2823 	key.objectid = objectid;
2824 	key.type = BTRFS_ROOT_REF_KEY;
2825 	key.offset = rootrefs->min_treeid;
2826 	found = 0;
2827 
2828 	ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
2829 	if (ret < 0) {
2830 		goto out;
2831 	} else if (path->slots[0] >=
2832 		   btrfs_header_nritems(path->nodes[0])) {
2833 		ret = btrfs_next_leaf(root, path);
2834 		if (ret < 0) {
2835 			goto out;
2836 		} else if (ret > 0) {
2837 			ret = -EUCLEAN;
2838 			goto out;
2839 		}
2840 	}
2841 	while (1) {
2842 		leaf = path->nodes[0];
2843 		slot = path->slots[0];
2844 
2845 		btrfs_item_key_to_cpu(leaf, &key, slot);
2846 		if (key.objectid != objectid || key.type != BTRFS_ROOT_REF_KEY) {
2847 			ret = 0;
2848 			goto out;
2849 		}
2850 
2851 		if (found == BTRFS_MAX_ROOTREF_BUFFER_NUM) {
2852 			ret = -EOVERFLOW;
2853 			goto out;
2854 		}
2855 
2856 		rref = btrfs_item_ptr(leaf, slot, struct btrfs_root_ref);
2857 		rootrefs->rootref[found].treeid = key.offset;
2858 		rootrefs->rootref[found].dirid =
2859 				  btrfs_root_ref_dirid(leaf, rref);
2860 		found++;
2861 
2862 		ret = btrfs_next_item(root, path);
2863 		if (ret < 0) {
2864 			goto out;
2865 		} else if (ret > 0) {
2866 			ret = -EUCLEAN;
2867 			goto out;
2868 		}
2869 	}
2870 
2871 out:
2872 	if (!ret || ret == -EOVERFLOW) {
2873 		rootrefs->num_items = found;
2874 		/* update min_treeid for next search */
2875 		if (found)
2876 			rootrefs->min_treeid =
2877 				rootrefs->rootref[found - 1].treeid + 1;
2878 		if (copy_to_user(argp, rootrefs, sizeof(*rootrefs)))
2879 			ret = -EFAULT;
2880 	}
2881 
2882 	kfree(rootrefs);
2883 	btrfs_free_path(path);
2884 
2885 	return ret;
2886 }
2887 
2888 static noinline int btrfs_ioctl_snap_destroy(struct file *file,
2889 					     void __user *arg,
2890 					     bool destroy_v2)
2891 {
2892 	struct dentry *parent = file->f_path.dentry;
2893 	struct btrfs_fs_info *fs_info = btrfs_sb(parent->d_sb);
2894 	struct dentry *dentry;
2895 	struct inode *dir = d_inode(parent);
2896 	struct inode *inode;
2897 	struct btrfs_root *root = BTRFS_I(dir)->root;
2898 	struct btrfs_root *dest = NULL;
2899 	struct btrfs_ioctl_vol_args *vol_args = NULL;
2900 	struct btrfs_ioctl_vol_args_v2 *vol_args2 = NULL;
2901 	char *subvol_name, *subvol_name_ptr = NULL;
2902 	int subvol_namelen;
2903 	int err = 0;
2904 	bool destroy_parent = false;
2905 
2906 	if (destroy_v2) {
2907 		vol_args2 = memdup_user(arg, sizeof(*vol_args2));
2908 		if (IS_ERR(vol_args2))
2909 			return PTR_ERR(vol_args2);
2910 
2911 		if (vol_args2->flags & ~BTRFS_SUBVOL_DELETE_ARGS_MASK) {
2912 			err = -EOPNOTSUPP;
2913 			goto out;
2914 		}
2915 
2916 		/*
2917 		 * If SPEC_BY_ID is not set, we are looking for the subvolume by
2918 		 * name, same as v1 currently does.
2919 		 */
2920 		if (!(vol_args2->flags & BTRFS_SUBVOL_SPEC_BY_ID)) {
2921 			vol_args2->name[BTRFS_SUBVOL_NAME_MAX] = 0;
2922 			subvol_name = vol_args2->name;
2923 
2924 			err = mnt_want_write_file(file);
2925 			if (err)
2926 				goto out;
2927 		} else {
2928 			if (vol_args2->subvolid < BTRFS_FIRST_FREE_OBJECTID) {
2929 				err = -EINVAL;
2930 				goto out;
2931 			}
2932 
2933 			err = mnt_want_write_file(file);
2934 			if (err)
2935 				goto out;
2936 
2937 			dentry = btrfs_get_dentry(fs_info->sb,
2938 					BTRFS_FIRST_FREE_OBJECTID,
2939 					vol_args2->subvolid, 0, 0);
2940 			if (IS_ERR(dentry)) {
2941 				err = PTR_ERR(dentry);
2942 				goto out_drop_write;
2943 			}
2944 
2945 			/*
2946 			 * Change the default parent since the subvolume being
2947 			 * deleted can be outside of the current mount point.
2948 			 */
2949 			parent = btrfs_get_parent(dentry);
2950 
2951 			/*
2952 			 * At this point dentry->d_name can point to '/' if the
2953 			 * subvolume we want to destroy is outsite of the
2954 			 * current mount point, so we need to release the
2955 			 * current dentry and execute the lookup to return a new
2956 			 * one with ->d_name pointing to the
2957 			 * <mount point>/subvol_name.
2958 			 */
2959 			dput(dentry);
2960 			if (IS_ERR(parent)) {
2961 				err = PTR_ERR(parent);
2962 				goto out_drop_write;
2963 			}
2964 			dir = d_inode(parent);
2965 
2966 			/*
2967 			 * If v2 was used with SPEC_BY_ID, a new parent was
2968 			 * allocated since the subvolume can be outside of the
2969 			 * current mount point. Later on we need to release this
2970 			 * new parent dentry.
2971 			 */
2972 			destroy_parent = true;
2973 
2974 			subvol_name_ptr = btrfs_get_subvol_name_from_objectid(
2975 						fs_info, vol_args2->subvolid);
2976 			if (IS_ERR(subvol_name_ptr)) {
2977 				err = PTR_ERR(subvol_name_ptr);
2978 				goto free_parent;
2979 			}
2980 			/* subvol_name_ptr is already nul terminated */
2981 			subvol_name = (char *)kbasename(subvol_name_ptr);
2982 		}
2983 	} else {
2984 		vol_args = memdup_user(arg, sizeof(*vol_args));
2985 		if (IS_ERR(vol_args))
2986 			return PTR_ERR(vol_args);
2987 
2988 		vol_args->name[BTRFS_PATH_NAME_MAX] = 0;
2989 		subvol_name = vol_args->name;
2990 
2991 		err = mnt_want_write_file(file);
2992 		if (err)
2993 			goto out;
2994 	}
2995 
2996 	subvol_namelen = strlen(subvol_name);
2997 
2998 	if (strchr(subvol_name, '/') ||
2999 	    strncmp(subvol_name, "..", subvol_namelen) == 0) {
3000 		err = -EINVAL;
3001 		goto free_subvol_name;
3002 	}
3003 
3004 	if (!S_ISDIR(dir->i_mode)) {
3005 		err = -ENOTDIR;
3006 		goto free_subvol_name;
3007 	}
3008 
3009 	err = down_write_killable_nested(&dir->i_rwsem, I_MUTEX_PARENT);
3010 	if (err == -EINTR)
3011 		goto free_subvol_name;
3012 	dentry = lookup_one_len(subvol_name, parent, subvol_namelen);
3013 	if (IS_ERR(dentry)) {
3014 		err = PTR_ERR(dentry);
3015 		goto out_unlock_dir;
3016 	}
3017 
3018 	if (d_really_is_negative(dentry)) {
3019 		err = -ENOENT;
3020 		goto out_dput;
3021 	}
3022 
3023 	inode = d_inode(dentry);
3024 	dest = BTRFS_I(inode)->root;
3025 	if (!capable(CAP_SYS_ADMIN)) {
3026 		/*
3027 		 * Regular user.  Only allow this with a special mount
3028 		 * option, when the user has write+exec access to the
3029 		 * subvol root, and when rmdir(2) would have been
3030 		 * allowed.
3031 		 *
3032 		 * Note that this is _not_ check that the subvol is
3033 		 * empty or doesn't contain data that we wouldn't
3034 		 * otherwise be able to delete.
3035 		 *
3036 		 * Users who want to delete empty subvols should try
3037 		 * rmdir(2).
3038 		 */
3039 		err = -EPERM;
3040 		if (!btrfs_test_opt(fs_info, USER_SUBVOL_RM_ALLOWED))
3041 			goto out_dput;
3042 
3043 		/*
3044 		 * Do not allow deletion if the parent dir is the same
3045 		 * as the dir to be deleted.  That means the ioctl
3046 		 * must be called on the dentry referencing the root
3047 		 * of the subvol, not a random directory contained
3048 		 * within it.
3049 		 */
3050 		err = -EINVAL;
3051 		if (root == dest)
3052 			goto out_dput;
3053 
3054 		err = inode_permission(&init_user_ns, inode,
3055 				       MAY_WRITE | MAY_EXEC);
3056 		if (err)
3057 			goto out_dput;
3058 	}
3059 
3060 	/* check if subvolume may be deleted by a user */
3061 	err = btrfs_may_delete(dir, dentry, 1);
3062 	if (err)
3063 		goto out_dput;
3064 
3065 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
3066 		err = -EINVAL;
3067 		goto out_dput;
3068 	}
3069 
3070 	btrfs_inode_lock(inode, 0);
3071 	err = btrfs_delete_subvolume(dir, dentry);
3072 	btrfs_inode_unlock(inode, 0);
3073 	if (!err) {
3074 		fsnotify_rmdir(dir, dentry);
3075 		d_delete(dentry);
3076 	}
3077 
3078 out_dput:
3079 	dput(dentry);
3080 out_unlock_dir:
3081 	btrfs_inode_unlock(dir, 0);
3082 free_subvol_name:
3083 	kfree(subvol_name_ptr);
3084 free_parent:
3085 	if (destroy_parent)
3086 		dput(parent);
3087 out_drop_write:
3088 	mnt_drop_write_file(file);
3089 out:
3090 	kfree(vol_args2);
3091 	kfree(vol_args);
3092 	return err;
3093 }
3094 
3095 static int btrfs_ioctl_defrag(struct file *file, void __user *argp)
3096 {
3097 	struct inode *inode = file_inode(file);
3098 	struct btrfs_root *root = BTRFS_I(inode)->root;
3099 	struct btrfs_ioctl_defrag_range_args *range;
3100 	int ret;
3101 
3102 	ret = mnt_want_write_file(file);
3103 	if (ret)
3104 		return ret;
3105 
3106 	if (btrfs_root_readonly(root)) {
3107 		ret = -EROFS;
3108 		goto out;
3109 	}
3110 
3111 	/* Subpage defrag will be supported in later commits */
3112 	if (root->fs_info->sectorsize < PAGE_SIZE) {
3113 		ret = -ENOTTY;
3114 		goto out;
3115 	}
3116 
3117 	switch (inode->i_mode & S_IFMT) {
3118 	case S_IFDIR:
3119 		if (!capable(CAP_SYS_ADMIN)) {
3120 			ret = -EPERM;
3121 			goto out;
3122 		}
3123 		ret = btrfs_defrag_root(root);
3124 		break;
3125 	case S_IFREG:
3126 		/*
3127 		 * Note that this does not check the file descriptor for write
3128 		 * access. This prevents defragmenting executables that are
3129 		 * running and allows defrag on files open in read-only mode.
