1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/module.h> 8 #include <linux/spinlock.h> 9 #include <linux/blkdev.h> 10 #include <linux/swap.h> 11 #include <linux/writeback.h> 12 #include <linux/pagevec.h> 13 #include <linux/prefetch.h> 14 #include <linux/cleancache.h> 15 #include "extent_io.h" 16 #include "extent_map.h" 17 #include "compat.h" 18 #include "ctree.h" 19 #include "btrfs_inode.h" 20 21 static struct kmem_cache *extent_state_cache; 22 static struct kmem_cache *extent_buffer_cache; 23 24 static LIST_HEAD(buffers); 25 static LIST_HEAD(states); 26 27 #define LEAK_DEBUG 0 28 #if LEAK_DEBUG 29 static DEFINE_SPINLOCK(leak_lock); 30 #endif 31 32 #define BUFFER_LRU_MAX 64 33 34 struct tree_entry { 35 u64 start; 36 u64 end; 37 struct rb_node rb_node; 38 }; 39 40 struct extent_page_data { 41 struct bio *bio; 42 struct extent_io_tree *tree; 43 get_extent_t *get_extent; 44 45 /* tells writepage not to lock the state bits for this range 46 * it still does the unlocking 47 */ 48 unsigned int extent_locked:1; 49 50 /* tells the submit_bio code to use a WRITE_SYNC */ 51 unsigned int sync_io:1; 52 }; 53 54 int __init extent_io_init(void) 55 { 56 extent_state_cache = kmem_cache_create("extent_state", 57 sizeof(struct extent_state), 0, 58 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 59 if (!extent_state_cache) 60 return -ENOMEM; 61 62 extent_buffer_cache = kmem_cache_create("extent_buffers", 63 sizeof(struct extent_buffer), 0, 64 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 65 if (!extent_buffer_cache) 66 goto free_state_cache; 67 return 0; 68 69 free_state_cache: 70 kmem_cache_destroy(extent_state_cache); 71 return -ENOMEM; 72 } 73 74 void extent_io_exit(void) 75 { 76 struct extent_state *state; 77 struct extent_buffer *eb; 78 79 while (!list_empty(&states)) { 80 state = list_entry(states.next, struct extent_state, leak_list); 81 printk(KERN_ERR "btrfs state leak: start %llu end %llu " 82 "state %lu in tree %p refs %d\n", 83 (unsigned long long)state->start, 84 (unsigned long long)state->end, 85 state->state, state->tree, atomic_read(&state->refs)); 86 list_del(&state->leak_list); 87 kmem_cache_free(extent_state_cache, state); 88 89 } 90 91 while (!list_empty(&buffers)) { 92 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 93 printk(KERN_ERR "btrfs buffer leak start %llu len %lu " 94 "refs %d\n", (unsigned long long)eb->start, 95 eb->len, atomic_read(&eb->refs)); 96 list_del(&eb->leak_list); 97 kmem_cache_free(extent_buffer_cache, eb); 98 } 99 if (extent_state_cache) 100 kmem_cache_destroy(extent_state_cache); 101 if (extent_buffer_cache) 102 kmem_cache_destroy(extent_buffer_cache); 103 } 104 105 void extent_io_tree_init(struct extent_io_tree *tree, 106 struct address_space *mapping) 107 { 108 tree->state = RB_ROOT; 109 INIT_RADIX_TREE(&tree->buffer, GFP_ATOMIC); 110 tree->ops = NULL; 111 tree->dirty_bytes = 0; 112 spin_lock_init(&tree->lock); 113 spin_lock_init(&tree->buffer_lock); 114 tree->mapping = mapping; 115 } 116 117 static struct extent_state *alloc_extent_state(gfp_t mask) 118 { 119 struct extent_state *state; 120 #if LEAK_DEBUG 121 unsigned long flags; 122 #endif 123 124 state = kmem_cache_alloc(extent_state_cache, mask); 125 if (!state) 126 return state; 127 state->state = 0; 128 state->private = 0; 129 state->tree = NULL; 130 #if LEAK_DEBUG 131 spin_lock_irqsave(&leak_lock, flags); 132 list_add(&state->leak_list, &states); 133 spin_unlock_irqrestore(&leak_lock, flags); 134 #endif 135 atomic_set(&state->refs, 1); 136 init_waitqueue_head(&state->wq); 137 return state; 138 } 139 140 void free_extent_state(struct extent_state *state) 141 { 142 if (!state) 143 return; 144 if (atomic_dec_and_test(&state->refs)) { 145 #if LEAK_DEBUG 146 unsigned long flags; 147 #endif 148 WARN_ON(state->tree); 149 #if LEAK_DEBUG 150 spin_lock_irqsave(&leak_lock, flags); 151 list_del(&state->leak_list); 152 spin_unlock_irqrestore(&leak_lock, flags); 153 #endif 154 kmem_cache_free(extent_state_cache, state); 155 } 156 } 157 158 static struct rb_node *tree_insert(struct rb_root *root, u64 offset, 159 struct rb_node *node) 160 { 161 struct rb_node **p = &root->rb_node; 162 struct rb_node *parent = NULL; 163 struct tree_entry *entry; 164 165 while (*p) { 166 parent = *p; 167 entry = rb_entry(parent, struct tree_entry, rb_node); 168 169 if (offset < entry->start) 170 p = &(*p)->rb_left; 171 else if (offset > entry->end) 172 p = &(*p)->rb_right; 173 else 174 return parent; 175 } 176 177 entry = rb_entry(node, struct tree_entry, rb_node); 178 rb_link_node(node, parent, p); 179 rb_insert_color(node, root); 180 return NULL; 181 } 182 183 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 184 struct rb_node **prev_ret, 185 struct rb_node **next_ret) 186 { 187 struct rb_root *root = &tree->state; 188 struct rb_node *n = root->rb_node; 189 struct rb_node *prev = NULL; 190 struct rb_node *orig_prev = NULL; 191 struct tree_entry *entry; 192 struct tree_entry *prev_entry = NULL; 193 194 while (n) { 195 entry = rb_entry(n, struct tree_entry, rb_node); 196 prev = n; 197 prev_entry = entry; 198 199 if (offset < entry->start) 200 n = n->rb_left; 201 else if (offset > entry->end) 202 n = n->rb_right; 203 else 204 return n; 205 } 206 207 if (prev_ret) { 208 orig_prev = prev; 209 while (prev && offset > prev_entry->end) { 210 prev = rb_next(prev); 211 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 212 } 213 *prev_ret = prev; 214 prev = orig_prev; 215 } 216 217 if (next_ret) { 218 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 219 while (prev && offset < prev_entry->start) { 220 prev = rb_prev(prev); 221 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 222 } 223 *next_ret = prev; 224 } 225 return NULL; 226 } 227 228 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 229 u64 offset) 230 { 231 struct rb_node *prev = NULL; 232 struct rb_node *ret; 233 234 ret = __etree_search(tree, offset, &prev, NULL); 235 if (!ret) 236 return prev; 237 return ret; 238 } 239 240 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 241 struct extent_state *other) 242 { 243 if (tree->ops && tree->ops->merge_extent_hook) 244 tree->ops->merge_extent_hook(tree->mapping->host, new, 245 other); 246 } 247 248 /* 249 * utility function to look for merge candidates inside a given range. 250 * Any extents with matching state are merged together into a single 251 * extent in the tree. Extents with EXTENT_IO in their state field 252 * are not merged because the end_io handlers need to be able to do 253 * operations on them without sleeping (or doing allocations/splits). 254 * 255 * This should be called with the tree lock held. 256 */ 257 static int merge_state(struct extent_io_tree *tree, 258 struct extent_state *state) 259 { 260 struct extent_state *other; 261 struct rb_node *other_node; 262 263 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 264 return 0; 265 266 other_node = rb_prev(&state->rb_node); 267 if (other_node) { 268 other = rb_entry(other_node, struct extent_state, rb_node); 269 if (other->end == state->start - 1 && 270 other->state == state->state) { 271 merge_cb(tree, state, other); 272 state->start = other->start; 273 other->tree = NULL; 274 rb_erase(&other->rb_node, &tree->state); 275 free_extent_state(other); 276 } 277 } 278 other_node = rb_next(&state->rb_node); 279 if (other_node) { 280 other = rb_entry(other_node, struct extent_state, rb_node); 281 if (other->start == state->end + 1 && 282 other->state == state->state) { 283 merge_cb(tree, state, other); 284 other->start = state->start; 285 state->tree = NULL; 286 rb_erase(&state->rb_node, &tree->state); 287 free_extent_state(state); 288 state = NULL; 289 } 290 } 291 292 return 0; 293 } 294 295 static int set_state_cb(struct extent_io_tree *tree, 296 struct extent_state *state, int *bits) 297 { 298 if (tree->ops && tree->ops->set_bit_hook) { 299 return tree->ops->set_bit_hook(tree->mapping->host, 300 state, bits); 301 } 302 303 return 0; 304 } 305 306 static void clear_state_cb(struct extent_io_tree *tree, 307 struct extent_state *state, int *bits) 308 { 309 if (tree->ops && tree->ops->clear_bit_hook) 310 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 311 } 312 313 /* 314 * insert an extent_state struct into the tree. 'bits' are set on the 315 * struct before it is inserted. 316 * 317 * This may return -EEXIST if the extent is already there, in which case the 318 * state struct is freed. 319 * 320 * The tree lock is not taken internally. This is a utility function and 321 * probably isn't what you want to call (see set/clear_extent_bit). 322 */ 323 static int insert_state(struct extent_io_tree *tree, 324 struct extent_state *state, u64 start, u64 end, 325 int *bits) 326 { 327 struct rb_node *node; 328 int bits_to_set = *bits & ~EXTENT_CTLBITS; 329 int ret; 330 331 if (end < start) { 332 printk(KERN_ERR "btrfs end < start %llu %llu\n", 333 (unsigned long long)end, 334 (unsigned long long)start); 335 WARN_ON(1); 336 } 337 state->start = start; 338 state->end = end; 339 ret = set_state_cb(tree, state, bits); 340 if (ret) 341 return ret; 342 343 if (bits_to_set & EXTENT_DIRTY) 344 tree->dirty_bytes += end - start + 1; 345 state->state |= bits_to_set; 346 node = tree_insert(&tree->state, end, &state->rb_node); 347 if (node) { 348 struct extent_state *found; 349 found = rb_entry(node, struct extent_state, rb_node); 350 printk(KERN_ERR "btrfs found node %llu %llu on insert of " 351 "%llu %llu\n", (unsigned long long)found->start, 352 (unsigned long long)found->end, 353 (unsigned long long)start, (unsigned long long)end); 354 free_extent_state(state); 355 return -EEXIST; 356 } 357 state->tree = tree; 358 merge_state(tree, state); 359 return 0; 360 } 361 362 static int split_cb(struct extent_io_tree *tree, struct extent_state *orig, 363 u64 split) 364 { 365 if (tree->ops && tree->ops->split_extent_hook) 366 return tree->ops->split_extent_hook(tree->mapping->host, 367 orig, split); 368 return 0; 369 } 370 371 /* 372 * split a given extent state struct in two, inserting the preallocated 373 * struct 'prealloc' as the newly created second half. 'split' indicates an 374 * offset inside 'orig' where it should be split. 375 * 376 * Before calling, 377 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 378 * are two extent state structs in the tree: 379 * prealloc: [orig->start, split - 1] 380 * orig: [ split, orig->end ] 381 * 382 * The tree locks are not taken by this function. They need to be held 383 * by the caller. 384 */ 385 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 386 struct extent_state *prealloc, u64 split) 387 { 388 struct rb_node *node; 389 390 split_cb(tree, orig, split); 391 392 prealloc->start = orig->start; 393 prealloc->end = split - 1; 394 prealloc->state = orig->state; 395 orig->start = split; 396 397 node = tree_insert(&tree->state, prealloc->end, &prealloc->rb_node); 398 if (node) { 399 free_extent_state(prealloc); 400 return -EEXIST; 401 } 402 prealloc->tree = tree; 403 return 0; 404 } 405 406 /* 407 * utility function to clear some bits in an extent state struct. 408 * it will optionally wake up any one waiting on this state (wake == 1), or 409 * forcibly remove the state from the tree (delete == 1). 410 * 411 * If no bits are set on the state struct after clearing things, the 412 * struct is freed and removed from the tree 413 */ 414 static int clear_state_bit(struct extent_io_tree *tree, 415 struct extent_state *state, 416 int *bits, int wake) 417 { 418 int bits_to_clear = *bits & ~EXTENT_CTLBITS; 419 int ret = state->state & bits_to_clear; 420 421 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 422 u64 range = state->end - state->start + 1; 423 WARN_ON(range > tree->dirty_bytes); 424 tree->dirty_bytes -= range; 425 } 426 clear_state_cb(tree, state, bits); 427 state->state &= ~bits_to_clear; 428 if (wake) 429 wake_up(&state->wq); 430 if (state->state == 0) { 431 if (state->tree) { 432 rb_erase(&state->rb_node, &tree->state); 433 state->tree = NULL; 434 free_extent_state(state); 435 } else { 436 WARN_ON(1); 437 } 438 } else { 439 merge_state(tree, state); 440 } 441 return ret; 442 } 443 444 static struct extent_state * 445 alloc_extent_state_atomic(struct extent_state *prealloc) 446 { 447 if (!prealloc) 448 prealloc = alloc_extent_state(GFP_ATOMIC); 449 450 return prealloc; 451 } 452 453 /* 454 * clear some bits on a range in the tree. This may require splitting 455 * or inserting elements in the tree, so the gfp mask is used to 456 * indicate which allocations or sleeping are allowed. 457 * 458 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 459 * the given range from the tree regardless of state (ie for truncate). 460 * 461 * the range [start, end] is inclusive. 