xref: /openbmc/linux/fs/btrfs/extent_io.c (revision a583c02664eea8796e80dd192a3bcc1d521939e5)
1 #include <linux/bitops.h>
2 #include <linux/slab.h>
3 #include <linux/bio.h>
4 #include <linux/mm.h>
5 #include <linux/pagemap.h>
6 #include <linux/page-flags.h>
7 #include <linux/spinlock.h>
8 #include <linux/blkdev.h>
9 #include <linux/swap.h>
10 #include <linux/writeback.h>
11 #include <linux/pagevec.h>
12 #include <linux/prefetch.h>
13 #include <linux/cleancache.h>
14 #include "extent_io.h"
15 #include "extent_map.h"
16 #include "ctree.h"
17 #include "btrfs_inode.h"
18 #include "volumes.h"
19 #include "check-integrity.h"
20 #include "locking.h"
21 #include "rcu-string.h"
22 #include "backref.h"
23 
24 static struct kmem_cache *extent_state_cache;
25 static struct kmem_cache *extent_buffer_cache;
26 static struct bio_set *btrfs_bioset;
27 
28 static inline bool extent_state_in_tree(const struct extent_state *state)
29 {
30 	return !RB_EMPTY_NODE(&state->rb_node);
31 }
32 
33 #ifdef CONFIG_BTRFS_DEBUG
34 static LIST_HEAD(buffers);
35 static LIST_HEAD(states);
36 
37 static DEFINE_SPINLOCK(leak_lock);
38 
39 static inline
40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head)
41 {
42 	unsigned long flags;
43 
44 	spin_lock_irqsave(&leak_lock, flags);
45 	list_add(new, head);
46 	spin_unlock_irqrestore(&leak_lock, flags);
47 }
48 
49 static inline
50 void btrfs_leak_debug_del(struct list_head *entry)
51 {
52 	unsigned long flags;
53 
54 	spin_lock_irqsave(&leak_lock, flags);
55 	list_del(entry);
56 	spin_unlock_irqrestore(&leak_lock, flags);
57 }
58 
59 static inline
60 void btrfs_leak_debug_check(void)
61 {
62 	struct extent_state *state;
63 	struct extent_buffer *eb;
64 
65 	while (!list_empty(&states)) {
66 		state = list_entry(states.next, struct extent_state, leak_list);
67 		pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n",
68 		       state->start, state->end, state->state,
69 		       extent_state_in_tree(state),
70 		       atomic_read(&state->refs));
71 		list_del(&state->leak_list);
72 		kmem_cache_free(extent_state_cache, state);
73 	}
74 
75 	while (!list_empty(&buffers)) {
76 		eb = list_entry(buffers.next, struct extent_buffer, leak_list);
77 		printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu "
78 		       "refs %d\n",
79 		       eb->start, eb->len, atomic_read(&eb->refs));
80 		list_del(&eb->leak_list);
81 		kmem_cache_free(extent_buffer_cache, eb);
82 	}
83 }
84 
85 #define btrfs_debug_check_extent_io_range(tree, start, end)		\
86 	__btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end))
87 static inline void __btrfs_debug_check_extent_io_range(const char *caller,
88 		struct extent_io_tree *tree, u64 start, u64 end)
89 {
90 	struct inode *inode;
91 	u64 isize;
92 
93 	if (!tree->mapping)
94 		return;
95 
96 	inode = tree->mapping->host;
97 	isize = i_size_read(inode);
98 	if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) {
99 		printk_ratelimited(KERN_DEBUG
100 		    "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n",
101 				caller, btrfs_ino(inode), isize, start, end);
102 	}
103 }
104 #else
105 #define btrfs_leak_debug_add(new, head)	do {} while (0)
106 #define btrfs_leak_debug_del(entry)	do {} while (0)
107 #define btrfs_leak_debug_check()	do {} while (0)
108 #define btrfs_debug_check_extent_io_range(c, s, e)	do {} while (0)
109 #endif
110 
111 #define BUFFER_LRU_MAX 64
112 
113 struct tree_entry {
114 	u64 start;
115 	u64 end;
116 	struct rb_node rb_node;
117 };
118 
119 struct extent_page_data {
120 	struct bio *bio;
121 	struct extent_io_tree *tree;
122 	get_extent_t *get_extent;
123 	unsigned long bio_flags;
124 
125 	/* tells writepage not to lock the state bits for this range
126 	 * it still does the unlocking
127 	 */
128 	unsigned int extent_locked:1;
129 
130 	/* tells the submit_bio code to use a WRITE_SYNC */
131 	unsigned int sync_io:1;
132 };
133 
134 static noinline void flush_write_bio(void *data);
135 static inline struct btrfs_fs_info *
136 tree_fs_info(struct extent_io_tree *tree)
137 {
138 	if (!tree->mapping)
139 		return NULL;
140 	return btrfs_sb(tree->mapping->host->i_sb);
141 }
142 
143 int __init extent_io_init(void)
144 {
145 	extent_state_cache = kmem_cache_create("btrfs_extent_state",
146 			sizeof(struct extent_state), 0,
147 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
148 	if (!extent_state_cache)
149 		return -ENOMEM;
150 
151 	extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer",
152 			sizeof(struct extent_buffer), 0,
153 			SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL);
154 	if (!extent_buffer_cache)
155 		goto free_state_cache;
156 
157 	btrfs_bioset = bioset_create(BIO_POOL_SIZE,
158 				     offsetof(struct btrfs_io_bio, bio));
159 	if (!btrfs_bioset)
160 		goto free_buffer_cache;
161 
162 	if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE))
163 		goto free_bioset;
164 
165 	return 0;
166 
167 free_bioset:
168 	bioset_free(btrfs_bioset);
169 	btrfs_bioset = NULL;
170 
171 free_buffer_cache:
172 	kmem_cache_destroy(extent_buffer_cache);
173 	extent_buffer_cache = NULL;
174 
175 free_state_cache:
176 	kmem_cache_destroy(extent_state_cache);
177 	extent_state_cache = NULL;
178 	return -ENOMEM;
179 }
180 
181 void extent_io_exit(void)
182 {
183 	btrfs_leak_debug_check();
184 
185 	/*
186 	 * Make sure all delayed rcu free are flushed before we
187 	 * destroy caches.
188 	 */
189 	rcu_barrier();
190 	if (extent_state_cache)
191 		kmem_cache_destroy(extent_state_cache);
192 	if (extent_buffer_cache)
193 		kmem_cache_destroy(extent_buffer_cache);
194 	if (btrfs_bioset)
195 		bioset_free(btrfs_bioset);
196 }
197 
198 void extent_io_tree_init(struct extent_io_tree *tree,
199 			 struct address_space *mapping)
200 {
201 	tree->state = RB_ROOT;
202 	tree->ops = NULL;
203 	tree->dirty_bytes = 0;
204 	spin_lock_init(&tree->lock);
205 	tree->mapping = mapping;
206 }
207 
208 static struct extent_state *alloc_extent_state(gfp_t mask)
209 {
210 	struct extent_state *state;
211 
212 	state = kmem_cache_alloc(extent_state_cache, mask);
213 	if (!state)
214 		return state;
215 	state->state = 0;
216 	state->private = 0;
217 	RB_CLEAR_NODE(&state->rb_node);
218 	btrfs_leak_debug_add(&state->leak_list, &states);
219 	atomic_set(&state->refs, 1);
220 	init_waitqueue_head(&state->wq);
221 	trace_alloc_extent_state(state, mask, _RET_IP_);
222 	return state;
223 }
224 
225 void free_extent_state(struct extent_state *state)
226 {
227 	if (!state)
228 		return;
229 	if (atomic_dec_and_test(&state->refs)) {
230 		WARN_ON(extent_state_in_tree(state));
231 		btrfs_leak_debug_del(&state->leak_list);
232 		trace_free_extent_state(state, _RET_IP_);
233 		kmem_cache_free(extent_state_cache, state);
234 	}
235 }
236 
237 static struct rb_node *tree_insert(struct rb_root *root,
238 				   struct rb_node *search_start,
239 				   u64 offset,
240 				   struct rb_node *node,
241 				   struct rb_node ***p_in,
242 				   struct rb_node **parent_in)
243 {
244 	struct rb_node **p;
245 	struct rb_node *parent = NULL;
246 	struct tree_entry *entry;
247 
248 	if (p_in && parent_in) {
249 		p = *p_in;
250 		parent = *parent_in;
251 		goto do_insert;
252 	}
253 
254 	p = search_start ? &search_start : &root->rb_node;
255 	while (*p) {
256 		parent = *p;
257 		entry = rb_entry(parent, struct tree_entry, rb_node);
258 
259 		if (offset < entry->start)
260 			p = &(*p)->rb_left;
261 		else if (offset > entry->end)
262 			p = &(*p)->rb_right;
263 		else
264 			return parent;
265 	}
266 
267 do_insert:
268 	rb_link_node(node, parent, p);
269 	rb_insert_color(node, root);
270 	return NULL;
271 }
272 
273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset,
274 				      struct rb_node **prev_ret,
275 				      struct rb_node **next_ret,
276 				      struct rb_node ***p_ret,
277 				      struct rb_node **parent_ret)
278 {
279 	struct rb_root *root = &tree->state;
280 	struct rb_node **n = &root->rb_node;
281 	struct rb_node *prev = NULL;
282 	struct rb_node *orig_prev = NULL;
283 	struct tree_entry *entry;
284 	struct tree_entry *prev_entry = NULL;
285 
286 	while (*n) {
287 		prev = *n;
288 		entry = rb_entry(prev, struct tree_entry, rb_node);
289 		prev_entry = entry;
290 
291 		if (offset < entry->start)
292 			n = &(*n)->rb_left;
293 		else if (offset > entry->end)
294 			n = &(*n)->rb_right;
295 		else
296 			return *n;
297 	}
298 
299 	if (p_ret)
300 		*p_ret = n;
301 	if (parent_ret)
302 		*parent_ret = prev;
303 
304 	if (prev_ret) {
305 		orig_prev = prev;
306 		while (prev && offset > prev_entry->end) {
307 			prev = rb_next(prev);
308 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
309 		}
310 		*prev_ret = prev;
311 		prev = orig_prev;
312 	}
313 
314 	if (next_ret) {
315 		prev_entry = rb_entry(prev, struct tree_entry, rb_node);
316 		while (prev && offset < prev_entry->start) {
317 			prev = rb_prev(prev);
318 			prev_entry = rb_entry(prev, struct tree_entry, rb_node);
319 		}
320 		*next_ret = prev;
321 	}
322 	return NULL;
323 }
324 
325 static inline struct rb_node *
326 tree_search_for_insert(struct extent_io_tree *tree,
327 		       u64 offset,
328 		       struct rb_node ***p_ret,
329 		       struct rb_node **parent_ret)
330 {
331 	struct rb_node *prev = NULL;
332 	struct rb_node *ret;
333 
334 	ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret);
335 	if (!ret)
336 		return prev;
337 	return ret;
338 }
339 
340 static inline struct rb_node *tree_search(struct extent_io_tree *tree,
341 					  u64 offset)
342 {
343 	return tree_search_for_insert(tree, offset, NULL, NULL);
344 }
345 
346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new,
347 		     struct extent_state *other)
348 {
349 	if (tree->ops && tree->ops->merge_extent_hook)
350 		tree->ops->merge_extent_hook(tree->mapping->host, new,
351 					     other);
352 }
353 
354 /*
355  * utility function to look for merge candidates inside a given range.
356  * Any extents with matching state are merged together into a single
357  * extent in the tree.  Extents with EXTENT_IO in their state field
358  * are not merged because the end_io handlers need to be able to do
359  * operations on them without sleeping (or doing allocations/splits).
360  *
361  * This should be called with the tree lock held.
362  */
363 static void merge_state(struct extent_io_tree *tree,
364 		        struct extent_state *state)
365 {
366 	struct extent_state *other;
367 	struct rb_node *other_node;
368 
369 	if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY))
370 		return;
371 
372 	other_node = rb_prev(&state->rb_node);
373 	if (other_node) {
374 		other = rb_entry(other_node, struct extent_state, rb_node);
375 		if (other->end == state->start - 1 &&
376 		    other->state == state->state) {
377 			merge_cb(tree, state, other);
378 			state->start = other->start;
379 			rb_erase(&other->rb_node, &tree->state);
380 			RB_CLEAR_NODE(&other->rb_node);
381 			free_extent_state(other);
382 		}
383 	}
384 	other_node = rb_next(&state->rb_node);
385 	if (other_node) {
386 		other = rb_entry(other_node, struct extent_state, rb_node);
387 		if (other->start == state->end + 1 &&
388 		    other->state == state->state) {
389 			merge_cb(tree, state, other);
390 			state->end = other->end;
391 			rb_erase(&other->rb_node, &tree->state);
392 			RB_CLEAR_NODE(&other->rb_node);
393 			free_extent_state(other);
394 		}
395 	}
396 }
397 
398 static void set_state_cb(struct extent_io_tree *tree,
399 			 struct extent_state *state, unsigned long *bits)
400 {
401 	if (tree->ops && tree->ops->set_bit_hook)
402 		tree->ops->set_bit_hook(tree->mapping->host, state, bits);
403 }
404 
405 static void clear_state_cb(struct extent_io_tree *tree,
406 			   struct extent_state *state, unsigned long *bits)
407 {
408 	if (tree->ops && tree->ops->clear_bit_hook)
409 		tree->ops->clear_bit_hook(tree->mapping->host, state, bits);
410 }
411 
412 static void set_state_bits(struct extent_io_tree *tree,
413 			   struct extent_state *state, unsigned long *bits);
414 
415 /*
416  * insert an extent_state struct into the tree.  'bits' are set on the
417  * struct before it is inserted.
418  *
419  * This may return -EEXIST if the extent is already there, in which case the
420  * state struct is freed.
421  *
422  * The tree lock is not taken internally.  This is a utility function and
423  * probably isn't what you want to call (see set/clear_extent_bit).
424  */
425 static int insert_state(struct extent_io_tree *tree,
426 			struct extent_state *state, u64 start, u64 end,
427 			struct rb_node ***p,
428 			struct rb_node **parent,
429 			unsigned long *bits)
430 {
431 	struct rb_node *node;
432 
433 	if (end < start)
434 		WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n",
435 		       end, start);
436 	state->start = start;
437 	state->end = end;
438 
439 	set_state_bits(tree, state, bits);
440 
441 	node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent);
442 	if (node) {
443 		struct extent_state *found;
444 		found = rb_entry(node, struct extent_state, rb_node);
445 		printk(KERN_ERR "BTRFS: found node %llu %llu on insert of "
446 		       "%llu %llu\n",
447 		       found->start, found->end, start, end);
448 		return -EEXIST;
449 	}
450 	merge_state(tree, state);
451 	return 0;
452 }
453 
454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig,
455 		     u64 split)
456 {
457 	if (tree->ops && tree->ops->split_extent_hook)
458 		tree->ops->split_extent_hook(tree->mapping->host, orig, split);
459 }
460 
461 /*
462  * split a given extent state struct in two, inserting the preallocated
463  * struct 'prealloc' as the newly created second half.  'split' indicates an
464  * offset inside 'orig' where it should be split.
465  *
466  * Before calling,
467  * the tree has 'orig' at [orig->start, orig->end].  After calling, there
468  * are two extent state structs in the tree:
469  * prealloc: [orig->start, split - 1]
470  * orig: [ split, orig->end ]
471  *
472  * The tree locks are not taken by this function. They need to be held
473  * by the caller.
474  */
475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig,
476 		       struct extent_state *prealloc, u64 split)
477 {
478 	struct rb_node *node;
479 
480 	split_cb(tree, orig, split);
481 
482 	prealloc->start = orig->start;
483 	prealloc->end = split - 1;
484 	prealloc->state = orig->state;
485 	orig->start = split;
486 
487 	node = tree_insert(&tree->state, &orig->rb_node, prealloc->end,
488 			   &prealloc->rb_node, NULL, NULL);
489 	if (node) {
490 		free_extent_state(prealloc);
491 		return -EEXIST;
492 	}
493 	return 0;
494 }
495 
496 static struct extent_state *next_state(struct extent_state *state)
497 {
498 	struct rb_node *next = rb_next(&state->rb_node);
499 	if (next)
500 		return rb_entry(next, struct extent_state, rb_node);
501 	else
502 		return NULL;
503 }
504 
505 /*
506  * utility function to clear some bits in an extent state struct.
507  * it will optionally wake up any one waiting on this state (wake == 1).
508  *
509  * If no bits are set on the state struct after clearing things, the
510  * struct is freed and removed from the tree
511  */
512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree,
513 					    struct extent_state *state,
514 					    unsigned long *bits, int wake)
515 {
516 	struct extent_state *next;
517 	unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS;
518 
519 	if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) {
520 		u64 range = state->end - state->start + 1;
521 		WARN_ON(range > tree->dirty_bytes);
522 		tree->dirty_bytes -= range;
523 	}
524 	clear_state_cb(tree, state, bits);
525 	state->state &= ~bits_to_clear;
526 	if (wake)
527 		wake_up(&state->wq);
528 	if (state->state == 0) {
529 		next = next_state(state);
530 		if (extent_state_in_tree(state)) {
531 			rb_erase(&state->rb_node, &tree->state);
532 			RB_CLEAR_NODE(&state->rb_node);
533 			free_extent_state(state);
534 		} else {
535 			WARN_ON(1);
536 		}
537 	} else {
538 		merge_state(tree, state);
539 		next = next_state(state);
540 	}
541 	return next;
542 }
543 
544 static struct extent_state *
545 alloc_extent_state_atomic(struct extent_state *prealloc)
546 {
547 	if (!prealloc)
548 		prealloc = alloc_extent_state(GFP_ATOMIC);
549 
550 	return prealloc;
551 }
552 
553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err)
554 {
555 	btrfs_panic(tree_fs_info(tree), err, "Locking error: "
556 		    "Extent tree was modified by another "
557 		    "thread while locked.");
558 }
559 
560 /*
561  * clear some bits on a range in the tree.  This may require splitting
562  * or inserting elements in the tree, so the gfp mask is used to
563  * indicate which allocations or sleeping are allowed.
564  *
565  * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove
566  * the given range from the tree regardless of state (ie for truncate).
567  *
568  * the range [start, end] is inclusive.
569  *
570  * This takes the tree lock, and returns 0 on success and < 0 on error.
571  */
572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
573 		     unsigned long bits, int wake, int delete,
574 		     struct extent_state **cached_state,
575 		     gfp_t mask)
576 {
577 	struct extent_state *state;
578 	struct extent_state *cached;
579 	struct extent_state *prealloc = NULL;
580 	struct rb_node *node;
581 	u64 last_end;
582 	int err;
583 	int clear = 0;
584 
585 	btrfs_debug_check_extent_io_range(tree, start, end);
586 
587 	if (bits & EXTENT_DELALLOC)
588 		bits |= EXTENT_NORESERVE;
589 
590 	if (delete)
591 		bits |= ~EXTENT_CTLBITS;
592 	bits |= EXTENT_FIRST_DELALLOC;
593 
594 	if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY))
595 		clear = 1;
596 again:
597 	if (!prealloc && (mask & __GFP_WAIT)) {
598 		prealloc = alloc_extent_state(mask);
599 		if (!prealloc)
600 			return -ENOMEM;
601 	}
602 
603 	spin_lock(&tree->lock);
604 	if (cached_state) {
605 		cached = *cached_state;
606 
607 		if (clear) {
608 			*cached_state = NULL;
609 			cached_state = NULL;
610 		}
611 
612 		if (cached && extent_state_in_tree(cached) &&
613 		    cached->start <= start && cached->end > start) {
614 			if (clear)
615 				atomic_dec(&cached->refs);
616 			state = cached;
617 			goto hit_next;
618 		}
619 		if (clear)
620 			free_extent_state(cached);
621 	}
622 	/*
623 	 * this search will find the extents that end after
624 	 * our range starts
625 	 */
626 	node = tree_search(tree, start);
627 	if (!node)
628 		goto out;
629 	state = rb_entry(node, struct extent_state, rb_node);
630 hit_next:
631 	if (state->start > end)
632 		goto out;
633 	WARN_ON(state->end < start);
634 	last_end = state->end;
635 
636 	/* the state doesn't have the wanted bits, go ahead */
637 	if (!(state->state & bits)) {
638 		state = next_state(state);
639 		goto next;
640 	}
641 
642 	/*
643 	 *     | ---- desired range ---- |
644 	 *  | state | or
645 	 *  | ------------- state -------------- |
646 	 *
647 	 * We need to split the extent we found, and may flip
648 	 * bits on second half.
649 	 *
650 	 * If the extent we found extends past our range, we
651 	 * just split and search again.  It'll get split again
652 	 * the next time though.
653 	 *
654 	 * If the extent we found is inside our range, we clear
655 	 * the desired bit on it.
656 	 */
657 
658 	if (state->start < start) {
659 		prealloc = alloc_extent_state_atomic(prealloc);
660 		BUG_ON(!prealloc);
661 		err = split_state(tree, state, prealloc, start);
662 		if (err)
663 			extent_io_tree_panic(tree, err);
664 
665 		prealloc = NULL;
666 		if (err)
667 			goto out;
668 		if (state->end <= end) {
669 			state = clear_state_bit(tree, state, &bits, wake);
670 			goto next;
671 		}
672 		goto search_again;
673 	}
674 	/*
675 	 * | ---- desired range ---- |
676 	 *                        | state |
677 	 * We need to split the extent, and clear the bit
678 	 * on the first half
679 	 */
680 	if (state->start <= end && state->end > end) {
681 		prealloc = alloc_extent_state_atomic(prealloc);
682 		BUG_ON(!prealloc);
683 		err = split_state(tree, state, prealloc, end + 1);
684 		if (err)
685 			extent_io_tree_panic(tree, err);
686 
687 		if (wake)
688 			wake_up(&state->wq);
689 
690 		clear_state_bit(tree, prealloc, &bits, wake);
691 
692 		prealloc = NULL;
693 		goto out;
694 	}
695 
696 	state = clear_state_bit(tree, state, &bits, wake);
697 next:
698 	if (last_end == (u64)-1)
699 		goto out;
700 	start = last_end + 1;
701 	if (start <= end && state && !need_resched())
702 		goto hit_next;
703 	goto search_again;
704 
705 out:
706 	spin_unlock(&tree->lock);
707 	if (prealloc)
708 		free_extent_state(prealloc);
709 
710 	return 0;
711 
712 search_again:
713 	if (start > end)
714 		goto out;
715 	spin_unlock(&tree->lock);
716 	if (mask & __GFP_WAIT)
717 		cond_resched();
718 	goto again;
719 }
720 
721 static void wait_on_state(struct extent_io_tree *tree,
722 			  struct extent_state *state)
723 		__releases(tree->lock)
724 		__acquires(tree->lock)
725 {
726 	DEFINE_WAIT(wait);
727 	prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE);
728 	spin_unlock(&tree->lock);
729 	schedule();
730 	spin_lock(&tree->lock);
731 	finish_wait(&state->wq, &wait);
732 }
733 
734 /*
735  * waits for one or more bits to clear on a range in the state tree.