3130 		 */
3131 		if (!capable(CAP_SYS_ADMIN) &&
3132 		    inode_permission(&init_user_ns, inode, MAY_WRITE)) {
3133 			ret = -EPERM;
3134 			goto out;
3135 		}
3136 
3137 		range = kzalloc(sizeof(*range), GFP_KERNEL);
3138 		if (!range) {
3139 			ret = -ENOMEM;
3140 			goto out;
3141 		}
3142 
3143 		if (argp) {
3144 			if (copy_from_user(range, argp,
3145 					   sizeof(*range))) {
3146 				ret = -EFAULT;
3147 				kfree(range);
3148 				goto out;
3149 			}
3150 			/* compression requires us to start the IO */
3151 			if ((range->flags & BTRFS_DEFRAG_RANGE_COMPRESS)) {
3152 				range->flags |= BTRFS_DEFRAG_RANGE_START_IO;
3153 				range->extent_thresh = (u32)-1;
3154 			}
3155 		} else {
3156 			/* the rest are all set to zero by kzalloc */
3157 			range->len = (u64)-1;
3158 		}
3159 		ret = btrfs_defrag_file(file_inode(file), file,
3160 					range, BTRFS_OLDEST_GENERATION, 0);
3161 		if (ret > 0)
3162 			ret = 0;
3163 		kfree(range);
3164 		break;
3165 	default:
3166 		ret = -EINVAL;
3167 	}
3168 out:
3169 	mnt_drop_write_file(file);
3170 	return ret;
3171 }
3172 
3173 static long btrfs_ioctl_add_dev(struct btrfs_fs_info *fs_info, void __user *arg)
3174 {
3175 	struct btrfs_ioctl_vol_args *vol_args;
3176 	int ret;
3177 
3178 	if (!capable(CAP_SYS_ADMIN))
3179 		return -EPERM;
3180 
3181 	if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_ADD))
3182 		return BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3183 
3184 	vol_args = memdup_user(arg, sizeof(*vol_args));
3185 	if (IS_ERR(vol_args)) {
3186 		ret = PTR_ERR(vol_args);
3187 		goto out;
3188 	}
3189 
3190 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3191 	ret = btrfs_init_new_device(fs_info, vol_args->name);
3192 
3193 	if (!ret)
3194 		btrfs_info(fs_info, "disk added %s", vol_args->name);
3195 
3196 	kfree(vol_args);
3197 out:
3198 	btrfs_exclop_finish(fs_info);
3199 	return ret;
3200 }
3201 
3202 static long btrfs_ioctl_rm_dev_v2(struct file *file, void __user *arg)
3203 {
3204 	struct inode *inode = file_inode(file);
3205 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3206 	struct btrfs_ioctl_vol_args_v2 *vol_args;
3207 	int ret;
3208 	bool cancel = false;
3209 
3210 	if (!capable(CAP_SYS_ADMIN))
3211 		return -EPERM;
3212 
3213 	ret = mnt_want_write_file(file);
3214 	if (ret)
3215 		return ret;
3216 
3217 	vol_args = memdup_user(arg, sizeof(*vol_args));
3218 	if (IS_ERR(vol_args)) {
3219 		ret = PTR_ERR(vol_args);
3220 		goto err_drop;
3221 	}
3222 
3223 	if (vol_args->flags & ~BTRFS_DEVICE_REMOVE_ARGS_MASK) {
3224 		ret = -EOPNOTSUPP;
3225 		goto out;
3226 	}
3227 	vol_args->name[BTRFS_SUBVOL_NAME_MAX] = '\0';
3228 	if (!(vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID) &&
3229 	    strcmp("cancel", vol_args->name) == 0)
3230 		cancel = true;
3231 
3232 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3233 					   cancel);
3234 	if (ret)
3235 		goto out;
3236 	/* Exclusive operation is now claimed */
3237 
3238 	if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3239 		ret = btrfs_rm_device(fs_info, NULL, vol_args->devid);
3240 	else
3241 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3242 
3243 	btrfs_exclop_finish(fs_info);
3244 
3245 	if (!ret) {
3246 		if (vol_args->flags & BTRFS_DEVICE_SPEC_BY_ID)
3247 			btrfs_info(fs_info, "device deleted: id %llu",
3248 					vol_args->devid);
3249 		else
3250 			btrfs_info(fs_info, "device deleted: %s",
3251 					vol_args->name);
3252 	}
3253 out:
3254 	kfree(vol_args);
3255 err_drop:
3256 	mnt_drop_write_file(file);
3257 	return ret;
3258 }
3259 
3260 static long btrfs_ioctl_rm_dev(struct file *file, void __user *arg)
3261 {
3262 	struct inode *inode = file_inode(file);
3263 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3264 	struct btrfs_ioctl_vol_args *vol_args;
3265 	int ret;
3266 	bool cancel;
3267 
3268 	if (!capable(CAP_SYS_ADMIN))
3269 		return -EPERM;
3270 
3271 	ret = mnt_want_write_file(file);
3272 	if (ret)
3273 		return ret;
3274 
3275 	vol_args = memdup_user(arg, sizeof(*vol_args));
3276 	if (IS_ERR(vol_args)) {
3277 		ret = PTR_ERR(vol_args);
3278 		goto out_drop_write;
3279 	}
3280 	vol_args->name[BTRFS_PATH_NAME_MAX] = '\0';
3281 	cancel = (strcmp("cancel", vol_args->name) == 0);
3282 
3283 	ret = exclop_start_or_cancel_reloc(fs_info, BTRFS_EXCLOP_DEV_REMOVE,
3284 					   cancel);
3285 	if (ret == 0) {
3286 		ret = btrfs_rm_device(fs_info, vol_args->name, 0);
3287 		if (!ret)
3288 			btrfs_info(fs_info, "disk deleted %s", vol_args->name);
3289 		btrfs_exclop_finish(fs_info);
3290 	}
3291 
3292 	kfree(vol_args);
3293 out_drop_write:
3294 	mnt_drop_write_file(file);
3295 
3296 	return ret;
3297 }
3298 
3299 static long btrfs_ioctl_fs_info(struct btrfs_fs_info *fs_info,
3300 				void __user *arg)
3301 {
3302 	struct btrfs_ioctl_fs_info_args *fi_args;
3303 	struct btrfs_device *device;
3304 	struct btrfs_fs_devices *fs_devices = fs_info->fs_devices;
3305 	u64 flags_in;
3306 	int ret = 0;
3307 
3308 	fi_args = memdup_user(arg, sizeof(*fi_args));
3309 	if (IS_ERR(fi_args))
3310 		return PTR_ERR(fi_args);
3311 
3312 	flags_in = fi_args->flags;
3313 	memset(fi_args, 0, sizeof(*fi_args));
3314 
3315 	rcu_read_lock();
3316 	fi_args->num_devices = fs_devices->num_devices;
3317 
3318 	list_for_each_entry_rcu(device, &fs_devices->devices, dev_list) {
3319 		if (device->devid > fi_args->max_id)
3320 			fi_args->max_id = device->devid;
3321 	}
3322 	rcu_read_unlock();
3323 
3324 	memcpy(&fi_args->fsid, fs_devices->fsid, sizeof(fi_args->fsid));
3325 	fi_args->nodesize = fs_info->nodesize;
3326 	fi_args->sectorsize = fs_info->sectorsize;
3327 	fi_args->clone_alignment = fs_info->sectorsize;
3328 
3329 	if (flags_in & BTRFS_FS_INFO_FLAG_CSUM_INFO) {
3330 		fi_args->csum_type = btrfs_super_csum_type(fs_info->super_copy);
3331 		fi_args->csum_size = btrfs_super_csum_size(fs_info->super_copy);
3332 		fi_args->flags |= BTRFS_FS_INFO_FLAG_CSUM_INFO;
3333 	}
3334 
3335 	if (flags_in & BTRFS_FS_INFO_FLAG_GENERATION) {
3336 		fi_args->generation = fs_info->generation;
3337 		fi_args->flags |= BTRFS_FS_INFO_FLAG_GENERATION;
3338 	}
3339 
3340 	if (flags_in & BTRFS_FS_INFO_FLAG_METADATA_UUID) {
3341 		memcpy(&fi_args->metadata_uuid, fs_devices->metadata_uuid,
3342 		       sizeof(fi_args->metadata_uuid));
3343 		fi_args->flags |= BTRFS_FS_INFO_FLAG_METADATA_UUID;
3344 	}
3345 
3346 	if (copy_to_user(arg, fi_args, sizeof(*fi_args)))
3347 		ret = -EFAULT;
3348 
3349 	kfree(fi_args);
3350 	return ret;
3351 }
3352 
3353 static long btrfs_ioctl_dev_info(struct btrfs_fs_info *fs_info,
3354 				 void __user *arg)
3355 {
3356 	struct btrfs_ioctl_dev_info_args *di_args;
3357 	struct btrfs_device *dev;
3358 	int ret = 0;
3359 	char *s_uuid = NULL;
3360 
3361 	di_args = memdup_user(arg, sizeof(*di_args));
3362 	if (IS_ERR(di_args))
3363 		return PTR_ERR(di_args);
3364 
3365 	if (!btrfs_is_empty_uuid(di_args->uuid))
3366 		s_uuid = di_args->uuid;
3367 
3368 	rcu_read_lock();
3369 	dev = btrfs_find_device(fs_info->fs_devices, di_args->devid, s_uuid,
3370 				NULL);
3371 
3372 	if (!dev) {
3373 		ret = -ENODEV;
3374 		goto out;
3375 	}
3376 
3377 	di_args->devid = dev->devid;
3378 	di_args->bytes_used = btrfs_device_get_bytes_used(dev);
3379 	di_args->total_bytes = btrfs_device_get_total_bytes(dev);
3380 	memcpy(di_args->uuid, dev->uuid, sizeof(di_args->uuid));
3381 	if (dev->name) {
3382 		strncpy(di_args->path, rcu_str_deref(dev->name),
3383 				sizeof(di_args->path) - 1);
3384 		di_args->path[sizeof(di_args->path) - 1] = 0;
3385 	} else {
3386 		di_args->path[0] = '\0';
3387 	}
3388 
3389 out:
3390 	rcu_read_unlock();
3391 	if (ret == 0 && copy_to_user(arg, di_args, sizeof(*di_args)))
3392 		ret = -EFAULT;
3393 
3394 	kfree(di_args);
3395 	return ret;
3396 }
3397 
3398 static long btrfs_ioctl_default_subvol(struct file *file, void __user *argp)
3399 {
3400 	struct inode *inode = file_inode(file);
3401 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
3402 	struct btrfs_root *root = BTRFS_I(inode)->root;
3403 	struct btrfs_root *new_root;
3404 	struct btrfs_dir_item *di;
3405 	struct btrfs_trans_handle *trans;
3406 	struct btrfs_path *path = NULL;
3407 	struct btrfs_disk_key disk_key;
3408 	u64 objectid = 0;
3409 	u64 dir_id;
3410 	int ret;
3411 
3412 	if (!capable(CAP_SYS_ADMIN))
3413 		return -EPERM;
3414 
