1 #include <linux/bitops.h> 2 #include <linux/slab.h> 3 #include <linux/bio.h> 4 #include <linux/mm.h> 5 #include <linux/pagemap.h> 6 #include <linux/page-flags.h> 7 #include <linux/spinlock.h> 8 #include <linux/blkdev.h> 9 #include <linux/swap.h> 10 #include <linux/writeback.h> 11 #include <linux/pagevec.h> 12 #include <linux/prefetch.h> 13 #include <linux/cleancache.h> 14 #include "extent_io.h" 15 #include "extent_map.h" 16 #include "ctree.h" 17 #include "btrfs_inode.h" 18 #include "volumes.h" 19 #include "check-integrity.h" 20 #include "locking.h" 21 #include "rcu-string.h" 22 #include "backref.h" 23 24 static struct kmem_cache *extent_state_cache; 25 static struct kmem_cache *extent_buffer_cache; 26 static struct bio_set *btrfs_bioset; 27 28 static inline bool extent_state_in_tree(const struct extent_state *state) 29 { 30 return !RB_EMPTY_NODE(&state->rb_node); 31 } 32 33 #ifdef CONFIG_BTRFS_DEBUG 34 static LIST_HEAD(buffers); 35 static LIST_HEAD(states); 36 37 static DEFINE_SPINLOCK(leak_lock); 38 39 static inline 40 void btrfs_leak_debug_add(struct list_head *new, struct list_head *head) 41 { 42 unsigned long flags; 43 44 spin_lock_irqsave(&leak_lock, flags); 45 list_add(new, head); 46 spin_unlock_irqrestore(&leak_lock, flags); 47 } 48 49 static inline 50 void btrfs_leak_debug_del(struct list_head *entry) 51 { 52 unsigned long flags; 53 54 spin_lock_irqsave(&leak_lock, flags); 55 list_del(entry); 56 spin_unlock_irqrestore(&leak_lock, flags); 57 } 58 59 static inline 60 void btrfs_leak_debug_check(void) 61 { 62 struct extent_state *state; 63 struct extent_buffer *eb; 64 65 while (!list_empty(&states)) { 66 state = list_entry(states.next, struct extent_state, leak_list); 67 pr_err("BTRFS: state leak: start %llu end %llu state %lu in tree %d refs %d\n", 68 state->start, state->end, state->state, 69 extent_state_in_tree(state), 70 atomic_read(&state->refs)); 71 list_del(&state->leak_list); 72 kmem_cache_free(extent_state_cache, state); 73 } 74 75 while (!list_empty(&buffers)) { 76 eb = list_entry(buffers.next, struct extent_buffer, leak_list); 77 printk(KERN_ERR "BTRFS: buffer leak start %llu len %lu " 78 "refs %d\n", 79 eb->start, eb->len, atomic_read(&eb->refs)); 80 list_del(&eb->leak_list); 81 kmem_cache_free(extent_buffer_cache, eb); 82 } 83 } 84 85 #define btrfs_debug_check_extent_io_range(tree, start, end) \ 86 __btrfs_debug_check_extent_io_range(__func__, (tree), (start), (end)) 87 static inline void __btrfs_debug_check_extent_io_range(const char *caller, 88 struct extent_io_tree *tree, u64 start, u64 end) 89 { 90 struct inode *inode; 91 u64 isize; 92 93 if (!tree->mapping) 94 return; 95 96 inode = tree->mapping->host; 97 isize = i_size_read(inode); 98 if (end >= PAGE_SIZE && (end % 2) == 0 && end != isize - 1) { 99 printk_ratelimited(KERN_DEBUG 100 "BTRFS: %s: ino %llu isize %llu odd range [%llu,%llu]\n", 101 caller, btrfs_ino(inode), isize, start, end); 102 } 103 } 104 #else 105 #define btrfs_leak_debug_add(new, head) do {} while (0) 106 #define btrfs_leak_debug_del(entry) do {} while (0) 107 #define btrfs_leak_debug_check() do {} while (0) 108 #define btrfs_debug_check_extent_io_range(c, s, e) do {} while (0) 109 #endif 110 111 #define BUFFER_LRU_MAX 64 112 113 struct tree_entry { 114 u64 start; 115 u64 end; 116 struct rb_node rb_node; 117 }; 118 119 struct extent_page_data { 120 struct bio *bio; 121 struct extent_io_tree *tree; 122 get_extent_t *get_extent; 123 unsigned long bio_flags; 124 125 /* tells writepage not to lock the state bits for this range 126 * it still does the unlocking 127 */ 128 unsigned int extent_locked:1; 129 130 /* tells the submit_bio code to use a WRITE_SYNC */ 131 unsigned int sync_io:1; 132 }; 133 134 static noinline void flush_write_bio(void *data); 135 static inline struct btrfs_fs_info * 136 tree_fs_info(struct extent_io_tree *tree) 137 { 138 if (!tree->mapping) 139 return NULL; 140 return btrfs_sb(tree->mapping->host->i_sb); 141 } 142 143 int __init extent_io_init(void) 144 { 145 extent_state_cache = kmem_cache_create("btrfs_extent_state", 146 sizeof(struct extent_state), 0, 147 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 148 if (!extent_state_cache) 149 return -ENOMEM; 150 151 extent_buffer_cache = kmem_cache_create("btrfs_extent_buffer", 152 sizeof(struct extent_buffer), 0, 153 SLAB_RECLAIM_ACCOUNT | SLAB_MEM_SPREAD, NULL); 154 if (!extent_buffer_cache) 155 goto free_state_cache; 156 157 btrfs_bioset = bioset_create(BIO_POOL_SIZE, 158 offsetof(struct btrfs_io_bio, bio)); 159 if (!btrfs_bioset) 160 goto free_buffer_cache; 161 162 if (bioset_integrity_create(btrfs_bioset, BIO_POOL_SIZE)) 163 goto free_bioset; 164 165 return 0; 166 167 free_bioset: 168 bioset_free(btrfs_bioset); 169 btrfs_bioset = NULL; 170 171 free_buffer_cache: 172 kmem_cache_destroy(extent_buffer_cache); 173 extent_buffer_cache = NULL; 174 175 free_state_cache: 176 kmem_cache_destroy(extent_state_cache); 177 extent_state_cache = NULL; 178 return -ENOMEM; 179 } 180 181 void extent_io_exit(void) 182 { 183 btrfs_leak_debug_check(); 184 185 /* 186 * Make sure all delayed rcu free are flushed before we 187 * destroy caches. 188 */ 189 rcu_barrier(); 190 if (extent_state_cache) 191 kmem_cache_destroy(extent_state_cache); 192 if (extent_buffer_cache) 193 kmem_cache_destroy(extent_buffer_cache); 194 if (btrfs_bioset) 195 bioset_free(btrfs_bioset); 196 } 197 198 void extent_io_tree_init(struct extent_io_tree *tree, 199 struct address_space *mapping) 200 { 201 tree->state = RB_ROOT; 202 tree->ops = NULL; 203 tree->dirty_bytes = 0; 204 spin_lock_init(&tree->lock); 205 tree->mapping = mapping; 206 } 207 208 static struct extent_state *alloc_extent_state(gfp_t mask) 209 { 210 struct extent_state *state; 211 212 state = kmem_cache_alloc(extent_state_cache, mask); 213 if (!state) 214 return state; 215 state->state = 0; 216 state->private = 0; 217 RB_CLEAR_NODE(&state->rb_node); 218 btrfs_leak_debug_add(&state->leak_list, &states); 219 atomic_set(&state->refs, 1); 220 init_waitqueue_head(&state->wq); 221 trace_alloc_extent_state(state, mask, _RET_IP_); 222 return state; 223 } 224 225 void free_extent_state(struct extent_state *state) 226 { 227 if (!state) 228 return; 229 if (atomic_dec_and_test(&state->refs)) { 230 WARN_ON(extent_state_in_tree(state)); 231 btrfs_leak_debug_del(&state->leak_list); 232 trace_free_extent_state(state, _RET_IP_); 233 kmem_cache_free(extent_state_cache, state); 234 } 235 } 236 237 static struct rb_node *tree_insert(struct rb_root *root, 238 struct rb_node *search_start, 239 u64 offset, 240 struct rb_node *node, 241 struct rb_node ***p_in, 242 struct rb_node **parent_in) 243 { 244 struct rb_node **p; 245 struct rb_node *parent = NULL; 246 struct tree_entry *entry; 247 248 if (p_in && parent_in) { 249 p = *p_in; 250 parent = *parent_in; 251 goto do_insert; 252 } 253 254 p = search_start ? &search_start : &root->rb_node; 255 while (*p) { 256 parent = *p; 257 entry = rb_entry(parent, struct tree_entry, rb_node); 258 259 if (offset < entry->start) 260 p = &(*p)->rb_left; 261 else if (offset > entry->end) 262 p = &(*p)->rb_right; 263 else 264 return parent; 265 } 266 267 do_insert: 268 rb_link_node(node, parent, p); 269 rb_insert_color(node, root); 270 return NULL; 271 } 272 273 static struct rb_node *__etree_search(struct extent_io_tree *tree, u64 offset, 274 struct rb_node **prev_ret, 275 struct rb_node **next_ret, 276 struct rb_node ***p_ret, 277 struct rb_node **parent_ret) 278 { 279 struct rb_root *root = &tree->state; 280 struct rb_node **n = &root->rb_node; 281 struct rb_node *prev = NULL; 282 struct rb_node *orig_prev = NULL; 283 struct tree_entry *entry; 284 struct tree_entry *prev_entry = NULL; 285 286 while (*n) { 287 prev = *n; 288 entry = rb_entry(prev, struct tree_entry, rb_node); 289 prev_entry = entry; 290 291 if (offset < entry->start) 292 n = &(*n)->rb_left; 293 else if (offset > entry->end) 294 n = &(*n)->rb_right; 295 else 296 return *n; 297 } 298 299 if (p_ret) 300 *p_ret = n; 301 if (parent_ret) 302 *parent_ret = prev; 303 304 if (prev_ret) { 305 orig_prev = prev; 306 while (prev && offset > prev_entry->end) { 307 prev = rb_next(prev); 308 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 309 } 310 *prev_ret = prev; 311 prev = orig_prev; 312 } 313 314 if (next_ret) { 315 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 316 while (prev && offset < prev_entry->start) { 317 prev = rb_prev(prev); 318 prev_entry = rb_entry(prev, struct tree_entry, rb_node); 319 } 320 *next_ret = prev; 321 } 322 return NULL; 323 } 324 325 static inline struct rb_node * 326 tree_search_for_insert(struct extent_io_tree *tree, 327 u64 offset, 328 struct rb_node ***p_ret, 329 struct rb_node **parent_ret) 330 { 331 struct rb_node *prev = NULL; 332 struct rb_node *ret; 333 334 ret = __etree_search(tree, offset, &prev, NULL, p_ret, parent_ret); 335 if (!ret) 336 return prev; 337 return ret; 338 } 339 340 static inline struct rb_node *tree_search(struct extent_io_tree *tree, 341 u64 offset) 342 { 343 return tree_search_for_insert(tree, offset, NULL, NULL); 344 } 345 346 static void merge_cb(struct extent_io_tree *tree, struct extent_state *new, 347 struct extent_state *other) 348 { 349 if (tree->ops && tree->ops->merge_extent_hook) 350 tree->ops->merge_extent_hook(tree->mapping->host, new, 351 other); 352 } 353 354 /* 355 * utility function to look for merge candidates inside a given range. 356 * Any extents with matching state are merged together into a single 357 * extent in the tree. Extents with EXTENT_IO in their state field 358 * are not merged because the end_io handlers need to be able to do 359 * operations on them without sleeping (or doing allocations/splits). 360 * 361 * This should be called with the tree lock held. 362 */ 363 static void merge_state(struct extent_io_tree *tree, 364 struct extent_state *state) 365 { 366 struct extent_state *other; 367 struct rb_node *other_node; 368 369 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 370 return; 371 372 other_node = rb_prev(&state->rb_node); 373 if (other_node) { 374 other = rb_entry(other_node, struct extent_state, rb_node); 375 if (other->end == state->start - 1 && 376 other->state == state->state) { 377 merge_cb(tree, state, other); 378 state->start = other->start; 379 rb_erase(&other->rb_node, &tree->state); 380 RB_CLEAR_NODE(&other->rb_node); 381 free_extent_state(other); 382 } 383 } 384 other_node = rb_next(&state->rb_node); 385 if (other_node) { 386 other = rb_entry(other_node, struct extent_state, rb_node); 387 if (other->start == state->end + 1 && 388 other->state == state->state) { 389 merge_cb(tree, state, other); 390 state->end = other->end; 391 rb_erase(&other->rb_node, &tree->state); 392 RB_CLEAR_NODE(&other->rb_node); 393 free_extent_state(other); 394 } 395 } 396 } 397 398 static void set_state_cb(struct extent_io_tree *tree, 399 struct extent_state *state, unsigned long *bits) 400 { 401 if (tree->ops && tree->ops->set_bit_hook) 402 tree->ops->set_bit_hook(tree->mapping->host, state, bits); 403 } 404 405 static void clear_state_cb(struct extent_io_tree *tree, 406 struct extent_state *state, unsigned long *bits) 407 { 408 if (tree->ops && tree->ops->clear_bit_hook) 409 tree->ops->clear_bit_hook(tree->mapping->host, state, bits); 410 } 411 412 static void set_state_bits(struct extent_io_tree *tree, 413 struct extent_state *state, unsigned long *bits); 414 415 /* 416 * insert an extent_state struct into the tree. 'bits' are set on the 417 * struct before it is inserted. 418 * 419 * This may return -EEXIST if the extent is already there, in which case the 420 * state struct is freed. 421 * 422 * The tree lock is not taken internally. This is a utility function and 423 * probably isn't what you want to call (see set/clear_extent_bit). 424 */ 425 static int insert_state(struct extent_io_tree *tree, 426 struct extent_state *state, u64 start, u64 end, 427 struct rb_node ***p, 428 struct rb_node **parent, 429 unsigned long *bits) 430 { 431 struct rb_node *node; 432 433 if (end < start) 434 WARN(1, KERN_ERR "BTRFS: end < start %llu %llu\n", 435 end, start); 436 state->start = start; 437 state->end = end; 438 439 set_state_bits(tree, state, bits); 440 441 node = tree_insert(&tree->state, NULL, end, &state->rb_node, p, parent); 442 if (node) { 443 struct extent_state *found; 444 found = rb_entry(node, struct extent_state, rb_node); 445 printk(KERN_ERR "BTRFS: found node %llu %llu on insert of " 446 "%llu %llu\n", 447 found->start, found->end, start, end); 448 return -EEXIST; 449 } 450 merge_state(tree, state); 451 return 0; 452 } 453 454 static void split_cb(struct extent_io_tree *tree, struct extent_state *orig, 455 u64 split) 456 { 457 if (tree->ops && tree->ops->split_extent_hook) 458 tree->ops->split_extent_hook(tree->mapping->host, orig, split); 459 } 460 461 /* 462 * split a given extent state struct in two, inserting the preallocated 463 * struct 'prealloc' as the newly created second half. 'split' indicates an 464 * offset inside 'orig' where it should be split. 465 * 466 * Before calling, 467 * the tree has 'orig' at [orig->start, orig->end]. After calling, there 468 * are two extent state structs in the tree: 469 * prealloc: [orig->start, split - 1] 470 * orig: [ split, orig->end ] 471 * 472 * The tree locks are not taken by this function. They need to be held 473 * by the caller. 474 */ 475 static int split_state(struct extent_io_tree *tree, struct extent_state *orig, 476 struct extent_state *prealloc, u64 split) 477 { 478 struct rb_node *node; 479 480 split_cb(tree, orig, split); 481 482 prealloc->start = orig->start; 483 prealloc->end = split - 1; 484 prealloc->state = orig->state; 485 orig->start = split; 486 487 node = tree_insert(&tree->state, &orig->rb_node, prealloc->end, 488 &prealloc->rb_node, NULL, NULL); 489 if (node) { 490 free_extent_state(prealloc); 491 return -EEXIST; 492 } 493 return 0; 494 } 495 496 static struct extent_state *next_state(struct extent_state *state) 497 { 498 struct rb_node *next = rb_next(&state->rb_node); 499 if (next) 500 return rb_entry(next, struct extent_state, rb_node); 501 else 502 return NULL; 503 } 504 505 /* 506 * utility function to clear some bits in an extent state struct. 507 * it will optionally wake up any one waiting on this state (wake == 1). 508 * 509 * If no bits are set on the state struct after clearing things, the 510 * struct is freed and removed from the tree 511 */ 512 static struct extent_state *clear_state_bit(struct extent_io_tree *tree, 513 struct extent_state *state, 514 unsigned long *bits, int wake) 515 { 516 struct extent_state *next; 517 unsigned long bits_to_clear = *bits & ~EXTENT_CTLBITS; 518 519 if ((bits_to_clear & EXTENT_DIRTY) && (state->state & EXTENT_DIRTY)) { 520 u64 range = state->end - state->start + 1; 521 WARN_ON(range > tree->dirty_bytes); 522 tree->dirty_bytes -= range; 523 } 524 clear_state_cb(tree, state, bits); 525 state->state &= ~bits_to_clear; 526 if (wake) 527 wake_up(&state->wq); 528 if (state->state == 0) { 529 next = next_state(state); 530 if (extent_state_in_tree(state)) { 531 rb_erase(&state->rb_node, &tree->state); 532 RB_CLEAR_NODE(&state->rb_node); 533 free_extent_state(state); 534 } else { 535 WARN_ON(1); 536 } 537 } else { 538 merge_state(tree, state); 539 next = next_state(state); 540 } 541 return next; 542 } 543 544 static struct extent_state * 545 alloc_extent_state_atomic(struct extent_state *prealloc) 546 { 547 if (!prealloc) 548 prealloc = alloc_extent_state(GFP_ATOMIC); 549 550 return prealloc; 551 } 552 553 static void extent_io_tree_panic(struct extent_io_tree *tree, int err) 554 { 555 btrfs_panic(tree_fs_info(tree), err, "Locking error: " 556 "Extent tree was modified by another " 557 "thread while locked."); 558 } 559 560 /* 561 * clear some bits on a range in the tree. This may require splitting 562 * or inserting elements in the tree, so the gfp mask is used to 563 * indicate which allocations or sleeping are allowed. 564 * 565 * pass 'wake' == 1 to kick any sleepers, and 'delete' == 1 to remove 566 * the given range from the tree regardless of state (ie for truncate). 567 * 568 * the range [start, end] is inclusive. 569 * 570 * This takes the tree lock, and returns 0 on success and < 0 on error. 571 */ 572 int clear_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 573 unsigned long bits, int wake, int delete, 574 struct extent_state **cached_state, 575 gfp_t mask) 576 { 577 struct extent_state *state; 578 struct extent_state *cached; 579 struct extent_state *prealloc = NULL; 580 struct rb_node *node; 581 u64 last_end; 582 int err; 583 int clear = 0; 584 585 btrfs_debug_check_extent_io_range(tree, start, end); 586 587 if (bits & EXTENT_DELALLOC) 588 bits |= EXTENT_NORESERVE; 589 590 if (delete) 591 bits |= ~EXTENT_CTLBITS; 592 bits |= EXTENT_FIRST_DELALLOC; 593 594 if (bits & (EXTENT_IOBITS | EXTENT_BOUNDARY)) 595 clear = 1; 596 again: 597 if (!prealloc && (mask & __GFP_WAIT)) { 598 prealloc = alloc_extent_state(mask); 599 if (!prealloc) 600 return -ENOMEM; 601 } 602 603 spin_lock(&tree->lock); 604 if (cached_state) { 605 cached = *cached_state; 606 607 if (clear) { 608 *cached_state = NULL; 609 cached_state = NULL; 610 } 611 612 if (cached && extent_state_in_tree(cached) && 613 cached->start <= start && cached->end > start) { 614 if (clear) 615 atomic_dec(&cached->refs); 616 state = cached; 617 goto hit_next; 618 } 619 if (clear) 620 free_extent_state(cached); 621 } 622 /* 623 * this search will find the extents that end after 624 * our range starts 625 */ 626 node = tree_search(tree, start); 627 if (!node) 628 goto out; 629 state = rb_entry(node, struct extent_state, rb_node); 630 hit_next: 631 if (state->start > end) 632 goto out; 633 WARN_ON(state->end < start); 634 last_end = state->end; 635 636 /* the state doesn't have the wanted bits, go ahead */ 637 if (!(state->state & bits)) { 638 state = next_state(state); 639 goto next; 640 } 641 642 /* 643 * | ---- desired range ---- | 644 * | state | or 645 * | ------------- state -------------- | 646 * 647 * We need to split the extent we found, and may flip 648 * bits on second half. 649 * 650 * If the extent we found extends past our range, we 651 * just split and search again. It'll get split again 652 * the next time though. 