736  * The range [start, end] is inclusive.
737  * The tree lock is taken by this function
738  */
739 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
740 			    unsigned long bits)
741 {
742 	struct extent_state *state;
743 	struct rb_node *node;
744 
745 	btrfs_debug_check_extent_io_range(tree, start, end);
746 
747 	spin_lock(&tree->lock);
748 again:
749 	while (1) {
750 		/*
751 		 * this search will find all the extents that end after
752 		 * our range starts
753 		 */
754 		node = tree_search(tree, start);
755 process_node:
756 		if (!node)
757 			break;
758 
759 		state = rb_entry(node, struct extent_state, rb_node);
760 
761 		if (state->start > end)
762 			goto out;
763 
764 		if (state->state & bits) {
765 			start = state->start;
766 			atomic_inc(&state->refs);
767 			wait_on_state(tree, state);
768 			free_extent_state(state);
769 			goto again;
770 		}
771 		start = state->end + 1;
772 
773 		if (start > end)
774 			break;
775 
776 		if (!cond_resched_lock(&tree->lock)) {
777 			node = rb_next(node);
778 			goto process_node;
779 		}
780 	}
781 out:
782 	spin_unlock(&tree->lock);
783 }
784 
785 static void set_state_bits(struct extent_io_tree *tree,
786 			   struct extent_state *state,
787 			   unsigned long *bits)
788 {
789 	unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS;
790 
791 	set_state_cb(tree, state, bits);
792 	if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) {
793 		u64 range = state->end - state->start + 1;
794 		tree->dirty_bytes += range;
795 	}
796 	state->state |= bits_to_set;
797 }
798 
799 static void cache_state(struct extent_state *state,
800 			struct extent_state **cached_ptr)
801 {
802 	if (cached_ptr && !(*cached_ptr)) {
803 		if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) {
804 			*cached_ptr = state;
805 			atomic_inc(&state->refs);
806 		}
807 	}
808 }
809 
810 /*
811  * set some bits on a range in the tree.  This may require allocations or
812  * sleeping, so the gfp mask is used to indicate what is allowed.
813  *
814  * If any of the exclusive bits are set, this will fail with -EEXIST if some
815  * part of the range already has the desired bits set.  The start of the
816  * existing range is returned in failed_start in this case.
817  *
818  * [start, end] is inclusive This takes the tree lock.
819  */
820 
821 static int __must_check
822 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
823 		 unsigned long bits, unsigned long exclusive_bits,
824 		 u64 *failed_start, struct extent_state **cached_state,
825 		 gfp_t mask)
826 {
827 	struct extent_state *state;
828 	struct extent_state *prealloc = NULL;
829 	struct rb_node *node;
830 	struct rb_node **p;
831 	struct rb_node *parent;
832 	int err = 0;
833 	u64 last_start;
834 	u64 last_end;
835 
836 	btrfs_debug_check_extent_io_range(tree, start, end);
837 
838 	bits |= EXTENT_FIRST_DELALLOC;
839 again:
840 	if (!prealloc && (mask & __GFP_WAIT)) {
841 		prealloc = alloc_extent_state(mask);
842 		BUG_ON(!prealloc);
843 	}
844 
845 	spin_lock(&tree->lock);
846 	if (cached_state && *cached_state) {
847 		state = *cached_state;
848 		if (state->start <= start && state->end > start &&
849 		    extent_state_in_tree(state)) {
850 			node = &state->rb_node;
851 			goto hit_next;
852 		}
853 	}
854 	/*
855 	 * this search will find all the extents that end after
856 	 * our range starts.
857 	 */
858 	node = tree_search_for_insert(tree, start, &p, &parent);
859 	if (!node) {
860 		prealloc = alloc_extent_state_atomic(prealloc);
861 		BUG_ON(!prealloc);
862 		err = insert_state(tree, prealloc, start, end,
863 				   &p, &parent, &bits);
864 		if (err)
865 			extent_io_tree_panic(tree, err);
866 
867 		cache_state(prealloc, cached_state);
868 		prealloc = NULL;
869 		goto out;
870 	}
871 	state = rb_entry(node, struct extent_state, rb_node);
872 hit_next:
873 	last_start = state->start;
874 	last_end = state->end;
875 
876 	/*
877 	 * | ---- desired range ---- |
878 	 * | state |
879 	 *
880 	 * Just lock what we found and keep going
881 	 */
882 	if (state->start == start && state->end <= end) {
883 		if (state->state & exclusive_bits) {
884 			*failed_start = state->start;
885 			err = -EEXIST;
886 			goto out;
887 		}
888 
889 		set_state_bits(tree, state, &bits);
890 		cache_state(state, cached_state);
891 		merge_state(tree, state);
892 		if (last_end == (u64)-1)
893 			goto out;
894 		start = last_end + 1;
895 		state = next_state(state);
896 		if (start < end && state && state->start == start &&
897 		    !need_resched())
898 			goto hit_next;
899 		goto search_again;
900 	}
901 
902 	/*
903 	 *     | ---- desired range ---- |
904 	 * | state |
905 	 *   or
906 	 * | ------------- state -------------- |
907 	 *
908 	 * We need to split the extent we found, and may flip bits on
909 	 * second half.
910 	 *
911 	 * If the extent we found extends past our
912 	 * range, we just split and search again.  It'll get split
913 	 * again the next time though.
914 	 *
915 	 * If the extent we found is inside our range, we set the
916 	 * desired bit on it.
917 	 */
918 	if (state->start < start) {
919 		if (state->state & exclusive_bits) {
920 			*failed_start = start;
921 			err = -EEXIST;
922 			goto out;
923 		}
924 
925 		prealloc = alloc_extent_state_atomic(prealloc);
926 		BUG_ON(!prealloc);
927 		err = split_state(tree, state, prealloc, start);
928 		if (err)
929 			extent_io_tree_panic(tree, err);
930 
931 		prealloc = NULL;
932 		if (err)
933 			goto out;
934 		if (state->end <= end) {
935 			set_state_bits(tree, state, &bits);
936 			cache_state(state, cached_state);
937 			merge_state(tree, state);
938 			if (last_end == (u64)-1)
939 				goto out;
940 			start = last_end + 1;
941 			state = next_state(state);
942 			if (start < end && state && state->start == start &&
943 			    !need_resched())
944 				goto hit_next;
945 		}
946 		goto search_again;
947 	}
948 	/*
949 	 * | ---- desired range ---- |
950 	 *     | state | or               | state |
951 	 *
952 	 * There's a hole, we need to insert something in it and
953 	 * ignore the extent we found.
954 	 */
955 	if (state->start > start) {
956 		u64 this_end;
957 		if (end < last_start)
958 			this_end = end;
959 		else
960 			this_end = last_start - 1;
961 
962 		prealloc = alloc_extent_state_atomic(prealloc);
963 		BUG_ON(!prealloc);
964 
965 		/*
966 		 * Avoid to free 'prealloc' if it can be merged with
967 		 * the later extent.
968 		 */
969 		err = insert_state(tree, prealloc, start, this_end,
970 				   NULL, NULL, &bits);
971 		if (err)
972 			extent_io_tree_panic(tree, err);
973 
974 		cache_state(prealloc, cached_state);
975 		prealloc = NULL;
976 		start = this_end + 1;
977 		goto search_again;
978 	}
979 	/*
980 	 * | ---- desired range ---- |
981 	 *                        | state |
982 	 * We need to split the extent, and set the bit
983 	 * on the first half
984 	 */
985 	if (state->start <= end && state->end > end) {
986 		if (state->state & exclusive_bits) {
987 			*failed_start = start;
988 			err = -EEXIST;
989 			goto out;
990 		}
991 
992 		prealloc = alloc_extent_state_atomic(prealloc);
993 		BUG_ON(!prealloc);
994 		err = split_state(tree, state, prealloc, end + 1);
995 		if (err)
996 			extent_io_tree_panic(tree, err);
997 
998 		set_state_bits(tree, prealloc, &bits);
999 		cache_state(prealloc, cached_state);
1000 		merge_state(tree, prealloc);
1001 		prealloc = NULL;
1002 		goto out;
1003 	}
1004 
1005 	goto search_again;
1006 
1007 out:
1008 	spin_unlock(&tree->lock);
1009 	if (prealloc)
1010 		free_extent_state(prealloc);
1011 
1012 	return err;
1013 
1014 search_again:
1015 	if (start > end)
1016 		goto out;
1017 	spin_unlock(&tree->lock);
1018 	if (mask & __GFP_WAIT)
1019 		cond_resched();
1020 	goto again;
1021 }
1022 
1023 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1024 		   unsigned long bits, u64 * failed_start,
1025 		   struct extent_state **cached_state, gfp_t mask)
1026 {
1027 	return __set_extent_bit(tree, start, end, bits, 0, failed_start,
1028 				cached_state, mask);
1029 }
1030 
1031 
1032 /**
1033  * convert_extent_bit - convert all bits in a given range from one bit to
1034  * 			another
1035  * @tree:	the io tree to search
1036  * @start:	the start offset in bytes
1037  * @end:	the end offset in bytes (inclusive)
1038  * @bits:	the bits to set in this range
1039  * @clear_bits:	the bits to clear in this range
1040  * @cached_state:	state that we're going to cache
1041  * @mask:	the allocation mask
1042  *
1043  * This will go through and set bits for the given range.  If any states exist
1044  * already in this range they are set with the given bit and cleared of the
1045  * clear_bits.  This is only meant to be used by things that are mergeable, ie
1046  * converting from say DELALLOC to DIRTY.  This is not meant to be used with
1047  * boundary bits like LOCK.
1048  */
1049 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end,
1050 		       unsigned long bits, unsigned long clear_bits,
1051 		       struct extent_state **cached_state, gfp_t mask)
1052 {
1053 	struct extent_state *state;
1054 	struct extent_state *prealloc = NULL;
1055 	struct rb_node *node;
1056 	struct rb_node **p;
1057 	struct rb_node *parent;
1058 	int err = 0;
1059 	u64 last_start;
1060 	u64 last_end;
1061 
1062 	btrfs_debug_check_extent_io_range(tree, start, end);
1063 
1064 again:
1065 	if (!prealloc && (mask & __GFP_WAIT)) {
1066 		prealloc = alloc_extent_state(mask);
1067 		if (!prealloc)
1068 			return -ENOMEM;
1069 	}
1070 
1071 	spin_lock(&tree->lock);
1072 	if (cached_state && *cached_state) {
1073 		state = *cached_state;
1074 		if (state->start <= start && state->end > start &&
1075 		    extent_state_in_tree(state)) {
1076 			node = &state->rb_node;
1077 			goto hit_next;
1078 		}
1079 	}
1080 
1081 	/*
1082 	 * this search will find all the extents that end after
1083 	 * our range starts.
1084 	 */
1085 	node = tree_search_for_insert(tree, start, &p, &parent);
1086 	if (!node) {
1087 		prealloc = alloc_extent_state_atomic(prealloc);
1088 		if (!prealloc) {
1089 			err = -ENOMEM;
1090 			goto out;
1091 		}
1092 		err = insert_state(tree, prealloc, start, end,
1093 				   &p, &parent, &bits);
1094 		if (err)
1095 			extent_io_tree_panic(tree, err);
1096 		cache_state(prealloc, cached_state);
1097 		prealloc = NULL;
1098 		goto out;
1099 	}
1100 	state = rb_entry(node, struct extent_state, rb_node);
1101 hit_next:
1102 	last_start = state->start;
1103 	last_end = state->end;
1104 
1105 	/*
1106 	 * | ---- desired range ---- |
1107 	 * | state |
1108 	 *
1109 	 * Just lock what we found and keep going
1110 	 */
1111 	if (state->start == start && state->end <= end) {
1112 		set_state_bits(tree, state, &bits);
1113 		cache_state(state, cached_state);
1114 		state = clear_state_bit(tree, state, &clear_bits, 0);
1115 		if (last_end == (u64)-1)
1116 			goto out;
1117 		start = last_end + 1;
1118 		if (start < end && state && state->start == start &&
1119 		    !need_resched())
1120 			goto hit_next;
1121 		goto search_again;
1122 	}
1123 
1124 	/*
1125 	 *     | ---- desired range ---- |
1126 	 * | state |
1127 	 *   or
1128 	 * | ------------- state -------------- |
1129 	 *
1130 	 * We need to split the extent we found, and may flip bits on
1131 	 * second half.
1132 	 *
1133 	 * If the extent we found extends past our
1134 	 * range, we just split and search again.  It'll get split
1135 	 * again the next time though.
1136 	 *
1137 	 * If the extent we found is inside our range, we set the
1138 	 * desired bit on it.
1139 	 */
1140 	if (state->start < start) {
1141 		prealloc = alloc_extent_state_atomic(prealloc);
1142 		if (!prealloc) {
1143 			err = -ENOMEM;
1144 			goto out;
1145 		}
1146 		err = split_state(tree, state, prealloc, start);
1147 		if (err)
1148 			extent_io_tree_panic(tree, err);
1149 		prealloc = NULL;
1150 		if (err)
1151 			goto out;
1152 		if (state->end <= end) {
1153 			set_state_bits(tree, state, &bits);
1154 			cache_state(state, cached_state);
1155 			state = clear_state_bit(tree, state, &clear_bits, 0);
1156 			if (last_end == (u64)-1)
1157 				goto out;
1158 			start = last_end + 1;
1159 			if (start < end && state && state->start == start &&
1160 			    !need_resched())
1161 				goto hit_next;
1162 		}
1163 		goto search_again;
1164 	}
1165 	/*
1166 	 * | ---- desired range ---- |
1167 	 *     | state | or               | state |
1168 	 *
1169 	 * There's a hole, we need to insert something in it and
1170 	 * ignore the extent we found.
1171 	 */
1172 	if (state->start > start) {
1173 		u64 this_end;
1174 		if (end < last_start)
1175 			this_end = end;
1176 		else
1177 			this_end = last_start - 1;
1178 
1179 		prealloc = alloc_extent_state_atomic(prealloc);
1180 		if (!prealloc) {
1181 			err = -ENOMEM;
1182 			goto out;
1183 		}
1184 
1185 		/*
1186 		 * Avoid to free 'prealloc' if it can be merged with
1187 		 * the later extent.
1188 		 */
1189 		err = insert_state(tree, prealloc, start, this_end,
1190 				   NULL, NULL, &bits);
1191 		if (err)
1192 			extent_io_tree_panic(tree, err);
1193 		cache_state(prealloc, cached_state);
1194 		prealloc = NULL;
1195 		start = this_end + 1;
1196 		goto search_again;
1197 	}
1198 	/*
1199 	 * | ---- desired range ---- |
1200 	 *                        | state |
1201 	 * We need to split the extent, and set the bit
1202 	 * on the first half
1203 	 */
1204 	if (state->start <= end && state->end > end) {
1205 		prealloc = alloc_extent_state_atomic(prealloc);
1206 		if (!prealloc) {
1207 			err = -ENOMEM;
1208 			goto out;
1209 		}
1210 
1211 		err = split_state(tree, state, prealloc, end + 1);
1212 		if (err)
1213 			extent_io_tree_panic(tree, err);
1214 
1215 		set_state_bits(tree, prealloc, &bits);
1216 		cache_state(prealloc, cached_state);
1217 		clear_state_bit(tree, prealloc, &clear_bits, 0);
1218 		prealloc = NULL;
1219 		goto out;
1220 	}
1221 
1222 	goto search_again;
1223 
1224 out:
1225 	spin_unlock(&tree->lock);
1226 	if (prealloc)
1227 		free_extent_state(prealloc);
1228 
1229 	return err;
1230 
1231 search_again:
1232 	if (start > end)
1233 		goto out;
1234 	spin_unlock(&tree->lock);
1235 	if (mask & __GFP_WAIT)
1236 		cond_resched();
1237 	goto again;
1238 }
1239 
1240 /* wrappers around set/clear extent bit */
1241 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1242 		     gfp_t mask)
1243 {
1244 	return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL,
1245 			      NULL, mask);
1246 }
1247 
1248 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1249 		    unsigned long bits, gfp_t mask)
1250 {
1251 	return set_extent_bit(tree, start, end, bits, NULL,
1252 			      NULL, mask);
1253 }
1254 
1255 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1256 		      unsigned long bits, gfp_t mask)
1257 {
1258 	return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask);
1259 }
1260 
1261 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end,
1262 			struct extent_state **cached_state, gfp_t mask)
1263 {
1264 	return set_extent_bit(tree, start, end,
1265 			      EXTENT_DELALLOC | EXTENT_UPTODATE,
1266 			      NULL, cached_state, mask);
1267 }
1268 
1269 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end,
1270 		      struct extent_state **cached_state, gfp_t mask)
1271 {
1272 	return set_extent_bit(tree, start, end,
1273 			      EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG,
1274 			      NULL, cached_state, mask);
1275 }
1276 
1277 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end,
1278 		       gfp_t mask)
1279 {
1280 	return clear_extent_bit(tree, start, end,
1281 				EXTENT_DIRTY | EXTENT_DELALLOC |
1282 				EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask);
1283 }
1284 
1285 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end,
1286 		     gfp_t mask)
1287 {
1288 	return set_extent_bit(tree, start, end, EXTENT_NEW, NULL,
1289 			      NULL, mask);
1290 }
1291 
1292 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1293 			struct extent_state **cached_state, gfp_t mask)
1294 {
1295 	return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL,
1296 			      cached_state, mask);
1297 }
1298 
1299 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end,
1300 			  struct extent_state **cached_state, gfp_t mask)
1301 {
1302 	return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0,
1303 				cached_state, mask);
1304 }
1305 
1306 /*
1307  * either insert or lock state struct between start and end use mask to tell
1308  * us if waiting is desired.
1309  */
1310 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end,
1311 		     unsigned long bits, struct extent_state **cached_state)
1312 {
1313 	int err;
1314 	u64 failed_start;
1315 	while (1) {
1316 		err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits,
1317 				       EXTENT_LOCKED, &failed_start,
1318 				       cached_state, GFP_NOFS);
1319 		if (err == -EEXIST) {
1320 			wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED);
1321 			start = failed_start;
1322 		} else
1323 			break;
1324 		WARN_ON(start > end);
1325 	}
1326 	return err;
1327 }
1328 
1329 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1330 {
1331 	return lock_extent_bits(tree, start, end, 0, NULL);
1332 }
1333 
1334 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1335 {
1336 	int err;
1337 	u64 failed_start;
1338 
1339 	err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED,
1340 			       &failed_start, NULL, GFP_NOFS);
1341 	if (err == -EEXIST) {
1342 		if (failed_start > start)
1343 			clear_extent_bit(tree, start, failed_start - 1,
1344 					 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS);
1345 		return 0;
1346 	}
1347 	return 1;
1348 }
1349 
1350 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end,
1351 			 struct extent_state **cached, gfp_t mask)
1352 {
1353 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached,
1354 				mask);
1355 }
1356 
1357 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end)
1358 {
1359 	return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL,
1360 				GFP_NOFS);
1361 }
1362 
1363 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end)
1364 {
1365 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1366 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1367 	struct page *page;
1368 
1369 	while (index <= end_index) {
1370 		page = find_get_page(inode->i_mapping, index);
1371 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1372 		clear_page_dirty_for_io(page);
1373 		page_cache_release(page);
1374 		index++;
1375 	}
1376 	return 0;
1377 }
1378 
1379 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end)
1380 {
1381 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1382 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1383 	struct page *page;
1384 
1385 	while (index <= end_index) {
1386 		page = find_get_page(inode->i_mapping, index);
1387 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1388 		account_page_redirty(page);
1389 		__set_page_dirty_nobuffers(page);
1390 		page_cache_release(page);
1391 		index++;
1392 	}
1393 	return 0;
1394 }
1395 
1396 /*
1397  * helper function to set both pages and extents in the tree writeback
1398  */
1399 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end)
1400 {
1401 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1402 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1403 	struct page *page;
1404 
1405 	while (index <= end_index) {
1406 		page = find_get_page(tree->mapping, index);
1407 		BUG_ON(!page); /* Pages should be in the extent_io_tree */
1408 		set_page_writeback(page);
1409 		page_cache_release(page);
1410 		index++;
1411 	}
1412 	return 0;
1413 }
1414 
1415 /* find the first state struct with 'bits' set after 'start', and
1416  * return it.  tree->lock must be held.  NULL will returned if
1417  * nothing was found after 'start'
1418  */
1419 static struct extent_state *
1420 find_first_extent_bit_state(struct extent_io_tree *tree,
1421 			    u64 start, unsigned long bits)
1422 {
1423 	struct rb_node *node;
1424 	struct extent_state *state;
1425 
1426 	/*
1427 	 * this search will find all the extents that end after
1428 	 * our range starts.
1429 	 */
1430 	node = tree_search(tree, start);
1431 	if (!node)
1432 		goto out;
1433 
1434 	while (1) {
1435 		state = rb_entry(node, struct extent_state, rb_node);
1436 		if (state->end >= start && (state->state & bits))
1437 			return state;
1438 
1439 		node = rb_next(node);
1440 		if (!node)
1441 			break;
1442 	}
1443 out:
1444 	return NULL;
1445 }
1446 
1447 /*
1448  * find the first offset in the io tree with 'bits' set. zero is
1449  * returned if we find something, and *start_ret and *end_ret are
1450  * set to reflect the state struct that was found.
1451  *
1452  * If nothing was found, 1 is returned. If found something, return 0.