3415 	ret = mnt_want_write_file(file);
3416 	if (ret)
3417 		return ret;
3418 
3419 	if (copy_from_user(&objectid, argp, sizeof(objectid))) {
3420 		ret = -EFAULT;
3421 		goto out;
3422 	}
3423 
3424 	if (!objectid)
3425 		objectid = BTRFS_FS_TREE_OBJECTID;
3426 
3427 	new_root = btrfs_get_fs_root(fs_info, objectid, true);
3428 	if (IS_ERR(new_root)) {
3429 		ret = PTR_ERR(new_root);
3430 		goto out;
3431 	}
3432 	if (!is_fstree(new_root->root_key.objectid)) {
3433 		ret = -ENOENT;
3434 		goto out_free;
3435 	}
3436 
3437 	path = btrfs_alloc_path();
3438 	if (!path) {
3439 		ret = -ENOMEM;
3440 		goto out_free;
3441 	}
3442 
3443 	trans = btrfs_start_transaction(root, 1);
3444 	if (IS_ERR(trans)) {
3445 		ret = PTR_ERR(trans);
3446 		goto out_free;
3447 	}
3448 
3449 	dir_id = btrfs_super_root_dir(fs_info->super_copy);
3450 	di = btrfs_lookup_dir_item(trans, fs_info->tree_root, path,
3451 				   dir_id, "default", 7, 1);
3452 	if (IS_ERR_OR_NULL(di)) {
3453 		btrfs_release_path(path);
3454 		btrfs_end_transaction(trans);
3455 		btrfs_err(fs_info,
3456 			  "Umm, you don't have the default diritem, this isn't going to work");
3457 		ret = -ENOENT;
3458 		goto out_free;
3459 	}
3460 
3461 	btrfs_cpu_key_to_disk(&disk_key, &new_root->root_key);
3462 	btrfs_set_dir_item_key(path->nodes[0], di, &disk_key);
3463 	btrfs_mark_buffer_dirty(path->nodes[0]);
3464 	btrfs_release_path(path);
3465 
3466 	btrfs_set_fs_incompat(fs_info, DEFAULT_SUBVOL);
3467 	btrfs_end_transaction(trans);
3468 out_free:
3469 	btrfs_put_root(new_root);
3470 	btrfs_free_path(path);
3471 out:
3472 	mnt_drop_write_file(file);
3473 	return ret;
3474 }
3475 
3476 static void get_block_group_info(struct list_head *groups_list,
3477 				 struct btrfs_ioctl_space_info *space)
3478 {
3479 	struct btrfs_block_group *block_group;
3480 
3481 	space->total_bytes = 0;
3482 	space->used_bytes = 0;
3483 	space->flags = 0;
3484 	list_for_each_entry(block_group, groups_list, list) {
3485 		space->flags = block_group->flags;
3486 		space->total_bytes += block_group->length;
3487 		space->used_bytes += block_group->used;
3488 	}
3489 }
3490 
3491 static long btrfs_ioctl_space_info(struct btrfs_fs_info *fs_info,
3492 				   void __user *arg)
3493 {
3494 	struct btrfs_ioctl_space_args space_args;
3495 	struct btrfs_ioctl_space_info space;
3496 	struct btrfs_ioctl_space_info *dest;
3497 	struct btrfs_ioctl_space_info *dest_orig;
3498 	struct btrfs_ioctl_space_info __user *user_dest;
3499 	struct btrfs_space_info *info;
3500 	static const u64 types[] = {
3501 		BTRFS_BLOCK_GROUP_DATA,
3502 		BTRFS_BLOCK_GROUP_SYSTEM,
3503 		BTRFS_BLOCK_GROUP_METADATA,
3504 		BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA
3505 	};
3506 	int num_types = 4;
3507 	int alloc_size;
3508 	int ret = 0;
3509 	u64 slot_count = 0;
3510 	int i, c;
3511 
3512 	if (copy_from_user(&space_args,
3513 			   (struct btrfs_ioctl_space_args __user *)arg,
3514 			   sizeof(space_args)))
3515 		return -EFAULT;
3516 
3517 	for (i = 0; i < num_types; i++) {
3518 		struct btrfs_space_info *tmp;
3519 
3520 		info = NULL;
3521 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3522 			if (tmp->flags == types[i]) {
3523 				info = tmp;
3524 				break;
3525 			}
3526 		}
3527 
3528 		if (!info)
3529 			continue;
3530 
3531 		down_read(&info->groups_sem);
3532 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3533 			if (!list_empty(&info->block_groups[c]))
3534 				slot_count++;
3535 		}
3536 		up_read(&info->groups_sem);
3537 	}
3538 
3539 	/*
3540 	 * Global block reserve, exported as a space_info
3541 	 */
3542 	slot_count++;
3543 
3544 	/* space_slots == 0 means they are asking for a count */
3545 	if (space_args.space_slots == 0) {
3546 		space_args.total_spaces = slot_count;
3547 		goto out;
3548 	}
3549 
3550 	slot_count = min_t(u64, space_args.space_slots, slot_count);
3551 
3552 	alloc_size = sizeof(*dest) * slot_count;
3553 
3554 	/* we generally have at most 6 or so space infos, one for each raid
3555 	 * level.  So, a whole page should be more than enough for everyone
3556 	 */
3557 	if (alloc_size > PAGE_SIZE)
3558 		return -ENOMEM;
3559 
3560 	space_args.total_spaces = 0;
3561 	dest = kmalloc(alloc_size, GFP_KERNEL);
3562 	if (!dest)
3563 		return -ENOMEM;
3564 	dest_orig = dest;
3565 
3566 	/* now we have a buffer to copy into */
3567 	for (i = 0; i < num_types; i++) {
3568 		struct btrfs_space_info *tmp;
3569 
3570 		if (!slot_count)
3571 			break;
3572 
3573 		info = NULL;
3574 		list_for_each_entry(tmp, &fs_info->space_info, list) {
3575 			if (tmp->flags == types[i]) {
3576 				info = tmp;
3577 				break;
3578 			}
3579 		}
3580 
3581 		if (!info)
3582 			continue;
3583 		down_read(&info->groups_sem);
3584 		for (c = 0; c < BTRFS_NR_RAID_TYPES; c++) {
3585 			if (!list_empty(&info->block_groups[c])) {
3586 				get_block_group_info(&info->block_groups[c],
3587 						     &space);
3588 				memcpy(dest, &space, sizeof(space));
3589 				dest++;
3590 				space_args.total_spaces++;
3591 				slot_count--;
3592 			}
3593 			if (!slot_count)
3594 				break;
3595 		}
3596 		up_read(&info->groups_sem);
3597 	}
3598 
3599 	/*
3600 	 * Add global block reserve
3601 	 */
3602 	if (slot_count) {
3603 		struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3604 
3605 		spin_lock(&block_rsv->lock);
3606 		space.total_bytes = block_rsv->size;
3607 		space.used_bytes = block_rsv->size - block_rsv->reserved;
3608 		spin_unlock(&block_rsv->lock);
3609 		space.flags = BTRFS_SPACE_INFO_GLOBAL_RSV;
3610 		memcpy(dest, &space, sizeof(space));
3611 		space_args.total_spaces++;
3612 	}
3613 
3614 	user_dest = (struct btrfs_ioctl_space_info __user *)
3615 		(arg + sizeof(struct btrfs_ioctl_space_args));
3616 
3617 	if (copy_to_user(user_dest, dest_orig, alloc_size))
3618 		ret = -EFAULT;
3619 
3620 	kfree(dest_orig);
3621 out:
3622 	if (ret == 0 && copy_to_user(arg, &space_args, sizeof(space_args)))
3623 		ret = -EFAULT;
3624 
3625 	return ret;
3626 }
3627 
3628 static noinline long btrfs_ioctl_start_sync(struct btrfs_root *root,
3629 					    void __user *argp)
3630 {
3631 	struct btrfs_trans_handle *trans;
3632 	u64 transid;
3633 	int ret;
3634 
3635 	trans = btrfs_attach_transaction_barrier(root);
3636 	if (IS_ERR(trans)) {
3637 		if (PTR_ERR(trans) != -ENOENT)
3638 			return PTR_ERR(trans);
3639 
3640 		/* No running transaction, don't bother */
3641 		transid = root->fs_info->last_trans_committed;
3642 		goto out;
3643 	}
3644 	transid = trans->transid;
3645 	ret = btrfs_commit_transaction_async(trans);
3646 	if (ret) {
3647 		btrfs_end_transaction(trans);
3648 		return ret;
3649 	}
3650 out:
3651 	if (argp)
3652 		if (copy_to_user(argp, &transid, sizeof(transid)))
3653 			return -EFAULT;
3654 	return 0;
3655 }
3656 
3657 static noinline long btrfs_ioctl_wait_sync(struct btrfs_fs_info *fs_info,
3658 					   void __user *argp)
3659 {
3660 	u64 transid;
3661 
3662 	if (argp) {
3663 		if (copy_from_user(&transid, argp, sizeof(transid)))
3664 			return -EFAULT;
3665 	} else {
3666 		transid = 0;  /* current trans */
3667 	}
3668 	return btrfs_wait_for_commit(fs_info, transid);
3669 }
3670 
3671 static long btrfs_ioctl_scrub(struct file *file, void __user *arg)
3672 {
3673 	struct btrfs_fs_info *fs_info = btrfs_sb(file_inode(file)->i_sb);
3674 	struct btrfs_ioctl_scrub_args *sa;
3675 	int ret;
3676 
3677 	if (!capable(CAP_SYS_ADMIN))
3678 		return -EPERM;
3679 
3680 	sa = memdup_user(arg, sizeof(*sa));
3681 	if (IS_ERR(sa))
3682 		return PTR_ERR(sa);
3683 
3684 	if (!(sa->flags & BTRFS_SCRUB_READONLY)) {
3685 		ret = mnt_want_write_file(file);
3686 		if (ret)
3687 			goto out;
3688 	}
3689 
3690 	ret = btrfs_scrub_dev(fs_info, sa->devid, sa->start, sa->end,
3691 			      &sa->progress, sa->flags & BTRFS_SCRUB_READONLY,
3692 			      0);
3693 
3694 	/*
3695 	 * Copy scrub args to user space even if btrfs_scrub_dev() returned an
3696 	 * error. This is important as it allows user space to know how much
3697 	 * progress scrub has done. For example, if scrub is canceled we get
3698 	 * -ECANCELED from btrfs_scrub_dev() and return that error back to user
3699 	 * space. Later user space can inspect the progress from the structure
3700 	 * btrfs_ioctl_scrub_args and resume scrub from where it left off
3701 	 * previously (btrfs-progs does this).