653 * 654 * If the extent we found is inside our range, we clear 655 * the desired bit on it. 656 */ 657 658 if (state->start < start) { 659 prealloc = alloc_extent_state_atomic(prealloc); 660 BUG_ON(!prealloc); 661 err = split_state(tree, state, prealloc, start); 662 if (err) 663 extent_io_tree_panic(tree, err); 664 665 prealloc = NULL; 666 if (err) 667 goto out; 668 if (state->end <= end) { 669 state = clear_state_bit(tree, state, &bits, wake); 670 goto next; 671 } 672 goto search_again; 673 } 674 /* 675 * | ---- desired range ---- | 676 * | state | 677 * We need to split the extent, and clear the bit 678 * on the first half 679 */ 680 if (state->start <= end && state->end > end) { 681 prealloc = alloc_extent_state_atomic(prealloc); 682 BUG_ON(!prealloc); 683 err = split_state(tree, state, prealloc, end + 1); 684 if (err) 685 extent_io_tree_panic(tree, err); 686 687 if (wake) 688 wake_up(&state->wq); 689 690 clear_state_bit(tree, prealloc, &bits, wake); 691 692 prealloc = NULL; 693 goto out; 694 } 695 696 state = clear_state_bit(tree, state, &bits, wake); 697 next: 698 if (last_end == (u64)-1) 699 goto out; 700 start = last_end + 1; 701 if (start <= end && state && !need_resched()) 702 goto hit_next; 703 goto search_again; 704 705 out: 706 spin_unlock(&tree->lock); 707 if (prealloc) 708 free_extent_state(prealloc); 709 710 return 0; 711 712 search_again: 713 if (start > end) 714 goto out; 715 spin_unlock(&tree->lock); 716 if (mask & __GFP_WAIT) 717 cond_resched(); 718 goto again; 719 } 720 721 static void wait_on_state(struct extent_io_tree *tree, 722 struct extent_state *state) 723 __releases(tree->lock) 724 __acquires(tree->lock) 725 { 726 DEFINE_WAIT(wait); 727 prepare_to_wait(&state->wq, &wait, TASK_UNINTERRUPTIBLE); 728 spin_unlock(&tree->lock); 729 schedule(); 730 spin_lock(&tree->lock); 731 finish_wait(&state->wq, &wait); 732 } 733 734 /* 735 * waits for one or more bits to clear on a range in the state tree. 736 * The range [start, end] is inclusive. 737 * The tree lock is taken by this function 738 */ 739 static void wait_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 740 unsigned long bits) 741 { 742 struct extent_state *state; 743 struct rb_node *node; 744 745 btrfs_debug_check_extent_io_range(tree, start, end); 746 747 spin_lock(&tree->lock); 748 again: 749 while (1) { 750 /* 751 * this search will find all the extents that end after 752 * our range starts 753 */ 754 node = tree_search(tree, start); 755 process_node: 756 if (!node) 757 break; 758 759 state = rb_entry(node, struct extent_state, rb_node); 760 761 if (state->start > end) 762 goto out; 763 764 if (state->state & bits) { 765 start = state->start; 766 atomic_inc(&state->refs); 767 wait_on_state(tree, state); 768 free_extent_state(state); 769 goto again; 770 } 771 start = state->end + 1; 772 773 if (start > end) 774 break; 775 776 if (!cond_resched_lock(&tree->lock)) { 777 node = rb_next(node); 778 goto process_node; 779 } 780 } 781 out: 782 spin_unlock(&tree->lock); 783 } 784 785 static void set_state_bits(struct extent_io_tree *tree, 786 struct extent_state *state, 787 unsigned long *bits) 788 { 789 unsigned long bits_to_set = *bits & ~EXTENT_CTLBITS; 790 791 set_state_cb(tree, state, bits); 792 if ((bits_to_set & EXTENT_DIRTY) && !(state->state & EXTENT_DIRTY)) { 793 u64 range = state->end - state->start + 1; 794 tree->dirty_bytes += range; 795 } 796 state->state |= bits_to_set; 797 } 798 799 static void cache_state(struct extent_state *state, 800 struct extent_state **cached_ptr) 801 { 802 if (cached_ptr && !(*cached_ptr)) { 803 if (state->state & (EXTENT_IOBITS | EXTENT_BOUNDARY)) { 804 *cached_ptr = state; 805 atomic_inc(&state->refs); 806 } 807 } 808 } 809 810 /* 811 * set some bits on a range in the tree. This may require allocations or 812 * sleeping, so the gfp mask is used to indicate what is allowed. 813 * 814 * If any of the exclusive bits are set, this will fail with -EEXIST if some 815 * part of the range already has the desired bits set. The start of the 816 * existing range is returned in failed_start in this case. 817 * 818 * [start, end] is inclusive This takes the tree lock. 819 */ 820 821 static int __must_check 822 __set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 823 unsigned long bits, unsigned long exclusive_bits, 824 u64 *failed_start, struct extent_state **cached_state, 825 gfp_t mask) 826 { 827 struct extent_state *state; 828 struct extent_state *prealloc = NULL; 829 struct rb_node *node; 830 struct rb_node **p; 831 struct rb_node *parent; 832 int err = 0; 833 u64 last_start; 834 u64 last_end; 835 836 btrfs_debug_check_extent_io_range(tree, start, end); 837 838 bits |= EXTENT_FIRST_DELALLOC; 839 again: 840 if (!prealloc && (mask & __GFP_WAIT)) { 841 prealloc = alloc_extent_state(mask); 842 BUG_ON(!prealloc); 843 } 844 845 spin_lock(&tree->lock); 846 if (cached_state && *cached_state) { 847 state = *cached_state; 848 if (state->start <= start && state->end > start && 849 extent_state_in_tree(state)) { 850 node = &state->rb_node; 851 goto hit_next; 852 } 853 } 854 /* 855 * this search will find all the extents that end after 856 * our range starts. 857 */ 858 node = tree_search_for_insert(tree, start, &p, &parent); 859 if (!node) { 860 prealloc = alloc_extent_state_atomic(prealloc); 861 BUG_ON(!prealloc); 862 err = insert_state(tree, prealloc, start, end, 863 &p, &parent, &bits); 864 if (err) 865 extent_io_tree_panic(tree, err); 866 867 cache_state(prealloc, cached_state); 868 prealloc = NULL; 869 goto out; 870 } 871 state = rb_entry(node, struct extent_state, rb_node); 872 hit_next: 873 last_start = state->start; 874 last_end = state->end; 875 876 /* 877 * | ---- desired range ---- | 878 * | state | 879 * 880 * Just lock what we found and keep going 881 */ 882 if (state->start == start && state->end <= end) { 883 if (state->state & exclusive_bits) { 884 *failed_start = state->start; 885 err = -EEXIST; 886 goto out; 887 } 888 889 set_state_bits(tree, state, &bits); 890 cache_state(state, cached_state); 891 merge_state(tree, state); 892 if (last_end == (u64)-1) 893 goto out; 894 start = last_end + 1; 895 state = next_state(state); 896 if (start < end && state && state->start == start && 897 !need_resched()) 898 goto hit_next; 899 goto search_again; 900 } 901 902 /* 903 * | ---- desired range ---- | 904 * | state | 905 * or 906 * | ------------- state -------------- | 907 * 908 * We need to split the extent we found, and may flip bits on 909 * second half. 910 * 911 * If the extent we found extends past our 912 * range, we just split and search again. It'll get split 913 * again the next time though. 914 * 915 * If the extent we found is inside our range, we set the 916 * desired bit on it. 917 */ 918 if (state->start < start) { 919 if (state->state & exclusive_bits) { 920 *failed_start = start; 921 err = -EEXIST; 922 goto out; 923 } 924 925 prealloc = alloc_extent_state_atomic(prealloc); 926 BUG_ON(!prealloc); 927 err = split_state(tree, state, prealloc, start); 928 if (err) 929 extent_io_tree_panic(tree, err); 930 931 prealloc = NULL; 932 if (err) 933 goto out; 934 if (state->end <= end) { 935 set_state_bits(tree, state, &bits); 936 cache_state(state, cached_state); 937 merge_state(tree, state); 938 if (last_end == (u64)-1) 939 goto out; 940 start = last_end + 1; 941 state = next_state(state); 942 if (start < end && state && state->start == start && 943 !need_resched()) 944 goto hit_next; 945 } 946 goto search_again; 947 } 948 /* 949 * | ---- desired range ---- | 950 * | state | or | state | 951 * 952 * There's a hole, we need to insert something in it and 953 * ignore the extent we found. 954 */ 955 if (state->start > start) { 956 u64 this_end; 957 if (end < last_start) 958 this_end = end; 959 else 960 this_end = last_start - 1; 961 962 prealloc = alloc_extent_state_atomic(prealloc); 963 BUG_ON(!prealloc); 964 965 /* 966 * Avoid to free 'prealloc' if it can be merged with 967 * the later extent. 968 */ 969 err = insert_state(tree, prealloc, start, this_end, 970 NULL, NULL, &bits); 971 if (err) 972 extent_io_tree_panic(tree, err); 973 974 cache_state(prealloc, cached_state); 975 prealloc = NULL; 976 start = this_end + 1; 977 goto search_again; 978 } 979 /* 980 * | ---- desired range ---- | 981 * | state | 982 * We need to split the extent, and set the bit 983 * on the first half 984 */ 985 if (state->start <= end && state->end > end) { 986 if (state->state & exclusive_bits) { 987 *failed_start = start; 988 err = -EEXIST; 989 goto out; 990 } 991 992 prealloc = alloc_extent_state_atomic(prealloc); 993 BUG_ON(!prealloc); 994 err = split_state(tree, state, prealloc, end + 1); 995 if (err) 996 extent_io_tree_panic(tree, err); 997 998 set_state_bits(tree, prealloc, &bits); 999 cache_state(prealloc, cached_state); 1000 merge_state(tree, prealloc); 1001 prealloc = NULL; 1002 goto out; 1003 } 1004 1005 goto search_again; 1006 1007 out: 1008 spin_unlock(&tree->lock); 1009 if (prealloc) 1010 free_extent_state(prealloc); 1011 1012 return err; 1013 1014 search_again: 1015 if (start > end) 1016 goto out; 1017 spin_unlock(&tree->lock); 1018 if (mask & __GFP_WAIT) 1019 cond_resched(); 1020 goto again; 1021 } 1022 1023 int set_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1024 unsigned long bits, u64 * failed_start, 1025 struct extent_state **cached_state, gfp_t mask) 1026 { 1027 return __set_extent_bit(tree, start, end, bits, 0, failed_start, 1028 cached_state, mask); 1029 } 1030 1031 1032 /** 1033 * convert_extent_bit - convert all bits in a given range from one bit to 1034 * another 1035 * @tree: the io tree to search 1036 * @start: the start offset in bytes 1037 * @end: the end offset in bytes (inclusive) 1038 * @bits: the bits to set in this range 1039 * @clear_bits: the bits to clear in this range 1040 * @cached_state: state that we're going to cache 1041 * @mask: the allocation mask 1042 * 1043 * This will go through and set bits for the given range. If any states exist 1044 * already in this range they are set with the given bit and cleared of the 1045 * clear_bits. This is only meant to be used by things that are mergeable, ie 1046 * converting from say DELALLOC to DIRTY. This is not meant to be used with 1047 * boundary bits like LOCK. 1048 */ 1049 int convert_extent_bit(struct extent_io_tree *tree, u64 start, u64 end, 1050 unsigned long bits, unsigned long clear_bits, 1051 struct extent_state **cached_state, gfp_t mask) 1052 { 1053 struct extent_state *state; 1054 struct extent_state *prealloc = NULL; 1055 struct rb_node *node; 1056 struct rb_node **p; 1057 struct rb_node *parent; 1058 int err = 0; 1059 u64 last_start; 1060 u64 last_end; 1061 1062 btrfs_debug_check_extent_io_range(tree, start, end); 1063 1064 again: 1065 if (!prealloc && (mask & __GFP_WAIT)) { 1066 prealloc = alloc_extent_state(mask); 1067 if (!prealloc) 1068 return -ENOMEM; 1069 } 1070 1071 spin_lock(&tree->lock); 1072 if (cached_state && *cached_state) { 1073 state = *cached_state; 1074 if (state->start <= start && state->end > start && 1075 extent_state_in_tree(state)) { 1076 node = &state->rb_node; 1077 goto hit_next; 1078 } 1079 } 1080 1081 /* 1082 * this search will find all the extents that end after 1083 * our range starts. 1084 */ 1085 node = tree_search_for_insert(tree, start, &p, &parent); 1086 if (!node) { 1087 prealloc = alloc_extent_state_atomic(prealloc); 1088 if (!prealloc) { 1089 err = -ENOMEM; 1090 goto out; 1091 } 1092 err = insert_state(tree, prealloc, start, end, 1093 &p, &parent, &bits); 1094 if (err) 1095 extent_io_tree_panic(tree, err); 1096 cache_state(prealloc, cached_state); 1097 prealloc = NULL; 1098 goto out; 1099 } 1100 state = rb_entry(node, struct extent_state, rb_node); 1101 hit_next: 1102 last_start = state->start; 1103 last_end = state->end; 1104 1105 /* 1106 * | ---- desired range ---- | 1107 * | state | 1108 * 1109 * Just lock what we found and keep going 1110 */ 1111 if (state->start == start && state->end <= end) { 1112 set_state_bits(tree, state, &bits); 1113 cache_state(state, cached_state); 1114 state = clear_state_bit(tree, state, &clear_bits, 0); 1115 if (last_end == (u64)-1) 1116 goto out; 1117 start = last_end + 1; 1118 if (start < end && state && state->start == start && 1119 !need_resched()) 1120 goto hit_next; 1121 goto search_again; 1122 } 1123 1124 /* 1125 * | ---- desired range ---- | 1126 * | state | 1127 * or 1128 * | ------------- state -------------- | 1129 * 1130 * We need to split the extent we found, and may flip bits on 1131 * second half. 1132 * 1133 * If the extent we found extends past our 1134 * range, we just split and search again. It'll get split 1135 * again the next time though. 1136 * 1137 * If the extent we found is inside our range, we set the 1138 * desired bit on it. 1139 */ 1140 if (state->start < start) { 1141 prealloc = alloc_extent_state_atomic(prealloc); 1142 if (!prealloc) { 1143 err = -ENOMEM; 1144 goto out; 1145 } 1146 err = split_state(tree, state, prealloc, start); 1147 if (err) 1148 extent_io_tree_panic(tree, err); 1149 prealloc = NULL; 1150 if (err) 1151 goto out; 1152 if (state->end <= end) { 1153 set_state_bits(tree, state, &bits); 1154 cache_state(state, cached_state); 1155 state = clear_state_bit(tree, state, &clear_bits, 0); 1156 if (last_end == (u64)-1) 1157 goto out; 1158 start = last_end + 1; 1159 if (start < end && state && state->start == start && 1160 !need_resched()) 1161 goto hit_next; 1162 } 1163 goto search_again; 1164 } 1165 /* 1166 * | ---- desired range ---- | 1167 * | state | or | state | 1168 * 1169 * There's a hole, we need to insert something in it and 1170 * ignore the extent we found. 1171 */ 1172 if (state->start > start) { 1173 u64 this_end; 1174 if (end < last_start) 1175 this_end = end; 1176 else 1177 this_end = last_start - 1; 1178 1179 prealloc = alloc_extent_state_atomic(prealloc); 1180 if (!prealloc) { 1181 err = -ENOMEM; 1182 goto out; 1183 } 1184 1185 /* 1186 * Avoid to free 'prealloc' if it can be merged with 1187 * the later extent. 1188 */ 1189 err = insert_state(tree, prealloc, start, this_end, 1190 NULL, NULL, &bits); 1191 if (err) 1192 extent_io_tree_panic(tree, err); 1193 cache_state(prealloc, cached_state); 1194 prealloc = NULL; 1195 start = this_end + 1; 1196 goto search_again; 1197 } 1198 /* 1199 * | ---- desired range ---- | 1200 * | state | 1201 * We need to split the extent, and set the bit 1202 * on the first half 1203 */ 1204 if (state->start <= end && state->end > end) { 1205 prealloc = alloc_extent_state_atomic(prealloc); 1206 if (!prealloc) { 1207 err = -ENOMEM; 1208 goto out; 1209 } 1210 1211 err = split_state(tree, state, prealloc, end + 1); 1212 if (err) 1213 extent_io_tree_panic(tree, err); 1214 1215 set_state_bits(tree, prealloc, &bits); 1216 cache_state(prealloc, cached_state); 1217 clear_state_bit(tree, prealloc, &clear_bits, 0); 1218 prealloc = NULL; 1219 goto out; 1220 } 1221 1222 goto search_again; 1223 1224 out: 1225 spin_unlock(&tree->lock); 1226 if (prealloc) 1227 free_extent_state(prealloc); 1228 1229 return err; 1230 1231 search_again: 1232 if (start > end) 1233 goto out; 1234 spin_unlock(&tree->lock); 1235 if (mask & __GFP_WAIT) 1236 cond_resched(); 1237 goto again; 1238 } 1239 1240 /* wrappers around set/clear extent bit */ 1241 int set_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1242 gfp_t mask) 1243 { 1244 return set_extent_bit(tree, start, end, EXTENT_DIRTY, NULL, 1245 NULL, mask); 1246 } 1247 1248 int set_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1249 unsigned long bits, gfp_t mask) 1250 { 1251 return set_extent_bit(tree, start, end, bits, NULL, 1252 NULL, mask); 1253 } 1254 1255 int clear_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1256 unsigned long bits, gfp_t mask) 1257 { 1258 return clear_extent_bit(tree, start, end, bits, 0, 0, NULL, mask); 1259 } 1260 1261 int set_extent_delalloc(struct extent_io_tree *tree, u64 start, u64 end, 1262 struct extent_state **cached_state, gfp_t mask) 1263 { 1264 return set_extent_bit(tree, start, end, 1265 EXTENT_DELALLOC | EXTENT_UPTODATE, 1266 NULL, cached_state, mask); 1267 } 1268 1269 int set_extent_defrag(struct extent_io_tree *tree, u64 start, u64 end, 1270 struct extent_state **cached_state, gfp_t mask) 1271 { 1272 return set_extent_bit(tree, start, end, 1273 EXTENT_DELALLOC | EXTENT_UPTODATE | EXTENT_DEFRAG, 1274 NULL, cached_state, mask); 1275 } 1276 1277 int clear_extent_dirty(struct extent_io_tree *tree, u64 start, u64 end, 1278 gfp_t mask) 1279 { 1280 return clear_extent_bit(tree, start, end, 1281 EXTENT_DIRTY | EXTENT_DELALLOC | 1282 EXTENT_DO_ACCOUNTING, 0, 0, NULL, mask); 1283 } 1284 1285 int set_extent_new(struct extent_io_tree *tree, u64 start, u64 end, 1286 gfp_t mask) 1287 { 1288 return set_extent_bit(tree, start, end, EXTENT_NEW, NULL, 1289 NULL, mask); 1290 } 1291 1292 int set_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1293 struct extent_state **cached_state, gfp_t mask) 1294 { 1295 return set_extent_bit(tree, start, end, EXTENT_UPTODATE, NULL, 1296 cached_state, mask); 1297 } 1298 1299 int clear_extent_uptodate(struct extent_io_tree *tree, u64 start, u64 end, 1300 struct extent_state **cached_state, gfp_t mask) 1301 { 1302 return clear_extent_bit(tree, start, end, EXTENT_UPTODATE, 0, 0, 1303 cached_state, mask); 1304 } 1305 1306 /* 1307 * either insert or lock state struct between start and end use mask to tell 1308 * us if waiting is desired. 1309 */ 1310 int lock_extent_bits(struct extent_io_tree *tree, u64 start, u64 end, 1311 unsigned long bits, struct extent_state **cached_state) 1312 { 1313 int err; 1314 u64 failed_start; 1315 while (1) { 1316 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED | bits, 1317 EXTENT_LOCKED, &failed_start, 1318 cached_state, GFP_NOFS); 1319 if (err == -EEXIST) { 1320 wait_extent_bit(tree, failed_start, end, EXTENT_LOCKED); 1321 start = failed_start; 1322 } else 1323 break; 1324 WARN_ON(start > end); 1325 } 1326 return err; 1327 } 1328 1329 int lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1330 { 1331 return lock_extent_bits(tree, start, end, 0, NULL); 1332 } 1333 1334 int try_lock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1335 { 1336 int err; 1337 u64 failed_start; 1338 1339 err = __set_extent_bit(tree, start, end, EXTENT_LOCKED, EXTENT_LOCKED, 1340 &failed_start, NULL, GFP_NOFS); 1341 if (err == -EEXIST) { 1342 if (failed_start > start) 1343 clear_extent_bit(tree, start, failed_start - 1, 1344 EXTENT_LOCKED, 1, 0, NULL, GFP_NOFS); 1345 return 0; 1346 } 1347 return 1; 1348 } 1349 1350 int unlock_extent_cached(struct extent_io_tree *tree, u64 start, u64 end, 1351 struct extent_state **cached, gfp_t mask) 1352 { 1353 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, cached, 1354 mask); 1355 } 1356 1357 int unlock_extent(struct extent_io_tree *tree, u64 start, u64 end) 1358 { 1359 return clear_extent_bit(tree, start, end, EXTENT_LOCKED, 1, 0, NULL, 1360 GFP_NOFS); 1361 } 1362 1363 int extent_range_clear_dirty_for_io(struct inode *inode, u64 start, u64 end) 1364 { 1365 unsigned long index = start >> PAGE_CACHE_SHIFT; 1366 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1367 struct page *page; 1368 1369 while (index <= end_index) { 1370 page = find_get_page(inode->i_mapping, index); 1371 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1372 clear_page_dirty_for_io(page); 1373 page_cache_release(page); 1374 index++; 1375 } 1376 return 0; 1377 } 1378 1379 int extent_range_redirty_for_io(struct inode *inode, u64 start, u64 end) 1380 { 1381 unsigned long index = start >> PAGE_CACHE_SHIFT; 1382 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1383 struct page *page; 1384 1385 while (index <= end_index) { 1386 page = find_get_page(inode->i_mapping, index); 1387 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1388 account_page_redirty(page); 1389 __set_page_dirty_nobuffers(page); 1390 page_cache_release(page); 1391 index++; 1392 } 1393 return 0; 1394 } 1395 1396 /* 1397 * helper function to set both pages and extents in the tree writeback 1398 */ 1399 static int set_range_writeback(struct extent_io_tree *tree, u64 start, u64 end) 1400 { 1401 unsigned long index = start >> PAGE_CACHE_SHIFT; 1402 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1403 struct page *page; 1404 1405 while (index <= end_index) { 1406 page = find_get_page(tree->mapping, index); 1407 BUG_ON(!page); /* Pages should be in the extent_io_tree */ 1408 set_page_writeback(page); 1409 page_cache_release(page); 1410 index++; 1411 } 1412 return 0; 1413 } 1414 1415 /* find the first state struct with 'bits' set after 'start', and 1416 * return it. tree->lock must be held. NULL will returned if 1417 * nothing was found after 'start' 1418 */ 1419 static struct extent_state * 1420 find_first_extent_bit_state(struct extent_io_tree *tree, 1421 u64 start, unsigned long bits) 1422 { 1423 struct rb_node *node; 1424 struct extent_state *state; 1425 1426 /* 1427 * this search will find all the extents that end after 1428 * our range starts. 