462 * 463 * This takes the tree lock, and returns < 0 on error, > 0 if any of the 464 * bits were already set, or zero if none of the bits were already set. 465 */ 466 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 467 int bits, int wake, int delete, 468 struct extent_state **cached_state, 469 gfp_t mask) 470 { 471 struct extent_state *state; 472 struct extent_state *cached; 473 struct extent_state *prealloc = NULL; 474 struct rb_node *next_node; 475 struct rb_node *node; 476 u64 last_end; 477 int err; 478 int set = 0; 479 int clear = 0; 480 481 if (delete) 482 bits |= ~EXTENT_CTLBITS; 483 bits |= EXTENT_FIRST_DELALLOC; 484 485 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 486 clear = 1; 487 again: 488 if (!prealloc && (mask & __GFP_WAIT)) { 489 prealloc = alloc_extent_state(mask); 490 if (!prealloc) 491 return -ENOMEM; 492 } 493 494 spin_lock(&tree->lock); 495 if (cached_state) { 496 cached = *cached_state; 497 498 if (clear) { 499 *cached_state = NULL; 500 cached_state = NULL; 501 } 502 503 if (cached && cached->tree && cached->start == start) { 504 if (clear) 505 atomic_dec(&cached->refs); 506 state = cached; 507 goto hit_next; 508 } 509 if (clear) 510 free_extent_state(cached); 511 } 512 /* 513 * this search will find the extents that end after 514 * our range starts 515 */ 516 node = tree_search(tree, start); 517 if (!node) 518 goto out; 519 state = rb_entry(node, struct extent_state, rb_node); 520 hit_next: 521 if (state->start > end) 522 goto out; 523 WARN_ON(state->end < start); 524 last_end = state->end; 525 526 /* 527 * | ---- desired range ---- | 528 * | state | or 529 * | ------------- state -------------- | 530 * 531 * We need to split the extent we found, and may flip 532 * bits on second half. 533 * 534 * If the extent we found extends past our range, we 535 * just split and search again. It'll get split again 536 * the next time though. 537 * 538 * If the extent we found is inside our range, we clear 539 * the desired bit on it. 540 */ 541 542 if (state->start < start) { 543 prealloc = alloc_extent_state_atomic(prealloc); 544 BUG_ON(!prealloc); 545 err = split_state(tree, state, prealloc, start); 546 BUG_ON(err == -EEXIST); 547 prealloc = NULL; 548 if (err) 549 goto out; 550 if (state->end <= end) { 551 set |= clear_state_bit(tree, state, &bits, wake); 552 if (last_end == (u64)-1) 553 goto out; 554 start = last_end + 1; 555 } 556 goto search_again; 557 } 558 /* 559 * | ---- desired range ---- | 560 * | state | 561 * We need to split the extent, and clear the bit 562 * on the first half 563 */ 564 if (state->start <= end && state->end > end) { 565 prealloc = alloc_extent_state_atomic(prealloc); 566 BUG_ON(!prealloc); 567 err = split_state(tree, state, prealloc, end + 1); 568 BUG_ON(err == -EEXIST); 569 if (wake) 570 wake_up(&state->wq); 571 572 set |= clear_state_bit(tree, prealloc, &bits, wake); 573 574 prealloc = NULL; 575 goto out; 576 } 577 578 if (state->end < end && prealloc && !need_resched()) 579 next_node = rb_next(&state->rb_node); 580 else 581 next_node = NULL; 582 583 set |= clear_state_bit(tree, state, &bits, wake); 584 if (last_end == (u64)-1) 585 goto out; 586 start = last_end + 1; 587 if (start <= end && next_node) { 588 state = rb_entry(next_node, struct extent_state, 589 rb_node); 590 if (state->start == start) 591 goto hit_next; 592 } 593 goto search_again; 594 595 out: 596 spin_unlock(&tree->lock); 597 if (prealloc) 598 free_extent_state(prealloc); 599 600 return set; 601 602 search_again: 603 if (start > end) 604 goto out; 605 spin_unlock(&tree->lock); 606 if (mask & __GFP_WAIT) 607 cond_resched(); 608 goto again; 609 } 610 611 static int wait_on_state(struct extent_io_tree *tree, 612 struct extent_state *state) 613 __releases(tree->lock) 614 __acquires(tree->lock) 615 { 616 DEFINE_WAIT(wait); 617 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 618 spin_unlock(&tree->lock); 619 schedule(); 620 spin_lock(&tree->lock); 621 finish_wait(&state->wq, &wait); 622 return 0; 623 } 624 625 /* 626 * waits for one or more bits to clear on a range in the state tree. 627 * The range [start, end] is inclusive. 628 * The tree lock is taken by this function 629 */ 630 int wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, int bits) 631 { 632 struct extent_state *state; 633 struct rb_node *node; 634 635 spin_lock(&tree->lock); 636 again: 637 while (1) { 638 /* 639 * this search will find all the extents that end after 640 * our range starts 641 */ 642 node = tree_search(tree, start); 643 if (!node) 644 break; 645 646 state = rb_entry(node, struct extent_state, rb_node); 647 648 if (state->start > end) 649 goto out; 650 651 if (state->state & bits) { 652 start = state->start; 653 atomic_inc(&state->refs); 654 wait_on_state(tree, state); 655 free_extent_state(state); 656 goto again; 657 } 658 start = state->end + 1; 659 660 if (start > end) 661 break; 662 663 if (need_resched()) { 664 spin_unlock(&tree->lock); 665 cond_resched(); 666 spin_lock(&tree->lock); 667 } 668 } 669 out: 670 spin_unlock(&tree->lock); 671 return 0; 672 } 673 674 static int set_state_bits(struct extent_io_tree *tree, 675 struct extent_state *state, 676 int *bits) 677 { 678 int ret; 679 int bits_to_set = *bits & ~EXTENT_CTLBITS; 680 681 ret = set_state_cb(tree, state, bits); 682 if (ret) 683 return ret; 684 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 685 u64 range = state->end - state->start + 1; 686 tree->dirty_bytes += range; 687 } 688 state->state |= bits_to_set; 689 690 return 0; 691 } 692 693 static void cache_state(struct extent_state *state, 694 struct extent_state **cached_ptr) 695 { 696 if (cached_ptr && !(*cached_ptr)) { 697 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 698 *cached_ptr = state; 699 atomic_inc(&state->refs); 700 } 701 } 702 } 703 704 static void uncache_state(struct extent_state **cached_ptr) 705 { 706 if (cached_ptr && (*cached_ptr)) { 707 struct extent_state *state = *cached_ptr; 708 *cached_ptr = NULL; 709 free_extent_state(state); 710 } 711 } 712 713 /* 714 * set some bits on a range in the tree. This may require allocations or 715 * sleeping, so the gfp mask is used to indicate what is allowed. 716 * 717 * If any of the exclusive bits are set, this will fail with -EEXIST if some 718 * part of the range already has the desired bits set. The start of the 719 * existing range is returned in failed_start in this case. 720 * 721 * [start, end] is inclusive This takes the tree lock. 722 */ 723 724 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 725 int bits, int exclusive_bits, u64 *failed_start, 726 struct extent_state **cached_state, gfp_t mask) 727 { 728 struct extent_state *state; 729 struct extent_state *prealloc = NULL; 730 struct rb_node *node; 731 int err = 0; 732 u64 last_start; 733 u64 last_end; 734 735 bits |= EXTENT_FIRST_DELALLOC; 736 again: 737 if (!prealloc && (mask & __GFP_WAIT)) { 738 prealloc = alloc_extent_state(mask); 739 BUG_ON(!prealloc); 740 } 741 742 spin_lock(&tree->lock); 743 if (cached_state && *cached_state) { 744 state = *cached_state; 745 if (state->start == start && state->tree) { 746 node = &state->rb_node; 747 goto hit_next; 748 } 749 } 750 /* 751 * this search will find all the extents that end after 752 * our range starts. 753 */ 754 node = tree_search(tree, start); 755 if (!node) { 756 prealloc = alloc_extent_state_atomic(prealloc); 757 BUG_ON(!prealloc); 758 err = insert_state(tree, prealloc, start, end, &bits); 759 prealloc = NULL; 760 BUG_ON(err == -EEXIST); 761 goto out; 762 } 763 state = rb_entry(node, struct extent_state, rb_node); 764 hit_next: 765 last_start = state->start; 766 last_end = state->end; 767 768 /* 769 * | ---- desired range ---- | 770 * | state | 771 * 772 * Just lock what we found and keep going 773 */ 774 if (state->start == start && state->end <= end) { 775 struct rb_node *next_node; 776 if (state->state & exclusive_bits) { 777 *failed_start = state->start; 778 err = -EEXIST; 779 goto out; 780 } 781 782 err = set_state_bits(tree, state, &bits); 783 if (err) 784 goto out; 785 786 next_node = rb_next(node); 787 cache_state(state, cached_state); 788 merge_state(tree, state); 789 if (last_end == (u64)-1) 790 goto out; 791 792 start = last_end + 1; 793 if (next_node && start < end && prealloc && !need_resched()) { 794 state = rb_entry(next_node, struct extent_state, 795 rb_node); 796 if (state->start == start) 797 goto hit_next; 798 } 799 goto search_again; 800 } 801 802 /* 803 * | ---- desired range ---- | 804 * | state | 805 * or 806 * | ------------- state -------------- | 807 * 808 * We need to split the extent we found, and may flip bits on 809 * second half. 810 * 811 * If the extent we found extends past our 812 * range, we just split and search again. It'll get split 813 * again the next time though. 814 * 815 * If the extent we found is inside our range, we set the 816 * desired bit on it. 817 */ 818 if (state->start < start) { 819 if (state->state & exclusive_bits) { 820 *failed_start = start; 821 err = -EEXIST; 822 goto out; 823 } 824 825 prealloc = alloc_extent_state_atomic(prealloc); 826 BUG_ON(!prealloc); 827 err = split_state(tree, state, prealloc, start); 828 BUG_ON(err == -EEXIST); 829 prealloc = NULL; 830 if (err) 831 goto out; 832 if (state->end <= end) { 833 err = set_state_bits(tree, state, &bits); 834 if (err) 835 goto out; 836 cache_state(state, cached_state); 837 merge_state(tree, state); 838 if (last_end == (u64)-1) 839 goto out; 840 start = last_end + 1; 841 } 842 goto search_again; 843 } 844 /* 845 * | ---- desired range ---- | 846 * | state | or | state | 847 * 848 * There's a hole, we need to insert something in it and 849 * ignore the extent we found. 850 */ 851 if (state->start > start) { 852 u64 this_end; 853 if (end < last_start) 854 this_end = end; 855 else 856 this_end = last_start - 1; 857 858 prealloc = alloc_extent_state_atomic(prealloc); 859 BUG_ON(!prealloc); 860 861 /* 862 * Avoid to free 'prealloc' if it can be merged with 863 * the later extent. 864 */ 865 atomic_inc(&prealloc->refs); 866 err = insert_state(tree, prealloc, start, this_end, 867 &bits); 868 BUG_ON(err == -EEXIST); 869 if (err) { 870 free_extent_state(prealloc); 871 prealloc = NULL; 872 goto out; 873 } 874 cache_state(prealloc, cached_state); 875 free_extent_state(prealloc); 876 prealloc = NULL; 877 start = this_end + 1; 878 goto search_again; 879 } 880 /* 881 * | ---- desired range ---- | 882 * | state | 883 * We need to split the extent, and set the bit 884 * on the first half 885 */ 886 if (state->start <= end && state->end > end) { 887 if (state->state & exclusive_bits) { 888 *failed_start = start; 889 err = -EEXIST; 890 goto out; 891 } 892 893 prealloc = alloc_extent_state_atomic(prealloc); 894 BUG_ON(!prealloc); 895 err = split_state(tree, state, prealloc, end + 1); 896 BUG_ON(err == -EEXIST); 897 898 err = set_state_bits(tree, prealloc, &bits); 899 if (err) { 900 prealloc = NULL; 901 goto out; 902 } 903 cache_state(prealloc, cached_state); 904 merge_state(tree, prealloc); 905 prealloc = NULL; 906 goto out; 907 } 908 909 goto search_again; 910 911 out: 912 spin_unlock(&tree->lock); 913 if (prealloc) 914 free_extent_state(prealloc); 915 916 return err; 917 918 search_again: 919 if (start > end) 920 goto out; 921 spin_unlock(&tree->lock); 922 if (mask & __GFP_WAIT) 923 cond_resched(); 924 goto again; 925 } 926 927 /* wrappers around set/clear extent bit */ 928 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 929 gfp_t mask) 930 { 931 return set_extent_bit(tree, start, end, EXTENT_DIRTY, 0, NULL, 932 NULL, mask); 933 } 934 935 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 936 int bits, gfp_t mask) 937 { 938 return set_extent_bit(tree, start, end, bits, 0, NULL, 939 NULL, mask); 940 } 941 942 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 943 int bits, gfp_t mask) 944 { 945 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 946 } 947 948 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 949 struct extent_state **cached_state, gfp_t mask) 950 { 951 return set_extent_bit(tree, start, end, 952 EXTENT_DELALLOC | EXTENT_DIRTY | EXTENT_UPTODATE, 953 0, NULL, cached_state, mask); 954 } 955 956 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 957 gfp_t mask) 958 { 959 return clear_extent_bit(tree, start, end, 960 EXTENT_DIRTY | EXTENT_DELALLOC | 961 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 962 } 963 964 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 965 gfp_t mask) 966 { 967 return set_extent_bit(tree, start, end, EXTENT_NEW, 0, NULL, 968 NULL, mask); 969 } 970 971 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 972 struct extent_state **cached_state, gfp_t mask) 973 { 974 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 975 NULL, cached_state, mask); 976 } 977 978 static int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, 979 u64 end, struct extent_state **cached_state, 980 gfp_t mask) 981 { 982 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 983 cached_state, mask); 984 } 985 986 /* 987 * either insert or lock state struct between start and end use mask to tell 988 * us if waiting is desired. 