3702 	 * If we fail to copy the btrfs_ioctl_scrub_args structure to user space
3703 	 * then return -EFAULT to signal the structure was not copied or it may
3704 	 * be corrupt and unreliable due to a partial copy.
3705 	 */
3706 	if (copy_to_user(arg, sa, sizeof(*sa)))
3707 		ret = -EFAULT;
3708 
3709 	if (!(sa->flags & BTRFS_SCRUB_READONLY))
3710 		mnt_drop_write_file(file);
3711 out:
3712 	kfree(sa);
3713 	return ret;
3714 }
3715 
3716 static long btrfs_ioctl_scrub_cancel(struct btrfs_fs_info *fs_info)
3717 {
3718 	if (!capable(CAP_SYS_ADMIN))
3719 		return -EPERM;
3720 
3721 	return btrfs_scrub_cancel(fs_info);
3722 }
3723 
3724 static long btrfs_ioctl_scrub_progress(struct btrfs_fs_info *fs_info,
3725 				       void __user *arg)
3726 {
3727 	struct btrfs_ioctl_scrub_args *sa;
3728 	int ret;
3729 
3730 	if (!capable(CAP_SYS_ADMIN))
3731 		return -EPERM;
3732 
3733 	sa = memdup_user(arg, sizeof(*sa));
3734 	if (IS_ERR(sa))
3735 		return PTR_ERR(sa);
3736 
3737 	ret = btrfs_scrub_progress(fs_info, sa->devid, &sa->progress);
3738 
3739 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3740 		ret = -EFAULT;
3741 
3742 	kfree(sa);
3743 	return ret;
3744 }
3745 
3746 static long btrfs_ioctl_get_dev_stats(struct btrfs_fs_info *fs_info,
3747 				      void __user *arg)
3748 {
3749 	struct btrfs_ioctl_get_dev_stats *sa;
3750 	int ret;
3751 
3752 	sa = memdup_user(arg, sizeof(*sa));
3753 	if (IS_ERR(sa))
3754 		return PTR_ERR(sa);
3755 
3756 	if ((sa->flags & BTRFS_DEV_STATS_RESET) && !capable(CAP_SYS_ADMIN)) {
3757 		kfree(sa);
3758 		return -EPERM;
3759 	}
3760 
3761 	ret = btrfs_get_dev_stats(fs_info, sa);
3762 
3763 	if (ret == 0 && copy_to_user(arg, sa, sizeof(*sa)))
3764 		ret = -EFAULT;
3765 
3766 	kfree(sa);
3767 	return ret;
3768 }
3769 
3770 static long btrfs_ioctl_dev_replace(struct btrfs_fs_info *fs_info,
3771 				    void __user *arg)
3772 {
3773 	struct btrfs_ioctl_dev_replace_args *p;
3774 	int ret;
3775 
3776 	if (!capable(CAP_SYS_ADMIN))
3777 		return -EPERM;
3778 
3779 	p = memdup_user(arg, sizeof(*p));
3780 	if (IS_ERR(p))
3781 		return PTR_ERR(p);
3782 
3783 	switch (p->cmd) {
3784 	case BTRFS_IOCTL_DEV_REPLACE_CMD_START:
3785 		if (sb_rdonly(fs_info->sb)) {
3786 			ret = -EROFS;
3787 			goto out;
3788 		}
3789 		if (!btrfs_exclop_start(fs_info, BTRFS_EXCLOP_DEV_REPLACE)) {
3790 			ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
3791 		} else {
3792 			ret = btrfs_dev_replace_by_ioctl(fs_info, p);
3793 			btrfs_exclop_finish(fs_info);
3794 		}
3795 		break;
3796 	case BTRFS_IOCTL_DEV_REPLACE_CMD_STATUS:
3797 		btrfs_dev_replace_status(fs_info, p);
3798 		ret = 0;
3799 		break;
3800 	case BTRFS_IOCTL_DEV_REPLACE_CMD_CANCEL:
3801 		p->result = btrfs_dev_replace_cancel(fs_info);
3802 		ret = 0;
3803 		break;
3804 	default:
3805 		ret = -EINVAL;
3806 		break;
3807 	}
3808 
3809 	if ((ret == 0 || ret == -ECANCELED) && copy_to_user(arg, p, sizeof(*p)))
3810 		ret = -EFAULT;
3811 out:
3812 	kfree(p);
3813 	return ret;
3814 }
3815 
3816 static long btrfs_ioctl_ino_to_path(struct btrfs_root *root, void __user *arg)
3817 {
3818 	int ret = 0;
3819 	int i;
3820 	u64 rel_ptr;
3821 	int size;
3822 	struct btrfs_ioctl_ino_path_args *ipa = NULL;
3823 	struct inode_fs_paths *ipath = NULL;
3824 	struct btrfs_path *path;
3825 
3826 	if (!capable(CAP_DAC_READ_SEARCH))
3827 		return -EPERM;
3828 
3829 	path = btrfs_alloc_path();
3830 	if (!path) {
3831 		ret = -ENOMEM;
3832 		goto out;
3833 	}
3834 
3835 	ipa = memdup_user(arg, sizeof(*ipa));
3836 	if (IS_ERR(ipa)) {
3837 		ret = PTR_ERR(ipa);
3838 		ipa = NULL;
3839 		goto out;
3840 	}
3841 
3842 	size = min_t(u32, ipa->size, 4096);
3843 	ipath = init_ipath(size, root, path);
3844 	if (IS_ERR(ipath)) {
3845 		ret = PTR_ERR(ipath);
3846 		ipath = NULL;
3847 		goto out;
3848 	}
3849 
3850 	ret = paths_from_inode(ipa->inum, ipath);
3851 	if (ret < 0)
3852 		goto out;
3853 
3854 	for (i = 0; i < ipath->fspath->elem_cnt; ++i) {
3855 		rel_ptr = ipath->fspath->val[i] -
3856 			  (u64)(unsigned long)ipath->fspath->val;
3857 		ipath->fspath->val[i] = rel_ptr;
3858 	}
3859 
3860 	ret = copy_to_user((void __user *)(unsigned long)ipa->fspath,
3861 			   ipath->fspath, size);
3862 	if (ret) {
3863 		ret = -EFAULT;
3864 		goto out;
3865 	}
3866 
3867 out:
3868 	btrfs_free_path(path);
3869 	free_ipath(ipath);
3870 	kfree(ipa);
3871 
3872 	return ret;
3873 }
3874 
3875 static int build_ino_list(u64 inum, u64 offset, u64 root, void *ctx)
3876 {
3877 	struct btrfs_data_container *inodes = ctx;
3878 	const size_t c = 3 * sizeof(u64);
3879 
3880 	if (inodes->bytes_left >= c) {
3881 		inodes->bytes_left -= c;
3882 		inodes->val[inodes->elem_cnt] = inum;
3883 		inodes->val[inodes->elem_cnt + 1] = offset;
3884 		inodes->val[inodes->elem_cnt + 2] = root;
3885 		inodes->elem_cnt += 3;
3886 	} else {
3887 		inodes->bytes_missing += c - inodes->bytes_left;
3888 		inodes->bytes_left = 0;
3889 		inodes->elem_missed += 3;
3890 	}
3891 
3892 	return 0;
3893 }
3894 
3895 static long btrfs_ioctl_logical_to_ino(struct btrfs_fs_info *fs_info,
3896 					void __user *arg, int version)
3897 {
3898 	int ret = 0;
3899 	int size;
3900 	struct btrfs_ioctl_logical_ino_args *loi;
3901 	struct btrfs_data_container *inodes = NULL;
3902 	struct btrfs_path *path = NULL;
3903 	bool ignore_offset;
3904 
3905 	if (!capable(CAP_SYS_ADMIN))
3906 		return -EPERM;
3907 
3908 	loi = memdup_user(arg, sizeof(*loi));
3909 	if (IS_ERR(loi))
3910 		return PTR_ERR(loi);
3911 
3912 	if (version == 1) {
3913 		ignore_offset = false;
3914 		size = min_t(u32, loi->size, SZ_64K);
3915 	} else {
3916 		/* All reserved bits must be 0 for now */
3917 		if (memchr_inv(loi->reserved, 0, sizeof(loi->reserved))) {
3918 			ret = -EINVAL;
3919 			goto out_loi;
3920 		}
3921 		/* Only accept flags we have defined so far */
3922 		if (loi->flags & ~(BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET)) {
3923 			ret = -EINVAL;
3924 			goto out_loi;
3925 		}
3926 		ignore_offset = loi->flags & BTRFS_LOGICAL_INO_ARGS_IGNORE_OFFSET;
3927 		size = min_t(u32, loi->size, SZ_16M);
3928 	}
3929 
3930 	path = btrfs_alloc_path();
3931 	if (!path) {
3932 		ret = -ENOMEM;
3933 		goto out;
3934 	}
3935 
3936 	inodes = init_data_container(size);
3937 	if (IS_ERR(inodes)) {
3938 		ret = PTR_ERR(inodes);
3939 		inodes = NULL;
3940 		goto out;
3941 	}
3942 
3943 	ret = iterate_inodes_from_logical(loi->logical, fs_info, path,
3944 					  build_ino_list, inodes, ignore_offset);
3945 	if (ret == -EINVAL)
3946 		ret = -ENOENT;
3947 	if (ret < 0)
3948 		goto out;
3949 
3950 	ret = copy_to_user((void __user *)(unsigned long)loi->inodes, inodes,
3951 			   size);
3952 	if (ret)
3953 		ret = -EFAULT;
3954 
3955 out:
3956 	btrfs_free_path(path);
3957 	kvfree(inodes);
3958 out_loi:
3959 	kfree(loi);
3960 
3961 	return ret;
3962 }
3963 
3964 void btrfs_update_ioctl_balance_args(struct btrfs_fs_info *fs_info,
3965 			       struct btrfs_ioctl_balance_args *bargs)
3966 {
3967 	struct btrfs_balance_control *bctl = fs_info->balance_ctl;
3968 
3969 	bargs->flags = bctl->flags;
3970 
3971 	if (test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags))
3972 		bargs->state |= BTRFS_BALANCE_STATE_RUNNING;
3973 	if (atomic_read(&fs_info->balance_pause_req))
3974 		bargs->state |= BTRFS_BALANCE_STATE_PAUSE_REQ;
3975 	if (atomic_read(&fs_info->balance_cancel_req))
3976 		bargs->state |= BTRFS_BALANCE_STATE_CANCEL_REQ;
3977 
3978 	memcpy(&bargs->data, &bctl->data, sizeof(bargs->data));
3979 	memcpy(&bargs->meta, &bctl->meta, sizeof(bargs->meta));
3980 	memcpy(&bargs->sys, &bctl->sys, sizeof(bargs->sys));
3981 
3982 	spin_lock(&fs_info->balance_lock);
3983 	memcpy(&bargs->stat, &bctl->stat, sizeof(bargs->stat));
3984 	spin_unlock(&fs_info->balance_lock);
3985 }
3986 
3987 static long btrfs_ioctl_balance(struct file *file, void __user *arg)
3988 {
3989 	struct btrfs_root *root = BTRFS_I(file_inode(file))->root;
3990 	struct btrfs_fs_info *fs_info = root->fs_info;
3991 	struct btrfs_ioctl_balance_args *bargs;
3992 	struct btrfs_balance_control *bctl;
3993 	bool need_unlock; /* for mut. excl. ops lock */
3994 	int ret;
3995 
3996 	if (!capable(CAP_SYS_ADMIN))
3997 		return -EPERM;
3998 
3999 	ret = mnt_want_write_file(file);
4000 	if (ret)
4001 		return ret;
4002 
4003 again:
4004 	if (btrfs_exclop_start(fs_info, BTRFS_EXCLOP_BALANCE)) {
4005 		mutex_lock(&fs_info->balance_mutex);
4006 		need_unlock = true;
4007 		goto locked;
4008 	}
4009 
4010 	/*
4011 	 * mut. excl. ops lock is locked.  Three possibilities:
4012 	 *   (1) some other op is running
4013 	 *   (2) balance is running
4014 	 *   (3) balance is paused -- special case (think resume)
4015 	 */
4016 	mutex_lock(&fs_info->balance_mutex);
4017 	if (fs_info->balance_ctl) {
4018 		/* this is either (2) or (3) */
4019 		if (!test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4020 			mutex_unlock(&fs_info->balance_mutex);
4021 			/*
4022 			 * Lock released to allow other waiters to continue,
4023 			 * we'll reexamine the status again.