1453  */
1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start,
1455 			  u64 *start_ret, u64 *end_ret, unsigned long bits,
1456 			  struct extent_state **cached_state)
1457 {
1458 	struct extent_state *state;
1459 	struct rb_node *n;
1460 	int ret = 1;
1461 
1462 	spin_lock(&tree->lock);
1463 	if (cached_state && *cached_state) {
1464 		state = *cached_state;
1465 		if (state->end == start - 1 && extent_state_in_tree(state)) {
1466 			n = rb_next(&state->rb_node);
1467 			while (n) {
1468 				state = rb_entry(n, struct extent_state,
1469 						 rb_node);
1470 				if (state->state & bits)
1471 					goto got_it;
1472 				n = rb_next(n);
1473 			}
1474 			free_extent_state(*cached_state);
1475 			*cached_state = NULL;
1476 			goto out;
1477 		}
1478 		free_extent_state(*cached_state);
1479 		*cached_state = NULL;
1480 	}
1481 
1482 	state = find_first_extent_bit_state(tree, start, bits);
1483 got_it:
1484 	if (state) {
1485 		cache_state(state, cached_state);
1486 		*start_ret = state->start;
1487 		*end_ret = state->end;
1488 		ret = 0;
1489 	}
1490 out:
1491 	spin_unlock(&tree->lock);
1492 	return ret;
1493 }
1494 
1495 /*
1496  * find a contiguous range of bytes in the file marked as delalloc, not
1497  * more than 'max_bytes'.  start and end are used to return the range,
1498  *
1499  * 1 is returned if we find something, 0 if nothing was in the tree
1500  */
1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree,
1502 					u64 *start, u64 *end, u64 max_bytes,
1503 					struct extent_state **cached_state)
1504 {
1505 	struct rb_node *node;
1506 	struct extent_state *state;
1507 	u64 cur_start = *start;
1508 	u64 found = 0;
1509 	u64 total_bytes = 0;
1510 
1511 	spin_lock(&tree->lock);
1512 
1513 	/*
1514 	 * this search will find all the extents that end after
1515 	 * our range starts.
1516 	 */
1517 	node = tree_search(tree, cur_start);
1518 	if (!node) {
1519 		if (!found)
1520 			*end = (u64)-1;
1521 		goto out;
1522 	}
1523 
1524 	while (1) {
1525 		state = rb_entry(node, struct extent_state, rb_node);
1526 		if (found && (state->start != cur_start ||
1527 			      (state->state & EXTENT_BOUNDARY))) {
1528 			goto out;
1529 		}
1530 		if (!(state->state & EXTENT_DELALLOC)) {
1531 			if (!found)
1532 				*end = state->end;
1533 			goto out;
1534 		}
1535 		if (!found) {
1536 			*start = state->start;
1537 			*cached_state = state;
1538 			atomic_inc(&state->refs);
1539 		}
1540 		found++;
1541 		*end = state->end;
1542 		cur_start = state->end + 1;
1543 		node = rb_next(node);
1544 		total_bytes += state->end - state->start + 1;
1545 		if (total_bytes >= max_bytes)
1546 			break;
1547 		if (!node)
1548 			break;
1549 	}
1550 out:
1551 	spin_unlock(&tree->lock);
1552 	return found;
1553 }
1554 
1555 static noinline void __unlock_for_delalloc(struct inode *inode,
1556 					   struct page *locked_page,
1557 					   u64 start, u64 end)
1558 {
1559 	int ret;
1560 	struct page *pages[16];
1561 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1562 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1563 	unsigned long nr_pages = end_index - index + 1;
1564 	int i;
1565 
1566 	if (index == locked_page->index && end_index == index)
1567 		return;
1568 
1569 	while (nr_pages > 0) {
1570 		ret = find_get_pages_contig(inode->i_mapping, index,
1571 				     min_t(unsigned long, nr_pages,
1572 				     ARRAY_SIZE(pages)), pages);
1573 		for (i = 0; i < ret; i++) {
1574 			if (pages[i] != locked_page)
1575 				unlock_page(pages[i]);
1576 			page_cache_release(pages[i]);
1577 		}
1578 		nr_pages -= ret;
1579 		index += ret;
1580 		cond_resched();
1581 	}
1582 }
1583 
1584 static noinline int lock_delalloc_pages(struct inode *inode,
1585 					struct page *locked_page,
1586 					u64 delalloc_start,
1587 					u64 delalloc_end)
1588 {
1589 	unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT;
1590 	unsigned long start_index = index;
1591 	unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT;
1592 	unsigned long pages_locked = 0;
1593 	struct page *pages[16];
1594 	unsigned long nrpages;
1595 	int ret;
1596 	int i;
1597 
1598 	/* the caller is responsible for locking the start index */
1599 	if (index == locked_page->index && index == end_index)
1600 		return 0;
1601 
1602 	/* skip the page at the start index */
1603 	nrpages = end_index - index + 1;
1604 	while (nrpages > 0) {
1605 		ret = find_get_pages_contig(inode->i_mapping, index,
1606 				     min_t(unsigned long,
1607 				     nrpages, ARRAY_SIZE(pages)), pages);
1608 		if (ret == 0) {
1609 			ret = -EAGAIN;
1610 			goto done;
1611 		}
1612 		/* now we have an array of pages, lock them all */
1613 		for (i = 0; i < ret; i++) {
1614 			/*
1615 			 * the caller is taking responsibility for
1616 			 * locked_page
1617 			 */
1618 			if (pages[i] != locked_page) {
1619 				lock_page(pages[i]);
1620 				if (!PageDirty(pages[i]) ||
1621 				    pages[i]->mapping != inode->i_mapping) {
1622 					ret = -EAGAIN;
1623 					unlock_page(pages[i]);
1624 					page_cache_release(pages[i]);
1625 					goto done;
1626 				}
1627 			}
1628 			page_cache_release(pages[i]);
1629 			pages_locked++;
1630 		}
1631 		nrpages -= ret;
1632 		index += ret;
1633 		cond_resched();
1634 	}
1635 	ret = 0;
1636 done:
1637 	if (ret && pages_locked) {
1638 		__unlock_for_delalloc(inode, locked_page,
1639 			      delalloc_start,
1640 			      ((u64)(start_index + pages_locked - 1)) <<
1641 			      PAGE_CACHE_SHIFT);
1642 	}
1643 	return ret;
1644 }
1645 
1646 /*
1647  * find a contiguous range of bytes in the file marked as delalloc, not
1648  * more than 'max_bytes'.  start and end are used to return the range,
1649  *
1650  * 1 is returned if we find something, 0 if nothing was in the tree
1651  */
1652 STATIC u64 find_lock_delalloc_range(struct inode *inode,
1653 				    struct extent_io_tree *tree,
1654 				    struct page *locked_page, u64 *start,
1655 				    u64 *end, u64 max_bytes)
1656 {
1657 	u64 delalloc_start;
1658 	u64 delalloc_end;
1659 	u64 found;
1660 	struct extent_state *cached_state = NULL;
1661 	int ret;
1662 	int loops = 0;
1663 
1664 again:
1665 	/* step one, find a bunch of delalloc bytes starting at start */
1666 	delalloc_start = *start;
1667 	delalloc_end = 0;
1668 	found = find_delalloc_range(tree, &delalloc_start, &delalloc_end,
1669 				    max_bytes, &cached_state);
1670 	if (!found || delalloc_end <= *start) {
1671 		*start = delalloc_start;
1672 		*end = delalloc_end;
1673 		free_extent_state(cached_state);
1674 		return 0;
1675 	}
1676 
1677 	/*
1678 	 * start comes from the offset of locked_page.  We have to lock
1679 	 * pages in order, so we can't process delalloc bytes before
1680 	 * locked_page
1681 	 */
1682 	if (delalloc_start < *start)
1683 		delalloc_start = *start;
1684 
1685 	/*
1686 	 * make sure to limit the number of pages we try to lock down
1687 	 */
1688 	if (delalloc_end + 1 - delalloc_start > max_bytes)
1689 		delalloc_end = delalloc_start + max_bytes - 1;
1690 
1691 	/* step two, lock all the pages after the page that has start */
1692 	ret = lock_delalloc_pages(inode, locked_page,
1693 				  delalloc_start, delalloc_end);
1694 	if (ret == -EAGAIN) {
1695 		/* some of the pages are gone, lets avoid looping by
1696 		 * shortening the size of the delalloc range we're searching
1697 		 */
1698 		free_extent_state(cached_state);
1699 		cached_state = NULL;
1700 		if (!loops) {
1701 			max_bytes = PAGE_CACHE_SIZE;
1702 			loops = 1;
1703 			goto again;
1704 		} else {
1705 			found = 0;
1706 			goto out_failed;
1707 		}
1708 	}
1709 	BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */
1710 
1711 	/* step three, lock the state bits for the whole range */
1712 	lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state);
1713 
1714 	/* then test to make sure it is all still delalloc */
1715 	ret = test_range_bit(tree, delalloc_start, delalloc_end,
1716 			     EXTENT_DELALLOC, 1, cached_state);
1717 	if (!ret) {
1718 		unlock_extent_cached(tree, delalloc_start, delalloc_end,
1719 				     &cached_state, GFP_NOFS);
1720 		__unlock_for_delalloc(inode, locked_page,
1721 			      delalloc_start, delalloc_end);
1722 		cond_resched();
1723 		goto again;
1724 	}
1725 	free_extent_state(cached_state);
1726 	*start = delalloc_start;
1727 	*end = delalloc_end;
1728 out_failed:
1729 	return found;
1730 }
1731 
1732 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end,
1733 				 struct page *locked_page,
1734 				 unsigned long clear_bits,
1735 				 unsigned long page_ops)
1736 {
1737 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
1738 	int ret;
1739 	struct page *pages[16];
1740 	unsigned long index = start >> PAGE_CACHE_SHIFT;
1741 	unsigned long end_index = end >> PAGE_CACHE_SHIFT;
1742 	unsigned long nr_pages = end_index - index + 1;
1743 	int i;
1744 
1745 	clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS);
1746 	if (page_ops == 0)
1747 		return 0;
1748 
1749 	while (nr_pages > 0) {
1750 		ret = find_get_pages_contig(inode->i_mapping, index,
1751 				     min_t(unsigned long,
1752 				     nr_pages, ARRAY_SIZE(pages)), pages);
1753 		for (i = 0; i < ret; i++) {
1754 
1755 			if (page_ops & PAGE_SET_PRIVATE2)
1756 				SetPagePrivate2(pages[i]);
1757 
1758 			if (pages[i] == locked_page) {
1759 				page_cache_release(pages[i]);
1760 				continue;
1761 			}
1762 			if (page_ops & PAGE_CLEAR_DIRTY)
1763 				clear_page_dirty_for_io(pages[i]);
1764 			if (page_ops & PAGE_SET_WRITEBACK)
1765 				set_page_writeback(pages[i]);
1766 			if (page_ops & PAGE_END_WRITEBACK)
1767 				end_page_writeback(pages[i]);
1768 			if (page_ops & PAGE_UNLOCK)
1769 				unlock_page(pages[i]);
1770 			page_cache_release(pages[i]);
1771 		}
1772 		nr_pages -= ret;
1773 		index += ret;
1774 		cond_resched();
1775 	}
1776 	return 0;
1777 }
1778 
1779 /*
1780  * count the number of bytes in the tree that have a given bit(s)
1781  * set.  This can be fairly slow, except for EXTENT_DIRTY which is
1782  * cached.  The total number found is returned.
1783  */
1784 u64 count_range_bits(struct extent_io_tree *tree,
1785 		     u64 *start, u64 search_end, u64 max_bytes,
1786 		     unsigned long bits, int contig)
1787 {
1788 	struct rb_node *node;
1789 	struct extent_state *state;
1790 	u64 cur_start = *start;
1791 	u64 total_bytes = 0;
1792 	u64 last = 0;
1793 	int found = 0;
1794 
1795 	if (WARN_ON(search_end <= cur_start))
1796 		return 0;
1797 
1798 	spin_lock(&tree->lock);
1799 	if (cur_start == 0 && bits == EXTENT_DIRTY) {
1800 		total_bytes = tree->dirty_bytes;
1801 		goto out;
1802 	}
1803 	/*
1804 	 * this search will find all the extents that end after
1805 	 * our range starts.
1806 	 */
1807 	node = tree_search(tree, cur_start);
1808 	if (!node)
1809 		goto out;
1810 
1811 	while (1) {
1812 		state = rb_entry(node, struct extent_state, rb_node);
1813 		if (state->start > search_end)
1814 			break;
1815 		if (contig && found && state->start > last + 1)
1816 			break;
1817 		if (state->end >= cur_start && (state->state & bits) == bits) {
1818 			total_bytes += min(search_end, state->end) + 1 -
1819 				       max(cur_start, state->start);
1820 			if (total_bytes >= max_bytes)
1821 				break;
1822 			if (!found) {
1823 				*start = max(cur_start, state->start);
1824 				found = 1;
1825 			}
1826 			last = state->end;
1827 		} else if (contig && found) {
1828 			break;
1829 		}
1830 		node = rb_next(node);
1831 		if (!node)
1832 			break;
1833 	}
1834 out:
1835 	spin_unlock(&tree->lock);
1836 	return total_bytes;
1837 }
1838 
1839 /*
1840  * set the private field for a given byte offset in the tree.  If there isn't
1841  * an extent_state there already, this does nothing.
1842  */
1843 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private)
1844 {
1845 	struct rb_node *node;
1846 	struct extent_state *state;
1847 	int ret = 0;
1848 
1849 	spin_lock(&tree->lock);
1850 	/*
1851 	 * this search will find all the extents that end after
1852 	 * our range starts.
1853 	 */
1854 	node = tree_search(tree, start);
1855 	if (!node) {
1856 		ret = -ENOENT;
1857 		goto out;
1858 	}
1859 	state = rb_entry(node, struct extent_state, rb_node);
1860 	if (state->start != start) {
1861 		ret = -ENOENT;
1862 		goto out;
1863 	}
1864 	state->private = private;
1865 out:
1866 	spin_unlock(&tree->lock);
1867 	return ret;
1868 }
1869 
1870 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private)
1871 {
1872 	struct rb_node *node;
1873 	struct extent_state *state;
1874 	int ret = 0;
1875 
1876 	spin_lock(&tree->lock);
1877 	/*
1878 	 * this search will find all the extents that end after
1879 	 * our range starts.
1880 	 */
1881 	node = tree_search(tree, start);
1882 	if (!node) {
1883 		ret = -ENOENT;
1884 		goto out;
1885 	}
1886 	state = rb_entry(node, struct extent_state, rb_node);
1887 	if (state->start != start) {
1888 		ret = -ENOENT;
1889 		goto out;
1890 	}
1891 	*private = state->private;
1892 out:
1893 	spin_unlock(&tree->lock);
1894 	return ret;
1895 }
1896 
1897 /*
1898  * searches a range in the state tree for a given mask.
1899  * If 'filled' == 1, this returns 1 only if every extent in the tree
1900  * has the bits set.  Otherwise, 1 is returned if any bit in the
1901  * range is found set.
1902  */
1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end,
1904 		   unsigned long bits, int filled, struct extent_state *cached)
1905 {
1906 	struct extent_state *state = NULL;
1907 	struct rb_node *node;
1908 	int bitset = 0;
1909 
1910 	spin_lock(&tree->lock);
1911 	if (cached && extent_state_in_tree(cached) && cached->start <= start &&
1912 	    cached->end > start)
1913 		node = &cached->rb_node;
1914 	else
1915 		node = tree_search(tree, start);
1916 	while (node && start <= end) {
1917 		state = rb_entry(node, struct extent_state, rb_node);
1918 
1919 		if (filled && state->start > start) {
1920 			bitset = 0;
1921 			break;
1922 		}
1923 
1924 		if (state->start > end)
1925 			break;
1926 
1927 		if (state->state & bits) {
1928 			bitset = 1;
1929 			if (!filled)
1930 				break;
1931 		} else if (filled) {
1932 			bitset = 0;
1933 			break;
1934 		}
1935 
1936 		if (state->end == (u64)-1)
1937 			break;
1938 
1939 		start = state->end + 1;
1940 		if (start > end)
1941 			break;
1942 		node = rb_next(node);
1943 		if (!node) {
1944 			if (filled)
1945 				bitset = 0;
1946 			break;
1947 		}
1948 	}
1949 	spin_unlock(&tree->lock);
1950 	return bitset;
1951 }
1952 
1953 /*
1954  * helper function to set a given page up to date if all the
1955  * extents in the tree for that page are up to date
1956  */
1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page)
1958 {
1959 	u64 start = page_offset(page);
1960 	u64 end = start + PAGE_CACHE_SIZE - 1;
1961 	if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL))
1962 		SetPageUptodate(page);
1963 }
1964 
1965 /*
1966  * When IO fails, either with EIO or csum verification fails, we
1967  * try other mirrors that might have a good copy of the data.  This
1968  * io_failure_record is used to record state as we go through all the
1969  * mirrors.  If another mirror has good data, the page is set up to date
1970  * and things continue.  If a good mirror can't be found, the original
1971  * bio end_io callback is called to indicate things have failed.
1972  */
1973 struct io_failure_record {
1974 	struct page *page;
1975 	u64 start;
1976 	u64 len;
1977 	u64 logical;
1978 	unsigned long bio_flags;
1979 	int this_mirror;
1980 	int failed_mirror;
1981 	int in_validation;
1982 };
1983 
1984 static int free_io_failure(struct inode *inode, struct io_failure_record *rec,
1985 				int did_repair)
1986 {
1987 	int ret;
1988 	int err = 0;
1989 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
1990 
1991 	set_state_private(failure_tree, rec->start, 0);
1992 	ret = clear_extent_bits(failure_tree, rec->start,
1993 				rec->start + rec->len - 1,
1994 				EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
1995 	if (ret)
1996 		err = ret;
1997 
1998 	ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start,
1999 				rec->start + rec->len - 1,
2000 				EXTENT_DAMAGED, GFP_NOFS);
2001 	if (ret && !err)
2002 		err = ret;
2003 
2004 	kfree(rec);
2005 	return err;
2006 }
2007 
2008 /*
2009  * this bypasses the standard btrfs submit functions deliberately, as
2010  * the standard behavior is to write all copies in a raid setup. here we only
2011  * want to write the one bad copy. so we do the mapping for ourselves and issue
2012  * submit_bio directly.
2013  * to avoid any synchronization issues, wait for the data after writing, which
2014  * actually prevents the read that triggered the error from finishing.
2015  * currently, there can be no more than two copies of every data bit. thus,
2016  * exactly one rewrite is required.
2017  */
2018 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start,
2019 			u64 length, u64 logical, struct page *page,
2020 			int mirror_num)
2021 {
2022 	struct bio *bio;
2023 	struct btrfs_device *dev;
2024 	u64 map_length = 0;
2025 	u64 sector;
2026 	struct btrfs_bio *bbio = NULL;
2027 	struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree;
2028 	int ret;
2029 
2030 	ASSERT(!(fs_info->sb->s_flags & MS_RDONLY));
2031 	BUG_ON(!mirror_num);
2032 
2033 	/* we can't repair anything in raid56 yet */
2034 	if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num))
2035 		return 0;
2036 
2037 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2038 	if (!bio)
2039 		return -EIO;
2040 	bio->bi_iter.bi_size = 0;
2041 	map_length = length;
2042 
2043 	ret = btrfs_map_block(fs_info, WRITE, logical,
2044 			      &map_length, &bbio, mirror_num);
2045 	if (ret) {
2046 		bio_put(bio);
2047 		return -EIO;
2048 	}
2049 	BUG_ON(mirror_num != bbio->mirror_num);
2050 	sector = bbio->stripes[mirror_num-1].physical >> 9;
2051 	bio->bi_iter.bi_sector = sector;
2052 	dev = bbio->stripes[mirror_num-1].dev;
2053 	kfree(bbio);
2054 	if (!dev || !dev->bdev || !dev->writeable) {
2055 		bio_put(bio);
2056 		return -EIO;
2057 	}
2058 	bio->bi_bdev = dev->bdev;
2059 	bio_add_page(bio, page, length, start - page_offset(page));
2060 
2061 	if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) {
2062 		/* try to remap that extent elsewhere? */
2063 		bio_put(bio);
2064 		btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS);
2065 		return -EIO;
2066 	}
2067 
2068 	printk_ratelimited_in_rcu(KERN_INFO
2069 			"BTRFS: read error corrected: ino %lu off %llu "
2070 		    "(dev %s sector %llu)\n", page->mapping->host->i_ino,
2071 		    start, rcu_str_deref(dev->name), sector);
2072 
2073 	bio_put(bio);
2074 	return 0;
2075 }
2076 
2077 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb,
2078 			 int mirror_num)
2079 {
2080 	u64 start = eb->start;
2081 	unsigned long i, num_pages = num_extent_pages(eb->start, eb->len);
2082 	int ret = 0;
2083 
2084 	if (root->fs_info->sb->s_flags & MS_RDONLY)
2085 		return -EROFS;
2086 
2087 	for (i = 0; i < num_pages; i++) {
2088 		struct page *p = extent_buffer_page(eb, i);
2089 		ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE,
2090 					start, p, mirror_num);
2091 		if (ret)
2092 			break;
2093 		start += PAGE_CACHE_SIZE;
2094 	}
2095 
2096 	return ret;
2097 }
2098 
2099 /*
2100  * each time an IO finishes, we do a fast check in the IO failure tree
2101  * to see if we need to process or clean up an io_failure_record
2102  */
2103 static int clean_io_failure(u64 start, struct page *page)
2104 {
2105 	u64 private;
2106 	u64 private_failure;
2107 	struct io_failure_record *failrec;
2108 	struct inode *inode = page->mapping->host;
2109 	struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2110 	struct extent_state *state;
2111 	int num_copies;
2112 	int did_repair = 0;
2113 	int ret;
2114 
2115 	private = 0;
2116 	ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private,
2117 				(u64)-1, 1, EXTENT_DIRTY, 0);
2118 	if (!ret)
2119 		return 0;
2120 
2121 	ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start,
2122 				&private_failure);
2123 	if (ret)
2124 		return 0;
2125 
2126 	failrec = (struct io_failure_record *)(unsigned long) private_failure;
2127 	BUG_ON(!failrec->this_mirror);
2128 
2129 	if (failrec->in_validation) {
2130 		/* there was no real error, just free the record */
2131 		pr_debug("clean_io_failure: freeing dummy error at %llu\n",
2132 			 failrec->start);
2133 		did_repair = 1;
2134 		goto out;
2135 	}
2136 	if (fs_info->sb->s_flags & MS_RDONLY)
2137 		goto out;
2138 
2139 	spin_lock(&BTRFS_I(inode)->io_tree.lock);
2140 	state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree,
2141 					    failrec->start,
2142 					    EXTENT_LOCKED);
2143 	spin_unlock(&BTRFS_I(inode)->io_tree.lock);
2144 
2145 	if (state && state->start <= failrec->start &&
2146 	    state->end >= failrec->start + failrec->len - 1) {
2147 		num_copies = btrfs_num_copies(fs_info, failrec->logical,
2148 					      failrec->len);
2149 		if (num_copies > 1)  {
2150 			ret = repair_io_failure(fs_info, start, failrec->len,
2151 						failrec->logical, page,
2152 						failrec->failed_mirror);
2153 			did_repair = !ret;
2154 		}
2155 		ret = 0;
2156 	}
2157 
2158 out:
2159 	if (!ret)
2160 		ret = free_io_failure(inode, failrec, did_repair);
2161 
2162 	return ret;
2163 }
2164 
2165 /*
2166  * this is a generic handler for readpage errors (default
2167  * readpage_io_failed_hook). if other copies exist, read those and write back
2168  * good data to the failed position. does not investigate in remapping the
2169  * failed extent elsewhere, hoping the device will be smart enough to do this as
2170  * needed
2171  */
2172 
2173 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset,
2174 			      struct page *page, u64 start, u64 end,
2175 			      int failed_mirror)
2176 {
2177 	struct io_failure_record *failrec = NULL;
2178 	u64 private;
2179 	struct extent_map *em;
2180 	struct inode *inode = page->mapping->host;
2181 	struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree;
2182 	struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree;
2183 	struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree;
2184 	struct bio *bio;
2185 	struct btrfs_io_bio *btrfs_failed_bio;
2186 	struct btrfs_io_bio *btrfs_bio;
2187 	int num_copies;
2188 	int ret;
2189 	int read_mode;
2190 	u64 logical;
2191 
2192 	BUG_ON(failed_bio->bi_rw & REQ_WRITE);
2193 
2194 	ret = get_state_private(failure_tree, start, &private);
2195 	if (ret) {
2196 		failrec = kzalloc(sizeof(*failrec), GFP_NOFS);
2197 		if (!failrec)
2198 			return -ENOMEM;
2199 		failrec->start = start;
2200 		failrec->len = end - start + 1;
2201 		failrec->this_mirror = 0;
2202 		failrec->bio_flags = 0;
2203 		failrec->in_validation = 0;
2204 
2205 		read_lock(&em_tree->lock);
2206 		em = lookup_extent_mapping(em_tree, start, failrec->len);
2207 		if (!em) {
2208 			read_unlock(&em_tree->lock);
2209 			kfree(failrec);
2210 			return -EIO;
2211 		}
2212 
2213 		if (em->start > start || em->start + em->len <= start) {
2214 			free_extent_map(em);
2215 			em = NULL;
2216 		}
2217 		read_unlock(&em_tree->lock);
2218 
2219 		if (!em) {
2220 			kfree(failrec);
2221 			return -EIO;
2222 		}
2223 		logical = start - em->start;
2224 		logical = em->block_start + logical;
2225 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2226 			logical = em->block_start;
2227 			failrec->bio_flags = EXTENT_BIO_COMPRESSED;
2228 			extent_set_compress_type(&failrec->bio_flags,
2229 						 em->compress_type);
2230 		}
2231 		pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, "
2232 			 "len=%llu\n", logical, start, failrec->len);
2233 		failrec->logical = logical;
2234 		free_extent_map(em);
2235 
2236 		/* set the bits in the private failure tree */
2237 		ret = set_extent_bits(failure_tree, start, end,
2238 					EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS);
2239 		if (ret >= 0)
2240 			ret = set_state_private(failure_tree, start,
2241 						(u64)(unsigned long)failrec);
2242 		/* set the bits in the inode's tree */
2243 		if (ret >= 0)
2244 			ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED,
2245 						GFP_NOFS);
2246 		if (ret < 0) {
2247 			kfree(failrec);
2248 			return ret;
2249 		}
2250 	} else {
2251 		failrec = (struct io_failure_record *)(unsigned long)private;
2252 		pr_debug("bio_readpage_error: (found) logical=%llu, "
2253 			 "start=%llu, len=%llu, validation=%d\n",
2254 			 failrec->logical, failrec->start, failrec->len,
2255 			 failrec->in_validation);
2256 		/*
2257 		 * when data can be on disk more than twice, add to failrec here
2258 		 * (e.g. with a list for failed_mirror) to make
2259 		 * clean_io_failure() clean all those errors at once.