1429 */ 1430 node = tree_search(tree, start); 1431 if (!node) 1432 goto out; 1433 1434 while (1) { 1435 state = rb_entry(node, struct extent_state, rb_node); 1436 if (state->end >= start && (state->state & bits)) 1437 return state; 1438 1439 node = rb_next(node); 1440 if (!node) 1441 break; 1442 } 1443 out: 1444 return NULL; 1445 } 1446 1447 /* 1448 * find the first offset in the io tree with 'bits' set. zero is 1449 * returned if we find something, and *start_ret and *end_ret are 1450 * set to reflect the state struct that was found. 1451 * 1452 * If nothing was found, 1 is returned. If found something, return 0. 1453 */ 1454 int find_first_extent_bit(struct extent_io_tree *tree, u64 start, 1455 u64 *start_ret, u64 *end_ret, unsigned long bits, 1456 struct extent_state **cached_state) 1457 { 1458 struct extent_state *state; 1459 struct rb_node *n; 1460 int ret = 1; 1461 1462 spin_lock(&tree->lock); 1463 if (cached_state && *cached_state) { 1464 state = *cached_state; 1465 if (state->end == start - 1 && extent_state_in_tree(state)) { 1466 n = rb_next(&state->rb_node); 1467 while (n) { 1468 state = rb_entry(n, struct extent_state, 1469 rb_node); 1470 if (state->state & bits) 1471 goto got_it; 1472 n = rb_next(n); 1473 } 1474 free_extent_state(*cached_state); 1475 *cached_state = NULL; 1476 goto out; 1477 } 1478 free_extent_state(*cached_state); 1479 *cached_state = NULL; 1480 } 1481 1482 state = find_first_extent_bit_state(tree, start, bits); 1483 got_it: 1484 if (state) { 1485 cache_state(state, cached_state); 1486 *start_ret = state->start; 1487 *end_ret = state->end; 1488 ret = 0; 1489 } 1490 out: 1491 spin_unlock(&tree->lock); 1492 return ret; 1493 } 1494 1495 /* 1496 * find a contiguous range of bytes in the file marked as delalloc, not 1497 * more than 'max_bytes'. start and end are used to return the range, 1498 * 1499 * 1 is returned if we find something, 0 if nothing was in the tree 1500 */ 1501 static noinline u64 find_delalloc_range(struct extent_io_tree *tree, 1502 u64 *start, u64 *end, u64 max_bytes, 1503 struct extent_state **cached_state) 1504 { 1505 struct rb_node *node; 1506 struct extent_state *state; 1507 u64 cur_start = *start; 1508 u64 found = 0; 1509 u64 total_bytes = 0; 1510 1511 spin_lock(&tree->lock); 1512 1513 /* 1514 * this search will find all the extents that end after 1515 * our range starts. 1516 */ 1517 node = tree_search(tree, cur_start); 1518 if (!node) { 1519 if (!found) 1520 *end = (u64)-1; 1521 goto out; 1522 } 1523 1524 while (1) { 1525 state = rb_entry(node, struct extent_state, rb_node); 1526 if (found && (state->start != cur_start || 1527 (state->state & EXTENT_BOUNDARY))) { 1528 goto out; 1529 } 1530 if (!(state->state & EXTENT_DELALLOC)) { 1531 if (!found) 1532 *end = state->end; 1533 goto out; 1534 } 1535 if (!found) { 1536 *start = state->start; 1537 *cached_state = state; 1538 atomic_inc(&state->refs); 1539 } 1540 found++; 1541 *end = state->end; 1542 cur_start = state->end + 1; 1543 node = rb_next(node); 1544 total_bytes += state->end - state->start + 1; 1545 if (total_bytes >= max_bytes) 1546 break; 1547 if (!node) 1548 break; 1549 } 1550 out: 1551 spin_unlock(&tree->lock); 1552 return found; 1553 } 1554 1555 static noinline void __unlock_for_delalloc(struct inode *inode, 1556 struct page *locked_page, 1557 u64 start, u64 end) 1558 { 1559 int ret; 1560 struct page *pages[16]; 1561 unsigned long index = start >> PAGE_CACHE_SHIFT; 1562 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1563 unsigned long nr_pages = end_index - index + 1; 1564 int i; 1565 1566 if (index == locked_page->index && end_index == index) 1567 return; 1568 1569 while (nr_pages > 0) { 1570 ret = find_get_pages_contig(inode->i_mapping, index, 1571 min_t(unsigned long, nr_pages, 1572 ARRAY_SIZE(pages)), pages); 1573 for (i = 0; i < ret; i++) { 1574 if (pages[i] != locked_page) 1575 unlock_page(pages[i]); 1576 page_cache_release(pages[i]); 1577 } 1578 nr_pages -= ret; 1579 index += ret; 1580 cond_resched(); 1581 } 1582 } 1583 1584 static noinline int lock_delalloc_pages(struct inode *inode, 1585 struct page *locked_page, 1586 u64 delalloc_start, 1587 u64 delalloc_end) 1588 { 1589 unsigned long index = delalloc_start >> PAGE_CACHE_SHIFT; 1590 unsigned long start_index = index; 1591 unsigned long end_index = delalloc_end >> PAGE_CACHE_SHIFT; 1592 unsigned long pages_locked = 0; 1593 struct page *pages[16]; 1594 unsigned long nrpages; 1595 int ret; 1596 int i; 1597 1598 /* the caller is responsible for locking the start index */ 1599 if (index == locked_page->index && index == end_index) 1600 return 0; 1601 1602 /* skip the page at the start index */ 1603 nrpages = end_index - index + 1; 1604 while (nrpages > 0) { 1605 ret = find_get_pages_contig(inode->i_mapping, index, 1606 min_t(unsigned long, 1607 nrpages, ARRAY_SIZE(pages)), pages); 1608 if (ret == 0) { 1609 ret = -EAGAIN; 1610 goto done; 1611 } 1612 /* now we have an array of pages, lock them all */ 1613 for (i = 0; i < ret; i++) { 1614 /* 1615 * the caller is taking responsibility for 1616 * locked_page 1617 */ 1618 if (pages[i] != locked_page) { 1619 lock_page(pages[i]); 1620 if (!PageDirty(pages[i]) || 1621 pages[i]->mapping != inode->i_mapping) { 1622 ret = -EAGAIN; 1623 unlock_page(pages[i]); 1624 page_cache_release(pages[i]); 1625 goto done; 1626 } 1627 } 1628 page_cache_release(pages[i]); 1629 pages_locked++; 1630 } 1631 nrpages -= ret; 1632 index += ret; 1633 cond_resched(); 1634 } 1635 ret = 0; 1636 done: 1637 if (ret && pages_locked) { 1638 __unlock_for_delalloc(inode, locked_page, 1639 delalloc_start, 1640 ((u64)(start_index + pages_locked - 1)) << 1641 PAGE_CACHE_SHIFT); 1642 } 1643 return ret; 1644 } 1645 1646 /* 1647 * find a contiguous range of bytes in the file marked as delalloc, not 1648 * more than 'max_bytes'. start and end are used to return the range, 1649 * 1650 * 1 is returned if we find something, 0 if nothing was in the tree 1651 */ 1652 STATIC u64 find_lock_delalloc_range(struct inode *inode, 1653 struct extent_io_tree *tree, 1654 struct page *locked_page, u64 *start, 1655 u64 *end, u64 max_bytes) 1656 { 1657 u64 delalloc_start; 1658 u64 delalloc_end; 1659 u64 found; 1660 struct extent_state *cached_state = NULL; 1661 int ret; 1662 int loops = 0; 1663 1664 again: 1665 /* step one, find a bunch of delalloc bytes starting at start */ 1666 delalloc_start = *start; 1667 delalloc_end = 0; 1668 found = find_delalloc_range(tree, &delalloc_start, &delalloc_end, 1669 max_bytes, &cached_state); 1670 if (!found || delalloc_end <= *start) { 1671 *start = delalloc_start; 1672 *end = delalloc_end; 1673 free_extent_state(cached_state); 1674 return 0; 1675 } 1676 1677 /* 1678 * start comes from the offset of locked_page. We have to lock 1679 * pages in order, so we can't process delalloc bytes before 1680 * locked_page 1681 */ 1682 if (delalloc_start < *start) 1683 delalloc_start = *start; 1684 1685 /* 1686 * make sure to limit the number of pages we try to lock down 1687 */ 1688 if (delalloc_end + 1 - delalloc_start > max_bytes) 1689 delalloc_end = delalloc_start + max_bytes - 1; 1690 1691 /* step two, lock all the pages after the page that has start */ 1692 ret = lock_delalloc_pages(inode, locked_page, 1693 delalloc_start, delalloc_end); 1694 if (ret == -EAGAIN) { 1695 /* some of the pages are gone, lets avoid looping by 1696 * shortening the size of the delalloc range we're searching 1697 */ 1698 free_extent_state(cached_state); 1699 cached_state = NULL; 1700 if (!loops) { 1701 max_bytes = PAGE_CACHE_SIZE; 1702 loops = 1; 1703 goto again; 1704 } else { 1705 found = 0; 1706 goto out_failed; 1707 } 1708 } 1709 BUG_ON(ret); /* Only valid values are 0 and -EAGAIN */ 1710 1711 /* step three, lock the state bits for the whole range */ 1712 lock_extent_bits(tree, delalloc_start, delalloc_end, 0, &cached_state); 1713 1714 /* then test to make sure it is all still delalloc */ 1715 ret = test_range_bit(tree, delalloc_start, delalloc_end, 1716 EXTENT_DELALLOC, 1, cached_state); 1717 if (!ret) { 1718 unlock_extent_cached(tree, delalloc_start, delalloc_end, 1719 &cached_state, GFP_NOFS); 1720 __unlock_for_delalloc(inode, locked_page, 1721 delalloc_start, delalloc_end); 1722 cond_resched(); 1723 goto again; 1724 } 1725 free_extent_state(cached_state); 1726 *start = delalloc_start; 1727 *end = delalloc_end; 1728 out_failed: 1729 return found; 1730 } 1731 1732 int extent_clear_unlock_delalloc(struct inode *inode, u64 start, u64 end, 1733 struct page *locked_page, 1734 unsigned long clear_bits, 1735 unsigned long page_ops) 1736 { 1737 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 1738 int ret; 1739 struct page *pages[16]; 1740 unsigned long index = start >> PAGE_CACHE_SHIFT; 1741 unsigned long end_index = end >> PAGE_CACHE_SHIFT; 1742 unsigned long nr_pages = end_index - index + 1; 1743 int i; 1744 1745 clear_extent_bit(tree, start, end, clear_bits, 1, 0, NULL, GFP_NOFS); 1746 if (page_ops == 0) 1747 return 0; 1748 1749 while (nr_pages > 0) { 1750 ret = find_get_pages_contig(inode->i_mapping, index, 1751 min_t(unsigned long, 1752 nr_pages, ARRAY_SIZE(pages)), pages); 1753 for (i = 0; i < ret; i++) { 1754 1755 if (page_ops & PAGE_SET_PRIVATE2) 1756 SetPagePrivate2(pages[i]); 1757 1758 if (pages[i] == locked_page) { 1759 page_cache_release(pages[i]); 1760 continue; 1761 } 1762 if (page_ops & PAGE_CLEAR_DIRTY) 1763 clear_page_dirty_for_io(pages[i]); 1764 if (page_ops & PAGE_SET_WRITEBACK) 1765 set_page_writeback(pages[i]); 1766 if (page_ops & PAGE_END_WRITEBACK) 1767 end_page_writeback(pages[i]); 1768 if (page_ops & PAGE_UNLOCK) 1769 unlock_page(pages[i]); 1770 page_cache_release(pages[i]); 1771 } 1772 nr_pages -= ret; 1773 index += ret; 1774 cond_resched(); 1775 } 1776 return 0; 1777 } 1778 1779 /* 1780 * count the number of bytes in the tree that have a given bit(s) 1781 * set. This can be fairly slow, except for EXTENT_DIRTY which is 1782 * cached. The total number found is returned. 1783 */ 1784 u64 count_range_bits(struct extent_io_tree *tree, 1785 u64 *start, u64 search_end, u64 max_bytes, 1786 unsigned long bits, int contig) 1787 { 1788 struct rb_node *node; 1789 struct extent_state *state; 1790 u64 cur_start = *start; 1791 u64 total_bytes = 0; 1792 u64 last = 0; 1793 int found = 0; 1794 1795 if (WARN_ON(search_end <= cur_start)) 1796 return 0; 1797 1798 spin_lock(&tree->lock); 1799 if (cur_start == 0 && bits == EXTENT_DIRTY) { 1800 total_bytes = tree->dirty_bytes; 1801 goto out; 1802 } 1803 /* 1804 * this search will find all the extents that end after 1805 * our range starts. 1806 */ 1807 node = tree_search(tree, cur_start); 1808 if (!node) 1809 goto out; 1810 1811 while (1) { 1812 state = rb_entry(node, struct extent_state, rb_node); 1813 if (state->start > search_end) 1814 break; 1815 if (contig && found && state->start > last + 1) 1816 break; 1817 if (state->end >= cur_start && (state->state & bits) == bits) { 1818 total_bytes += min(search_end, state->end) + 1 - 1819 max(cur_start, state->start); 1820 if (total_bytes >= max_bytes) 1821 break; 1822 if (!found) { 1823 *start = max(cur_start, state->start); 1824 found = 1; 1825 } 1826 last = state->end; 1827 } else if (contig && found) { 1828 break; 1829 } 1830 node = rb_next(node); 1831 if (!node) 1832 break; 1833 } 1834 out: 1835 spin_unlock(&tree->lock); 1836 return total_bytes; 1837 } 1838 1839 /* 1840 * set the private field for a given byte offset in the tree. If there isn't 1841 * an extent_state there already, this does nothing. 1842 */ 1843 static int set_state_private(struct extent_io_tree *tree, u64 start, u64 private) 1844 { 1845 struct rb_node *node; 1846 struct extent_state *state; 1847 int ret = 0; 1848 1849 spin_lock(&tree->lock); 1850 /* 1851 * this search will find all the extents that end after 1852 * our range starts. 1853 */ 1854 node = tree_search(tree, start); 1855 if (!node) { 1856 ret = -ENOENT; 1857 goto out; 1858 } 1859 state = rb_entry(node, struct extent_state, rb_node); 1860 if (state->start != start) { 1861 ret = -ENOENT; 1862 goto out; 1863 } 1864 state->private = private; 1865 out: 1866 spin_unlock(&tree->lock); 1867 return ret; 1868 } 1869 1870 int get_state_private(struct extent_io_tree *tree, u64 start, u64 *private) 1871 { 1872 struct rb_node *node; 1873 struct extent_state *state; 1874 int ret = 0; 1875 1876 spin_lock(&tree->lock); 1877 /* 1878 * this search will find all the extents that end after 1879 * our range starts. 1880 */ 1881 node = tree_search(tree, start); 1882 if (!node) { 1883 ret = -ENOENT; 1884 goto out; 1885 } 1886 state = rb_entry(node, struct extent_state, rb_node); 1887 if (state->start != start) { 1888 ret = -ENOENT; 1889 goto out; 1890 } 1891 *private = state->private; 1892 out: 1893 spin_unlock(&tree->lock); 1894 return ret; 1895 } 1896 1897 /* 1898 * searches a range in the state tree for a given mask. 1899 * If 'filled' == 1, this returns 1 only if every extent in the tree 1900 * has the bits set. Otherwise, 1 is returned if any bit in the 1901 * range is found set. 1902 */ 1903 int test_range_bit(struct extent_io_tree *tree, u64 start, u64 end, 1904 unsigned long bits, int filled, struct extent_state *cached) 1905 { 1906 struct extent_state *state = NULL; 1907 struct rb_node *node; 1908 int bitset = 0; 1909 1910 spin_lock(&tree->lock); 1911 if (cached && extent_state_in_tree(cached) && cached->start <= start && 1912 cached->end > start) 1913 node = &cached->rb_node; 1914 else 1915 node = tree_search(tree, start); 1916 while (node && start <= end) { 1917 state = rb_entry(node, struct extent_state, rb_node); 1918 1919 if (filled && state->start > start) { 1920 bitset = 0; 1921 break; 1922 } 1923 1924 if (state->start > end) 1925 break; 1926 1927 if (state->state & bits) { 1928 bitset = 1; 1929 if (!filled) 1930 break; 1931 } else if (filled) { 1932 bitset = 0; 1933 break; 1934 } 1935 1936 if (state->end == (u64)-1) 1937 break; 1938 1939 start = state->end + 1; 1940 if (start > end) 1941 break; 1942 node = rb_next(node); 1943 if (!node) { 1944 if (filled) 1945 bitset = 0; 1946 break; 1947 } 1948 } 1949 spin_unlock(&tree->lock); 1950 return bitset; 1951 } 1952 1953 /* 1954 * helper function to set a given page up to date if all the 1955 * extents in the tree for that page are up to date 1956 */ 1957 static void check_page_uptodate(struct extent_io_tree *tree, struct page *page) 1958 { 1959 u64 start = page_offset(page); 1960 u64 end = start + PAGE_CACHE_SIZE - 1; 1961 if (test_range_bit(tree, start, end, EXTENT_UPTODATE, 1, NULL)) 1962 SetPageUptodate(page); 1963 } 1964 1965 /* 1966 * When IO fails, either with EIO or csum verification fails, we 1967 * try other mirrors that might have a good copy of the data. This 1968 * io_failure_record is used to record state as we go through all the 1969 * mirrors. If another mirror has good data, the page is set up to date 1970 * and things continue. If a good mirror can't be found, the original 1971 * bio end_io callback is called to indicate things have failed. 1972 */ 1973 struct io_failure_record { 1974 struct page *page; 1975 u64 start; 1976 u64 len; 1977 u64 logical; 1978 unsigned long bio_flags; 1979 int this_mirror; 1980 int failed_mirror; 1981 int in_validation; 1982 }; 1983 1984 static int free_io_failure(struct inode *inode, struct io_failure_record *rec, 1985 int did_repair) 1986 { 1987 int ret; 1988 int err = 0; 1989 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 1990 1991 set_state_private(failure_tree, rec->start, 0); 1992 ret = clear_extent_bits(failure_tree, rec->start, 1993 rec->start + rec->len - 1, 1994 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 1995 if (ret) 1996 err = ret; 1997 1998 ret = clear_extent_bits(&BTRFS_I(inode)->io_tree, rec->start, 1999 rec->start + rec->len - 1, 2000 EXTENT_DAMAGED, GFP_NOFS); 2001 if (ret && !err) 2002 err = ret; 2003 2004 kfree(rec); 2005 return err; 2006 } 2007 2008 /* 2009 * this bypasses the standard btrfs submit functions deliberately, as 2010 * the standard behavior is to write all copies in a raid setup. here we only 2011 * want to write the one bad copy. so we do the mapping for ourselves and issue 2012 * submit_bio directly. 2013 * to avoid any synchronization issues, wait for the data after writing, which 2014 * actually prevents the read that triggered the error from finishing. 2015 * currently, there can be no more than two copies of every data bit. thus, 2016 * exactly one rewrite is required. 2017 */ 2018 int repair_io_failure(struct btrfs_fs_info *fs_info, u64 start, 2019 u64 length, u64 logical, struct page *page, 2020 int mirror_num) 2021 { 2022 struct bio *bio; 2023 struct btrfs_device *dev; 2024 u64 map_length = 0; 2025 u64 sector; 2026 struct btrfs_bio *bbio = NULL; 2027 struct btrfs_mapping_tree *map_tree = &fs_info->mapping_tree; 2028 int ret; 2029 2030 ASSERT(!