4024 			 */
4025 			mutex_lock(&fs_info->balance_mutex);
4026 
4027 			if (fs_info->balance_ctl &&
4028 			    !test_bit(BTRFS_FS_BALANCE_RUNNING, &fs_info->flags)) {
4029 				/* this is (3) */
4030 				need_unlock = false;
4031 				goto locked;
4032 			}
4033 
4034 			mutex_unlock(&fs_info->balance_mutex);
4035 			goto again;
4036 		} else {
4037 			/* this is (2) */
4038 			mutex_unlock(&fs_info->balance_mutex);
4039 			ret = -EINPROGRESS;
4040 			goto out;
4041 		}
4042 	} else {
4043 		/* this is (1) */
4044 		mutex_unlock(&fs_info->balance_mutex);
4045 		ret = BTRFS_ERROR_DEV_EXCL_RUN_IN_PROGRESS;
4046 		goto out;
4047 	}
4048 
4049 locked:
4050 
4051 	if (arg) {
4052 		bargs = memdup_user(arg, sizeof(*bargs));
4053 		if (IS_ERR(bargs)) {
4054 			ret = PTR_ERR(bargs);
4055 			goto out_unlock;
4056 		}
4057 
4058 		if (bargs->flags & BTRFS_BALANCE_RESUME) {
4059 			if (!fs_info->balance_ctl) {
4060 				ret = -ENOTCONN;
4061 				goto out_bargs;
4062 			}
4063 
4064 			bctl = fs_info->balance_ctl;
4065 			spin_lock(&fs_info->balance_lock);
4066 			bctl->flags |= BTRFS_BALANCE_RESUME;
4067 			spin_unlock(&fs_info->balance_lock);
4068 
4069 			goto do_balance;
4070 		}
4071 	} else {
4072 		bargs = NULL;
4073 	}
4074 
4075 	if (fs_info->balance_ctl) {
4076 		ret = -EINPROGRESS;
4077 		goto out_bargs;
4078 	}
4079 
4080 	bctl = kzalloc(sizeof(*bctl), GFP_KERNEL);
4081 	if (!bctl) {
4082 		ret = -ENOMEM;
4083 		goto out_bargs;
4084 	}
4085 
4086 	if (arg) {
4087 		memcpy(&bctl->data, &bargs->data, sizeof(bctl->data));
4088 		memcpy(&bctl->meta, &bargs->meta, sizeof(bctl->meta));
4089 		memcpy(&bctl->sys, &bargs->sys, sizeof(bctl->sys));
4090 
4091 		bctl->flags = bargs->flags;
4092 	} else {
4093 		/* balance everything - no filters */
4094 		bctl->flags |= BTRFS_BALANCE_TYPE_MASK;
4095 	}
4096 
4097 	if (bctl->flags & ~(BTRFS_BALANCE_ARGS_MASK | BTRFS_BALANCE_TYPE_MASK)) {
4098 		ret = -EINVAL;
4099 		goto out_bctl;
4100 	}
4101 
4102 do_balance:
4103 	/*
4104 	 * Ownership of bctl and exclusive operation goes to btrfs_balance.
4105 	 * bctl is freed in reset_balance_state, or, if restriper was paused
4106 	 * all the way until unmount, in free_fs_info.  The flag should be
4107 	 * cleared after reset_balance_state.
4108 	 */
4109 	need_unlock = false;
4110 
4111 	ret = btrfs_balance(fs_info, bctl, bargs);
4112 	bctl = NULL;
4113 
4114 	if ((ret == 0 || ret == -ECANCELED) && arg) {
4115 		if (copy_to_user(arg, bargs, sizeof(*bargs)))
4116 			ret = -EFAULT;
4117 	}
4118 
4119 out_bctl:
4120 	kfree(bctl);
4121 out_bargs:
4122 	kfree(bargs);
4123 out_unlock:
4124 	mutex_unlock(&fs_info->balance_mutex);
4125 	if (need_unlock)
4126 		btrfs_exclop_finish(fs_info);
4127 out:
4128 	mnt_drop_write_file(file);
4129 	return ret;
4130 }
4131 
4132 static long btrfs_ioctl_balance_ctl(struct btrfs_fs_info *fs_info, int cmd)
4133 {
4134 	if (!capable(CAP_SYS_ADMIN))
4135 		return -EPERM;
4136 
4137 	switch (cmd) {
4138 	case BTRFS_BALANCE_CTL_PAUSE:
4139 		return btrfs_pause_balance(fs_info);
4140 	case BTRFS_BALANCE_CTL_CANCEL:
4141 		return btrfs_cancel_balance(fs_info);
4142 	}
4143 
4144 	return -EINVAL;
4145 }
4146 
4147 static long btrfs_ioctl_balance_progress(struct btrfs_fs_info *fs_info,
4148 					 void __user *arg)
4149 {
4150 	struct btrfs_ioctl_balance_args *bargs;
4151 	int ret = 0;
4152 
4153 	if (!capable(CAP_SYS_ADMIN))
4154 		return -EPERM;
4155 
4156 	mutex_lock(&fs_info->balance_mutex);
4157 	if (!fs_info->balance_ctl) {
4158 		ret = -ENOTCONN;
4159 		goto out;
4160 	}
4161 
4162 	bargs = kzalloc(sizeof(*bargs), GFP_KERNEL);
4163 	if (!bargs) {
4164 		ret = -ENOMEM;
4165 		goto out;
4166 	}
4167 
4168 	btrfs_update_ioctl_balance_args(fs_info, bargs);
4169 
4170 	if (copy_to_user(arg, bargs, sizeof(*bargs)))
4171 		ret = -EFAULT;
4172 
4173 	kfree(bargs);
4174 out:
4175 	mutex_unlock(&fs_info->balance_mutex);
4176 	return ret;
4177 }
4178 
4179 static long btrfs_ioctl_quota_ctl(struct file *file, void __user *arg)
4180 {
4181 	struct inode *inode = file_inode(file);
4182 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4183 	struct btrfs_ioctl_quota_ctl_args *sa;
4184 	int ret;
4185 
4186 	if (!capable(CAP_SYS_ADMIN))
4187 		return -EPERM;
4188 
4189 	ret = mnt_want_write_file(file);
4190 	if (ret)
4191 		return ret;
4192 
4193 	sa = memdup_user(arg, sizeof(*sa));
4194 	if (IS_ERR(sa)) {
4195 		ret = PTR_ERR(sa);
4196 		goto drop_write;
4197 	}
4198 
4199 	down_write(&fs_info->subvol_sem);
4200 
4201 	switch (sa->cmd) {
4202 	case BTRFS_QUOTA_CTL_ENABLE:
4203 		ret = btrfs_quota_enable(fs_info);
4204 		break;
4205 	case BTRFS_QUOTA_CTL_DISABLE:
4206 		ret = btrfs_quota_disable(fs_info);
4207 		break;
4208 	default:
4209 		ret = -EINVAL;
4210 		break;
4211 	}
4212 
4213 	kfree(sa);
4214 	up_write(&fs_info->subvol_sem);
4215 drop_write:
4216 	mnt_drop_write_file(file);
4217 	return ret;
4218 }
4219 
4220 static long btrfs_ioctl_qgroup_assign(struct file *file, void __user *arg)
4221 {
4222 	struct inode *inode = file_inode(file);
4223 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4224 	struct btrfs_root *root = BTRFS_I(inode)->root;
4225 	struct btrfs_ioctl_qgroup_assign_args *sa;
4226 	struct btrfs_trans_handle *trans;
4227 	int ret;
4228 	int err;
4229 
4230 	if (!capable(CAP_SYS_ADMIN))
4231 		return -EPERM;
4232 
4233 	ret = mnt_want_write_file(file);
4234 	if (ret)
4235 		return ret;
4236 
4237 	sa = memdup_user(arg, sizeof(*sa));
4238 	if (IS_ERR(sa)) {
4239 		ret = PTR_ERR(sa);
4240 		goto drop_write;
4241 	}
4242 
4243 	trans = btrfs_join_transaction(root);
4244 	if (IS_ERR(trans)) {
4245 		ret = PTR_ERR(trans);
4246 		goto out;
4247 	}
4248 
4249 	if (sa->assign) {
4250 		ret = btrfs_add_qgroup_relation(trans, sa->src, sa->dst);
4251 	} else {
4252 		ret = btrfs_del_qgroup_relation(trans, sa->src, sa->dst);
4253 	}
4254 
4255 	/* update qgroup status and info */
4256 	err = btrfs_run_qgroups(trans);
4257 	if (err < 0)
4258 		btrfs_handle_fs_error(fs_info, err,
4259 				      "failed to update qgroup status and info");
4260 	err = btrfs_end_transaction(trans);
4261 	if (err && !ret)
4262 		ret = err;
4263 
4264 out:
4265 	kfree(sa);
4266 drop_write:
4267 	mnt_drop_write_file(file);
4268 	return ret;
4269 }
4270 
4271 static long btrfs_ioctl_qgroup_create(struct file *file, void __user *arg)
4272 {
4273 	struct inode *inode = file_inode(file);
4274 	struct btrfs_root *root = BTRFS_I(inode)->root;
4275 	struct btrfs_ioctl_qgroup_create_args *sa;
4276 	struct btrfs_trans_handle *trans;
4277 	int ret;
4278 	int err;
4279 
4280 	if (!capable(CAP_SYS_ADMIN))
4281 		return -EPERM;
4282 
4283 	ret = mnt_want_write_file(file);
4284 	if (ret)
4285 		return ret;
4286 
4287 	sa = memdup_user(arg, sizeof(*sa));
4288 	if (IS_ERR(sa)) {
4289 		ret = PTR_ERR(sa);
4290 		goto drop_write;
4291 	}
4292 
4293 	if (!sa->qgroupid) {
4294 		ret = -EINVAL;
4295 		goto out;
4296 	}
4297 
4298 	trans = btrfs_join_transaction(root);
4299 	if (IS_ERR(trans)) {
4300 		ret = PTR_ERR(trans);
4301 		goto out;
4302 	}
4303 
4304 	if (sa->create) {
4305 		ret = btrfs_create_qgroup(trans, sa->qgroupid);
4306 	} else {
4307 		ret = btrfs_remove_qgroup(trans, sa->qgroupid);
4308 	}
4309 
4310 	err = btrfs_end_transaction(trans);
4311 	if (err && !ret)
4312 		ret = err;
4313 
4314 out:
4315 	kfree(sa);
4316 drop_write:
4317 	mnt_drop_write_file(file);
4318 	return ret;
4319 }
4320 
4321 static long btrfs_ioctl_qgroup_limit(struct file *file, void __user *arg)
4322 {
4323 	struct inode *inode = file_inode(file);
4324 	struct btrfs_root *root = BTRFS_I(inode)->root;
4325 	struct btrfs_ioctl_qgroup_limit_args *sa;