2260 		 */
2261 	}
2262 	num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info,
2263 				      failrec->logical, failrec->len);
2264 	if (num_copies == 1) {
2265 		/*
2266 		 * we only have a single copy of the data, so don't bother with
2267 		 * all the retry and error correction code that follows. no
2268 		 * matter what the error is, it is very likely to persist.
2269 		 */
2270 		pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n",
2271 			 num_copies, failrec->this_mirror, failed_mirror);
2272 		free_io_failure(inode, failrec, 0);
2273 		return -EIO;
2274 	}
2275 
2276 	/*
2277 	 * there are two premises:
2278 	 *	a) deliver good data to the caller
2279 	 *	b) correct the bad sectors on disk
2280 	 */
2281 	if (failed_bio->bi_vcnt > 1) {
2282 		/*
2283 		 * to fulfill b), we need to know the exact failing sectors, as
2284 		 * we don't want to rewrite any more than the failed ones. thus,
2285 		 * we need separate read requests for the failed bio
2286 		 *
2287 		 * if the following BUG_ON triggers, our validation request got
2288 		 * merged. we need separate requests for our algorithm to work.
2289 		 */
2290 		BUG_ON(failrec->in_validation);
2291 		failrec->in_validation = 1;
2292 		failrec->this_mirror = failed_mirror;
2293 		read_mode = READ_SYNC | REQ_FAILFAST_DEV;
2294 	} else {
2295 		/*
2296 		 * we're ready to fulfill a) and b) alongside. get a good copy
2297 		 * of the failed sector and if we succeed, we have setup
2298 		 * everything for repair_io_failure to do the rest for us.
2299 		 */
2300 		if (failrec->in_validation) {
2301 			BUG_ON(failrec->this_mirror != failed_mirror);
2302 			failrec->in_validation = 0;
2303 			failrec->this_mirror = 0;
2304 		}
2305 		failrec->failed_mirror = failed_mirror;
2306 		failrec->this_mirror++;
2307 		if (failrec->this_mirror == failed_mirror)
2308 			failrec->this_mirror++;
2309 		read_mode = READ_SYNC;
2310 	}
2311 
2312 	if (failrec->this_mirror > num_copies) {
2313 		pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n",
2314 			 num_copies, failrec->this_mirror, failed_mirror);
2315 		free_io_failure(inode, failrec, 0);
2316 		return -EIO;
2317 	}
2318 
2319 	bio = btrfs_io_bio_alloc(GFP_NOFS, 1);
2320 	if (!bio) {
2321 		free_io_failure(inode, failrec, 0);
2322 		return -EIO;
2323 	}
2324 	bio->bi_end_io = failed_bio->bi_end_io;
2325 	bio->bi_iter.bi_sector = failrec->logical >> 9;
2326 	bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev;
2327 	bio->bi_iter.bi_size = 0;
2328 
2329 	btrfs_failed_bio = btrfs_io_bio(failed_bio);
2330 	if (btrfs_failed_bio->csum) {
2331 		struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info;
2332 		u16 csum_size = btrfs_super_csum_size(fs_info->super_copy);
2333 
2334 		btrfs_bio = btrfs_io_bio(bio);
2335 		btrfs_bio->csum = btrfs_bio->csum_inline;
2336 		phy_offset >>= inode->i_sb->s_blocksize_bits;
2337 		phy_offset *= csum_size;
2338 		memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset,
2339 		       csum_size);
2340 	}
2341 
2342 	bio_add_page(bio, page, failrec->len, start - page_offset(page));
2343 
2344 	pr_debug("bio_readpage_error: submitting new read[%#x] to "
2345 		 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode,
2346 		 failrec->this_mirror, num_copies, failrec->in_validation);
2347 
2348 	ret = tree->ops->submit_bio_hook(inode, read_mode, bio,
2349 					 failrec->this_mirror,
2350 					 failrec->bio_flags, 0);
2351 	return ret;
2352 }
2353 
2354 /* lots and lots of room for performance fixes in the end_bio funcs */
2355 
2356 int end_extent_writepage(struct page *page, int err, u64 start, u64 end)
2357 {
2358 	int uptodate = (err == 0);
2359 	struct extent_io_tree *tree;
2360 	int ret = 0;
2361 
2362 	tree = &BTRFS_I(page->mapping->host)->io_tree;
2363 
2364 	if (tree->ops && tree->ops->writepage_end_io_hook) {
2365 		ret = tree->ops->writepage_end_io_hook(page, start,
2366 					       end, NULL, uptodate);
2367 		if (ret)
2368 			uptodate = 0;
2369 	}
2370 
2371 	if (!uptodate) {
2372 		ClearPageUptodate(page);
2373 		SetPageError(page);
2374 		ret = ret < 0 ? ret : -EIO;
2375 		mapping_set_error(page->mapping, ret);
2376 	}
2377 	return 0;
2378 }
2379 
2380 /*
2381  * after a writepage IO is done, we need to:
2382  * clear the uptodate bits on error
2383  * clear the writeback bits in the extent tree for this IO
2384  * end_page_writeback if the page has no more pending IO
2385  *
2386  * Scheduling is not allowed, so the extent state tree is expected
2387  * to have one and only one object corresponding to this IO.
2388  */
2389 static void end_bio_extent_writepage(struct bio *bio, int err)
2390 {
2391 	struct bio_vec *bvec;
2392 	u64 start;
2393 	u64 end;
2394 	int i;
2395 
2396 	bio_for_each_segment_all(bvec, bio, i) {
2397 		struct page *page = bvec->bv_page;
2398 
2399 		/* We always issue full-page reads, but if some block
2400 		 * in a page fails to read, blk_update_request() will
2401 		 * advance bv_offset and adjust bv_len to compensate.
2402 		 * Print a warning for nonzero offsets, and an error
2403 		 * if they don't add up to a full page.  */
2404 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2405 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2406 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2407 				   "partial page write in btrfs with offset %u and length %u",
2408 					bvec->bv_offset, bvec->bv_len);
2409 			else
2410 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2411 				   "incomplete page write in btrfs with offset %u and "
2412 				   "length %u",
2413 					bvec->bv_offset, bvec->bv_len);
2414 		}
2415 
2416 		start = page_offset(page);
2417 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2418 
2419 		if (end_extent_writepage(page, err, start, end))
2420 			continue;
2421 
2422 		end_page_writeback(page);
2423 	}
2424 
2425 	bio_put(bio);
2426 }
2427 
2428 static void
2429 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len,
2430 			      int uptodate)
2431 {
2432 	struct extent_state *cached = NULL;
2433 	u64 end = start + len - 1;
2434 
2435 	if (uptodate && tree->track_uptodate)
2436 		set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC);
2437 	unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC);
2438 }
2439 
2440 /*
2441  * after a readpage IO is done, we need to:
2442  * clear the uptodate bits on error
2443  * set the uptodate bits if things worked
2444  * set the page up to date if all extents in the tree are uptodate
2445  * clear the lock bit in the extent tree
2446  * unlock the page if there are no other extents locked for it
2447  *
2448  * Scheduling is not allowed, so the extent state tree is expected
2449  * to have one and only one object corresponding to this IO.
2450  */
2451 static void end_bio_extent_readpage(struct bio *bio, int err)
2452 {
2453 	struct bio_vec *bvec;
2454 	int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags);
2455 	struct btrfs_io_bio *io_bio = btrfs_io_bio(bio);
2456 	struct extent_io_tree *tree;
2457 	u64 offset = 0;
2458 	u64 start;
2459 	u64 end;
2460 	u64 len;
2461 	u64 extent_start = 0;
2462 	u64 extent_len = 0;
2463 	int mirror;
2464 	int ret;
2465 	int i;
2466 
2467 	if (err)
2468 		uptodate = 0;
2469 
2470 	bio_for_each_segment_all(bvec, bio, i) {
2471 		struct page *page = bvec->bv_page;
2472 		struct inode *inode = page->mapping->host;
2473 
2474 		pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, "
2475 			 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err,
2476 			 io_bio->mirror_num);
2477 		tree = &BTRFS_I(inode)->io_tree;
2478 
2479 		/* We always issue full-page reads, but if some block
2480 		 * in a page fails to read, blk_update_request() will
2481 		 * advance bv_offset and adjust bv_len to compensate.
2482 		 * Print a warning for nonzero offsets, and an error
2483 		 * if they don't add up to a full page.  */
2484 		if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) {
2485 			if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE)
2486 				btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info,
2487 				   "partial page read in btrfs with offset %u and length %u",
2488 					bvec->bv_offset, bvec->bv_len);
2489 			else
2490 				btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info,
2491 				   "incomplete page read in btrfs with offset %u and "
2492 				   "length %u",
2493 					bvec->bv_offset, bvec->bv_len);
2494 		}
2495 
2496 		start = page_offset(page);
2497 		end = start + bvec->bv_offset + bvec->bv_len - 1;
2498 		len = bvec->bv_len;
2499 
2500 		mirror = io_bio->mirror_num;
2501 		if (likely(uptodate && tree->ops &&
2502 			   tree->ops->readpage_end_io_hook)) {
2503 			ret = tree->ops->readpage_end_io_hook(io_bio, offset,
2504 							      page, start, end,
2505 							      mirror);
2506 			if (ret)
2507 				uptodate = 0;
2508 			else
2509 				clean_io_failure(start, page);
2510 		}
2511 
2512 		if (likely(uptodate))
2513 			goto readpage_ok;
2514 
2515 		if (tree->ops && tree->ops->readpage_io_failed_hook) {
2516 			ret = tree->ops->readpage_io_failed_hook(page, mirror);
2517 			if (!ret && !err &&
2518 			    test_bit(BIO_UPTODATE, &bio->bi_flags))
2519 				uptodate = 1;
2520 		} else {
2521 			/*
2522 			 * The generic bio_readpage_error handles errors the
2523 			 * following way: If possible, new read requests are
2524 			 * created and submitted and will end up in
2525 			 * end_bio_extent_readpage as well (if we're lucky, not
2526 			 * in the !uptodate case). In that case it returns 0 and
2527 			 * we just go on with the next page in our bio. If it
2528 			 * can't handle the error it will return -EIO and we
2529 			 * remain responsible for that page.
2530 			 */
2531 			ret = bio_readpage_error(bio, offset, page, start, end,
2532 						 mirror);
2533 			if (ret == 0) {
2534 				uptodate =
2535 					test_bit(BIO_UPTODATE, &bio->bi_flags);
2536 				if (err)
2537 					uptodate = 0;
2538 				offset += len;
2539 				continue;
2540 			}
2541 		}
2542 readpage_ok:
2543 		if (likely(uptodate)) {
2544 			loff_t i_size = i_size_read(inode);
2545 			pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
2546 			unsigned off;
2547 
2548 			/* Zero out the end if this page straddles i_size */
2549 			off = i_size & (PAGE_CACHE_SIZE-1);
2550 			if (page->index == end_index && off)
2551 				zero_user_segment(page, off, PAGE_CACHE_SIZE);
2552 			SetPageUptodate(page);
2553 		} else {
2554 			ClearPageUptodate(page);
2555 			SetPageError(page);
2556 		}
2557 		unlock_page(page);
2558 		offset += len;
2559 
2560 		if (unlikely(!uptodate)) {
2561 			if (extent_len) {
2562 				endio_readpage_release_extent(tree,
2563 							      extent_start,
2564 							      extent_len, 1);
2565 				extent_start = 0;
2566 				extent_len = 0;
2567 			}
2568 			endio_readpage_release_extent(tree, start,
2569 						      end - start + 1, 0);
2570 		} else if (!extent_len) {
2571 			extent_start = start;
2572 			extent_len = end + 1 - start;
2573 		} else if (extent_start + extent_len == start) {
2574 			extent_len += end + 1 - start;
2575 		} else {
2576 			endio_readpage_release_extent(tree, extent_start,
2577 						      extent_len, uptodate);
2578 			extent_start = start;
2579 			extent_len = end + 1 - start;
2580 		}
2581 	}
2582 
2583 	if (extent_len)
2584 		endio_readpage_release_extent(tree, extent_start, extent_len,
2585 					      uptodate);
2586 	if (io_bio->end_io)
2587 		io_bio->end_io(io_bio, err);
2588 	bio_put(bio);
2589 }
2590 
2591 /*
2592  * this allocates from the btrfs_bioset.  We're returning a bio right now
2593  * but you can call btrfs_io_bio for the appropriate container_of magic
2594  */
2595 struct bio *
2596 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs,
2597 		gfp_t gfp_flags)
2598 {
2599 	struct btrfs_io_bio *btrfs_bio;
2600 	struct bio *bio;
2601 
2602 	bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset);
2603 
2604 	if (bio == NULL && (current->flags & PF_MEMALLOC)) {
2605 		while (!bio && (nr_vecs /= 2)) {
2606 			bio = bio_alloc_bioset(gfp_flags,
2607 					       nr_vecs, btrfs_bioset);
2608 		}
2609 	}
2610 
2611 	if (bio) {
2612 		bio->bi_bdev = bdev;
2613 		bio->bi_iter.bi_sector = first_sector;
2614 		btrfs_bio = btrfs_io_bio(bio);
2615 		btrfs_bio->csum = NULL;
2616 		btrfs_bio->csum_allocated = NULL;
2617 		btrfs_bio->end_io = NULL;
2618 	}
2619 	return bio;
2620 }
2621 
2622 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask)
2623 {
2624 	return bio_clone_bioset(bio, gfp_mask, btrfs_bioset);
2625 }
2626 
2627 
2628 /* this also allocates from the btrfs_bioset */
2629 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs)
2630 {
2631 	struct btrfs_io_bio *btrfs_bio;
2632 	struct bio *bio;
2633 
2634 	bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset);
2635 	if (bio) {
2636 		btrfs_bio = btrfs_io_bio(bio);
2637 		btrfs_bio->csum = NULL;
2638 		btrfs_bio->csum_allocated = NULL;
2639 		btrfs_bio->end_io = NULL;
2640 	}
2641 	return bio;
2642 }
2643 
2644 
2645 static int __must_check submit_one_bio(int rw, struct bio *bio,
2646 				       int mirror_num, unsigned long bio_flags)
2647 {
2648 	int ret = 0;
2649 	struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1;
2650 	struct page *page = bvec->bv_page;
2651 	struct extent_io_tree *tree = bio->bi_private;
2652 	u64 start;
2653 
2654 	start = page_offset(page) + bvec->bv_offset;
2655 
2656 	bio->bi_private = NULL;
2657 
2658 	bio_get(bio);
2659 
2660 	if (tree->ops && tree->ops->submit_bio_hook)
2661 		ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio,
2662 					   mirror_num, bio_flags, start);
2663 	else
2664 		btrfsic_submit_bio(rw, bio);
2665 
2666 	if (bio_flagged(bio, BIO_EOPNOTSUPP))
2667 		ret = -EOPNOTSUPP;
2668 	bio_put(bio);
2669 	return ret;
2670 }
2671 
2672 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page,
2673 		     unsigned long offset, size_t size, struct bio *bio,
2674 		     unsigned long bio_flags)
2675 {
2676 	int ret = 0;
2677 	if (tree->ops && tree->ops->merge_bio_hook)
2678 		ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio,
2679 						bio_flags);
2680 	BUG_ON(ret < 0);
2681 	return ret;
2682 
2683 }
2684 
2685 static int submit_extent_page(int rw, struct extent_io_tree *tree,
2686 			      struct page *page, sector_t sector,
2687 			      size_t size, unsigned long offset,
2688 			      struct block_device *bdev,
2689 			      struct bio **bio_ret,
2690 			      unsigned long max_pages,
2691 			      bio_end_io_t end_io_func,
2692 			      int mirror_num,
2693 			      unsigned long prev_bio_flags,
2694 			      unsigned long bio_flags)
2695 {
2696 	int ret = 0;
2697 	struct bio *bio;
2698 	int nr;
2699 	int contig = 0;
2700 	int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED;
2701 	int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED;
2702 	size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE);
2703 
2704 	if (bio_ret && *bio_ret) {
2705 		bio = *bio_ret;
2706 		if (old_compressed)
2707 			contig = bio->bi_iter.bi_sector == sector;
2708 		else
2709 			contig = bio_end_sector(bio) == sector;
2710 
2711 		if (prev_bio_flags != bio_flags || !contig ||
2712 		    merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) ||
2713 		    bio_add_page(bio, page, page_size, offset) < page_size) {
2714 			ret = submit_one_bio(rw, bio, mirror_num,
2715 					     prev_bio_flags);
2716 			if (ret < 0)
2717 				return ret;
2718 			bio = NULL;
2719 		} else {
2720 			return 0;
2721 		}
2722 	}
2723 	if (this_compressed)
2724 		nr = BIO_MAX_PAGES;
2725 	else
2726 		nr = bio_get_nr_vecs(bdev);
2727 
2728 	bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH);
2729 	if (!bio)
2730 		return -ENOMEM;
2731 
2732 	bio_add_page(bio, page, page_size, offset);
2733 	bio->bi_end_io = end_io_func;
2734 	bio->bi_private = tree;
2735 
2736 	if (bio_ret)
2737 		*bio_ret = bio;
2738 	else
2739 		ret = submit_one_bio(rw, bio, mirror_num, bio_flags);
2740 
2741 	return ret;
2742 }
2743 
2744 static void attach_extent_buffer_page(struct extent_buffer *eb,
2745 				      struct page *page)
2746 {
2747 	if (!PagePrivate(page)) {
2748 		SetPagePrivate(page);
2749 		page_cache_get(page);
2750 		set_page_private(page, (unsigned long)eb);
2751 	} else {
2752 		WARN_ON(page->private != (unsigned long)eb);
2753 	}
2754 }
2755 
2756 void set_page_extent_mapped(struct page *page)
2757 {
2758 	if (!PagePrivate(page)) {
2759 		SetPagePrivate(page);
2760 		page_cache_get(page);
2761 		set_page_private(page, EXTENT_PAGE_PRIVATE);
2762 	}
2763 }
2764 
2765 static struct extent_map *
2766 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset,
2767 		 u64 start, u64 len, get_extent_t *get_extent,
2768 		 struct extent_map **em_cached)
2769 {
2770 	struct extent_map *em;
2771 
2772 	if (em_cached && *em_cached) {
2773 		em = *em_cached;
2774 		if (extent_map_in_tree(em) && start >= em->start &&
2775 		    start < extent_map_end(em)) {
2776 			atomic_inc(&em->refs);
2777 			return em;
2778 		}
2779 
2780 		free_extent_map(em);
2781 		*em_cached = NULL;
2782 	}
2783 
2784 	em = get_extent(inode, page, pg_offset, start, len, 0);
2785 	if (em_cached && !IS_ERR_OR_NULL(em)) {
2786 		BUG_ON(*em_cached);
2787 		atomic_inc(&em->refs);
2788 		*em_cached = em;
2789 	}
2790 	return em;
2791 }
2792 /*
2793  * basic readpage implementation.  Locked extent state structs are inserted
2794  * into the tree that are removed when the IO is done (by the end_io
2795  * handlers)
2796  * XXX JDM: This needs looking at to ensure proper page locking
2797  */
2798 static int __do_readpage(struct extent_io_tree *tree,
2799 			 struct page *page,
2800 			 get_extent_t *get_extent,
2801 			 struct extent_map **em_cached,
2802 			 struct bio **bio, int mirror_num,
2803 			 unsigned long *bio_flags, int rw)
2804 {
2805 	struct inode *inode = page->mapping->host;
2806 	u64 start = page_offset(page);
2807 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
2808 	u64 end;
2809 	u64 cur = start;
2810 	u64 extent_offset;
2811 	u64 last_byte = i_size_read(inode);
2812 	u64 block_start;
2813 	u64 cur_end;
2814 	sector_t sector;
2815 	struct extent_map *em;
2816 	struct block_device *bdev;
2817 	int ret;
2818 	int nr = 0;
2819 	int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2820 	size_t pg_offset = 0;
2821 	size_t iosize;
2822 	size_t disk_io_size;
2823 	size_t blocksize = inode->i_sb->s_blocksize;
2824 	unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED;
2825 
2826 	set_page_extent_mapped(page);
2827 
2828 	end = page_end;
2829 	if (!PageUptodate(page)) {
2830 		if (cleancache_get_page(page) == 0) {
2831 			BUG_ON(blocksize != PAGE_SIZE);
2832 			unlock_extent(tree, start, end);
2833 			goto out;
2834 		}
2835 	}
2836 
2837 	if (page->index == last_byte >> PAGE_CACHE_SHIFT) {
2838 		char *userpage;
2839 		size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1);
2840 
2841 		if (zero_offset) {
2842 			iosize = PAGE_CACHE_SIZE - zero_offset;
2843 			userpage = kmap_atomic(page);
2844 			memset(userpage + zero_offset, 0, iosize);
2845 			flush_dcache_page(page);
2846 			kunmap_atomic(userpage);
2847 		}
2848 	}
2849 	while (cur <= end) {
2850 		unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1;
2851 
2852 		if (cur >= last_byte) {
2853 			char *userpage;
2854 			struct extent_state *cached = NULL;
2855 
2856 			iosize = PAGE_CACHE_SIZE - pg_offset;
2857 			userpage = kmap_atomic(page);