(fs_info->sb->s_flags & MS_RDONLY)); 2031 BUG_ON(!mirror_num); 2032 2033 /* we can't repair anything in raid56 yet */ 2034 if (btrfs_is_parity_mirror(map_tree, logical, length, mirror_num)) 2035 return 0; 2036 2037 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2038 if (!bio) 2039 return -EIO; 2040 bio->bi_iter.bi_size = 0; 2041 map_length = length; 2042 2043 ret = btrfs_map_block(fs_info, WRITE, logical, 2044 &map_length, &bbio, mirror_num); 2045 if (ret) { 2046 bio_put(bio); 2047 return -EIO; 2048 } 2049 BUG_ON(mirror_num != bbio->mirror_num); 2050 sector = bbio->stripes[mirror_num-1].physical >> 9; 2051 bio->bi_iter.bi_sector = sector; 2052 dev = bbio->stripes[mirror_num-1].dev; 2053 kfree(bbio); 2054 if (!dev || !dev->bdev || !dev->writeable) { 2055 bio_put(bio); 2056 return -EIO; 2057 } 2058 bio->bi_bdev = dev->bdev; 2059 bio_add_page(bio, page, length, start - page_offset(page)); 2060 2061 if (btrfsic_submit_bio_wait(WRITE_SYNC, bio)) { 2062 /* try to remap that extent elsewhere? */ 2063 bio_put(bio); 2064 btrfs_dev_stat_inc_and_print(dev, BTRFS_DEV_STAT_WRITE_ERRS); 2065 return -EIO; 2066 } 2067 2068 printk_ratelimited_in_rcu(KERN_INFO 2069 "BTRFS: read error corrected: ino %lu off %llu " 2070 "(dev %s sector %llu)\n", page->mapping->host->i_ino, 2071 start, rcu_str_deref(dev->name), sector); 2072 2073 bio_put(bio); 2074 return 0; 2075 } 2076 2077 int repair_eb_io_failure(struct btrfs_root *root, struct extent_buffer *eb, 2078 int mirror_num) 2079 { 2080 u64 start = eb->start; 2081 unsigned long i, num_pages = num_extent_pages(eb->start, eb->len); 2082 int ret = 0; 2083 2084 if (root->fs_info->sb->s_flags & MS_RDONLY) 2085 return -EROFS; 2086 2087 for (i = 0; i < num_pages; i++) { 2088 struct page *p = extent_buffer_page(eb, i); 2089 ret = repair_io_failure(root->fs_info, start, PAGE_CACHE_SIZE, 2090 start, p, mirror_num); 2091 if (ret) 2092 break; 2093 start += PAGE_CACHE_SIZE; 2094 } 2095 2096 return ret; 2097 } 2098 2099 /* 2100 * each time an IO finishes, we do a fast check in the IO failure tree 2101 * to see if we need to process or clean up an io_failure_record 2102 */ 2103 static int clean_io_failure(u64 start, struct page *page) 2104 { 2105 u64 private; 2106 u64 private_failure; 2107 struct io_failure_record *failrec; 2108 struct inode *inode = page->mapping->host; 2109 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2110 struct extent_state *state; 2111 int num_copies; 2112 int did_repair = 0; 2113 int ret; 2114 2115 private = 0; 2116 ret = count_range_bits(&BTRFS_I(inode)->io_failure_tree, &private, 2117 (u64)-1, 1, EXTENT_DIRTY, 0); 2118 if (!ret) 2119 return 0; 2120 2121 ret = get_state_private(&BTRFS_I(inode)->io_failure_tree, start, 2122 &private_failure); 2123 if (ret) 2124 return 0; 2125 2126 failrec = (struct io_failure_record *)(unsigned long) private_failure; 2127 BUG_ON(!failrec->this_mirror); 2128 2129 if (failrec->in_validation) { 2130 /* there was no real error, just free the record */ 2131 pr_debug("clean_io_failure: freeing dummy error at %llu\n", 2132 failrec->start); 2133 did_repair = 1; 2134 goto out; 2135 } 2136 if (fs_info->sb->s_flags & MS_RDONLY) 2137 goto out; 2138 2139 spin_lock(&BTRFS_I(inode)->io_tree.lock); 2140 state = find_first_extent_bit_state(&BTRFS_I(inode)->io_tree, 2141 failrec->start, 2142 EXTENT_LOCKED); 2143 spin_unlock(&BTRFS_I(inode)->io_tree.lock); 2144 2145 if (state && state->start <= failrec->start && 2146 state->end >= failrec->start + failrec->len - 1) { 2147 num_copies = btrfs_num_copies(fs_info, failrec->logical, 2148 failrec->len); 2149 if (num_copies > 1) { 2150 ret = repair_io_failure(fs_info, start, failrec->len, 2151 failrec->logical, page, 2152 failrec->failed_mirror); 2153 did_repair = !ret; 2154 } 2155 ret = 0; 2156 } 2157 2158 out: 2159 if (!ret) 2160 ret = free_io_failure(inode, failrec, did_repair); 2161 2162 return ret; 2163 } 2164 2165 /* 2166 * this is a generic handler for readpage errors (default 2167 * readpage_io_failed_hook). if other copies exist, read those and write back 2168 * good data to the failed position. does not investigate in remapping the 2169 * failed extent elsewhere, hoping the device will be smart enough to do this as 2170 * needed 2171 */ 2172 2173 static int bio_readpage_error(struct bio *failed_bio, u64 phy_offset, 2174 struct page *page, u64 start, u64 end, 2175 int failed_mirror) 2176 { 2177 struct io_failure_record *failrec = NULL; 2178 u64 private; 2179 struct extent_map *em; 2180 struct inode *inode = page->mapping->host; 2181 struct extent_io_tree *failure_tree = &BTRFS_I(inode)->io_failure_tree; 2182 struct extent_io_tree *tree = &BTRFS_I(inode)->io_tree; 2183 struct extent_map_tree *em_tree = &BTRFS_I(inode)->extent_tree; 2184 struct bio *bio; 2185 struct btrfs_io_bio *btrfs_failed_bio; 2186 struct btrfs_io_bio *btrfs_bio; 2187 int num_copies; 2188 int ret; 2189 int read_mode; 2190 u64 logical; 2191 2192 BUG_ON(failed_bio->bi_rw & REQ_WRITE); 2193 2194 ret = get_state_private(failure_tree, start, &private); 2195 if (ret) { 2196 failrec = kzalloc(sizeof(*failrec), GFP_NOFS); 2197 if (!failrec) 2198 return -ENOMEM; 2199 failrec->start = start; 2200 failrec->len = end - start + 1; 2201 failrec->this_mirror = 0; 2202 failrec->bio_flags = 0; 2203 failrec->in_validation = 0; 2204 2205 read_lock(&em_tree->lock); 2206 em = lookup_extent_mapping(em_tree, start, failrec->len); 2207 if (!em) { 2208 read_unlock(&em_tree->lock); 2209 kfree(failrec); 2210 return -EIO; 2211 } 2212 2213 if (em->start > start || em->start + em->len <= start) { 2214 free_extent_map(em); 2215 em = NULL; 2216 } 2217 read_unlock(&em_tree->lock); 2218 2219 if (!em) { 2220 kfree(failrec); 2221 return -EIO; 2222 } 2223 logical = start - em->start; 2224 logical = em->block_start + logical; 2225 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2226 logical = em->block_start; 2227 failrec->bio_flags = EXTENT_BIO_COMPRESSED; 2228 extent_set_compress_type(&failrec->bio_flags, 2229 em->compress_type); 2230 } 2231 pr_debug("bio_readpage_error: (new) logical=%llu, start=%llu, " 2232 "len=%llu\n", logical, start, failrec->len); 2233 failrec->logical = logical; 2234 free_extent_map(em); 2235 2236 /* set the bits in the private failure tree */ 2237 ret = set_extent_bits(failure_tree, start, end, 2238 EXTENT_LOCKED | EXTENT_DIRTY, GFP_NOFS); 2239 if (ret >= 0) 2240 ret = set_state_private(failure_tree, start, 2241 (u64)(unsigned long)failrec); 2242 /* set the bits in the inode's tree */ 2243 if (ret >= 0) 2244 ret = set_extent_bits(tree, start, end, EXTENT_DAMAGED, 2245 GFP_NOFS); 2246 if (ret < 0) { 2247 kfree(failrec); 2248 return ret; 2249 } 2250 } else { 2251 failrec = (struct io_failure_record *)(unsigned long)private; 2252 pr_debug("bio_readpage_error: (found) logical=%llu, " 2253 "start=%llu, len=%llu, validation=%d\n", 2254 failrec->logical, failrec->start, failrec->len, 2255 failrec->in_validation); 2256 /* 2257 * when data can be on disk more than twice, add to failrec here 2258 * (e.g. with a list for failed_mirror) to make 2259 * clean_io_failure() clean all those errors at once. 2260 */ 2261 } 2262 num_copies = btrfs_num_copies(BTRFS_I(inode)->root->fs_info, 2263 failrec->logical, failrec->len); 2264 if (num_copies == 1) { 2265 /* 2266 * we only have a single copy of the data, so don't bother with 2267 * all the retry and error correction code that follows. no 2268 * matter what the error is, it is very likely to persist. 2269 */ 2270 pr_debug("bio_readpage_error: cannot repair, num_copies=%d, next_mirror %d, failed_mirror %d\n", 2271 num_copies, failrec->this_mirror, failed_mirror); 2272 free_io_failure(inode, failrec, 0); 2273 return -EIO; 2274 } 2275 2276 /* 2277 * there are two premises: 2278 * a) deliver good data to the caller 2279 * b) correct the bad sectors on disk 2280 */ 2281 if (failed_bio->bi_vcnt > 1) { 2282 /* 2283 * to fulfill b), we need to know the exact failing sectors, as 2284 * we don't want to rewrite any more than the failed ones. thus, 2285 * we need separate read requests for the failed bio 2286 * 2287 * if the following BUG_ON triggers, our validation request got 2288 * merged. we need separate requests for our algorithm to work. 2289 */ 2290 BUG_ON(failrec->in_validation); 2291 failrec->in_validation = 1; 2292 failrec->this_mirror = failed_mirror; 2293 read_mode = READ_SYNC | REQ_FAILFAST_DEV; 2294 } else { 2295 /* 2296 * we're ready to fulfill a) and b) alongside. get a good copy 2297 * of the failed sector and if we succeed, we have setup 2298 * everything for repair_io_failure to do the rest for us. 2299 */ 2300 if (failrec->in_validation) { 2301 BUG_ON(failrec->this_mirror != failed_mirror); 2302 failrec->in_validation = 0; 2303 failrec->this_mirror = 0; 2304 } 2305 failrec->failed_mirror = failed_mirror; 2306 failrec->this_mirror++; 2307 if (failrec->this_mirror == failed_mirror) 2308 failrec->this_mirror++; 2309 read_mode = READ_SYNC; 2310 } 2311 2312 if (failrec->this_mirror > num_copies) { 2313 pr_debug("bio_readpage_error: (fail) num_copies=%d, next_mirror %d, failed_mirror %d\n", 2314 num_copies, failrec->this_mirror, failed_mirror); 2315 free_io_failure(inode, failrec, 0); 2316 return -EIO; 2317 } 2318 2319 bio = btrfs_io_bio_alloc(GFP_NOFS, 1); 2320 if (!bio) { 2321 free_io_failure(inode, failrec, 0); 2322 return -EIO; 2323 } 2324 bio->bi_end_io = failed_bio->bi_end_io; 2325 bio->bi_iter.bi_sector = failrec->logical >> 9; 2326 bio->bi_bdev = BTRFS_I(inode)->root->fs_info->fs_devices->latest_bdev; 2327 bio->bi_iter.bi_size = 0; 2328 2329 btrfs_failed_bio = btrfs_io_bio(failed_bio); 2330 if (btrfs_failed_bio->csum) { 2331 struct btrfs_fs_info *fs_info = BTRFS_I(inode)->root->fs_info; 2332 u16 csum_size = btrfs_super_csum_size(fs_info->super_copy); 2333 2334 btrfs_bio = btrfs_io_bio(bio); 2335 btrfs_bio->csum = btrfs_bio->csum_inline; 2336 phy_offset >>= inode->i_sb->s_blocksize_bits; 2337 phy_offset *= csum_size; 2338 memcpy(btrfs_bio->csum, btrfs_failed_bio->csum + phy_offset, 2339 csum_size); 2340 } 2341 2342 bio_add_page(bio, page, failrec->len, start - page_offset(page)); 2343 2344 pr_debug("bio_readpage_error: submitting new read[%#x] to " 2345 "this_mirror=%d, num_copies=%d, in_validation=%d\n", read_mode, 2346 failrec->this_mirror, num_copies, failrec->in_validation); 2347 2348 ret = tree->ops->submit_bio_hook(inode, read_mode, bio, 2349 failrec->this_mirror, 2350 failrec->bio_flags, 0); 2351 return ret; 2352 } 2353 2354 /* lots and lots of room for performance fixes in the end_bio funcs */ 2355 2356 int end_extent_writepage(struct page *page, int err, u64 start, u64 end) 2357 { 2358 int uptodate = (err == 0); 2359 struct extent_io_tree *tree; 2360 int ret = 0; 2361 2362 tree = &BTRFS_I(page->mapping->host)->io_tree; 2363 2364 if (tree->ops && tree->ops->writepage_end_io_hook) { 2365 ret = tree->ops->writepage_end_io_hook(page, start, 2366 end, NULL, uptodate); 2367 if (ret) 2368 uptodate = 0; 2369 } 2370 2371 if (!uptodate) { 2372 ClearPageUptodate(page); 2373 SetPageError(page); 2374 ret = ret < 0 ? ret : -EIO; 2375 mapping_set_error(page->mapping, ret); 2376 } 2377 return 0; 2378 } 2379 2380 /* 2381 * after a writepage IO is done, we need to: 2382 * clear the uptodate bits on error 2383 * clear the writeback bits in the extent tree for this IO 2384 * end_page_writeback if the page has no more pending IO 2385 * 2386 * Scheduling is not allowed, so the extent state tree is expected 2387 * to have one and only one object corresponding to this IO. 2388 */ 2389 static void end_bio_extent_writepage(struct bio *bio, int err) 2390 { 2391 struct bio_vec *bvec; 2392 u64 start; 2393 u64 end; 2394 int i; 2395 2396 bio_for_each_segment_all(bvec, bio, i) { 2397 struct page *page = bvec->bv_page; 2398 2399 /* We always issue full-page reads, but if some block 2400 * in a page fails to read, blk_update_request() will 2401 * advance bv_offset and adjust bv_len to compensate. 2402 * Print a warning for nonzero offsets, and an error 2403 * if they don't add up to a full page. */ 2404 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2405 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2406 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2407 "partial page write in btrfs with offset %u and length %u", 2408 bvec->bv_offset, bvec->bv_len); 2409 else 2410 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2411 "incomplete page write in btrfs with offset %u and " 2412 "length %u", 2413 bvec->bv_offset, bvec->bv_len); 2414 } 2415 2416 start = page_offset(page); 2417 end = start + bvec->bv_offset + bvec->bv_len - 1; 2418 2419 if (end_extent_writepage(page, err, start, end)) 2420 continue; 2421 2422 end_page_writeback(page); 2423 } 2424 2425 bio_put(bio); 2426 } 2427 2428 static void 2429 endio_readpage_release_extent(struct extent_io_tree *tree, u64 start, u64 len, 2430 int uptodate) 2431 { 2432 struct extent_state *cached = NULL; 2433 u64 end = start + len - 1; 2434 2435 if (uptodate && tree->track_uptodate) 2436 set_extent_uptodate(tree, start, end, &cached, GFP_ATOMIC); 2437 unlock_extent_cached(tree, start, end, &cached, GFP_ATOMIC); 2438 } 2439 2440 /* 2441 * after a readpage IO is done, we need to: 2442 * clear the uptodate bits on error 2443 * set the uptodate bits if things worked 2444 * set the page up to date if all extents in the tree are uptodate 2445 * clear the lock bit in the extent tree 2446 * unlock the page if there are no other extents locked for it 2447 * 2448 * Scheduling is not allowed, so the extent state tree is expected 2449 * to have one and only one object corresponding to this IO. 2450 */ 2451 static void end_bio_extent_readpage(struct bio *bio, int err) 2452 { 2453 struct bio_vec *bvec; 2454 int uptodate = test_bit(BIO_UPTODATE, &bio->bi_flags); 2455 struct btrfs_io_bio *io_bio = btrfs_io_bio(bio); 2456 struct extent_io_tree *tree; 2457 u64 offset = 0; 2458 u64 start; 2459 u64 end; 2460 u64 len; 2461 u64 extent_start = 0; 2462 u64 extent_len = 0; 2463 int mirror; 2464 int ret; 2465 int i; 2466 2467 if (err) 2468 uptodate = 0; 2469 2470 bio_for_each_segment_all(bvec, bio, i) { 2471 struct page *page = bvec->bv_page; 2472 struct inode *inode = page->mapping->host; 2473 2474 pr_debug("end_bio_extent_readpage: bi_sector=%llu, err=%d, " 2475 "mirror=%lu\n", (u64)bio->bi_iter.bi_sector, err, 2476 io_bio->mirror_num); 2477 tree = &BTRFS_I(inode)->io_tree; 2478 2479 /* We always issue full-page reads, but if some block 2480 * in a page fails to read, blk_update_request() will 2481 * advance bv_offset and adjust bv_len to compensate. 2482 * Print a warning for nonzero offsets, and an error 2483 * if they don't add up to a full page. */ 2484 if (bvec->bv_offset || bvec->bv_len != PAGE_CACHE_SIZE) { 2485 if (bvec->bv_offset + bvec->bv_len != PAGE_CACHE_SIZE) 2486 btrfs_err(BTRFS_I(page->mapping->host)->root->fs_info, 2487 "partial page read in btrfs with offset %u and length %u", 2488 bvec->bv_offset, bvec->bv_len); 2489 else 2490 btrfs_info(BTRFS_I(page->mapping->host)->root->fs_info, 2491 "incomplete page read in btrfs with offset %u and " 2492 "length %u", 2493 bvec->bv_offset, bvec->bv_len); 2494 } 2495 2496 start = page_offset(page); 2497 end = start + bvec->bv_offset + bvec->bv_len - 1; 2498 len = bvec->bv_len; 2499 2500 mirror = io_bio->mirror_num; 2501 if (likely(uptodate && tree->ops && 2502 tree->ops->readpage_end_io_hook)) { 2503 ret = tree->ops->readpage_end_io_hook(io_bio, offset, 2504 page, start, end, 2505 mirror); 2506 if (ret) 2507 uptodate = 0; 2508 else 2509 clean_io_failure(start, page); 2510 } 2511 2512 if (likely(uptodate)) 2513 goto readpage_ok; 2514 2515 if (tree->ops && tree->ops->readpage_io_failed_hook) { 2516 ret = tree->ops->readpage_io_failed_hook(page, mirror); 2517 if (!ret && !err && 2518 test_bit(BIO_UPTODATE, &bio->bi_flags)) 2519 uptodate = 1; 2520 } else { 2521 /* 2522 * The generic bio_readpage_error handles errors the 2523 * following way: If possible, new read requests are 2524 * created and submitted and will end up in 2525 * end_bio_extent_readpage as well (if we're lucky, not 2526 * in the !uptodate case). In that case it returns 0 and 2527 * we just go on with the next page in our bio. If it 2528 * can't handle the error it will return -EIO and we 2529 * remain responsible for that page. 2530 */ 2531 ret = bio_readpage_error(bio, offset, page, start, end, 2532 mirror); 2533 if (ret == 0) { 2534 uptodate = 2535 test_bit(BIO_UPTODATE, &bio->bi_flags); 2536 if (err) 2537 uptodate = 0; 2538 offset += len; 2539 continue; 2540 } 2541 } 2542 readpage_ok: 2543 if (likely(uptodate)) { 2544 loff_t i_size = i_size_read(inode); 2545 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 2546 unsigned off; 2547 2548 /* Zero out the end if this page straddles i_size */ 2549 off = i_size & (PAGE_CACHE_SIZE-1); 2550 if (page->index == end_index && off) 2551 zero_user_segment(page, off, PAGE_CACHE_SIZE); 2552 SetPageUptodate(page); 2553 } else { 2554 ClearPageUptodate(page); 2555 SetPageError(page); 2556 } 2557 unlock_page(page); 2558 offset += len; 2559 2560 if (unlikely(!uptodate)) { 2561 if (extent_len) { 2562 endio_readpage_release_extent(tree, 2563 extent_start, 2564 extent_len, 1); 2565 extent_start = 0; 2566 extent_len = 0; 2567 } 2568 endio_readpage_release_extent(tree, start, 2569 end - start + 1, 0); 2570 } else if (!extent_len) { 2571 extent_start = start; 2572 extent_len = end + 1 - start; 2573 } else if (extent_start + extent_len == start) { 2574 extent_len += end + 1 - start; 2575 } else { 2576 endio_readpage_release_extent(tree, extent_start, 2577 extent_len, uptodate); 2578 extent_start = start; 2579 extent_len = end + 1 - start; 2580 } 2581 } 2582 2583 if (extent_len) 2584 endio_readpage_release_extent(tree, extent_start, extent_len, 2585 uptodate); 2586 if (io_bio->end_io) 2587 io_bio->end_io(io_bio, err); 2588 bio_put(bio); 2589 } 2590 2591 /* 2592 * this allocates from the btrfs_bioset. We're returning a bio right now 2593 * but you can call btrfs_io_bio for the appropriate container_of magic 2594 */ 2595 struct bio * 2596 btrfs_bio_alloc(struct block_device *bdev, u64 first_sector, int nr_vecs, 2597 gfp_t gfp_flags) 2598 { 2599 struct btrfs_io_bio *btrfs_bio; 2600 struct bio *bio; 2601 2602 bio = bio_alloc_bioset(gfp_flags, nr_vecs, btrfs_bioset); 2603 2604 if (bio == NULL && (current->flags & PF_MEMALLOC)) { 2605 while (!bio && (nr_vecs /= 2)) { 2606 bio = bio_alloc_bioset(gfp_flags, 2607 nr_vecs, btrfs_bioset); 2608 } 2609 } 2610 2611 if (bio) { 2612 bio->bi_bdev = bdev; 2613 bio->bi_iter.bi_sector = first_sector; 2614 btrfs_bio = btrfs_io_bio(bio); 2615 btrfs_bio->csum = NULL; 2616 btrfs_bio->csum_allocated = NULL; 2617 btrfs_bio->end_io = NULL; 2618 } 2619 return bio; 2620 } 2621 2622 struct bio *btrfs_bio_clone(struct bio *bio, gfp_t gfp_mask) 2623 { 2624 return bio_clone_bioset(bio, gfp_mask, btrfs_bioset); 2625 } 2626 2627 2628 /* this also allocates from the btrfs_bioset */ 2629 struct bio *btrfs_io_bio_alloc(gfp_t gfp_mask, unsigned int nr_iovecs) 2630 { 2631 struct btrfs_io_bio *btrfs_bio; 2632 struct bio *bio; 2633 2634 bio = bio_alloc_bioset(gfp_mask, nr_iovecs, btrfs_bioset); 2635 if (bio) { 2636 btrfs_bio = btrfs_io_bio(bio); 2637 btrfs_bio->csum = NULL; 2638 btrfs_bio->csum_allocated = NULL; 2639 btrfs_bio->end_io = NULL; 2640 } 2641 return bio; 2642 } 2643 2644 2645 static int __must_check submit_one_bio(int rw, struct bio *bio, 2646 int mirror_num, unsigned long bio_flags) 2647 { 2648 int ret = 0; 2649 struct bio_vec *bvec = bio->bi_io_vec + bio->bi_vcnt - 1; 2650 struct page *page = bvec->bv_page; 2651 struct extent_io_tree *tree = bio->bi_private; 2652 u64 start; 2653 2654 start = page_offset(page) + bvec->bv_offset; 2655 2656 bio->bi_private = NULL; 2657 2658 bio_get(bio); 2659 2660 if (tree->ops && tree->ops->submit_bio_hook) 2661 ret = tree->ops->submit_bio_hook(page->mapping->host, rw, bio, 2662 mirror_num, bio_flags, start); 2663 else 2664 btrfsic_submit_bio(rw, bio); 2665 2666 if (bio_flagged(bio, BIO_EOPNOTSUPP)) 2667 ret = -EOPNOTSUPP; 2668 bio_put(bio); 2669 return ret; 2670 } 2671 2672 static int merge_bio(int rw, struct extent_io_tree *tree, struct page *page, 2673 unsigned long offset, size_t size, struct bio *bio, 2674 unsigned long bio_flags) 2675 { 2676 int ret = 0; 2677 if (tree->ops && tree->ops->merge_bio_hook) 2678 ret = tree->ops->merge_bio_hook(rw, page, offset, size, bio, 2679 bio_flags); 2680 BUG_ON(ret < 0); 2681 return ret; 2682 2683 } 2684 2685 static int submit_extent_page(int rw, struct extent_io_tree *tree, 2686 struct page *page, sector_t sector, 2687 size_t size, unsigned long offset, 2688 struct block_device *bdev, 2689 struct bio **bio_ret, 2690 unsigned long max_pages, 2691 bio_end_io_t end_io_func, 2692 int mirror_num, 2693 unsigned long prev_bio_flags, 2694 unsigned long