989 */ 990 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 991 int bits, struct extent_state **cached_state, gfp_t mask) 992 { 993 int err; 994 u64 failed_start; 995 while (1) { 996 err = set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 997 EXTENT_LOCKED, &failed_start, 998 cached_state, mask); 999 if (err == -EEXIST && (mask & __GFP_WAIT)) { 1000 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1001 start = failed_start; 1002 } else { 1003 break; 1004 } 1005 WARN_ON(start > end); 1006 } 1007 return err; 1008 } 1009 1010 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) 1011 { 1012 return lock_extent_bits(tree, start, end, 0, NULL, mask); 1013 } 1014 1015 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end, 1016 gfp_t mask) 1017 { 1018 int err; 1019 u64 failed_start; 1020 1021 err = set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1022 &failed_start, NULL, mask); 1023 if (err == -EEXIST) { 1024 if (failed_start > start) 1025 clear_extent_bit(tree, start, failed_start - 1, 1026 EXTENT_LOCKED, 1, 0, NULL, mask); 1027 return 0; 1028 } 1029 return 1; 1030 } 1031 1032 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1033 struct extent_state **cached, gfp_t mask) 1034 { 1035 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1036 mask); 1037 } 1038 1039 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end, gfp_t mask) 1040 { 1041 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1042 mask); 1043 } 1044 1045 /* 1046 * helper function to set both pages and extents in the tree writeback 1047 */ 1048 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1049 { 1050 unsigned long index = start >> PAGE_CACHE_SHIFT; 1051 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1052 struct page *page; 1053 1054 while (index <= end_index) { 1055 page = find_get_page(tree->mapping, index); 1056 BUG_ON(!page); 1057 set_page_writeback(page); 1058 page_cache_release(page); 1059 index++; 1060 } 1061 return 0; 1062 } 1063 1064 /* 1065 * find the first offset in the io tree with 'bits' set. zero is 1066 * returned if we find something, and *start_ret and *end_ret are 1067 * set to reflect the state struct that was found. 1068 * 1069 * If nothing was found, 1 is returned, < 0 on error 1070 */ 1071 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1072 u64 *start_ret, u64 *end_ret, int bits) 1073 { 1074 struct rb_node *node; 1075 struct extent_state *state; 1076 int ret = 1; 1077 1078 spin_lock(&tree->lock); 1079 /* 1080 * this search will find all the extents that end after 1081 * our range starts. 1082 */ 1083 node = tree_search(tree, start); 1084 if (!node) 1085 goto out; 1086 1087 while (1) { 1088 state = rb_entry(node, struct extent_state, rb_node); 1089 if (state->end >= start && (state->state & bits)) { 1090 *start_ret = state->start; 1091 *end_ret = state->end; 1092 ret = 0; 1093 break; 1094 } 1095 node = rb_next(node); 1096 if (!node) 1097 break; 1098 } 1099 out: 1100 spin_unlock(&tree->lock); 1101 return ret; 1102 } 1103 1104 /* find the first state struct with 'bits' set after 'start', and 1105 * return it. tree->lock must be held. NULL will returned if 1106 * nothing was found after 'start' 1107 */ 1108 struct extent_state *find_first_extent_bit_state(struct extent_io_tree *tree, 1109 u64 start, int bits) 1110 { 1111 struct rb_node *node; 1112 struct extent_state *state; 1113 1114 /* 1115 * this search will find all the extents that end after 1116 * our range starts. 1117 */ 1118 node = tree_search(tree, start); 1119 if (!node) 1120 goto out; 1121 1122 while (1) { 1123 state = rb_entry(node, struct extent_state, rb_node); 1124 if (state->end >= start && (state->state & bits)) 1125 return state; 1126 1127 node = rb_next(node); 1128 if (!node) 1129 break; 1130 } 1131 out: 1132 return NULL; 1133 } 1134 1135 /* 1136 * find a contiguous range of bytes in the file marked as delalloc, not 1137 * more than 'max_bytes'. start and end are used to return the range, 1138 * 1139 * 1 is returned if we find something, 0 if nothing was in the tree 1140 */ 1141 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1142 u64 *start, u64 *end, u64 max_bytes, 1143 struct extent_state **cached_state) 1144 { 1145 struct rb_node *node; 1146 struct extent_state *state; 1147 u64 cur_start = *start; 1148 u64 found = 0; 1149 u64 total_bytes = 0; 1150 1151 spin_lock(&tree->lock); 1152 1153 /* 1154 * this search will find all the extents that end after 1155 * our range starts. 1156 */ 1157 node = tree_search(tree, cur_start); 1158 if (!node) { 1159 if (!found) 1160 *end = (u64)-1; 1161 goto out; 1162 } 1163 1164 while (1) { 1165 state = rb_entry(node, struct extent_state, rb_node); 1166 if (found && (state->start != cur_start || 1167 (state->state & EXTENT_BOUNDARY))) { 1168 goto out; 1169 } 1170 if (!(state->state & EXTENT_DELALLOC)) { 1171 if (!found) 1172 *end = state->end; 1173 goto out; 1174 } 1175 if (!found) { 1176 *start = state->start; 1177 *cached_state = state; 1178 atomic_inc(&state->refs); 1179 } 1180 found++; 1181 *end = state->end; 1182 cur_start = state->end + 1; 1183 node = rb_next(node); 1184 if (!node) 1185 break; 1186 total_bytes += state->end - state->start + 1; 1187 if (total_bytes >= max_bytes) 1188 break; 1189 } 1190 out: 1191 spin_unlock(&tree->lock); 1192 return found; 1193 } 1194 1195 static noinline int __unlock_for_delalloc(struct inode *inode, 1196 struct page *locked_page, 1197 u64 start, u64 end) 1198 { 1199 int ret; 1200 struct page *pages[16]; 1201 unsigned long index = start >> PAGE_CACHE_SHIFT; 1202 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1203 unsigned long nr_pages = end_index - index + 1; 1204 int i; 1205 1206 if (index == locked_page->index && end_index == index) 1207 return 0; 1208 1209 while (nr_pages > 0) { 1210 ret = find_get_pages_contig(inode->i_mapping, index, 1211 min_t(unsigned long, nr_pages, 1212 ARRAY_SIZE(pages)), pages); 1213 for (i = 0; i < ret; i++) { 1214 if (pages[i] != locked_page) 1215 unlock_page(pages[i]); 1216 page_cache_release(pages[i]); 1217 } 1218 nr_pages -= ret; 1219 index += ret; 1220 cond_resched(); 1221 } 1222 return 0; 1223 } 1224 1225 static noinline int lock_delalloc_pages(struct inode *inode, 1226 struct page *locked_page, 1227 u64 delalloc_start, 1228 u64 delalloc_end) 1229 { 1230 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1231 unsigned long start_index = index; 1232 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1233 unsigned long pages_locked = 0; 1234 struct page *pages[16]; 1235 unsigned long nrpages; 1236 int ret; 1237 int i; 1238 1239 /* the caller is responsible for locking the start index */ 1240 if (index == locked_page->index && index == end_index) 1241 return 0; 1242 1243 /* skip the page at the start index */ 1244 nrpages = end_index - index + 1; 1245 while (nrpages > 0) { 1246 ret = find_get_pages_contig(inode->i_mapping, index, 1247 min_t(unsigned long, 1248 nrpages, ARRAY_SIZE(pages)), pages); 1249 if (ret == 0) { 1250 ret = -EAGAIN; 1251 goto done; 1252 } 1253 /* now we have an array of pages, lock them all */ 1254 for (i = 0; i < ret; i++) { 1255 /* 1256 * the caller is taking responsibility for 1257 * locked_page 1258 */ 1259 if (pages[i] != locked_page) { 1260 lock_page(pages[i]); 1261 if (!PageDirty(pages[i]) || 1262 pages[i]->mapping != inode->i_mapping) { 1263 ret = -EAGAIN; 1264 unlock_page(pages[i]); 1265 page_cache_release(pages[i]); 1266 goto done; 1267 } 1268 } 1269 page_cache_release(pages[i]); 1270 pages_locked++; 1271 } 1272 nrpages -= ret; 1273 index += ret; 1274 cond_resched(); 1275 } 1276 ret = 0; 1277 done: 1278 if (ret && pages_locked) { 1279 __unlock_for_delalloc(inode, locked_page, 1280 delalloc_start, 1281 ((u64)(start_index + pages_locked - 1)) << 1282 PAGE_CACHE_SHIFT); 1283 } 1284 return ret; 1285 } 1286 1287 /* 1288 * find a contiguous range of bytes in the file marked as delalloc, not 1289 * more than 'max_bytes'. start and end are used to return the range, 1290 * 1291 * 1 is returned if we find something, 0 if nothing was in the tree 1292 */ 1293 static noinline u64 find_lock_delalloc_range(struct inode *inode, 1294 struct extent_io_tree *tree, 1295 struct page *locked_page, 1296 u64 *start, u64 *end, 1297 u64 max_bytes) 1298 { 1299 u64 delalloc_start; 1300 u64 delalloc_end; 1301 u64 found; 1302 struct extent_state *cached_state = NULL; 1303 int ret; 1304 int loops = 0; 1305 1306 again: 1307 /* step one, find a bunch of delalloc bytes starting at start */ 1308 delalloc_start = *start; 1309 delalloc_end = 0; 1310 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1311 max_bytes, &cached_state); 1312 if (!found || delalloc_end <= *start) { 1313 *start = delalloc_start; 1314 *end = delalloc_end; 1315 free_extent_state(cached_state); 1316 return found; 1317 } 1318 1319 /* 1320 * start comes from the offset of locked_page. We have to lock 1321 * pages in order, so we can't process delalloc bytes before 1322 * locked_page 1323 */ 1324 if (delalloc_start < *start) 1325 delalloc_start = *start; 1326 1327 /* 1328 * make sure to limit the number of pages we try to lock down 1329 * if we're looping. 1330 */ 1331 if (delalloc_end + 1 - delalloc_start > max_bytes && loops) 1332 delalloc_end = delalloc_start + PAGE_CACHE_SIZE - 1; 1333 1334 /* step two, lock all the pages after the page that has start */ 1335 ret = lock_delalloc_pages(inode, locked_page, 1336 delalloc_start, delalloc_end); 1337 if (ret == -EAGAIN) { 1338 /* some of the pages are gone, lets avoid looping by 1339 * shortening the size of the delalloc range we're searching 1340 */ 1341 free_extent_state(cached_state); 1342 if (!loops) { 1343 unsigned long offset = (*start) & (PAGE_CACHE_SIZE - 1); 1344 max_bytes = PAGE_CACHE_SIZE - offset; 1345 loops = 1; 1346 goto again; 1347 } else { 1348 found = 0; 1349 goto out_failed; 1350 } 1351 } 1352 BUG_ON(ret); 1353 1354 /* step three, lock the state bits for the whole range */ 1355 lock_extent_bits(tree, delalloc_start, delalloc_end, 1356 0, &cached_state, GFP_NOFS); 1357 1358 /* then test to make sure it is all still delalloc */ 1359 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1360 EXTENT_DELALLOC, 1, cached_state); 1361 if (!ret) { 1362 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1363 &cached_state, GFP_NOFS); 1364 __unlock_for_delalloc(inode, locked_page, 1365 delalloc_start, delalloc_end); 1366 cond_resched(); 1367 goto again; 1368 } 1369 free_extent_state(cached_state); 1370 *start = delalloc_start; 1371 *end = delalloc_end; 1372 out_failed: 1373 return found; 1374 } 1375 1376 int extent_clear_unlock_delalloc(struct inode *inode, 1377 struct extent_io_tree *tree, 1378 u64 start, u64 end, struct page *locked_page, 1379 unsigned long op) 1380 { 1381 int ret; 1382 struct page *pages[16]; 1383 unsigned long index = start >> PAGE_CACHE_SHIFT; 1384 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1385 unsigned long nr_pages = end_index - index + 1; 1386 int i; 1387 int clear_bits = 0; 1388 1389 if (op & EXTENT_CLEAR_UNLOCK) 1390 clear_bits |= EXTENT_LOCKED; 1391 if (op & EXTENT_CLEAR_DIRTY) 1392 clear_bits |= EXTENT_DIRTY; 1393 1394 if (op & EXTENT_CLEAR_DELALLOC) 1395 clear_bits |= EXTENT_DELALLOC; 1396 1397 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1398 if (!(op & (EXTENT_CLEAR_UNLOCK_PAGE | EXTENT_CLEAR_DIRTY | 1399 EXTENT_SET_WRITEBACK | EXTENT_END_WRITEBACK | 1400 EXTENT_SET_PRIVATE2))) 1401 return 0; 1402 1403 while (nr_pages > 0) { 1404 ret = find_get_pages_contig(inode->i_mapping, index, 1405 min_t(unsigned long, 1406 nr_pages, ARRAY_SIZE(pages)), pages); 1407 for (i = 0; i < ret; i++) { 1408 1409 if (op & EXTENT_SET_PRIVATE2) 1410 SetPagePrivate2(pages[i]); 1411 1412 if (pages[i] == locked_page) { 1413 page_cache_release(pages[i]); 1414 continue; 1415 } 1416 if (op & EXTENT_CLEAR_DIRTY) 1417 clear_page_dirty_for_io(pages[i]); 1418 if (op & EXTENT_SET_WRITEBACK) 1419 set_page_writeback(pages[i]); 1420 if (op & EXTENT_END_WRITEBACK) 1421 end_page_writeback(pages[i]); 1422 if (op & EXTENT_CLEAR_UNLOCK_PAGE) 1423 unlock_page(pages[i]); 1424 page_cache_release(pages[i]); 1425 } 1426 nr_pages -= ret; 1427 index += ret; 1428 cond_resched(); 1429 } 1430 return 0; 1431 } 1432 1433 /* 1434 * count the number of bytes in the tree that have a given bit(s) 1435 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1436 * cached. The total number found is returned. 1437 */ 1438 u64 count_range_bits(struct extent_io_tree *tree, 1439 u64 *start, u64 search_end, u64 max_bytes, 1440 unsigned long bits, int contig) 1441 { 1442 struct rb_node *node; 1443 struct extent_state *state; 1444 u64 cur_start = *start; 1445 u64 total_bytes = 0; 1446 u64 last = 0; 1447 int found = 0; 1448 1449 if (search_end <= cur_start) { 1450 WARN_ON(1); 1451 return 0; 1452 } 1453 1454 spin_lock(&tree->lock); 1455 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1456 total_bytes = tree->dirty_bytes; 1457 goto out; 1458 } 1459 /* 1460 * this search will find all the extents that end after 1461 * our range starts. 1462 */ 1463 node = tree_search(tree, cur_start); 1464 if (!node) 1465 goto out; 1466 1467 while (1) { 1468 state = rb_entry(node, struct extent_state, rb_node); 1469 if (state->start > search_end) 1470 break; 1471 if (contig && found && state->start > last + 1) 1472 break; 1473 if (state->end >= cur_start && (state->state & bits) == bits) { 1474 total_bytes += min(search_end, state->end) + 1 - 1475 max(cur_start, state->start); 1476 if (total_bytes >= max_bytes) 1477 break; 1478 if (!found) { 1479 *start = max(cur_start, state->start); 1480 found = 1; 1481 } 1482 last = state->end; 1483 } else if (contig && found) { 1484 break; 1485 } 1486 node = rb_next(node); 1487 if (!node) 1488 break; 1489 } 1490 out: 1491 spin_unlock(&tree->lock); 1492 return total_bytes; 1493 } 1494 1495 /* 1496 * set the private field for a given byte offset in the tree. If there isn't 1497 * an extent_state there already, this does nothing. 