2858 			memset(userpage + pg_offset, 0, iosize);
2859 			flush_dcache_page(page);
2860 			kunmap_atomic(userpage);
2861 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2862 					    &cached, GFP_NOFS);
2863 			if (!parent_locked)
2864 				unlock_extent_cached(tree, cur,
2865 						     cur + iosize - 1,
2866 						     &cached, GFP_NOFS);
2867 			break;
2868 		}
2869 		em = __get_extent_map(inode, page, pg_offset, cur,
2870 				      end - cur + 1, get_extent, em_cached);
2871 		if (IS_ERR_OR_NULL(em)) {
2872 			SetPageError(page);
2873 			if (!parent_locked)
2874 				unlock_extent(tree, cur, end);
2875 			break;
2876 		}
2877 		extent_offset = cur - em->start;
2878 		BUG_ON(extent_map_end(em) <= cur);
2879 		BUG_ON(end < cur);
2880 
2881 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) {
2882 			this_bio_flag |= EXTENT_BIO_COMPRESSED;
2883 			extent_set_compress_type(&this_bio_flag,
2884 						 em->compress_type);
2885 		}
2886 
2887 		iosize = min(extent_map_end(em) - cur, end - cur + 1);
2888 		cur_end = min(extent_map_end(em) - 1, end);
2889 		iosize = ALIGN(iosize, blocksize);
2890 		if (this_bio_flag & EXTENT_BIO_COMPRESSED) {
2891 			disk_io_size = em->block_len;
2892 			sector = em->block_start >> 9;
2893 		} else {
2894 			sector = (em->block_start + extent_offset) >> 9;
2895 			disk_io_size = iosize;
2896 		}
2897 		bdev = em->bdev;
2898 		block_start = em->block_start;
2899 		if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags))
2900 			block_start = EXTENT_MAP_HOLE;
2901 		free_extent_map(em);
2902 		em = NULL;
2903 
2904 		/* we've found a hole, just zero and go on */
2905 		if (block_start == EXTENT_MAP_HOLE) {
2906 			char *userpage;
2907 			struct extent_state *cached = NULL;
2908 
2909 			userpage = kmap_atomic(page);
2910 			memset(userpage + pg_offset, 0, iosize);
2911 			flush_dcache_page(page);
2912 			kunmap_atomic(userpage);
2913 
2914 			set_extent_uptodate(tree, cur, cur + iosize - 1,
2915 					    &cached, GFP_NOFS);
2916 			unlock_extent_cached(tree, cur, cur + iosize - 1,
2917 			                     &cached, GFP_NOFS);
2918 			cur = cur + iosize;
2919 			pg_offset += iosize;
2920 			continue;
2921 		}
2922 		/* the get_extent function already copied into the page */
2923 		if (test_range_bit(tree, cur, cur_end,
2924 				   EXTENT_UPTODATE, 1, NULL)) {
2925 			check_page_uptodate(tree, page);
2926 			if (!parent_locked)
2927 				unlock_extent(tree, cur, cur + iosize - 1);
2928 			cur = cur + iosize;
2929 			pg_offset += iosize;
2930 			continue;
2931 		}
2932 		/* we have an inline extent but it didn't get marked up
2933 		 * to date.  Error out
2934 		 */
2935 		if (block_start == EXTENT_MAP_INLINE) {
2936 			SetPageError(page);
2937 			if (!parent_locked)
2938 				unlock_extent(tree, cur, cur + iosize - 1);
2939 			cur = cur + iosize;
2940 			pg_offset += iosize;
2941 			continue;
2942 		}
2943 
2944 		pnr -= page->index;
2945 		ret = submit_extent_page(rw, tree, page,
2946 					 sector, disk_io_size, pg_offset,
2947 					 bdev, bio, pnr,
2948 					 end_bio_extent_readpage, mirror_num,
2949 					 *bio_flags,
2950 					 this_bio_flag);
2951 		if (!ret) {
2952 			nr++;
2953 			*bio_flags = this_bio_flag;
2954 		} else {
2955 			SetPageError(page);
2956 			if (!parent_locked)
2957 				unlock_extent(tree, cur, cur + iosize - 1);
2958 		}
2959 		cur = cur + iosize;
2960 		pg_offset += iosize;
2961 	}
2962 out:
2963 	if (!nr) {
2964 		if (!PageError(page))
2965 			SetPageUptodate(page);
2966 		unlock_page(page);
2967 	}
2968 	return 0;
2969 }
2970 
2971 static inline void __do_contiguous_readpages(struct extent_io_tree *tree,
2972 					     struct page *pages[], int nr_pages,
2973 					     u64 start, u64 end,
2974 					     get_extent_t *get_extent,
2975 					     struct extent_map **em_cached,
2976 					     struct bio **bio, int mirror_num,
2977 					     unsigned long *bio_flags, int rw)
2978 {
2979 	struct inode *inode;
2980 	struct btrfs_ordered_extent *ordered;
2981 	int index;
2982 
2983 	inode = pages[0]->mapping->host;
2984 	while (1) {
2985 		lock_extent(tree, start, end);
2986 		ordered = btrfs_lookup_ordered_range(inode, start,
2987 						     end - start + 1);
2988 		if (!ordered)
2989 			break;
2990 		unlock_extent(tree, start, end);
2991 		btrfs_start_ordered_extent(inode, ordered, 1);
2992 		btrfs_put_ordered_extent(ordered);
2993 	}
2994 
2995 	for (index = 0; index < nr_pages; index++) {
2996 		__do_readpage(tree, pages[index], get_extent, em_cached, bio,
2997 			      mirror_num, bio_flags, rw);
2998 		page_cache_release(pages[index]);
2999 	}
3000 }
3001 
3002 static void __extent_readpages(struct extent_io_tree *tree,
3003 			       struct page *pages[],
3004 			       int nr_pages, get_extent_t *get_extent,
3005 			       struct extent_map **em_cached,
3006 			       struct bio **bio, int mirror_num,
3007 			       unsigned long *bio_flags, int rw)
3008 {
3009 	u64 start = 0;
3010 	u64 end = 0;
3011 	u64 page_start;
3012 	int index;
3013 	int first_index = 0;
3014 
3015 	for (index = 0; index < nr_pages; index++) {
3016 		page_start = page_offset(pages[index]);
3017 		if (!end) {
3018 			start = page_start;
3019 			end = start + PAGE_CACHE_SIZE - 1;
3020 			first_index = index;
3021 		} else if (end + 1 == page_start) {
3022 			end += PAGE_CACHE_SIZE;
3023 		} else {
3024 			__do_contiguous_readpages(tree, &pages[first_index],
3025 						  index - first_index, start,
3026 						  end, get_extent, em_cached,
3027 						  bio, mirror_num, bio_flags,
3028 						  rw);
3029 			start = page_start;
3030 			end = start + PAGE_CACHE_SIZE - 1;
3031 			first_index = index;
3032 		}
3033 	}
3034 
3035 	if (end)
3036 		__do_contiguous_readpages(tree, &pages[first_index],
3037 					  index - first_index, start,
3038 					  end, get_extent, em_cached, bio,
3039 					  mirror_num, bio_flags, rw);
3040 }
3041 
3042 static int __extent_read_full_page(struct extent_io_tree *tree,
3043 				   struct page *page,
3044 				   get_extent_t *get_extent,
3045 				   struct bio **bio, int mirror_num,
3046 				   unsigned long *bio_flags, int rw)
3047 {
3048 	struct inode *inode = page->mapping->host;
3049 	struct btrfs_ordered_extent *ordered;
3050 	u64 start = page_offset(page);
3051 	u64 end = start + PAGE_CACHE_SIZE - 1;
3052 	int ret;
3053 
3054 	while (1) {
3055 		lock_extent(tree, start, end);
3056 		ordered = btrfs_lookup_ordered_extent(inode, start);
3057 		if (!ordered)
3058 			break;
3059 		unlock_extent(tree, start, end);
3060 		btrfs_start_ordered_extent(inode, ordered, 1);
3061 		btrfs_put_ordered_extent(ordered);
3062 	}
3063 
3064 	ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num,
3065 			    bio_flags, rw);
3066 	return ret;
3067 }
3068 
3069 int extent_read_full_page(struct extent_io_tree *tree, struct page *page,
3070 			    get_extent_t *get_extent, int mirror_num)
3071 {
3072 	struct bio *bio = NULL;
3073 	unsigned long bio_flags = 0;
3074 	int ret;
3075 
3076 	ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num,
3077 				      &bio_flags, READ);
3078 	if (bio)
3079 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3080 	return ret;
3081 }
3082 
3083 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page,
3084 				 get_extent_t *get_extent, int mirror_num)
3085 {
3086 	struct bio *bio = NULL;
3087 	unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED;
3088 	int ret;
3089 
3090 	ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num,
3091 				      &bio_flags, READ);
3092 	if (bio)
3093 		ret = submit_one_bio(READ, bio, mirror_num, bio_flags);
3094 	return ret;
3095 }
3096 
3097 static noinline void update_nr_written(struct page *page,
3098 				      struct writeback_control *wbc,
3099 				      unsigned long nr_written)
3100 {
3101 	wbc->nr_to_write -= nr_written;
3102 	if (wbc->range_cyclic || (wbc->nr_to_write > 0 &&
3103 	    wbc->range_start == 0 && wbc->range_end == LLONG_MAX))
3104 		page->mapping->writeback_index = page->index + nr_written;
3105 }
3106 
3107 /*
3108  * helper for __extent_writepage, doing all of the delayed allocation setup.
3109  *
3110  * This returns 1 if our fill_delalloc function did all the work required
3111  * to write the page (copy into inline extent).  In this case the IO has
3112  * been started and the page is already unlocked.
3113  *
3114  * This returns 0 if all went well (page still locked)
3115  * This returns < 0 if there were errors (page still locked)
3116  */
3117 static noinline_for_stack int writepage_delalloc(struct inode *inode,
3118 			      struct page *page, struct writeback_control *wbc,
3119 			      struct extent_page_data *epd,
3120 			      u64 delalloc_start,
3121 			      unsigned long *nr_written)
3122 {
3123 	struct extent_io_tree *tree = epd->tree;
3124 	u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1;
3125 	u64 nr_delalloc;
3126 	u64 delalloc_to_write = 0;
3127 	u64 delalloc_end = 0;
3128 	int ret;
3129 	int page_started = 0;
3130 
3131 	if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc)
3132 		return 0;
3133 
3134 	while (delalloc_end < page_end) {
3135 		nr_delalloc = find_lock_delalloc_range(inode, tree,
3136 					       page,
3137 					       &delalloc_start,
3138 					       &delalloc_end,
3139 					       128 * 1024 * 1024);
3140 		if (nr_delalloc == 0) {
3141 			delalloc_start = delalloc_end + 1;
3142 			continue;
3143 		}
3144 		ret = tree->ops->fill_delalloc(inode, page,
3145 					       delalloc_start,
3146 					       delalloc_end,
3147 					       &page_started,
3148 					       nr_written);
3149 		/* File system has been set read-only */
3150 		if (ret) {
3151 			SetPageError(page);
3152 			/* fill_delalloc should be return < 0 for error
3153 			 * but just in case, we use > 0 here meaning the
3154 			 * IO is started, so we don't want to return > 0
3155 			 * unless things are going well.
3156 			 */
3157 			ret = ret < 0 ? ret : -EIO;
3158 			goto done;
3159 		}
3160 		/*
3161 		 * delalloc_end is already one less than the total
3162 		 * length, so we don't subtract one from
3163 		 * PAGE_CACHE_SIZE
3164 		 */
3165 		delalloc_to_write += (delalloc_end - delalloc_start +
3166 				      PAGE_CACHE_SIZE) >>
3167 				      PAGE_CACHE_SHIFT;
3168 		delalloc_start = delalloc_end + 1;
3169 	}
3170 	if (wbc->nr_to_write < delalloc_to_write) {
3171 		int thresh = 8192;
3172 
3173 		if (delalloc_to_write < thresh * 2)
3174 			thresh = delalloc_to_write;
3175 		wbc->nr_to_write = min_t(u64, delalloc_to_write,
3176 					 thresh);
3177 	}
3178 
3179 	/* did the fill delalloc function already unlock and start
3180 	 * the IO?
3181 	 */
3182 	if (page_started) {
3183 		/*
3184 		 * we've unlocked the page, so we can't update
3185 		 * the mapping's writeback index, just update
3186 		 * nr_to_write.
3187 		 */
3188 		wbc->nr_to_write -= *nr_written;
3189 		return 1;
3190 	}
3191 
3192 	ret = 0;
3193 
3194 done:
3195 	return ret;
3196 }
3197 
3198 /*
3199  * helper for __extent_writepage.  This calls the writepage start hooks,
3200  * and does the loop to map the page into extents and bios.
3201  *
3202  * We return 1 if the IO is started and the page is unlocked,
3203  * 0 if all went well (page still locked)
3204  * < 0 if there were errors (page still locked)
3205  */
3206 static noinline_for_stack int __extent_writepage_io(struct inode *inode,
3207 				 struct page *page,
3208 				 struct writeback_control *wbc,
3209 				 struct extent_page_data *epd,
3210 				 loff_t i_size,
3211 				 unsigned long nr_written,
3212 				 int write_flags, int *nr_ret)
3213 {
3214 	struct extent_io_tree *tree = epd->tree;
3215 	u64 start = page_offset(page);
3216 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3217 	u64 end;
3218 	u64 cur = start;
3219 	u64 extent_offset;
3220 	u64 block_start;
3221 	u64 iosize;
3222 	sector_t sector;
3223 	struct extent_state *cached_state = NULL;
3224 	struct extent_map *em;
3225 	struct block_device *bdev;
3226 	size_t pg_offset = 0;
3227 	size_t blocksize;
3228 	int ret = 0;
3229 	int nr = 0;
3230 	bool compressed;
3231 
3232 	if (tree->ops && tree->ops->writepage_start_hook) {
3233 		ret = tree->ops->writepage_start_hook(page, start,
3234 						      page_end);
3235 		if (ret) {
3236 			/* Fixup worker will requeue */
3237 			if (ret == -EBUSY)
3238 				wbc->pages_skipped++;
3239 			else
3240 				redirty_page_for_writepage(wbc, page);
3241 
3242 			update_nr_written(page, wbc, nr_written);
3243 			unlock_page(page);
3244 			ret = 1;
3245 			goto done_unlocked;
3246 		}
3247 	}
3248 
3249 	/*
3250 	 * we don't want to touch the inode after unlocking the page,
3251 	 * so we update the mapping writeback index now
3252 	 */
3253 	update_nr_written(page, wbc, nr_written + 1);
3254 
3255 	end = page_end;
3256 	if (i_size <= start) {
3257 		if (tree->ops && tree->ops->writepage_end_io_hook)
3258 			tree->ops->writepage_end_io_hook(page, start,
3259 							 page_end, NULL, 1);
3260 		goto done;
3261 	}
3262 
3263 	blocksize = inode->i_sb->s_blocksize;
3264 
3265 	while (cur <= end) {
3266 		u64 em_end;
3267 		if (cur >= i_size) {
3268 			if (tree->ops && tree->ops->writepage_end_io_hook)
3269 				tree->ops->writepage_end_io_hook(page, cur,
3270 							 page_end, NULL, 1);
3271 			break;
3272 		}
3273 		em = epd->get_extent(inode, page, pg_offset, cur,
3274 				     end - cur + 1, 1);
3275 		if (IS_ERR_OR_NULL(em)) {
3276 			SetPageError(page);
3277 			ret = PTR_ERR_OR_ZERO(em);
3278 			break;
3279 		}
3280 
3281 		extent_offset = cur - em->start;
3282 		em_end = extent_map_end(em);
3283 		BUG_ON(em_end <= cur);
3284 		BUG_ON(end < cur);
3285 		iosize = min(em_end - cur, end - cur + 1);
3286 		iosize = ALIGN(iosize, blocksize);
3287 		sector = (em->block_start + extent_offset) >> 9;
3288 		bdev = em->bdev;
3289 		block_start = em->block_start;
3290 		compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags);
3291 		free_extent_map(em);
3292 		em = NULL;
3293 
3294 		/*
3295 		 * compressed and inline extents are written through other
3296 		 * paths in the FS
3297 		 */
3298 		if (compressed || block_start == EXTENT_MAP_HOLE ||
3299 		    block_start == EXTENT_MAP_INLINE) {
3300 			/*
3301 			 * end_io notification does not happen here for
3302 			 * compressed extents
3303 			 */
3304 			if (!compressed && tree->ops &&
3305 			    tree->ops->writepage_end_io_hook)
3306 				tree->ops->writepage_end_io_hook(page, cur,
3307 							 cur + iosize - 1,
3308 							 NULL, 1);
3309 			else if (compressed) {
3310 				/* we don't want to end_page_writeback on
3311 				 * a compressed extent.  this happens
3312 				 * elsewhere
3313 				 */
3314 				nr++;
3315 			}
3316 
3317 			cur += iosize;
3318 			pg_offset += iosize;
3319 			continue;
3320 		}
3321 
3322 		if (tree->ops && tree->ops->writepage_io_hook) {
3323 			ret = tree->ops->writepage_io_hook(page, cur,
3324 						cur + iosize - 1);
3325 		} else {
3326 			ret = 0;
3327 		}
3328 		if (ret) {
3329 			SetPageError(page);
3330 		} else {
3331 			unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1;
3332 
3333 			set_range_writeback(tree, cur, cur + iosize - 1);
3334 			if (!PageWriteback(page)) {
3335 				btrfs_err(BTRFS_I(inode)->root->fs_info,
3336 					   "page %lu not writeback, cur %llu end %llu",
3337 				       page->index, cur, end);
3338 			}
3339 
3340 			ret = submit_extent_page(write_flags, tree, page,
3341 						 sector, iosize, pg_offset,
3342 						 bdev, &epd->bio, max_nr,
3343 						 end_bio_extent_writepage,
3344 						 0, 0, 0);
3345 			if (ret)
3346 				SetPageError(page);
3347 		}
3348 		cur = cur + iosize;
3349 		pg_offset += iosize;
3350 		nr++;
3351 	}
3352 done:
3353 	*nr_ret = nr;
3354 
3355 done_unlocked:
3356 
3357 	/* drop our reference on any cached states */
3358 	free_extent_state(cached_state);
3359 	return ret;
3360 }
3361 
3362 /*
3363  * the writepage semantics are similar to regular writepage.  extent
3364  * records are inserted to lock ranges in the tree, and as dirty areas
3365  * are found, they are marked writeback.  Then the lock bits are removed
3366  * and the end_io handler clears the writeback ranges
3367  */
3368 static int __extent_writepage(struct page *page, struct writeback_control *wbc,
3369 			      void *data)
3370 {
3371 	struct inode *inode = page->mapping->host;
3372 	struct extent_page_data *epd = data;
3373 	u64 start = page_offset(page);
3374 	u64 page_end = start + PAGE_CACHE_SIZE - 1;
3375 	int ret;
3376 	int nr = 0;
3377 	size_t pg_offset = 0;
3378 	loff_t i_size = i_size_read(inode);
3379 	unsigned long end_index = i_size >> PAGE_CACHE_SHIFT;
3380 	int write_flags;
3381 	unsigned long nr_written = 0;
3382 
3383 	if (wbc->sync_mode == WB_SYNC_ALL)
3384 		write_flags = WRITE_SYNC;
3385 	else
3386 		write_flags = WRITE;
3387 
3388 	trace___extent_writepage(page, inode, wbc);
3389 
3390 	WARN_ON(!PageLocked(page));
3391 
3392 	ClearPageError(page);
3393 
3394 	pg_offset = i_size & (PAGE_CACHE_SIZE - 1);
3395 	if (page->index > end_index ||
3396 	   (page->index == end_index && !pg_offset)) {
3397 		page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE);
3398 		unlock_page(page);
3399 		return 0;
3400 	}
3401 
3402 	if (page->index == end_index) {
3403 		char *userpage;
3404 
3405 		userpage = kmap_atomic(page);
3406 		memset(userpage + pg_offset, 0,
3407 		       PAGE_CACHE_SIZE - pg_offset);
3408 		kunmap_atomic(userpage);
3409 		flush_dcache_page(page);
3410 	}
3411 
3412 	pg_offset = 0;
3413 
3414 	set_page_extent_mapped(page);
3415 
3416 	ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written);
3417 	if (ret == 1)
3418 		goto done_unlocked;
3419 	if (ret)
3420 		goto done;
3421 
3422 	ret = __extent_writepage_io(inode, page, wbc, epd,
3423 				    i_size, nr_written, write_flags, &nr);
3424 	if (ret == 1)
3425 		goto done_unlocked;
3426 
3427 done:
3428 	if (nr == 0) {
3429 		/* make sure the mapping tag for page dirty gets cleared */
3430 		set_page_writeback(page);
3431 		end_page_writeback(page);
3432 	}
3433 	if (PageError(page)) {
3434 		ret = ret < 0 ? ret : -EIO;
3435 		end_extent_writepage(page, ret, start, page_end);
3436 	}
3437 	unlock_page(page);
3438 	return ret;
3439 
3440 done_unlocked:
3441 	return 0;
3442 }
3443 
3444 void wait_on_extent_buffer_writeback(struct extent_buffer *eb)
3445 {
3446 	wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK,
3447 		       TASK_UNINTERRUPTIBLE);
3448 }
3449 
3450 static noinline_for_stack int
3451 lock_extent_buffer_for_io(struct extent_buffer *eb,
3452 			  struct btrfs_fs_info *fs_info,
3453 			  struct extent_page_data *epd)
3454 {
3455 	unsigned long i, num_pages;
3456 	int flush = 0;
3457 	int ret = 0;
3458 
3459 	if (!btrfs_try_tree_write_lock(eb)) {
3460 		flush = 1;
3461 		flush_write_bio(epd);
3462 		btrfs_tree_lock(eb);
3463 	}
3464 
3465 	if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) {
3466 		btrfs_tree_unlock(eb);
3467 		if (!epd->sync_io)
3468 			return 0;
3469 		if (!flush) {
3470 			flush_write_bio(epd);
3471 			flush = 1;
3472 		}
3473 		while (1) {
3474 			wait_on_extent_buffer_writeback(eb);
3475 			btrfs_tree_lock(eb);
3476 			if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags))
3477 				break;
3478 			btrfs_tree_unlock(eb);
3479 		}
3480 	}
3481 
3482 	/*
3483 	 * We need to do this to prevent races in people who check if the eb is
3484 	 * under IO since we can end up having no IO bits set for a short period
3485 	 * of time.