bio_flags) 2695 { 2696 int ret = 0; 2697 struct bio *bio; 2698 int nr; 2699 int contig = 0; 2700 int this_compressed = bio_flags & EXTENT_BIO_COMPRESSED; 2701 int old_compressed = prev_bio_flags & EXTENT_BIO_COMPRESSED; 2702 size_t page_size = min_t(size_t, size, PAGE_CACHE_SIZE); 2703 2704 if (bio_ret && *bio_ret) { 2705 bio = *bio_ret; 2706 if (old_compressed) 2707 contig = bio->bi_iter.bi_sector == sector; 2708 else 2709 contig = bio_end_sector(bio) == sector; 2710 2711 if (prev_bio_flags != bio_flags || !contig || 2712 merge_bio(rw, tree, page, offset, page_size, bio, bio_flags) || 2713 bio_add_page(bio, page, page_size, offset) < page_size) { 2714 ret = submit_one_bio(rw, bio, mirror_num, 2715 prev_bio_flags); 2716 if (ret < 0) 2717 return ret; 2718 bio = NULL; 2719 } else { 2720 return 0; 2721 } 2722 } 2723 if (this_compressed) 2724 nr = BIO_MAX_PAGES; 2725 else 2726 nr = bio_get_nr_vecs(bdev); 2727 2728 bio = btrfs_bio_alloc(bdev, sector, nr, GFP_NOFS | __GFP_HIGH); 2729 if (!bio) 2730 return -ENOMEM; 2731 2732 bio_add_page(bio, page, page_size, offset); 2733 bio->bi_end_io = end_io_func; 2734 bio->bi_private = tree; 2735 2736 if (bio_ret) 2737 *bio_ret = bio; 2738 else 2739 ret = submit_one_bio(rw, bio, mirror_num, bio_flags); 2740 2741 return ret; 2742 } 2743 2744 static void attach_extent_buffer_page(struct extent_buffer *eb, 2745 struct page *page) 2746 { 2747 if (!PagePrivate(page)) { 2748 SetPagePrivate(page); 2749 page_cache_get(page); 2750 set_page_private(page, (unsigned long)eb); 2751 } else { 2752 WARN_ON(page->private != (unsigned long)eb); 2753 } 2754 } 2755 2756 void set_page_extent_mapped(struct page *page) 2757 { 2758 if (!PagePrivate(page)) { 2759 SetPagePrivate(page); 2760 page_cache_get(page); 2761 set_page_private(page, EXTENT_PAGE_PRIVATE); 2762 } 2763 } 2764 2765 static struct extent_map * 2766 __get_extent_map(struct inode *inode, struct page *page, size_t pg_offset, 2767 u64 start, u64 len, get_extent_t *get_extent, 2768 struct extent_map **em_cached) 2769 { 2770 struct extent_map *em; 2771 2772 if (em_cached && *em_cached) { 2773 em = *em_cached; 2774 if (extent_map_in_tree(em) && start >= em->start && 2775 start < extent_map_end(em)) { 2776 atomic_inc(&em->refs); 2777 return em; 2778 } 2779 2780 free_extent_map(em); 2781 *em_cached = NULL; 2782 } 2783 2784 em = get_extent(inode, page, pg_offset, start, len, 0); 2785 if (em_cached && !IS_ERR_OR_NULL(em)) { 2786 BUG_ON(*em_cached); 2787 atomic_inc(&em->refs); 2788 *em_cached = em; 2789 } 2790 return em; 2791 } 2792 /* 2793 * basic readpage implementation. Locked extent state structs are inserted 2794 * into the tree that are removed when the IO is done (by the end_io 2795 * handlers) 2796 * XXX JDM: This needs looking at to ensure proper page locking 2797 */ 2798 static int __do_readpage(struct extent_io_tree *tree, 2799 struct page *page, 2800 get_extent_t *get_extent, 2801 struct extent_map **em_cached, 2802 struct bio **bio, int mirror_num, 2803 unsigned long *bio_flags, int rw) 2804 { 2805 struct inode *inode = page->mapping->host; 2806 u64 start = page_offset(page); 2807 u64 page_end = start + PAGE_CACHE_SIZE - 1; 2808 u64 end; 2809 u64 cur = start; 2810 u64 extent_offset; 2811 u64 last_byte = i_size_read(inode); 2812 u64 block_start; 2813 u64 cur_end; 2814 sector_t sector; 2815 struct extent_map *em; 2816 struct block_device *bdev; 2817 int ret; 2818 int nr = 0; 2819 int parent_locked = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2820 size_t pg_offset = 0; 2821 size_t iosize; 2822 size_t disk_io_size; 2823 size_t blocksize = inode->i_sb->s_blocksize; 2824 unsigned long this_bio_flag = *bio_flags & EXTENT_BIO_PARENT_LOCKED; 2825 2826 set_page_extent_mapped(page); 2827 2828 end = page_end; 2829 if (!PageUptodate(page)) { 2830 if (cleancache_get_page(page) == 0) { 2831 BUG_ON(blocksize != PAGE_SIZE); 2832 unlock_extent(tree, start, end); 2833 goto out; 2834 } 2835 } 2836 2837 if (page->index == last_byte >> PAGE_CACHE_SHIFT) { 2838 char *userpage; 2839 size_t zero_offset = last_byte & (PAGE_CACHE_SIZE - 1); 2840 2841 if (zero_offset) { 2842 iosize = PAGE_CACHE_SIZE - zero_offset; 2843 userpage = kmap_atomic(page); 2844 memset(userpage + zero_offset, 0, iosize); 2845 flush_dcache_page(page); 2846 kunmap_atomic(userpage); 2847 } 2848 } 2849 while (cur <= end) { 2850 unsigned long pnr = (last_byte >> PAGE_CACHE_SHIFT) + 1; 2851 2852 if (cur >= last_byte) { 2853 char *userpage; 2854 struct extent_state *cached = NULL; 2855 2856 iosize = PAGE_CACHE_SIZE - pg_offset; 2857 userpage = kmap_atomic(page); 2858 memset(userpage + pg_offset, 0, iosize); 2859 flush_dcache_page(page); 2860 kunmap_atomic(userpage); 2861 set_extent_uptodate(tree, cur, cur + iosize - 1, 2862 &cached, GFP_NOFS); 2863 if (!parent_locked) 2864 unlock_extent_cached(tree, cur, 2865 cur + iosize - 1, 2866 &cached, GFP_NOFS); 2867 break; 2868 } 2869 em = __get_extent_map(inode, page, pg_offset, cur, 2870 end - cur + 1, get_extent, em_cached); 2871 if (IS_ERR_OR_NULL(em)) { 2872 SetPageError(page); 2873 if (!parent_locked) 2874 unlock_extent(tree, cur, end); 2875 break; 2876 } 2877 extent_offset = cur - em->start; 2878 BUG_ON(extent_map_end(em) <= cur); 2879 BUG_ON(end < cur); 2880 2881 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) { 2882 this_bio_flag |= EXTENT_BIO_COMPRESSED; 2883 extent_set_compress_type(&this_bio_flag, 2884 em->compress_type); 2885 } 2886 2887 iosize = min(extent_map_end(em) - cur, end - cur + 1); 2888 cur_end = min(extent_map_end(em) - 1, end); 2889 iosize = ALIGN(iosize, blocksize); 2890 if (this_bio_flag & EXTENT_BIO_COMPRESSED) { 2891 disk_io_size = em->block_len; 2892 sector = em->block_start >> 9; 2893 } else { 2894 sector = (em->block_start + extent_offset) >> 9; 2895 disk_io_size = iosize; 2896 } 2897 bdev = em->bdev; 2898 block_start = em->block_start; 2899 if (test_bit(EXTENT_FLAG_PREALLOC, &em->flags)) 2900 block_start = EXTENT_MAP_HOLE; 2901 free_extent_map(em); 2902 em = NULL; 2903 2904 /* we've found a hole, just zero and go on */ 2905 if (block_start == EXTENT_MAP_HOLE) { 2906 char *userpage; 2907 struct extent_state *cached = NULL; 2908 2909 userpage = kmap_atomic(page); 2910 memset(userpage + pg_offset, 0, iosize); 2911 flush_dcache_page(page); 2912 kunmap_atomic(userpage); 2913 2914 set_extent_uptodate(tree, cur, cur + iosize - 1, 2915 &cached, GFP_NOFS); 2916 unlock_extent_cached(tree, cur, cur + iosize - 1, 2917 &cached, GFP_NOFS); 2918 cur = cur + iosize; 2919 pg_offset += iosize; 2920 continue; 2921 } 2922 /* the get_extent function already copied into the page */ 2923 if (test_range_bit(tree, cur, cur_end, 2924 EXTENT_UPTODATE, 1, NULL)) { 2925 check_page_uptodate(tree, page); 2926 if (!parent_locked) 2927 unlock_extent(tree, cur, cur + iosize - 1); 2928 cur = cur + iosize; 2929 pg_offset += iosize; 2930 continue; 2931 } 2932 /* we have an inline extent but it didn't get marked up 2933 * to date. Error out 2934 */ 2935 if (block_start == EXTENT_MAP_INLINE) { 2936 SetPageError(page); 2937 if (!parent_locked) 2938 unlock_extent(tree, cur, cur + iosize - 1); 2939 cur = cur + iosize; 2940 pg_offset += iosize; 2941 continue; 2942 } 2943 2944 pnr -= page->index; 2945 ret = submit_extent_page(rw, tree, page, 2946 sector, disk_io_size, pg_offset, 2947 bdev, bio, pnr, 2948 end_bio_extent_readpage, mirror_num, 2949 *bio_flags, 2950 this_bio_flag); 2951 if (!ret) { 2952 nr++; 2953 *bio_flags = this_bio_flag; 2954 } else { 2955 SetPageError(page); 2956 if (!parent_locked) 2957 unlock_extent(tree, cur, cur + iosize - 1); 2958 } 2959 cur = cur + iosize; 2960 pg_offset += iosize; 2961 } 2962 out: 2963 if (!nr) { 2964 if (!PageError(page)) 2965 SetPageUptodate(page); 2966 unlock_page(page); 2967 } 2968 return 0; 2969 } 2970 2971 static inline void __do_contiguous_readpages(struct extent_io_tree *tree, 2972 struct page *pages[], int nr_pages, 2973 u64 start, u64 end, 2974 get_extent_t *get_extent, 2975 struct extent_map **em_cached, 2976 struct bio **bio, int mirror_num, 2977 unsigned long *bio_flags, int rw) 2978 { 2979 struct inode *inode; 2980 struct btrfs_ordered_extent *ordered; 2981 int index; 2982 2983 inode = pages[0]->mapping->host; 2984 while (1) { 2985 lock_extent(tree, start, end); 2986 ordered = btrfs_lookup_ordered_range(inode, start, 2987 end - start + 1); 2988 if (!ordered) 2989 break; 2990 unlock_extent(tree, start, end); 2991 btrfs_start_ordered_extent(inode, ordered, 1); 2992 btrfs_put_ordered_extent(ordered); 2993 } 2994 2995 for (index = 0; index < nr_pages; index++) { 2996 __do_readpage(tree, pages[index], get_extent, em_cached, bio, 2997 mirror_num, bio_flags, rw); 2998 page_cache_release(pages[index]); 2999 } 3000 } 3001 3002 static void __extent_readpages(struct extent_io_tree *tree, 3003 struct page *pages[], 3004 int nr_pages, get_extent_t *get_extent, 3005 struct extent_map **em_cached, 3006 struct bio **bio, int mirror_num, 3007 unsigned long *bio_flags, int rw) 3008 { 3009 u64 start = 0; 3010 u64 end = 0; 3011 u64 page_start; 3012 int index; 3013 int first_index = 0; 3014 3015 for (index = 0; index < nr_pages; index++) { 3016 page_start = page_offset(pages[index]); 3017 if (!end) { 3018 start = page_start; 3019 end = start + PAGE_CACHE_SIZE - 1; 3020 first_index = index; 3021 } else if (end + 1 == page_start) { 3022 end += PAGE_CACHE_SIZE; 3023 } else { 3024 __do_contiguous_readpages(tree, &pages[first_index], 3025 index - first_index, start, 3026 end, get_extent, em_cached, 3027 bio, mirror_num, bio_flags, 3028 rw); 3029 start = page_start; 3030 end = start + PAGE_CACHE_SIZE - 1; 3031 first_index = index; 3032 } 3033 } 3034 3035 if (end) 3036 __do_contiguous_readpages(tree, &pages[first_index], 3037 index - first_index, start, 3038 end, get_extent, em_cached, bio, 3039 mirror_num, bio_flags, rw); 3040 } 3041 3042 static int __extent_read_full_page(struct extent_io_tree *tree, 3043 struct page *page, 3044 get_extent_t *get_extent, 3045 struct bio **bio, int mirror_num, 3046 unsigned long *bio_flags, int rw) 3047 { 3048 struct inode *inode = page->mapping->host; 3049 struct btrfs_ordered_extent *ordered; 3050 u64 start = page_offset(page); 3051 u64 end = start + PAGE_CACHE_SIZE - 1; 3052 int ret; 3053 3054 while (1) { 3055 lock_extent(tree, start, end); 3056 ordered = btrfs_lookup_ordered_extent(inode, start); 3057 if (!ordered) 3058 break; 3059 unlock_extent(tree, start, end); 3060 btrfs_start_ordered_extent(inode, ordered, 1); 3061 btrfs_put_ordered_extent(ordered); 3062 } 3063 3064 ret = __do_readpage(tree, page, get_extent, NULL, bio, mirror_num, 3065 bio_flags, rw); 3066 return ret; 3067 } 3068 3069 int extent_read_full_page(struct extent_io_tree *tree, struct page *page, 3070 get_extent_t *get_extent, int mirror_num) 3071 { 3072 struct bio *bio = NULL; 3073 unsigned long bio_flags = 0; 3074 int ret; 3075 3076 ret = __extent_read_full_page(tree, page, get_extent, &bio, mirror_num, 3077 &bio_flags, READ); 3078 if (bio) 3079 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3080 return ret; 3081 } 3082 3083 int extent_read_full_page_nolock(struct extent_io_tree *tree, struct page *page, 3084 get_extent_t *get_extent, int mirror_num) 3085 { 3086 struct bio *bio = NULL; 3087 unsigned long bio_flags = EXTENT_BIO_PARENT_LOCKED; 3088 int ret; 3089 3090 ret = __do_readpage(tree, page, get_extent, NULL, &bio, mirror_num, 3091 &bio_flags, READ); 3092 if (bio) 3093 ret = submit_one_bio(READ, bio, mirror_num, bio_flags); 3094 return ret; 3095 } 3096 3097 static noinline void update_nr_written(struct page *page, 3098 struct writeback_control *wbc, 3099 unsigned long nr_written) 3100 { 3101 wbc->nr_to_write -= nr_written; 3102 if (wbc->range_cyclic || (wbc->nr_to_write > 0 && 3103 wbc->range_start == 0 && wbc->range_end == LLONG_MAX)) 3104 page->mapping->writeback_index = page->index + nr_written; 3105 } 3106 3107 /* 3108 * helper for __extent_writepage, doing all of the delayed allocation setup. 3109 * 3110 * This returns 1 if our fill_delalloc function did all the work required 3111 * to write the page (copy into inline extent). In this case the IO has 3112 * been started and the page is already unlocked. 3113 * 3114 * This returns 0 if all went well (page still locked) 3115 * This returns < 0 if there were errors (page still locked) 3116 */ 3117 static noinline_for_stack int writepage_delalloc(struct inode *inode, 3118 struct page *page, struct writeback_control *wbc, 3119 struct extent_page_data *epd, 3120 u64 delalloc_start, 3121 unsigned long *nr_written) 3122 { 3123 struct extent_io_tree *tree = epd->tree; 3124 u64 page_end = delalloc_start + PAGE_CACHE_SIZE - 1; 3125 u64 nr_delalloc; 3126 u64 delalloc_to_write = 0; 3127 u64 delalloc_end = 0; 3128 int ret; 3129 int page_started = 0; 3130 3131 if (epd->extent_locked || !tree->ops || !tree->ops->fill_delalloc) 3132 return 0; 3133 3134 while (delalloc_end < page_end) { 3135 nr_delalloc = find_lock_delalloc_range(inode, tree, 3136 page, 3137 &delalloc_start, 3138 &delalloc_end, 3139 128 * 1024 * 1024); 3140 if (nr_delalloc == 0) { 3141 delalloc_start = delalloc_end + 1; 3142 continue; 3143 } 3144 ret = tree->ops->fill_delalloc(inode, page, 3145 delalloc_start, 3146 delalloc_end, 3147 &page_started, 3148 nr_written); 3149 /* File system has been set read-only */ 3150 if (ret) { 3151 SetPageError(page); 3152 /* fill_delalloc should be return < 0 for error 3153 * but just in case, we use > 0 here meaning the 3154 * IO is started, so we don't want to return > 0 3155 * unless things are going well. 3156 */ 3157 ret = ret < 0 ? ret : -EIO; 3158 goto done; 3159 } 3160 /* 3161 * delalloc_end is already one less than the total 3162 * length, so we don't subtract one from 3163 * PAGE_CACHE_SIZE 3164 */ 3165 delalloc_to_write += (delalloc_end - delalloc_start + 3166 PAGE_CACHE_SIZE) >> 3167 PAGE_CACHE_SHIFT; 3168 delalloc_start = delalloc_end + 1; 3169 } 3170 if (wbc->nr_to_write < delalloc_to_write) { 3171 int thresh = 8192; 3172 3173 if (delalloc_to_write < thresh * 2) 3174 thresh = delalloc_to_write; 3175 wbc->nr_to_write = min_t(u64, delalloc_to_write, 3176 thresh); 3177 } 3178 3179 /* did the fill delalloc function already unlock and start 3180 * the IO? 3181 */ 3182 if (page_started) { 3183 /* 3184 * we've unlocked the page, so we can't update 3185 * the mapping's writeback index, just update 3186 * nr_to_write. 3187 */ 3188 wbc->nr_to_write -= *nr_written; 3189 return 1; 3190 } 3191 3192 ret = 0; 3193 3194 done: 3195 return ret; 3196 } 3197 3198 /* 3199 * helper for __extent_writepage. This calls the writepage start hooks, 3200 * and does the loop to map the page into extents and bios. 3201 * 3202 * We return 1 if the IO is started and the page is unlocked, 3203 * 0 if all went well (page still locked) 3204 * < 0 if there were errors (page still locked) 3205 */ 3206 static noinline_for_stack int __extent_writepage_io(struct inode *inode, 3207 struct page *page, 3208 struct writeback_control *wbc, 3209 struct extent_page_data *epd, 3210 loff_t i_size, 3211 unsigned long nr_written, 3212 int write_flags, int *nr_ret) 3213 { 3214 struct extent_io_tree *tree = epd->tree; 3215 u64 start = page_offset(page); 3216 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3217 u64 end; 3218 u64 cur = start; 3219 u64 extent_offset; 3220 u64 block_start; 3221 u64 iosize; 3222 sector_t sector; 3223 struct extent_state *cached_state = NULL; 3224 struct extent_map *em; 3225 struct block_device *bdev; 3226 size_t pg_offset = 0; 3227 size_t blocksize; 3228 int ret = 0; 3229 int nr = 0; 3230 bool compressed; 3231 3232 if (tree->ops && tree->ops->writepage_start_hook) { 3233 ret = tree->ops->writepage_start_hook(page, start, 3234 page_end); 3235 if (ret) { 3236 /* Fixup worker will requeue */ 3237 if (ret == -EBUSY) 3238 wbc->pages_skipped++; 3239 else 3240 redirty_page_for_writepage(wbc, page); 3241 3242 update_nr_written(page, wbc, nr_written); 3243 unlock_page(page); 3244 ret = 1; 3245 goto done_unlocked; 3246 } 3247 } 3248 3249 /* 3250 * we don't want to touch the inode after unlocking the page, 3251 * so we update the mapping writeback index now 3252 */ 3253 update_nr_written(page, wbc, nr_written + 1); 3254 3255 end = page_end; 3256 if (i_size <= start) { 3257 if (tree->ops && tree->ops->writepage_end_io_hook) 3258 tree->ops->writepage_end_io_hook(page, start, 3259 page_end, NULL, 1); 3260 goto done; 3261 } 3262 3263 blocksize = inode->i_sb->s_blocksize; 3264 3265 while (cur <= end) { 3266 u64 em_end; 3267 if (cur >= i_size) { 3268 if (tree->ops && tree->ops->writepage_end_io_hook) 3269 tree->ops->writepage_end_io_hook(page, cur, 3270 page_end, NULL, 1); 3271 break; 3272 } 3273 em = epd->get_extent(inode, page, pg_offset, cur, 3274 end - cur + 1, 1); 3275 if (IS_ERR_OR_NULL(em)) { 3276 SetPageError(page); 3277 ret = PTR_ERR_OR_ZERO(em); 3278 break; 3279 } 3280 3281 extent_offset = cur - em->start; 3282 em_end = extent_map_end(em); 3283 BUG_ON(em_end <= cur); 3284 BUG_ON(end < cur); 3285 iosize = min(em_end - cur, end - cur + 1); 3286 iosize = ALIGN(iosize, blocksize); 3287 sector = (em->block_start + extent_offset) >> 9; 3288 bdev = em->bdev; 3289 block_start = em->block_start; 3290 compressed = test_bit(EXTENT_FLAG_COMPRESSED, &em->flags); 3291 free_extent_map(em); 3292 em = NULL; 3293 3294 /* 3295 * compressed and inline extents are written through other 3296 * paths in the FS 3297 */ 3298 if (compressed || block_start == EXTENT_MAP_HOLE || 3299 block_start == EXTENT_MAP_INLINE) { 3300 /* 3301 * end_io notification does not happen here for 3302 * compressed extents 3303 */ 3304 if (!compressed && tree->ops && 3305 tree->ops->writepage_end_io_hook) 3306 tree->ops->writepage_end_io_hook(page, cur, 3307 cur + iosize - 1, 3308 NULL, 1); 3309 else if (compressed) { 3310 /* we don't want to end_page_writeback on 3311 * a compressed extent. this happens 3312 * elsewhere 3313 */ 3314 nr++; 3315 } 3316 3317 cur += iosize; 3318 pg_offset += iosize; 3319 continue; 3320 } 3321 3322 if (tree->ops && tree->ops->writepage_io_hook) { 3323 ret = tree->ops->writepage_io_hook(page, cur, 3324 cur + iosize - 1); 3325 } else { 3326 ret = 0; 3327 } 3328 if (ret) { 3329 SetPageError(page); 3330 } else { 3331 unsigned long max_nr = (i_size >> PAGE_CACHE_SHIFT) + 1; 3332 3333 set_range_writeback(tree, cur, cur + iosize - 1); 3334 if (!PageWriteback(page)) { 3335 btrfs_err(BTRFS_I(inode)->root->fs_info, 3336 "page %lu not writeback, cur %llu end %llu", 3337 page->index, cur, end); 3338 } 3339 3340 ret = submit_extent_page(write_flags, tree, page, 3341 sector, iosize, pg_offset, 3342 bdev, &epd->bio, max_nr, 3343 end_bio_extent_writepage, 3344 0, 0, 0); 3345 if (ret) 3346 SetPageError(page); 3347 } 3348 cur = cur + iosize; 3349 pg_offset += iosize; 3350 nr++; 3351 } 3352 done: 3353 *nr_ret = nr; 3354 3355 done_unlocked: 3356 3357 /* drop our reference on any cached states */ 3358 free_extent_state(cached_state); 3359 return ret; 3360 } 3361 3362 /* 3363 * the writepage semantics are similar to regular writepage. extent 3364 * records are inserted to lock ranges in the tree, and as dirty areas 3365 * are found, they are marked writeback. Then the lock bits are removed 3366 * and the end_io handler clears the writeback ranges 3367 */ 