1498 */ 1499 int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1500 { 1501 struct rb_node *node; 1502 struct extent_state *state; 1503 int ret = 0; 1504 1505 spin_lock(&tree->lock); 1506 /* 1507 * this search will find all the extents that end after 1508 * our range starts. 1509 */ 1510 node = tree_search(tree, start); 1511 if (!node) { 1512 ret = -ENOENT; 1513 goto out; 1514 } 1515 state = rb_entry(node, struct extent_state, rb_node); 1516 if (state->start != start) { 1517 ret = -ENOENT; 1518 goto out; 1519 } 1520 state->private = private; 1521 out: 1522 spin_unlock(&tree->lock); 1523 return ret; 1524 } 1525 1526 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1527 { 1528 struct rb_node *node; 1529 struct extent_state *state; 1530 int ret = 0; 1531 1532 spin_lock(&tree->lock); 1533 /* 1534 * this search will find all the extents that end after 1535 * our range starts. 1536 */ 1537 node = tree_search(tree, start); 1538 if (!node) { 1539 ret = -ENOENT; 1540 goto out; 1541 } 1542 state = rb_entry(node, struct extent_state, rb_node); 1543 if (state->start != start) { 1544 ret = -ENOENT; 1545 goto out; 1546 } 1547 *private = state->private; 1548 out: 1549 spin_unlock(&tree->lock); 1550 return ret; 1551 } 1552 1553 /* 1554 * searches a range in the state tree for a given mask. 1555 * If 'filled' == 1, this returns 1 only if every extent in the tree 1556 * has the bits set. Otherwise, 1 is returned if any bit in the 1557 * range is found set. 1558 */ 1559 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1560 int bits, int filled, struct extent_state *cached) 1561 { 1562 struct extent_state *state = NULL; 1563 struct rb_node *node; 1564 int bitset = 0; 1565 1566 spin_lock(&tree->lock); 1567 if (cached && cached->tree && cached->start == start) 1568 node = &cached->rb_node; 1569 else 1570 node = tree_search(tree, start); 1571 while (node && start <= end) { 1572 state = rb_entry(node, struct extent_state, rb_node); 1573 1574 if (filled && state->start > start) { 1575 bitset = 0; 1576 break; 1577 } 1578 1579 if (state->start > end) 1580 break; 1581 1582 if (state->state & bits) { 1583 bitset = 1; 1584 if (!filled) 1585 break; 1586 } else if (filled) { 1587 bitset = 0; 1588 break; 1589 } 1590 1591 if (state->end == (u64)-1) 1592 break; 1593 1594 start = state->end + 1; 1595 if (start > end) 1596 break; 1597 node = rb_next(node); 1598 if (!node) { 1599 if (filled) 1600 bitset = 0; 1601 break; 1602 } 1603 } 1604 spin_unlock(&tree->lock); 1605 return bitset; 1606 } 1607 1608 /* 1609 * helper function to set a given page up to date if all the 1610 * extents in the tree for that page are up to date 1611 */ 1612 static int check_page_uptodate(struct extent_io_tree *tree, 1613 struct page *page) 1614 { 1615 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1616 u64 end = start + PAGE_CACHE_SIZE - 1; 1617 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1618 SetPageUptodate(page); 1619 return 0; 1620 } 1621 1622 /* 1623 * helper function to unlock a page if all the extents in the tree 1624 * for that page are unlocked 1625 */ 1626 static int check_page_locked(struct extent_io_tree *tree, 1627 struct page *page) 1628 { 1629 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1630 u64 end = start + PAGE_CACHE_SIZE - 1; 1631 if (!test_range_bit(tree, start, end, EXTENT_LOCKED, 0, NULL)) 1632 unlock_page(page); 1633 return 0; 1634 } 1635 1636 /* 1637 * helper function to end page writeback if all the extents 1638 * in the tree for that page are done with writeback 1639 */ 1640 static int check_page_writeback(struct extent_io_tree *tree, 1641 struct page *page) 1642 { 1643 end_page_writeback(page); 1644 return 0; 1645 } 1646 1647 /* lots and lots of room for performance fixes in the end_bio funcs */ 1648 1649 /* 1650 * after a writepage IO is done, we need to: 1651 * clear the uptodate bits on error 1652 * clear the writeback bits in the extent tree for this IO 1653 * end_page_writeback if the page has no more pending IO 1654 * 1655 * Scheduling is not allowed, so the extent state tree is expected 1656 * to have one and only one object corresponding to this IO. 1657 */ 1658 static void end_bio_extent_writepage(struct bio *bio, int err) 1659 { 1660 int uptodate = err == 0; 1661 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1662 struct extent_io_tree *tree; 1663 u64 start; 1664 u64 end; 1665 int whole_page; 1666 int ret; 1667 1668 do { 1669 struct page *page = bvec->bv_page; 1670 tree = &BTRFS_I(page->mapping->host)->io_tree; 1671 1672 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1673 bvec->bv_offset; 1674 end = start + bvec->bv_len - 1; 1675 1676 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1677 whole_page = 1; 1678 else 1679 whole_page = 0; 1680 1681 if (--bvec >= bio->bi_io_vec) 1682 prefetchw(&bvec->bv_page->flags); 1683 if (tree->ops && tree->ops->writepage_end_io_hook) { 1684 ret = tree->ops->writepage_end_io_hook(page, start, 1685 end, NULL, uptodate); 1686 if (ret) 1687 uptodate = 0; 1688 } 1689 1690 if (!uptodate && tree->ops && 1691 tree->ops->writepage_io_failed_hook) { 1692 ret = tree->ops->writepage_io_failed_hook(bio, page, 1693 start, end, NULL); 1694 if (ret == 0) { 1695 uptodate = (err == 0); 1696 continue; 1697 } 1698 } 1699 1700 if (!uptodate) { 1701 clear_extent_uptodate(tree, start, end, NULL, GFP_NOFS); 1702 ClearPageUptodate(page); 1703 SetPageError(page); 1704 } 1705 1706 if (whole_page) 1707 end_page_writeback(page); 1708 else 1709 check_page_writeback(tree, page); 1710 } while (bvec >= bio->bi_io_vec); 1711 1712 bio_put(bio); 1713 } 1714 1715 /* 1716 * after a readpage IO is done, we need to: 1717 * clear the uptodate bits on error 1718 * set the uptodate bits if things worked 1719 * set the page up to date if all extents in the tree are uptodate 1720 * clear the lock bit in the extent tree 1721 * unlock the page if there are no other extents locked for it 1722 * 1723 * Scheduling is not allowed, so the extent state tree is expected 1724 * to have one and only one object corresponding to this IO. 1725 */ 1726 static void end_bio_extent_readpage(struct bio *bio, int err) 1727 { 1728 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 1729 struct bio_vec *bvec_end = bio->bi_io_vec + bio->bi_vcnt - 1; 1730 struct bio_vec *bvec = bio->bi_io_vec; 1731 struct extent_io_tree *tree; 1732 u64 start; 1733 u64 end; 1734 int whole_page; 1735 int ret; 1736 1737 if (err) 1738 uptodate = 0; 1739 1740 do { 1741 struct page *page = bvec->bv_page; 1742 struct extent_state *cached = NULL; 1743 struct extent_state *state; 1744 1745 tree = &BTRFS_I(page->mapping->host)->io_tree; 1746 1747 start = ((u64)page->index << PAGE_CACHE_SHIFT) + 1748 bvec->bv_offset; 1749 end = start + bvec->bv_len - 1; 1750 1751 if (bvec->bv_offset == 0 && bvec->bv_len == PAGE_CACHE_SIZE) 1752 whole_page = 1; 1753 else 1754 whole_page = 0; 1755 1756 if (++bvec <= bvec_end) 1757 prefetchw(&bvec->bv_page->flags); 1758 1759 spin_lock(&tree->lock); 1760 state = find_first_extent_bit_state(tree, start, EXTENT_LOCKED); 1761 if (state && state->start == start) { 1762 /* 1763 * take a reference on the state, unlock will drop 1764 * the ref 1765 */ 1766 cache_state(state, &cached); 1767 } 1768 spin_unlock(&tree->lock); 1769 1770 if (uptodate && tree->ops && tree->ops->readpage_end_io_hook) { 1771 ret = tree->ops->readpage_end_io_hook(page, start, end, 1772 state); 1773 if (ret) 1774 uptodate = 0; 1775 } 1776 if (!uptodate && tree->ops && 1777 tree->ops->readpage_io_failed_hook) { 1778 ret = tree->ops->readpage_io_failed_hook(bio, page, 1779 start, end, NULL); 1780 if (ret == 0) { 1781 uptodate = 1782 test_bit(BIO_UPTODATE, &bio->bi_flags); 1783 if (err) 1784 uptodate = 0; 1785 uncache_state(&cached); 1786 continue; 1787 } 1788 } 1789 1790 if (uptodate) { 1791 set_extent_uptodate(tree, start, end, &cached, 1792 GFP_ATOMIC); 1793 } 1794 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 1795 1796 if (whole_page) { 1797 if (uptodate) { 1798 SetPageUptodate(page); 1799 } else { 1800 ClearPageUptodate(page); 1801 SetPageError(page); 1802 } 1803 unlock_page(page); 1804 } else { 1805 if (uptodate) { 1806 check_page_uptodate(tree, page); 1807 } else { 1808 ClearPageUptodate(page); 1809 SetPageError(page); 1810 } 1811 check_page_locked(tree, page); 1812 } 1813 } while (bvec <= bvec_end); 1814 1815 bio_put(bio); 1816 } 1817 1818 struct bio * 1819 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 1820 gfp_t gfp_flags) 1821 { 1822 struct bio *bio; 1823 1824 bio = bio_alloc(gfp_flags, nr_vecs); 1825 1826 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 1827 while (!bio && (nr_vecs /= 2)) 1828 bio = bio_alloc(gfp_flags, nr_vecs); 1829 } 1830 1831 if (bio) { 1832 bio->bi_size = 0; 1833 bio->bi_bdev = bdev; 1834 bio->bi_sector = first_sector; 1835 } 1836 return bio; 1837 } 1838 1839 static int submit_one_bio(int rw, struct bio *bio, int mirror_num, 1840 unsigned long bio_flags) 1841 { 1842 int ret = 0; 1843 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 1844 struct page *page = bvec->bv_page; 1845 struct extent_io_tree *tree = bio->bi_private; 1846 u64 start; 1847 1848 start = ((u64)page->index << PAGE_CACHE_SHIFT) + bvec->bv_offset; 1849 1850 bio->bi_private = NULL; 1851 1852 bio_get(bio); 1853 1854 if (tree->ops && tree->ops->submit_bio_hook) 1855 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 1856 mirror_num, bio_flags, start); 1857 else 1858 submit_bio(rw, bio); 1859 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 1860 ret = -EOPNOTSUPP; 1861 bio_put(bio); 1862 return ret; 1863 } 1864 1865 static int submit_extent_page(int rw, struct extent_io_tree *tree, 1866 struct page *page, sector_t sector, 1867 size_t size, unsigned long offset, 1868 struct block_device *bdev, 1869 struct bio **bio_ret, 1870 unsigned long max_pages, 1871 bio_end_io_t end_io_func, 1872 int mirror_num, 1873 unsigned long prev_bio_flags, 1874 unsigned long bio_flags) 1875 { 1876 int ret = 0; 1877 struct bio *bio; 1878 int nr; 1879 int contig = 0; 1880 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 1881 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 1882 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 1883 1884 if (bio_ret && *bio_ret) { 1885 bio = *bio_ret; 1886 if (old_compressed) 1887 contig = bio->bi_sector == sector; 1888 else 1889 contig = bio->bi_sector + (bio->bi_size >> 9) == 1890 sector; 1891 1892 if (prev_bio_flags != bio_flags || !contig || 1893 (tree->ops && tree->ops->merge_bio_hook && 1894 tree->ops->merge_bio_hook(page, offset, page_size, bio, 1895 bio_flags)) || 1896 bio_add_page(bio, page, page_size, offset) < page_size) { 1897 ret = submit_one_bio(rw, bio, mirror_num, 1898 prev_bio_flags); 1899 bio = NULL; 1900 } else { 1901 return 0; 1902 } 1903 } 1904 if (this_compressed) 1905 nr = BIO_MAX_PAGES; 1906 else 1907 nr = bio_get_nr_vecs(bdev); 1908 1909 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 1910 if (!bio) 1911 return -ENOMEM; 1912 1913 bio_add_page(bio, page, page_size, offset); 1914 bio->bi_end_io = end_io_func; 1915 bio->bi_private = tree; 1916 1917 if (bio_ret) 1918 *bio_ret = bio; 1919 else 1920 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 1921 1922 return ret; 1923 } 1924 1925 void set_page_extent_mapped(struct page *page) 1926 { 1927 if (!PagePrivate(page)) { 1928 SetPagePrivate(page); 1929 page_cache_get(page); 1930 set_page_private(page, EXTENT_PAGE_PRIVATE); 1931 } 1932 } 1933 1934 static void set_page_extent_head(struct page *page, unsigned long len) 1935 { 1936 WARN_ON(!PagePrivate(page)); 1937 set_page_private(page, EXTENT_PAGE_PRIVATE_FIRST_PAGE | len << 2); 1938 } 1939 1940 /* 1941 * basic readpage implementation. Locked extent state structs are inserted 1942 * into the tree that are removed when the IO is done (by the end_io 1943 * handlers) 1944 */ 1945 static int __extent_read_full_page(struct extent_io_tree *tree, 1946 struct page *page, 1947 get_extent_t *get_extent, 1948 struct bio **bio, int mirror_num, 1949 unsigned long *bio_flags) 1950 { 1951 struct inode *inode = page->mapping->host; 1952 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 1953 u64 page_end = start + PAGE_CACHE_SIZE - 1; 1954 u64 end; 1955 u64 cur = start; 1956 u64 extent_offset; 1957 u64 last_byte = i_size_read(inode); 1958 u64 block_start; 1959 u64 cur_end; 1960 sector_t sector; 1961 struct extent_map *em; 1962 struct block_device *bdev; 1963 struct btrfs_ordered_extent *ordered; 1964 int ret; 1965 int nr = 0; 1966 size_t pg_offset = 0; 1967 size_t iosize; 1968 size_t disk_io_size; 1969 size_t blocksize = inode->i_sb->s_blocksize; 1970 unsigned long this_bio_flag = 0; 1971 1972 set_page_extent_mapped(page); 1973 1974 if (!PageUptodate(page)) { 1975 if (cleancache_get_page(page) == 0) { 1976 BUG_ON(blocksize != PAGE_SIZE); 1977 goto out; 1978 } 1979 } 1980 1981 end = page_end; 1982 while (1) { 1983 lock_extent(tree, start, end, GFP_NOFS); 1984 ordered = btrfs_lookup_ordered_extent(inode, start); 