3486 	 */
3487 	spin_lock(&eb->refs_lock);
3488 	if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) {
3489 		set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3490 		spin_unlock(&eb->refs_lock);
3491 		btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN);
3492 		__percpu_counter_add(&fs_info->dirty_metadata_bytes,
3493 				     -eb->len,
3494 				     fs_info->dirty_metadata_batch);
3495 		ret = 1;
3496 	} else {
3497 		spin_unlock(&eb->refs_lock);
3498 	}
3499 
3500 	btrfs_tree_unlock(eb);
3501 
3502 	if (!ret)
3503 		return ret;
3504 
3505 	num_pages = num_extent_pages(eb->start, eb->len);
3506 	for (i = 0; i < num_pages; i++) {
3507 		struct page *p = extent_buffer_page(eb, i);
3508 
3509 		if (!trylock_page(p)) {
3510 			if (!flush) {
3511 				flush_write_bio(epd);
3512 				flush = 1;
3513 			}
3514 			lock_page(p);
3515 		}
3516 	}
3517 
3518 	return ret;
3519 }
3520 
3521 static void end_extent_buffer_writeback(struct extent_buffer *eb)
3522 {
3523 	clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags);
3524 	smp_mb__after_atomic();
3525 	wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK);
3526 }
3527 
3528 static void end_bio_extent_buffer_writepage(struct bio *bio, int err)
3529 {
3530 	struct bio_vec *bvec;
3531 	struct extent_buffer *eb;
3532 	int i, done;
3533 
3534 	bio_for_each_segment_all(bvec, bio, i) {
3535 		struct page *page = bvec->bv_page;
3536 
3537 		eb = (struct extent_buffer *)page->private;
3538 		BUG_ON(!eb);
3539 		done = atomic_dec_and_test(&eb->io_pages);
3540 
3541 		if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) {
3542 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3543 			ClearPageUptodate(page);
3544 			SetPageError(page);
3545 		}
3546 
3547 		end_page_writeback(page);
3548 
3549 		if (!done)
3550 			continue;
3551 
3552 		end_extent_buffer_writeback(eb);
3553 	}
3554 
3555 	bio_put(bio);
3556 }
3557 
3558 static noinline_for_stack int write_one_eb(struct extent_buffer *eb,
3559 			struct btrfs_fs_info *fs_info,
3560 			struct writeback_control *wbc,
3561 			struct extent_page_data *epd)
3562 {
3563 	struct block_device *bdev = fs_info->fs_devices->latest_bdev;
3564 	struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree;
3565 	u64 offset = eb->start;
3566 	unsigned long i, num_pages;
3567 	unsigned long bio_flags = 0;
3568 	int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META;
3569 	int ret = 0;
3570 
3571 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3572 	num_pages = num_extent_pages(eb->start, eb->len);
3573 	atomic_set(&eb->io_pages, num_pages);
3574 	if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID)
3575 		bio_flags = EXTENT_BIO_TREE_LOG;
3576 
3577 	for (i = 0; i < num_pages; i++) {
3578 		struct page *p = extent_buffer_page(eb, i);
3579 
3580 		clear_page_dirty_for_io(p);
3581 		set_page_writeback(p);
3582 		ret = submit_extent_page(rw, tree, p, offset >> 9,
3583 					 PAGE_CACHE_SIZE, 0, bdev, &epd->bio,
3584 					 -1, end_bio_extent_buffer_writepage,
3585 					 0, epd->bio_flags, bio_flags);
3586 		epd->bio_flags = bio_flags;
3587 		if (ret) {
3588 			set_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
3589 			SetPageError(p);
3590 			if (atomic_sub_and_test(num_pages - i, &eb->io_pages))
3591 				end_extent_buffer_writeback(eb);
3592 			ret = -EIO;
3593 			break;
3594 		}
3595 		offset += PAGE_CACHE_SIZE;
3596 		update_nr_written(p, wbc, 1);
3597 		unlock_page(p);
3598 	}
3599 
3600 	if (unlikely(ret)) {
3601 		for (; i < num_pages; i++) {
3602 			struct page *p = extent_buffer_page(eb, i);
3603 			unlock_page(p);
3604 		}
3605 	}
3606 
3607 	return ret;
3608 }
3609 
3610 int btree_write_cache_pages(struct address_space *mapping,
3611 				   struct writeback_control *wbc)
3612 {
3613 	struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree;
3614 	struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info;
3615 	struct extent_buffer *eb, *prev_eb = NULL;
3616 	struct extent_page_data epd = {
3617 		.bio = NULL,
3618 		.tree = tree,
3619 		.extent_locked = 0,
3620 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3621 		.bio_flags = 0,
3622 	};
3623 	int ret = 0;
3624 	int done = 0;
3625 	int nr_to_write_done = 0;
3626 	struct pagevec pvec;
3627 	int nr_pages;
3628 	pgoff_t index;
3629 	pgoff_t end;		/* Inclusive */
3630 	int scanned = 0;
3631 	int tag;
3632 
3633 	pagevec_init(&pvec, 0);
3634 	if (wbc->range_cyclic) {
3635 		index = mapping->writeback_index; /* Start from prev offset */
3636 		end = -1;
3637 	} else {
3638 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3639 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3640 		scanned = 1;
3641 	}
3642 	if (wbc->sync_mode == WB_SYNC_ALL)
3643 		tag = PAGECACHE_TAG_TOWRITE;
3644 	else
3645 		tag = PAGECACHE_TAG_DIRTY;
3646 retry:
3647 	if (wbc->sync_mode == WB_SYNC_ALL)
3648 		tag_pages_for_writeback(mapping, index, end);
3649 	while (!done && !nr_to_write_done && (index <= end) &&
3650 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3651 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3652 		unsigned i;
3653 
3654 		scanned = 1;
3655 		for (i = 0; i < nr_pages; i++) {
3656 			struct page *page = pvec.pages[i];
3657 
3658 			if (!PagePrivate(page))
3659 				continue;
3660 
3661 			if (!wbc->range_cyclic && page->index > end) {
3662 				done = 1;
3663 				break;
3664 			}
3665 
3666 			spin_lock(&mapping->private_lock);
3667 			if (!PagePrivate(page)) {
3668 				spin_unlock(&mapping->private_lock);
3669 				continue;
3670 			}
3671 
3672 			eb = (struct extent_buffer *)page->private;
3673 
3674 			/*
3675 			 * Shouldn't happen and normally this would be a BUG_ON
3676 			 * but no sense in crashing the users box for something
3677 			 * we can survive anyway.
3678 			 */
3679 			if (WARN_ON(!eb)) {
3680 				spin_unlock(&mapping->private_lock);
3681 				continue;
3682 			}
3683 
3684 			if (eb == prev_eb) {
3685 				spin_unlock(&mapping->private_lock);
3686 				continue;
3687 			}
3688 
3689 			ret = atomic_inc_not_zero(&eb->refs);
3690 			spin_unlock(&mapping->private_lock);
3691 			if (!ret)
3692 				continue;
3693 
3694 			prev_eb = eb;
3695 			ret = lock_extent_buffer_for_io(eb, fs_info, &epd);
3696 			if (!ret) {
3697 				free_extent_buffer(eb);
3698 				continue;
3699 			}
3700 
3701 			ret = write_one_eb(eb, fs_info, wbc, &epd);
3702 			if (ret) {
3703 				done = 1;
3704 				free_extent_buffer(eb);
3705 				break;
3706 			}
3707 			free_extent_buffer(eb);
3708 
3709 			/*
3710 			 * the filesystem may choose to bump up nr_to_write.
3711 			 * We have to make sure to honor the new nr_to_write
3712 			 * at any time
3713 			 */
3714 			nr_to_write_done = wbc->nr_to_write <= 0;
3715 		}
3716 		pagevec_release(&pvec);
3717 		cond_resched();
3718 	}
3719 	if (!scanned && !done) {
3720 		/*
3721 		 * We hit the last page and there is more work to be done: wrap
3722 		 * back to the start of the file
3723 		 */
3724 		scanned = 1;
3725 		index = 0;
3726 		goto retry;
3727 	}
3728 	flush_write_bio(&epd);
3729 	return ret;
3730 }
3731 
3732 /**
3733  * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
3734  * @mapping: address space structure to write
3735  * @wbc: subtract the number of written pages from *@wbc->nr_to_write
3736  * @writepage: function called for each page
3737  * @data: data passed to writepage function
3738  *
3739  * If a page is already under I/O, write_cache_pages() skips it, even
3740  * if it's dirty.  This is desirable behaviour for memory-cleaning writeback,
3741  * but it is INCORRECT for data-integrity system calls such as fsync().  fsync()
3742  * and msync() need to guarantee that all the data which was dirty at the time
3743  * the call was made get new I/O started against them.  If wbc->sync_mode is
3744  * WB_SYNC_ALL then we were called for data integrity and we must wait for
3745  * existing IO to complete.
3746  */
3747 static int extent_write_cache_pages(struct extent_io_tree *tree,
3748 			     struct address_space *mapping,
3749 			     struct writeback_control *wbc,
3750 			     writepage_t writepage, void *data,
3751 			     void (*flush_fn)(void *))
3752 {
3753 	struct inode *inode = mapping->host;
3754 	int ret = 0;
3755 	int done = 0;
3756 	int err = 0;
3757 	int nr_to_write_done = 0;
3758 	struct pagevec pvec;
3759 	int nr_pages;
3760 	pgoff_t index;
3761 	pgoff_t end;		/* Inclusive */
3762 	int scanned = 0;
3763 	int tag;
3764 
3765 	/*
3766 	 * We have to hold onto the inode so that ordered extents can do their
3767 	 * work when the IO finishes.  The alternative to this is failing to add
3768 	 * an ordered extent if the igrab() fails there and that is a huge pain
3769 	 * to deal with, so instead just hold onto the inode throughout the
3770 	 * writepages operation.  If it fails here we are freeing up the inode
3771 	 * anyway and we'd rather not waste our time writing out stuff that is
3772 	 * going to be truncated anyway.
3773 	 */
3774 	if (!igrab(inode))
3775 		return 0;
3776 
3777 	pagevec_init(&pvec, 0);
3778 	if (wbc->range_cyclic) {
3779 		index = mapping->writeback_index; /* Start from prev offset */
3780 		end = -1;
3781 	} else {
3782 		index = wbc->range_start >> PAGE_CACHE_SHIFT;
3783 		end = wbc->range_end >> PAGE_CACHE_SHIFT;
3784 		scanned = 1;
3785 	}
3786 	if (wbc->sync_mode == WB_SYNC_ALL)
3787 		tag = PAGECACHE_TAG_TOWRITE;
3788 	else
3789 		tag = PAGECACHE_TAG_DIRTY;
3790 retry:
3791 	if (wbc->sync_mode == WB_SYNC_ALL)
3792 		tag_pages_for_writeback(mapping, index, end);
3793 	while (!done && !nr_to_write_done && (index <= end) &&
3794 	       (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
3795 			min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) {
3796 		unsigned i;
3797 
3798 		scanned = 1;
3799 		for (i = 0; i < nr_pages; i++) {
3800 			struct page *page = pvec.pages[i];
3801 
3802 			/*
3803 			 * At this point we hold neither mapping->tree_lock nor
3804 			 * lock on the page itself: the page may be truncated or
3805 			 * invalidated (changing page->mapping to NULL), or even
3806 			 * swizzled back from swapper_space to tmpfs file
3807 			 * mapping
3808 			 */
3809 			if (!trylock_page(page)) {
3810 				flush_fn(data);
3811 				lock_page(page);
3812 			}
3813 
3814 			if (unlikely(page->mapping != mapping)) {
3815 				unlock_page(page);
3816 				continue;
3817 			}
3818 
3819 			if (!wbc->range_cyclic && page->index > end) {
3820 				done = 1;
3821 				unlock_page(page);
3822 				continue;
3823 			}
3824 
3825 			if (wbc->sync_mode != WB_SYNC_NONE) {
3826 				if (PageWriteback(page))
3827 					flush_fn(data);
3828 				wait_on_page_writeback(page);
3829 			}
3830 
3831 			if (PageWriteback(page) ||
3832 			    !clear_page_dirty_for_io(page)) {
3833 				unlock_page(page);
3834 				continue;
3835 			}
3836 
3837 			ret = (*writepage)(page, wbc, data);
3838 
3839 			if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) {
3840 				unlock_page(page);
3841 				ret = 0;
3842 			}
3843 			if (!err && ret < 0)
3844 				err = ret;
3845 
3846 			/*
3847 			 * the filesystem may choose to bump up nr_to_write.
3848 			 * We have to make sure to honor the new nr_to_write
3849 			 * at any time
3850 			 */
3851 			nr_to_write_done = wbc->nr_to_write <= 0;
3852 		}
3853 		pagevec_release(&pvec);
3854 		cond_resched();
3855 	}
3856 	if (!scanned && !done && !err) {
3857 		/*
3858 		 * We hit the last page and there is more work to be done: wrap
3859 		 * back to the start of the file
3860 		 */
3861 		scanned = 1;
3862 		index = 0;
3863 		goto retry;
3864 	}
3865 	btrfs_add_delayed_iput(inode);
3866 	return err;
3867 }
3868 
3869 static void flush_epd_write_bio(struct extent_page_data *epd)
3870 {
3871 	if (epd->bio) {
3872 		int rw = WRITE;
3873 		int ret;
3874 
3875 		if (epd->sync_io)
3876 			rw = WRITE_SYNC;
3877 
3878 		ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags);
3879 		BUG_ON(ret < 0); /* -ENOMEM */
3880 		epd->bio = NULL;
3881 	}
3882 }
3883 
3884 static noinline void flush_write_bio(void *data)
3885 {
3886 	struct extent_page_data *epd = data;
3887 	flush_epd_write_bio(epd);
3888 }
3889 
3890 int extent_write_full_page(struct extent_io_tree *tree, struct page *page,
3891 			  get_extent_t *get_extent,
3892 			  struct writeback_control *wbc)
3893 {
3894 	int ret;
3895 	struct extent_page_data epd = {
3896 		.bio = NULL,
3897 		.tree = tree,
3898 		.get_extent = get_extent,
3899 		.extent_locked = 0,
3900 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3901 		.bio_flags = 0,
3902 	};
3903 
3904 	ret = __extent_writepage(page, wbc, &epd);
3905 
3906 	flush_epd_write_bio(&epd);
3907 	return ret;
3908 }
3909 
3910 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode,
3911 			      u64 start, u64 end, get_extent_t *get_extent,
3912 			      int mode)
3913 {
3914 	int ret = 0;
3915 	struct address_space *mapping = inode->i_mapping;
3916 	struct page *page;
3917 	unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >>
3918 		PAGE_CACHE_SHIFT;
3919 
3920 	struct extent_page_data epd = {
3921 		.bio = NULL,
3922 		.tree = tree,
3923 		.get_extent = get_extent,
3924 		.extent_locked = 1,
3925 		.sync_io = mode == WB_SYNC_ALL,
3926 		.bio_flags = 0,
3927 	};
3928 	struct writeback_control wbc_writepages = {
3929 		.sync_mode	= mode,
3930 		.nr_to_write	= nr_pages * 2,
3931 		.range_start	= start,
3932 		.range_end	= end + 1,
3933 	};
3934 
3935 	while (start <= end) {
3936 		page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT);
3937 		if (clear_page_dirty_for_io(page))
3938 			ret = __extent_writepage(page, &wbc_writepages, &epd);
3939 		else {
3940 			if (tree->ops && tree->ops->writepage_end_io_hook)
3941 				tree->ops->writepage_end_io_hook(page, start,
3942 						 start + PAGE_CACHE_SIZE - 1,
3943 						 NULL, 1);
3944 			unlock_page(page);
3945 		}
3946 		page_cache_release(page);
3947 		start += PAGE_CACHE_SIZE;
3948 	}
3949 
3950 	flush_epd_write_bio(&epd);
3951 	return ret;
3952 }
3953 
3954 int extent_writepages(struct extent_io_tree *tree,
3955 		      struct address_space *mapping,
3956 		      get_extent_t *get_extent,
3957 		      struct writeback_control *wbc)
3958 {
3959 	int ret = 0;
3960 	struct extent_page_data epd = {
3961 		.bio = NULL,
3962 		.tree = tree,
3963 		.get_extent = get_extent,
3964 		.extent_locked = 0,
3965 		.sync_io = wbc->sync_mode == WB_SYNC_ALL,
3966 		.bio_flags = 0,
3967 	};
3968 
3969 	ret = extent_write_cache_pages(tree, mapping, wbc,
3970 				       __extent_writepage, &epd,
3971 				       flush_write_bio);
3972 	flush_epd_write_bio(&epd);
3973 	return ret;
3974 }
3975 
3976 int extent_readpages(struct extent_io_tree *tree,
3977 		     struct address_space *mapping,
3978 		     struct list_head *pages, unsigned nr_pages,
3979 		     get_extent_t get_extent)
3980 {
3981 	struct bio *bio = NULL;
3982 	unsigned page_idx;
3983 	unsigned long bio_flags = 0;
3984 	struct page *pagepool[16];
3985 	struct page *page;
3986 	struct extent_map *em_cached = NULL;
3987 	int nr = 0;
3988 
3989 	for (page_idx = 0; page_idx < nr_pages; page_idx++) {
3990 		page = list_entry(pages->prev, struct page, lru);
3991 
3992 		prefetchw(&page->flags);
3993 		list_del(&page->lru);
3994 		if (add_to_page_cache_lru(page, mapping,
3995 					page->index, GFP_NOFS)) {
3996 			page_cache_release(page);
3997 			continue;
3998 		}
3999 
4000 		pagepool[nr++] = page;
4001 		if (nr < ARRAY_SIZE(pagepool))
4002 			continue;
4003 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4004 				   &bio, 0, &bio_flags, READ);
4005 		nr = 0;
4006 	}
4007 	if (nr)
4008 		__extent_readpages(tree, pagepool, nr, get_extent, &em_cached,
4009 				   &bio, 0, &bio_flags, READ);
4010 
4011 	if (em_cached)
4012 		free_extent_map(em_cached);
4013 
4014 	BUG_ON(!list_empty(pages));
4015 	if (bio)
4016 		return submit_one_bio(READ, bio, 0, bio_flags);
4017 	return 0;
4018 }
4019 
4020 /*
4021  * basic invalidatepage code, this waits on any locked or writeback
4022  * ranges corresponding to the page, and then deletes any extent state
4023  * records from the tree
4024  */
4025 int extent_invalidatepage(struct extent_io_tree *tree,
4026 			  struct page *page, unsigned long offset)
4027 {
4028 	struct extent_state *cached_state = NULL;
4029 	u64 start = page_offset(page);
4030 	u64 end = start + PAGE_CACHE_SIZE - 1;
4031 	size_t blocksize = page->mapping->host->i_sb->s_blocksize;
4032 
4033 	start += ALIGN(offset, blocksize);
4034 	if (start > end)
4035 		return 0;
4036 
4037 	lock_extent_bits(tree, start, end, 0, &cached_state);
4038 	wait_on_page_writeback(page);
4039 	clear_extent_bit(tree, start, end,
4040 			 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC |
4041 			 EXTENT_DO_ACCOUNTING,
4042 			 1, 1, &cached_state, GFP_NOFS);
4043 	return 0;
4044 }
4045 
4046 /*
4047  * a helper for releasepage, this tests for areas of the page that
4048  * are locked or under IO and drops the related state bits if it is safe
4049  * to drop the page.
4050  */
4051 static int try_release_extent_state(struct extent_map_tree *map,
4052 				    struct extent_io_tree *tree,
4053 				    struct page *page, gfp_t mask)
4054 {
4055 	u64 start = page_offset(page);
4056 	u64 end = start + PAGE_CACHE_SIZE - 1;
4057 	int ret = 1;
4058 
4059 	if (test_range_bit(tree, start, end,
4060 			   EXTENT_IOBITS, 0, NULL))
4061 		ret = 0;
4062 	else {
4063 		if ((mask & GFP_NOFS) == GFP_NOFS)
4064 			mask = GFP_NOFS;
4065 		/*
4066 		 * at this point we can safely clear everything except the
4067 		 * locked bit and the nodatasum bit
4068 		 */
4069 		ret = clear_extent_bit(tree, start, end,
4070 				 ~(EXTENT_LOCKED | EXTENT_NODATASUM),
4071 				 0, 0, NULL, mask);
4072 
4073 		/* if clear_extent_bit failed for enomem reasons,
4074 		 * we can't allow the release to continue.