3368 static int __extent_writepage(struct page *page, struct writeback_control *wbc, 3369 void *data) 3370 { 3371 struct inode *inode = page->mapping->host; 3372 struct extent_page_data *epd = data; 3373 u64 start = page_offset(page); 3374 u64 page_end = start + PAGE_CACHE_SIZE - 1; 3375 int ret; 3376 int nr = 0; 3377 size_t pg_offset = 0; 3378 loff_t i_size = i_size_read(inode); 3379 unsigned long end_index = i_size >> PAGE_CACHE_SHIFT; 3380 int write_flags; 3381 unsigned long nr_written = 0; 3382 3383 if (wbc->sync_mode == WB_SYNC_ALL) 3384 write_flags = WRITE_SYNC; 3385 else 3386 write_flags = WRITE; 3387 3388 trace___extent_writepage(page, inode, wbc); 3389 3390 WARN_ON(!PageLocked(page)); 3391 3392 ClearPageError(page); 3393 3394 pg_offset = i_size & (PAGE_CACHE_SIZE - 1); 3395 if (page->index > end_index || 3396 (page->index == end_index && !pg_offset)) { 3397 page->mapping->a_ops->invalidatepage(page, 0, PAGE_CACHE_SIZE); 3398 unlock_page(page); 3399 return 0; 3400 } 3401 3402 if (page->index == end_index) { 3403 char *userpage; 3404 3405 userpage = kmap_atomic(page); 3406 memset(userpage + pg_offset, 0, 3407 PAGE_CACHE_SIZE - pg_offset); 3408 kunmap_atomic(userpage); 3409 flush_dcache_page(page); 3410 } 3411 3412 pg_offset = 0; 3413 3414 set_page_extent_mapped(page); 3415 3416 ret = writepage_delalloc(inode, page, wbc, epd, start, &nr_written); 3417 if (ret == 1) 3418 goto done_unlocked; 3419 if (ret) 3420 goto done; 3421 3422 ret = __extent_writepage_io(inode, page, wbc, epd, 3423 i_size, nr_written, write_flags, &nr); 3424 if (ret == 1) 3425 goto done_unlocked; 3426 3427 done: 3428 if (nr == 0) { 3429 /* make sure the mapping tag for page dirty gets cleared */ 3430 set_page_writeback(page); 3431 end_page_writeback(page); 3432 } 3433 if (PageError(page)) { 3434 ret = ret < 0 ? ret : -EIO; 3435 end_extent_writepage(page, ret, start, page_end); 3436 } 3437 unlock_page(page); 3438 return ret; 3439 3440 done_unlocked: 3441 return 0; 3442 } 3443 3444 void wait_on_extent_buffer_writeback(struct extent_buffer *eb) 3445 { 3446 wait_on_bit_io(&eb->bflags, EXTENT_BUFFER_WRITEBACK, 3447 TASK_UNINTERRUPTIBLE); 3448 } 3449 3450 static noinline_for_stack int 3451 lock_extent_buffer_for_io(struct extent_buffer *eb, 3452 struct btrfs_fs_info *fs_info, 3453 struct extent_page_data *epd) 3454 { 3455 unsigned long i, num_pages; 3456 int flush = 0; 3457 int ret = 0; 3458 3459 if (!btrfs_try_tree_write_lock(eb)) { 3460 flush = 1; 3461 flush_write_bio(epd); 3462 btrfs_tree_lock(eb); 3463 } 3464 3465 if (test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) { 3466 btrfs_tree_unlock(eb); 3467 if (!epd->sync_io) 3468 return 0; 3469 if (!flush) { 3470 flush_write_bio(epd); 3471 flush = 1; 3472 } 3473 while (1) { 3474 wait_on_extent_buffer_writeback(eb); 3475 btrfs_tree_lock(eb); 3476 if (!test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags)) 3477 break; 3478 btrfs_tree_unlock(eb); 3479 } 3480 } 3481 3482 /* 3483 * We need to do this to prevent races in people who check if the eb is 3484 * under IO since we can end up having no IO bits set for a short period 3485 * of time. 3486 */ 3487 spin_lock(&eb->refs_lock); 3488 if (test_and_clear_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)) { 3489 set_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3490 spin_unlock(&eb->refs_lock); 3491 btrfs_set_header_flag(eb, BTRFS_HEADER_FLAG_WRITTEN); 3492 __percpu_counter_add(&fs_info->dirty_metadata_bytes, 3493 -eb->len, 3494 fs_info->dirty_metadata_batch); 3495 ret = 1; 3496 } else { 3497 spin_unlock(&eb->refs_lock); 3498 } 3499 3500 btrfs_tree_unlock(eb); 3501 3502 if (!ret) 3503 return ret; 3504 3505 num_pages = num_extent_pages(eb->start, eb->len); 3506 for (i = 0; i < num_pages; i++) { 3507 struct page *p = extent_buffer_page(eb, i); 3508 3509 if (!trylock_page(p)) { 3510 if (!flush) { 3511 flush_write_bio(epd); 3512 flush = 1; 3513 } 3514 lock_page(p); 3515 } 3516 } 3517 3518 return ret; 3519 } 3520 3521 static void end_extent_buffer_writeback(struct extent_buffer *eb) 3522 { 3523 clear_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags); 3524 smp_mb__after_atomic(); 3525 wake_up_bit(&eb->bflags, EXTENT_BUFFER_WRITEBACK); 3526 } 3527 3528 static void end_bio_extent_buffer_writepage(struct bio *bio, int err) 3529 { 3530 struct bio_vec *bvec; 3531 struct extent_buffer *eb; 3532 int i, done; 3533 3534 bio_for_each_segment_all(bvec, bio, i) { 3535 struct page *page = bvec->bv_page; 3536 3537 eb = (struct extent_buffer *)page->private; 3538 BUG_ON(!eb); 3539 done = atomic_dec_and_test(&eb->io_pages); 3540 3541 if (err || test_bit(EXTENT_BUFFER_IOERR, &eb->bflags)) { 3542 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3543 ClearPageUptodate(page); 3544 SetPageError(page); 3545 } 3546 3547 end_page_writeback(page); 3548 3549 if (!done) 3550 continue; 3551 3552 end_extent_buffer_writeback(eb); 3553 } 3554 3555 bio_put(bio); 3556 } 3557 3558 static noinline_for_stack int write_one_eb(struct extent_buffer *eb, 3559 struct btrfs_fs_info *fs_info, 3560 struct writeback_control *wbc, 3561 struct extent_page_data *epd) 3562 { 3563 struct block_device *bdev = fs_info->fs_devices->latest_bdev; 3564 struct extent_io_tree *tree = &BTRFS_I(fs_info->btree_inode)->io_tree; 3565 u64 offset = eb->start; 3566 unsigned long i, num_pages; 3567 unsigned long bio_flags = 0; 3568 int rw = (epd->sync_io ? WRITE_SYNC : WRITE) | REQ_META; 3569 int ret = 0; 3570 3571 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3572 num_pages = num_extent_pages(eb->start, eb->len); 3573 atomic_set(&eb->io_pages, num_pages); 3574 if (btrfs_header_owner(eb) == BTRFS_TREE_LOG_OBJECTID) 3575 bio_flags = EXTENT_BIO_TREE_LOG; 3576 3577 for (i = 0; i < num_pages; i++) { 3578 struct page *p = extent_buffer_page(eb, i); 3579 3580 clear_page_dirty_for_io(p); 3581 set_page_writeback(p); 3582 ret = submit_extent_page(rw, tree, p, offset >> 9, 3583 PAGE_CACHE_SIZE, 0, bdev, &epd->bio, 3584 -1, end_bio_extent_buffer_writepage, 3585 0, epd->bio_flags, bio_flags); 3586 epd->bio_flags = bio_flags; 3587 if (ret) { 3588 set_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 3589 SetPageError(p); 3590 if (atomic_sub_and_test(num_pages - i, &eb->io_pages)) 3591 end_extent_buffer_writeback(eb); 3592 ret = -EIO; 3593 break; 3594 } 3595 offset += PAGE_CACHE_SIZE; 3596 update_nr_written(p, wbc, 1); 3597 unlock_page(p); 3598 } 3599 3600 if (unlikely(ret)) { 3601 for (; i < num_pages; i++) { 3602 struct page *p = extent_buffer_page(eb, i); 3603 unlock_page(p); 3604 } 3605 } 3606 3607 return ret; 3608 } 3609 3610 int btree_write_cache_pages(struct address_space *mapping, 3611 struct writeback_control *wbc) 3612 { 3613 struct extent_io_tree *tree = &BTRFS_I(mapping->host)->io_tree; 3614 struct btrfs_fs_info *fs_info = BTRFS_I(mapping->host)->root->fs_info; 3615 struct extent_buffer *eb, *prev_eb = NULL; 3616 struct extent_page_data epd = { 3617 .bio = NULL, 3618 .tree = tree, 3619 .extent_locked = 0, 3620 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3621 .bio_flags = 0, 3622 }; 3623 int ret = 0; 3624 int done = 0; 3625 int nr_to_write_done = 0; 3626 struct pagevec pvec; 3627 int nr_pages; 3628 pgoff_t index; 3629 pgoff_t end; /* Inclusive */ 3630 int scanned = 0; 3631 int tag; 3632 3633 pagevec_init(&pvec, 0); 3634 if (wbc->range_cyclic) { 3635 index = mapping->writeback_index; /* Start from prev offset */ 3636 end = -1; 3637 } else { 3638 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3639 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3640 scanned = 1; 3641 } 3642 if (wbc->sync_mode == WB_SYNC_ALL) 3643 tag = PAGECACHE_TAG_TOWRITE; 3644 else 3645 tag = PAGECACHE_TAG_DIRTY; 3646 retry: 3647 if (wbc->sync_mode == WB_SYNC_ALL) 3648 tag_pages_for_writeback(mapping, index, end); 3649 while (!done && !nr_to_write_done && (index <= end) && 3650 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3651 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3652 unsigned i; 3653 3654 scanned = 1; 3655 for (i = 0; i < nr_pages; i++) { 3656 struct page *page = pvec.pages[i]; 3657 3658 if (!PagePrivate(page)) 3659 continue; 3660 3661 if (!wbc->range_cyclic && page->index > end) { 3662 done = 1; 3663 break; 3664 } 3665 3666 spin_lock(&mapping->private_lock); 3667 if (!PagePrivate(page)) { 3668 spin_unlock(&mapping->private_lock); 3669 continue; 3670 } 3671 3672 eb = (struct extent_buffer *)page->private; 3673 3674 /* 3675 * Shouldn't happen and normally this would be a BUG_ON 3676 * but no sense in crashing the users box for something 3677 * we can survive anyway. 3678 */ 3679 if (WARN_ON(!eb)) { 3680 spin_unlock(&mapping->private_lock); 3681 continue; 3682 } 3683 3684 if (eb == prev_eb) { 3685 spin_unlock(&mapping->private_lock); 3686 continue; 3687 } 3688 3689 ret = atomic_inc_not_zero(&eb->refs); 3690 spin_unlock(&mapping->private_lock); 3691 if (!ret) 3692 continue; 3693 3694 prev_eb = eb; 3695 ret = lock_extent_buffer_for_io(eb, fs_info, &epd); 3696 if (!ret) { 3697 free_extent_buffer(eb); 3698 continue; 3699 } 3700 3701 ret = write_one_eb(eb, fs_info, wbc, &epd); 3702 if (ret) { 3703 done = 1; 3704 free_extent_buffer(eb); 3705 break; 3706 } 3707 free_extent_buffer(eb); 3708 3709 /* 3710 * the filesystem may choose to bump up nr_to_write. 3711 * We have to make sure to honor the new nr_to_write 3712 * at any time 3713 */ 3714 nr_to_write_done = wbc->nr_to_write <= 0; 3715 } 3716 pagevec_release(&pvec); 3717 cond_resched(); 3718 } 3719 if (!scanned && !done) { 3720 /* 3721 * We hit the last page and there is more work to be done: wrap 3722 * back to the start of the file 3723 */ 3724 scanned = 1; 3725 index = 0; 3726 goto retry; 3727 } 3728 flush_write_bio(&epd); 3729 return ret; 3730 } 3731 3732 /** 3733 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them. 3734 * @mapping: address space structure to write 3735 * @wbc: subtract the number of written pages from *@wbc->nr_to_write 3736 * @writepage: function called for each page 3737 * @data: data passed to writepage function 3738 * 3739 * If a page is already under I/O, write_cache_pages() skips it, even 3740 * if it's dirty. This is desirable behaviour for memory-cleaning writeback, 3741 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync() 3742 * and msync() need to guarantee that all the data which was dirty at the time 3743 * the call was made get new I/O started against them. If wbc->sync_mode is 3744 * WB_SYNC_ALL then we were called for data integrity and we must wait for 3745 * existing IO to complete. 3746 */ 3747 static int extent_write_cache_pages(struct extent_io_tree *tree, 3748 struct address_space *mapping, 3749 struct writeback_control *wbc, 3750 writepage_t writepage, void *data, 3751 void (*flush_fn)(void *)) 3752 { 3753 struct inode *inode = mapping->host; 3754 int ret = 0; 3755 int done = 0; 3756 int err = 0; 3757 int nr_to_write_done = 0; 3758 struct pagevec pvec; 3759 int nr_pages; 3760 pgoff_t index; 3761 pgoff_t end; /* Inclusive */ 3762 int scanned = 0; 3763 int tag; 3764 3765 /* 3766 * We have to hold onto the inode so that ordered extents can do their 3767 * work when the IO finishes. The alternative to this is failing to add 3768 * an ordered extent if the igrab() fails there and that is a huge pain 3769 * to deal with, so instead just hold onto the inode throughout the 3770 * writepages operation. If it fails here we are freeing up the inode 3771 * anyway and we'd rather not waste our time writing out stuff that is 3772 * going to be truncated anyway. 3773 */ 3774 if (!igrab(inode)) 3775 return 0; 3776 3777 pagevec_init(&pvec, 0); 3778 if (wbc->range_cyclic) { 3779 index = mapping->writeback_index; /* Start from prev offset */ 3780 end = -1; 3781 } else { 3782 index = wbc->range_start >> PAGE_CACHE_SHIFT; 3783 end = wbc->range_end >> PAGE_CACHE_SHIFT; 3784 scanned = 1; 3785 } 3786 if (wbc->sync_mode == WB_SYNC_ALL) 3787 tag = PAGECACHE_TAG_TOWRITE; 3788 else 3789 tag = PAGECACHE_TAG_DIRTY; 3790 retry: 3791 if (wbc->sync_mode == WB_SYNC_ALL) 3792 tag_pages_for_writeback(mapping, index, end); 3793 while (!done && !nr_to_write_done && (index <= end) && 3794 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag, 3795 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1))) { 3796 unsigned i; 3797 3798 scanned = 1; 3799 for (i = 0; i < nr_pages; i++) { 3800 struct page *page = pvec.pages[i]; 3801 3802 /* 3803 * At this point we hold neither mapping->tree_lock nor 3804 * lock on the page itself: the page may be truncated or 3805 * invalidated (changing page->mapping to NULL), or even 3806 * swizzled back from swapper_space to tmpfs file 3807 * mapping 3808 */ 3809 if (!trylock_page(page)) { 3810 flush_fn(data); 3811 lock_page(page); 3812 } 3813 3814 if (unlikely(page->mapping != mapping)) { 3815 unlock_page(page); 3816 continue; 3817 } 3818 3819 if (!wbc->range_cyclic && page->index > end) { 3820 done = 1; 3821 unlock_page(page); 3822 continue; 3823 } 3824 3825 if (wbc->sync_mode != WB_SYNC_NONE) { 3826 if (PageWriteback(page)) 3827 flush_fn(data); 3828 wait_on_page_writeback(page); 3829 } 3830 3831 if (PageWriteback(page) || 3832 !clear_page_dirty_for_io(page)) { 3833 unlock_page(page); 3834 continue; 3835 } 3836 3837 ret = (*writepage)(page, wbc, data); 3838 3839 if (unlikely(ret == AOP_WRITEPAGE_ACTIVATE)) { 3840 unlock_page(page); 3841 ret = 0; 3842 } 3843 if (!err && ret < 0) 3844 err = ret; 3845 3846 /* 3847 * the filesystem may choose to bump up nr_to_write. 3848 * We have to make sure to honor the new nr_to_write 3849 * at any time 3850 */ 3851 nr_to_write_done = wbc->nr_to_write <= 0; 3852 } 3853 pagevec_release(&pvec); 3854 cond_resched(); 3855 } 3856 if (!scanned && !done && !err) { 3857 /* 3858 * We hit the last page and there is more work to be done: wrap 3859 * back to the start of the file 3860 */ 3861 scanned = 1; 3862 index = 0; 3863 goto retry; 3864 } 3865 btrfs_add_delayed_iput(inode); 3866 return err; 3867 } 3868 3869 static void flush_epd_write_bio(struct extent_page_data *epd) 3870 { 3871 if (epd->bio) { 3872 int rw = WRITE; 3873 int ret; 3874 3875 if (epd->sync_io) 3876 rw = WRITE_SYNC; 3877 3878 ret = submit_one_bio(rw, epd->bio, 0, epd->bio_flags); 3879 BUG_ON(ret < 0); /* -ENOMEM */ 3880 epd->bio = NULL; 3881 } 3882 } 3883 3884 static noinline void flush_write_bio(void *data) 3885 { 3886 struct extent_page_data *epd = data; 3887 flush_epd_write_bio(epd); 3888 } 3889 3890 int extent_write_full_page(struct extent_io_tree *tree, struct page *page, 3891 get_extent_t *get_extent, 3892 struct writeback_control *wbc) 3893 { 3894 int ret; 3895 struct extent_page_data epd = { 3896 .bio = NULL, 3897 .tree = tree, 3898 .get_extent = get_extent, 3899 .extent_locked = 0, 3900 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3901 .bio_flags = 0, 3902 }; 3903 3904 ret = __extent_writepage(page, wbc, &epd); 3905 3906 flush_epd_write_bio(&epd); 3907 return ret; 3908 } 3909 3910 int extent_write_locked_range(struct extent_io_tree *tree, struct inode *inode, 3911 u64 start, u64 end, get_extent_t *get_extent, 3912 int mode) 3913 { 3914 int ret = 0; 3915 struct address_space *mapping = inode->i_mapping; 3916 struct page *page; 3917 unsigned long nr_pages = (end - start + PAGE_CACHE_SIZE) >> 3918 PAGE_CACHE_SHIFT; 3919 3920 struct extent_page_data epd = { 3921 .bio = NULL, 3922 .tree = tree, 3923 .get_extent = get_extent, 3924 .extent_locked = 1, 3925 .sync_io = mode == WB_SYNC_ALL, 3926 .bio_flags = 0, 3927 }; 3928 struct writeback_control wbc_writepages = { 3929 .sync_mode = mode, 3930 .nr_to_write = nr_pages * 2, 3931 .range_start = start, 3932 .range_end = end + 1, 3933 }; 3934 3935 while (start <= end) { 3936 page = find_get_page(mapping, start >> PAGE_CACHE_SHIFT); 3937 if (clear_page_dirty_for_io(page)) 3938 ret = __extent_writepage(page, &wbc_writepages, &epd); 3939 else { 3940 if (tree->ops && tree->ops->writepage_end_io_hook) 3941 tree->ops->writepage_end_io_hook(page, start, 3942 start + PAGE_CACHE_SIZE - 1, 3943 NULL, 1); 3944 unlock_page(page); 3945 } 3946 page_cache_release(page); 3947 start += PAGE_CACHE_SIZE; 3948 } 3949 3950 flush_epd_write_bio(&epd); 3951 return ret; 3952 } 3953 3954 int extent_writepages(struct extent_io_tree *tree, 3955 struct address_space *mapping, 3956 get_extent_t *get_extent, 3957 struct writeback_control *wbc) 3958 { 3959 int ret = 0; 3960 struct extent_page_data epd = { 3961 .bio = NULL, 3962 .tree = tree, 3963 .get_extent = get_extent, 3964 .extent_locked = 0, 3965 .sync_io = wbc->sync_mode == WB_SYNC_ALL, 3966 .bio_flags = 0, 3967 }; 3968 3969 ret = extent_write_cache_pages(tree, mapping, wbc, 3970 __extent_writepage, &epd, 3971 flush_write_bio); 3972 flush_epd_write_bio(&epd); 3973 return ret; 3974 } 3975 3976 int extent_readpages(struct extent_io_tree *tree, 3977 struct address_space *mapping, 3978 struct list_head *pages, unsigned nr_pages, 3979 get_extent_t get_extent) 3980 { 3981 struct bio *bio = NULL; 3982 unsigned page_idx; 3983 unsigned long bio_flags = 0; 3984 struct page *pagepool[16]; 3985 struct page *page; 3986 struct extent_map *em_cached = NULL; 3987 int nr = 0; 3988 3989 for (page_idx = 0; page_idx < nr_pages; page_idx++) { 3990 page = list_entry(pages->prev, struct page, lru); 3991 3992 prefetchw(&page->flags); 3993 list_del(&page->lru); 3994 if (add_to_page_cache_lru(page, mapping, 3995 page->index, GFP_NOFS)) { 3996 page_cache_release(page); 3997 continue; 3998 } 3999 4000 pagepool[nr++] = page; 4001 if (nr < ARRAY_SIZE(pagepool)) 4002 continue; 4003 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4004 &bio, 0, &bio_flags, READ); 4005 nr = 0; 4006 } 4007 if (nr) 4008 __extent_readpages(tree, pagepool, nr, get_extent, &em_cached, 4009 &bio, 0, &bio_flags, READ); 4010 4011 if (em_cached) 4012 free_extent_map(em_cached); 4013 4014 BUG_ON(!list_empty(pages)); 4015 if (bio) 4016 return submit_one_bio(READ, bio, 0, bio_flags); 4017 return 0; 4018 } 4019 4020 /* 4021 * basic invalidatepage code, this waits on any locked or writeback 4022 * ranges corresponding to the page, and then deletes any extent state 4023 * records from the tree 4024 */ 4025 int extent_invalidatepage(struct extent_io_tree *tree, 4026 struct page *page, unsigned long offset) 4027 { 4028 struct extent_state *cached_state = NULL; 4029 u64 start = page_offset(page); 4030 u64 end = start + PAGE_CACHE_SIZE - 1; 4031 size_t blocksize = page->mapping->host->i_sb->s_blocksize; 4032 4033 start += ALIGN(offset, blocksize); 4034 if (start > end) 4035 return 0; 4036 4037 lock_extent_bits(tree, start, end, 0, &cached_state); 4038 wait_on_page_writeback(page); 4039 clear_extent_bit(tree, start, end, 4040 EXTENT_LOCKED | EXTENT_DIRTY | EXTENT_DELALLOC | 4041 EXTENT_DO_ACCOUNTING, 4042 1, 1, &cached_state, GFP_NOFS); 4043 return 0; 4044 } 4045 4046 /* 4047 * a helper for releasepage, this tests for areas of the page that 4048 * are locked or under IO and drops the related state bits if it is safe 4049 * to drop the page. 4050 */ 4051 static int try_release_extent_state(struct extent_map_tree *map, 4052 struct extent_io_tree *tree, 4053 struct page *page, gfp_t mask) 4054 { 4055 u64 start = page_offset(page); 4056 u64 end = start + PAGE_CACHE_SIZE - 1; 4057 int ret = 1; 4058 4059 if (test_range_bit(tree, start, end, 4060 EXTENT_IOBITS, 0, NULL)) 4061 ret = 0; 4062 else { 4063 if ((mask & GFP_NOFS) == GFP_NOFS) 4064 mask = GFP_NOFS; 4065 /* 4066 * at this point we can safely clear everything except the 4067 * locked bit and the nodatasum bit 4068 */ 4069 ret = clear_extent_bit(tree, start, end, 4070 ~(EXTENT_LOCKED | EXTENT_NODATASUM), 4071 0, 0, NULL, mask); 4072 4073 /* if clear_extent_bit failed for enomem reasons, 4074 * we can't allow the release to continue. 