1985 if (!ordered) 1986 break; 1987 unlock_extent(tree, start, end, GFP_NOFS); 1988 btrfs_start_ordered_extent(inode, ordered, 1); 1989 btrfs_put_ordered_extent(ordered); 1990 } 1991 1992 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 1993 char *userpage; 1994 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 1995 1996 if (zero_offset) { 1997 iosize = PAGE_CACHE_SIZE - zero_offset; 1998 userpage = kmap_atomic(page, KM_USER0); 1999 memset(userpage + zero_offset, 0, iosize); 2000 flush_dcache_page(page); 2001 kunmap_atomic(userpage, KM_USER0); 2002 } 2003 } 2004 while (cur <= end) { 2005 if (cur >= last_byte) { 2006 char *userpage; 2007 struct extent_state *cached = NULL; 2008 2009 iosize = PAGE_CACHE_SIZE - pg_offset; 2010 userpage = kmap_atomic(page, KM_USER0); 2011 memset(userpage + pg_offset, 0, iosize); 2012 flush_dcache_page(page); 2013 kunmap_atomic(userpage, KM_USER0); 2014 set_extent_uptodate(tree, cur, cur + iosize - 1, 2015 &cached, GFP_NOFS); 2016 unlock_extent_cached(tree, cur, cur + iosize - 1, 2017 &cached, GFP_NOFS); 2018 break; 2019 } 2020 em = get_extent(inode, page, pg_offset, cur, 2021 end - cur + 1, 0); 2022 if (IS_ERR_OR_NULL(em)) { 2023 SetPageError(page); 2024 unlock_extent(tree, cur, end, GFP_NOFS); 2025 break; 2026 } 2027 extent_offset = cur - em->start; 2028 BUG_ON(extent_map_end(em) <= cur); 2029 BUG_ON(end < cur); 2030 2031 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2032 this_bio_flag = EXTENT_BIO_COMPRESSED; 2033 extent_set_compress_type(&this_bio_flag, 2034 em->compress_type); 2035 } 2036 2037 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2038 cur_end = min(extent_map_end(em) - 1, end); 2039 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2040 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2041 disk_io_size = em->block_len; 2042 sector = em->block_start >> 9; 2043 } else { 2044 sector = (em->block_start + extent_offset) >> 9; 2045 disk_io_size = iosize; 2046 } 2047 bdev = em->bdev; 2048 block_start = em->block_start; 2049 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2050 block_start = EXTENT_MAP_HOLE; 2051 free_extent_map(em); 2052 em = NULL; 2053 2054 /* we've found a hole, just zero and go on */ 2055 if (block_start == EXTENT_MAP_HOLE) { 2056 char *userpage; 2057 struct extent_state *cached = NULL; 2058 2059 userpage = kmap_atomic(page, KM_USER0); 2060 memset(userpage + pg_offset, 0, iosize); 2061 flush_dcache_page(page); 2062 kunmap_atomic(userpage, KM_USER0); 2063 2064 set_extent_uptodate(tree, cur, cur + iosize - 1, 2065 &cached, GFP_NOFS); 2066 unlock_extent_cached(tree, cur, cur + iosize - 1, 2067 &cached, GFP_NOFS); 2068 cur = cur + iosize; 2069 pg_offset += iosize; 2070 continue; 2071 } 2072 /* the get_extent function already copied into the page */ 2073 if (test_range_bit(tree, cur, cur_end, 2074 EXTENT_UPTODATE, 1, NULL)) { 2075 check_page_uptodate(tree, page); 2076 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2077 cur = cur + iosize; 2078 pg_offset += iosize; 2079 continue; 2080 } 2081 /* we have an inline extent but it didn't get marked up 2082 * to date. Error out 2083 */ 2084 if (block_start == EXTENT_MAP_INLINE) { 2085 SetPageError(page); 2086 unlock_extent(tree, cur, cur + iosize - 1, GFP_NOFS); 2087 cur = cur + iosize; 2088 pg_offset += iosize; 2089 continue; 2090 } 2091 2092 ret = 0; 2093 if (tree->ops && tree->ops->readpage_io_hook) { 2094 ret = tree->ops->readpage_io_hook(page, cur, 2095 cur + iosize - 1); 2096 } 2097 if (!ret) { 2098 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2099 pnr -= page->index; 2100 ret = submit_extent_page(READ, tree, page, 2101 sector, disk_io_size, pg_offset, 2102 bdev, bio, pnr, 2103 end_bio_extent_readpage, mirror_num, 2104 *bio_flags, 2105 this_bio_flag); 2106 nr++; 2107 *bio_flags = this_bio_flag; 2108 } 2109 if (ret) 2110 SetPageError(page); 2111 cur = cur + iosize; 2112 pg_offset += iosize; 2113 } 2114 out: 2115 if (!nr) { 2116 if (!PageError(page)) 2117 SetPageUptodate(page); 2118 unlock_page(page); 2119 } 2120 return 0; 2121 } 2122 2123 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 2124 get_extent_t *get_extent) 2125 { 2126 struct bio *bio = NULL; 2127 unsigned long bio_flags = 0; 2128 int ret; 2129 2130 ret = __extent_read_full_page(tree, page, get_extent, &bio, 0, 2131 &bio_flags); 2132 if (bio) 2133 ret = submit_one_bio(READ, bio, 0, bio_flags); 2134 return ret; 2135 } 2136 2137 static noinline void update_nr_written(struct page *page, 2138 struct writeback_control *wbc, 2139 unsigned long nr_written) 2140 { 2141 wbc->nr_to_write -= nr_written; 2142 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 2143 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 2144 page->mapping->writeback_index = page->index + nr_written; 2145 } 2146 2147 /* 2148 * the writepage semantics are similar to regular writepage. extent 2149 * records are inserted to lock ranges in the tree, and as dirty areas 2150 * are found, they are marked writeback. Then the lock bits are removed 2151 * and the end_io handler clears the writeback ranges 2152 */ 2153 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 2154 void *data) 2155 { 2156 struct inode *inode = page->mapping->host; 2157 struct extent_page_data *epd = data; 2158 struct extent_io_tree *tree = epd->tree; 2159 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2160 u64 delalloc_start; 2161 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2162 u64 end; 2163 u64 cur = start; 2164 u64 extent_offset; 2165 u64 last_byte = i_size_read(inode); 2166 u64 block_start; 2167 u64 iosize; 2168 sector_t sector; 2169 struct extent_state *cached_state = NULL; 2170 struct extent_map *em; 2171 struct block_device *bdev; 2172 int ret; 2173 int nr = 0; 2174 size_t pg_offset = 0; 2175 size_t blocksize; 2176 loff_t i_size = i_size_read(inode); 2177 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 2178 u64 nr_delalloc; 2179 u64 delalloc_end; 2180 int page_started; 2181 int compressed; 2182 int write_flags; 2183 unsigned long nr_written = 0; 2184 2185 if (wbc->sync_mode == WB_SYNC_ALL) 2186 write_flags = WRITE_SYNC; 2187 else 2188 write_flags = WRITE; 2189 2190 trace___extent_writepage(page, inode, wbc); 2191 2192 WARN_ON(!PageLocked(page)); 2193 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 2194 if (page->index > end_index || 2195 (page->index == end_index && !pg_offset)) { 2196 page->mapping->a_ops->invalidatepage(page, 0); 2197 unlock_page(page); 2198 return 0; 2199 } 2200 2201 if (page->index == end_index) { 2202 char *userpage; 2203 2204 userpage = kmap_atomic(page, KM_USER0); 2205 memset(userpage + pg_offset, 0, 2206 PAGE_CACHE_SIZE - pg_offset); 2207 kunmap_atomic(userpage, KM_USER0); 2208 flush_dcache_page(page); 2209 } 2210 pg_offset = 0; 2211 2212 set_page_extent_mapped(page); 2213 2214 delalloc_start = start; 2215 delalloc_end = 0; 2216 page_started = 0; 2217 if (!epd->extent_locked) { 2218 u64 delalloc_to_write = 0; 2219 /* 2220 * make sure the wbc mapping index is at least updated 2221 * to this page. 2222 */ 2223 update_nr_written(page, wbc, 0); 2224 2225 while (delalloc_end < page_end) { 2226 nr_delalloc = find_lock_delalloc_range(inode, tree, 2227 page, 2228 &delalloc_start, 2229 &delalloc_end, 2230 128 * 1024 * 1024); 2231 if (nr_delalloc == 0) { 2232 delalloc_start = delalloc_end + 1; 2233 continue; 2234 } 2235 tree->ops->fill_delalloc(inode, page, delalloc_start, 2236 delalloc_end, &page_started, 2237 &nr_written); 2238 /* 2239 * delalloc_end is already one less than the total 2240 * length, so we don't subtract one from 2241 * PAGE_CACHE_SIZE 2242 */ 2243 delalloc_to_write += (delalloc_end - delalloc_start + 2244 PAGE_CACHE_SIZE) >> 2245 PAGE_CACHE_SHIFT; 2246 delalloc_start = delalloc_end + 1; 2247 } 2248 if (wbc->nr_to_write < delalloc_to_write) { 2249 int thresh = 8192; 2250 2251 if (delalloc_to_write < thresh * 2) 2252 thresh = delalloc_to_write; 2253 wbc->nr_to_write = min_t(u64, delalloc_to_write, 2254 thresh); 2255 } 2256 2257 /* did the fill delalloc function already unlock and start 2258 * the IO? 2259 */ 2260 if (page_started) { 2261 ret = 0; 2262 /* 2263 * we've unlocked the page, so we can't update 2264 * the mapping's writeback index, just update 2265 * nr_to_write. 2266 */ 2267 wbc->nr_to_write -= nr_written; 2268 goto done_unlocked; 2269 } 2270 } 2271 if (tree->ops && tree->ops->writepage_start_hook) { 2272 ret = tree->ops->writepage_start_hook(page, start, 2273 page_end); 2274 if (ret == -EAGAIN) { 2275 redirty_page_for_writepage(wbc, page); 2276 update_nr_written(page, wbc, nr_written); 2277 unlock_page(page); 2278 ret = 0; 2279 goto done_unlocked; 2280 } 2281 } 2282 2283 /* 2284 * we don't want to touch the inode after unlocking the page, 2285 * so we update the mapping writeback index now 2286 */ 2287 update_nr_written(page, wbc, nr_written + 1); 2288 2289 end = page_end; 2290 if (last_byte <= start) { 2291 if (tree->ops && tree->ops->writepage_end_io_hook) 2292 tree->ops->writepage_end_io_hook(page, start, 2293 page_end, NULL, 1); 2294 goto done; 2295 } 2296 2297 blocksize = inode->i_sb->s_blocksize; 2298 2299 while (cur <= end) { 2300 if (cur >= last_byte) { 2301 if (tree->ops && tree->ops->writepage_end_io_hook) 2302 tree->ops->writepage_end_io_hook(page, cur, 2303 page_end, NULL, 1); 2304 break; 2305 } 2306 em = epd->get_extent(inode, page, pg_offset, cur, 2307 end - cur + 1, 1); 2308 if (IS_ERR_OR_NULL(em)) { 2309 SetPageError(page); 2310 break; 2311 } 2312 2313 extent_offset = cur - em->start; 2314 BUG_ON(extent_map_end(em) <= cur); 2315 BUG_ON(end < cur); 2316 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2317 iosize = (iosize + blocksize - 1) & ~((u64)blocksize - 1); 2318 sector = (em->block_start + extent_offset) >> 9; 2319 bdev = em->bdev; 2320 block_start = em->block_start; 2321 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 2322 free_extent_map(em); 2323 em = NULL; 2324 2325 /* 2326 * compressed and inline extents are written through other 2327 * paths in the FS 2328 */ 2329 if (compressed || block_start == EXTENT_MAP_HOLE || 2330 block_start == EXTENT_MAP_INLINE) { 2331 /* 2332 * end_io notification does not happen here for 2333 * compressed extents 2334 */ 2335 if (!compressed && tree->ops && 2336 tree->ops->writepage_end_io_hook) 2337 tree->ops->writepage_end_io_hook(page, cur, 2338 cur + iosize - 1, 2339 NULL, 1); 2340 else if (compressed) { 2341 /* we don't want to end_page_writeback on 2342 * a compressed extent. this happens 2343 * elsewhere 2344 */ 2345 nr++; 2346 } 2347 2348 cur += iosize; 2349 pg_offset += iosize; 2350 continue; 2351 } 2352 /* leave this out until we have a page_mkwrite call */ 2353 if (0 && !test_range_bit(tree, cur, cur + iosize - 1, 2354 EXTENT_DIRTY, 0, NULL)) { 2355 cur = cur + iosize; 2356 pg_offset += iosize; 2357 continue; 2358 } 2359 2360 if (tree->ops && tree->ops->writepage_io_hook) { 2361 ret = tree->ops->writepage_io_hook(page, cur, 2362 cur + iosize - 1); 2363 } else { 2364 ret = 0; 2365 } 2366 if (ret) { 2367 SetPageError(page); 2368 } else { 2369 unsigned long max_nr = end_index + 1; 2370 2371 set_range_writeback(tree, cur, cur + iosize - 1); 2372 if (!PageWriteback(page)) { 2373 printk(KERN_ERR "btrfs warning page %lu not " 2374 "writeback, cur %llu end %llu\n", 2375 page->index, (unsigned long long)cur, 2376 (unsigned long long)end); 2377 } 2378 2379 ret = submit_extent_page(write_flags, tree, page, 2380 sector, iosize, pg_offset, 2381 bdev, &epd->bio, max_nr, 2382 end_bio_extent_writepage, 2383 0, 0, 0); 2384 if (ret) 2385 SetPageError(page); 2386 } 2387 cur = cur + iosize; 2388 pg_offset += iosize; 2389 nr++; 2390 } 2391 done: 2392 if (nr == 0) { 2393 /* make sure the mapping tag for page dirty gets cleared */ 2394 set_page_writeback(page); 2395 end_page_writeback(page); 2396 } 2397 unlock_page(page); 2398 2399 done_unlocked: 2400 2401 /* drop our reference on any cached states */ 2402 free_extent_state(cached_state); 2403 return 0; 2404 } 2405 2406 /** 2407 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 2408 * @mapping: address space structure to write 2409 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 2410 * @writepage: function called for each page 2411 * @data: data passed to writepage function 2412 * 2413 * If a page is already under I/O, write_cache_pages() skips it, even 2414 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 2415 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 2416 * and msync() need to guarantee that all the data which was dirty at the time 2417 * the call was made get new I/O started against them. If wbc->sync_mode is 2418 * WB_SYNC_ALL then we were called for data integrity and we must wait for 2419 * existing IO to complete. 