4075 		 */
4076 		if (ret < 0)
4077 			ret = 0;
4078 		else
4079 			ret = 1;
4080 	}
4081 	return ret;
4082 }
4083 
4084 /*
4085  * a helper for releasepage.  As long as there are no locked extents
4086  * in the range corresponding to the page, both state records and extent
4087  * map records are removed
4088  */
4089 int try_release_extent_mapping(struct extent_map_tree *map,
4090 			       struct extent_io_tree *tree, struct page *page,
4091 			       gfp_t mask)
4092 {
4093 	struct extent_map *em;
4094 	u64 start = page_offset(page);
4095 	u64 end = start + PAGE_CACHE_SIZE - 1;
4096 
4097 	if ((mask & __GFP_WAIT) &&
4098 	    page->mapping->host->i_size > 16 * 1024 * 1024) {
4099 		u64 len;
4100 		while (start <= end) {
4101 			len = end - start + 1;
4102 			write_lock(&map->lock);
4103 			em = lookup_extent_mapping(map, start, len);
4104 			if (!em) {
4105 				write_unlock(&map->lock);
4106 				break;
4107 			}
4108 			if (test_bit(EXTENT_FLAG_PINNED, &em->flags) ||
4109 			    em->start != start) {
4110 				write_unlock(&map->lock);
4111 				free_extent_map(em);
4112 				break;
4113 			}
4114 			if (!test_range_bit(tree, em->start,
4115 					    extent_map_end(em) - 1,
4116 					    EXTENT_LOCKED | EXTENT_WRITEBACK,
4117 					    0, NULL)) {
4118 				remove_extent_mapping(map, em);
4119 				/* once for the rb tree */
4120 				free_extent_map(em);
4121 			}
4122 			start = extent_map_end(em);
4123 			write_unlock(&map->lock);
4124 
4125 			/* once for us */
4126 			free_extent_map(em);
4127 		}
4128 	}
4129 	return try_release_extent_state(map, tree, page, mask);
4130 }
4131 
4132 /*
4133  * helper function for fiemap, which doesn't want to see any holes.
4134  * This maps until we find something past 'last'
4135  */
4136 static struct extent_map *get_extent_skip_holes(struct inode *inode,
4137 						u64 offset,
4138 						u64 last,
4139 						get_extent_t *get_extent)
4140 {
4141 	u64 sectorsize = BTRFS_I(inode)->root->sectorsize;
4142 	struct extent_map *em;
4143 	u64 len;
4144 
4145 	if (offset >= last)
4146 		return NULL;
4147 
4148 	while (1) {
4149 		len = last - offset;
4150 		if (len == 0)
4151 			break;
4152 		len = ALIGN(len, sectorsize);
4153 		em = get_extent(inode, NULL, 0, offset, len, 0);
4154 		if (IS_ERR_OR_NULL(em))
4155 			return em;
4156 
4157 		/* if this isn't a hole return it */
4158 		if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) &&
4159 		    em->block_start != EXTENT_MAP_HOLE) {
4160 			return em;
4161 		}
4162 
4163 		/* this is a hole, advance to the next extent */
4164 		offset = extent_map_end(em);
4165 		free_extent_map(em);
4166 		if (offset >= last)
4167 			break;
4168 	}
4169 	return NULL;
4170 }
4171 
4172 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx)
4173 {
4174 	unsigned long cnt = *((unsigned long *)ctx);
4175 
4176 	cnt++;
4177 	*((unsigned long *)ctx) = cnt;
4178 
4179 	/* Now we're sure that the extent is shared. */
4180 	if (cnt > 1)
4181 		return 1;
4182 	return 0;
4183 }
4184 
4185 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo,
4186 		__u64 start, __u64 len, get_extent_t *get_extent)
4187 {
4188 	int ret = 0;
4189 	u64 off = start;
4190 	u64 max = start + len;
4191 	u32 flags = 0;
4192 	u32 found_type;
4193 	u64 last;
4194 	u64 last_for_get_extent = 0;
4195 	u64 disko = 0;
4196 	u64 isize = i_size_read(inode);
4197 	struct btrfs_key found_key;
4198 	struct extent_map *em = NULL;
4199 	struct extent_state *cached_state = NULL;
4200 	struct btrfs_path *path;
4201 	int end = 0;
4202 	u64 em_start = 0;
4203 	u64 em_len = 0;
4204 	u64 em_end = 0;
4205 
4206 	if (len == 0)
4207 		return -EINVAL;
4208 
4209 	path = btrfs_alloc_path();
4210 	if (!path)
4211 		return -ENOMEM;
4212 	path->leave_spinning = 1;
4213 
4214 	start = round_down(start, BTRFS_I(inode)->root->sectorsize);
4215 	len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start;
4216 
4217 	/*
4218 	 * lookup the last file extent.  We're not using i_size here
4219 	 * because there might be preallocation past i_size
4220 	 */
4221 	ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root,
4222 				       path, btrfs_ino(inode), -1, 0);
4223 	if (ret < 0) {
4224 		btrfs_free_path(path);
4225 		return ret;
4226 	}
4227 	WARN_ON(!ret);
4228 	path->slots[0]--;
4229 	btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]);
4230 	found_type = found_key.type;
4231 
4232 	/* No extents, but there might be delalloc bits */
4233 	if (found_key.objectid != btrfs_ino(inode) ||
4234 	    found_type != BTRFS_EXTENT_DATA_KEY) {
4235 		/* have to trust i_size as the end */
4236 		last = (u64)-1;
4237 		last_for_get_extent = isize;
4238 	} else {
4239 		/*
4240 		 * remember the start of the last extent.  There are a
4241 		 * bunch of different factors that go into the length of the
4242 		 * extent, so its much less complex to remember where it started
4243 		 */
4244 		last = found_key.offset;
4245 		last_for_get_extent = last + 1;
4246 	}
4247 	btrfs_release_path(path);
4248 
4249 	/*
4250 	 * we might have some extents allocated but more delalloc past those
4251 	 * extents.  so, we trust isize unless the start of the last extent is
4252 	 * beyond isize
4253 	 */
4254 	if (last < isize) {
4255 		last = (u64)-1;
4256 		last_for_get_extent = isize;
4257 	}
4258 
4259 	lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0,
4260 			 &cached_state);
4261 
4262 	em = get_extent_skip_holes(inode, start, last_for_get_extent,
4263 				   get_extent);
4264 	if (!em)
4265 		goto out;
4266 	if (IS_ERR(em)) {
4267 		ret = PTR_ERR(em);
4268 		goto out;
4269 	}
4270 
4271 	while (!end) {
4272 		u64 offset_in_extent = 0;
4273 
4274 		/* break if the extent we found is outside the range */
4275 		if (em->start >= max || extent_map_end(em) < off)
4276 			break;
4277 
4278 		/*
4279 		 * get_extent may return an extent that starts before our
4280 		 * requested range.  We have to make sure the ranges
4281 		 * we return to fiemap always move forward and don't
4282 		 * overlap, so adjust the offsets here
4283 		 */
4284 		em_start = max(em->start, off);
4285 
4286 		/*
4287 		 * record the offset from the start of the extent
4288 		 * for adjusting the disk offset below.  Only do this if the
4289 		 * extent isn't compressed since our in ram offset may be past
4290 		 * what we have actually allocated on disk.
4291 		 */
4292 		if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4293 			offset_in_extent = em_start - em->start;
4294 		em_end = extent_map_end(em);
4295 		em_len = em_end - em_start;
4296 		disko = 0;
4297 		flags = 0;
4298 
4299 		/*
4300 		 * bump off for our next call to get_extent
4301 		 */
4302 		off = extent_map_end(em);
4303 		if (off >= max)
4304 			end = 1;
4305 
4306 		if (em->block_start == EXTENT_MAP_LAST_BYTE) {
4307 			end = 1;
4308 			flags |= FIEMAP_EXTENT_LAST;
4309 		} else if (em->block_start == EXTENT_MAP_INLINE) {
4310 			flags |= (FIEMAP_EXTENT_DATA_INLINE |
4311 				  FIEMAP_EXTENT_NOT_ALIGNED);
4312 		} else if (em->block_start == EXTENT_MAP_DELALLOC) {
4313 			flags |= (FIEMAP_EXTENT_DELALLOC |
4314 				  FIEMAP_EXTENT_UNKNOWN);
4315 		} else {
4316 			unsigned long ref_cnt = 0;
4317 
4318 			disko = em->block_start + offset_in_extent;
4319 
4320 			/*
4321 			 * As btrfs supports shared space, this information
4322 			 * can be exported to userspace tools via
4323 			 * flag FIEMAP_EXTENT_SHARED.
4324 			 */
4325 			ret = iterate_inodes_from_logical(
4326 					em->block_start,
4327 					BTRFS_I(inode)->root->fs_info,
4328 					path, count_ext_ref, &ref_cnt);
4329 			if (ret < 0 && ret != -ENOENT)
4330 				goto out_free;
4331 
4332 			if (ref_cnt > 1)
4333 				flags |= FIEMAP_EXTENT_SHARED;
4334 		}
4335 		if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags))
4336 			flags |= FIEMAP_EXTENT_ENCODED;
4337 
4338 		free_extent_map(em);
4339 		em = NULL;
4340 		if ((em_start >= last) || em_len == (u64)-1 ||
4341 		   (last == (u64)-1 && isize <= em_end)) {
4342 			flags |= FIEMAP_EXTENT_LAST;
4343 			end = 1;
4344 		}
4345 
4346 		/* now scan forward to see if this is really the last extent. */
4347 		em = get_extent_skip_holes(inode, off, last_for_get_extent,
4348 					   get_extent);
4349 		if (IS_ERR(em)) {
4350 			ret = PTR_ERR(em);
4351 			goto out;
4352 		}
4353 		if (!em) {
4354 			flags |= FIEMAP_EXTENT_LAST;
4355 			end = 1;
4356 		}
4357 		ret = fiemap_fill_next_extent(fieinfo, em_start, disko,
4358 					      em_len, flags);
4359 		if (ret)
4360 			goto out_free;
4361 	}
4362 out_free:
4363 	free_extent_map(em);
4364 out:
4365 	btrfs_free_path(path);
4366 	unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1,
4367 			     &cached_state, GFP_NOFS);
4368 	return ret;
4369 }
4370 
4371 static void __free_extent_buffer(struct extent_buffer *eb)
4372 {
4373 	btrfs_leak_debug_del(&eb->leak_list);
4374 	kmem_cache_free(extent_buffer_cache, eb);
4375 }
4376 
4377 int extent_buffer_under_io(struct extent_buffer *eb)
4378 {
4379 	return (atomic_read(&eb->io_pages) ||
4380 		test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) ||
4381 		test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4382 }
4383 
4384 /*
4385  * Helper for releasing extent buffer page.
4386  */
4387 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb,
4388 						unsigned long start_idx)
4389 {
4390 	unsigned long index;
4391 	unsigned long num_pages;
4392 	struct page *page;
4393 	int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4394 
4395 	BUG_ON(extent_buffer_under_io(eb));
4396 
4397 	num_pages = num_extent_pages(eb->start, eb->len);
4398 	index = start_idx + num_pages;
4399 	if (start_idx >= index)
4400 		return;
4401 
4402 	do {
4403 		index--;
4404 		page = extent_buffer_page(eb, index);
4405 		if (page && mapped) {
4406 			spin_lock(&page->mapping->private_lock);
4407 			/*
4408 			 * We do this since we'll remove the pages after we've
4409 			 * removed the eb from the radix tree, so we could race
4410 			 * and have this page now attached to the new eb.  So
4411 			 * only clear page_private if it's still connected to
4412 			 * this eb.
4413 			 */
4414 			if (PagePrivate(page) &&
4415 			    page->private == (unsigned long)eb) {
4416 				BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags));
4417 				BUG_ON(PageDirty(page));
4418 				BUG_ON(PageWriteback(page));
4419 				/*
4420 				 * We need to make sure we haven't be attached
4421 				 * to a new eb.
4422 				 */
4423 				ClearPagePrivate(page);
4424 				set_page_private(page, 0);
4425 				/* One for the page private */
4426 				page_cache_release(page);
4427 			}
4428 			spin_unlock(&page->mapping->private_lock);
4429 
4430 		}
4431 		if (page) {
4432 			/* One for when we alloced the page */
4433 			page_cache_release(page);
4434 		}
4435 	} while (index != start_idx);
4436 }
4437 
4438 /*
4439  * Helper for releasing the extent buffer.
4440  */
4441 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb)
4442 {
4443 	btrfs_release_extent_buffer_page(eb, 0);
4444 	__free_extent_buffer(eb);
4445 }
4446 
4447 static struct extent_buffer *
4448 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start,
4449 		      unsigned long len, gfp_t mask)
4450 {
4451 	struct extent_buffer *eb = NULL;
4452 
4453 	eb = kmem_cache_zalloc(extent_buffer_cache, mask);
4454 	if (eb == NULL)
4455 		return NULL;
4456 	eb->start = start;
4457 	eb->len = len;
4458 	eb->fs_info = fs_info;
4459 	eb->bflags = 0;
4460 	rwlock_init(&eb->lock);
4461 	atomic_set(&eb->write_locks, 0);
4462 	atomic_set(&eb->read_locks, 0);
4463 	atomic_set(&eb->blocking_readers, 0);
4464 	atomic_set(&eb->blocking_writers, 0);
4465 	atomic_set(&eb->spinning_readers, 0);
4466 	atomic_set(&eb->spinning_writers, 0);
4467 	eb->lock_nested = 0;
4468 	init_waitqueue_head(&eb->write_lock_wq);
4469 	init_waitqueue_head(&eb->read_lock_wq);
4470 
4471 	btrfs_leak_debug_add(&eb->leak_list, &buffers);
4472 
4473 	spin_lock_init(&eb->refs_lock);
4474 	atomic_set(&eb->refs, 1);
4475 	atomic_set(&eb->io_pages, 0);
4476 
4477 	/*
4478 	 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages
4479 	 */
4480 	BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE
4481 		> MAX_INLINE_EXTENT_BUFFER_SIZE);
4482 	BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE);
4483 
4484 	return eb;
4485 }
4486 
4487 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src)
4488 {
4489 	unsigned long i;
4490 	struct page *p;
4491 	struct extent_buffer *new;
4492 	unsigned long num_pages = num_extent_pages(src->start, src->len);
4493 
4494 	new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS);
4495 	if (new == NULL)
4496 		return NULL;
4497 
4498 	for (i = 0; i < num_pages; i++) {
4499 		p = alloc_page(GFP_NOFS);
4500 		if (!p) {
4501 			btrfs_release_extent_buffer(new);
4502 			return NULL;
4503 		}
4504 		attach_extent_buffer_page(new, p);
4505 		WARN_ON(PageDirty(p));
4506 		SetPageUptodate(p);
4507 		new->pages[i] = p;
4508 	}
4509 
4510 	copy_extent_buffer(new, src, 0, 0, src->len);
4511 	set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags);
4512 	set_bit(EXTENT_BUFFER_DUMMY, &new->bflags);
4513 
4514 	return new;
4515 }
4516 
4517 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len)
4518 {
4519 	struct extent_buffer *eb;
4520 	unsigned long num_pages = num_extent_pages(0, len);
4521 	unsigned long i;
4522 
4523 	eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS);
4524 	if (!eb)
4525 		return NULL;
4526 
4527 	for (i = 0; i < num_pages; i++) {
4528 		eb->pages[i] = alloc_page(GFP_NOFS);
4529 		if (!eb->pages[i])
4530 			goto err;
4531 	}
4532 	set_extent_buffer_uptodate(eb);
4533 	btrfs_set_header_nritems(eb, 0);
4534 	set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags);
4535 
4536 	return eb;
4537 err:
4538 	for (; i > 0; i--)
4539 		__free_page(eb->pages[i - 1]);
4540 	__free_extent_buffer(eb);
4541 	return NULL;
4542 }
4543 
4544 static void check_buffer_tree_ref(struct extent_buffer *eb)
4545 {
4546 	int refs;
4547 	/* the ref bit is tricky.  We have to make sure it is set
4548 	 * if we have the buffer dirty.   Otherwise the
4549 	 * code to free a buffer can end up dropping a dirty
4550 	 * page
4551 	 *
4552 	 * Once the ref bit is set, it won't go away while the
4553 	 * buffer is dirty or in writeback, and it also won't
4554 	 * go away while we have the reference count on the
4555 	 * eb bumped.
4556 	 *
4557 	 * We can't just set the ref bit without bumping the
4558 	 * ref on the eb because free_extent_buffer might
4559 	 * see the ref bit and try to clear it.  If this happens
4560 	 * free_extent_buffer might end up dropping our original
4561 	 * ref by mistake and freeing the page before we are able
4562 	 * to add one more ref.
4563 	 *
4564 	 * So bump the ref count first, then set the bit.  If someone
4565 	 * beat us to it, drop the ref we added.
4566 	 */
4567 	refs = atomic_read(&eb->refs);
4568 	if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4569 		return;
4570 
4571 	spin_lock(&eb->refs_lock);
4572 	if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4573 		atomic_inc(&eb->refs);
4574 	spin_unlock(&eb->refs_lock);
4575 }
4576 
4577 static void mark_extent_buffer_accessed(struct extent_buffer *eb,
4578 		struct page *accessed)
4579 {
4580 	unsigned long num_pages, i;
4581 
4582 	check_buffer_tree_ref(eb);
4583 
4584 	num_pages = num_extent_pages(eb->start, eb->len);
4585 	for (i = 0; i < num_pages; i++) {
4586 		struct page *p = extent_buffer_page(eb, i);
4587 		if (p != accessed)
4588 			mark_page_accessed(p);
4589 	}
4590 }
4591 
4592 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info,
4593 					 u64 start)
4594 {
4595 	struct extent_buffer *eb;
4596 
4597 	rcu_read_lock();
4598 	eb = radix_tree_lookup(&fs_info->buffer_radix,
4599 			       start >> PAGE_CACHE_SHIFT);
4600 	if (eb && atomic_inc_not_zero(&eb->refs)) {
4601 		rcu_read_unlock();
4602 		mark_extent_buffer_accessed(eb, NULL);
4603 		return eb;
4604 	}
4605 	rcu_read_unlock();
4606 
4607 	return NULL;
4608 }
4609 
4610 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS
4611 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info,
4612 					       u64 start, unsigned long len)
4613 {
4614 	struct extent_buffer *eb, *exists = NULL;
4615 	int ret;
4616 
4617 	eb = find_extent_buffer(fs_info, start);
4618 	if (eb)
4619 		return eb;
4620 	eb = alloc_dummy_extent_buffer(start, len);
4621 	if (!eb)
4622 		return NULL;
4623 	eb->fs_info = fs_info;
4624 again:
4625 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4626 	if (ret)
4627 		goto free_eb;
4628 	spin_lock(&fs_info->buffer_lock);
4629 	ret = radix_tree_insert(&fs_info->buffer_radix,
4630 				start >> PAGE_CACHE_SHIFT, eb);
4631 	spin_unlock(&fs_info->buffer_lock);
4632 	radix_tree_preload_end();
4633 	if (ret == -EEXIST) {
4634 		exists = find_extent_buffer(fs_info, start);
4635 		if (exists)
4636 			goto free_eb;
4637 		else
4638 			goto again;
4639 	}
4640 	check_buffer_tree_ref(eb);
4641 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4642 
4643 	/*
4644 	 * We will free dummy extent buffer's if they come into
4645 	 * free_extent_buffer with a ref count of 2, but if we are using this we
4646 	 * want the buffers to stay in memory until we're done with them, so
4647 	 * bump the ref count again.
4648 	 */
4649 	atomic_inc(&eb->refs);
4650 	return eb;
4651 free_eb:
4652 	btrfs_release_extent_buffer(eb);
4653 	return exists;
4654 }
4655 #endif
4656 
4657 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info,
4658 					  u64 start, unsigned long len)
4659 {
4660 	unsigned long num_pages = num_extent_pages(start, len);
4661 	unsigned long i;
4662 	unsigned long index = start >> PAGE_CACHE_SHIFT;
4663 	struct extent_buffer *eb;
4664 	struct extent_buffer *exists = NULL;
4665 	struct page *p;
4666 	struct address_space *mapping = fs_info->btree_inode->i_mapping;
4667 	int uptodate = 1;
4668 	int ret;
4669 
4670 	eb = find_extent_buffer(fs_info, start);
4671 	if (eb)
4672 		return eb;
4673 
4674 	eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS);
4675 	if (!eb)
4676 		return NULL;
4677 
4678 	for (i = 0; i < num_pages; i++, index++) {
4679 		p = find_or_create_page(mapping, index, GFP_NOFS);
4680 		if (!p)
4681 			goto free_eb;
4682 
4683 		spin_lock(&mapping->private_lock);
4684 		if (PagePrivate(p)) {
4685 			/*
4686 			 * We could have already allocated an eb for this page
4687 			 * and attached one so lets see if we can get a ref on
4688 			 * the existing eb, and if we can we know it's good and
4689 			 * we can just return that one, else we know we can just
4690 			 * overwrite page->private.
4691 			 */
4692 			exists = (struct extent_buffer *)p->private;
4693 			if (atomic_inc_not_zero(&exists->refs)) {
4694 				spin_unlock(&mapping->private_lock);
4695 				unlock_page(p);
4696 				page_cache_release(p);
4697 				mark_extent_buffer_accessed(exists, p);
4698 				goto free_eb;
4699 			}
4700 
4701 			/*
4702 			 * Do this so attach doesn't complain and we need to
4703 			 * drop the ref the old guy had.
4704 			 */
4705 			ClearPagePrivate(p);
4706 			WARN_ON(PageDirty(p));
4707 			page_cache_release(p);
4708 		}
4709 		attach_extent_buffer_page(eb, p);
4710 		spin_unlock(&mapping->private_lock);
4711 		WARN_ON(PageDirty(p));
4712 		eb->pages[i] = p;
4713 		if (!PageUptodate(p))
4714 			uptodate = 0;
4715 
4716 		/*
4717 		 * see below about how we avoid a nasty race with release page
4718 		 * and why we unlock later
4719 		 */
4720 	}
4721 	if (uptodate)
4722 		set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4723 again:
4724 	ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM);
4725 	if (ret)
4726 		goto free_eb;
4727 
4728 	spin_lock(&fs_info->buffer_lock);
4729 	ret = radix_tree_insert(&fs_info->buffer_radix,
4730 				start >> PAGE_CACHE_SHIFT, eb);
4731 	spin_unlock(&fs_info->buffer_lock);
4732 	radix_tree_preload_end();
4733 	if (ret == -EEXIST) {
4734 		exists = find_extent_buffer(fs_info, start);
4735 		if (exists)
4736 			goto free_eb;
4737 		else
4738 			goto again;
4739 	}
4740 	/* add one reference for the tree */
4741 	check_buffer_tree_ref(eb);
4742 	set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags);
4743 
4744 	/*
4745 	 * there is a race where release page may have
4746 	 * tried to find this extent buffer in the radix
4747 	 * but failed.  It will tell the VM it is safe to
4748 	 * reclaim the, and it will clear the page private bit.