4075 */ 4076 if (ret < 0) 4077 ret = 0; 4078 else 4079 ret = 1; 4080 } 4081 return ret; 4082 } 4083 4084 /* 4085 * a helper for releasepage. As long as there are no locked extents 4086 * in the range corresponding to the page, both state records and extent 4087 * map records are removed 4088 */ 4089 int try_release_extent_mapping(struct extent_map_tree *map, 4090 struct extent_io_tree *tree, struct page *page, 4091 gfp_t mask) 4092 { 4093 struct extent_map *em; 4094 u64 start = page_offset(page); 4095 u64 end = start + PAGE_CACHE_SIZE - 1; 4096 4097 if ((mask & __GFP_WAIT) && 4098 page->mapping->host->i_size > 16 * 1024 * 1024) { 4099 u64 len; 4100 while (start <= end) { 4101 len = end - start + 1; 4102 write_lock(&map->lock); 4103 em = lookup_extent_mapping(map, start, len); 4104 if (!em) { 4105 write_unlock(&map->lock); 4106 break; 4107 } 4108 if (test_bit(EXTENT_FLAG_PINNED, &em->flags) || 4109 em->start != start) { 4110 write_unlock(&map->lock); 4111 free_extent_map(em); 4112 break; 4113 } 4114 if (!test_range_bit(tree, em->start, 4115 extent_map_end(em) - 1, 4116 EXTENT_LOCKED | EXTENT_WRITEBACK, 4117 0, NULL)) { 4118 remove_extent_mapping(map, em); 4119 /* once for the rb tree */ 4120 free_extent_map(em); 4121 } 4122 start = extent_map_end(em); 4123 write_unlock(&map->lock); 4124 4125 /* once for us */ 4126 free_extent_map(em); 4127 } 4128 } 4129 return try_release_extent_state(map, tree, page, mask); 4130 } 4131 4132 /* 4133 * helper function for fiemap, which doesn't want to see any holes. 4134 * This maps until we find something past 'last' 4135 */ 4136 static struct extent_map *get_extent_skip_holes(struct inode *inode, 4137 u64 offset, 4138 u64 last, 4139 get_extent_t *get_extent) 4140 { 4141 u64 sectorsize = BTRFS_I(inode)->root->sectorsize; 4142 struct extent_map *em; 4143 u64 len; 4144 4145 if (offset >= last) 4146 return NULL; 4147 4148 while (1) { 4149 len = last - offset; 4150 if (len == 0) 4151 break; 4152 len = ALIGN(len, sectorsize); 4153 em = get_extent(inode, NULL, 0, offset, len, 0); 4154 if (IS_ERR_OR_NULL(em)) 4155 return em; 4156 4157 /* if this isn't a hole return it */ 4158 if (!test_bit(EXTENT_FLAG_VACANCY, &em->flags) && 4159 em->block_start != EXTENT_MAP_HOLE) { 4160 return em; 4161 } 4162 4163 /* this is a hole, advance to the next extent */ 4164 offset = extent_map_end(em); 4165 free_extent_map(em); 4166 if (offset >= last) 4167 break; 4168 } 4169 return NULL; 4170 } 4171 4172 static noinline int count_ext_ref(u64 inum, u64 offset, u64 root_id, void *ctx) 4173 { 4174 unsigned long cnt = *((unsigned long *)ctx); 4175 4176 cnt++; 4177 *((unsigned long *)ctx) = cnt; 4178 4179 /* Now we're sure that the extent is shared. */ 4180 if (cnt > 1) 4181 return 1; 4182 return 0; 4183 } 4184 4185 int extent_fiemap(struct inode *inode, struct fiemap_extent_info *fieinfo, 4186 __u64 start, __u64 len, get_extent_t *get_extent) 4187 { 4188 int ret = 0; 4189 u64 off = start; 4190 u64 max = start + len; 4191 u32 flags = 0; 4192 u32 found_type; 4193 u64 last; 4194 u64 last_for_get_extent = 0; 4195 u64 disko = 0; 4196 u64 isize = i_size_read(inode); 4197 struct btrfs_key found_key; 4198 struct extent_map *em = NULL; 4199 struct extent_state *cached_state = NULL; 4200 struct btrfs_path *path; 4201 int end = 0; 4202 u64 em_start = 0; 4203 u64 em_len = 0; 4204 u64 em_end = 0; 4205 4206 if (len == 0) 4207 return -EINVAL; 4208 4209 path = btrfs_alloc_path(); 4210 if (!path) 4211 return -ENOMEM; 4212 path->leave_spinning = 1; 4213 4214 start = round_down(start, BTRFS_I(inode)->root->sectorsize); 4215 len = round_up(max, BTRFS_I(inode)->root->sectorsize) - start; 4216 4217 /* 4218 * lookup the last file extent. We're not using i_size here 4219 * because there might be preallocation past i_size 4220 */ 4221 ret = btrfs_lookup_file_extent(NULL, BTRFS_I(inode)->root, 4222 path, btrfs_ino(inode), -1, 0); 4223 if (ret < 0) { 4224 btrfs_free_path(path); 4225 return ret; 4226 } 4227 WARN_ON(!ret); 4228 path->slots[0]--; 4229 btrfs_item_key_to_cpu(path->nodes[0], &found_key, path->slots[0]); 4230 found_type = found_key.type; 4231 4232 /* No extents, but there might be delalloc bits */ 4233 if (found_key.objectid != btrfs_ino(inode) || 4234 found_type != BTRFS_EXTENT_DATA_KEY) { 4235 /* have to trust i_size as the end */ 4236 last = (u64)-1; 4237 last_for_get_extent = isize; 4238 } else { 4239 /* 4240 * remember the start of the last extent. There are a 4241 * bunch of different factors that go into the length of the 4242 * extent, so its much less complex to remember where it started 4243 */ 4244 last = found_key.offset; 4245 last_for_get_extent = last + 1; 4246 } 4247 btrfs_release_path(path); 4248 4249 /* 4250 * we might have some extents allocated but more delalloc past those 4251 * extents. so, we trust isize unless the start of the last extent is 4252 * beyond isize 4253 */ 4254 if (last < isize) { 4255 last = (u64)-1; 4256 last_for_get_extent = isize; 4257 } 4258 4259 lock_extent_bits(&BTRFS_I(inode)->io_tree, start, start + len - 1, 0, 4260 &cached_state); 4261 4262 em = get_extent_skip_holes(inode, start, last_for_get_extent, 4263 get_extent); 4264 if (!em) 4265 goto out; 4266 if (IS_ERR(em)) { 4267 ret = PTR_ERR(em); 4268 goto out; 4269 } 4270 4271 while (!end) { 4272 u64 offset_in_extent = 0; 4273 4274 /* break if the extent we found is outside the range */ 4275 if (em->start >= max || extent_map_end(em) < off) 4276 break; 4277 4278 /* 4279 * get_extent may return an extent that starts before our 4280 * requested range. We have to make sure the ranges 4281 * we return to fiemap always move forward and don't 4282 * overlap, so adjust the offsets here 4283 */ 4284 em_start = max(em->start, off); 4285 4286 /* 4287 * record the offset from the start of the extent 4288 * for adjusting the disk offset below. Only do this if the 4289 * extent isn't compressed since our in ram offset may be past 4290 * what we have actually allocated on disk. 4291 */ 4292 if (!test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4293 offset_in_extent = em_start - em->start; 4294 em_end = extent_map_end(em); 4295 em_len = em_end - em_start; 4296 disko = 0; 4297 flags = 0; 4298 4299 /* 4300 * bump off for our next call to get_extent 4301 */ 4302 off = extent_map_end(em); 4303 if (off >= max) 4304 end = 1; 4305 4306 if (em->block_start == EXTENT_MAP_LAST_BYTE) { 4307 end = 1; 4308 flags |= FIEMAP_EXTENT_LAST; 4309 } else if (em->block_start == EXTENT_MAP_INLINE) { 4310 flags |= (FIEMAP_EXTENT_DATA_INLINE | 4311 FIEMAP_EXTENT_NOT_ALIGNED); 4312 } else if (em->block_start == EXTENT_MAP_DELALLOC) { 4313 flags |= (FIEMAP_EXTENT_DELALLOC | 4314 FIEMAP_EXTENT_UNKNOWN); 4315 } else { 4316 unsigned long ref_cnt = 0; 4317 4318 disko = em->block_start + offset_in_extent; 4319 4320 /* 4321 * As btrfs supports shared space, this information 4322 * can be exported to userspace tools via 4323 * flag FIEMAP_EXTENT_SHARED. 4324 */ 4325 ret = iterate_inodes_from_logical( 4326 em->block_start, 4327 BTRFS_I(inode)->root->fs_info, 4328 path, count_ext_ref, &ref_cnt); 4329 if (ret < 0 && ret != -ENOENT) 4330 goto out_free; 4331 4332 if (ref_cnt > 1) 4333 flags |= FIEMAP_EXTENT_SHARED; 4334 } 4335 if (test_bit(EXTENT_FLAG_COMPRESSED, &em->flags)) 4336 flags |= FIEMAP_EXTENT_ENCODED; 4337 4338 free_extent_map(em); 4339 em = NULL; 4340 if ((em_start >= last) || em_len == (u64)-1 || 4341 (last == (u64)-1 && isize <= em_end)) { 4342 flags |= FIEMAP_EXTENT_LAST; 4343 end = 1; 4344 } 4345 4346 /* now scan forward to see if this is really the last extent. */ 4347 em = get_extent_skip_holes(inode, off, last_for_get_extent, 4348 get_extent); 4349 if (IS_ERR(em)) { 4350 ret = PTR_ERR(em); 4351 goto out; 4352 } 4353 if (!em) { 4354 flags |= FIEMAP_EXTENT_LAST; 4355 end = 1; 4356 } 4357 ret = fiemap_fill_next_extent(fieinfo, em_start, disko, 4358 em_len, flags); 4359 if (ret) 4360 goto out_free; 4361 } 4362 out_free: 4363 free_extent_map(em); 4364 out: 4365 btrfs_free_path(path); 4366 unlock_extent_cached(&BTRFS_I(inode)->io_tree, start, start + len - 1, 4367 &cached_state, GFP_NOFS); 4368 return ret; 4369 } 4370 4371 static void __free_extent_buffer(struct extent_buffer *eb) 4372 { 4373 btrfs_leak_debug_del(&eb->leak_list); 4374 kmem_cache_free(extent_buffer_cache, eb); 4375 } 4376 4377 int extent_buffer_under_io(struct extent_buffer *eb) 4378 { 4379 return (atomic_read(&eb->io_pages) || 4380 test_bit(EXTENT_BUFFER_WRITEBACK, &eb->bflags) || 4381 test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4382 } 4383 4384 /* 4385 * Helper for releasing extent buffer page. 4386 */ 4387 static void btrfs_release_extent_buffer_page(struct extent_buffer *eb, 4388 unsigned long start_idx) 4389 { 4390 unsigned long index; 4391 unsigned long num_pages; 4392 struct page *page; 4393 int mapped = !test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4394 4395 BUG_ON(extent_buffer_under_io(eb)); 4396 4397 num_pages = num_extent_pages(eb->start, eb->len); 4398 index = start_idx + num_pages; 4399 if (start_idx >= index) 4400 return; 4401 4402 do { 4403 index--; 4404 page = extent_buffer_page(eb, index); 4405 if (page && mapped) { 4406 spin_lock(&page->mapping->private_lock); 4407 /* 4408 * We do this since we'll remove the pages after we've 4409 * removed the eb from the radix tree, so we could race 4410 * and have this page now attached to the new eb. So 4411 * only clear page_private if it's still connected to 4412 * this eb. 4413 */ 4414 if (PagePrivate(page) && 4415 page->private == (unsigned long)eb) { 4416 BUG_ON(test_bit(EXTENT_BUFFER_DIRTY, &eb->bflags)); 4417 BUG_ON(PageDirty(page)); 4418 BUG_ON(PageWriteback(page)); 4419 /* 4420 * We need to make sure we haven't be attached 4421 * to a new eb. 4422 */ 4423 ClearPagePrivate(page); 4424 set_page_private(page, 0); 4425 /* One for the page private */ 4426 page_cache_release(page); 4427 } 4428 spin_unlock(&page->mapping->private_lock); 4429 4430 } 4431 if (page) { 4432 /* One for when we alloced the page */ 4433 page_cache_release(page); 4434 } 4435 } while (index != start_idx); 4436 } 4437 4438 /* 4439 * Helper for releasing the extent buffer. 4440 */ 4441 static inline void btrfs_release_extent_buffer(struct extent_buffer *eb) 4442 { 4443 btrfs_release_extent_buffer_page(eb, 0); 4444 __free_extent_buffer(eb); 4445 } 4446 4447 static struct extent_buffer * 4448 __alloc_extent_buffer(struct btrfs_fs_info *fs_info, u64 start, 4449 unsigned long len, gfp_t mask) 4450 { 4451 struct extent_buffer *eb = NULL; 4452 4453 eb = kmem_cache_zalloc(extent_buffer_cache, mask); 4454 if (eb == NULL) 4455 return NULL; 4456 eb->start = start; 4457 eb->len = len; 4458 eb->fs_info = fs_info; 4459 eb->bflags = 0; 4460 rwlock_init(&eb->lock); 4461 atomic_set(&eb->write_locks, 0); 4462 atomic_set(&eb->read_locks, 0); 4463 atomic_set(&eb->blocking_readers, 0); 4464 atomic_set(&eb->blocking_writers, 0); 4465 atomic_set(&eb->spinning_readers, 0); 4466 atomic_set(&eb->spinning_writers, 0); 4467 eb->lock_nested = 0; 4468 init_waitqueue_head(&eb->write_lock_wq); 4469 init_waitqueue_head(&eb->read_lock_wq); 4470 4471 btrfs_leak_debug_add(&eb->leak_list, &buffers); 4472 4473 spin_lock_init(&eb->refs_lock); 4474 atomic_set(&eb->refs, 1); 4475 atomic_set(&eb->io_pages, 0); 4476 4477 /* 4478 * Sanity checks, currently the maximum is 64k covered by 16x 4k pages 4479 */ 4480 BUILD_BUG_ON(BTRFS_MAX_METADATA_BLOCKSIZE 4481 > MAX_INLINE_EXTENT_BUFFER_SIZE); 4482 BUG_ON(len > MAX_INLINE_EXTENT_BUFFER_SIZE); 4483 4484 return eb; 4485 } 4486 4487 struct extent_buffer *btrfs_clone_extent_buffer(struct extent_buffer *src) 4488 { 4489 unsigned long i; 4490 struct page *p; 4491 struct extent_buffer *new; 4492 unsigned long num_pages = num_extent_pages(src->start, src->len); 4493 4494 new = __alloc_extent_buffer(NULL, src->start, src->len, GFP_NOFS); 4495 if (new == NULL) 4496 return NULL; 4497 4498 for (i = 0; i < num_pages; i++) { 4499 p = alloc_page(GFP_NOFS); 4500 if (!p) { 4501 btrfs_release_extent_buffer(new); 4502 return NULL; 4503 } 4504 attach_extent_buffer_page(new, p); 4505 WARN_ON(PageDirty(p)); 4506 SetPageUptodate(p); 4507 new->pages[i] = p; 4508 } 4509 4510 copy_extent_buffer(new, src, 0, 0, src->len); 4511 set_bit(EXTENT_BUFFER_UPTODATE, &new->bflags); 4512 set_bit(EXTENT_BUFFER_DUMMY, &new->bflags); 4513 4514 return new; 4515 } 4516 4517 struct extent_buffer *alloc_dummy_extent_buffer(u64 start, unsigned long len) 4518 { 4519 struct extent_buffer *eb; 4520 unsigned long num_pages = num_extent_pages(0, len); 4521 unsigned long i; 4522 4523 eb = __alloc_extent_buffer(NULL, start, len, GFP_NOFS); 4524 if (!eb) 4525 return NULL; 4526 4527 for (i = 0; i < num_pages; i++) { 4528 eb->pages[i] = alloc_page(GFP_NOFS); 4529 if (!eb->pages[i]) 4530 goto err; 4531 } 4532 set_extent_buffer_uptodate(eb); 4533 btrfs_set_header_nritems(eb, 0); 4534 set_bit(EXTENT_BUFFER_DUMMY, &eb->bflags); 4535 4536 return eb; 4537 err: 4538 for (; i > 0; i--) 4539 __free_page(eb->pages[i - 1]); 4540 __free_extent_buffer(eb); 4541 return NULL; 4542 } 4543 4544 static void check_buffer_tree_ref(struct extent_buffer *eb) 4545 { 4546 int refs; 4547 /* the ref bit is tricky. We have to make sure it is set 4548 * if we have the buffer dirty. Otherwise the 4549 * code to free a buffer can end up dropping a dirty 4550 * page 4551 * 4552 * Once the ref bit is set, it won't go away while the 4553 * buffer is dirty or in writeback, and it also won't 4554 * go away while we have the reference count on the 4555 * eb bumped. 4556 * 4557 * We can't just set the ref bit without bumping the 4558 * ref on the eb because free_extent_buffer might 4559 * see the ref bit and try to clear it. If this happens 4560 * free_extent_buffer might end up dropping our original 4561 * ref by mistake and freeing the page before we are able 4562 * to add one more ref. 4563 * 4564 * So bump the ref count first, then set the bit. If someone 4565 * beat us to it, drop the ref we added. 4566 */ 4567 refs = atomic_read(&eb->refs); 4568 if (refs >= 2 && test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4569 return; 4570 4571 spin_lock(&eb->refs_lock); 4572 if (!test_and_set_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4573 atomic_inc(&eb->refs); 4574 spin_unlock(&eb->refs_lock); 4575 } 4576 4577 static void mark_extent_buffer_accessed(struct extent_buffer *eb, 4578 struct page *accessed) 4579 { 4580 unsigned long num_pages, i; 4581 4582 check_buffer_tree_ref(eb); 4583 4584 num_pages = num_extent_pages(eb->start, eb->len); 4585 for (i = 0; i < num_pages; i++) { 4586 struct page *p = extent_buffer_page(eb, i); 4587 if (p != accessed) 4588 mark_page_accessed(p); 4589 } 4590 } 4591 4592 struct extent_buffer *find_extent_buffer(struct btrfs_fs_info *fs_info, 4593 u64 start) 4594 { 4595 struct extent_buffer *eb; 4596 4597 rcu_read_lock(); 4598 eb = radix_tree_lookup(&fs_info->buffer_radix, 4599 start >> PAGE_CACHE_SHIFT); 4600 if (eb && atomic_inc_not_zero(&eb->refs)) { 4601 rcu_read_unlock(); 4602 mark_extent_buffer_accessed(eb, NULL); 4603 return eb; 4604 } 4605 rcu_read_unlock(); 4606 4607 return NULL; 4608 } 4609 4610 #ifdef CONFIG_BTRFS_FS_RUN_SANITY_TESTS 4611 struct extent_buffer *alloc_test_extent_buffer(struct btrfs_fs_info *fs_info, 4612 u64 start, unsigned long len) 4613 { 4614 struct extent_buffer *eb, *exists = NULL; 4615 int ret; 4616 4617 eb = find_extent_buffer(fs_info, start); 4618 if (eb) 4619 return eb; 4620 eb = alloc_dummy_extent_buffer(start, len); 4621 if (!eb) 4622 return NULL; 4623 eb->fs_info = fs_info; 4624 again: 4625 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4626 if (ret) 4627 goto free_eb; 4628 spin_lock(&fs_info->buffer_lock); 4629 ret = radix_tree_insert(&fs_info->buffer_radix, 4630 start >> PAGE_CACHE_SHIFT, eb); 4631 spin_unlock(&fs_info->buffer_lock); 4632 radix_tree_preload_end(); 4633 if (ret == -EEXIST) { 4634 exists = find_extent_buffer(fs_info, start); 4635 if (exists) 4636 goto free_eb; 4637 else 4638 goto again; 4639 } 4640 check_buffer_tree_ref(eb); 4641 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4642 4643 /* 4644 * We will free dummy extent buffer's if they come into 4645 * free_extent_buffer with a ref count of 2, but if we are using this we 4646 * want the buffers to stay in memory until we're done with them, so 4647 * bump the ref count again. 4648 */ 4649 atomic_inc(&eb->refs); 4650 return eb; 4651 free_eb: 4652 btrfs_release_extent_buffer(eb); 4653 return exists; 4654 } 4655 #endif 4656 4657 struct extent_buffer *alloc_extent_buffer(struct btrfs_fs_info *fs_info, 4658 u64 start, unsigned long len) 4659 { 4660 unsigned long num_pages = num_extent_pages(start, len); 4661 unsigned long i; 4662 unsigned long index = start >> PAGE_CACHE_SHIFT; 4663 struct extent_buffer *eb; 4664 struct extent_buffer *exists = NULL; 4665 struct page *p; 4666 struct address_space *mapping = fs_info->btree_inode->i_mapping; 4667 int uptodate = 1; 4668 int ret; 4669 4670 eb = find_extent_buffer(fs_info, start); 4671 if (eb) 4672 return eb; 4673 4674 eb = __alloc_extent_buffer(fs_info, start, len, GFP_NOFS); 4675 if (!eb) 4676 return NULL; 4677 4678 for (i = 0; i < num_pages; i++, index++) { 4679 p = find_or_create_page(mapping, index, GFP_NOFS); 4680 if (!p) 4681 goto free_eb; 4682 4683 spin_lock(&mapping->private_lock); 4684 if (PagePrivate(p)) { 4685 /* 4686 * We could have already allocated an eb for this page 4687 * and attached one so lets see if we can get a ref on 4688 * the existing eb, and if we can we know it's good and 4689 * we can just return that one, else we know we can just 4690 * overwrite page->private. 