2420 */ 2421 static int extent_write_cache_pages(struct extent_io_tree *tree, 2422 struct address_space *mapping, 2423 struct writeback_control *wbc, 2424 writepage_t writepage, void *data, 2425 void (*flush_fn)(void *)) 2426 { 2427 int ret = 0; 2428 int done = 0; 2429 int nr_to_write_done = 0; 2430 struct pagevec pvec; 2431 int nr_pages; 2432 pgoff_t index; 2433 pgoff_t end; /* Inclusive */ 2434 int scanned = 0; 2435 2436 pagevec_init(&pvec, 0); 2437 if (wbc->range_cyclic) { 2438 index = mapping->writeback_index; /* Start from prev offset */ 2439 end = -1; 2440 } else { 2441 index = wbc->range_start >> PAGE_CACHE_SHIFT; 2442 end = wbc->range_end >> PAGE_CACHE_SHIFT; 2443 scanned = 1; 2444 } 2445 retry: 2446 while (!done && !nr_to_write_done && (index <= end) && 2447 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, 2448 PAGECACHE_TAG_DIRTY, min(end - index, 2449 (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 2450 unsigned i; 2451 2452 scanned = 1; 2453 for (i = 0; i < nr_pages; i++) { 2454 struct page *page = pvec.pages[i]; 2455 2456 /* 2457 * At this point we hold neither mapping->tree_lock nor 2458 * lock on the page itself: the page may be truncated or 2459 * invalidated (changing page->mapping to NULL), or even 2460 * swizzled back from swapper_space to tmpfs file 2461 * mapping 2462 */ 2463 if (tree->ops && tree->ops->write_cache_pages_lock_hook) 2464 tree->ops->write_cache_pages_lock_hook(page); 2465 else 2466 lock_page(page); 2467 2468 if (unlikely(page->mapping != mapping)) { 2469 unlock_page(page); 2470 continue; 2471 } 2472 2473 if (!wbc->range_cyclic && page->index > end) { 2474 done = 1; 2475 unlock_page(page); 2476 continue; 2477 } 2478 2479 if (wbc->sync_mode != WB_SYNC_NONE) { 2480 if (PageWriteback(page)) 2481 flush_fn(data); 2482 wait_on_page_writeback(page); 2483 } 2484 2485 if (PageWriteback(page) || 2486 !clear_page_dirty_for_io(page)) { 2487 unlock_page(page); 2488 continue; 2489 } 2490 2491 ret = (*writepage)(page, wbc, data); 2492 2493 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 2494 unlock_page(page); 2495 ret = 0; 2496 } 2497 if (ret) 2498 done = 1; 2499 2500 /* 2501 * the filesystem may choose to bump up nr_to_write. 2502 * We have to make sure to honor the new nr_to_write 2503 * at any time 2504 */ 2505 nr_to_write_done = wbc->nr_to_write <= 0; 2506 } 2507 pagevec_release(&pvec); 2508 cond_resched(); 2509 } 2510 if (!scanned && !done) { 2511 /* 2512 * We hit the last page and there is more work to be done: wrap 2513 * back to the start of the file 2514 */ 2515 scanned = 1; 2516 index = 0; 2517 goto retry; 2518 } 2519 return ret; 2520 } 2521 2522 static void flush_epd_write_bio(struct extent_page_data *epd) 2523 { 2524 if (epd->bio) { 2525 if (epd->sync_io) 2526 submit_one_bio(WRITE_SYNC, epd->bio, 0, 0); 2527 else 2528 submit_one_bio(WRITE, epd->bio, 0, 0); 2529 epd->bio = NULL; 2530 } 2531 } 2532 2533 static noinline void flush_write_bio(void *data) 2534 { 2535 struct extent_page_data *epd = data; 2536 flush_epd_write_bio(epd); 2537 } 2538 2539 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 2540 get_extent_t *get_extent, 2541 struct writeback_control *wbc) 2542 { 2543 int ret; 2544 struct address_space *mapping = page->mapping; 2545 struct extent_page_data epd = { 2546 .bio = NULL, 2547 .tree = tree, 2548 .get_extent = get_extent, 2549 .extent_locked = 0, 2550 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2551 }; 2552 struct writeback_control wbc_writepages = { 2553 .sync_mode = wbc->sync_mode, 2554 .nr_to_write = 64, 2555 .range_start = page_offset(page) + PAGE_CACHE_SIZE, 2556 .range_end = (loff_t)-1, 2557 }; 2558 2559 ret = __extent_writepage(page, wbc, &epd); 2560 2561 extent_write_cache_pages(tree, mapping, &wbc_writepages, 2562 __extent_writepage, &epd, flush_write_bio); 2563 flush_epd_write_bio(&epd); 2564 return ret; 2565 } 2566 2567 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 2568 u64 start, u64 end, get_extent_t *get_extent, 2569 int mode) 2570 { 2571 int ret = 0; 2572 struct address_space *mapping = inode->i_mapping; 2573 struct page *page; 2574 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 2575 PAGE_CACHE_SHIFT; 2576 2577 struct extent_page_data epd = { 2578 .bio = NULL, 2579 .tree = tree, 2580 .get_extent = get_extent, 2581 .extent_locked = 1, 2582 .sync_io = mode == WB_SYNC_ALL, 2583 }; 2584 struct writeback_control wbc_writepages = { 2585 .sync_mode = mode, 2586 .nr_to_write = nr_pages * 2, 2587 .range_start = start, 2588 .range_end = end + 1, 2589 }; 2590 2591 while (start <= end) { 2592 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 2593 if (clear_page_dirty_for_io(page)) 2594 ret = __extent_writepage(page, &wbc_writepages, &epd); 2595 else { 2596 if (tree->ops && tree->ops->writepage_end_io_hook) 2597 tree->ops->writepage_end_io_hook(page, start, 2598 start + PAGE_CACHE_SIZE - 1, 2599 NULL, 1); 2600 unlock_page(page); 2601 } 2602 page_cache_release(page); 2603 start += PAGE_CACHE_SIZE; 2604 } 2605 2606 flush_epd_write_bio(&epd); 2607 return ret; 2608 } 2609 2610 int extent_writepages(struct extent_io_tree *tree, 2611 struct address_space *mapping, 2612 get_extent_t *get_extent, 2613 struct writeback_control *wbc) 2614 { 2615 int ret = 0; 2616 struct extent_page_data epd = { 2617 .bio = NULL, 2618 .tree = tree, 2619 .get_extent = get_extent, 2620 .extent_locked = 0, 2621 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 2622 }; 2623 2624 ret = extent_write_cache_pages(tree, mapping, wbc, 2625 __extent_writepage, &epd, 2626 flush_write_bio); 2627 flush_epd_write_bio(&epd); 2628 return ret; 2629 } 2630 2631 int extent_readpages(struct extent_io_tree *tree, 2632 struct address_space *mapping, 2633 struct list_head *pages, unsigned nr_pages, 2634 get_extent_t get_extent) 2635 { 2636 struct bio *bio = NULL; 2637 unsigned page_idx; 2638 unsigned long bio_flags = 0; 2639 2640 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 2641 struct page *page = list_entry(pages->prev, struct page, lru); 2642 2643 prefetchw(&page->flags); 2644 list_del(&page->lru); 2645 if (!add_to_page_cache_lru(page, mapping, 2646 page->index, GFP_NOFS)) { 2647 __extent_read_full_page(tree, page, get_extent, 2648 &bio, 0, &bio_flags); 2649 } 2650 page_cache_release(page); 2651 } 2652 BUG_ON(!list_empty(pages)); 2653 if (bio) 2654 submit_one_bio(READ, bio, 0, bio_flags); 2655 return 0; 2656 } 2657 2658 /* 2659 * basic invalidatepage code, this waits on any locked or writeback 2660 * ranges corresponding to the page, and then deletes any extent state 2661 * records from the tree 2662 */ 2663 int extent_invalidatepage(struct extent_io_tree *tree, 2664 struct page *page, unsigned long offset) 2665 { 2666 struct extent_state *cached_state = NULL; 2667 u64 start = ((u64)page->index << PAGE_CACHE_SHIFT); 2668 u64 end = start + PAGE_CACHE_SIZE - 1; 2669 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 2670 2671 start += (offset + blocksize - 1) & ~(blocksize - 1); 2672 if (start > end) 2673 return 0; 2674 2675 lock_extent_bits(tree, start, end, 0, &cached_state, GFP_NOFS); 2676 wait_on_page_writeback(page); 2677 clear_extent_bit(tree, start, end, 2678 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 2679 EXTENT_DO_ACCOUNTING, 2680 1, 1, &cached_state, GFP_NOFS); 2681 return 0; 2682 } 2683 2684 /* 2685 * a helper for releasepage, this tests for areas of the page that 2686 * are locked or under IO and drops the related state bits if it is safe 2687 * to drop the page. 2688 */ 2689 int try_release_extent_state(struct extent_map_tree *map, 2690 struct extent_io_tree *tree, struct page *page, 2691 gfp_t mask) 2692 { 2693 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2694 u64 end = start + PAGE_CACHE_SIZE - 1; 2695 int ret = 1; 2696 2697 if (test_range_bit(tree, start, end, 2698 EXTENT_IOBITS, 0, NULL)) 2699 ret = 0; 2700 else { 2701 if ((mask & GFP_NOFS) == GFP_NOFS) 2702 mask = GFP_NOFS; 2703 /* 2704 * at this point we can safely clear everything except the 2705 * locked bit and the nodatasum bit 2706 */ 2707 ret = clear_extent_bit(tree, start, end, 2708 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 2709 0, 0, NULL, mask); 2710 2711 /* if clear_extent_bit failed for enomem reasons, 2712 * we can't allow the release to continue. 2713 */ 2714 if (ret < 0) 2715 ret = 0; 2716 else 2717 ret = 1; 2718 } 2719 return ret; 2720 } 2721 2722 /* 2723 * a helper for releasepage. As long as there are no locked extents 2724 * in the range corresponding to the page, both state records and extent 2725 * map records are removed 2726 */ 2727 int try_release_extent_mapping(struct extent_map_tree *map, 2728 struct extent_io_tree *tree, struct page *page, 2729 gfp_t mask) 2730 { 2731 struct extent_map *em; 2732 u64 start = (u64)page->index << PAGE_CACHE_SHIFT; 2733 u64 end = start + PAGE_CACHE_SIZE - 1; 2734 2735 if ((mask & __GFP_WAIT) && 2736 page->mapping->host->i_size > 16 * 1024 * 1024) { 2737 u64 len; 2738 while (start <= end) { 2739 len = end - start + 1; 2740 write_lock(&map->lock); 2741 em = lookup_extent_mapping(map, start, len); 2742 if (IS_ERR_OR_NULL(em)) { 2743 write_unlock(&map->lock); 2744 break; 2745 } 2746 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 2747 em->start != start) { 2748 write_unlock(&map->lock); 2749 free_extent_map(em); 2750 break; 2751 } 2752 if (!test_range_bit(tree, em->start, 2753 extent_map_end(em) - 1, 2754 EXTENT_LOCKED | EXTENT_WRITEBACK, 2755 0, NULL)) { 2756 remove_extent_mapping(map, em); 2757 /* once for the rb tree */ 2758 free_extent_map(em); 2759 } 2760 start = extent_map_end(em); 2761 write_unlock(&map->lock); 2762 2763 /* once for us */ 2764 free_extent_map(em); 2765 } 2766 } 2767 return try_release_extent_state(map, tree, page, mask); 2768 } 2769 2770 /* 2771 * helper function for fiemap, which doesn't want to see any holes. 2772 * This maps until we find something past 'last' 2773 */ 2774 static struct extent_map *get_extent_skip_holes(struct inode *inode, 2775 u64 offset, 2776 u64 last, 2777 get_extent_t *get_extent) 2778 { 2779 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 2780 struct extent_map *em; 2781 u64 len; 2782 2783 if (offset >= last) 2784 return NULL; 2785 2786 while(1) { 2787 len = last - offset; 2788 if (len == 0) 2789 break; 2790 len = (len + sectorsize - 1) & ~(sectorsize - 1); 2791 em = get_extent(inode, NULL, 0, offset, len, 0); 2792 if (IS_ERR_OR_NULL(em)) 2793 return em; 2794 2795 /* if this isn't a hole return it */ 2796 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 2797 em->block_start != EXTENT_MAP_HOLE) { 2798 return em; 2799 } 2800 2801 /* this is a hole, advance to the next extent */ 2802 offset = extent_map_end(em); 2803 free_extent_map(em); 2804 if (offset >= last) 2805 break; 2806 } 2807 return NULL; 2808 } 2809 2810 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 2811 __u64 start, __u64 len, get_extent_t *get_extent) 2812 { 2813 int ret = 0; 2814 u64 off = start; 2815 u64 max = start + len; 2816 u32 flags = 0; 2817 u32 found_type; 2818 u64 last; 2819 u64 last_for_get_extent = 0; 2820 u64 disko = 0; 2821 u64 isize = i_size_read(inode); 2822 struct btrfs_key found_key; 2823 struct extent_map *em = NULL; 2824 struct extent_state *cached_state = NULL; 2825 struct btrfs_path *path; 2826 struct btrfs_file_extent_item *item; 2827 int end = 0; 2828 u64 em_start = 0; 2829 u64 em_len = 0; 2830 u64 em_end = 0; 2831 unsigned long emflags; 2832 2833 if (len == 0) 2834 return -EINVAL; 2835 2836 path = btrfs_alloc_path(); 2837 if (!path) 2838 return -ENOMEM; 2839 path->leave_spinning = 1; 2840 2841 /* 2842 * lookup the last file extent. We're not using i_size here 2843 * because there might be preallocation past i_size 2844 */ 2845 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 2846 path, btrfs_ino(inode), -1, 0); 2847 if (ret < 0) { 2848 btrfs_free_path(path); 2849 return ret; 2850 } 2851 WARN_ON(!ret); 2852 path->slots[0]--; 2853 item = btrfs_item_ptr(path->nodes[0], path->slots[0], 2854 struct btrfs_file_extent_item); 2855 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 2856 found_type = btrfs_key_type(&found_key); 2857 2858 /* No extents, but there might be delalloc bits */ 2859 if (found_key.objectid != btrfs_ino(inode) || 2860 found_type != BTRFS_EXTENT_DATA_KEY) { 2861 /* have to trust i_size as the end */ 2862 last = (u64)-1; 2863 last_for_get_extent = isize; 2864 } else { 2865 /* 2866 * remember the start of the last extent. There are a 2867 * bunch of different factors that go into the length of the 2868 * extent, so its much less complex to remember where it started 2869 */ 2870 last = found_key.offset; 2871 last_for_get_extent = last + 1; 2872 } 2873 btrfs_free_path(path); 2874 2875 /* 2876 * we might have some extents allocated but more delalloc past those 2877 * extents. so, we trust isize unless the start of the last extent is 2878 * beyond isize 2879 */ 2880 if (last < isize) { 2881 last = (u64)-1; 2882 last_for_get_extent = isize; 2883 } 2884 2885 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len, 0, 2886 &cached_state, GFP_NOFS); 2887 2888 em = get_extent_skip_holes(inode, off, last_for_get_extent, 2889 get_extent); 2890 if (!em) 2891 goto out; 2892 if (IS_ERR(em)) { 2893 ret = PTR_ERR(em); 2894 goto out; 2895 } 2896 2897 while (!end) { 2898 u64 offset_in_extent; 2899 2900 /* break if the extent we found is outside the range */ 2901 if (em->start >= max || extent_map_end(em) < off) 2902 break; 2903 2904 /* 2905 * get_extent may return an extent that starts before our 2906 * requested range. We have to make sure the ranges 2907 * we return to fiemap always move forward and don't 