4326 	struct btrfs_trans_handle *trans;
4327 	int ret;
4328 	int err;
4329 	u64 qgroupid;
4330 
4331 	if (!capable(CAP_SYS_ADMIN))
4332 		return -EPERM;
4333 
4334 	ret = mnt_want_write_file(file);
4335 	if (ret)
4336 		return ret;
4337 
4338 	sa = memdup_user(arg, sizeof(*sa));
4339 	if (IS_ERR(sa)) {
4340 		ret = PTR_ERR(sa);
4341 		goto drop_write;
4342 	}
4343 
4344 	trans = btrfs_join_transaction(root);
4345 	if (IS_ERR(trans)) {
4346 		ret = PTR_ERR(trans);
4347 		goto out;
4348 	}
4349 
4350 	qgroupid = sa->qgroupid;
4351 	if (!qgroupid) {
4352 		/* take the current subvol as qgroup */
4353 		qgroupid = root->root_key.objectid;
4354 	}
4355 
4356 	ret = btrfs_limit_qgroup(trans, qgroupid, &sa->lim);
4357 
4358 	err = btrfs_end_transaction(trans);
4359 	if (err && !ret)
4360 		ret = err;
4361 
4362 out:
4363 	kfree(sa);
4364 drop_write:
4365 	mnt_drop_write_file(file);
4366 	return ret;
4367 }
4368 
4369 static long btrfs_ioctl_quota_rescan(struct file *file, void __user *arg)
4370 {
4371 	struct inode *inode = file_inode(file);
4372 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4373 	struct btrfs_ioctl_quota_rescan_args *qsa;
4374 	int ret;
4375 
4376 	if (!capable(CAP_SYS_ADMIN))
4377 		return -EPERM;
4378 
4379 	ret = mnt_want_write_file(file);
4380 	if (ret)
4381 		return ret;
4382 
4383 	qsa = memdup_user(arg, sizeof(*qsa));
4384 	if (IS_ERR(qsa)) {
4385 		ret = PTR_ERR(qsa);
4386 		goto drop_write;
4387 	}
4388 
4389 	if (qsa->flags) {
4390 		ret = -EINVAL;
4391 		goto out;
4392 	}
4393 
4394 	ret = btrfs_qgroup_rescan(fs_info);
4395 
4396 out:
4397 	kfree(qsa);
4398 drop_write:
4399 	mnt_drop_write_file(file);
4400 	return ret;
4401 }
4402 
4403 static long btrfs_ioctl_quota_rescan_status(struct btrfs_fs_info *fs_info,
4404 						void __user *arg)
4405 {
4406 	struct btrfs_ioctl_quota_rescan_args *qsa;
4407 	int ret = 0;
4408 
4409 	if (!capable(CAP_SYS_ADMIN))
4410 		return -EPERM;
4411 
4412 	qsa = kzalloc(sizeof(*qsa), GFP_KERNEL);
4413 	if (!qsa)
4414 		return -ENOMEM;
4415 
4416 	if (fs_info->qgroup_flags & BTRFS_QGROUP_STATUS_FLAG_RESCAN) {
4417 		qsa->flags = 1;
4418 		qsa->progress = fs_info->qgroup_rescan_progress.objectid;
4419 	}
4420 
4421 	if (copy_to_user(arg, qsa, sizeof(*qsa)))
4422 		ret = -EFAULT;
4423 
4424 	kfree(qsa);
4425 	return ret;
4426 }
4427 
4428 static long btrfs_ioctl_quota_rescan_wait(struct btrfs_fs_info *fs_info,
4429 						void __user *arg)
4430 {
4431 	if (!capable(CAP_SYS_ADMIN))
4432 		return -EPERM;
4433 
4434 	return btrfs_qgroup_wait_for_completion(fs_info, true);
4435 }
4436 
4437 static long _btrfs_ioctl_set_received_subvol(struct file *file,
4438 					    struct btrfs_ioctl_received_subvol_args *sa)
4439 {
4440 	struct inode *inode = file_inode(file);
4441 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4442 	struct btrfs_root *root = BTRFS_I(inode)->root;
4443 	struct btrfs_root_item *root_item = &root->root_item;
4444 	struct btrfs_trans_handle *trans;
4445 	struct timespec64 ct = current_time(inode);
4446 	int ret = 0;
4447 	int received_uuid_changed;
4448 
4449 	if (!inode_owner_or_capable(&init_user_ns, inode))
4450 		return -EPERM;
4451 
4452 	ret = mnt_want_write_file(file);
4453 	if (ret < 0)
4454 		return ret;
4455 
4456 	down_write(&fs_info->subvol_sem);
4457 
4458 	if (btrfs_ino(BTRFS_I(inode)) != BTRFS_FIRST_FREE_OBJECTID) {
4459 		ret = -EINVAL;
4460 		goto out;
4461 	}
4462 
4463 	if (btrfs_root_readonly(root)) {
4464 		ret = -EROFS;
4465 		goto out;
4466 	}
4467 
4468 	/*
4469 	 * 1 - root item
4470 	 * 2 - uuid items (received uuid + subvol uuid)
4471 	 */
4472 	trans = btrfs_start_transaction(root, 3);
4473 	if (IS_ERR(trans)) {
4474 		ret = PTR_ERR(trans);
4475 		trans = NULL;
4476 		goto out;
4477 	}
4478 
4479 	sa->rtransid = trans->transid;
4480 	sa->rtime.sec = ct.tv_sec;
4481 	sa->rtime.nsec = ct.tv_nsec;
4482 
4483 	received_uuid_changed = memcmp(root_item->received_uuid, sa->uuid,
4484 				       BTRFS_UUID_SIZE);
4485 	if (received_uuid_changed &&
4486 	    !btrfs_is_empty_uuid(root_item->received_uuid)) {
4487 		ret = btrfs_uuid_tree_remove(trans, root_item->received_uuid,
4488 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4489 					  root->root_key.objectid);
4490 		if (ret && ret != -ENOENT) {
4491 		        btrfs_abort_transaction(trans, ret);
4492 		        btrfs_end_transaction(trans);
4493 		        goto out;
4494 		}
4495 	}
4496 	memcpy(root_item->received_uuid, sa->uuid, BTRFS_UUID_SIZE);
4497 	btrfs_set_root_stransid(root_item, sa->stransid);
4498 	btrfs_set_root_rtransid(root_item, sa->rtransid);
4499 	btrfs_set_stack_timespec_sec(&root_item->stime, sa->stime.sec);
4500 	btrfs_set_stack_timespec_nsec(&root_item->stime, sa->stime.nsec);
4501 	btrfs_set_stack_timespec_sec(&root_item->rtime, sa->rtime.sec);
4502 	btrfs_set_stack_timespec_nsec(&root_item->rtime, sa->rtime.nsec);
4503 
4504 	ret = btrfs_update_root(trans, fs_info->tree_root,
4505 				&root->root_key, &root->root_item);
4506 	if (ret < 0) {
4507 		btrfs_end_transaction(trans);
4508 		goto out;
4509 	}
4510 	if (received_uuid_changed && !btrfs_is_empty_uuid(sa->uuid)) {
4511 		ret = btrfs_uuid_tree_add(trans, sa->uuid,
4512 					  BTRFS_UUID_KEY_RECEIVED_SUBVOL,
4513 					  root->root_key.objectid);
4514 		if (ret < 0 && ret != -EEXIST) {
4515 			btrfs_abort_transaction(trans, ret);
4516 			btrfs_end_transaction(trans);
4517 			goto out;
4518 		}
4519 	}
4520 	ret = btrfs_commit_transaction(trans);
4521 out:
4522 	up_write(&fs_info->subvol_sem);
4523 	mnt_drop_write_file(file);
4524 	return ret;
4525 }
4526 
4527 #ifdef CONFIG_64BIT
4528 static long btrfs_ioctl_set_received_subvol_32(struct file *file,
4529 						void __user *arg)
4530 {
4531 	struct btrfs_ioctl_received_subvol_args_32 *args32 = NULL;
4532 	struct btrfs_ioctl_received_subvol_args *args64 = NULL;
4533 	int ret = 0;
4534 
4535 	args32 = memdup_user(arg, sizeof(*args32));
4536 	if (IS_ERR(args32))
4537 		return PTR_ERR(args32);
4538 
4539 	args64 = kmalloc(sizeof(*args64), GFP_KERNEL);
4540 	if (!args64) {
4541 		ret = -ENOMEM;
4542 		goto out;
4543 	}
4544 
4545 	memcpy(args64->uuid, args32->uuid, BTRFS_UUID_SIZE);
4546 	args64->stransid = args32->stransid;
4547 	args64->rtransid = args32->rtransid;
4548 	args64->stime.sec = args32->stime.sec;
4549 	args64->stime.nsec = args32->stime.nsec;
4550 	args64->rtime.sec = args32->rtime.sec;
4551 	args64->rtime.nsec = args32->rtime.nsec;
4552 	args64->flags = args32->flags;
4553 
4554 	ret = _btrfs_ioctl_set_received_subvol(file, args64);
4555 	if (ret)
4556 		goto out;
4557 
4558 	memcpy(args32->uuid, args64->uuid, BTRFS_UUID_SIZE);
4559 	args32->stransid = args64->stransid;
4560 	args32->rtransid = args64->rtransid;
4561 	args32->stime.sec = args64->stime.sec;
4562 	args32->stime.nsec = args64->stime.nsec;
4563 	args32->rtime.sec = args64->rtime.sec;
4564 	args32->rtime.nsec = args64->rtime.nsec;
4565 	args32->flags = args64->flags;
4566 
4567 	ret = copy_to_user(arg, args32, sizeof(*args32));
4568 	if (ret)
4569 		ret = -EFAULT;
4570 
4571 out:
4572 	kfree(args32);
4573 	kfree(args64);
4574 	return ret;
4575 }
4576 #endif
4577 
4578 static long btrfs_ioctl_set_received_subvol(struct file *file,
4579 					    void __user *arg)
4580 {
4581 	struct btrfs_ioctl_received_subvol_args *sa = NULL;
4582 	int ret = 0;
4583 
4584 	sa = memdup_user(arg, sizeof(*sa));
4585 	if (IS_ERR(sa))
4586 		return PTR_ERR(sa);
4587 
4588 	ret = _btrfs_ioctl_set_received_subvol(file, sa);
4589 
4590 	if (ret)
4591 		goto out;
4592 
4593 	ret = copy_to_user(arg, sa, sizeof(*sa));
4594 	if (ret)
4595 		ret = -EFAULT;