4691 */ 4692 exists = (struct extent_buffer *)p->private; 4693 if (atomic_inc_not_zero(&exists->refs)) { 4694 spin_unlock(&mapping->private_lock); 4695 unlock_page(p); 4696 page_cache_release(p); 4697 mark_extent_buffer_accessed(exists, p); 4698 goto free_eb; 4699 } 4700 4701 /* 4702 * Do this so attach doesn't complain and we need to 4703 * drop the ref the old guy had. 4704 */ 4705 ClearPagePrivate(p); 4706 WARN_ON(PageDirty(p)); 4707 page_cache_release(p); 4708 } 4709 attach_extent_buffer_page(eb, p); 4710 spin_unlock(&mapping->private_lock); 4711 WARN_ON(PageDirty(p)); 4712 eb->pages[i] = p; 4713 if (!PageUptodate(p)) 4714 uptodate = 0; 4715 4716 /* 4717 * see below about how we avoid a nasty race with release page 4718 * and why we unlock later 4719 */ 4720 } 4721 if (uptodate) 4722 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4723 again: 4724 ret = radix_tree_preload(GFP_NOFS & ~__GFP_HIGHMEM); 4725 if (ret) 4726 goto free_eb; 4727 4728 spin_lock(&fs_info->buffer_lock); 4729 ret = radix_tree_insert(&fs_info->buffer_radix, 4730 start >> PAGE_CACHE_SHIFT, eb); 4731 spin_unlock(&fs_info->buffer_lock); 4732 radix_tree_preload_end(); 4733 if (ret == -EEXIST) { 4734 exists = find_extent_buffer(fs_info, start); 4735 if (exists) 4736 goto free_eb; 4737 else 4738 goto again; 4739 } 4740 /* add one reference for the tree */ 4741 check_buffer_tree_ref(eb); 4742 set_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags); 4743 4744 /* 4745 * there is a race where release page may have 4746 * tried to find this extent buffer in the radix 4747 * but failed. It will tell the VM it is safe to 4748 * reclaim the, and it will clear the page private bit. 4749 * We must make sure to set the page private bit properly 4750 * after the extent buffer is in the radix tree so 4751 * it doesn't get lost 4752 */ 4753 SetPageChecked(eb->pages[0]); 4754 for (i = 1; i < num_pages; i++) { 4755 p = extent_buffer_page(eb, i); 4756 ClearPageChecked(p); 4757 unlock_page(p); 4758 } 4759 unlock_page(eb->pages[0]); 4760 return eb; 4761 4762 free_eb: 4763 for (i = 0; i < num_pages; i++) { 4764 if (eb->pages[i]) 4765 unlock_page(eb->pages[i]); 4766 } 4767 4768 WARN_ON(!atomic_dec_and_test(&eb->refs)); 4769 btrfs_release_extent_buffer(eb); 4770 return exists; 4771 } 4772 4773 static inline void btrfs_release_extent_buffer_rcu(struct rcu_head *head) 4774 { 4775 struct extent_buffer *eb = 4776 container_of(head, struct extent_buffer, rcu_head); 4777 4778 __free_extent_buffer(eb); 4779 } 4780 4781 /* Expects to have eb->eb_lock already held */ 4782 static int release_extent_buffer(struct extent_buffer *eb) 4783 { 4784 WARN_ON(atomic_read(&eb->refs) == 0); 4785 if (atomic_dec_and_test(&eb->refs)) { 4786 if (test_and_clear_bit(EXTENT_BUFFER_IN_TREE, &eb->bflags)) { 4787 struct btrfs_fs_info *fs_info = eb->fs_info; 4788 4789 spin_unlock(&eb->refs_lock); 4790 4791 spin_lock(&fs_info->buffer_lock); 4792 radix_tree_delete(&fs_info->buffer_radix, 4793 eb->start >> PAGE_CACHE_SHIFT); 4794 spin_unlock(&fs_info->buffer_lock); 4795 } else { 4796 spin_unlock(&eb->refs_lock); 4797 } 4798 4799 /* Should be safe to release our pages at this point */ 4800 btrfs_release_extent_buffer_page(eb, 0); 4801 call_rcu(&eb->rcu_head, btrfs_release_extent_buffer_rcu); 4802 return 1; 4803 } 4804 spin_unlock(&eb->refs_lock); 4805 4806 return 0; 4807 } 4808 4809 void free_extent_buffer(struct extent_buffer *eb) 4810 { 4811 int refs; 4812 int old; 4813 if (!eb) 4814 return; 4815 4816 while (1) { 4817 refs = atomic_read(&eb->refs); 4818 if (refs <= 3) 4819 break; 4820 old = atomic_cmpxchg(&eb->refs, refs, refs - 1); 4821 if (old == refs) 4822 return; 4823 } 4824 4825 spin_lock(&eb->refs_lock); 4826 if (atomic_read(&eb->refs) == 2 && 4827 test_bit(EXTENT_BUFFER_DUMMY, &eb->bflags)) 4828 atomic_dec(&eb->refs); 4829 4830 if (atomic_read(&eb->refs) == 2 && 4831 test_bit(EXTENT_BUFFER_STALE, &eb->bflags) && 4832 !extent_buffer_under_io(eb) && 4833 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4834 atomic_dec(&eb->refs); 4835 4836 /* 4837 * I know this is terrible, but it's temporary until we stop tracking 4838 * the uptodate bits and such for the extent buffers. 4839 */ 4840 release_extent_buffer(eb); 4841 } 4842 4843 void free_extent_buffer_stale(struct extent_buffer *eb) 4844 { 4845 if (!eb) 4846 return; 4847 4848 spin_lock(&eb->refs_lock); 4849 set_bit(EXTENT_BUFFER_STALE, &eb->bflags); 4850 4851 if (atomic_read(&eb->refs) == 2 && !extent_buffer_under_io(eb) && 4852 test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) 4853 atomic_dec(&eb->refs); 4854 release_extent_buffer(eb); 4855 } 4856 4857 void clear_extent_buffer_dirty(struct extent_buffer *eb) 4858 { 4859 unsigned long i; 4860 unsigned long num_pages; 4861 struct page *page; 4862 4863 num_pages = num_extent_pages(eb->start, eb->len); 4864 4865 for (i = 0; i < num_pages; i++) { 4866 page = extent_buffer_page(eb, i); 4867 if (!PageDirty(page)) 4868 continue; 4869 4870 lock_page(page); 4871 WARN_ON(!PagePrivate(page)); 4872 4873 clear_page_dirty_for_io(page); 4874 spin_lock_irq(&page->mapping->tree_lock); 4875 if (!PageDirty(page)) { 4876 radix_tree_tag_clear(&page->mapping->page_tree, 4877 page_index(page), 4878 PAGECACHE_TAG_DIRTY); 4879 } 4880 spin_unlock_irq(&page->mapping->tree_lock); 4881 ClearPageError(page); 4882 unlock_page(page); 4883 } 4884 WARN_ON(atomic_read(&eb->refs) == 0); 4885 } 4886 4887 int set_extent_buffer_dirty(struct extent_buffer *eb) 4888 { 4889 unsigned long i; 4890 unsigned long num_pages; 4891 int was_dirty = 0; 4892 4893 check_buffer_tree_ref(eb); 4894 4895 was_dirty = test_and_set_bit(EXTENT_BUFFER_DIRTY, &eb->bflags); 4896 4897 num_pages = num_extent_pages(eb->start, eb->len); 4898 WARN_ON(atomic_read(&eb->refs) == 0); 4899 WARN_ON(!test_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)); 4900 4901 for (i = 0; i < num_pages; i++) 4902 set_page_dirty(extent_buffer_page(eb, i)); 4903 return was_dirty; 4904 } 4905 4906 int clear_extent_buffer_uptodate(struct extent_buffer *eb) 4907 { 4908 unsigned long i; 4909 struct page *page; 4910 unsigned long num_pages; 4911 4912 clear_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4913 num_pages = num_extent_pages(eb->start, eb->len); 4914 for (i = 0; i < num_pages; i++) { 4915 page = extent_buffer_page(eb, i); 4916 if (page) 4917 ClearPageUptodate(page); 4918 } 4919 return 0; 4920 } 4921 4922 int set_extent_buffer_uptodate(struct extent_buffer *eb) 4923 { 4924 unsigned long i; 4925 struct page *page; 4926 unsigned long num_pages; 4927 4928 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4929 num_pages = num_extent_pages(eb->start, eb->len); 4930 for (i = 0; i < num_pages; i++) { 4931 page = extent_buffer_page(eb, i); 4932 SetPageUptodate(page); 4933 } 4934 return 0; 4935 } 4936 4937 int extent_buffer_uptodate(struct extent_buffer *eb) 4938 { 4939 return test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4940 } 4941 4942 int read_extent_buffer_pages(struct extent_io_tree *tree, 4943 struct extent_buffer *eb, u64 start, int wait, 4944 get_extent_t *get_extent, int mirror_num) 4945 { 4946 unsigned long i; 4947 unsigned long start_i; 4948 struct page *page; 4949 int err; 4950 int ret = 0; 4951 int locked_pages = 0; 4952 int all_uptodate = 1; 4953 unsigned long num_pages; 4954 unsigned long num_reads = 0; 4955 struct bio *bio = NULL; 4956 unsigned long bio_flags = 0; 4957 4958 if (test_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags)) 4959 return 0; 4960 4961 if (start) { 4962 WARN_ON(start < eb->start); 4963 start_i = (start >> PAGE_CACHE_SHIFT) - 4964 (eb->start >> PAGE_CACHE_SHIFT); 4965 } else { 4966 start_i = 0; 4967 } 4968 4969 num_pages = num_extent_pages(eb->start, eb->len); 4970 for (i = start_i; i < num_pages; i++) { 4971 page = extent_buffer_page(eb, i); 4972 if (wait == WAIT_NONE) { 4973 if (!trylock_page(page)) 4974 goto unlock_exit; 4975 } else { 4976 lock_page(page); 4977 } 4978 locked_pages++; 4979 if (!PageUptodate(page)) { 4980 num_reads++; 4981 all_uptodate = 0; 4982 } 4983 } 4984 if (all_uptodate) { 4985 if (start_i == 0) 4986 set_bit(EXTENT_BUFFER_UPTODATE, &eb->bflags); 4987 goto unlock_exit; 4988 } 4989 4990 clear_bit(EXTENT_BUFFER_IOERR, &eb->bflags); 4991 eb->read_mirror = 0; 4992 atomic_set(&eb->io_pages, num_reads); 4993 for (i = start_i; i < num_pages; i++) { 4994 page = extent_buffer_page(eb, i); 4995 if (!PageUptodate(page)) { 4996 ClearPageError(page); 4997 err = __extent_read_full_page(tree, page, 4998 get_extent, &bio, 4999 mirror_num, &bio_flags, 5000 READ | REQ_META); 5001 if (err) 5002 ret = err; 5003 } else { 5004 unlock_page(page); 5005 } 5006 } 5007 5008 if (bio) { 5009 err = submit_one_bio(READ | REQ_META, bio, mirror_num, 5010 bio_flags); 5011 if (err) 5012 return err; 5013 } 5014 5015 if (ret || wait != WAIT_COMPLETE) 5016 return ret; 5017 5018 for (i = start_i; i < num_pages; i++) { 5019 page = extent_buffer_page(eb, i); 5020 wait_on_page_locked(page); 5021 if (!PageUptodate(page)) 5022 ret = -EIO; 5023 } 5024 5025 return ret; 5026 5027 unlock_exit: 5028 i = start_i; 5029 while (locked_pages > 0) { 5030 page = extent_buffer_page(eb, i); 5031 i++; 5032 unlock_page(page); 5033 locked_pages--; 5034 } 5035 return ret; 5036 } 5037 5038 void read_extent_buffer(struct extent_buffer *eb, void *dstv, 5039 unsigned long start, 5040 unsigned long len) 5041 { 5042 size_t cur; 5043 size_t offset; 5044 struct page *page; 5045 char *kaddr; 5046 char *dst = (char *)dstv; 5047 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5048 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5049 5050 WARN_ON(start > eb->len); 5051 WARN_ON(start + len > eb->start + eb->len); 5052 5053 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5054 5055 while (len > 0) { 5056 page = extent_buffer_page(eb, i); 5057 5058 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5059 kaddr = page_address(page); 5060 memcpy(dst, kaddr + offset, cur); 5061 5062 dst += cur; 5063 len -= cur; 5064 offset = 0; 5065 i++; 5066 } 5067 } 5068 5069 int read_extent_buffer_to_user(struct extent_buffer *eb, void __user *dstv, 5070 unsigned long start, 5071 unsigned long len) 5072 { 5073 size_t cur; 5074 size_t offset; 5075 struct page *page; 5076 char *kaddr; 5077 char __user *dst = (char __user *)dstv; 5078 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5079 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5080 int ret = 0; 5081 5082 WARN_ON(start > eb->len); 5083 WARN_ON(start + len > eb->start + eb->len); 5084 5085 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5086 5087 while (len > 0) { 5088 page = extent_buffer_page(eb, i); 5089 5090 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5091 kaddr = page_address(page); 5092 if (copy_to_user(dst, kaddr + offset, cur)) { 5093 ret = -EFAULT; 5094 break; 5095 } 5096 5097 dst += cur; 5098 len -= cur; 5099 offset = 0; 5100 i++; 5101 } 5102 5103 return ret; 5104 } 5105 5106 int map_private_extent_buffer(struct extent_buffer *eb, unsigned long start, 5107 unsigned long min_len, char **map, 5108 unsigned long *map_start, 5109 unsigned long *map_len) 5110 { 5111 size_t offset = start & (PAGE_CACHE_SIZE - 1); 5112 char *kaddr; 5113 struct page *p; 5114 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5115 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5116 unsigned long end_i = (start_offset + start + min_len - 1) >> 5117 PAGE_CACHE_SHIFT; 5118 5119 if (i != end_i) 5120 return -EINVAL; 5121 5122 if (i == 0) { 5123 offset = start_offset; 5124 *map_start = 0; 5125 } else { 5126 offset = 0; 5127 *map_start = ((u64)i << PAGE_CACHE_SHIFT) - start_offset; 5128 } 5129 5130 if (start + min_len > eb->len) { 5131 WARN(1, KERN_ERR "btrfs bad mapping eb start %llu len %lu, " 5132 "wanted %lu %lu\n", 5133 eb->start, eb->len, start, min_len); 5134 return -EINVAL; 5135 } 5136 5137 p = extent_buffer_page(eb, i); 5138 kaddr = page_address(p); 5139 *map = kaddr + offset; 5140 *map_len = PAGE_CACHE_SIZE - offset; 5141 return 0; 5142 } 5143 5144 int memcmp_extent_buffer(struct extent_buffer *eb, const void *ptrv, 5145 unsigned long start, 5146 unsigned long len) 5147 { 5148 size_t cur; 5149 size_t offset; 5150 struct page *page; 5151 char *kaddr; 5152 char *ptr = (char *)ptrv; 5153 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5154 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5155 int ret = 0; 5156 5157 WARN_ON(start > eb->len); 5158 WARN_ON(start + len > eb->start + eb->len); 5159 5160 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5161 5162 while (len > 0) { 5163 page = extent_buffer_page(eb, i); 5164 5165 cur = min(len, (PAGE_CACHE_SIZE - offset)); 5166 5167 kaddr = page_address(page); 5168 ret = memcmp(ptr, kaddr + offset, cur); 5169 if (ret) 5170 break; 5171 5172 ptr += cur; 5173 len -= cur; 5174 offset = 0; 5175 i++; 5176 } 5177 return ret; 5178 } 5179 5180 void write_extent_buffer(struct extent_buffer *eb, const void *srcv, 5181 unsigned long start, unsigned long len) 5182 { 5183 size_t cur; 5184 size_t offset; 5185 struct page *page; 5186 char *kaddr; 5187 char *src = (char *)srcv; 5188 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5189 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5190 5191 WARN_ON(start > eb->len); 5192 WARN_ON(start + len > eb->start + eb->len); 5193 5194 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5195 5196 while (len > 0) { 5197 page = extent_buffer_page(eb, i); 5198 WARN_ON(!PageUptodate(page)); 5199 5200 cur = min(len, PAGE_CACHE_SIZE - offset); 5201 kaddr = page_address(page); 5202 memcpy(kaddr + offset, src, cur); 5203 5204 src += cur; 5205 len -= cur; 5206 offset = 0; 5207 i++; 5208 } 5209 } 5210 5211 void memset_extent_buffer(struct extent_buffer *eb, char c, 5212 unsigned long start, unsigned long len) 5213 { 5214 size_t cur; 5215 size_t offset; 5216 struct page *page; 5217 char *kaddr; 5218 size_t start_offset = eb->start & ((u64)PAGE_CACHE_SIZE - 1); 5219 unsigned long i = (start_offset + start) >> PAGE_CACHE_SHIFT; 5220 5221 WARN_ON(start > eb->len); 5222 WARN_ON(start + len > eb->start + eb->len); 5223 5224 offset = (start_offset + start) & (PAGE_CACHE_SIZE - 1); 5225 5226 while (len > 0) { 5227 page = extent_buffer_page(eb, i); 5228 WARN_ON(!PageUptodate(page)); 5229 5230 cur = min(len, PAGE_CACHE_SIZE - offset); 5231 kaddr = page_address(page); 5232 memset(kaddr + offset, c, cur); 5233 5234 len -= cur; 5235 offset = 0; 5236 i++; 5237 } 5238 } 5239 5240 void copy_extent_buffer(struct extent_buffer *dst, struct extent_buffer *src, 5241 unsigned long dst_offset, unsigned long src_offset, 5242 unsigned long len) 5243 { 5244 u64 dst_len = dst->len; 5245 size_t cur; 5246 size_t offset; 5247 struct page *page; 5248 char *kaddr; 5249 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5250 unsigned long i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5251 5252 WARN_ON(src->len != dst_len); 5253 5254 offset = (start_offset + dst_offset) & 5255 (PAGE_CACHE_SIZE - 1); 5256 5257 while (len > 0) { 5258 page = extent_buffer_page(dst, i); 5259 WARN_ON(!PageUptodate(page)); 5260 5261 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - offset)); 5262 5263 kaddr = page_address(page); 5264 read_extent_buffer(src, kaddr + offset, src_offset, cur); 5265 5266 src_offset += cur; 5267 len -= cur; 5268 offset = 0; 5269 i++; 5270 } 5271 } 5272 5273 static inline bool areas_overlap(unsigned long src, unsigned long dst, unsigned long len) 5274 { 5275 unsigned long distance = (src > dst) ? src - dst : dst - src; 5276 return distance < len; 5277 } 5278 5279 static void copy_pages(struct page *dst_page, struct page *src_page, 5280 unsigned long dst_off, unsigned long src_off, 5281 unsigned long len) 5282 { 5283 char *dst_kaddr = page_address(dst_page); 5284 char *src_kaddr; 5285 int must_memmove = 0; 5286 5287 if (dst_page != src_page) { 5288 src_kaddr = page_address(src_page); 5289 } else { 5290 src_kaddr = dst_kaddr; 5291 if (areas_overlap(src_off, dst_off, len)) 5292 must_memmove = 1; 5293 } 5294 5295 if (must_memmove) 5296 memmove(dst_kaddr + dst_off, src_kaddr + src_off, len); 5297 else 5298 memcpy(dst_kaddr + dst_off, src_kaddr + src_off, len); 5299 } 5300 5301 void memcpy_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5302 unsigned long src_offset, unsigned long len) 5303 { 5304 size_t cur; 5305 size_t dst_off_in_page; 5306 size_t src_off_in_page; 5307 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5308 unsigned long dst_i; 5309 unsigned long src_i; 5310 5311 if (src_offset + len > dst->len) { 5312 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5313 "len %lu dst len %lu\n", src_offset, len, dst->len); 5314 BUG_ON(1); 5315 } 5316 if (dst_offset + len > dst->len) { 5317 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5318 "len %lu dst len %lu\n", dst_offset, len, dst->len); 5319 BUG_ON(1); 5320 } 5321 5322 while (len > 0) { 5323 dst_off_in_page = (start_offset + dst_offset) & 5324 (PAGE_CACHE_SIZE - 1); 5325 src_off_in_page = (start_offset + src_offset) & 5326 (PAGE_CACHE_SIZE - 1); 5327 5328 dst_i = (start_offset + dst_offset) >> PAGE_CACHE_SHIFT; 5329 src_i = (start_offset + src_offset) >> PAGE_CACHE_SHIFT; 5330 5331 cur = min(len, (unsigned long)(PAGE_CACHE_SIZE - 5332 src_off_in_page)); 5333 cur = min_t(unsigned long, cur, 5334 (unsigned long)(PAGE_CACHE_SIZE - dst_off_in_page)); 5335 5336 copy_pages(extent_buffer_page(dst, dst_i), 5337 extent_buffer_page(dst, src_i), 5338 dst_off_in_page, src_off_in_page, cur); 5339 5340 src_offset += cur; 5341 dst_offset += cur; 5342 len -= cur; 5343 } 5344 } 5345 5346 void memmove_extent_buffer(struct extent_buffer *dst, unsigned long dst_offset, 5347 unsigned long src_offset, unsigned long len) 5348 { 5349 size_t cur; 5350 size_t dst_off_in_page; 5351 size_t src_off_in_page; 5352 unsigned long dst_end = dst_offset + len - 1; 5353 unsigned long src_end = src_offset + len - 1; 5354 size_t start_offset = dst->start & ((u64)PAGE_CACHE_SIZE - 1); 5355 unsigned long dst_i; 5356 unsigned long src_i; 5357 5358 if (src_offset + len > dst->len) { 5359 printk(KERN_ERR "BTRFS: memmove bogus src_offset %lu move " 5360 "len %lu len %lu\n", src_offset, len, dst->len); 5361 BUG_ON(1); 5362 } 5363 if (dst_offset + len > dst->len) { 5364 printk(KERN_ERR "BTRFS: memmove bogus dst_offset %lu move " 5365 "len %lu len %lu\n", dst_offset, len, dst->len); 5366 BUG_ON(1); 5367 } 5368 if (dst_offset < src_offset) { 5369 memcpy_extent_buffer(dst, dst_offset, src_offset, len); 5370 return; 5371 } 5372 while (len > 0) { 5373 dst_i = (start_offset + dst_end) >> PAGE_CACHE_SHIFT; 5374 src_i = (start_offset + src_end) >> PAGE_CACHE_SHIFT; 5375 5376 dst_off_in_page = (start_offset + dst_end) & 5377 (PAGE_CACHE_SIZE - 1); 5378 src_off_in_page = (start_offset + src_end) & 5379 (PAGE_CACHE_SIZE - 1); 5380 5381 cur = min_t(unsigned long, len, src_off_in_page + 1); 5382 cur = min(cur, dst_off_in_page + 1); 5383 copy_pages(extent_buffer_page(dst, dst_i), 5384 extent_buffer_page(dst, src_i), 5385 dst_off_in_page - cur + 1, 5386 src_off_in_page - cur + 1, cur); 5387 5388 dst_end -= cur; 5389 src_end -= cur; 5390 len -= cur; 5391 } 5392 } 5393 5394 int try_release_extent_buffer(struct page *page) 5395 { 5396 struct extent_buffer *eb; 5397 5398 /* 5399 * We need to make sure noboody is attaching this page to an eb right 5400 * now. 5401 */ 5402 spin_lock(&page->mapping->private_lock); 5403 if (!PagePrivate(page)) { 5404 spin_unlock(&page->mapping->private_lock); 5405 return 1; 5406 } 5407 5408 eb = (struct extent_buffer *)page->private; 5409 BUG_ON(!eb); 5410 5411 /* 5412 * This is a little awful but should be ok, we need to make sure that 5413 * the eb doesn't disappear out from under us while we're looking at 5414 * this page. 5415 */ 5416 spin_lock(&eb->refs_lock); 5417 if (atomic_read(&eb->refs) != 1 || extent_buffer_under_io(eb)) { 5418 spin_unlock(&eb->refs_lock); 5419 spin_unlock(&page->mapping->private_lock); 5420 return 0; 5421 } 5422 spin_unlock(&page->mapping->private_lock); 5423 5424 /* 5425 * If tree ref isn't set then we know the ref on this eb is a real ref, 5426 * so just return, this page will likely be freed soon anyway. 5427 */ 5428 if (!test_and_clear_bit(EXTENT_BUFFER_TREE_REF, &eb->bflags)) { 5429 spin_unlock(&eb->refs_lock); 5430 return 0; 5431 } 5432 5433 return release_extent_buffer(eb); 5434 } 5435