2908 * overlap, so adjust the offsets here 2909 */ 2910 em_start = max(em->start, off); 2911 2912 /* 2913 * record the offset from the start of the extent 2914 * for adjusting the disk offset below 2915 */ 2916 offset_in_extent = em_start - em->start; 2917 em_end = extent_map_end(em); 2918 em_len = em_end - em_start; 2919 emflags = em->flags; 2920 disko = 0; 2921 flags = 0; 2922 2923 /* 2924 * bump off for our next call to get_extent 2925 */ 2926 off = extent_map_end(em); 2927 if (off >= max) 2928 end = 1; 2929 2930 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 2931 end = 1; 2932 flags |= FIEMAP_EXTENT_LAST; 2933 } else if (em->block_start == EXTENT_MAP_INLINE) { 2934 flags |= (FIEMAP_EXTENT_DATA_INLINE | 2935 FIEMAP_EXTENT_NOT_ALIGNED); 2936 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 2937 flags |= (FIEMAP_EXTENT_DELALLOC | 2938 FIEMAP_EXTENT_UNKNOWN); 2939 } else { 2940 disko = em->block_start + offset_in_extent; 2941 } 2942 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 2943 flags |= FIEMAP_EXTENT_ENCODED; 2944 2945 free_extent_map(em); 2946 em = NULL; 2947 if ((em_start >= last) || em_len == (u64)-1 || 2948 (last == (u64)-1 && isize <= em_end)) { 2949 flags |= FIEMAP_EXTENT_LAST; 2950 end = 1; 2951 } 2952 2953 /* now scan forward to see if this is really the last extent. */ 2954 em = get_extent_skip_holes(inode, off, last_for_get_extent, 2955 get_extent); 2956 if (IS_ERR(em)) { 2957 ret = PTR_ERR(em); 2958 goto out; 2959 } 2960 if (!em) { 2961 flags |= FIEMAP_EXTENT_LAST; 2962 end = 1; 2963 } 2964 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 2965 em_len, flags); 2966 if (ret) 2967 goto out_free; 2968 } 2969 out_free: 2970 free_extent_map(em); 2971 out: 2972 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len, 2973 &cached_state, GFP_NOFS); 2974 return ret; 2975 } 2976 2977 static inline struct page *extent_buffer_page(struct extent_buffer *eb, 2978 unsigned long i) 2979 { 2980 struct page *p; 2981 struct address_space *mapping; 2982 2983 if (i == 0) 2984 return eb->first_page; 2985 i += eb->start >> PAGE_CACHE_SHIFT; 2986 mapping = eb->first_page->mapping; 2987 if (!mapping) 2988 return NULL; 2989 2990 /* 2991 * extent_buffer_page is only called after pinning the page 2992 * by increasing the reference count. So we know the page must 2993 * be in the radix tree. 2994 */ 2995 rcu_read_lock(); 2996 p = radix_tree_lookup(&mapping->page_tree, i); 2997 rcu_read_unlock(); 2998 2999 return p; 3000 } 3001 3002 static inline unsigned long num_extent_pages(u64 start, u64 len) 3003 { 3004 return ((start + len + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT) - 3005 (start >> PAGE_CACHE_SHIFT); 3006 } 3007 3008 static struct extent_buffer *__alloc_extent_buffer(struct extent_io_tree *tree, 3009 u64 start, 3010 unsigned long len, 3011 gfp_t mask) 3012 { 3013 struct extent_buffer *eb = NULL; 3014 #if LEAK_DEBUG 3015 unsigned long flags; 3016 #endif 3017 3018 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 3019 if (eb == NULL) 3020 return NULL; 3021 eb->start = start; 3022 eb->len = len; 3023 spin_lock_init(&eb->lock); 3024 init_waitqueue_head(&eb->lock_wq); 3025 3026 #if LEAK_DEBUG 3027 spin_lock_irqsave(&leak_lock, flags); 3028 list_add(&eb->leak_list, &buffers); 3029 spin_unlock_irqrestore(&leak_lock, flags); 3030 #endif 3031 atomic_set(&eb->refs, 1); 3032 3033 return eb; 3034 } 3035 3036 static void __free_extent_buffer(struct extent_buffer *eb) 3037 { 3038 #if LEAK_DEBUG 3039 unsigned long flags; 3040 spin_lock_irqsave(&leak_lock, flags); 3041 list_del(&eb->leak_list); 3042 spin_unlock_irqrestore(&leak_lock, flags); 3043 #endif 3044 kmem_cache_free(extent_buffer_cache, eb); 3045 } 3046 3047 /* 3048 * Helper for releasing extent buffer page. 3049 */ 3050 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 3051 unsigned long start_idx) 3052 { 3053 unsigned long index; 3054 struct page *page; 3055 3056 if (!eb->first_page) 3057 return; 3058 3059 index = num_extent_pages(eb->start, eb->len); 3060 if (start_idx >= index) 3061 return; 3062 3063 do { 3064 index--; 3065 page = extent_buffer_page(eb, index); 3066 if (page) 3067 page_cache_release(page); 3068 } while (index != start_idx); 3069 } 3070 3071 /* 3072 * Helper for releasing the extent buffer. 3073 */ 3074 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 3075 { 3076 btrfs_release_extent_buffer_page(eb, 0); 3077 __free_extent_buffer(eb); 3078 } 3079 3080 struct extent_buffer *alloc_extent_buffer(struct extent_io_tree *tree, 3081 u64 start, unsigned long len, 3082 struct page *page0) 3083 { 3084 unsigned long num_pages = num_extent_pages(start, len); 3085 unsigned long i; 3086 unsigned long index = start >> PAGE_CACHE_SHIFT; 3087 struct extent_buffer *eb; 3088 struct extent_buffer *exists = NULL; 3089 struct page *p; 3090 struct address_space *mapping = tree->mapping; 3091 int uptodate = 1; 3092 int ret; 3093 3094 rcu_read_lock(); 3095 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 3096 if (eb && atomic_inc_not_zero(&eb->refs)) { 3097 rcu_read_unlock(); 3098 mark_page_accessed(eb->first_page); 3099 return eb; 3100 } 3101 rcu_read_unlock(); 3102 3103 eb = __alloc_extent_buffer(tree, start, len, GFP_NOFS); 3104 if (!eb) 3105 return NULL; 3106 3107 if (page0) { 3108 eb->first_page = page0; 3109 i = 1; 3110 index++; 3111 page_cache_get(page0); 3112 mark_page_accessed(page0); 3113 set_page_extent_mapped(page0); 3114 set_page_extent_head(page0, len); 3115 uptodate = PageUptodate(page0); 3116 } else { 3117 i = 0; 3118 } 3119 for (; i < num_pages; i++, index++) { 3120 p = find_or_create_page(mapping, index, GFP_NOFS | __GFP_HIGHMEM); 3121 if (!p) { 3122 WARN_ON(1); 3123 goto free_eb; 3124 } 3125 set_page_extent_mapped(p); 3126 mark_page_accessed(p); 3127 if (i == 0) { 3128 eb->first_page = p; 3129 set_page_extent_head(p, len); 3130 } else { 3131 set_page_private(p, EXTENT_PAGE_PRIVATE); 3132 } 3133 if (!PageUptodate(p)) 3134 uptodate = 0; 3135 3136 /* 3137 * see below about how we avoid a nasty race with release page 3138 * and why we unlock later 3139 */ 3140 if (i != 0) 3141 unlock_page(p); 3142 } 3143 if (uptodate) 3144 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3145 3146 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 3147 if (ret) 3148 goto free_eb; 3149 3150 spin_lock(&tree->buffer_lock); 3151 ret = radix_tree_insert(&tree->buffer, start >> PAGE_CACHE_SHIFT, eb); 3152 if (ret == -EEXIST) { 3153 exists = radix_tree_lookup(&tree->buffer, 3154 start >> PAGE_CACHE_SHIFT); 3155 /* add one reference for the caller */ 3156 atomic_inc(&exists->refs); 3157 spin_unlock(&tree->buffer_lock); 3158 radix_tree_preload_end(); 3159 goto free_eb; 3160 } 3161 /* add one reference for the tree */ 3162 atomic_inc(&eb->refs); 3163 spin_unlock(&tree->buffer_lock); 3164 radix_tree_preload_end(); 3165 3166 /* 3167 * there is a race where release page may have 3168 * tried to find this extent buffer in the radix 3169 * but failed. It will tell the VM it is safe to 3170 * reclaim the, and it will clear the page private bit. 3171 * We must make sure to set the page private bit properly 3172 * after the extent buffer is in the radix tree so 3173 * it doesn't get lost 3174 */ 3175 set_page_extent_mapped(eb->first_page); 3176 set_page_extent_head(eb->first_page, eb->len); 3177 if (!page0) 3178 unlock_page(eb->first_page); 3179 return eb; 3180 3181 free_eb: 3182 if (eb->first_page && !page0) 3183 unlock_page(eb->first_page); 3184 3185 if (!atomic_dec_and_test(&eb->refs)) 3186 return exists; 3187 btrfs_release_extent_buffer(eb); 3188 return exists; 3189 } 3190 3191 struct extent_buffer *find_extent_buffer(struct extent_io_tree *tree, 3192 u64 start, unsigned long len) 3193 { 3194 struct extent_buffer *eb; 3195 3196 rcu_read_lock(); 3197 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 3198 if (eb && atomic_inc_not_zero(&eb->refs)) { 3199 rcu_read_unlock(); 3200 mark_page_accessed(eb->first_page); 3201 return eb; 3202 } 3203 rcu_read_unlock(); 3204 3205 return NULL; 3206 } 3207 3208 void free_extent_buffer(struct extent_buffer *eb) 3209 { 3210 if (!eb) 3211 return; 3212 3213 if (!atomic_dec_and_test(&eb->refs)) 3214 return; 3215 3216 WARN_ON(1); 3217 } 3218 3219 int clear_extent_buffer_dirty(struct extent_io_tree *tree, 3220 struct extent_buffer *eb) 3221 { 3222 unsigned long i; 3223 unsigned long num_pages; 3224 struct page *page; 3225 3226 num_pages = num_extent_pages(eb->start, eb->len); 3227 3228 for (i = 0; i < num_pages; i++) { 3229 page = extent_buffer_page(eb, i); 3230 if (!PageDirty(page)) 3231 continue; 3232 3233 lock_page(page); 3234 WARN_ON(!PagePrivate(page)); 3235 3236 set_page_extent_mapped(page); 3237 if (i == 0) 3238 set_page_extent_head(page, eb->len); 3239 3240 clear_page_dirty_for_io(page); 3241 spin_lock_irq(&page->mapping->tree_lock); 3242 if (!PageDirty(page)) { 3243 radix_tree_tag_clear(&page->mapping->page_tree, 3244 page_index(page), 3245 PAGECACHE_TAG_DIRTY); 3246 } 3247 spin_unlock_irq(&page->mapping->tree_lock); 3248 unlock_page(page); 3249 } 3250 return 0; 3251 } 3252 3253 int set_extent_buffer_dirty(struct extent_io_tree *tree, 3254 struct extent_buffer *eb) 3255 { 3256 unsigned long i; 3257 unsigned long num_pages; 3258 int was_dirty = 0; 3259 3260 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 3261 num_pages = num_extent_pages(eb->start, eb->len); 3262 for (i = 0; i < num_pages; i++) 3263 __set_page_dirty_nobuffers(extent_buffer_page(eb, i)); 3264 return was_dirty; 3265 } 3266 3267 int clear_extent_buffer_uptodate(struct extent_io_tree *tree, 3268 struct extent_buffer *eb, 3269 struct extent_state **cached_state) 3270 { 3271 unsigned long i; 3272 struct page *page; 3273 unsigned long num_pages; 3274 3275 num_pages = num_extent_pages(eb->start, eb->len); 3276 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3277 3278 clear_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3279 cached_state, GFP_NOFS); 3280 for (i = 0; i < num_pages; i++) { 3281 page = extent_buffer_page(eb, i); 3282 if (page) 3283 ClearPageUptodate(page); 3284 } 3285 return 0; 3286 } 3287 3288 int set_extent_buffer_uptodate(struct extent_io_tree *tree, 3289 struct extent_buffer *eb) 3290 { 3291 unsigned long i; 3292 struct page *page; 3293 unsigned long num_pages; 3294 3295 num_pages = num_extent_pages(eb->start, eb->len); 3296 3297 set_extent_uptodate(tree, eb->start, eb->start + eb->len - 1, 3298 NULL, GFP_NOFS); 3299 for (i = 0; i < num_pages; i++) { 3300 page = extent_buffer_page(eb, i); 3301 if ((i == 0 && (eb->start & (PAGE_CACHE_SIZE - 1))) || 3302 ((i == num_pages - 1) && 3303 ((eb->start + eb->len) & (PAGE_CACHE_SIZE - 1)))) { 3304 check_page_uptodate(tree, page); 3305 continue; 3306 } 3307 SetPageUptodate(page); 3308 } 3309 return 0; 3310 } 3311 3312 int extent_range_uptodate(struct extent_io_tree *tree, 3313 u64 start, u64 end) 3314 { 3315 struct page *page; 3316 int ret; 3317 int pg_uptodate = 1; 3318 int uptodate; 3319 unsigned long index; 3320 3321 ret = test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL); 3322 if (ret) 3323 return 1; 3324 while (start <= end) { 3325 index = start >> PAGE_CACHE_SHIFT; 3326 page = find_get_page(tree->mapping, index); 3327 uptodate = PageUptodate(page); 3328 page_cache_release(page); 3329 if (!uptodate) { 3330 pg_uptodate = 0; 3331 break; 3332 } 3333 start += PAGE_CACHE_SIZE; 3334 } 3335 return pg_uptodate; 3336 } 3337 3338 int extent_buffer_uptodate(struct extent_io_tree *tree, 3339 struct extent_buffer *eb, 3340 struct extent_state *cached_state) 3341 { 3342 int ret = 0; 3343 unsigned long num_pages; 3344 unsigned long i; 3345 struct page *page; 3346 int pg_uptodate = 1; 3347 3348 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3349 return 1; 3350 3351 ret = test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3352 EXTENT_UPTODATE, 1, cached_state); 3353 if (ret) 3354 return ret; 3355 3356 num_pages = num_extent_pages(eb->start, eb->len); 3357 for (i = 0; i < num_pages; i++) { 3358 page = extent_buffer_page(eb, i); 3359 if (!PageUptodate(page)) { 3360 pg_uptodate = 0; 3361 break; 3362 } 3363 } 3364 return pg_uptodate; 3365 } 3366 3367 int read_extent_buffer_pages(struct extent_io_tree *tree, 3368 struct extent_buffer *eb, 3369 u64 start, int wait, 3370 get_extent_t *get_extent, int mirror_num) 3371 { 3372 unsigned long i; 3373 unsigned long start_i; 3374 struct page *page; 3375 int err; 3376 int ret = 0; 3377 int locked_pages = 0; 3378 int all_uptodate = 1; 3379 int inc_all_pages = 0; 3380 unsigned long num_pages; 3381 struct bio *bio = NULL; 3382 unsigned long bio_flags = 0; 3383 3384 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 3385 return 0; 3386 3387 if (test_range_bit(tree, eb->start, eb->start + eb->len - 1, 3388 EXTENT_UPTODATE, 1, NULL)) { 3389 return 0; 3390 } 3391 3392 if (start) { 3393 WARN_ON(start < eb->start); 3394 start_i = (start >> PAGE_CACHE_SHIFT) - 3395 (eb->start >> PAGE_CACHE_SHIFT); 3396 } else { 3397 start_i = 0; 3398 } 3399 3400 num_pages = num_extent_pages(eb->start, eb->len); 3401 for (i = start_i; i < num_pages; i++) { 3402 page = extent_buffer_page(eb, i); 3403 if (!wait) { 3404 if (!trylock_page(page)) 3405 goto unlock_exit; 