4596 
4597 out:
4598 	kfree(sa);
4599 	return ret;
4600 }
4601 
4602 static int btrfs_ioctl_get_fslabel(struct btrfs_fs_info *fs_info,
4603 					void __user *arg)
4604 {
4605 	size_t len;
4606 	int ret;
4607 	char label[BTRFS_LABEL_SIZE];
4608 
4609 	spin_lock(&fs_info->super_lock);
4610 	memcpy(label, fs_info->super_copy->label, BTRFS_LABEL_SIZE);
4611 	spin_unlock(&fs_info->super_lock);
4612 
4613 	len = strnlen(label, BTRFS_LABEL_SIZE);
4614 
4615 	if (len == BTRFS_LABEL_SIZE) {
4616 		btrfs_warn(fs_info,
4617 			   "label is too long, return the first %zu bytes",
4618 			   --len);
4619 	}
4620 
4621 	ret = copy_to_user(arg, label, len);
4622 
4623 	return ret ? -EFAULT : 0;
4624 }
4625 
4626 static int btrfs_ioctl_set_fslabel(struct file *file, void __user *arg)
4627 {
4628 	struct inode *inode = file_inode(file);
4629 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4630 	struct btrfs_root *root = BTRFS_I(inode)->root;
4631 	struct btrfs_super_block *super_block = fs_info->super_copy;
4632 	struct btrfs_trans_handle *trans;
4633 	char label[BTRFS_LABEL_SIZE];
4634 	int ret;
4635 
4636 	if (!capable(CAP_SYS_ADMIN))
4637 		return -EPERM;
4638 
4639 	if (copy_from_user(label, arg, sizeof(label)))
4640 		return -EFAULT;
4641 
4642 	if (strnlen(label, BTRFS_LABEL_SIZE) == BTRFS_LABEL_SIZE) {
4643 		btrfs_err(fs_info,
4644 			  "unable to set label with more than %d bytes",
4645 			  BTRFS_LABEL_SIZE - 1);
4646 		return -EINVAL;
4647 	}
4648 
4649 	ret = mnt_want_write_file(file);
4650 	if (ret)
4651 		return ret;
4652 
4653 	trans = btrfs_start_transaction(root, 0);
4654 	if (IS_ERR(trans)) {
4655 		ret = PTR_ERR(trans);
4656 		goto out_unlock;
4657 	}
4658 
4659 	spin_lock(&fs_info->super_lock);
4660 	strcpy(super_block->label, label);
4661 	spin_unlock(&fs_info->super_lock);
4662 	ret = btrfs_commit_transaction(trans);
4663 
4664 out_unlock:
4665 	mnt_drop_write_file(file);
4666 	return ret;
4667 }
4668 
4669 #define INIT_FEATURE_FLAGS(suffix) \
4670 	{ .compat_flags = BTRFS_FEATURE_COMPAT_##suffix, \
4671 	  .compat_ro_flags = BTRFS_FEATURE_COMPAT_RO_##suffix, \
4672 	  .incompat_flags = BTRFS_FEATURE_INCOMPAT_##suffix }
4673 
4674 int btrfs_ioctl_get_supported_features(void __user *arg)
4675 {
4676 	static const struct btrfs_ioctl_feature_flags features[3] = {
4677 		INIT_FEATURE_FLAGS(SUPP),
4678 		INIT_FEATURE_FLAGS(SAFE_SET),
4679 		INIT_FEATURE_FLAGS(SAFE_CLEAR)
4680 	};
4681 
4682 	if (copy_to_user(arg, &features, sizeof(features)))
4683 		return -EFAULT;
4684 
4685 	return 0;
4686 }
4687 
4688 static int btrfs_ioctl_get_features(struct btrfs_fs_info *fs_info,
4689 					void __user *arg)
4690 {
4691 	struct btrfs_super_block *super_block = fs_info->super_copy;
4692 	struct btrfs_ioctl_feature_flags features;
4693 
4694 	features.compat_flags = btrfs_super_compat_flags(super_block);
4695 	features.compat_ro_flags = btrfs_super_compat_ro_flags(super_block);
4696 	features.incompat_flags = btrfs_super_incompat_flags(super_block);
4697 
4698 	if (copy_to_user(arg, &features, sizeof(features)))
4699 		return -EFAULT;
4700 
4701 	return 0;
4702 }
4703 
4704 static int check_feature_bits(struct btrfs_fs_info *fs_info,
4705 			      enum btrfs_feature_set set,
4706 			      u64 change_mask, u64 flags, u64 supported_flags,
4707 			      u64 safe_set, u64 safe_clear)
4708 {
4709 	const char *type = btrfs_feature_set_name(set);
4710 	char *names;
4711 	u64 disallowed, unsupported;
4712 	u64 set_mask = flags & change_mask;
4713 	u64 clear_mask = ~flags & change_mask;
4714 
4715 	unsupported = set_mask & ~supported_flags;
4716 	if (unsupported) {
4717 		names = btrfs_printable_features(set, unsupported);
4718 		if (names) {
4719 			btrfs_warn(fs_info,
4720 				   "this kernel does not support the %s feature bit%s",
4721 				   names, strchr(names, ',') ? "s" : "");
4722 			kfree(names);
4723 		} else
4724 			btrfs_warn(fs_info,
4725 				   "this kernel does not support %s bits 0x%llx",
4726 				   type, unsupported);
4727 		return -EOPNOTSUPP;
4728 	}
4729 
4730 	disallowed = set_mask & ~safe_set;
4731 	if (disallowed) {
4732 		names = btrfs_printable_features(set, disallowed);
4733 		if (names) {
4734 			btrfs_warn(fs_info,
4735 				   "can't set the %s feature bit%s while mounted",
4736 				   names, strchr(names, ',') ? "s" : "");
4737 			kfree(names);
4738 		} else
4739 			btrfs_warn(fs_info,
4740 				   "can't set %s bits 0x%llx while mounted",
4741 				   type, disallowed);
4742 		return -EPERM;
4743 	}
4744 
4745 	disallowed = clear_mask & ~safe_clear;
4746 	if (disallowed) {
4747 		names = btrfs_printable_features(set, disallowed);
4748 		if (names) {
4749 			btrfs_warn(fs_info,
4750 				   "can't clear the %s feature bit%s while mounted",
4751 				   names, strchr(names, ',') ? "s" : "");
4752 			kfree(names);
4753 		} else
4754 			btrfs_warn(fs_info,
4755 				   "can't clear %s bits 0x%llx while mounted",
4756 				   type, disallowed);
4757 		return -EPERM;
4758 	}
4759 
4760 	return 0;
4761 }
4762 
4763 #define check_feature(fs_info, change_mask, flags, mask_base)	\
4764 check_feature_bits(fs_info, FEAT_##mask_base, change_mask, flags,	\
4765 		   BTRFS_FEATURE_ ## mask_base ## _SUPP,	\
4766 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_SET,	\
4767 		   BTRFS_FEATURE_ ## mask_base ## _SAFE_CLEAR)
4768 
4769 static int btrfs_ioctl_set_features(struct file *file, void __user *arg)
4770 {
4771 	struct inode *inode = file_inode(file);
4772 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4773 	struct btrfs_root *root = BTRFS_I(inode)->root;
4774 	struct btrfs_super_block *super_block = fs_info->super_copy;
4775 	struct btrfs_ioctl_feature_flags flags[2];
4776 	struct btrfs_trans_handle *trans;
4777 	u64 newflags;
4778 	int ret;
4779 
4780 	if (!capable(CAP_SYS_ADMIN))
4781 		return -EPERM;
4782 
4783 	if (copy_from_user(flags, arg, sizeof(flags)))
4784 		return -EFAULT;
4785 
4786 	/* Nothing to do */
4787 	if (!flags[0].compat_flags && !flags[0].compat_ro_flags &&
4788 	    !flags[0].incompat_flags)
4789 		return 0;
4790 
4791 	ret = check_feature(fs_info, flags[0].compat_flags,
4792 			    flags[1].compat_flags, COMPAT);
4793 	if (ret)
4794 		return ret;
4795 
4796 	ret = check_feature(fs_info, flags[0].compat_ro_flags,
4797 			    flags[1].compat_ro_flags, COMPAT_RO);
4798 	if (ret)
4799 		return ret;
4800 
4801 	ret = check_feature(fs_info, flags[0].incompat_flags,
4802 			    flags[1].incompat_flags, INCOMPAT);
4803 	if (ret)
4804 		return ret;
4805 
4806 	ret = mnt_want_write_file(file);
4807 	if (ret)
4808 		return ret;
4809 
4810 	trans = btrfs_start_transaction(root, 0);
4811 	if (IS_ERR(trans)) {
4812 		ret = PTR_ERR(trans);
4813 		goto out_drop_write;
4814 	}
4815 
4816 	spin_lock(&fs_info->super_lock);
4817 	newflags = btrfs_super_compat_flags(super_block);
4818 	newflags |= flags[0].compat_flags & flags[1].compat_flags;
4819 	newflags &= ~(flags[0].compat_flags & ~flags[1].compat_flags);
4820 	btrfs_set_super_compat_flags(super_block, newflags);
4821 
4822 	newflags = btrfs_super_compat_ro_flags(super_block);
4823 	newflags |= flags[0].compat_ro_flags & flags[1].compat_ro_flags;
4824 	newflags &= ~(flags[0].compat_ro_flags & ~flags[1].compat_ro_flags);
4825 	btrfs_set_super_compat_ro_flags(super_block, newflags);
4826 
4827 	newflags = btrfs_super_incompat_flags(super_block);
4828 	newflags |= flags[0].incompat_flags & flags[1].incompat_flags;
4829 	newflags &= ~(flags[0].incompat_flags & ~flags[1].incompat_flags);
4830 	btrfs_set_super_incompat_flags(super_block, newflags);
4831 	spin_unlock(&fs_info->super_lock);
4832 
4833 	ret = btrfs_commit_transaction(trans);