4749 	 * We must make sure to set the page private bit properly
4750 	 * after the extent buffer is in the radix tree so
4751 	 * it doesn't get lost
4752 	 */
4753 	SetPageChecked(eb->pages[0]);
4754 	for (i = 1; i < num_pages; i++) {
4755 		p = extent_buffer_page(eb, i);
4756 		ClearPageChecked(p);
4757 		unlock_page(p);
4758 	}
4759 	unlock_page(eb->pages[0]);
4760 	return eb;
4761 
4762 free_eb:
4763 	for (i = 0; i < num_pages; i++) {
4764 		if (eb->pages[i])
4765 			unlock_page(eb->pages[i]);
4766 	}
4767 
4768 	WARN_ON(!atomic_dec_and_test(&eb->refs));
4769 	btrfs_release_extent_buffer(eb);
4770 	return exists;
4771 }
4772 
4773 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head)
4774 {
4775 	struct extent_buffer *eb =
4776 			container_of(head, struct extent_buffer, rcu_head);
4777 
4778 	__free_extent_buffer(eb);
4779 }
4780 
4781 /* Expects to have eb->eb_lock already held */
4782 static int release_extent_buffer(struct extent_buffer *eb)
4783 {
4784 	WARN_ON(atomic_read(&eb->refs) == 0);
4785 	if (atomic_dec_and_test(&eb->refs)) {
4786 		if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) {
4787 			struct btrfs_fs_info *fs_info = eb->fs_info;
4788 
4789 			spin_unlock(&eb->refs_lock);
4790 
4791 			spin_lock(&fs_info->buffer_lock);
4792 			radix_tree_delete(&fs_info->buffer_radix,
4793 					  eb->start >> PAGE_CACHE_SHIFT);
4794 			spin_unlock(&fs_info->buffer_lock);
4795 		} else {
4796 			spin_unlock(&eb->refs_lock);
4797 		}
4798 
4799 		/* Should be safe to release our pages at this point */
4800 		btrfs_release_extent_buffer_page(eb, 0);
4801 		call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu);
4802 		return 1;
4803 	}
4804 	spin_unlock(&eb->refs_lock);
4805 
4806 	return 0;
4807 }
4808 
4809 void free_extent_buffer(struct extent_buffer *eb)
4810 {
4811 	int refs;
4812 	int old;
4813 	if (!eb)
4814 		return;
4815 
4816 	while (1) {
4817 		refs = atomic_read(&eb->refs);
4818 		if (refs <= 3)
4819 			break;
4820 		old = atomic_cmpxchg(&eb->refs, refs, refs - 1);
4821 		if (old == refs)
4822 			return;
4823 	}
4824 
4825 	spin_lock(&eb->refs_lock);
4826 	if (atomic_read(&eb->refs) == 2 &&
4827 	    test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags))
4828 		atomic_dec(&eb->refs);
4829 
4830 	if (atomic_read(&eb->refs) == 2 &&
4831 	    test_bit(EXTENT_BUFFER_STALE, &eb->bflags) &&
4832 	    !extent_buffer_under_io(eb) &&
4833 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4834 		atomic_dec(&eb->refs);
4835 
4836 	/*
4837 	 * I know this is terrible, but it's temporary until we stop tracking
4838 	 * the uptodate bits and such for the extent buffers.
4839 	 */
4840 	release_extent_buffer(eb);
4841 }
4842 
4843 void free_extent_buffer_stale(struct extent_buffer *eb)
4844 {
4845 	if (!eb)
4846 		return;
4847 
4848 	spin_lock(&eb->refs_lock);
4849 	set_bit(EXTENT_BUFFER_STALE, &eb->bflags);
4850 
4851 	if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) &&
4852 	    test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags))
4853 		atomic_dec(&eb->refs);
4854 	release_extent_buffer(eb);
4855 }
4856 
4857 void clear_extent_buffer_dirty(struct extent_buffer *eb)
4858 {
4859 	unsigned long i;
4860 	unsigned long num_pages;
4861 	struct page *page;
4862 
4863 	num_pages = num_extent_pages(eb->start, eb->len);
4864 
4865 	for (i = 0; i < num_pages; i++) {
4866 		page = extent_buffer_page(eb, i);
4867 		if (!PageDirty(page))
4868 			continue;
4869 
4870 		lock_page(page);
4871 		WARN_ON(!PagePrivate(page));
4872 
4873 		clear_page_dirty_for_io(page);
4874 		spin_lock_irq(&page->mapping->tree_lock);
4875 		if (!PageDirty(page)) {
4876 			radix_tree_tag_clear(&page->mapping->page_tree,
4877 						page_index(page),
4878 						PAGECACHE_TAG_DIRTY);
4879 		}
4880 		spin_unlock_irq(&page->mapping->tree_lock);
4881 		ClearPageError(page);
4882 		unlock_page(page);
4883 	}
4884 	WARN_ON(atomic_read(&eb->refs) == 0);
4885 }
4886 
4887 int set_extent_buffer_dirty(struct extent_buffer *eb)
4888 {
4889 	unsigned long i;
4890 	unsigned long num_pages;
4891 	int was_dirty = 0;
4892 
4893 	check_buffer_tree_ref(eb);
4894 
4895 	was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags);
4896 
4897 	num_pages = num_extent_pages(eb->start, eb->len);
4898 	WARN_ON(atomic_read(&eb->refs) == 0);
4899 	WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags));
4900 
4901 	for (i = 0; i < num_pages; i++)
4902 		set_page_dirty(extent_buffer_page(eb, i));
4903 	return was_dirty;
4904 }
4905 
4906 int clear_extent_buffer_uptodate(struct extent_buffer *eb)
4907 {
4908 	unsigned long i;
4909 	struct page *page;
4910 	unsigned long num_pages;
4911 
4912 	clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4913 	num_pages = num_extent_pages(eb->start, eb->len);
4914 	for (i = 0; i < num_pages; i++) {
4915 		page = extent_buffer_page(eb, i);
4916 		if (page)
4917 			ClearPageUptodate(page);
4918 	}
4919 	return 0;
4920 }
4921 
4922 int set_extent_buffer_uptodate(struct extent_buffer *eb)
4923 {
4924 	unsigned long i;
4925 	struct page *page;
4926 	unsigned long num_pages;
4927 
4928 	set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4929 	num_pages = num_extent_pages(eb->start, eb->len);
4930 	for (i = 0; i < num_pages; i++) {
4931 		page = extent_buffer_page(eb, i);
4932 		SetPageUptodate(page);
4933 	}
4934 	return 0;
4935 }
4936 
4937 int extent_buffer_uptodate(struct extent_buffer *eb)
4938 {
4939 	return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4940 }
4941 
4942 int read_extent_buffer_pages(struct extent_io_tree *tree,
4943 			     struct extent_buffer *eb, u64 start, int wait,
4944 			     get_extent_t *get_extent, int mirror_num)
4945 {
4946 	unsigned long i;
4947 	unsigned long start_i;
4948 	struct page *page;
4949 	int err;
4950 	int ret = 0;
4951 	int locked_pages = 0;
4952 	int all_uptodate = 1;
4953 	unsigned long num_pages;
4954 	unsigned long num_reads = 0;
4955 	struct bio *bio = NULL;
4956 	unsigned long bio_flags = 0;
4957 
4958 	if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags))
4959 		return 0;
4960 
4961 	if (start) {
4962 		WARN_ON(start < eb->start);
4963 		start_i = (start >> PAGE_CACHE_SHIFT) -
4964 			(eb->start >> PAGE_CACHE_SHIFT);
4965 	} else {
4966 		start_i = 0;
4967 	}
4968 
4969 	num_pages = num_extent_pages(eb->start, eb->len);
4970 	for (i = start_i; i < num_pages; i++) {
4971 		page = extent_buffer_page(eb, i);
4972 		if (wait == WAIT_NONE) {
4973 			if (!trylock_page(page))
4974 				goto unlock_exit;
4975 		} else {
4976 			lock_page(page);
4977 		}
4978 		locked_pages++;
4979 		if (!PageUptodate(page)) {
4980 			num_reads++;
4981 			all_uptodate = 0;
4982 		}
4983 	}
4984 	if (all_uptodate) {
4985 		if (start_i == 0)
4986 			set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags);
4987 		goto unlock_exit;
4988 	}
4989 
4990 	clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags);
4991 	eb->read_mirror = 0;
4992 	atomic_set(&eb->io_pages, num_reads);
4993 	for (i = start_i; i < num_pages; i++) {
4994 		page = extent_buffer_page(eb, i);
4995 		if (!PageUptodate(page)) {
4996 			ClearPageError(page);
4997 			err = __extent_read_full_page(tree, page,
4998 						      get_extent, &bio,
4999 						      mirror_num, &bio_flags,
5000 						      READ | REQ_META);
5001 			if (err)
5002 				ret = err;
5003 		} else {
5004 			unlock_page(page);
5005 		}
5006 	}
5007 
5008 	if (bio) {
5009 		err = submit_one_bio(READ | REQ_META, bio, mirror_num,
5010 				     bio_flags);
5011 		if (err)
5012 			return err;
5013 	}
5014 
5015 	if (ret || wait != WAIT_COMPLETE)
5016 		return ret;
5017 
5018 	for (i = start_i; i < num_pages; i++) {
5019 		page = extent_buffer_page(eb, i);
5020 		wait_on_page_locked(page);
5021 		if (!PageUptodate(page))
5022 			ret = -EIO;
5023 	}
5024 
5025 	return ret;
5026 
5027 unlock_exit:
5028 	i = start_i;
5029 	while (locked_pages > 0) {
5030 		page = extent_buffer_page(eb, i);
5031 		i++;
5032 		unlock_page(page);
5033 		locked_pages--;
5034 	}
5035 	return ret;
5036 }
5037 
5038 void read_extent_buffer(struct extent_buffer *eb, void *dstv,
5039 			unsigned long start,
5040 			unsigned long len)
5041 {
5042 	size_t cur;
5043 	size_t offset;
5044 	struct page *page;
5045 	char *kaddr;
5046 	char *dst = (char *)dstv;
5047 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5048 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5049 
5050 	WARN_ON(start > eb->len);
5051 	WARN_ON(start + len > eb->start + eb->len);
5052 
5053 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5054 
5055 	while (len > 0) {
5056 		page = extent_buffer_page(eb, i);
5057 
5058 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5059 		kaddr = page_address(page);
5060 		memcpy(dst, kaddr + offset, cur);
5061 
5062 		dst += cur;
5063 		len -= cur;
5064 		offset = 0;
5065 		i++;
5066 	}
5067 }
5068 
5069 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv,
5070 			unsigned long start,
5071 			unsigned long len)
5072 {
5073 	size_t cur;
5074 	size_t offset;
5075 	struct page *page;
5076 	char *kaddr;
5077 	char __user *dst = (char __user *)dstv;
5078 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5079 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5080 	int ret = 0;
5081 
5082 	WARN_ON(start > eb->len);
5083 	WARN_ON(start + len > eb->start + eb->len);
5084 
5085 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5086 
5087 	while (len > 0) {
5088 		page = extent_buffer_page(eb, i);
5089 
5090 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5091 		kaddr = page_address(page);
5092 		if (copy_to_user(dst, kaddr + offset, cur)) {
5093 			ret = -EFAULT;
5094 			break;
5095 		}
5096 
5097 		dst += cur;
5098 		len -= cur;
5099 		offset = 0;
5100 		i++;
5101 	}
5102 
5103 	return ret;
5104 }
5105 
5106 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start,
5107 			       unsigned long min_len, char **map,
5108 			       unsigned long *map_start,
5109 			       unsigned long *map_len)
5110 {
5111 	size_t offset = start & (PAGE_CACHE_SIZE - 1);
5112 	char *kaddr;
5113 	struct page *p;
5114 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5115 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5116 	unsigned long end_i = (start_offset + start + min_len - 1) >>
5117 		PAGE_CACHE_SHIFT;
5118 
5119 	if (i != end_i)
5120 		return -EINVAL;
5121 
5122 	if (i == 0) {
5123 		offset = start_offset;
5124 		*map_start = 0;
5125 	} else {
5126 		offset = 0;
5127 		*map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset;
5128 	}
5129 
5130 	if (start + min_len > eb->len) {
5131 		WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, "
5132 		       "wanted %lu %lu\n",
5133 		       eb->start, eb->len, start, min_len);
5134 		return -EINVAL;
5135 	}
5136 
5137 	p = extent_buffer_page(eb, i);
5138 	kaddr = page_address(p);
5139 	*map = kaddr + offset;
5140 	*map_len = PAGE_CACHE_SIZE - offset;
5141 	return 0;
5142 }
5143 
5144 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv,
5145 			  unsigned long start,
5146 			  unsigned long len)
5147 {
5148 	size_t cur;
5149 	size_t offset;
5150 	struct page *page;
5151 	char *kaddr;
5152 	char *ptr = (char *)ptrv;
5153 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5154 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5155 	int ret = 0;
5156 
5157 	WARN_ON(start > eb->len);
5158 	WARN_ON(start + len > eb->start + eb->len);
5159 
5160 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5161 
5162 	while (len > 0) {
5163 		page = extent_buffer_page(eb, i);
5164 
5165 		cur = min(len, (PAGE_CACHE_SIZE - offset));
5166 
5167 		kaddr = page_address(page);
5168 		ret = memcmp(ptr, kaddr + offset, cur);
5169 		if (ret)
5170 			break;
5171 
5172 		ptr += cur;
5173 		len -= cur;
5174 		offset = 0;
5175 		i++;
5176 	}
5177 	return ret;
5178 }
5179 
5180 void write_extent_buffer(struct extent_buffer *eb, const void *srcv,
5181 			 unsigned long start, unsigned long len)
5182 {
5183 	size_t cur;
5184 	size_t offset;
5185 	struct page *page;
5186 	char *kaddr;
5187 	char *src = (char *)srcv;
5188 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5189 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5190 
5191 	WARN_ON(start > eb->len);
5192 	WARN_ON(start + len > eb->start + eb->len);
5193 
5194 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5195 
5196 	while (len > 0) {
5197 		page = extent_buffer_page(eb, i);
5198 		WARN_ON(!PageUptodate(page));
5199 
5200 		cur = min(len, PAGE_CACHE_SIZE - offset);
5201 		kaddr = page_address(page);
5202 		memcpy(kaddr + offset, src, cur);
5203 
5204 		src += cur;
5205 		len -= cur;
5206 		offset = 0;
5207 		i++;
5208 	}
5209 }
5210 
5211 void memset_extent_buffer(struct extent_buffer *eb, char c,
5212 			  unsigned long start, unsigned long len)
5213 {
5214 	size_t cur;
5215 	size_t offset;
5216 	struct page *page;
5217 	char *kaddr;
5218 	size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1);
5219 	unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT;
5220 
5221 	WARN_ON(start > eb->len);
5222 	WARN_ON(start + len > eb->start + eb->len);
5223 
5224 	offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1);
5225 
5226 	while (len > 0) {
5227 		page = extent_buffer_page(eb, i);
5228 		WARN_ON(!PageUptodate(page));
5229 
5230 		cur = min(len, PAGE_CACHE_SIZE - offset);
5231 		kaddr = page_address(page);
5232 		memset(kaddr + offset, c, cur);
5233 
5234 		len -= cur;
5235 		offset = 0;
5236 		i++;
5237 	}
5238 }
5239 
5240 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src,
5241 			unsigned long dst_offset, unsigned long src_offset,
5242 			unsigned long len)
5243 {
5244 	u64 dst_len = dst->len;
5245 	size_t cur;
5246 	size_t offset;
5247 	struct page *page;
5248 	char *kaddr;
5249 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5250 	unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5251 
5252 	WARN_ON(src->len != dst_len);
5253 
5254 	offset = (start_offset + dst_offset) &
5255 		(PAGE_CACHE_SIZE - 1);
5256 
5257 	while (len > 0) {
5258 		page = extent_buffer_page(dst, i);
5259 		WARN_ON(!PageUptodate(page));
5260 
5261 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset));
5262 
5263 		kaddr = page_address(page);
5264 		read_extent_buffer(src, kaddr + offset, src_offset, cur);
5265 
5266 		src_offset += cur;
5267 		len -= cur;
5268 		offset = 0;
5269 		i++;
5270 	}
5271 }
5272 
5273 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len)
5274 {
5275 	unsigned long distance = (src > dst) ? src - dst : dst - src;
5276 	return distance < len;
5277 }
5278 
5279 static void copy_pages(struct page *dst_page, struct page *src_page,
5280 		       unsigned long dst_off, unsigned long src_off,
5281 		       unsigned long len)
5282 {
5283 	char *dst_kaddr = page_address(dst_page);
5284 	char *src_kaddr;
5285 	int must_memmove = 0;
5286 
5287 	if (dst_page != src_page) {
5288 		src_kaddr = page_address(src_page);
5289 	} else {
5290 		src_kaddr = dst_kaddr;
5291 		if (areas_overlap(src_off, dst_off, len))
5292 			must_memmove = 1;
5293 	}
5294 
5295 	if (must_memmove)
5296 		memmove(dst_kaddr + dst_off, src_kaddr + src_off, len);
5297 	else
5298 		memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len);
5299 }
5300 
5301 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5302 			   unsigned long src_offset, unsigned long len)
5303 {
5304 	size_t cur;
5305 	size_t dst_off_in_page;
5306 	size_t src_off_in_page;
5307 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5308 	unsigned long dst_i;
5309 	unsigned long src_i;
5310 
5311 	if (src_offset + len > dst->len) {
5312 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5313 		       "len %lu dst len %lu\n", src_offset, len, dst->len);
5314 		BUG_ON(1);
5315 	}
5316 	if (dst_offset + len > dst->len) {
5317 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5318 		       "len %lu dst len %lu\n", dst_offset, len, dst->len);
5319 		BUG_ON(1);
5320 	}
5321 
5322 	while (len > 0) {
5323 		dst_off_in_page = (start_offset + dst_offset) &
5324 			(PAGE_CACHE_SIZE - 1);
5325 		src_off_in_page = (start_offset + src_offset) &
5326 			(PAGE_CACHE_SIZE - 1);
5327 
5328 		dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT;
5329 		src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT;
5330 
5331 		cur = min(len, (unsigned long)(PAGE_CACHE_SIZE -
5332 					       src_off_in_page));
5333 		cur = min_t(unsigned long, cur,
5334 			(unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page));
5335 
5336 		copy_pages(extent_buffer_page(dst, dst_i),
5337 			   extent_buffer_page(dst, src_i),
5338 			   dst_off_in_page, src_off_in_page, cur);
5339 
5340 		src_offset += cur;
5341 		dst_offset += cur;
5342 		len -= cur;
5343 	}
5344 }
5345 
5346 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset,
5347 			   unsigned long src_offset, unsigned long len)
5348 {
5349 	size_t cur;
5350 	size_t dst_off_in_page;
5351 	size_t src_off_in_page;
5352 	unsigned long dst_end = dst_offset + len - 1;
5353 	unsigned long src_end = src_offset + len - 1;
5354 	size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1);
5355 	unsigned long dst_i;
5356 	unsigned long src_i;
5357 
5358 	if (src_offset + len > dst->len) {
5359 		printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move "
5360 		       "len %lu len %lu\n", src_offset, len, dst->len);
5361 		BUG_ON(1);
5362 	}
5363 	if (dst_offset + len > dst->len) {
5364 		printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move "
5365 		       "len %lu len %lu\n", dst_offset, len, dst->len);
5366 		BUG_ON(1);
5367 	}
5368 	if (dst_offset < src_offset) {
5369 		memcpy_extent_buffer(dst, dst_offset, src_offset, len);
5370 		return;
5371 	}
5372 	while (len > 0) {
5373 		dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT;
5374 		src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT;
5375 
5376 		dst_off_in_page = (start_offset + dst_end) &
5377 			(PAGE_CACHE_SIZE - 1);
5378 		src_off_in_page = (start_offset + src_end) &
5379 			(PAGE_CACHE_SIZE - 1);
5380 
5381 		cur = min_t(unsigned long, len, src_off_in_page + 1);
5382 		cur = min(cur, dst_off_in_page + 1);
5383 		copy_pages(extent_buffer_page(dst, dst_i),
5384 			   extent_buffer_page(dst, src_i),
5385 			   dst_off_in_page - cur + 1,
5386 			   src_off_in_page - cur + 1, cur);
5387 
5388 		dst_end -= cur;
5389 		src_end -= cur;
5390 		len -= cur;
5391 	}
5392 }
5393 
5394 int try_release_extent_buffer(struct page *page)
5395 {
5396 	struct extent_buffer *eb;
5397 
5398 	/*
5399 	 * We need to make sure noboody is attaching this page to an eb right
5400 	 * now.
5401 	 */
5402 	spin_lock(&page->mapping->private_lock);
5403 	if (!PagePrivate(page)) {
5404 		spin_unlock(&page->mapping->private_lock);
5405 		return 1;
5406 	}
5407 
5408 	eb = (struct extent_buffer *)page->private;
5409 	BUG_ON(!eb);
5410 
5411 	/*
5412 	 * This is a little awful but should be ok, we need to make sure that
5413 	 * the eb doesn't disappear out from under us while we're looking at
5414 	 * this page.
5415 	 */
5416 	spin_lock(&eb->refs_lock);
5417 	if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) {
5418 		spin_unlock(&eb->refs_lock);
5419 		spin_unlock(&page->mapping->private_lock);
5420 		return 0;
5421 	}
5422 	spin_unlock(&page->mapping->private_lock);
5423 
5424 	/*
5425 	 * If tree ref isn't set then we know the ref on this eb is a real ref,
5426 	 * so just return, this page will likely be freed soon anyway.
5427 	 */
5428 	if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) {
5429 		spin_unlock(&eb->refs_lock);
5430 		return 0;
5431 	}
5432 
5433 	return release_extent_buffer(eb);
5434 }
5435