3406 } else { 3407 lock_page(page); 3408 } 3409 locked_pages++; 3410 if (!PageUptodate(page)) 3411 all_uptodate = 0; 3412 } 3413 if (all_uptodate) { 3414 if (start_i == 0) 3415 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3416 goto unlock_exit; 3417 } 3418 3419 for (i = start_i; i < num_pages; i++) { 3420 page = extent_buffer_page(eb, i); 3421 3422 WARN_ON(!PagePrivate(page)); 3423 3424 set_page_extent_mapped(page); 3425 if (i == 0) 3426 set_page_extent_head(page, eb->len); 3427 3428 if (inc_all_pages) 3429 page_cache_get(page); 3430 if (!PageUptodate(page)) { 3431 if (start_i == 0) 3432 inc_all_pages = 1; 3433 ClearPageError(page); 3434 err = __extent_read_full_page(tree, page, 3435 get_extent, &bio, 3436 mirror_num, &bio_flags); 3437 if (err) 3438 ret = err; 3439 } else { 3440 unlock_page(page); 3441 } 3442 } 3443 3444 if (bio) 3445 submit_one_bio(READ, bio, mirror_num, bio_flags); 3446 3447 if (ret || !wait) 3448 return ret; 3449 3450 for (i = start_i; i < num_pages; i++) { 3451 page = extent_buffer_page(eb, i); 3452 wait_on_page_locked(page); 3453 if (!PageUptodate(page)) 3454 ret = -EIO; 3455 } 3456 3457 if (!ret) 3458 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 3459 return ret; 3460 3461 unlock_exit: 3462 i = start_i; 3463 while (locked_pages > 0) { 3464 page = extent_buffer_page(eb, i); 3465 i++; 3466 unlock_page(page); 3467 locked_pages--; 3468 } 3469 return ret; 3470 } 3471 3472 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 3473 unsigned long start, 3474 unsigned long len) 3475 { 3476 size_t cur; 3477 size_t offset; 3478 struct page *page; 3479 char *kaddr; 3480 char *dst = (char *)dstv; 3481 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3482 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3483 3484 WARN_ON(start > eb->len); 3485 WARN_ON(start + len > eb->start + eb->len); 3486 3487 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3488 3489 while (len > 0) { 3490 page = extent_buffer_page(eb, i); 3491 3492 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3493 kaddr = kmap_atomic(page, KM_USER1); 3494 memcpy(dst, kaddr + offset, cur); 3495 kunmap_atomic(kaddr, KM_USER1); 3496 3497 dst += cur; 3498 len -= cur; 3499 offset = 0; 3500 i++; 3501 } 3502 } 3503 3504 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 3505 unsigned long min_len, char **token, char **map, 3506 unsigned long *map_start, 3507 unsigned long *map_len, int km) 3508 { 3509 size_t offset = start & (PAGE_CACHE_SIZE - 1); 3510 char *kaddr; 3511 struct page *p; 3512 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3513 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3514 unsigned long end_i = (start_offset + start + min_len - 1) >> 3515 PAGE_CACHE_SHIFT; 3516 3517 if (i != end_i) 3518 return -EINVAL; 3519 3520 if (i == 0) { 3521 offset = start_offset; 3522 *map_start = 0; 3523 } else { 3524 offset = 0; 3525 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 3526 } 3527 3528 if (start + min_len > eb->len) { 3529 printk(KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 3530 "wanted %lu %lu\n", (unsigned long long)eb->start, 3531 eb->len, start, min_len); 3532 WARN_ON(1); 3533 return -EINVAL; 3534 } 3535 3536 p = extent_buffer_page(eb, i); 3537 kaddr = kmap_atomic(p, km); 3538 *token = kaddr; 3539 *map = kaddr + offset; 3540 *map_len = PAGE_CACHE_SIZE - offset; 3541 return 0; 3542 } 3543 3544 int map_extent_buffer(struct extent_buffer *eb, unsigned long start, 3545 unsigned long min_len, 3546 char **token, char **map, 3547 unsigned long *map_start, 3548 unsigned long *map_len, int km) 3549 { 3550 int err; 3551 int save = 0; 3552 if (eb->map_token) { 3553 unmap_extent_buffer(eb, eb->map_token, km); 3554 eb->map_token = NULL; 3555 save = 1; 3556 } 3557 err = map_private_extent_buffer(eb, start, min_len, token, map, 3558 map_start, map_len, km); 3559 if (!err && save) { 3560 eb->map_token = *token; 3561 eb->kaddr = *map; 3562 eb->map_start = *map_start; 3563 eb->map_len = *map_len; 3564 } 3565 return err; 3566 } 3567 3568 void unmap_extent_buffer(struct extent_buffer *eb, char *token, int km) 3569 { 3570 kunmap_atomic(token, km); 3571 } 3572 3573 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 3574 unsigned long start, 3575 unsigned long len) 3576 { 3577 size_t cur; 3578 size_t offset; 3579 struct page *page; 3580 char *kaddr; 3581 char *ptr = (char *)ptrv; 3582 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3583 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3584 int ret = 0; 3585 3586 WARN_ON(start > eb->len); 3587 WARN_ON(start + len > eb->start + eb->len); 3588 3589 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3590 3591 while (len > 0) { 3592 page = extent_buffer_page(eb, i); 3593 3594 cur = min(len, (PAGE_CACHE_SIZE - offset)); 3595 3596 kaddr = kmap_atomic(page, KM_USER0); 3597 ret = memcmp(ptr, kaddr + offset, cur); 3598 kunmap_atomic(kaddr, KM_USER0); 3599 if (ret) 3600 break; 3601 3602 ptr += cur; 3603 len -= cur; 3604 offset = 0; 3605 i++; 3606 } 3607 return ret; 3608 } 3609 3610 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 3611 unsigned long start, unsigned long len) 3612 { 3613 size_t cur; 3614 size_t offset; 3615 struct page *page; 3616 char *kaddr; 3617 char *src = (char *)srcv; 3618 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3619 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3620 3621 WARN_ON(start > eb->len); 3622 WARN_ON(start + len > eb->start + eb->len); 3623 3624 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3625 3626 while (len > 0) { 3627 page = extent_buffer_page(eb, i); 3628 WARN_ON(!PageUptodate(page)); 3629 3630 cur = min(len, PAGE_CACHE_SIZE - offset); 3631 kaddr = kmap_atomic(page, KM_USER1); 3632 memcpy(kaddr + offset, src, cur); 3633 kunmap_atomic(kaddr, KM_USER1); 3634 3635 src += cur; 3636 len -= cur; 3637 offset = 0; 3638 i++; 3639 } 3640 } 3641 3642 void memset_extent_buffer(struct extent_buffer *eb, char c, 3643 unsigned long start, unsigned long len) 3644 { 3645 size_t cur; 3646 size_t offset; 3647 struct page *page; 3648 char *kaddr; 3649 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 3650 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 3651 3652 WARN_ON(start > eb->len); 3653 WARN_ON(start + len > eb->start + eb->len); 3654 3655 offset = (start_offset + start) & ((unsigned long)PAGE_CACHE_SIZE - 1); 3656 3657 while (len > 0) { 3658 page = extent_buffer_page(eb, i); 3659 WARN_ON(!PageUptodate(page)); 3660 3661 cur = min(len, PAGE_CACHE_SIZE - offset); 3662 kaddr = kmap_atomic(page, KM_USER0); 3663 memset(kaddr + offset, c, cur); 3664 kunmap_atomic(kaddr, KM_USER0); 3665 3666 len -= cur; 3667 offset = 0; 3668 i++; 3669 } 3670 } 3671 3672 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 3673 unsigned long dst_offset, unsigned long src_offset, 3674 unsigned long len) 3675 { 3676 u64 dst_len = dst->len; 3677 size_t cur; 3678 size_t offset; 3679 struct page *page; 3680 char *kaddr; 3681 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3682 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3683 3684 WARN_ON(src->len != dst_len); 3685 3686 offset = (start_offset + dst_offset) & 3687 ((unsigned long)PAGE_CACHE_SIZE - 1); 3688 3689 while (len > 0) { 3690 page = extent_buffer_page(dst, i); 3691 WARN_ON(!PageUptodate(page)); 3692 3693 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 3694 3695 kaddr = kmap_atomic(page, KM_USER0); 3696 read_extent_buffer(src, kaddr + offset, src_offset, cur); 3697 kunmap_atomic(kaddr, KM_USER0); 3698 3699 src_offset += cur; 3700 len -= cur; 3701 offset = 0; 3702 i++; 3703 } 3704 } 3705 3706 static void move_pages(struct page *dst_page, struct page *src_page, 3707 unsigned long dst_off, unsigned long src_off, 3708 unsigned long len) 3709 { 3710 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3711 if (dst_page == src_page) { 3712 memmove(dst_kaddr + dst_off, dst_kaddr + src_off, len); 3713 } else { 3714 char *src_kaddr = kmap_atomic(src_page, KM_USER1); 3715 char *p = dst_kaddr + dst_off + len; 3716 char *s = src_kaddr + src_off + len; 3717 3718 while (len--) 3719 *--p = *--s; 3720 3721 kunmap_atomic(src_kaddr, KM_USER1); 3722 } 3723 kunmap_atomic(dst_kaddr, KM_USER0); 3724 } 3725 3726 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 3727 { 3728 unsigned long distance = (src > dst) ? src - dst : dst - src; 3729 return distance < len; 3730 } 3731 3732 static void copy_pages(struct page *dst_page, struct page *src_page, 3733 unsigned long dst_off, unsigned long src_off, 3734 unsigned long len) 3735 { 3736 char *dst_kaddr = kmap_atomic(dst_page, KM_USER0); 3737 char *src_kaddr; 3738 3739 if (dst_page != src_page) { 3740 src_kaddr = kmap_atomic(src_page, KM_USER1); 3741 } else { 3742 src_kaddr = dst_kaddr; 3743 BUG_ON(areas_overlap(src_off, dst_off, len)); 3744 } 3745 3746 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 3747 kunmap_atomic(dst_kaddr, KM_USER0); 3748 if (dst_page != src_page) 3749 kunmap_atomic(src_kaddr, KM_USER1); 3750 } 3751 3752 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3753 unsigned long src_offset, unsigned long len) 3754 { 3755 size_t cur; 3756 size_t dst_off_in_page; 3757 size_t src_off_in_page; 3758 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3759 unsigned long dst_i; 3760 unsigned long src_i; 3761 3762 if (src_offset + len > dst->len) { 3763 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3764 "len %lu dst len %lu\n", src_offset, len, dst->len); 3765 BUG_ON(1); 3766 } 3767 if (dst_offset + len > dst->len) { 3768 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3769 "len %lu dst len %lu\n", dst_offset, len, dst->len); 3770 BUG_ON(1); 3771 } 3772 3773 while (len > 0) { 3774 dst_off_in_page = (start_offset + dst_offset) & 3775 ((unsigned long)PAGE_CACHE_SIZE - 1); 3776 src_off_in_page = (start_offset + src_offset) & 3777 ((unsigned long)PAGE_CACHE_SIZE - 1); 3778 3779 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 3780 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 3781 3782 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 3783 src_off_in_page)); 3784 cur = min_t(unsigned long, cur, 3785 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 3786 3787 copy_pages(extent_buffer_page(dst, dst_i), 3788 extent_buffer_page(dst, src_i), 3789 dst_off_in_page, src_off_in_page, cur); 3790 3791 src_offset += cur; 3792 dst_offset += cur; 3793 len -= cur; 3794 } 3795 } 3796 3797 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 3798 unsigned long src_offset, unsigned long len) 3799 { 3800 size_t cur; 3801 size_t dst_off_in_page; 3802 size_t src_off_in_page; 3803 unsigned long dst_end = dst_offset + len - 1; 3804 unsigned long src_end = src_offset + len - 1; 3805 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 3806 unsigned long dst_i; 3807 unsigned long src_i; 3808 3809 if (src_offset + len > dst->len) { 3810 printk(KERN_ERR "btrfs memmove bogus src_offset %lu move " 3811 "len %lu len %lu\n", src_offset, len, dst->len); 3812 BUG_ON(1); 3813 } 3814 if (dst_offset + len > dst->len) { 3815 printk(KERN_ERR "btrfs memmove bogus dst_offset %lu move " 3816 "len %lu len %lu\n", dst_offset, len, dst->len); 3817 BUG_ON(1); 3818 } 3819 if (!areas_overlap(src_offset, dst_offset, len)) { 3820 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 3821 return; 3822 } 3823 while (len > 0) { 3824 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 3825 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 3826 3827 dst_off_in_page = (start_offset + dst_end) & 3828 ((unsigned long)PAGE_CACHE_SIZE - 1); 3829 src_off_in_page = (start_offset + src_end) & 3830 ((unsigned long)PAGE_CACHE_SIZE - 1); 3831 3832 cur = min_t(unsigned long, len, src_off_in_page + 1); 3833 cur = min(cur, dst_off_in_page + 1); 3834 move_pages(extent_buffer_page(dst, dst_i), 3835 extent_buffer_page(dst, src_i), 3836 dst_off_in_page - cur + 1, 3837 src_off_in_page - cur + 1, cur); 3838 3839 dst_end -= cur; 3840 src_end -= cur; 3841 len -= cur; 3842 } 3843 } 3844 3845 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 3846 { 3847 struct extent_buffer *eb = 3848 container_of(head, struct extent_buffer, rcu_head); 3849 3850 btrfs_release_extent_buffer(eb); 3851 } 3852 3853 int try_release_extent_buffer(struct extent_io_tree *tree, struct page *page) 3854 { 3855 u64 start = page_offset(page); 3856 struct extent_buffer *eb; 3857 int ret = 1; 3858 3859 spin_lock(&tree->buffer_lock); 3860 eb = radix_tree_lookup(&tree->buffer, start >> PAGE_CACHE_SHIFT); 3861 if (!eb) { 3862 spin_unlock(&tree->buffer_lock); 3863 return ret; 3864 } 3865 3866 if (test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3867 ret = 0; 3868 goto out; 3869 } 3870 3871 /* 3872 * set @eb->refs to 0 if it is already 1, and then release the @eb. 3873 * Or go back. 3874 */ 3875 if (atomic_cmpxchg(&eb->refs, 1, 0) != 1) { 3876 ret = 0; 3877 goto out; 3878 } 3879 3880 radix_tree_delete(&tree->buffer, start >> PAGE_CACHE_SHIFT); 3881 out: 3882 spin_unlock(&tree->buffer_lock); 3883 3884 /* at this point we can safely release the extent buffer */ 3885 if (atomic_read(&eb->refs) == 0) 3886 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 3887 return ret; 3888 } 3889