4834 out_drop_write:
4835 	mnt_drop_write_file(file);
4836 
4837 	return ret;
4838 }
4839 
4840 static int _btrfs_ioctl_send(struct file *file, void __user *argp, bool compat)
4841 {
4842 	struct btrfs_ioctl_send_args *arg;
4843 	int ret;
4844 
4845 	if (compat) {
4846 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4847 		struct btrfs_ioctl_send_args_32 args32;
4848 
4849 		ret = copy_from_user(&args32, argp, sizeof(args32));
4850 		if (ret)
4851 			return -EFAULT;
4852 		arg = kzalloc(sizeof(*arg), GFP_KERNEL);
4853 		if (!arg)
4854 			return -ENOMEM;
4855 		arg->send_fd = args32.send_fd;
4856 		arg->clone_sources_count = args32.clone_sources_count;
4857 		arg->clone_sources = compat_ptr(args32.clone_sources);
4858 		arg->parent_root = args32.parent_root;
4859 		arg->flags = args32.flags;
4860 		memcpy(arg->reserved, args32.reserved,
4861 		       sizeof(args32.reserved));
4862 #else
4863 		return -ENOTTY;
4864 #endif
4865 	} else {
4866 		arg = memdup_user(argp, sizeof(*arg));
4867 		if (IS_ERR(arg))
4868 			return PTR_ERR(arg);
4869 	}
4870 	ret = btrfs_ioctl_send(file, arg);
4871 	kfree(arg);
4872 	return ret;
4873 }
4874 
4875 long btrfs_ioctl(struct file *file, unsigned int
4876 		cmd, unsigned long arg)
4877 {
4878 	struct inode *inode = file_inode(file);
4879 	struct btrfs_fs_info *fs_info = btrfs_sb(inode->i_sb);
4880 	struct btrfs_root *root = BTRFS_I(inode)->root;
4881 	void __user *argp = (void __user *)arg;
4882 
4883 	switch (cmd) {
4884 	case FS_IOC_GETVERSION:
4885 		return btrfs_ioctl_getversion(file, argp);
4886 	case FS_IOC_GETFSLABEL:
4887 		return btrfs_ioctl_get_fslabel(fs_info, argp);
4888 	case FS_IOC_SETFSLABEL:
4889 		return btrfs_ioctl_set_fslabel(file, argp);
4890 	case FITRIM:
4891 		return btrfs_ioctl_fitrim(fs_info, argp);
4892 	case BTRFS_IOC_SNAP_CREATE:
4893 		return btrfs_ioctl_snap_create(file, argp, 0);
4894 	case BTRFS_IOC_SNAP_CREATE_V2:
4895 		return btrfs_ioctl_snap_create_v2(file, argp, 0);
4896 	case BTRFS_IOC_SUBVOL_CREATE:
4897 		return btrfs_ioctl_snap_create(file, argp, 1);
4898 	case BTRFS_IOC_SUBVOL_CREATE_V2:
4899 		return btrfs_ioctl_snap_create_v2(file, argp, 1);
4900 	case BTRFS_IOC_SNAP_DESTROY:
4901 		return btrfs_ioctl_snap_destroy(file, argp, false);
4902 	case BTRFS_IOC_SNAP_DESTROY_V2:
4903 		return btrfs_ioctl_snap_destroy(file, argp, true);
4904 	case BTRFS_IOC_SUBVOL_GETFLAGS:
4905 		return btrfs_ioctl_subvol_getflags(file, argp);
4906 	case BTRFS_IOC_SUBVOL_SETFLAGS:
4907 		return btrfs_ioctl_subvol_setflags(file, argp);
4908 	case BTRFS_IOC_DEFAULT_SUBVOL:
4909 		return btrfs_ioctl_default_subvol(file, argp);
4910 	case BTRFS_IOC_DEFRAG:
4911 		return btrfs_ioctl_defrag(file, NULL);
4912 	case BTRFS_IOC_DEFRAG_RANGE:
4913 		return btrfs_ioctl_defrag(file, argp);
4914 	case BTRFS_IOC_RESIZE:
4915 		return btrfs_ioctl_resize(file, argp);
4916 	case BTRFS_IOC_ADD_DEV:
4917 		return btrfs_ioctl_add_dev(fs_info, argp);
4918 	case BTRFS_IOC_RM_DEV:
4919 		return btrfs_ioctl_rm_dev(file, argp);
4920 	case BTRFS_IOC_RM_DEV_V2:
4921 		return btrfs_ioctl_rm_dev_v2(file, argp);
4922 	case BTRFS_IOC_FS_INFO:
4923 		return btrfs_ioctl_fs_info(fs_info, argp);
4924 	case BTRFS_IOC_DEV_INFO:
4925 		return btrfs_ioctl_dev_info(fs_info, argp);
4926 	case BTRFS_IOC_BALANCE:
4927 		return btrfs_ioctl_balance(file, NULL);
4928 	case BTRFS_IOC_TREE_SEARCH:
4929 		return btrfs_ioctl_tree_search(file, argp);
4930 	case BTRFS_IOC_TREE_SEARCH_V2:
4931 		return btrfs_ioctl_tree_search_v2(file, argp);
4932 	case BTRFS_IOC_INO_LOOKUP:
4933 		return btrfs_ioctl_ino_lookup(file, argp);
4934 	case BTRFS_IOC_INO_PATHS:
4935 		return btrfs_ioctl_ino_to_path(root, argp);
4936 	case BTRFS_IOC_LOGICAL_INO:
4937 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 1);
4938 	case BTRFS_IOC_LOGICAL_INO_V2:
4939 		return btrfs_ioctl_logical_to_ino(fs_info, argp, 2);
4940 	case BTRFS_IOC_SPACE_INFO:
4941 		return btrfs_ioctl_space_info(fs_info, argp);
4942 	case BTRFS_IOC_SYNC: {
4943 		int ret;
4944 
4945 		ret = btrfs_start_delalloc_roots(fs_info, LONG_MAX, false);
4946 		if (ret)
4947 			return ret;
4948 		ret = btrfs_sync_fs(inode->i_sb, 1);
4949 		/*
4950 		 * The transaction thread may want to do more work,
4951 		 * namely it pokes the cleaner kthread that will start
4952 		 * processing uncleaned subvols.
4953 		 */
4954 		wake_up_process(fs_info->transaction_kthread);
4955 		return ret;
4956 	}
4957 	case BTRFS_IOC_START_SYNC:
4958 		return btrfs_ioctl_start_sync(root, argp);
4959 	case BTRFS_IOC_WAIT_SYNC:
4960 		return btrfs_ioctl_wait_sync(fs_info, argp);
4961 	case BTRFS_IOC_SCRUB:
4962 		return btrfs_ioctl_scrub(file, argp);
4963 	case BTRFS_IOC_SCRUB_CANCEL:
4964 		return btrfs_ioctl_scrub_cancel(fs_info);
4965 	case BTRFS_IOC_SCRUB_PROGRESS:
4966 		return btrfs_ioctl_scrub_progress(fs_info, argp);
4967 	case BTRFS_IOC_BALANCE_V2:
4968 		return btrfs_ioctl_balance(file, argp);
4969 	case BTRFS_IOC_BALANCE_CTL:
4970 		return btrfs_ioctl_balance_ctl(fs_info, arg);
4971 	case BTRFS_IOC_BALANCE_PROGRESS:
4972 		return btrfs_ioctl_balance_progress(fs_info, argp);
4973 	case BTRFS_IOC_SET_RECEIVED_SUBVOL:
4974 		return btrfs_ioctl_set_received_subvol(file, argp);
4975 #ifdef CONFIG_64BIT
4976 	case BTRFS_IOC_SET_RECEIVED_SUBVOL_32:
4977 		return btrfs_ioctl_set_received_subvol_32(file, argp);
4978 #endif
4979 	case BTRFS_IOC_SEND:
4980 		return _btrfs_ioctl_send(file, argp, false);
4981 #if defined(CONFIG_64BIT) && defined(CONFIG_COMPAT)
4982 	case BTRFS_IOC_SEND_32:
4983 		return _btrfs_ioctl_send(file, argp, true);
4984 #endif
4985 	case BTRFS_IOC_GET_DEV_STATS:
4986 		return btrfs_ioctl_get_dev_stats(fs_info, argp);
4987 	case BTRFS_IOC_QUOTA_CTL:
4988 		return btrfs_ioctl_quota_ctl(file, argp);
4989 	case BTRFS_IOC_QGROUP_ASSIGN:
4990 		return btrfs_ioctl_qgroup_assign(file, argp);
4991 	case BTRFS_IOC_QGROUP_CREATE:
4992 		return btrfs_ioctl_qgroup_create(file, argp);
4993 	case BTRFS_IOC_QGROUP_LIMIT:
4994 		return btrfs_ioctl_qgroup_limit(file, argp);
4995 	case BTRFS_IOC_QUOTA_RESCAN:
4996 		return btrfs_ioctl_quota_rescan(file, argp);
4997 	case BTRFS_IOC_QUOTA_RESCAN_STATUS:
4998 		return btrfs_ioctl_quota_rescan_status(fs_info, argp);
4999 	case BTRFS_IOC_QUOTA_RESCAN_WAIT:
5000 		return btrfs_ioctl_quota_rescan_wait(fs_info, argp);
5001 	case BTRFS_IOC_DEV_REPLACE:
5002 		return btrfs_ioctl_dev_replace(fs_info, argp);
5003 	case BTRFS_IOC_GET_SUPPORTED_FEATURES:
5004 		return btrfs_ioctl_get_supported_features(argp);
5005 	case BTRFS_IOC_GET_FEATURES:
5006 		return btrfs_ioctl_get_features(fs_info, argp);
5007 	case BTRFS_IOC_SET_FEATURES:
5008 		return btrfs_ioctl_set_features(file, argp);
5009 	case BTRFS_IOC_GET_SUBVOL_INFO:
5010 		return btrfs_ioctl_get_subvol_info(file, argp);
5011 	case BTRFS_IOC_GET_SUBVOL_ROOTREF:
5012 		return btrfs_ioctl_get_subvol_rootref(file, argp);
5013 	case BTRFS_IOC_INO_LOOKUP_USER:
5014 		return btrfs_ioctl_ino_lookup_user(file, argp);
5015 	case FS_IOC_ENABLE_VERITY:
5016 		return fsverity_ioctl_enable(file, (const void __user *)argp);
5017 	case FS_IOC_MEASURE_VERITY:
5018 		return fsverity_ioctl_measure(file, argp);
5019 	}
5020 
5021 	return -ENOTTY;
5022 }
5023 
5024 #ifdef CONFIG_COMPAT
5025 long btrfs_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
5026 {
5027 	/*
5028 	 * These all access 32-bit values anyway so no further
5029 	 * handling is necessary.
5030 	 */
5031 	switch (cmd) {
5032 	case FS_IOC32_GETVERSION:
5033 		cmd = FS_IOC_GETVERSION;
5034 		break;
5035 	}
5036 
5037 	return btrfs_ioctl(file, cmd, (unsigned long) compat_ptr(arg));
5038 }
5039 #endif
5040